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Featured Application: This work is motivated by practical applications, such as smart factories
and warehouses, where unmanned ground vehicles (UGVs) are required to efficiently navigate to
desired destinations without accurate environmental maps, and they may encounter unfamiliar
obstacles with various sizes and shapes. Reinforcement learning (RL)-based mapless naviga-
tion approaches have shown promising results in dealing with the lack of precise global maps.
However, it often takes a long time for a single agent to converge to the optimal model and
still struggles with out-of-distribution observations. To ensure the generation and adaptability
of unfamiliar environments, our proposed federated growing reinforcement learning (FGRL)
approach can allow multiple learning agent to achieve knowledge aggregation so as to obtain an
adaptive and resilient navigation model.

Abstract: In this paper, we propose a federated growing reinforcement learning (FGRL) approach
for solving the mapless navigation problem of unmanned ground vehicles (UGVs) facing cluttered
unfamiliar obstacles. Deep reinforcement learning (DRL) has the potential to provide adaptive
behaviors for autonomous agents through interactive learning, but standard episodic DRL algorithms
often struggle with out-of-distribution observations. For navigation tasks, UGVs often encounter
unfamiliar situations where novel obstacles differ from prior experience. To address this problem, the
proposed FGRL approach enables multiple agents to obtain their individual navigation models in
diverse scenarios, and achieves online knowledge aggregation to obtain an adaptive and resilient
model that copes with unfamiliar uncertain obstacles. Specifically, during the learning process of
navigation tasks, we introduce the growth rate of each agent’s local model based on the performance
of consecutive learning rounds. Then, we weight the local model of each agent based on the growth
rate to achieve knowledge aggregation in a shared model. We also consider a growth threshold
to eliminate the interference of low-quality local models. We carry out extensive simulations to
validate the proposed solution, and the results show that our approach can learn resilient behaviors
of collision avoidance for UGVs to cope with never encountered and cluttered unfamiliar obstacles.

Keywords: collision avoidance; navigation; deep reinforcement learning; federated learning

1. Introduction

Unmanned ground vehicles (UGVs) have been widely used in various applications
such as manufacturing [1], warehousing [2], and carrying support for terminals and hos-
pitals [3]. In these scenarios, UGVs are required to be capable of efficiently navigating to
desired destinations without colliding with obstacles. Many studies have addressed the
navigation problem of UGVs, but one remaining tough challenge is how to plan collision-
free and efficient paths if the accurate environmental map is not available and the obstacles
are unfamiliar to UGVs, e.g., in a complex and ever-changing factory environment, as
depicted in Figure 1.
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Figure 1. UGVs may encounter unfamiliar obstacles with various sizes and shapes in a smart factory.

To handle navigation tasks, the popular Simultaneous Localization and Mapping
(SLAM) and its variants [4,5] can use sensors to generate the obstacle maps of the navigation
environment. Planning algorithms (e.g., rapid-exploration random tree [6]) can then
be applied to find the collision-free paths. However, building an accurate map can be
expensive due to the need for sensor fusion [7], and map accuracy directly affects the
quality of generated paths.

Our work focuses on finding solutions for navigation in unknown environments
without relying on maps. Traditional navigation methods, which depend on precise global
maps, are often impractical in such environments. Therefore, we aim to develop methods
that allow robots to navigate effectively without needing maps. We believe robots can learn
navigation policies using reinforcement learning (RL), a technique that has been successful
in fields like gaming [8,9] and robotic manipulation [10,11]. In RL, an agent learns to make
decisions based on observations, with the goal of maximizing long-term rewards. Recently,
RL has also been applied to navigation tasks in robotics [12,13]. Although RL has shown
promising results in navigation tasks, a major challenge is that the optimal policy must be
learned through extensive interactions with the environment. It often takes a long time for
a single agent to converge to the optimal solution, and it is nearly impossible for one agent
to explore all possible states in real-world robotic tasks. To address this, distributed and
parallel RL algorithms [14,15] offer a potential solution. However, these methods require
a central server to collect data from multiple agents for model training, raising concerns
about information leakage and privacy [16]. Moreover, standard episodic RL algorithms
often struggle with out-of-distribution observations and the adaptability of unfamiliar
environments. For example, UGVs may face unfamiliar situations in warehouses, but novel
obstacles may differ from prior learned experience. These challenges highlight the need
for novel RL algorithms that can address these issues and enable effective navigation in
unknown environments.

