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A B S T R A C T

The Internet of Things (IoT) and Edge-Cloud Computing have been trending technologies over the past
few years. In this work, we introduce the Enhanced Optimized-Greedy Nominator Heuristic (EO-GNH), a
framework designed to optimize machine learning (ML) and artificial intelligence (AI) application placement
in edge environments, aiming to improve Quality of Service (QoS). Developed specifically for sectors such as
smart agriculture, industry, and healthcare, EO-GNH integrates asynchronous MapReduce and parallel meta-
heuristics to effectively manage AI applications, focusing on execution performance, resource utilization, and
infrastructure resilience. The framework carefully addresses the distribution challenges of AI applications,
especially Service Function Chains (SFCs), in edge-cloud infrastructures. It contains Data Flow Management,
which covers aspects of data storage and data privacy, and also considers factors like regional adaptations,
mobile access, and AI model refinement. EO-GNH ensures high availability for forecasting, prediction, and
training AI models, operating efficiently within a geo-distributed infrastructure. The proposed strategies
within EO-GNH emphasize concurrent multi-node execution, enhancing AI application placement by improving
execution time, dependability, and cost-effectiveness. The efficiency of EO-GNH is demonstrated through its
impact on QoS in real-time resource management across three application domains, highlighting its adaptability
and potential in diverse cross-domain IoT-based environments.
1. Introduction

The Internet of Things (IoT) is rapidly becoming a transformative
technology in various domains, reshaping how we approach every-
thing from agricultural practices to healthcare delivery and industrial
operations. This technological paradigm shift is primarily driven by
the continuous flow and processing of data through interconnected
devices. IoT’s ability to gather, analyze, and act upon data in real-time
offers immense potential for efficiency and innovation. However, this
also presents unique challenges, particularly in ensuring timely data
communication and maintaining privacy, especially in scenarios where
resources such as computation, bandwidth, and energy are limited [1].

As shown in Fig. 1, cloud computing has offered substantial ben-
efits in managing IoT data, but it also has some serious limitations,
particularly related to latency and data privacy [2]. Edge computing
emerges as a viable alternative, extending cloud capabilities closer
to the data source through devices such as single-board computers

∗ Corresponding author at: Cardiff University, United Kingdom.

or computational accelerators owned by end-users. This approach is
particularly advantageous for IoT applications where real-time low-
latency data processing is critical. Integrating edge and cloud models
into a unified ‘hybrid edge-cloud’ structure also presents an efficient
approach. This combined model offers the best of both the paradigms:
speedy processing and augmented computational power, greatly ben-
efiting IoT applications. The key benefits of this architecture include
reduction in delays, improved dependability, and superior Quality of
Service (QoS) [3].

As IoT environments are becoming increasingly complex, especially
with the integration of artificial intelligence (AI) and machine learning
(ML); there is a rising demand for platforms capable of handling
sophisticated applications. AI and ML integration significantly enhances
the capabilities of IoT systems, especially in optimizing processes using
data collected at the network’s edge. Moreover, in the edge-cloud
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Fig. 1. The process of IoT computational offloading across application, platform, and
infrastructure layer.

ecosystem, an application consists of smaller components known as
virtual functions, which can be deployed across entire IoT-based in-
frastructures for execution. Deciding the optimal location for executing
these virtual functions is also a complex task. This decision-making
process requires focus on analyzing specific needs of the application, ef-
ficient use of available infrastructure, and the avoidance of congestion
points that could slow down the entire IoT environment.

The Greedy Nominator Heuristic (GNH) [4] is a performance op-
timization algorithm specifically designed for infrastructure setups in-
cluding IoT, fog, and cloud computing infrastructures. At its core,
GNH integrates key components: a function for assessing similarity
with the ideal solution for comparing solutions using a similarity
function [5], MapReduce’s mappers and reducers for data processing,
and a master-worker mechanism with controllers and workers for task
management [6]. The similarity function in GNH, inspired by a context-
sensitive distance measurement approach, is critical in differentiating
solutions from various optimization methods. Mappers in GNH are
designated to specific nodes, identified as locations, responsible for
processing workflow functions and creating decision variables. During
a placement query, mappers suggest suitable nodes for deployment.
Following this, a reducer assesses these suggestions and picks the most
appropriate nodes; a process that continues until the entire workflow
is efficiently deployed.

Both the mappers and reducers adopt a greedy strategy [7], utilizing
a euclidean distance-based similarity function as a benchmark for
comparing current solutions with an ideal one. GNH is adaptable and
can work with various other similarity functions, like cosine similar-
ity [8] and fuzzy measures [9], provided they can effectively gauge
the likeness between the ideal solution and the ones being evaluated.
The max-heap also plays a crucial role in GNH. It is a binary tree
format that organizes results from mappers and the reducer, ensuring
the most significant value always resides at the root. This structure is
particularly beneficial for the quick and efficient retrieval and removal
of stored solutions. Both mappers and reducers navigate through the
search space, continually updating the max-heap with their findings.
This approach in GNH allows for a more effective and streamlined
process in selecting optimal nodes for deployment for complex IoT-
based edge and cloud computing environments. The framework design
is structured around a controller, serving the role of the reducer,
and workers functioning as mappers. These workers are tasked with
2 
monitoring the network’s performance and the available computational
resources at various sites. The controller then uses this information
to select the most suitable locations for deployment. This system is
implemented using an asynchronous parallel programming library in
Python (Parsl [10]), designed to facilitate execution on both high
performance and edge computing resources.

GNH has shown its versatility and efficiency in intelligent IoT appli-
cations in varied settings. In smart city scenarios [11], GNH has proven
its capability by autonomously deploying virtual functions across both
edge and cloud environments. This deployment strategy led to more
efficient resource utilization, enhanced execution performance, and a
noticeable reduction in operational costs. Additionally, GNH has been
adapted for use in federated learning (FL) based frameworks, partic-
ularly in rural areas with limited network connectivity [1]. In these
applications, GNH efficiently balanced resource usage and performance
across a range of IoT applications. Despite these successes, it has been
observed that GNH sometimes struggles in ensuring resource availabil-
ity, highlighting an area for potential enhancement. This observation
points to the need for ongoing development and refinement to fully
harness GNH’s capabilities in varying IoT environments.

This paper introduces an advanced optimization algorithm, the
Enhanced Optimized Greedy Nominator Heuristic (EO-GNH), designed
to minimize execution time and optimize resource usage in IoT ap-
plications. EO-GNH is an updated version of the original GNH al-
gorithm, offering several improvements. This framework incorporates
asynchronous parallel computing alongside machine learning tech-
niques for better heuristic selection. EO-GNH’s development involves
a simulation-based evaluation, enabling a thorough analysis of its
performance across diverse IoT environments and potential failure
situations.

While GNH is effective, its efficiency in generating pareto-optimal
solutions is comparatively limited. EO-GNH addresses this limitation
by utilizing asynchronous MapReduce and parallel meta-heuristics. It
significantly reduces the execution time of the optimization algorithm
and helps in avoiding local optima thus ensuring consistent service
availability. EO-GNH enhances the jMetalPy framework [12] through
the integration of Parsl [10], a tool that optimizes its functionality for
real-time IoT applications. A key feature of EO-GNH is its capability
to select optimal, non-dominanted solutions from the pareto front
approximations produced by its mappers. At the reducer level, EO-
GNH enhances optimization with a greedy approach that aggregates
objectives as a scalarization method [13], leading to quicker, more
dynamic results, ideal for complex and real-time IoT scenarios requiring
efficient decision-making.

EO-GNH functions within a proposed framework for IoT application
management, aiming to provide balanced solutions in terms of delay,
cost, and risk. The algorithm’s core principle is to improve one aspect
without negatively impacting others. This paper examines whether
EO-GNH can adapt to the varied characteristics and infrastructure
needs of different IoT applications, a critical question for the evolving
landscape of IoT technology. The investigation forms the central focus
of our work, contributing significantly to the field of IoT application
management. We validate the efficient and optimized deployment of
IoT applications in edge-cloud infrastructure by leveraging various
ML-based use-cases.

The main highlights of this work are as follows:

• Innovative Asynchronous Optimization Model: Development
of EO-GNH as an advanced optimization algorithm using asyn-
chronous MapReduce and meta-heuristics for efficient distributed
computing.

