
Semiconcavity, viscosity solutions and the square
distance in Carnot groups.
Extract from a course given in Ghent Analysis & PDE Centre, November 2024.

Federica Dragoni

Abstract We give an overview on semiconcavity, starting from the standard notion,
up to more recent generalizations in a different geometrical context, such as Carnot
groups; focusing in particular on the viscosity characterization by bounds for second
derivatives. We then apply these theories to show some recent results obtained by
the author, in collaboration with Qing Liu and Ye Zhang. In particular we show that
the square Carnot-Carathéodory distance is h-semiconcave in step 2 Carnot groups.
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1 The Euclidean Case

In this section we briefly recall the standard notions of concavity and semiconcavity,
used in the Euclidean space. We also give a quick overview on viscosity solutions,
focusing in particular on the viscosity characterization for concave and semiconcave
functions by bounds for the second derivatives. The theory is usually stated for con-
vex and semiconvex functions, but since the focus later is the semiconcavity of the
square distance, we state all definitions and properties for concave and semiconcave
functions. We recall that a function u is concave (respectively semiconcave) if and
only if −u is convex (respectively semiconvex).

Definition Given u : Rn→ R, we say that u is concave if and only if

u
(
λ p+(1−λ )q

)
≥ λ u(p)+(1−λ )u(q) ∀λ ∈ [0,1] and ∀ p,q ∈ Rn.
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Recall u is convex if and only if −u is concave. �

Example Some very well-known examples are all affine functions, which are both
convex and concave on Rn, the modulus |x| is convex, thus−|x| is concave; similarly
u(x) = x2 is convex while u(x) =−x2 is concave. �

It is also easy to show that, whenever u∈C2, then u is concave if and only if D2u≤ 0,
where this means that the n× n (symmetric) matrix of second derivatives D2u is
semi-negative definite (i.e. all the eigenvalues are non-positive).

A very important generalization of the notion of concavity is the definition of
semiconcavity. We next recall some equivalent notions and refer to [?] for a beautiful
overview on this theory. Note that also in this case, u semiconvex if and only if −u
semiconcave.

Definition (Semiconcavity) Given u : Rn→ R, the following statements are equiv-
alent: ∃C > 0 such that

1. p 7→ u(p)− C
2 |p|

2 is concave.
2. ∀λ ∈ [0,1], p,q ∈ Rn, λ u(p)+(1−λ )u(q)−u

(
λ p+(1−λ )q

)
≤C|p−q|2.

3. ∀ p,v ∈ Rn, u(p+ v)+u(p− v)−2u(p)≤C|v|2 (mid-point semiconcavity).

In this case the function u is called semiconcave. �

If in addition we assume u ∈ C2, then u is semiconcave if and only if ∃C > 0
such that D2u ≤ C Idn×n. Another key property of semiconcave (or semiconvex)
functions is that they are locally Lipschitz continuous, which also implies that the
gradient is (uniformly) locally bounded.

Example

1. Concave functions are also semiconcave.
2. C2 functions are both semiconvex and semiconcave in every bounded set.
3. The Euclidean square distance is both semiconcave and semiconvex in Rn since

the Hessian is 2 Id, while the distance from the origin is only semiconvex (since
it is convex), but it is not semiconcave at the origin.

4. The CC distance from the origin is locally semiconcave outside the origin [?, ?]
in ideal Carnot groups (e.g. in the Heisenberg group).

While convexity and concavity are key geometrical properties for sets and func-
tions, semiconvexity and semiconcavity turn out to be key regularity properties, for
example a function that is both semiconvex and semiconcave is C1,1, see [?].

The bounds on their first and second derivatives have also many applications in
the theory of PDEs.

In the next session we characterise concavity and semiconcavity by looking at the
second derivatives, also for function not necessarily C2, interpreting the sign/bounds
for the second derivatives in the viscosity sense.
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2 Viscosity solutions and semiconcavity

The theory of viscosity solutions has been formally introduced by M.G. Crandall
and P.-L. Lions in 1981 [?, ?] and developed in the following years with the con-
tributions of many other authors. In this section we recall the main definitions and
apply it to a characterization for concave and semiconcave functions.