This work employs the idea of federated learning (FL), which is a distributed machine
learning technique that allows multiple agents to be trained simultaneously [17]. In FL
systems, each agent can train its local model separately and send back the model-related
parameters to an aggregation center. Each agent’s local model is obtained based on its own
observations, but it can be aggregated so as to construct a shared model. Most importantly,
each agent only needs to process its own collected raw data, and send the parameters of its
local model to the aggregation center.

In this paper, we propose an FL-based reinforcement learning approach for the mapless
navigation problem of UGVs for unfamiliar environments. In particular, we address how
the navigation capabilities of UGVs can be learned based on sensor-level observations, how
multiple agents can be used to speed up the learning procedures, and how knowledge ag-
gregation can be developed to ensure the generalization of new environments and obstacles
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never seen before. To this end, the performance of each learning round will be evaluated
by the growth rate of each agent’s local model, and the knowledge aggregation mechanism
will be achieved based on such an evaluation. We also take account of the elimination of
the interference of low-quality local models during the knowledge aggregation process.
The main contributions of this work are summarized as follows.

1. We propose a federated growing reinforcement learning (FGRL) approach that allows
multiple agents to be trained simultaneously so as to speed up the learning efficiency.

2. The proposed FGRL approach provides a sensor-level navigation and collision avoid-
ance mechanism that does not require a precise global environmental map.

3. We introduce a knowledge aggregation strategy that ensures the generation of a
shared model based on the performance of each agent’s local model.

4. We carry out extensive experiment studies in Gazebo, and the results show that tradi-
tional RL-based mapless navigation algorithms indeed cannot cope with unfamiliar
obstacles. Comparatively, our proposed approach can make UGVs fuse and transfer
prior knowledge to new and unfamiliar obstacles in navigation tasks.

The paper is organized as follows. We first discuss the state of the art in Section 2, and
then we present our proposed approach in Section 3. The experiment study is carried out
in Section 4. Finally, we conclude this paper in Section 5.

2. Related Work
2.1. RL-Based Mapless Navigation

Recent advances have proposed sensor-level approaches (e.g., a single monocular
camera [18], a 2D LiDAR and a monocular camera [19], and a depth camera [20]) to address
the navigation problem, in which a single robot can be trained to obtain the capability of
avoiding collisions with obstacles. A critical issue of applying RL-based approaches to
solve navigation tasks is that a considerable amount of sensor-level data are required to
train a navigation policy. Thus, most work focuses on transferring the learned policy in
simulations to real scenarios [21,22].

To reduce the training time, the parallel and distributed paradigm [23,24] can be
applied to more efficiently collect samples by multiple agents in parallel. In synchronous
RL algorithms (e.g., Parallel Advantage Actor Critic (PAAC) [25]), each agent explores
its own environment and collect samples, and then the global model can be updated
synchronously. In asynchronous RL algorithms (e.g., Asynchronous Advantage Actor
Critic (A3C) [26]), a coordinator is required to update the global model without waiting
for all agents to send the gradients. However, privacy protection and communication
consumption need to be taken into consideration for parallel RL methods.

Moreover, we also find that the testing environment for most work is almost the same
as the training settings such as in [22,23]. A potential problem that still needs to be investi-
gated is whether the learned policy can be flexible and resilient enough when the robot
encounters an unknown and unfamiliar environment. Standard episodic RL algorithms
often struggle with the generalization and adaptability of out-of-distribution observa-
tions [27]. For navigation tasks, UGVs may face a variety of never encountered obstacles in
practice, and we cannot enumerate all the scenarios during the training procedure [28].

2.2. Federated Learning

Federated learning is a distributed paradigm that allows multiple agents to train a
model simultaneously and does not need to upload any private data to the server during
the training process [17]. Each agent only needs to use local data to obtain a local model,
and the central server is responsible for the weighted aggregation of local models so as
to construct a global shared model. After multiple rounds of iterations, the shared model
close to the results of centralized learning can be finally obtained, which can effectively
reduce the privacy risks due to data aggregation [29]. Another issue that should be noted
is that heterogeneous data affect the convergence of federated learning to some certain
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extent. To address this problem, multi-layer federated learning can be used to achieve
model selection and aggregation [30,31].