• Integration of Parsl for Dynamic Resource Utilization: Imple-
menting Parsl within EO-GNH for adaptive and scalable resource
management, enhancing computational efficiency.
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• Superior Performance in Time-Critical Applications: Demon-
strating ability of EO-GNH to outperform traditional algorithms
like dNSGAII in execution time and success rate, making it suit-
able for time-sensitive tasks.

• Robustness Against Variability in Computational Environ-
ments: EO-GNH maintains consistent performance across differ-
ent mapper setups, proving its reliability in various computational
contexts.

• Effective Balance Between Resource Utilization and Oper-
ational Risk: EO-GNH’s framework adeptly balances resource
usage while managing operational risk, a very crucial factor in
real-time optimization problems.

• Optimization Across Various ML Applications: We tested our
framework over multiple scenarios, including cloud computing,
edge computing, and IoT; highlighting its versatility in solving
various optimization challenges across wider range of domains.

The remainder of the paper is organized in this manner. Section 2
provides the description of other optimization approaches that have
been developed for ML and AI tasks on edge and cloud environment.
Section 3 delves into the design of framework and application use-case
onsidered in this work. A mathematical description of the problem is
rovided in Section 4. Section 5, 6, 7, and 8 describes the EO-GNH

framework and details the experimentation conducted for analyzing the
designed framework. The results and evaluations are depicted in details
n Section 9. Section 10 concludes the work and provides the future
cope of work that can further improve the implemented approach.

2. Optimization algorithms for AI/ML applications

In the field of task and function placement algorithms, the use
f informed approaches like heuristics and meta-heuristics is crucial
or optimizing placement strategies [14,15]. Heuristic methods, cus-

tomized for specific problems, leverage heuristic functions to develop
algorithms that effectively tackle placement challenges. These ap-
roaches benefit from insights provided in the works of Pearl et al. [16]
nd Almurshed et al. [1]. Meta-heuristics, in contrast, offer problem-
ndependent frameworks, requiring only that solutions be defined in a
ormat understandable by the algorithm. This broadens their usability

across various problem types.
The combination of heuristics and meta-heuristics enhances adapt-

bility and effectiveness. For example, the A* search algorithm uses a
enetic algorithm as a heuristic function, an approach explored by Yiu
t al. [17].

In optimization, two key methods are scalarization and
on-dominanted solutions, also known as the Pareto method. Scalariza-
ion [5] merges multiple objective functions into one. Non-dominanted
olutions in contrast, seek outcomes that do not surpass others in
very objective. Combining Meta-Heuristic and Hierarchical Heuristic
ethods, as described by Yiu et al. [18], offers a balanced solution,

incorporating the benefits of both scalarization and non-dominanted
solutions.

Integrating machine learning with heuristic functions can further
nhance results. Machine learning models, acting as function approxi-
ators [19], provide valuable data that can guide heuristic algorithms.
he efficiency of these combined methods can be increased through

Parallel Meta-Heuristics. This approach, detailed by Alba et al. [20], in-
olves the parallel operation of interconnected components like heuris-
ic functions, function approximation, and various meta-heuristic el-
ments. Parallel libraries such as Parsl [10], Apache Dask [21] and
pache Openwhisk [22]. Also, open-source meta-heuristic libraries like

jMetalPy [12], facilitate this efficient planning process.
Utilizing parallel algorithms to deploy AI solutions has proven

ffective in various applications. A notable example includes image
rocessing, where Apache OpenWhisk has been used to enhance pro-
essing across the edge-cloud continuum, as demonstrated in the work
3 
by Alabbas et al. [23]. This approach exemplifies the efficacy of par-
allel computing in AI-driven scenarios like edge device applications.
Similarly, the use of Parsl alongside Docker containers has been instru-
mental in advancing smart city applications, showcasing the versatility
and power of parallel computing [11].

For applications and platforms dealing with federated learning at
the network edge, Baughman et al. [24], Patros et al. [25] and Almur-
shed et al. [1] provide insightful examples. Baughman et al. developed
a serverless FL framework optimized for remote endpoints, employing
tournament-based pretraining to boost model efficacy. Patros et al. [25]
applied serverless FL in agricultural settings through their Rural AI
initiative, proving its utility in weed detection. Both instances exem-
lify the versatility and impact of FL in edge computing environments.
lmurshed et al. [1] explored the application of the GNH in rural

environments, focusing on training and fine-tuning machine learning
odels using FL. Their research demonstrates GNH’s effectiveness in

orchestrating workflows in areas with fluctuating network conditions,
howcasing its enhanced performance in managing decentralized FL

tasks.
Moreover, the development of a dynamic platform that manages

nfrastructure and adapts to changes is crucial in contemporary tech-
nology landscapes. In this context, Kaushal et al. [26] proposed an
approach characterized by its adaptive capabilities in case a network
ailure occurs. Such a platform significantly enhances the reliabil-
ty of precision agriculture applications, while also considering the
erformance of ML task deployment.

More in adaptive resiliency, key studies provide significant ad-
vancements in this field. Mohammadi et al. [27] explore the Social
Internet of Things, presenting a fault-tolerant framework bolstered by
fog computing, which markedly enhances network reliability through
advanced algorithms. Amjad et al. [28] tackle dynamic orchestration
in IoT devices, emphasizing adaptability and interactivity, particu-
arly pertinent in emergency scenarios and evolving business processes.

George et al. [29] review the reliability aspect of edge computing in
IoT networks, highlighting the necessity of resilient designs in vital
sectors like healthcare. These studies serve as exemplary instances of
adaptive resilient edge-cloud systems, showcasing the integration of
robustness and flexibility in IoT infrastructures. A summary of recent
works for optimization of AM/ML applications is provided in Table 1.
The integration of heuristics, meta-heuristics, and machine learning,
upported by parallel computing techniques, creates a comprehensive
ramework for optimizing task and function placement algorithms. This
olistic approach utilizes the strengths of each method, resulting in a
ystem that is efficient, adaptable, and effective.

3. System overview

For an IoT application platform to be adaptive, it must integrate
our essential elements. Firstly, there should be a sophisticated schedul-
ng planner for executing applications, supported by various system
lgorithms or optimization tools. Secondly, the platform needs to effi-
iently handle placement activities and data flow through a distributed

processing system, offering workflow feedback that aids in decision-
making analysis. Thirdly, the platform requires robust monitoring tools
to collect and purify system data, including information on resources
like RAM, CPU, and the status of service functions. Lastly, it is impor-
ant for the platform to have an analysis component that can derive

meaningful insights from the collected data. This could involve using
the Integer Linear Programming (ILP) method for scheduling optimiza-
tion, with the results from this analysis phase feeding back into the
optimization strategy, enhancing its effectiveness.

In the evolving landscape of IoT, an adaptive system is crucial.
By utilizing cutting-edge tools and methodologies, such a system can
deptly handle scheduling, placement, monitoring, and data analysis

of IoT tasks in the framework. This results in a platform capable of
responding to the dynamic nature of the IoT environment. Parsl [10],
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Table 1
Summary of recent works categorized by application use-case, management approach, ML usage, performance objectives, and adaptation characteristics.

Work Real-life
application

ML based
task

Self opti-
mization

Self config-
uration

Cross-
Domain
evaluation

Risk
handling

Meta-Heuri-
stic based

Func-
tion
chain

Server-less Resource
manage-
ment

[23] ✓ ✓ ✓ ✓

[11] ✓ ✓ ✓ ✓ ✓ ✓

[24] ✓ ✓ ✓

[25] ✓ ✓ ✓ ✓

[1] ✓ ✓ ✓ ✓ ✓ ✓

[26] ✓ ✓ ✓

[27] ✓ ✓ ✓

[28] ✓ ✓

[29] ✓ ✓ ✓ ✓

EO-GNH ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Fig. 2. Service function chaining implemented with Parsl. The executors argument in
the function decorator specifies the location that runs the service function.

a notable Python library for parallel programming, executes Service
Function Chains (SFCs) within the infrastructure and generates detailed
logs (as shown in Fig. 2). Its ability to use high-level programming
languages for scripting SFCs enables precise depiction of both the SFC
graph and its functional logic. The feedback provided by such tools is
vital for accumulating critical knowledge about the infrastructure (see
Fig. 3). Parsl employs Python functions, known as Parsl apps, to act
as service functions in SFCs. Managed by specialized executors, these
apps offer asynchronous, non-blocking operations, returning AppFu-
tures that enhance data flow and encapsulate service function logic
within the Parsl framework.