Definition We say that a continuous function u : Ω → R is a

1. viscosity subsolution at some point x0 ∈ Ω , if and only if, for any test function
ϕ ∈C2(Ω) such that u−ϕ has a local maximum at x0, then

F(x0,u(x0),Dϕ(x0),D2
ϕ(x0))≤ 0.

2. viscosity supersolution at some point x0 ∈Ω , if and only if, for any test function
ϕ ∈C2(Ω) such that u−ϕ has a local minimum at x0, then

F(x0,u(x0),Dϕ(x0),D2
ϕ(x0))≥ 0.

3. viscosity solution at a point x0 ∈ Ω if u is both a viscosity subsolution and a
viscosity supersolution.

Example If we consider the eikonal equation |u′(x)| = 1 on (−1,1), with van-
ishing boundary conditions u(−1) = 0 = u(1), by simply applying Rolle’s The-
orem, one can show that there are no classical solutions, in fact any function
C1((−1,1))∩C([−1,1]) solving the vanishing boundary condition, have at least
one point where u′ = 0. By simply applying the previous definition, it is easy to
check that the function u(x) =−|x|+1 is the (only) viscosity solution of the eikonal
equation, satisfying the given vanishing boundary conditions. �

Viscosity solutions are a very good notion of generalised solutions for a large
class of partial differential equations. In order to show that, we need to verify that
they are consistent with classical solutions, which means the following:

1. Whenever u ∈ C2 is viscosity solution, then u is also classical solution. That is
very easy to check since we can take u = ϕ for both the viscosity supersolution
and the viscosity subsolution properties, which trivially implies

F(x0,u(x0),Du(x0),D2u(x0)) = 0, ∀x0 ∈Ω .

2. To show that classical solutions are indeed also viscosity solutions is more tricky
and one needs to assume the following additional assumption on the structure of
the PDE:

F(x,z, p,M)≤ F(x,z, p,N), ∀M ≥ N, (1)

where M and N are symmetric n× n-matrices, therefore M ≥ N needs to be in-
terpreted e.g. as all eigenvalues for the matrix M−N are non-negative.
Whenever the PDE satisfies the previous property of monotonicity w.r.t. the sec-
ond derivatives, the PDE is called degenerate elliptic. Assuming this additional
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property we can show that classical solutions are also viscosity solutions, in fact,
given ϕ ∈C2(Ω) such that u−ϕ ∈C2(Ω) has a local maximum at x0, then{

D(u−ϕ)(x0)=0,

D2(u−ϕ)(x0)≤0.

Hence u classical solution, together with property (??), give

F(x0,u(x0),Du(x0),D2u(x0)) = 0 ⇒ F(x0,u(x0),Dϕ(x0),D2
ϕ(x0))≤ 0,

i.e. the viscosity subsolution property. Similarly one can check the viscosity su-
persolution property.

Example

1. First order PDEs (as for example the eikonal equation or in general Hamilton-
Jacobi equations) are always degenerate elliptic.

2. Linear elliptic and parabolic equations (e.g. Poisson equations or heat equations)
are degenerate elliptic.

3. Hyperbolic equations (such as the wave equation) are not degenerate elliptic.

Viscosity solutions have usually very good existence, uniqueness and stability
properties. For detailed theorems and suitable assumptions we refer to [?, ?, ?, ?, ?,
?, ?] which give a complete overview on the theory from different point of views.

We can now use the theory of viscosity solutions to chartacterize concave and
semiconcave functions.

Theorem ([?]) Let u lower semicontinuous on Ω ⊂ Rn open, then u is concave, if
and only if,−D2u(x)≥0, in the viscosity sense, in Ω . This means that D2φ(x0)≥ 0
for all smooth φ ∈C2

(
Ω
)

such that u−ϕ has a local minimum at some point x0 ∈Ω

(viscosity supersolution property). �

The previous theorem can be applied to semiconcave functions: this means that,
given u lower semicontinuous on Ω ⊂ Rn open, then u is semiconcave, if and only
if,

−D2u(x)≥−C Idn×n, in the viscosity sense, in Ω .

3 Carnot groups.

In this session we are going to give a brief overview on Carnot groups, recalling in
particular the main definitions and properties. In particular we focus on the gauge
(also called homogeneous) distance and the Carnot-Carathéodory (shortly CC) dis-
tance.

Definition A Carnot group
(
G, ·
)

is a simply connected nilpotent Lie group, whose
Lie algebra g has a finite stratification, i.e.
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g =
r⊕

j=1

g j, i.e.