Therefore, model aggregation is essential in FL for agents to share experience, and
determining how to achieve a better model is crucial. During the model training, feder-
ated models can be biased towards different agents. In [32], an agnostic FL approach is
introduced, where a centralized model is optimized for any target distribution formed by
a mixture of the client distributions. A reputation-supported aggregation method [33] is
presented to measure the user’s aggregation weight based on reputation scores. Majcher-
czyk et al. [34] put forward a data-driven mechanism to synchronize the learning process, in
which a robot can contribute the model updates when enough data are collected. The state
of the art also shows the possibility of combining RL with FL in data management [35–37].

In this work, we seek to improve the learning efficiency through parallel training
by multiple agents, but we also hope to protect data privacy and reduce communication
overheads. In typical FL scenarios, the state transitions of all the agents have the same
distribution [16]. However, in navigation tasks, each robot may face different environ-
ments, so we need to improve the generalization ability of the model in comparison with
conventional FL approaches.

3. FGRL for Mapless Navigation

In this section, we will first detail the RL-based framework for mapless navigation of
UGVs and then proceed to discuss how to improve the learning efficiency via the proposed
FGRL approach. In this work, UGVs only rely on their own sensor readings, i.e., LiDAR
sensors, to obtain the situational awareness about the environment. Sensor readings are
represented as the state information in RL tasks, and the control policy can provide action
commands for UGVs to navigate without the need for mapping.

3.1. RL-Based Mapless Navigation

In discrete RL tasks, the learning of appropriate actions can be achieved by Deep Q-
Network (DQN) [38], and in order to resolve the overoptimistic value estimates of the max
operator, the Double Deep Q-Network (DDQN) algorithm [39] is introduced. In continuous
RL tasks, the policy gradient method Deep Deterministic Policy Gradient (DDPG) [40]
is adapted from DQN, and it updates the Q-values in the same way as DQN. Thus, the
overestimation bias still needs to be taken into consideration. In this work, we adopt the
Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm [41] to construct the
mapless navigation framework for UGVs, as it can further improve DDPG by addressing
variance reduction.

3.1.1. General Framework

Figure 2 depicts the RL-based framework adapted from the TD3 algorithm for mapless
navigation. We can see that two critic networks Qθ1 and Qθ2, and one actor network πϕ are
parameterized by θ1, θ2, and ϕ, respectively. We can also find three corresponding target
networks parameterized by θ′1, θ′2 and ϕ′. The target networks allow a stable convergence
of the training procedure. In each learning round, the agent selects an action a to perform
based on actor network πϕ and takes account of exploration noise ϵ such that a ∼ πϕ(s) + ϵ,
where ϵ is drawn from a normal distribution N (0, σ) with a mean of 0 and standard
deviation σ. Similarly, the target actor network π′ϕ also includes noise ϵ, but it is drawn
from a truncated normal distribution ϵ ∼ clip(N (0, σ̄),−c, c), with the noise clipped to the
range [−c, c] to ensure stability. State transitions (s, a, r, s′) are stored in the replay buffer. In
order to smooth the value estimate, a small amount of random noise is added to the target
policy, and the noise is clipped so as to stabilize the target within a small range. During
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training, a batch of size N is sampled from the replay buffer. The loss function for the critic
network is defined as follows:

Loss = N−1
N

∑
j=1

(yj −Qj(sj, aj))
2, (1)

where
yj = rj + γ min

i=1,2
Qθ′i

(s′, ā), (2)

and ā ∼ πϕ′(s′). The actor network is updated in the direction guided by the critic network.
Specifically, the update of the actor network is carried out by computing the gradient via
the chain rule, starting from the initial distribution J:

∇ϕ J(ϕ) = N−1 ∑∇aQθ1(s, a)|a=πϕ(s)∇ϕπϕ(s). (3)
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Figure 2. RL-based mapless navigation learning framework adapted from TD3.

3.1.2. Observation Space

In this work, the UGV utilizes low-cost 2D LiDAR sensors to obtain environmental
awareness. We deploy the UGV in the Gazebo environment with a real physics engine. At
each time step, the observation of the UGV includes three terms S = [s1, s2, s3]. s1 represents
the LiDAR readings with 180 degrees, 24 laser beams and a scanning frequency of 30 Hz.
s2 consists of the estimated distance between the UGV and its target location, as well as the
offset of the heading angle of the UGV. To estimate the position and orientation of the UGV,
we use an Inertial Measurement Unit (IMU) module. The IMU module provides accurate
position and orientation data, enabling the calculation of the relative distance between the
UGV and the target. The last term s3 indicates the internal state of the UGV, including the
linear velocity υ and angular velocity ω.