Effective scheduling in an IoT system involves analyzing infras-
tructure data and previous scheduling outcomes. A combination of
heuristics, meta-heuristics, optimization solvers, and libraries can be
integrated with ILP models to refine scheduling processes. Optimization
solvers use deterministic algorithms for solving structured mathemat-
ical problems to find optimal solutions. On the other hand, meta-
heuristics employ stochastic and iterative approaches for solving prob-
lems with vast search spaces or intricate objective function landscapes.
In scheduling optimization, solvers are employed to create optimal
schedules within certain constraints, whereas meta-heuristics offer flex-
ible solutions for dynamic environments with changing requirements.

The combination of Parsl with an optimization solver, enriched
by their respective feedback systems, enables the creation of a self-
adjusting platform well-suited to the dynamic nature of IoT systems.
This is illustrated in Fig. 4 of our proposed work. This adaptive system
is structured around three main components: (1) the deployment of
SFC within the infrastructure, (2) monitoring mechanisms that provide
essential data for decision-making, and (3) a decision-making process
that focuses on analyzing and optimizing the scheduling plan using an
ILP model.
4 
Fig. 3. Pipeline service in a fog-cloud environment with Parsl.

Fig. 4. Controller node supervising the placement process.

The Monitoring component revolves around data collection and
storage, utilizing a suite of tools for effective consideration. This in-
cludes Stop Watch and Psutil libraries that are instrumental in retriev-
ing information on running processes and system utilization, as cited
in [30–32], respectively. Additionally, Parsl logs [10] play a crucial
role in capturing detailed records of function execution and outcomes,
ensuring comprehensive data storage.
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Table 2
Notations used in the EO-GNH problem formulation.
Symbol Description

𝐹 The set of all functions in the workflow
𝐷 Functions dependency pair set
𝐴 The graph of the workflow, which is 𝐴 = (𝐹 , 𝐷)
𝐿 The set of all locations that execute functions
𝑖 The sequence of function 𝑓 𝑖

𝑗 in the workflow
𝑗 The type of the function 𝑓 𝑖

𝑗
𝑘 The index of Location 𝑙𝑘
𝑇𝑗 ,𝑘 Processing time for 𝑓𝑗 in location 𝑙𝑘
𝑥𝑗 ,𝑘 Binary variable: function 𝑓 𝑖

𝑗 is executed on location 𝑙𝑘
𝑦𝑗 ,𝑘 Binary variable: 𝑇𝑗 ,𝑘 contributes to longest path
𝑜𝑘 Binary variable: location 𝑙𝑘 is used by the application
𝐸 The set of all placed paths of 𝐴
𝑅𝑖𝑠𝑘𝑗 ,𝑘 Risk of executing 𝑓𝑗 in location 𝑙𝑘
𝑀 𝑅𝑖,𝑗 The maximum replicas for 𝑓 𝑖

𝑗 (MaxReplicas)
𝑚 Constant to adjust maximum possible replica
𝑟𝑘 The number of failures per allocations

For Decision making, the focus shifts to analyzing the gathered
data and formulating future actions. This phase involves critical data
cleaning to maintain data accuracy and integrity. The ILP model is uti-
lized for transforming utility data, with optimization strategies such as
reedy heuristics [7] and JmetalPy [12] aiding in efficient scheduling

decisions. These combined methodologies ensure a robust and strategic
approach to decision-making within the system.

In the Deployment phase, the strategies and actions planned during
he decision-making process are put into action. Parsl [10] is utilized to
xecute SFCs within the infrastructure, facilitating the operational ex-

ecution of planned tasks. Furthermore, brokers like Apache Kafka [33]
nd Samba [34] are employed to manage and streamline data flow
etween various components of the system. These brokers are key to en-
uring the smooth execution of actions and maintaining uninterrupted
perational flow across the system.

Together, these three components integrate seamlessly to form a
ynamic and responsive adaptive system. Each component, equipped
ith its specialized tools and processes, contributes to the overall

fficiency and effectiveness of the system, enabling it to adequately
espond to diverse operational demands and challenges.

4. Problem formulation

In order to represent our task problem mathematically, we have
defined the optimization problem as a minimization of three distinct
actors: C, R, and O. All the symbols used in the formulation with their

brief descriptions are provided below in Table 2.

𝐶 = 𝑚𝑖𝑛

(

∑

𝑗∈𝐹

∑

𝑘∈𝐿
𝑇𝑗 ,𝑘 ⋅ 𝑦𝑗 ,𝑘 ⋅ 𝑥𝑗 ,𝑘

)

(1)

𝑅 = 𝑚𝑖𝑛

(

∑

𝑗∈𝐹

∑

𝑘∈𝐿
𝑅𝑖𝑠𝑘𝑗 ,𝑘 ⋅ 𝑥𝑗 ,𝑘

)

(2)

𝑂 = 𝑚𝑖𝑛

(

∑

𝑘∈𝐿
𝑜𝑘

)

(3)

where the objective function 𝐶 (formula (1)) represents the mini-
ization of aggregated processing time, and function 𝑅 (formula (2))

denotes the minimum risk associated with the successful execution
of application 𝐴. The minimum number of nodes utilized for exe-
ution (inclusive of redundancy) is depicted by objective function 𝑂
formula (3)).

5. EO-GNH framework

The EO-GNH optimization algorithm seeks solutions from the Pareto
ront using a combination of MapReduce and meta-heuristic tech-
iques. This approach is used to locate optimal locations for redundant
5 
Table 3
Dataset used to train the decision tree.

Attribute name Values

SFC size 5 10 20
Location size 100 500 1000
Population/swarm size 10 50 100

deployments. Within this framework, workers (known as Mappers) uti-
ize meta-heuristics to explore various decision variables. The outcomes
rom these Mappers are then communicated to the Reducer, typically
 controller edge/fog node, which is responsible for selecting the most
ppropriate locations for redundant deployment.

Throughout the execution of the SFC graph, Mappers are instrumen-
tal in providing solutions that are not dominated by others. When it
becomes necessary to decide on the placement of a function within the
system, the Reducer uses the Mapper’s findings to formulate an effec-
tive solution. This process ensures a balanced and efficient approach
for deploying functions within the network, leveraging the combined
insights of both Mappers and the Reducer.

5.1. Components of the framework

The execution of the parallel model operates on an asynchrony
asis, where the Reducer starts making placement decisions without
aiting for every Mapper to finish their meta-heuristic cycles. Each
apper writes its current optimal meta-heuristic solutions to a file, to
hich the Reducer has read access. As soon as a Mapper arrives at a

solution, the Reducer can use it, irrespective of its quality, to make
lacement decisions for individual functions. Parsl [35] is employed to

facilitate this MapReduce computing process.
In computer science, The Oracle is a software tool utilized for

pecific answers [36]. Here, It provides insights into the compatibility
f meta-heuristics with various application and infrastructure setups.
t also provides the most suitable meta-heuristics based on objectives
ike makespan, cost, and risk. The query variables include the number

of Mappers, the size of the SFC, the number of locations, the size of
the population, and criteria preferences. The Oracle utilizes decision
tree models to offer an estimated response based on the historical
performance of meta-heuristics. It operates in three phases: (i) infer-
ring decision trees, (ii) employing preference-based sorting, and (iii)
assigning meta-heuristics to Mappers. Fig. 5 illustrates The Oracle’s
interaction with the MapReduce methodology.

A decision tree is applied to predict the effectiveness of a meta-
heuristic. This tree functions as a unit-wise constant approximation as

entioned in [37]. Its prediction is an estimated output of the objec-
tive function of a meta-heuristic like NSGAII (Non-Dominated Sorting
Genetic Algorithm II). The model was trained on a dataset obtained
from benchmarking a range of meta-heuristics, evaluated against SFC
of varying sizes and locations, as provided in Table 3. These features,
along with the benchmark results, are used to train the decision tree.
This benchmarking process is executed through a simulation, taking
inputs (features) as mentioned in Table 3 and combining the outputs
with these inputs to form the dataset for the training phase.