{
[g1,g j] = g j+1, ∀ j = 1, . . . ,r−1,
[g1,gr] = {0}.

If gr 6= {0}, then r is the step of the Carnot group G. �

Example The n-dimensional Heisenberg group Hn is a step 2 Carnot group defined
on R2n+1 by the following non-abelian operation:

p ·q =

(
x1 + y1,x2 + y2,x3 + y3 +

〈
x1,y2

〉
−
〈
x2,y1

〉
2

)
,

where p= (x1,x2,x3),q= (y1,y2,y3)∈Rn×Rn×R, when + denotes the Euclidean
sum and and

〈
,
〉

the standard inner product in Rn.

For all λ > 0, we consider the automorphism ∆λ : g→ g defined by ∆λ (X) =
λ iX , for all X ∈ gi and i = 1, . . . ,r. By using the finite stratification of g, we can
deduce:

∆λ (X) = λX1 + · · ·+λ
rXr, for X = X1 + · · ·+Xr and Xi ∈ gi.

On a Carnot group G, the exponential map is a diffeomorphism from g to G (see
[?] for a definition and properties). Therefore we can define the dilations on the
group G as the smooth map δλ : G→ G given by δλ = exp ◦∆λ ◦ exp−1, where
by exp we indicate the exponential map. Note that the dilations give a family of
anisotropic scalings whenever r ≥ 2.

Using again the stratification of g and the exponential map, we can introduce a
gauge (or homogeneous) norm as

‖x‖G :=

(
r

∑
i=1
|xi|

2r!
i

) 1
2r!

, x = (x1, . . . ,xr) ∈G.

The gauge norm rescales with the dilations: ‖δλ (x)‖G = λ ‖x‖G. Note that ‖x‖2r!
G

is a polynomial, so it is always smooth (in the standard sense). As already remarked
smooth functions are trivially both semiconvex and semiconcave in every bounded
set. Given p,q ∈G, the gauge distance is dG(p,q) =

∥∥q−1 · p
∥∥

G.
To introduce the CC distance on Carnot groups we need to consider the sub-

Riemannian manifold structure of canonical left-invariant vector fields defined on
Carnot groups. We refer to [?, ?] for details. Here we just recall that we can identify
the horizontal distribution D ⊂ TG generated by g1 by using a suitable family of
left invariant vector fields X1, . . . ,Xm where m = dimg1.

The key notion necessary to introduce the CC distance is the one of admissible
(horizontal) curves: a horizontal curve γ is every absolutely continuous curve de-
fined on the group, such that γ̇(t) ∈Dγ(t), a.e. t, that means γ̇(t) = α1(t)X1(γ(t))+
· · ·+αm(t)Xm(γ(t)), for α1, . . . ,αm suitable measurable functions and X1, . . . ,Xm
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generating D . On D we can define a Riemannian metric g(·, ·), so for horizontal
curves, the length can be introduced as l(γ) =

∫ 1
0

√
g(γ̇(t), γ̇(t))dt.

Definition Given p,q ∈G, the Carnot-Carathéodory (CC) distance is

d(p,q) = inf
{

l(γ) |γ : [0,1]→G, horizontal γ(0) = p,γ(1) = q
}
.

�

4 h-semiconcavity and the square CC distance.

In this section we recall how to adapt the previous definitions and properties of
concave and semiconcave functions to Carnot groups, and in particular the viscos-
ity characterization by the intrinsic (horizontal) second derivatives. The horizontal
convexity (shortly h-convexity) was first introduced in [?, ?, ?], and later gener-
alised to the case of general Hörmader vector fields in [?, ?]. We refer also to [?]
for an overview on the subject. As done for the Euclidean counterpart, in this sec-
tion, we write all definitions and properties directly for the h-concave, respectively
h-semiconcave, case.

Definition Given Ω ⊂ G open and u lower semicontinuous, u is h-concave if and
only if

u(p ·h)+u(p ·h−1)−2u(p)≤ 0,

∀ p ∈Ω ,h ∈H0 = D0 such that [p ·h−1, p ·h] := {p · τh |τ ∈ [−1,1]} ⊂Ω . �

In step 2 Carnot groups, (Euclidean) concavity implies h-concavity.
Recall that, given X = {X1, . . . ,Xm} a generic family of (left-invariant) vector

fields, the intrinsic gradient is given by

DX u = (X1u, . . . ,Xmu)t = σDu,

where σ = [X1, . . . ,Xm]
t is the m×n matrix associated to the family X .