3.1.3. Action Space

UGVs need to move continuously in the working zone, so we define continuous action
space to control the linear velocity υ and the angular velocity ω. In this work, the policy
directly maps the current observations to the coming action (i.e., the linear velocity and
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the angular velocity of the next time step). In order to ensure the stability of the robot
movement, the action is limited to a fixed range. Specifically, in this paper, the linear
velocity and the angular velocity of UGVs at each time step are limited to υ ∈ [0, 1] (in
meters per second) and ω ∈ [−1, 1] (in radians per second), respectively.

3.1.4. Reward Function

The objective of the UGV navigation task is to successfully arrive at the target location
without colliding with any potential obstacles. To this end, the RL agent aims to obtain the
most cumulative rewards, and the reward function is defined as follows:

r = rcollision + rarrive + rdistance + rspeed. (4)

During the training period, if a collision event occurs, the learning agent will receive a
large negative penalty rcollision:

rcollision =


−200, dmin ≤ dlim
−eδ((dmin/ds)−0.5), dlim < dmin ≤ 2dlim
0, otherwise,

(5)

where dmin represents the shortest value of LiDAR readings, and ds represents the normal
detection distance of LiDAR readings without obstacles. dlim defines the limited distance at
which collisions can occur, and δ denotes the collision adjustment coefficient used to modify
the collision reward function curve within the range [dlim, 2dlim], which is a negative value.
According to the above rules, if the distance between the robot and an obstacle is less than
the limited value, it will trigger a collision event and receive a large negative reward −200.
If the distance between the robot and an obstacle is less than twice the limited distance but
larger than this limit, the negative penalty increases as the LiDAR readings become smaller.
In this study, we set ds = 3.5 m, dlim = 0.5 m, and δ = −15 to allow the reward function to
better cover the reward range [−200, 0], effectively reflecting the reward adjustment as the
UGV approaches obstacles.

Since the ultimate goal of UGVs is to reach the target location, a positive reward
rarrive is obtained if it can successfully arrive at its destination without collisions, with the
condition that the distance between the robot’s center and the target location is less than
0.5 m. Here, we define a sparse reward to assign a large positive reward:

rarrive =

{
200, if success
0, otherwise.

(6)

To solve the problem of sparse rewards during the training process, we also design a
continuous reward function, where the agent can obtain feedback rdistance at each time step
to provide a heuristic for the target location, as follows:

rdistance = µdstep, (7)

where dstep indicates the difference between the estimated distance to the target location at
current time step and the one at the previous time step. Here, µ denotes the adjustment
coefficient of the distance reward. The larger the value of µ, the higher the reward for
each step, which encourages the UGV to move toward the target. However, it is important
to note that the value of µ is influenced by the final target arrival reward rarrive. If µ is
set too high, it can reduce the attractive force of the target, causing the UGV to approach
it more slowly as it gets closer, rather than reaching it directly. Therefore, selecting an
appropriate value for µ is crucial for balancing the trade-off between approaching the target
and reaching the target in the reward function.
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During the training process, the moving speed of UGVs may be too fast due to
the incentive of distance rewards. For safety concerns, we further consider a penalty
rspeed = rυ + rω to regulate the linear and angular velocity, as follows:

rυ =

{
−5, υ ≥ υmax
0, otherwise,

(8)

rω =

{
−5, |ω| ≥ ωmax
0, otherwise.

(9)

The safety term works when the linear velocity υ and the angular velocity ω exceed the
maximum permitted values υmax and ωmax, respectively.

3.2. Federated Growing Reinforcement Learning (FGRL)

As mentioned before, in this work, we borrow the idea of FL to speed up the learning
efficiency, and we propose the FGRL approach that will evaluate each agent’s performance
to calculate the weights of local models. Figure 3 illustrates the model aggregation of the
proposed algorithm. Suppose that K agents can be trained in parallel and that a global
model exists among all the agents. In the beginning, the global model parameters are
sent to each agent to initialize each agent’s local model. Here, the parameters specifically
configure the actor and critic networks. Then, each agent makes decisions based on its local
model and starts to collect new experiences. At the same time, each agent can also update
its local model based on new experiences. We define a global update period (also called an
aggregation round) with E episodes, and we also define two indicators for performance
evaluation of E episodes, i.e., the success rate ζ = nsuccess

E , and the average steps to the

desired location during the successful episodes φ =
∑ nsteps
nsuccess

. Here, nsuccess denotes the
number of successful episodes in E, and nsteps indicates the moving steps of each successful
episode. Thus, in this work, we adopt ζ and φ to evaluate the performance of each agent
during its individual learning episodes.