Meta-heuristics refer to a category of heuristic algorithms de-
signed to tackle broad spectrum of problem types. In our approach,

e utilize a selection of nature-inspired meta-heuristic algorithms.
lgorithms such as Generalized Differential Evolution 3 (GDE3) [38],

Hypervolume Estimation Algorithm (HYPE) [39], Indicator-Based Evo-
lutionary Algorithm (IBEA) [40], Multi-Objective Cellular Genetic Al-
gorithm (MOCell) [41], and Non-dominated Sorting Genetic Algorithm
II (NSGAII) [42] utilize Genetic Algorithm meta-heuristics. In contrast,
Multi-Objective Particle Swarm Optimization with Crowding Distance
(OMOPSO) [43] and Speed-constrained Multi-objective Particle Swarm

ptimization (SMPSO) [44] uses Particle Swarm Optimization (PSO) in
their implementation. These algorithms are dynamic during execution,
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Fig. 5. Asynchronous MapReduce performs EO-GNH, initiated by the Oracle. The
Oracle ranks meta-heuristic algorithms according to their attributes.

Fig. 6. SFC redundant deployments solution encoding. The solution encoding’s ele-
ments are location IDs, while an array’s indices specify the function.

yielding multiple sets of solutions, each representing an approximation
of the best-discovered Pareto Front. Meta-heuristics typically consist of
a series of main loops, with each iteration executing a specific step.
The nature of these steps varies across different meta-heuristics. For
instance, PSO based algorithms simulate a swarm, while Genetic Algo-
rithm (GA) based ones apply genetic operators. In our designed parallel
model, the Pareto Front discovered at each step of the meta-heuristic’s
process is recorded in a shared file.

Solution Encoding refers to the technique used by meta-heuristic
algorithms for representing solution data, encompassing the data’s
format and structural organization. In our framework, as illustrated in
Fig. 6, solution encoding takes the form of an integer array. Here, each
array value denotes a location ID, while the array indices correlate with
functions in the graph. This setup allows for multiple indices to corre-
spond to a single function, effectively outlining a redundant placement
strategy for that function. In the context of PSO-based methods, the
solution is initially in the form of a real number (floating type), which
is inherently is not an integer. To address this, we implement discretiza-
tion techniques, specifically using the mathematical floor function, to
convert these array elements into integers by eliminating their decimal
components.

Timsort is an advanced, stable hybrid sorting method derived from
both merge sort and insertion sort. It is designed to efficiently handle
a diverse range of real-world data types. In our system, Timsort is
utilized to organize the decision tree outputs according to user-defined
objectives and preferences, such as makespan, cost, and risk. Regarding
6 
Fig. 7. The Oracle ranks and selects meta-heuristics, each has a color. Inputs for the
oracle are the number of SFC mappers, population, locations, and functions.

the greedy methodology, it is integrated into EO-GNH, enhancing the
original GNH framework. In EO-GNH, the greedy heuristic elements,
known as Reducers, process the output files generated by each meta-
heuristic. The planning stage for deploying the next function in the
sequence is initiated once the current function’s execution is complete,
ensuring a sequential and efficient deployment process.

5.2. Workflow of the framework

The functional architecture of EO-GNH revolves around the utiliza-
tion of Oracle and asynchronous MapReduce techniques. Its workflow
is segmented into three key stages: (i) engaging with the Oracle, (ii)
setting up and triggering the meta-heuristics, and (iii) running the
application while dynamically adjusting to evolving conditions. Subse-
quent sections will provide detailed insights into these critical stages,
which are integral to the methodology’s overall execution.

5.2.1. Engagement with Oracle
The Oracle’s purpose is to determine the most suitable meta-heuristic

for operating an application, taking into account the specific character-
istics of the existing infrastructure. As shown in Fig. 7, it constructs a
query using several key factors. These include the controller’s capa-
bilities, the specific parameters of the algorithm, data related to the
location, the structure of the SFC graph, and the preferences of the user
regarding objectives. The user’s preferences also play a crucial role in
how the results are prioritized and presented.

Decision tree models are employed to project the anticipated out-
comes of different meta-heuristics, focusing on crucial aspects such as
makespan, risk, and cost. Following this, the meta-heuristics undergoe
an assessment and are ordered according to how well they align with
the user’s priorities. The process saturates with the assignment of the
top-ranked meta-heuristics to the mappers at hand.

5.2.2. Engagement with meta heuristics
Unlike the Mappers in the original GNH, the EO-GNH approach

involves making decisions for the entire SFC graph, as depicted in
Fig. 6. This decision-making strategy is outlined in Algorithm 1 of
our paper. It describes the process of the Mapper initiating the meta-
heuristic (referenced at line 3) and then moving into the main loop of
the algorithm.

Within this loop, there’s a continuous update of decision variables
(seen in lines 5–7), leading to simultaneous changes in the current
values of the objectives (outputs from the objective functions). The Step
procedure, as mentioned in line 8, employs the previous solution along
with locations and the SFC to perform an individual step.

This approach results in the generation of a new solution, which
is then stored in a file shared with the Reducer (lines 9–10). The
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Algorithm 1 The 𝑠𝑜𝑙 𝑢𝑡𝑖𝑜𝑛 is an array where each index refers to the
function (𝑓 𝑖

𝑗 ), whereas its content is the location 𝑖𝑑

1: class Mapper
2: method Map (𝐿;𝑆 𝐹 𝐶)
3: 𝑠𝑜𝑙 𝑢𝑡𝑖𝑜𝑛 ← initSolution( 𝐿;𝑆 𝐹 𝐶 )
4: while notCompleted do
5: if IsDecisionVarChanges(𝐿;𝑆 𝐹 𝐶): then
6: 𝐷 𝑒𝑐 𝑖𝑠𝑖𝑜𝑛𝑉 𝑎𝑟 ← UpdateVar(L; SFC)
7: 𝑠𝑜𝑙 𝑢𝑡𝑖𝑜𝑛 ← updateSolution(𝑠𝑜𝑙 𝑢𝑡𝑖𝑜𝑛)
8: 𝑠𝑜𝑙 𝑢𝑡𝑖𝑜𝑛 ← step(𝐿;𝑆 𝐹 𝐶; 𝑠𝑜𝑙 𝑢𝑡𝑖𝑜𝑛)
9: 𝑀 𝑎𝑝𝑝𝑒𝑟𝑅𝑒𝑠𝑢𝑙 𝑡 ← solution

10: 𝑠𝑜𝑙 𝑢𝑡𝑖𝑜𝑛 ← updateSharedFile(𝑀 𝑎𝑝𝑝𝑒𝑟𝑅𝑒𝑠𝑢𝑙 𝑡)

Fig. 8. Robot performs a random walk in agricultural field, affecting the connection
to a field side unit.

algorithm concludes once the execution of the SFC is fully completed,
as indicated when the notCompleted status in line 4 switches to False.

The specific operations within the Step method differ depending
on the type of meta-heuristic being used. For algorithms derived from
PSO, the sequence includes (i) updating the velocity, (ii) updating the
position, (iii) evaluating the objectives, (iv) updating the global best,
and (v) updating the particle best.

In contrast, for GA-based algorithms, the sequence involves (i)
selection, (ii) crossover, (iii) mutation, (iv) objectives evaluation, and
(v) replacement. In the GA context, the replacement step is crucial as
it updates the solution while favoring the superior offspring, thereby
promoting evolutionary advancement.

6. Service deployment use-cases

This section outlines three different IoT applications utilized for
evaluating the performance of proposed EO-GNH approach. These ap-
plications were analyzed with a focus on their workflows, particularly
emphasizing the execution times on Raspberry Pi 4B devices, thereby
demonstrating their variable requirements and practical functionality
in real-world scenarios.

6.1. Federated learning (FL) based rural-AI application

Data-driven technologies in precision farming offer significant
prospects for enhancing agricultural productivity and results. A no-
table example is the application of automated weed control [45]. By
accurately identifying and managing weeds, this technology can boost
farm yields, cut labor costs, and reduce pesticide usage, leading to more
efficient and sustainable agricultural practices. Aiming to promote farm
independence, this application utilizes FL, a more secure alternative to
traditional ML methods [46].
7 
Fig. 9. Workflows for FL-based training and inference.

However, rural areas are often characterized by their limited net-
work infrastructure, they also pose distinct challenges for implementing
precision farming technologies [1]. Traditional machine learning algo-
rithms may struggle in these environments, potentially compromising
network reliability and service availability. Therefore, a solution that
functions effectively within these network constraints is essential for
maintaining consistent and successful precision farming operations.

In this setting, robots functioning as edge devices, are designed to
improve field coverage and data collection, contributing to a collective
model without the need to exchange raw data [47]. The movement
of these robots is managed using a truncated random walk method,
ensuring field coverage and task precision. Importantly, the distance of
these robots from computing resources acts as an indicator of network
latency in mobile edge devices, a factor that can influence the quality
of data transmission, as illustrated in Fig. 8.