The intrinsic Hessian is given by the m×m-matrix

D2
X u =

(
Xi(X ju)

)m
i, j=1.

Since in general D2
X u may not be symmetric, we consider the symmetrized matrix

(
D2

X u
)∗

=

(
Xi(X ju)+X j(Xiu)

2

)m

i, j=1
= σ D2uσ

t +

(
∇X j Xi +∇XiX j

2
·Du

)m

i, j=1
.

Using the horizontal derivatives, we can generalise the viscosity characterization
for concave functions to the case of h-concave functions. The following theorem
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has been proved in Carnot groups in [?, ?, ?] and later generalized to the case of
Hörmander vector fields in [?].

Theorem Let u ∈C(Rn), then u is h-concave, if and only if, −
(
D2

X u
)∗ ≥ 0, in the

viscosity sense, in Rn. �

The previous definition and result can be generalised to the smiconcave case.

Definition u : G→R is h-semiconcave if ∃C > 0 such that ∀p ∈G and ∀h ∈H0,
u(p ·h)+u(p ·h−1)−2u(p) ≤C|h|2. Note that h ∈H0⇔ h = (h1, . . .hm,0, . . . ,0)
with m = dim(g1), that implies ‖h‖G = |h| (Euclidean norm). �

By using the previous theorem, it is trivial to show that, given u : G→ R lower
semicontinuous, u is h-semiconcave if and only if −

(
D2

X u
)∗ ≥ −C Idm×m in the

viscosity sense.
By using the viscosity characterization, in [?] we could prove that the square CC

distance from the origin is h-semiconcave in the whole space. First we want to recall
that in [?, ?] it was proved that in ideal group the CC distance from the origin is
locally Euclidean semiconcave outside the origin. Since ideal groups are a subfamily
of step 2 Carnot groups, this result implies local h-semiconcavity outside the origin.
While the dilations can be used to extend the horizontal (not the Euclidean) property
at infinity, the result can be proved to be false at the origin (see [?] for more details).
Nevertheless the result can be used to prove the following theorem in ideal group.
For non ideal step 2 groups, one can instead use the recently developed notion of
C-nearly horizontal semiconcavity and the related results in [?].

Theorem ([?]) In all step 2 groups G, d2(p,0) is h-semiconcave in G. �

Note that the result is optimal in the sense that we can show that in the Engel
group (simplest example step 3 Carnot group) no powers of the CC distance are
h-semiconcave near the origin. Moreover, differently from the Euclidean case, one
can show that in the Heisenberg group the square CC distance from the origin is not
h-semiconvex.

In [?] the previous theorem, together with the stability of viscosity supersolution
w.r.t. infimum, have also been used to prove h-semiconcavity properties for the vis-
cosity solutions of a large class of degenerate Hamilton-Jacobi equations, by using
the metric Hopf-Lax formula developed in [?, ?].
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8. Caffarelli, L., Cabré, X.: Fully Nonlinear Elliptic Equations. American Mathematical Society,
Providence (1995).

9. Cannarsa P., Rifford, L.: Semiconcavity results for optimal control problems admitting no
singular minimizing controls. Ann. Inst. H. Poincaré C Anal. Non Linéaire, 25 (4), 773–802
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Control. Birkhäuser, Basel (2004).

11. Crandall, M.G., Ishii, H., Lions, P.-L.: User’s guide to viscosity solutions of second order
partial differential equations. Bullet AMS 27 (1), 1–67 (1992).

12. Crandall, M.G., Lions, P.L.: Condition d’unicité pour les solutions generalisées des équations
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Carathéodory distance on step 2 Carnot groups and applications to Hamilton-Jacobi equations.
Preprint (2024).

19. Evans, L.C.: Partial Differential Equations. American Mathematical Society, Providence
(2010).

20. Figalli, A., Rifford L.: Mass transportation on sub-Riemannian manifolds. Geom. Funct. Anal.
20 (1),124–159 (2010).

21. Giga, Y.: Surface Evolution Equations A Level Set Approach. Birkhäuser, Basel (2002).
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