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Abstract

Human facial shape, while strongly heritable, involves both genetic and structural complex-

ity, necessitating precise phenotyping for accurate assessment. Common phenotyping

strategies include simplifying 3D facial features into univariate traits such as anthropometric

measurements (e.g., inter-landmark distances), unsupervised dimensionality reductions

(e.g., principal component analysis (PCA) and auto-encoder (AE) approaches), and assess-

ing resemblance to particular facial gestalts (e.g., syndromic facial archetypes). This study

provides a comparative assessment of these strategies in genome-wide association studies

(GWASs) of 3D facial shape. Specifically, we investigated inter-landmark distances, PCA

and AE-derived latent dimensions, and facial resemblance to random, extreme, and syndro-

mic gestalts within a GWAS of 8,426 individuals of recent European ancestry. Inter-land-

mark distances exhibit the highest SNP-based heritability as estimated via LD score

regression, followed by AE dimensions. Conversely, resemblance scores to extreme and

syndromic facial gestalts display the lowest heritability, in line with expectations. Notably,

the aggregation of multiple GWASs on facial resemblance to random gestalts reveals the

highest number of independent genetic loci. This novel, easy-to-implement phenotyping

approach holds significant promise for capturing genetically relevant morphological traits
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derived from complex biomedical imaging datasets, and its applications extend beyond

faces. Nevertheless, these different phenotyping strategies capture different genetic influ-

ences on craniofacial shape. Thus, it remains valuable to explore these strategies individu-

ally and in combination to gain a more comprehensive understanding of the genetic factors

underlying craniofacial shape and related traits.

Author summary

Advancements linking variation in the human genome to phenotypes have rapidly

evolved in recent decades and have revealed that most human traits are influenced by

genetic variants to at least some degree. While many traits, such as stature, are straightfor-

ward to acquire and investigate, the multivariate and multipartite nature of facial shape

makes quantification more challenging. In this study, we compared the impact of different

facial phenotyping approaches on gene mapping outcomes. Our findings suggest that the

choice of facial phenotyping method has an impact on apparent trait heritability and the

ability to detect genetic association signals. These results offer valuable insights into the

importance of phenotyping in genetic investigations, especially when dealing with highly

complex morphological traits.

Introduction

Human facial development is highly complex, resulting in a rich diversity of facial appearances

both within and among populations. Furthermore, facial features have a strong genetic basis,

readily apparent within families. The genome-wide association scan (GWAS) is an agnostic

approach designed to investigate the statistical relationship between phenotypic traits and

genetic variants. A typical GWAS involves individually testing millions of single nucleotide

polymorphisms (SNPs) or other common variants dispersed across the genome. Because the

precise location of SNPs and genes is known, GWAS signals showing strong evidence of asso-

ciation can point to genes of interest. While many human traits are relatively straightforward

to acquire, capturing facial variation is considerably less so, due to the multivariate and multi-

partite nature of faces.

Since the initial two GWASs on components of typical-range facial shape variation in 2012

[1,2], more than 300 genome-wide significant signals have been identified in over 20 different

studies [3]. Several recent studies [4–8] have embraced a multivariate GWAS framework,

regressing multiple univariate traits simultaneously onto each SNP genotype, and have thereby

outperformed univariate GWAS in terms of genetic discovery. Nevertheless, several compel-

ling arguments favor univariate GWAS. First, univariate GWAS results can be easily combined

across studies via meta-analysis, thereby enhancing statistical power while obviating the need

to share highly sensitive facial and genomic data. Second, several important follow-up analyses

and GWAS applications, such as linkage disequilibrium score regression (LDSC) [9] and poly-

genic risk score calculations, require signed effect size and error estimates, which are not read-

ily provided by multivariate techniques. Finally, univariate GWAS is simpler to execute and

demands fewer computational resources than multivariate GWAS.

In a traditional anthropometric approach to facial phenotyping, researchers collect a set of

univariate measurements such as the distances between pairs of well recognizable, sparsely dis-

tributed facial landmarks [1,2,10–18]. Newer approaches have used geometric morphometrics
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p1. The phenotype data, represented as 3D facial

surface in .obj format, are available through the

FaceBase Consortium (https://www.facebase.org)

at accession number FB00000491.01. Access to

these 3D facial surface models requires proper

institutional ethics approval and approval from the

FaceBase data access committee. The FaceBase

repository in the syndromic face database,

“Developing 3D Craniofacial Morphometry Data

and Tools to Transform Dysmorphology”, collected

at patient support groups in the USA, Canada, and

the UK. Facial images are available through

FaceBase (https://www.facebase.org/chaise/

record/#1/isa:dataset/accession=FB00000861).

The participants making up the Peter Hammond’s

legacy 3D dysmorphology dataset, Penn State

University (PSU) and Indiana University

Indianapolis (IUI) datasets were not collected with

broad data sharing consent. Given the highly

identifiable nature of both facial and genomic

information and unresolved issues regarding risks

to participants of reidentification, participants were

not consented for inclusion in public repositories or

the posting of individual data. This restriction is not

because of any personal or commercial interests.

Further information about access to the raw 3D

facial images and/or genomic data can be obtained

from the respective ethics committees; the Ethics

Committee Research UZ/KU Leuven (ec@uzleuven.

be), the PSU IRB (IRB-ORP@psu.edu), and the IUI

IRB (irb@iu.edu) for the Peter Hammond’s legacy,

PSU and IUI datasets, respectively. For the

ALSPAC (UK) data, please note that the study

website contains details of all the data that is

available through a fully searchable data dictionary

and variable search tool (http://www.bristol.ac.uk/

alspac/researchers/our-data/). Genome wide

genotyping data was generated by Sample

Logistics and Genotyping Facilities at Welcome

Sanger Institute and LabCorp (Laboratory

Corporation of America) using support from

23andMe. All relevant source data for future

replications are provided online (https://doi.org/10.

6084/m9.figshare.24867063). This includes: the

facial template, nasal landmark labels, the mesh

simplification scheme used in AE models, the list of

genetic loci associated with the nose and face

shape, the GO biological processes based on the

union set of lead SNPs from all groups of

phenotypes, and the LocusZoom plots for each

significant SNP based on different phenotyping

methods. An example of LocusZoom plot can be

found in Fig G in S1 File. Code availability KU

Leuven provides the MeshMonk v.0.0.6 spatially

dense facial-mapping software, free to use for

academic purposes (https://github.com/

TheWebMonks/meshmonk). MATLAB R2017b
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[14,16,19] and expanded sparse landmarks into spatially dense quasi-landmark representa-

tions of the face [4,5,7,8,20]. Then, starting from complete landmark configurations (sparse or

dense), a popular feature extraction or phenotyping method is principal component analysis

(PCA) to extract a set of orthogonal features that represent facial variation. More recently,

alternative deep-learning networks, such as auto-encoders (AE), have emerged as non-linear

counterparts to PCA. Despite the current trend favoring neural networks, to the best of our

knowledge, these have not yet been applied in facial GWAS.