The FL workflow as depicted in Fig. 9, is broken down into distinct
functions, each playing a vital role. These functions are outlined as
follows:

• Image Pre-processing: This initial step involves modifying the
color mode, resizing images, formatting data, and scaling pixel
values to optimally prepare images for FL models. Subsequently,
these processed images, along with their labels, are stored for
future reference.

• Model Tuning: In this phase, the weights of a neural network
are fine-tuned with a new dataset to enhance the existing model’s
performance. The refined weights are then preserved separately
for subsequent applications.

• Model Aggregation: This process involves the amalgamation of
parameters (specifically weights) from multiple trained models,
often through averaging, to form a singular, aggregated model.

• Validation: Here, the efficacy of the trained machine learning
model is evaluated against new data, utilizing metrics such as
loss and accuracy. These metrics are also reported alongside the
model.

• Accuracy Comparison: This function entails comparing the accu-
racy and loss function across various models to ascertain the most
effective one, resulting in the selection of the best-performing
model.

We utilized FL in this scenario, where the data is generated at
different timestamps and initially trains a linear model locally. We
then aggregate the weights to form a global model, as illustrated in
Fig. 9. To simulate the real-world scenarios where data becomes avail-
able at different times, we tested our approach using the DeepWeeds
dataset [48], which contains 17,509 images of various weed species,
to generate local models. We use a ResNet50 model with a residual
network architecture of 50 layers for evaluation in this use-case. More-
over, to provide a practical context, the average execution times on
Raspberry Pi devices for these five functions have been recorded as
follows: 0.33 s for Image Pre-processing, 178.16 s for Model Tuning,
22.33 s for Model Aggregation, 37.16 s for Validation, and 0.10 s for
Accuracy Comparison.
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Fig. 10. Forecasting temperature control via sensors, providing data for prediction and
set-point updates.

6.2. Recurrent Neural Network (RNN) based smart energy application

In the complex and regulation intensive world of food produc-
tion, innovative approaches are essential to meet the high standards
required. Climate-controlled storage systems are particularly vital in
ensuring the proper preservation of food products.

IoT-based systems for monitoring temperature, as shown in Fig. 10,
are instrumental in providing real-time updates on storage conditions,
thus ensuring compliance with necessary standards and maintaining
optimal environments for food preservation. Another example is a food
processing facility that utilizes a smart energy management system to
enhance energy efficiency. In our forecasting model, a preprocessing
function prepares the raw data by scaling and encoding its values.
A series of neural networks process this data, encapsulating each in
distinct functions known as neurons — x1, x2, x3, x4, and x5. The
neuron processes a variety of operational inputs from past and pro-
jected future states such as set points, energy usage, capacity, average
temperatures, and seasonal data. Then, we apply a hyperbolic tangent
(tanh) function as its activation, which processes the output of these
inputs through matrix operations, such that the specific parameters
of the neuron effectively normalize the results and manage gradients.
Neurons apply specific transformations to extract features necessary for
output predictions. The refined data from these layers is then fed into
predictive functions for forecasting the system’s average temperature
and energy consumption.

The structure of the RNN includes an input layer responsible for
receiving sequential data, one or more recurrent layers that capture
temporal dependencies over time through hidden states, and an output
layer that generates predictions or forecasts for energy consumption
and temperature levels. Before feeding the data into the RNN, a data
preparation step is typically performed to format, normalize, and split
the dataset.

The workflow of a neural network designed for energy efficiency is
outlined in the following steps:

• Feature Scaling: This process involves normalizing input data,
such as the current settings of the chamber, power, capacity,
and the prevailing season. The data is reformatted to a standard
scale that is compatible with the RNN, facilitating more accurate
model-based predictions.

• Middle-Layer Neurons (𝑋1 to 𝑋5): These neurons are the core
of the RNN’s middle layer. They assign weights to the inputs
and process them using a hyperbolic tangent (tanh) activation
function. The outputs from the feature scaling stage are mod-
ified here, integrating the weighted values with the activation
function’s output.

• Predicting Energy and Temperature: These two crucial func-
tions forecast energy usage and temperature, respectively. Each
function comprises an output layer, an unscaling layer, and a
bounding layer. The output layer sums up the outputs from the
𝑋𝑗 layers, adjusted by their weights. This sum is then reverted to
its original units (kilowatt-hours for energy and degrees Celsius
for temperature) in the unscaling layer.
8 
Fig. 11. Intelligent decision support system for prostate cancer diagnosis.

Fig. 12. Workflow for prostate cancer classification using ML.

A private fish facility dataset offering a time-series analysis of
temperature and energy, using a six-step sequence per training cycle
is utilized by the RNN model. Additionally, to provide an idea of the
system’s performance, the average execution times on Raspberry Pi
devices for these three functions are recorded as 1.29 s for Feature
Scaling, 0.44 s for the Middle-Layer Neurons, and 0.07 s and 0.06 s
for the Energy and Temperature predicting functions, respectively.

6.3. Machine learning based cancer diagnostic application

Prostate Cancer (PCa) ranks as the second most common cancer in
men globally, with about 1.4 million new diagnoses in 2020. The role of
AI in precise disease categorization is increasingly recognized as crucial
for effective treatment and minimizing risks. Over the past century,
cancer research has achieved significant advancements, particularly in
diagnostic and therapeutic techniques for PCa. This advancement has
resulted in a substantial accumulation of cancer-related data. However,
accurately detecting cancer remains a complex challenge.

Presently, the application of machine learning methods (similar to
Fig. 11) is showing remarkable success in interpreting intricate patterns
and identifying various types of cancer. The ProstateX dataset [49],
a component of the Cancer Imaging Archive (TCIA) [50], includes
prostate MRI scans of 195 patients. It features expert-annotated, healthy
and cancerous regions of interest within 32 × 32 pixels, specifically for
cancer research.

Fig. 12 presents the machine learning training process for classifying
prostate cancer. The steps involved in this workflow are as follows:

• Data Pre-processing: This stage entails retrieving data from a
designated source and conducting initial cleaning and structuring
of the data.

• Formulating the VGG16 Model: We utilize the technique of
transfer learning by applying VGGNet, a renowned architecture
with 16 layers. The model leverages pre-training on the Ima-
geNet database, which contains an extensive collection of over
10 million natural images across 1000 different categories.
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Fig. 13. The execution of a service function with completion times considering the
MTTF and MTTR.

• Feature Extraction from MRI with VGG16: In this phase, the
processed data is fed through the VGG16 model to extract fea-
tures. Specifically, the first two blocks of the VGG model are em-
ployed for feature extraction. This process is conducted separately
for each MRI modality before fusing the extracted features.

• Constructing, Training, and Evaluating Machine Learning
Models: This final task involves setting up, training, and testing
various models such as Random Forest, Logistic Regression, Sup-
port Vector Machine, and K-Nearest Neighbors from the Scikit-
learn library on the Raspberry Pi. The models are trained using
the previously extracted features and labels. Their performance is
assessed using new, unseen data.

The average execution times on Raspberry Pi devices for these four
functions of cancer detection model are recorded as 0.47 s for Data Pre-
processing, 1.53 s for Developing a VGG16 Model, 10.23 s for Feature
Extraction from MRI with VGG16, and 2.99 s, 28.09 s, 39.98 s, 7.65 s
for Constructing, Training, and Evaluating Machine Learning Models,
respectively.

7. Experimentation details

This section describes the experimental setup, failure model, and
other evaluation factors considered during experimentation in this
work. Each subsection below provides description about specified pa-
rameters in more details.

7.1. Evaluation criteria

During evaluation, we mainly considered two aspects in this work:
(i) algorithmic execution efficiency (Section 8) and (ii) quality of generated
solutions (Section 9). Algorithm efficiency is related to algorithm speed,
algorithm memory overhead, and Pareto Front volume. Moreover, quality
of the solution is associated with makespan – defined as the total
duration required to execute a workflow, risk pertains to the likelihood
of completing tasks within the set deadline, and cost interpreted as the
utilization of locations.

7.2. Testbed setup

This section outlines the simulation models and methods applied to
approximate real-world conditions, which are fundamental for assess-
ing the algorithm’s performance. It further presents the wireless and
failure models utilized to evaluate the algorithm within a controlled
setting.

7.2.1. Failure model
This section details the failure model employed in our evaluation.

It specifies the conditions under which each processing node (i.e. fog
node) encounters failures or recovery events. We simulate fog node
failures to evaluate and validate the performance of a scheduler using
federated learning application. Note that software defects caused by
faulty service function implementations are not included in this model.