We use m to indicate an aggregation round, where not all agents can perform better
than the previous round. Thus, we define a growth value gm to quantify the performance
of each agent in the m-th aggregation round as follows:

gm = ψ
∆ζm

ζm
+ (ψ− 1)

∆φm

φm−1
, (10)

where ∆ζm = ζm − ζm−1, ζm and ζm−1 represent the success rates of the current m-th
and the previous aggregation round, while ∆φm = φm − φm−1, φm and φm−1 indicate
the average steps of the current m-th and the previous aggregation round. ψ ∈ (0, 1) is
a normal constant. Thus, we can use the value of gm to express how much an agent has
grown in this m-th aggregation round compared to the previous round.

In order to reduce the fluctuation of the growth value for model aggregation, we use
ηm to replace gm as follows:

ηm =
1

1 + e−gm
. (11)

We also set a threshold Ω for the growth value ηm to measure whether the agent grows
enough or degrades in an aggregation round. If an agent’s performance of the current m-th
aggregation round does not exceed the threshold, its local model will not participate in the
model aggregation.

To update the global model, we compare two consecutive rounds. For the first update
round, we assume that all the agents have the same growth value, η1 = 1, and we can
average the local models to update the parameters of the global model. After the first
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update, we will calculate their respective growth values, using Equations (10) and (11), to
weight the contribution of each agent:

wglobal
m =

K′

∑
k=1

ηk
m

∑K′
k=1 ηk

m
wk

m, (12)

where wglobal
m denotes the global network parameter, and wk

m represents the local model
of k-th agent in the m-th aggregation round. K′ indicates the number of agents that are
filtered by threshold Ω and participate in the model aggregation. Once the global model is
upgraded, it will be distributed to each agent for the soft update of each local model:

wk
m+1 = λwk

m + (1− λ)wglobal
m , (13)

where wk
m+1 represents the local model of k-th agent in the (m + 1)-th aggregation round.

To realize the sensor-level mapless navigation problem, the proposed FGRL approach
combines TD3 with our model aggregation strategy, and Algorithm 1 details the computing
pseudo-code.

Algorithm 1: Federated growing reinforcement learning algorithm. (K agents are
indexed by k, M global aggregation rounds are indexed by m, E is the number
of local episodes.)

1 Initialize 2K critic networks Qθ11,··· ,1K , Qθ21,··· ,2K and K actor networks πϕ1,··· ,K ,
initialize 2K target critic networks Qθ′11,··· ,1K

, Qθ′21,··· ,2K
and K target actor networks

πϕ′1,··· ,K
, and initialize replay buffer B1,··· ,K.

2 for each global aggregation round m = 1, 2, · · · , M do
3 for each agent k in parallel do
4 for t = 1, 2, · · · do
5 Select action with noise ak ∼ πϕk (s) + ϵ, ϵ ∼ N(0, σ) and store

transition tuple (sk, ak, rk, s′k) in Bk
6 Sample mini-batch of N transition (sk, ak, rk, s′k) from Bk
7 ãk ← πϕ′k

(s′) + ϵ, ϵ ∼ clip(N(0, σ̃),−c, c)
8 yk ← rk + γmini=1,2Qθ′ik

(s′k, ãk)

9 Update critics θik ← argminθik N−1 ∑(yk −Qθik (sk, ak))
2

10 if t mod d then
11 Update ϕk by the deterministic policy gradient:

∇ϕk J(ϕk) = N−1 ∑∇aQθ1k (sk, ak)|a=πϕk (s)
∇ϕk πϕk (sk)

12 Update target networks θ′ik ← τθik + (1− τ)θ′ik,
ϕ′k ← τϕk + (1− τ)ϕ′k

13 for each agent k in parallel do
14 if m = 1 then
15 After E local episodes calculate ζk

m, φk
m, ηk

m = 1
16 else
17 After E local episodes calculate ζk

m, φk
m

18 Update growth value

19 gk
m = ψ

φk
m−φk

m−1
φk

m
+ (1− ψ)

ζk
m−1−ζk

m

ζk
m−1

20 ηk
m = 1

1+e−gk
m

21 Global model aggregation wglobal
m = ∑K′

k=1
ηk

m

∑K′
k=1 ηk

m
wk

m

22 Local model soft update wk
m+1 = λwk

m + (1− λ)wglobal
m
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Figure 3. Illustration of model aggregation of the proposed FGRL approach.