Apart from methods involving facial anthropometrics or unsupervised learning, supervised

approaches have also been used to extract specific univariate facial features. For instance, it is

feasible to extract facial characteristics expected to exhibit high heritability, such as facial traits

shared among siblings [21]. Another illustration is GWASs conducted using resemblance

scores guided by patient facial archetype associated with Achondroplasia [22] or Pierre Robin

Sequence [23]. Similarly, resemblance scores to the distinctive facial endophenotype in unaf-

fected relatives of individuals with non-syndromic cleft lip was successfully used in GWAS,

which helped to further elucidate the genetic susceptibility to non-syndromic cleft lip [24].

Here, we provide a comprehensive comparison of univariate facial phenotyping approaches

in GWAS of facial shape based on a cohort of 8,246 healthy European individuals. We evalu-

ated phenotyping approaches based on two criteria: (1) GWAS discovery rate, defined as the

number of independent association signals identified in aggregate across phenotypes in the

same category (e.g., all principal components), and (2) SNP-based heritability determined by

LDSC [9]. Additionally, this work offers secondary contributions by (1) exploring the latent

dimensions of an AE as facial traits in GWAS, and by (2) introducing two additional super-

vised phenotyping schemes, one by extreme facial gestalts and another by randomly selected

facial gestalts.

Results

As illustrated in Fig 1, this study explored three distinct facial phenotyping strategies or catego-

ries. The first category, known as anthropometric techniques, focused on inter-landmark mea-

surements. These measurements were defined as the Euclidean distances in 3D space between

pairs of sparse facial landmarks. The second category, referred to as unsupervised techniques,

involved deriving latent representations obtained through PCA and AE. These techniques gen-

erated up to 200 latent dimensions from spatially dense configurations of quasi-landmarks

(n = 7,610), as established using MeshMonk [25]. The third category, termed supervised tech-

niques, centered around resemblance-based facial traits, comparing each individual in the

cohort to specific facial gestalts ranging from random to extreme to syndrome-related facial

examples. Each face in the cohort received a resemblance score by measuring its cosine dis-

tance in multivariate face space against the provided facial examples (random, extreme, and

syndromic). Generally, low phenotypic correlations were observed among different groups of

phenotypes (Fig A in S1 File). All phenotyping methods were applied to the complete facial

shape and, separately, to nasal shape. The focus on nasal shape was due to its high heritability,

making it a particularly noteworthy facial region for detailed examination [26].

SNP-based heritability

Fig 2 illustrates the distribution of SNP-based heritability, computed using LDSC [9], for facial

traits extracted by various phenotyping methods (detailed descriptive statistics are provided in

Table A in S2 File). For full facial shape, inter-landmark distances demonstrated the highest

mean heritability, followed closely, without significant difference (Fig B in S1 File), by traits

extracted through an AE. PCs and resemblance scores to randomly selected facial gestalts were
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implementations of the hierarchical spectral

clustering to obtain nasal segmentation are

available from a previous publication (https://doi.

org/10.6084/m9.figshare.7649024). Code for

training AE models is available at https://github.

com/mm-yuan/autoencoder_3dface. The analyses

in this work were based on functions in MALAB

R2022b, Python v3.7.8, MeshMonk v0.0.6,

MeshLab v2020.03, LDSC v.1.0.1, GREAT v4.0.4.

Funding: The KU Leuven research team (P.C.,

M.Y., S.G.) and analyses were supported by the

Research Fund KU Leuven (BOF-C1, C14/20/081),

and the Research Foundation-Flanders (FWO,

G0D1923N). This work was funded in part by

grants from the National Institute of Dental and

Craniofacial Research: R01-DE027023 (S.M.W., J.

R.S., P.C.) and U01DE024440 (R.A.S., O.D.K., B.

H.). The UK Medical Research Council and

Wellcome (Grant ref: 217065/Z/19/Z) and the

University of Bristol provide core support for

ALSPAC. A comprehensive list of grants funding is

available on the ALSPAC website (http://www.

bristol.ac.uk/alspac/external/documents/grant-

acknowledgements.pdf). Funding for the collection

of 3D face shape scans was specifically provided

by the MRC and Wellcome Trust (092731) and the

University of Cardiff. This publication is the work of

the authors, and they will serve as guarantors for

the contents of this paper. The funders had no role

in study design, data collection and analysis,

decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1012617
https://doi.org/10.6084/m9.figshare.7649024
https://doi.org/10.6084/m9.figshare.7649024
https://github.com/mm-yuan/autoencoder_3dface
https://github.com/mm-yuan/autoencoder_3dface
http://www.bristol.ac.uk/alspac/external/documents/grant-acknowledgements.pdf
http://www.bristol.ac.uk/alspac/external/documents/grant-acknowledgements.pdf
http://www.bristol.ac.uk/alspac/external/documents/grant-acknowledgements.pdf


both ranked as the second most heritable traits, although PCs displayed greater variation in

heritability scores. Notably, the mean heritability for resemblance scores to both extreme and

syndromic facial examples was the lowest, implying a reduced influence of common genetic

variants. Similar trends were observed for nasal shape, except that inter-landmark distances, in

Fig 1. Overview of phenotyping methods. (a) inter-landmark Euclidean distances computed between 24 anatomical facial landmarks. The 5 nasal landmarks

in the blue nasal region are highlighted in red. (b) principal component analysis, which is based on a low-rank singular value decomposition (SVD) applied to a

reshaped representation of the 3D shape data, where matrix multiplication is denoted by �. (c) an auto-encoder network. The encoder consists of three spiral

convolutional layers, followed by two fully connected layers. The decoder architecture mirrors the structure of the encoder. (d) resemblance-based measures,

defined as the cosine distance operating on the angle between the target vector (e.g., a random face, an extreme face) and a sample vector. For instance, a high

resemblance to the averaged face of the achondroplasia cohort is demonstrated in red.

https://doi.org/10.1371/journal.pcbi.1012617.g001
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this scenario, displayed significantly higher heritability than all other categories of nasal phe-

notypes (Fig C in S1 File).

Identification of trait-associated genetic loci

We assessed the GWAS discovery rate for various categories of facial traits by counting the

number of independent genetic loci associated with a set of traits of the same type. We gradu-

ally increased the numbers of traits submitted for GWAS in each phenotype category, for

example, the first N PCs, with N varying between 1 and the total number of PCs. Combining

multiple univariate GWASs was achieved by taking the lowest P-value for each SNP across all

the univariate traits considered. Furthermore, for each aggregation, we controlled for the addi-

tional multiple testing burden by estimating the number of independent traits (i.e., the effec-

tive number of traits) within the group. This adjustment allowed us to correct the genome-

wide significance threshold (P < 5e-8) to a group-wide significance threshold as P< 5e-8

divided by the effective number of traits (Methods).