A task failure is considered to occur if a fog node fails to respond to
requests within a set time threshold. The delay in response contributes
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Table 4
Parameters and their default values for our Wireless Simulation.
Parameter Default values

Frequency 2.4 × 109 Hz
Obstacle factor 1.0
Bandwidth 106 Hz
Noise power 10−9 Watts
Data size 106 bits
Fading coefficients Rayleigh distribution (scale = 1, size = 100)

to the overall recovery time required to restore the fog node. The Mean
Time To Failure (MTTF) represents the average operational time of
the system, while the Mean Time To Recovery (MTTR) indicates the
duration until the fog node is ready again to process tasks. The Mean
Time Between two Failures (MTBF) is calculated as the sum of MTTF
and MTTR.

Each fog node is equipped with a repeating MTBF-clock timer,
which schedules the arrival of requests. The timing of the function re-
quest’s arrival, as per the MTBF-clock, determines the success or failure
of the allocated fog node. Successful deployment of a function means it
commenced and completed within the node’s MTTF period. Conversely,
a deployment failure suggests that the function execution coincided
with the node’s MTTR period in the MTBF-clock. Fig. 13 illustrates
service functions submitted across different MTBF-clock periods [1].

7.2.2. Wireless model
For the robotic weed detection agricultural application, we utilized

a simulation that calculates the distance between robots and fog nodes.
This distance is integral to evaluating the wireless connection quality.
The connection quality is determined not only by distance but also by
factors such as frequency, obstacles, and signal fading. These elements
collectively affect the path loss and signal-to-noise ratio (SNR), which
are critical in determining the effective capacity of the wireless link.

The simulation incorporates a detailed model for signal propagation
and fading (values specified in Table 4). Path loss is calculated using
both the free-space path loss (FSPL) formula (Eq. (4)) and additional
loss due to obstacles, which is a function of distance. The formula for
path loss is given by Eq. (5) [51].

𝐹 𝑆 𝑃 𝐿 = 20 log10(𝐷 𝑖𝑠𝑡𝑎𝑛𝑐 𝑒) + 20 log10(𝐹 𝑟𝑒𝑞 𝑢𝑒𝑛𝑐 𝑦) − 20 log10(𝑐) (4)

In wireless communication, 𝑐 represents the speed of light in a vacuum,
roughly 3 × 108 meters per second, essential for signal propagation
calculations.

𝐿𝑜𝑠𝑠𝑑 𝐵 = 𝐹 𝑆 𝑃 𝐿 + 𝐴𝑑 𝑑 𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝐿𝑜𝑠𝑠 (5)

𝐴𝑑 𝑑 𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝐿𝑜𝑠𝑠 = (𝐴𝑑 𝑗 𝑢𝑠𝑡𝑒𝑑 𝐸 𝑥𝑝𝑜𝑛𝑒𝑛𝑡) ⋅ (log10(𝐷 𝑖𝑠𝑡𝑎𝑛𝑐 𝑒)) (6)

The model also considers Rayleigh fading to simulate the impact of
multipath propagation. The adjusted fading coefficients for path loss
are computed as in Eq. (7) [51].

𝐴𝑑 𝑗 𝑢𝑠𝑡𝑒𝑑 𝐹 𝑎𝑑 𝑖𝑛𝑔 𝐶 𝑜𝑒𝑓 𝑓 𝑠 = (𝐹 𝑎𝑑 𝑖𝑛𝑔 𝑐 𝑜𝑒𝑓 𝑓 𝑖𝑐 𝑖𝑒𝑛𝑡𝑠) ⋅ (𝐿𝑜𝑠𝑠𝐿𝑖𝑛𝑒𝑎𝑟) (7)

Using these parameters, the simulation applies Shannon’s formula, as
shown in Eq. (8), to estimate the capacity of the wireless link [51].

𝐶 𝑎𝑝𝑎𝑐 𝑖𝑡𝑦 = 𝐵 𝑎𝑛𝑑 𝑤𝑖𝑑 𝑡ℎ ⋅ log2(1 + 𝐴𝑣𝑒𝑟𝑎𝑔 𝑒(𝑆 𝑁 𝑅)) (8)

Taking into account the bandwidth of the channel and the average SNR
under fading conditions. The time to send data over the network is then
calculated using Eq. (9).

𝑇 𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑇 𝑖𝑚𝑒 = 𝐷 𝑎𝑡𝑎𝑠𝑖𝑧𝑒
𝐶 𝑎𝑝𝑎𝑐 𝑖𝑡𝑦 (9)

This approach provides a more realistic estimation of the transmission
time in a wireless network, considering various environmental and
technical factors. The simulation moves beyond a simple distance-based
quality metric to a more comprehensive model that includes path loss,
fading, and SNR, offering a nuanced understanding of wireless network
performance in different scenarios.
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Fig. 14. Algorithm comparison: when solving the ZDT1 problem, the color is assigned to the time the pareto front was collected.
7.3. Performance comparison

We compare parallel optimization approaches using Zitzler-Deb-
Thiele-1 (ZDT1), a well-known synthetic benchmark problem [52].
Both algorithms leverage Python-based tools to enable parallel pro-
cessing. EO-GNH, in particular, uses Parsl [10], while dNSGAII is built
on Apache Dask [21]. For EO-GNH, the reducer is specifically set up
to accumulate Pareto fronts from the mappers, and we periodically
capture the Pareto Front to monitor how the algorithms progress over
time.

The experimental setup involves Google’s cloud server infrastruc-
ture, using a Jupyter notebook setup in Google Colaboratory. The
virtual machine deployed for this purpose includes a single-core In-
tel(R) Xeon(R) CPU at 2300 MHz with 12 GB RAM and operates without
GPU support. Both Dask and Parsl are optimized to fully utilize two
cores; Dask directly, while Parsl assigns one executor per core.

In dNSGAII, NSGAII’s operators like selection and reproduction are
executed asynchronously. Each step in the dNSGAII process receives
outputs from the previous operation and forwards them to the next.
For example, the outputs of the selection phase are inputted into the
reproduction stage. Even though dNSGAII operates asynchronously, its
iterations are synchronized.

On the other hand, EO-GNH treats each NSGAII instance as an
autonomous algorithm. The workers function asynchronously, and a
master node periodically gathers the latest solutions. EO-GNH is scal-
able; when more resources become available, it increases the number
of NSGAII instances to potentially improve performance results.

8. Performance comparison of EO-GNH

This section evaluates EO-GNH against the distributed
Non-dominated Sorting Genetic Algorithm II (dNSGAII), analyzing their
parallel structures, Pareto solution counts over time, and resource
usage for Pareto front generation. Notably, both algorithms operate
asynchronously. Within EO-GNH, multiple NSGAII instances function
as Mappers and Reducers, enabling a comparative analysis of the
non-dominated solution quantities produced by each algorithm.

8.1. Results

Within the first ten seconds of operation, EO-GNH demonstrates its
capability to accumulate a greater quantity of solutions for the con-
troller’s use. The Pareto Front approximation by EO-GNH also shows
considerable improvements in quality, as illustrated in Fig. 14. Remark-
ably, EO-GNH achieves in just two seconds what dNSGAII accomplishes
in ten seconds.

Although dNSGAII operates asynchronously, its iteration process
is synchronous. This approach leads to a reduced collection of non-
dominanted solutions, a fact highlighted in Fig. 14. Additionally, the
implementation of NSGAII operations in dNSGAII often faces delays due
to queuing times.
10 
Fig. 15. Memory overhead over time for EO-GNH and dNSGAII.

In comparison, EO-GNH runs multiple NSGAII instances across two
separate processes, minimizing the chances of any process idling while
waiting for CPU allocation. This efficient allocation of computational
resources enhances EO-GNH’s overall performance.

The memory overhead associated with these algorithms over time,
as shown in Fig. 15, indicates notable differences in their memory
consumption patterns. EO-GNH exhibits an initial rapid increase in
memory use, spiking from 0 to 60 MB in under a second. In contrast,
dNSGAII shows a more gradual memory usage, reaching the same 60
MB mark in approximately 2 s.

After this initial surge, EO-GNH’s memory consumption fluctuates
slightly between 100 MB and 110 MB, maintaining this range for the
duration of its operation. On the other hand, dNSGAII displays a steady
increase in memory use from 120 MB to 140 MB after three seconds,
sustaining this level for the rest of the operation.