4. Experiments and Discussion

To assess the efficiency and resilience of our proposed FGRL, we have implemented
and compared it to a baseline, the TD3-based mapless navigation approach. In addition,
we enhanced the baseline by integrating federated learning (FL), resulting in the FL-TD3
approach. This approach facilitates the simultaneous training of multiple agents and
establishes a global model by averaging local models. Therefore, this section aims to
evaluate the performance of the three approaches, i.e., TD3, FL-TD3, and our FGRL. The
experiments are conducted in the Gazebo environment, utilizing UGVs equipped with
a 2D LiDAR sensor with a 180-degree field-of-view and 24 laser beams, as depicted in
Figure 4a. The laser scanner updates at a rate of 30 Hz, providing situational awareness of
the environment.

(a) UGV with a 2D LiDAR sensors. (b) Environment 1 (env1). (c) Environment 2 (env2).

(d) Environment 3 (env3). (e) Environment 4 (env4).

Figure 4. Training and testing environments for mapless navigation tasks.
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4.1. Experiment Setup

Our experiments involve the design of six distinct scenarios, which are categorized as
either familiar or unfamiliar. The familiar group comprises four scenarios, as presented
in Figure 4. During the training period, UGVs are trained in these environments before
evaluating the performance of mapless navigation. Therefore, UGVs are familiar with
the scenarios in this group. Conversely, the unfamiliar group (Figure 5a,b) consists of
environmental configurations that the UGVs have never encountered before. This enables
the evaluation of the knowledge transfer and generalization capabilities in unknown and
unfamiliar environments. As illustrated in Figure 4, each UGV will be initialized at the
center of each scenario during the training period, with a randomly assigned target location
at one of the corners. The obstacle locations are also randomly generated for each run.
Specifically, the positions of the obstacles are uniformly distributed across the map, and
their orientations are randomly sampled from the interval [0, π] to introduce variability in
obstacle configurations. The target location is represented by the white square, the green
objects depict the obstacles, and the blue lines indicate the laser beams of each robot.

(a) Plain setting (env5). (b) Factory setting (env6).

Figure 5. Trained models are evaluated in unfamiliar environments.

For the creation of simulation environments used in training and evaluation, we utilize
ROS Melodic and Gazebo 9. The workstation used for these tasks is equipped with an Intel
Xeon 3.8 GHz processor and an Nvidia GeForce RTX 3060 GPU. PyTorch is employed for
the implementation of neural networks, while the hyper-parameters used in this work are
listed in Table 1.

Table 1. Hyper-parameters.

Symbol Definition Value

α learning rate 0.0004
γ discount factor 0.99
δ adjustment coefficient of the collision −15
µ adjustment coefficient of the distance reward 500
E number of the local episodes 10
M number of the global update periods 40
α adjustment coefficient of the growth value 0.5
Ω threshold of the growth value 0.1
λ adjustment coefficient of the soft update 0.9

To evaluate the performance of the approaches, we consider several metrics, namely
the success rate, collision rate, timeout rate, and average successful steps. The success rate
indicates the percentage of total rounds in which the robot successfully reaches its target
location without experiencing any collisions. On the other hand, the collision rate measures
the percentage of total rounds where the robot collides with an obstacle. The timeout
rate indicates the percentage of total rounds in which the robot cannot reach its target
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location within a specified time but remains functional. Finally, the average successful steps
measure the average path length taken by the robot to reach the target location successfully.

4.2. Training Performance

During the training episodes, the TD3 approach is executed for 400 episodes each for
env1 to env4. The resulting converged models are named TD3-env1, TD3-env2, TD3-env3,
and TD3-env4, respectively. For the FL-TD3 approach, we enable four UGVs to operate
simultaneously in env1 to env4. After 400 episodes, we can obtain a global model. Similarly,
we train the FGRL approach with four UGVs running in parallel in the same way. After
400 training episodes, the global model for FGRL is also obtained.