The effective number of traits within a single group is shown in Fig 3A. As expected, PCs

are uncorrelated, so the number of independent traits equals the number of PCs used in a

group. In contrast, inter-landmark distances exhibited a high degree of correlation, shown as a

flattened curve. A lower degree of correlation was observed for resemblance-based traits (ran-

dom/extreme/syndromic) and AE latent dimensions.

For each category of traits, the discovery rate generally increased when including more

independent traits in GWAS (Fig 3B). This is most strongly observed for inter-landmark dis-

tances. For nasal shape, the limited number of 10 inter-landmark distances resulted in the

poorest discovery rate overall. In contrast, 276 inter-landmark distances were extracted from

full facial shape, leading to the best discovery rate across all tested measures.

For nasal shape, the findings for the unsupervised techniques of PCA and AE exhibited sim-

ilar trends. Specifically, as more independent traits were included, the number of identified

Fig 2. Comparison of SNP-based heritability between phenotyping categories. The colors represent different categories of traits: green for inter-landmark

distances (DISTANCE), dark blue for traits extracted by auto-encoder (AE), light blue for traits extracted by principal component analysis (PCA), light red for

resemblance scores to randomly selected facial examples (RANDOM), medium red for resemblance scores to extreme facial examples (EXTREME), and dark

red for resemblance scores to syndrome facial archetypes (SYNDROME).

https://doi.org/10.1371/journal.pcbi.1012617.g002
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genetic loci initially increased until it reached a maximum, after which a decline in the discov-

ery rate was observed. This decline can be attributed to the tradeoff between adding less geneti-

cally interesting traits and a more significant threshold that is required to adjust for multiple

testing. Particularly in the case of PCA, it is well-established that later PCs primarily model

noise in the data and are not expected to contribute to further genetic discoveries. The same

Fig 3. The interplay among the dimensionality of traits, the number of significant genetic loci, and the phenotypic

variation. We compared nasal shape phenotypes (left columns) and full facial shape phenotypes (right columns) in

terms of (a) the effective number of traits, (b) the effectiveness of identifying independent genetic loci through GWAS,

and (c) the phenotypic variation captured by traits and their corresponding number of significant genetic loci in

GWAS. For nasal shape, the experiments were conducted with absolute numbers of traits equal to [1, 5, 10, 20, 30, 50,

100]. Since there were a limited number of inter-landmark distances and syndromic groups, the absolute numbers of

traits were set to [1, 2, 4, 6, 8, 10] and [1, 5, 10, 23], respectively. Similarly, for facial shape, the experiments were

conducted with absolute numbers of traits equal to [1, 10, 30, 70, 100, 200]. The absolute numbers of traits based on

resemblance to syndrome gestalts were set to [1, 10, 20, 25]. The colors represent different categories of traits: green for

inter-landmark distances (DISTANCE), dark blue for traits extracted by auto-encoder (AE), light blue for traits

extracted by principal component analysis (PCA), light red for resemblance scores to randomly selected examples

(RANDOM), medium red for resemblance to extreme examples (EXTREME), and dark red for resemblance scores to

syndromic examples (SYNDROME). Unlike PCs, which are ordered according to descending explained variance, and

resemblance scores to extreme gestalts based on the cosine distance to the mean shape, there is no specific order within

other categories of traits. Therefore, given a fixed absolute number of traits, we randomly selected a subset 10 times

from the full set of inter-landmark distances and resemblance to syndromic gestalts. Additionally, 10 replicates were

performed for generating multiple AE latent dimensions and resemblance to random gestalts under different random

initializations. The error bars represent the variation in results obtained from these 10 replicates.

https://doi.org/10.1371/journal.pcbi.1012617.g003
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was observed for the latent dimensions of AE, despite their lack of a specific order in terms of

phenotypic variance explained, unlike PCs. For full facial shape, a similar pattern of initial

increase and subsequent decline was observed for AE and PCs, but the AE latent dimensions

failed to reach the same discovery rate as PCs.

For the supervised techniques, the relatively small number of syndromes (n = 25) may have

impacted the overall GWAS discovery rate for this group when compared to all the other phe-

notyping strategies. Nonetheless, in the case of nasal shape, the maximum discovery rate for

syndrome archetypes is high compared to the number of independent traits used. Conversely,

this was not the case for full facial shape. This finding highlights that syndrome archetypes are

valuable, particularly in nasal regions, but may not be as effective in characterizing full facial

variation. The outcomes obtained by extreme facial gestalts initially showed a lower identifica-

tion rate of associated common variants, but gradually converged with other techniques as the

number of independent traits increased. It is important to note that this convergence is essen-

tially a result of treating more faces as “extreme”, even though they may actually be less or no

longer extreme (as explained in the Methods). Lastly, in the case of resemblance to random

facial gestalts, a steady increase in GWAS discovery rate is observed as the number of indepen-

dent traits increases. Notably, when further expanding the number of random facial gestalts

used (Fig D in S1 File), this approach outperforms all other methods. In other words, the bene-

fits of adding more traits outweigh the multiple testing burden in this scenario. However, due

to the randomness involved, the GWAS discovery rate showed greater variation when repeat-

ing the experiment over consecutive runs, as indicated by the error bars in Figs 3B and 3D in

S1 File.

Fig 3C illustrates the GWAS discovery rate plotted against the cumulative phenotypic vari-

ance explained by each phenotyping method. The variance explained for a group of facial traits

was measured using partial least-squares (PLS) regression (using the ‘plsregress’ function from

MATLAB R2022b) with the original images (3D quasi-landmark configurations) as responses

and the grouped univariate facial traits as predictors. The cumulative variance of all PLS com-

ponents reflects the explained phenotypic variance. Interestingly, the first PC, while explaining

31.22% of the phenotypic facial variation, did not yield any significant genetic loci. Further-

more, the first 10 PCs captured 80.75% of total facial variation but resulted in the identification

of only 4 independent genetic loci. The same was observed for AE dimensions. This suggests

that, while a substantial amount of geometric phenotypic variance is captured by the first few

PCs and AE dimensions, they do not necessarily correspond to genetically relevant informa-

tion. In contrast to both dimensionality reduction techniques, the number of identified genetic

loci based on inter-landmark distances and resemblance-based scores increased rapidly with

even a limited number of traits, explaining only a few percent of the complete facial variation.