During a single run, both EO-GNH and dNSGAII appear to use a
consistent amount of memory. However, it is possible that EO-GNH’s
memory overhead might rise with the addition of more NSGAII in-
stances. Conversely, dNSGAII’s memory usage is expected to remain
stable unless more computing cores are added, a scenario Dask is
well-equipped to handle.

EO-GNH, with Parsl’s flexibility, dynamically utilizes additional
resources as they become available. In contrast, dNSGAII is designed to
utilize all available resources right from the start, leading to a steady
memory usage despite the availability of extra resources.

9. Performance evaluation of use-cases

In assessing the EO-GNH framework across various scenarios, we
focus on the following key performance indicators: (1) Success Rate:
this metric analyzes the probability of task completion within a set
deadline. It works in parallel with risk assessment (the likelihood
of failing to meet the deadline) to proactively reduce service inter-
ruptions. (2) Makespan: this measures the total duration required to
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execute a workflow using distributed resources. The primary goal of
the scheduler is to minimize makespan, thereby achieving the fastest
completion time. (3) Utilized Location (Cost): this is determined by the
quantity of resources employed in a workflow. The objective here is to
achieve equilibrium in resource utilization, aiming to reduce network
bottlenecks and effectively balance the trade-off between risk and cost
associated with redundant deployments.

The deadline is specified based on the estimated execution time of
the function and the estimated data transmission time, representing the
expected end-to-end completion time. Missing this deadline is consid-
ered a failure, which influences the overall project duration, known as
the makespan which is the actual end-to-end completion time. A higher
success rate in meeting these deadlines leads to a shorter makespan [4].

The evaluation of the EO-GNH algorithm considered various con-
figurations of EO-GNH Mappers, ranging from a single Mapper in
EO-GNH-1 to a setup comprising four Mappers in EO-GNH-4.

9.1. FL based rural-AI

In order to evaluate the proposed framework, we tested it on three
different applications performing ML or AI tasks on an edge-cloud
infrastructure. The first application is a FL based Rural-AI application
which is performing weed detection using an agricultural robot. The
detailed evaluation of this application is as follows:

9.1.1. Model tuning
Fig. 16 summarizes the performance of various optimization algo-

rithms, detailing their statistical explanation for a minimization prob-
lem. GNH algorithm’s execution times are spread between 134.02 s
and 310.79 s, with its mean and median performance at 159.30 s and
154.05 s, respectively, and a considerable interquartile range (IQR) of
26.87 s, suggesting a wider dispersion of values. GDE3 shows a similar
pattern but with a slightly narrower range, a mean of 157.78 s, and
a median of 152.75 s. HYPE and IBEA exhibit tighter performance
clusters, reflected in their lower IQRs of 24.81 s and 23.99 s respec-
tively. The MOCell and NSGAII algorithms further tightens the range,
with IQRs of 22.99 s and 22.32 s, indicating a more concentrated set
of execution times around their mean values, which revolves around
154 s.

OMOPSO and SMPSO maintain this trend of narrow IQRs at 21.48 s
and 21.36 s respectively, with mean values just above 153 s, signifying
consistent performance. The EO-GNH series, iterating from 1 to 4,
consistently shows a median performance around 149 s and decreasing
IQRs, which suggest a refinement in algorithmic efficiency with each
successive version. The 95% confidence intervals for these algorithms
are relatively tight, all below 0.77 s, indicating precise estimates of
the mean execution times and underscoring the reliability of these
algorithms in solving the considered minimization task.

Fig. 17 illustrates the performance disparities among three heuristic
placement algorithms in terms of their execution time statistics. Ran-
dom Placement demonstrates the broadest range of execution times,
from approximately 134.05 s to 491.30 s, with an average time of
224.98 s and a median of 208.16 s. This is indicative of a considerable
spread in data, as evidenced by an IQR of 86.61 s, the largest among
the three algorithms. The Round Robin algorithm shows a slightly less
varied range with execution times from around 134.16 s to 476.14 s, a
mean slightly higher than Random Placement at 225.50 s, and a median
of 212.41 s, coupled with an IQR of 85.48 s, which is marginally less
than that of Random Placement.

The Greedy algorithm, while also having a wider range, showcases a
notably better performance with a minimum and maximum execution
time between 134.04 s and 440.46 s, a lower mean of 214.80 s, and
a median of 199.13 s, indicating a more favorable central tendency
compared to the other two algorithms. Its IQR of 76.01 s is the smallest,
suggesting a tighter concentration of values. The 95% confidence inter-
vals for these algorithms are relatively large, all above 2.30 s, which
11 
Fig. 16. For ‘‘Model Tuning’’: Box plot showing execution times for algorithms. Median
and mean (blue dot with 95% CI bars) indicated. EO-GNH series highlights efficiency
gains with added mappers.

Fig. 17. For ‘‘Model Tuning’’: Box plot comparing execution times of Greedy, Random
Placement and Round Robin algorithms. Median and mean (with 95% CI bars) are
highlighted. Shows efficiency comparisons.

Table 5
Performance evaluation of placement algorithms in a Rural Agriculture -Tuning
Model.
Algorithm Utilized locations Makespan SR (%)

Greedy 1.03 213.11 58.00
GNH 4.05 159.90 96.00
EO-GNH-1 4.60 156.19 99.00
EO-GNH-2 4.70 156.31 99.00
EO-GNH-3 4.75 155.07 100.00
EO-GNH-4 4.78 154.69 100.00

points to less precision in the mean estimation compared to algorithms
with tighter data clustering. Nonetheless, the Greedy algorithm stands
out with slightly more precision in its mean estimation, as seen in its
95% confidence interval of 2.33 s, which is comparably higher but in
the context of a lower mean, suggests a more efficient performance in
the minimization problem at hand.

The Table 5 detailing the performance of a rural agriculture setting
for model tuning reveals a discernible trend towards improved effi-
ciency with the EO-GNH series. The Greedy algorithm, despite minimal
location usage, falls short in success rate (SR) and has the highest
makespan. In contrast, the EO-GNH algorithms demonstrate enhanced
makespan efficiency and an impressive SR, with EO-GNH-3 and EO-
GNH-4 achieving a perfect 100% success rate. This progression suggests
that the EO-GNH’s advanced iterations successfully optimize for both
makespan and reliability.
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Fig. 18. For ‘‘Models Aggregation’’: Box plot showing execution times for algorithms.
Median and mean values (blue dot with 95% CI bars) are also indicated. EO-GNH series
highlights efficiency gains with added mappers.

Fig. 19. For ‘‘Models Aggregation’’: Box plot comparing execution times of Random
Placement and Round Robin algorithms. Median and mean (with 95% CI bars) are
highlighted. Shows efficiency comparisons.

9.1.2. Models aggregation
The Fig. 18 reflects the tightly clustered performance metrics of

several optimization algorithms, each demonstrating efficiency in a
minimization context. The GNH algorithm shows a moderate range of
execution times with a minimum of around 49.09 s and a maximum
of 65.64 s, maintaining an average of 53.90 s and a median close to
53.14 s. The GDE3 follows closely with a slightly narrower range and a
mean of 53.56 s, indicating consistent execution times. HYPE extends
the maximum slightly more but with a mean that stays competitive at
53.87 s.

The IBEA presents a wider range yet manages to keep its mean
at 53.77 s with a median marginally less, suggesting balanced perfor-
mance. MOCell and NSGAII report similar behaviors with tight IQRs
and means just above 53.50 s, indicative of their stable nature in
solving the problem. OMOPSO expands the range further but still
delivers a mean of 53.68 s, while SMPSO maintains this pattern with a
mean of 53.72 s.

The EO-GNH series, with its iterations from 1 to 4, displays a
consistent median around 53.00 s and slightly increasing IQRs, yet
it still indicates a refinement in performance with each successive
version. The 95% confidence intervals for all algorithms are modest,
varying from around 0.36 s to 0.38 s, which provides confidence in the
stability of the mean execution times and underscores the algorithms’
effectiveness in consistently achieving near-optimal solutions.