In order to evaluate the training performance, we record the average rewards per
round for both of them across env1 to env4. Figure 6 presents the training curves of
three approaches, where the x-axis denotes the number of rounds and the y-axis denotes
the average reward. The solid line and shaded regions depict the mean and standard
deviation, respectively, derived from ten independent runs. In terms of the convergence
of the average reward, FL-TD3 exhibits similar performance to TD3 in env1, env2, and
env3 but outperforms TD3 in env4. Comparatively, our FGRL demonstrates the best
performance across all four environments. As for the convergence speed, TD3 achieves
convergence in approximately 150 episodes for env1 and 200 episodes for env2, env3, and
env4. Conversely, both FL-TD3 and our FGRL converge in approximately 100 episodes.
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Figure 6. Average reward during the training episodes.

4.3. Evaluation in Familiar Environments

To evaluate the performance of the approaches in familiar environments, the trained
models are tested 100 times across env1 to env4, and the results are presented in Table 2
and Figure 7. We can find that our FGRL and FL-TD3 achieve the success rate close to 100%,
while TD3 achieves about 95%. This indicates that the combination of federated learning
can indeed improve the success rate of obstacle avoidance in navigation tasks. Moreover,
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Figure 7b shows that TD3 has the largest average successful steps, indicating that during
successful runs, it takes longer steps to reach the target location in comparison with other
approaches. The average successful steps of our FGRL are slightly smaller than those of
FL-TD3. Table 2 shows that our FGRL can decrease the average successful steps by 5.7%
compared to TD3, and by 1.7% compared to FL-TD3 across the four environments.

Table 2. The results of three approaches in familiar environments.

Algorithm Metric env1 env2 env3 env4

TD3 Success rate 95% 96% 95% 94%
Average successful steps 444 461 459 482

FL-TD3 Success rate 100% 100% 99% 99%
Average successful steps 440 444 439 447

FGRL Success rate 100% 100% 100% 100%
Average successful steps 432 438 430 440

env1 env2 env3 env4
Environments

0

20

40

60

80

100

Su
cc

es
s r

at
e 

(%
)

TD3 FL-TD3 Our FGRL

(a) Success rate.

env1 env2 env3 env4
Environments

0

100

200

300

400

500

St
ep

s

TD3 FL-TD3 Our FGRL

(b) Average successful steps.

Figure 7. The success rate and average successful steps of three approaches in familiar environments.

4.4. Evaluation in Unfamiliar Environments

Here, we will further investigate the generalization ability and the performance of
trained models in unfamiliar environments, in which the UGVs have never encountered
these types of obstacles during training runs. Figure 5a shows a new dense setting (env5),
where the obstacles have different shapes and sizes compared to env1 to env4, while
Figure 5b presents another unfamiliar factory setting (env6), where UGVs may encounter
more complex obstacles, such as shelves with slender legs.

4.4.1. Unfamiliar Plain Environment

After the training process, we can obtain 6 models because TD3 has trained separately
across env1 to env4. Each model was tested 100 times in env5, and the results are presented
in Figure 8 and Table 3.

During the training and testing experiments, it should be noted that the shape and
size of the obstacles gradually become more and more complex from env1 to env5. As
shown in Figure 8, when the trained models are applied to resolve unfamiliar scenarios,
the success rate of TD3 and FL-TD3 tends to decline. The experimental results show that
although the trained models of TD3 and FL-TD3 can perform well in the training scenarios
(i.e., env1 to env4), they are still prone to collide with unfamiliar obstacles in env5.

According to the performance metrics, the trained model obtained from TD3-env1
performs the worst and cannot complete the task at all in env5. The success rate of TD3-
env2 is 76%, while TD3-env3 and TD3-env4 can achieve about 90%, with the collision rate
being less than 5%. Comparatively, the success rate of FL-TD3 and our FGRL is higher than
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that of TD3. In particular, our FGRL is successful in all 100 testing runs. The results indicate
that the combination of federated learning can indeed improve the generalization ability of
UGVs to avoid unknown and unfamiliar obstacles. With regard to the average successful
steps, our FGRL reduces the average successful steps by 13.6% and 30.9%, in comparison
with FL-TD3 and TD3-env4, respectively. Fewer successful steps can indicate that the UGV
takes fewer steps to reach the target location. In other words, the navigation path is shorter
and more efficient. Therefore, we can conclude that our proposed FGRL reduces the path
length without compromising the success rate.
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Trained models

0

20

40

60

80

100

Su
cc

es
s r

at
e 

(%
)

0

100

200

300

400

500

600

St
ep

s

Success rate Average successful steps

Figure 8. The success rate and average successful steps in env5.

Table 3. The evaluation results in unfamiliar plain environment.