This indicates that, while these traits capture less geometric facial variation, they result in a

greater number of discoveries in GWAS, suggesting that these traits are enriched for geneti-

cally determined aspects of shape variation.

Sharing of genomic signals

We tested whether various types of traits resulted in overlapping or distinct sets of identified

independent genetic loci and annotated genes (Fig 4 and Tables B-E in S2 File). For each

group of traits, we evaluated genetic loci under the “best-case scenario”, i.e., when the maximal

number of independent genetic loci was reached. Genetic loci were considered shared between

two different methods if their respective lead SNPs were located within 250kb of each other.

The choice of a 250kb window originates from the default settings in FUMA (SNP2GENE) for

determining independent loci. Considering that AE latent dimensions and randomly selected
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facial gestalts are inherently stochastic phenotyping strategies, we conducted multiple runs for

these approaches to assess the impact of randomness on the results. Specifically, we examined

the degree of overlap and overall consistency of the identified loci across 10 replicates for both

AE and resemblance to random gestalts (Tables F-I in S2 File). The union set of genetic loci

from these 10 replicates were then used to intersect with other trait groups.

Surprisingly, the extent of overlap in terms of genetic loci between different methods was

relatively limited (Tables B-C in S2 File; LocusZoom plots available in the source data). For

facial traits, the highest pairwise intersection over union (IoU) was 0.33, with a median of 0.17.

For nasal traits, the highest pairwise IoU was 0.43, with a median of 0.22. When taking the

union of all independent genetic loci identified across different approaches, we found 60 loci

associated with the nose and 58 loci associated with the face. This suggests that each of the phe-

notyping strategies capture distinct aspects of facial shape variation and, as a result, they

strongly complement each other in pinpointing genetic factors that influence facial shape.

Similarly, for 10 replicates of generating AE latent dimensions and resemblance to random

gestalts based on full facial shape, the union set of identified genetic loci across all 10 randomi-

zations yielded 31 and 33 genetic loci, respectively. The highest pairwise IoU for AE latent

dimensions across 10 runs was 0.56, with a median of 0.31. There was no significant difference

in the mean IoU between the intersections of PCA and 10 AE runs, and the intersections

within multiple AE runs (p = 0.9 from a two-sample t-test), suggesting that the inconsistency

of multiple AE runs is comparable to the variation between different phenotyping methods. A

Fig 4. Comparing phenotypes in terms of overlapping genetic findings from facial GWAS. The number of overlapping genes annotated using GREAT is

displayed. The significant genetic loci were identified using the optimal number of independent traits, i.e., when the number of independently significant

genetic loci after multiple testing correction was at its maximum. Phenotypes include inter-landmark distances (DISTANCE), traits extracted by auto-encoder

(AE), traits extracted by principal component analysis (PCA), resemblance scores to randomly selected examples (RANDOM), resemblance scores to extreme

examples (EXTREME), and resemblance scores to syndromic examples (SYNDROME). To account for the variability introduced by random initializations in

AE and resemblance scores to randomly selected gestalts, we used the union set from 10 replicates to intersect with other trait groups. The patterns are first

grouped by phenotype categories and then sorted by frequency, starting with all pairwise overlaps (21 combinations across 6 groups) and extending to the top 9

three-way overlaps, covering a total of 30 sharing patterns. Additionally, all possible overlap combinations, including up to six-way overlaps, are detailed in

Table B-E in S2 File for further reference.

https://doi.org/10.1371/journal.pcbi.1012617.g004
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similar conclusion holds for resemblance to random gestalts, where the highest IoU reached

0.58, with a median of 0.31. Detailed information on overlapping genetic loci across all combi-

nations of the 10 replicates for nasal and facial shape is provided in Tables F-I in S2 File.

The number of pairwise overlapping genes followed a similar pattern to the number of pair-

wise overlapping genetic loci, as expected (Fig 4 and Tables D-E in S2 File). Several genes

encoding key craniofacial transcription factors, including ALX1, PAX3, TBX15, and SOX9,

were consistently identified, regardless of the category of traits used (Fig E in S1 File). The

complete list of genes detected by at least four different categories of traits (out of the total of

six groups) can be found in Table J-K in S2 File. When considering a single trait, the identifica-

tion of genes was relatively constrained, resulting in a corresponding limitation in detecting

Gene Ontology (GO) biological processes. However, based on the union set of lead SNPs from

all groups of phenotypes, the top terms (based on lowest binomial P values) in the GO biologi-

cal processes category were all highly relevant to craniofacial shape (full lists can be found in

source data). This again indicates the idea that different phenotyping strategies are indeed

complementary in capturing the diverse genetic influences on craniofacial shape.

Discussion

In this study, we evaluated and compared different techniques for extracting univariate facial

phenotypes in humans, quantified from 3D facial images. Traditional anthropometric traits,

such as inter-landmark distances, demonstrated the highest mean heritability suggesting that

they are well focused towards genetically determined aspects of shape variation. While the set

of inter-landmark distances yielded a relatively high number of GWAS loci compared to a sim-

ilarly sized set of traits from a different phenotyping category, the total number of loci identi-

fied was ultimately limited by the number of available landmarks. This became especially

apparent for nasal shape, where only 5 landmarks were available to extract pairwise distances,

such that all other phenotyping categories identified a greater number of GWAS loci. Even

though the absolute number of inter-landmark distances rapidly increases with each additional

landmark, the number of independent phenotypes lags behind due to the high degree of corre-

lation between these measurements. Therefore, the scalability of this phenotyping approach is

limited at a computational cost. This may partly be alleviated by selecting the most accurate

and distinctive measures based on prior knowledge of anatomy and biology [27,28]. Alto-

gether, measuring inter-landmark distances, already used extensively in facial genetics [1,2,10–

18,29], is a viable univariate phenotyping method with a good yield in GWAS on the condition

that enough landmarks are available and computational cost is considered. However, in com-

parison to the other techniques, they are highly correlated and are likely to identify only a spe-

cific set of genetic influences to facial shape. Therefore, it is ideal for this approach to be

supplemented with another strategy to cover the full spectrum of genetic factors underlying

facial shape.

A more complete description of facial shape can be obtained by modeling the set of dense

3D quasi-landmark coordinates, which constitutes a highly correlated set of facial features.

Unsupervised dimension reduction techniques offer a means to compress this set into a

reduced set of morphological variables that can be used as traits in GWAS analysis thereby

using dramatically fewer computational resources compared to using the individual

landmarks.

Among the unsupervised dimension reduction methods for facial shape analysis, PCA has

seen the most use in the literature, including in GWAS analysis [3]. PCA is deterministic, con-

ceptually simple, and available in most data analysis platforms. One advantage that PCA offers

is the ordering of its PCs according to their contribution to phenotypic variance. It is well-
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established that noise from the original images is modeled by the later PCs, which makes it

straightforward to determine how many PCs to retain post hoc. However, we observed that

the amount of phenotypic variance explained by a single PC does not necessarily indicate its

utility for discovering genetic associations. For example, a GWAS on the first PC of facial

shape failed to identify a single locus, despite this PC explaining 31.22% of overall shape varia-

tion. In fact, when looking at the combined GWAS results across all the facial shape PCs

(Fig 3B and 3C), we observed that the majority of independently identified genomic loci were

contributed by PCs 10–40. Earlier PCs explained more phenotypic variation but did not iden-

tify as many genetic associations. Later PCs (>40) did not contribute many additional loci but

did exacerbate the multiple testing burden, resulting in an optimal number of loci identified at

around 70 facial PCs followed by a drop-off. Furthermore, we found that PCs exhibit a lower

mean heritability compared to inter-landmark distances with a wide range in heritability val-

ues across the PCs. This may suggest that, while some components have a strong genetic basis,

others may not. This may be attributed to by the fact that PCs are essentially mathematical

constructs constrained to be mutually orthogonal, whereas inter-landmark distances have the

freedom to be correlated, capturing slightly different yet overlapping information. Altogether,

PCs derived from dense landmark configurations almost fully capture the available 3D shape

information and are straightforward to acquire. However, we have shown that the order of fea-

tures/PCs based on phenotypic variance explained does not necessarily indicate their relevance

for genetic findings.

Another dimension reduction technique considered in our study was an AE. These deep

learning-based networks have surfaced as a popular non-linear alternative to PCA in many

fields of research including image analysis [30,31]. However, the latent dimensions of an AE are

currently underexplored as a phenotyping strategy, and have never, as far as we are aware at the

time of writing, been used in facial GWAS analysis. In contrast to PCA, setting up and training

an AE network requires far more time and expertise due to its complexity and the extensive

parameter tuning required. For example, the number of latent variables needs to be set prior to

model training, and creating more compact or elaborate models requires re-training. Simply

excluding latent dimensions leads to poor reconstruction performance [32], hence determining

the optimal latent dimensionality becomes a process of trial and error. Furthermore, latent vari-

ables of an AE are unordered, explain similar amounts of overall phenotypic variation, can

encode for non-linear data interactions, and are not subject to any orthogonality constraints.

These properties have likely contributed to their high SNP-based heritability, only second to

inter-landmark distances and significantly higher than PCs. However, despite their high

expected SNP-based heritability, AE latent dimensions identified a similar number of indepen-

dent genomic loci in GWAS on nasal shape compared to PCs, and fewer in GWAS on facial

shape. These results suggest that although individual AE dimensions may have a strong genetic

basis, properties such as their cross-correlations and redundancy make them no better than PCs

for genetic discovery. These observations challenge the increasing preference for machine learn-

ing-based algorithms in facial analysis, where PCA is criticized for relying on linear transforma-

tions and therefore likely struggling with non-linearity in facial data. However, non-linearity

might not be as abundant as one might expect in static facial shapes (Fig F in S1 File), or alterna-

tively, the added value of this ability is only minimal in the context of GWAS. This is unlike situ-

ations where machine learning algorithms have outperformed PCA by learning the nonlinear

variations associated with different facial expressions or pose conditions [33].

While dimension reduction methods are powerful for extracting features from high-dimen-

sional correlated datasets, the biological meaning of their resulting features and the validity of

the results reported in the field of genetics have been questioned [34,35]. To ensure biological

relevancy of the obtained morphological variables, some studies [19,36] have first derived
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phenotypes through a dimension reduction method and subsequently selected a subset of traits

for downstream analysis based on heritability estimations. A more sophisticated approach

adopted by some recent studies is to rely on prior biological knowledge to derive likely herita-

ble facial traits in a supervised manner. Focusing on heritability directly, researchers have

extracted highly heritable facial traits by considering familial resemblance and family-based

heritability estimations from which they derived measures such as the principal component of

heritability [37–39] and siblings-shared facial traits [21]. Furthermore, to investigate both typi-

cal-range and disease-associated variation in facial morphology, some studies employed a phe-

notyping method supervised by genetic conditions characterized by distinct facial features.

Examples include resemblance scores to the facial archetype associated with Achondroplasia

[22] and Pierre Robin Sequence [23]. This approach directly measures the facial features that

result from subtle variations within the same physiological pathways, which when disrupted

result in distinct (sub-) clinical facial characteristics. Substantially expanding on this approach,

our comparative study included resemblance scores supervised by the facial archetypes derived

from 25 syndromes associated with distinct facial characteristics.

In addition to syndrome-driven phenotypes, extreme phenotypes—defined as dichoto-

mized scores by comparing individuals with relatively extreme PC scores to those without—

were initially explored by Crouch et al. [19] and found to be associated with large-effect single

gene variants. Building on this insight, we recognized that multidimensional facial variations

allow for the identification of extreme (but non-clinical) faces. These extreme faces can also be

used to supervise resemblance scores, now using a continuous measure to evaluate the pres-

ence of a specific extreme facial pattern in an individual. Additionally, a randomly selected

actual face is expected to reflect genetic signals, as it is a product of inheritance. Therefore, we

further generalized this approach to supervise facial phenotyping using randomly selected

facial examples.

Resemblance scores supervised by syndromic facial archetypes exhibited lower mean heri-

tability and resulted in fewer genetic loci compared to other groups of traits. This may be

explained by the limited number of syndrome groups and the role of low frequency genetic

variants. To illustrate, the limited number of syndrome groups resulted in a limited number of

syndrome-derived traits, further leading to a lower statistical power. In addition, as GWASs

focus on common genetic variants, they overlook low-frequency and rare genetic variants that

could potentially underpin these traits. Similar findings were observed for resemblance scores

to extreme facial gestalts. While eventually achieving a comparable GWAS discovery rate to

PCA, this convergence primarily resulted from the inclusion of more extreme facial examples,

which were progressively less extreme. Nevertheless, while resemblance scores derived from

syndromic and extreme facial examples may not yield the greatest number of loci in GWAS,

studies [22–24] have demonstrated that a targeted facial phenotyping resulted in GWAS loci

that displayed a stronger link with disease etiology versus non-targeted phenotyping

approaches. Therefore, facial traits derived from genetic conditions may facilitate the discovery

of disease-related genes and pathways in future investigations. This could be especially inter-

esting in the context of uncommon and rare genetic variants available from whole-exome or

whole-genome datasets.