Trained Model Success Rate Crash Rate Timeout Rate Average
Successful Steps

TD3-env1 0% 84% 16% -
TD3-env2 76% 8% 16% 523
TD3-env3 89% 3% 8% 513
TD3-env4 92% 2% 6% 505
FL-TD3 96% 0% 4% 404
FGRL 100% 0% 0% 349

4.4.2. Unfamiliar Factory Environment

In this scenario (named env6), all the trained models are also tested 100 times, and the
results are presented in Figure 9 and Table 4.
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Figure 9. The success rate and average successful steps in env6.
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Table 4. The evaluation results in unfamiliar factory environment.

Trained Model Success Rate Crash Rate Timeout Rate Average
Successful Steps

TD3-env1 0% 0% 100% -
TD3-env2 0% 0% 100% -
TD3-env3 1% 39% 60% 1449
TD3-env4 14% 37% 49% 1238
FL-TD3 31% 69% 0% 1158
FGRL 79% 21% 0% 924

We can find that the trained models of TD3-env1 and TD3-env2 are completely in-
capable of accomplishing the navigation task in env6. In addition, the success rate of
TD3-env3 and TD3-env4 is only 1% and 14%, respectively. In comparison, the success rate
of FL-TD3 has greatly improved, but it is still very low: only 31%. Our FGRL achieves
a success rate of 79%, which greatly exceeds the other approaches. With respect to the
average successful steps, compared to FL-TD3 and TD3-env4, our FGRL reduces the path
length by 20% and 25%, respectively.

We can conclude that the trained models of TD3 from env1 to env4 can hardly gen-
eralize to a new and unfamiliar factory environment, and it is difficult for UGVs to select
reasonable actions based on the trained policy. Although our FGRL model was also trained
across env1 to env4, it still has good generalization ability when encountering unfamiliar
and complex obstacles.

4.5. Evaluation in Real-World Environments

To evaluate the effectiveness of the proposed method in real-world environments, we
deploy control models trained using FGRL on two TurtleBot3 robots equipped with a 2D
LiDAR sensor. The experiment is conducted with four obstacles of varying shapes, while
the robots also serve as dynamic obstacles for each other.

The robots start at opposite ends of the map, facing each other. The target locations
are positioned at the lower-left and upper-right corners of the map. A snapshot of the
experiment is shown in Figure 10.

Figure 10. Snapshots of real robot experiments.

Both robots begin moving from their starting positions. After 5 s, they encounter
the obstacles and begin to avoid them. By 7 s, both robots successfully navigate around
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the obstacles and head toward their target locations. By 11 s, both robots reach their
respective targets.

To assess the reliability of the method, we conducted 20 repeated trials using the same
setup. The navigation success rate and the time taken for each robot to reach its target
location were recorded. Across all 20 trials, the navigation success rate was 85%, with the
average time for successful navigation being 11.89 s. These results demonstrate that the
proposed method is effective in real-world environments and that the FGRL approach is
adaptable and robust in unfamiliar settings.

5. Conclusions

In this work, we propose a federated growing reinforcement learning (FGRL) approach
to address the resilient mapless navigation problem. One of the benefits of this approach is
that it enables UGVs to improve training efficiency through asynchronous parallel training.
Moreover, by aggregating models through federated learning, the generalization ability
of the global model can be improved, which can enable robots to make rational decisions
based on sensor-level perceptions when encountering unknown and unfamiliar obstacles.

To verify the advantages of our FGRL in comparison with TD3 and FL-TD3, we first
evaluate the performance of three approaches in familiar environments that are the same
as the training settings. Then, we create two completely different settings with complex
obstacles that the UGVs have never encountered during the training process. The results
indicate that our FGRL can indeed greatly improve the generalization ability of UGVs
facing unknown situations with unfamiliar obstacles, while also taking account of the
consumption of path costs.

Although our FGRL approach has demonstrated promising results in UGV navigation
and obstacle avoidance, it has certain limitations. A primary challenge lies in its dependence
on a single 2D LiDAR for obstacle detection and environmental perception. Since 2D LiDAR
is limited to detecting obstacles within its scanning plane, its effectiveness in complex
environments is constrained. Moreover, the training and testing environments used in
our study included only convex objects, leaving the method’s performance with concave
objects untested.

In future research, we will aim to integrate LiDAR and depth image data to improve
UGVs’ environmental perception and navigation capabilities. We also plan to include con-
cave obstacles in training and testing environments to evaluate their impact on navigation
strategies and to explore optimization methods for handling such scenarios effectively.
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