Resemblance scores to random facial gestalts surpassed all the other phenotyping

approaches in terms of the number of identified genetic loci in GWAS, on the condition that

enough of such traits were considered. Measuring the resemblance to a specific randomly

selected facial gestalt can be thought of as measuring the extent to which a specific person’s set

of facial features is present in the faces of the other individuals within the cohort. Therefore,

the total number of extractable traits is equal to the cohort size, usually in the thousands. Math-

ematically, each randomly selected facial gestalt, under the absence of identical twins,
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represents a unique direction in the face space, thus allowing one to sample that space in a

brute-force-like way. Compared to other phenotyping approaches, these traits displayed a high

mean SNP-based heritability and yielded a high number of significant genetic loci relative to

their explained phenotypic variance. Together, this suggests that a measure of resemblance to

a random facial gestalt captures genetically determined aspects of facial shape variation. A pos-

sible explanation could be that this approach intentionally focusses on facial features that are

observed within a cohort as a result of inheritance, rather than on purely mathematical decom-

positions of facial shape. In summary, the ability to generate many facial phenotypes with a

high expected heritability and that yield a set of complementary loci in GWAS, make resem-

blance to randomly selected facial gestalts a great option for those willing to accept the compu-

tational burden.

The limited overlap observed in identified genetic loci across different methods suggests

that each phenotyping strategy captures distinct genetic factors influencing facial shape, which

is consistent with the generally low phenotypic correlations (Fig A in S1 File). This observation

may reflect the Beavis effect [40, 41], where each method samples from a larger, underlying

but truncated distribution of biologically real signals, and the detected loci are subsample spe-

cific. The more underpowered a study is to capture the full range of effects, the more pro-

nounced the Beavis effect becomes, increasing the probability of non-replication of genuine

signals. In other words, with unlimited and continuously growing sample sizes, it might

become possible that the different phenotyping strategies converge onto each other, and that

genetic loci identified by one strategy are replicated by another strategy. However, with the

current sample sizes of today, that remains to be investigated.

When using resemblance scores for random gestalts and AE latent scores, the sets of identi-

fied genetic loci varied substantially across multiple replicates of GWAS due to different ran-

dom initializations (Tables F-I in S2 File). This highlights the importance of conducting

multiple runs, as the inherent randomness in the process proves advantageous in thoroughly

exploring the entire spectrum of facial shape variation. Although this introduces challenges for

interpretation and replication, the larger union of significant loci provides valuable opportuni-

ties for a more comprehensive investigation into the genetic basis of facial shape variation.

These observations also suggest the possibility of optimization. For example, it could be valu-

able for future studies to investigate how to generate a minimal set of facial traits that maxi-

mizes genetic findings thereby alleviating some of the computational burden. Nonetheless,

regardless of the category of phenotypes used, key craniofacial transcription factors were con-

sistently identified, and the combined set of loci across all phenotyping categories yielded GO

biological processes that were highly relevant to craniofacial shape. This underscores that dif-

ferent phenotyping approaches complement each other in the identification of genetic factors

influencing facial shape.

In this comprehensive study, we conducted a thorough evaluation of various univariate

phenotyping methods for the characterization of human facial shape. These methods were cat-

egorized into three groups, which encompassed anthropometric traits, traits derived through

unsupervised dimension reduction techniques, and supervised resemblance-based traits. Our

findings expand the current understanding of the genetic relevance of various univariate traits,

including their SNP-based heritability and GWAS discovery rates. Traditional anthropometric

traits, which are derived from a set of landmarks with clear anatomical meaning, exhibit high

SNP-based heritability, making them suitable traits for genetic investigations. Though, their

limitation mainly lies in their fundamentally incomplete morphological description, especially

when the number of landmarks is limited. On the other hand, dimension reduction methods,

which despite lacking a clear biological meaning, can more fully capture morphological varia-

tion and subsequently identify a good number of genomic loci in GWAS. However, our
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analyses have shown that for the purpose of GWAS analysis, training an AE network is likely

not worth the hefty time investment as it identified fewer independent genomic loci compared

to PCA. As an alternative, our study has expanded on the idea of supervised resemblance-

based phenotypes by using facial gestalts from 25 genetic conditions as well as randomly

selected and extreme, non-clinical facial gestalts. While resemblance scores to randomly

selected facial gestalts are easy to acquire and have demonstrated their potential to capture

genetically relevant facial shape variations in GWAS, resemblance scores to extreme and syn-

dromic facial gestalts may be useful in the search of rare genetic variants in future studies.

Overall, this work investigated various types of univariate phenotyping strategies for facial

shape, which could potentially be extended to other morphological structures, such as brain

shape, providing valuable references for future research.

Materials and methods

Ethics statement

We have complied with all relevant ethical regulations for work with human participants and

informed consent was obtained. Institutional review board (IRB) approval was obtained at

each recruitment site and all participants gave their written informed consent prior to partici-

pation; for children, written consent was obtained from a parent or legal guardian. For the

3DFN sample, the following local ethics approvals were obtained: Pittsburgh, PA (PITT IRB

PRO09060553 and RB0405013); Seattle, WA (Seattle Children’s IRB 12107); Houston, TX (UT

Health Committee for the Protection of Human Subjects HSC-DB-09-0508); and Iowa City,

IA (University of Iowa Human Subjects Office IRB (200912764 and 200710721). For the Penn

State sample, the following local ethics approvals were obtained: Urbana-Champaign, IL (PSU

IRB 13103); New York, NY (PSU IRB 45727); Cincinnati, OH (UC IRB 2015–3073); Twins-

burg, OH (PSU IRB 2503); State College, PA (PSU IRB 44929 and 4320); Austin, TX (PSU IRB

44929); and San Antonio, TX (PSU IRB 1278). For the IUI sample, the following local ethics

approvals were obtained: Indianapolis, IN and Twinsburg, OH (IUI IRB 1409306349). For the

ALSPAC sample, ethical approval for the study (Project B2261: “Exploring distinctive facial

features and their association with known candidate variants”) was obtained from the

ALSPAC Ethics and Law Committee and the Local Research Ethics Committees. Consent for

biological samples was collected in accordance with the Human Tissue Act (2004). For the syn-

dromic face dataset, this study was approved by the ethical review board of KU Leuven and

University Hospital Leuven (S60568, Leuven, Belgium).

Dataset and preprocessing

The analysis included participants with typical-range facial shape of European descent from

independent population-based cohort studies conducted in the United States (US, nUS =

4,680) and the United Kingdom (UK, nUK = 3,566). In our previous work [5], this dataset

(referred to as the EURO dataset) was used for a multivariate GWAS study on facial morphol-

ogy. The US samples originated from three independent data collections: the 3D Facial Norms

cohort [42] (3DFN) and from studies at the Pennsylvania State University (PSU) and Indiana

University Indianapolis (IUI). The UK samples were part of the Avon Longitudinal Study of

Parents and their Children [43,44] (ALSPAC). Information on the different genotyping plat-

forms, imputation, and quality control can be found in [5]. Intersection of imputed and qual-

ity-controlled SNPs across the US and UK datasets yielded 7,417,619 SNPs for analysis. The

3D facial surface images were registered using the MeshMonk [25] registration framework in

MATLAB (R2017b) as described in [5]. In total, 8,246 unrelated participants with recent
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European ancestry passed genotyping, imaging, and covariate quality control, and were used

for analysis.

We used a subset from the syndromic face dataset in our previous work [45], where it was

originally applied for a syndrome classification task. This subset was obtained from two data-

bases: 1) the FaceBase repository “Developing 3D Craniofacial Morphometry Data and Tools

to Transform Dysmorphology, FB00000861” [46]; 2) Peter Hammond’s legacy 3D dysmor-

phology dataset hosted at the KU Leuven, Belgium [47]. Syndromes can be categorized based

on whether the underlying genetic conditions can be diagnosed based on typical facial charac-

teristics [45]. In this study, we focused on syndromes with typical facial features falling into

category A and B as defined in [45], including 25 out of the total 51 syndromes (Table L in S2

File). Overall, there were 1,784 3D syndromic facial images and a control group of 54 individu-

als unrelated to patients with known genetic syndromes. These control images were used to

determine whether the average syndromic images were significantly different from those of

the healthy controls for each syndrome group.

The 3D facial surface meshes, comprising 7,160 dense quasi-landmarks were aligned using

generalized procrustes analysis (GPA), symmetrized, and subsequently adjusted for age, age-

squared, sex, weight, height, facial size, camera system, and the first 4 genomic ancestry PCs

using PLS regression (function ‘plsregress’ from MATLAB R2022b). The same procedure was

performed independently for the nose, which was obtained by applying the data-driven hierar-

chical facial segmentation method described in [4,5]. Essentially, facial segments were defined

by grouping strongly correlated vertices using hierarchical spectral clustering [4,48]. The

strength of correlation between quasi-landmarks was measured using Escoufier’s RV coeffi-

cient [49,50]. Subsequently, the RV coefficient was used to construct a similarity matrix that

defined the formation of facial segments. As shown in Fig 1A, the highlighted nose module

consists of 758 vertices.

Facial phenotyping strategies

In this study, we explored three categories of phenotyping methods: the first category involved

anthropometrics traits, exemplified by inter-landmark distances; the second category encom-

passed latent scores derived through dimensionality reduction methods such as PCA and AE;

and finally, resemblance-based traits were defined as the 1 - cosine of the Mahalanobis angle

between the vectors of the target sample (extreme/syndromic/random gestalts) and each sam-

ple in the EURO cohort.

Inter-landmark distances

Since the images were symmetrized, we focused on 24 anatomical facial landmarks on the

right half of the face, including the facial midline (Fig 1A). Most landmarks have been used in

previous GWASs of facial variation and have shown relatively high heritability [10,17]. The

phenotypes were computed as inter-landmark Euclidean distances between landmarks (in

total 276 for face, 10 for nose). We followed a semi-automatic landmarking procedure as

described in [25] using MeshMonk to position the landmarks onto all samples. First, a set of

randomly selected facial scans (N = 5) was manually landmarked three times by two observers.

Subsequently, the average positions among iterations were calculated for each landmark, and

the resulting placements were transferred to the template through barycentric coordinate con-

version. These average placements on the template served as the foundation for the automated

landmark placements. Finally, since the faces are in the same coordinate system as the original

template, the averaged landmark positions could be automatically transferred to the entire
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dataset. The facial template in Wavefront (.obj) format, the coordinates of 24 facial landmarks

and 5 nasal landmarks on this template can be found in source data.

Unsupervised dimensionality reduction of dense quasi landmarks. Principal component
analysis. Principal component analysis (PCA) simplifies complex facial variation by transform-

ing high-dimensional mesh configurations into a small number of uncorrelated features, i.e.,

principal components (PCs). The original dense landmark configurations were structured into

a three-dimensional matrix with dimensions N (number of shapes), L (7,160 quasi-land-

marks), and 3 (x-, y-, and z-coordinates of each landmark). To perform PCA, we first mean-

centered the data and reshaped it into a two-dimensional matrix with dimensions N × 3L. Sub-

sequently, we applied low-rank singular value decomposition (SVD) to the mean-centered

reshaped data matrix X 2 RN×3L, defined as X = USVT (Fig 1B). The diagonal matrix S con-

tained the singular values and the columns of U and V consisted of the left and right singular

vectors, respectively. The right singular vectors in V represented the PCs. Additionally, PCA

was performed in combination with parallel analysis [51, 52] to capture the major shape vari-

ance with the optimal number of variables. This resulted in 32 PCs explaining 99.21% of nasal

shape variation and 70 PCs explaining 98.08% of facial shape variation.

Auto-encoder. An auto-encoder (AE) works as a non-linear generalization of PCA, com-

prising two main parts: an encoder and a decoder. The encoder compresses the data into a

small number of variables and the decoder aims to reconstruct the original data from that

compact representation. The advantage of using an AE is that it can model non-linear relation-

ships that may be present in the data. However, as opposed to PCA, the disadvantage of an AE

is that the latent variables are not necessarily uncorrelated.

Fig 1C shows the structure of the auto-encoder network used to extract features based on

3D facial meshes as previously used in [53]. The first several layers of the encoder consist of

spiral convolutional layers, which reduce the size of the input. Each spiral convolutional layer

consists of a spiral convolution operator and a mesh simplification step. Spiral convolution

operators [54,55] are analogous to the grid-based convolutional filters in traditional convolu-

tional neural networks and are designed as spirals starting at a center point and proceeding

outwards from a random adjacent point. The mesh simplification step reduces the input size

based on a predefined fixed scheme, achieved by performing quadric edge collapse on the tem-

plate using MeshLab software [56]. The three spiral convolutional layers consist of 64, 64, and

64 learned filters, respectively, followed by the addition of two fully connected layers to further

compress the data into the desired number of latent variables. The decoder architecture mir-

rors the encoder architecture. The model is trained to minimize the reconstruction error.

Training strategy and implementation details can be found in S1 Methods.

Supervised resemblance measurements

Individual faces can be represented as single points or vectors situated in a multidimensional

“face space”, where each dimension reflects a continuous axis of morphological variation

[57,58]. To construct such a face space, we applied PCA to the symmetrized and GPA aligned

quasi-landmarks of the 8,246 samples, as mentioned above, and retained an equal number of

PCs for consistency, i.e., 32 PCs explaining 99.21% of nasal shape variation and 70 PCs

explaining 98.08% of facial shape variation. Note that, in principle, a shape space can alterna-

tively be obtained using a different dimension reduction method. In our space, each face could

be represented as a vector encoding the scores along each PC. In other words, the vector repre-

sentation of a single face represented the extent to which the facial features encoded by each

PC were present within that face. Following the idea that the resemblance between two faces

can be measured by the correlation between their features, we quantified the facial
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resemblance of one face to another as the cosine distance derived from the angle enclosed by

their feature vectors in a Mahalanobis standardized space (Fig 1D) [59]. To obtain resem-

blance-based scores for GWAS analysis, we calculated facial resemblance scores between each

face from the cohort and a specific facial example, whereby we considered different possibili-

ties for the choice of facial example.

In a first scenario, we considered the facial example to be a randomly selected face from the

cohort and calculated resemblance-based facial phenotypes for GWAS as the cosine distance

between the vector of the EURO cohort faces and the vector of the selected random facial

example. We gathered additional resemblance-based facial phenotypes by selecting additional

randomly selected facial examples. A second category includes the resemblance of the EURO

cohort to an extreme facial example. To do so, we first ranked all the individuals based on their

Mahalanobis distance from the estimated mean face, which could be represented as the origin

of the face space. Subsequently, we selected the top k (desired dimension) individuals that

were located most peripherally in the face space. Each sample from the EURO cohort was then

scored by computing the cosine distance between its vector and the vector of each individual

extreme facial example. A third category included resemblance to syndromic faces. We pro-

jected 1,784 syndromic faces from 25 distinct syndromes into the learned PCA space based on

the EURO cohort and computed the average shape from each syndrome group. Using a per-

mutation testing framework as described in [23], we tested which of the average syndromic

faces were significantly different from the healthy controls and subsequently removed any syn-

dromes without any distinct (P>0.05) characteristics (n = 0), leaving 25 for further analysis.

We repeated this procedure for the nose, where 23 out of 25 syndromes were considered for

further analysis (details of syndrome groups in Table L in S2 File). Resemblance-based pheno-

types for GWAS were obtained by measuring the cosine distance between the EURO cohort

and the syndromic facial gestalts, which were calculated as the average face per syndrome.

Genome-wide association meta-analysis

For each univariate trait, GWASs were conducted in the US and UK cohorts independently

using linear regression (function ‘regstats’ from MATLAB 2022b) where SNPs were coded

under the additive genetic model (0, 1, 2). The SNPs were adjusted for covariates (sex, age,

age-squared, height, weight, facial size, the first four genomic ancestry axes and the camera sys-

tem), prior to the linear regression. This generated effect size and standard error estimates for

the US and UK cohort separately which were then meta-analyzed using the inverse-variance

weighted method [60]. Meta P-values were computed using a two-tailed test.

Aggregation of multiple GWAS studies

To investigate the number of identified genetic loci under different numbers of traits, we grad-

ually increased the absolute numbers of traits in each phenotype category. For nasal shape, the

experiments were conducted with absolute numbers of traits equal to [1, 5, 10, 20, 30, 50, 100].

Since there were a limited number of inter-landmark distances and syndromic groups, the

absolute numbers of traits were set to [1, 2, 4, 6, 8, 10] and [1, 5, 10, 23], respectively. Similarly,

for facial shape, the experiments were conducted with absolute numbers of traits equal to [1,

10, 30, 70, 100, 200]. The absolute numbers of traits based on resemblance to syndrome gestalts

were set to [1, 10, 20, 25].

To aggregate multiple GWASs on univariate traits within a phenotype group, we employed

Tippett’s minimal-p meta-approach [61]. Furthermore, for each aggregation, we controlled for

the additional multiple testing burden by estimating the number of independent traits (i.e., the

effective number of traits) within the group. This adjustment allowed us to correct the
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genome-wide significance threshold (P < 5e-8) to a group-wide significance threshold (5e-8

divided by the effective number of traits). Since PCA yielded mutually uncorrelated univariate

features, the number of independent phenotypes was equal to the number of PCs used. For all

other methods, this number was estimated using permutation testing [62]. Specifically, each of

7,417,619 SNPs was randomly permuted and the same GWASs were repeated once. This

allowed to estimate the null-distribution of the minimum P-values for each SNP across the set

of univariate traits. The number of independent phenotypes was then estimated as 0.05 divided

by the 5th percentile of this null distribution [62].

SNP-based heritability estimation

SNP-heritability is defined as the proportion of phenotypic variance that is explained by addi-

tive genetic effects of SNPs. First, SNPs were intersected with the HapMap3 SNPs and any

SNP with non-matching alleles was removed, as well as SNPs within the major histocompati-

bility complex region. The SNP heritability of each univariate trait was then estimated with

LDSC (published software https://github.com/bulik/ldsc/) [9] using the GWAS summary sta-

tistics of the EURO dataset. European derived LD scores were used in LDSC (downloaded

from https://doi.org/10.5281/zenodo.7768714).

We conducted a two-tailed t-test to compare the mean SNP-heritability between groups of

phenotypes. The results were adjusted for multiple testing using the Benjamini-Hochberg pro-

cedure [63] (Fig B in S1 File).

Identification of genetic loci

Peak calling was performed in three steps, starting with the SNPs that reached the adjusted

genome-wide significance threshold (5 x 10−8 divided by the effective number of traits). First,

all SNPs within ±250 kb of the most significant SNP, as well as those within 1 Mb and in LD

(r2 > 10−2) were clumped into a single locus represented by the most significant (lead) SNP.

This was repeated until all SNPs were assigned a locus. Next, any two loci were merged if the

representative lead SNPs were within 10 Mb and in LD (r2 > 10−2). This locus was then repre-

sented by the SNP with the lowest P-value. Lastly, any peaks represented by a single SNP

below the adjusted genome-wide significance threshold were disregarded to improve

robustness.

Gene annotation

The most likely candidate gene per lead SNP was identified through a two-step process. First,

we utilized GREAT (v.4.0.4) [64] with default settings and the Table Browser of the UCSC

Genome Browser [65] for gene annotation. Then, we conducted literature searches to further

support our findings, based on the gene lists associated with facial morphology provided in [5].

Supporting information

S1 File. Fig A. Boxplot of correlations between different groups of facial traits. Fig B. P-value

matrix of pairwise differences in mean SNP-based heritability of different phenotyping catego-

ries. Fig C. Comparison of SNP-based heritability between phenotyping categories for nasal

and facial shape. Fig D. Comparing facial phenotyping categories in terms of independent

genetic loci identified in GWAS. Fig E. Frequency of genes identified by different categories of

traits. Fig F. Using polynomial regression analyses to determine the optimal polynomial degree

for each PC in predicting each dimension of AE. Fig G. LocusZoom plot for SNP rs1999464
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