The Fig. 19 provides a detailed analysis of the performance of three
distinct placement algorithms, showcasing varied execution time ranges
and central tendencies. The Random Placement algorithm exhibits a
wide range of execution times, with a minimum of approximately
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Table 6
Performance evaluation of placement algorithms in Rural Agriculture - Global
Model Aggregation.
Algorithm Utilized locations Makespan SR (%)

Greedy 1.11 62.95 87.00
GNH 4.11 54.35 100.00
EO-GNH-1 4.32 54.18 100.00
EO-GNH-2 4.32 53.53 100.00
EO-GNH-3 4.31 53.64 100.00
EO-GNH-4 4.31 53.91 100.00

50.43 s and a maximum of 201.10 s, resulting in a mean time of 81.08 s
and a median significantly lower at 69.32 s. This discrepancy between
the mean and median, coupled with a substantial IQR of 34.62 s, points
to a diverse distribution of execution times.

As shown in Fig. 19, the Round Robin algorithm demonstrates an
expanded range from around 49.08 s to 182.78 s, with a mean of
84.71 s and a median of 73.21 s, higher than Random Placement. The
IQR of 42.92 s is the largest among the three, indicating a greater
spread of execution times and a less consistent performance compared
to the other algorithms.

In contrast, the Greedy algorithm presents a notably tighter per-
formance range with a minimum and maximum between 49.33 s and
145.23 s. It achieves a mean of 63.18 and a median of 61.22 s, both
markedly lower than those of the other two algorithms. The IQR of
10.43 s is significantly smaller, suggesting a more concentrated and
consistent set of execution times. The 95% confidence interval (CI) of
1.35 s for the Greedy algorithm is considerably smaller than those of
Random Placement and Round Robin, which have CIs of 3.01 s and
3.26 s, respectively. This indicates a higher precision in the Greedy
algorithm’s performance, making it a more efficient choice in solving
the minimization problem at hand.

Looking at the performance metrics for global model aggregation in
Rural Agriculture (Table 6) underscores a notable distinction between
the subsequent algorithms. The Greedy approach, while exhibiting the
lowest utilization of locations, lags in makespan performance and does
not achieve full success, with an 87% rate. Conversely, GNH and all
versions of EO-GNH showcase a remarkable 100% success rate, with a
progressively decreasing makespan from GNH to EO-GNH-4. The con-
sistent success rate across the GNH and EO-GNH algorithms, coupled
with their competitive makespan results, highlight their efficacy and
reliability in an agricultural application.

9.2. ML based cancer diagnosis

The second application considered for evaluation in this work is a
cancer detection framework using ML. In this evaluation, the datasets
are statistically analyzed with different algorithms, revealing a pattern
of high consistency and measurement reliability. In Fig. 20 algorithms
such as GNH, GDE3, HYPE, and IBEA share characteristics of close
data clustering, as evidenced by their tight IQR and very narrow 95%
CI for the mean, with mean values predominantly between 147.8 s
and 148.0 s. The algorithms MOCell, NSGAII, OMOPSO, and SMPSO
exhibit a high level of data consistency, though their mean values are
marginally lower, spanning from approximately 147.4 s to 147.7 s.
Moreover, the EO-GNH algorithm with different mapper set-ups, num-
bering from 1 to 4, shows a gradual decline in the mean execution time
every time a mapper is added to the algorithm.

The reliability of replicating the same results in these algorithms is
further validated by the calculated standard error of the mean (SEM).
Groups GNH, GDE3, and HYPE have SEMs approximately at 0.070 s,
0.065 s, and 0.062 s, respectively, which showcases the accuracy
in their mean estimation. The lower SEMs found in groups such as
SMPSO and the EO-GNH with different mapper setups, which range
from 0.040 s to 0.028 s, denote an even greater precision in mean
estimation. Collectively, these metrics imply that the data across all the
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Fig. 20. For ‘‘ML-based Cancer Diagnosis’’: Box plot showing execution times for
algorithms. Median and mean (blue dot with 95% CI bars) are also indicated in the
figure.

Fig. 21. For ‘‘ML-based Cancer Diagnosis’’: Box plot comparing execution times of
Greedy Random Placement and Round Robin algorithms. Median and mean (with 95%
CI bars) are also highlighted. Figure also shows the efficiency comparisons between
algorithms.

algorithms is tightly centred around the mean with very little variation,
highlighting the overall precision of the outcome. (see Fig. 20).

Fig. 21 captures the performance variations of three distinct place-
ment algorithms. The Random Placement algorithm exhibits a consid-
erable range in execution times, stretching from 146.85 s to 208.87 s,
with an average of 161.35 s and a median indicating a central tendency
at 157.51 s. The spread of data, as denoted by an IQR of 20.24 s, reflects
a significant diversity in performance. The Round Robin algorithm,
although showing a similar pattern, has a slightly tighter performance
range with a minimum and maximum between 146.84 s and 196.47 s.
It achieves a mean of 160.26 s and a median of 156.18 s, with an IQR
of 19.93 s, suggesting a marginally more consistent performance than
Random Placement. The Greedy algorithm, while having a comparable
maximum value to Random Placement, has a lower mean of 158.31 s
and a notably lower median of 149.59 s, accompanied by the largest
IQR of 21.56 s, indicating wider variability in its results. The 95% confi-
dence intervals are relatively narrow for all, with Random Placement at
0.47 s, Round Robin at 0.45 s, and Greedy at 0.50 s, pointing to a high
precision in the mean estimates across samples for these algorithms.

The performance data captured in Table 7 for a 100 Raspberry Pi
setup presents that the Greedy algorithm, while modest in location
usage, shows a considerably higher makespan and a success rate that
does not reach half the benchmark. In contrast, the GNH algorithm
improves the makespan significantly while nearly reaching high success
rate. The EO-GNH algorithms, particularly EO-GNH-3 and EO-GNH-
4, achieve a 100% success rate, affirming their robustness with a
marginally better makespan compared to their predecessors. The data
13 
Table 7
Performance evaluation of placement algorithms for 100 RPi setup in Cancer
Classification.
Algorithm Utilized locations Makespan SR (%)

Greedy 1.97 159.57 42.00
GNH 6.52 148.56 93.00
EO-GNH-1 6.38 147.27 99.00
EO-GNH-2 6.39 147.26 99.00
EO-GNH-3 6.36 147.16 100.00
EO-GNH-4 6.35 147.15 100.00

Table 8
Performance evaluation of placement algorithms for 1000 RPi Setup in Cancer
Classification.
Algorithm Utilized locations Makespan SR (%)

Greedy 1.94 159.01 37.00
GNH 7.32 147.69 93.00
EO-GNH-1 7.44 147.17 100.00
EO-GNH-2 7.44 147.14 100.00
EO-GNH-3 7.44 147.17 100.00
EO-GNH-4 7.44 147.10 100.00

represented in Table 8 shows the result for the 1000 Raspberry Pi setup.
The Greedy algorithm uses the fewest locations but has the lowest
success rate and the highest makespan. In stark contrast, the GNH
algorithm significantly improves the success rate to 93%, while the
EO-GNH series achieves a 100% success rate across its variants. The
makespan for EO-GNH versions shows a very minor but consistent de-
crease, suggesting incremental optimizations. These result implies that
the EO-GNH algorithms are highly effective, maintaining an excellent
balance between resource usage and successful classification, which is
critical in medical applications that rely on accurate and timely data
processing.

9.3. RNN based energy forecasting

The third application considered for evaluating the proposed EO-
GNH framework is a RNN-based refrigeration cooling system. The
analysis of execution times for various placement algorithms, as illus-
trated in Fig. 22, shows a notable uniformity in their performance. This
is evidenced by patterns indicating tight clustering of data and high
precision in measurements. The Greedy algorithm exhibits a broader
spectrum of execution times, indicated by its IQR being approximately
1.095 s and a 95% CI pointing to a moderate level of variability, with
average execution times around 3.766 s. On the other hand, algorithms
such as GNH, GDE3, HYPE, IBEA, MOCell, NSGAII, OMOPSO, and
SMPSO demonstrate more narrow IQRs, suggesting a more compact
distribution of their execution times, with average values generally
around 2.00 s. This pattern reflects a stable performance across these
algorithms, underscored by their low Standard Error of the Mean (SEM)
values, ranging approximately from 0.015 s to 0.020 s, indicating a high
precision in their average execution times.

Upon evaluating the EO-GNH algorithm with varying numbers of
mappers, there is an observed gradual reduction in average execu-
tion time with the inclusion of more mappers, hinting at enhanced
efficiency. This trend is depicted across four different EO-GNH config-
urations, with mean execution times slightly declining from EO-GNH-1
to EO-GNH-4. All configurations maintain average times under 2.0 s,
exhibiting close 95% CIs and small Standard Error of the Means (SEMs).
These findings underscore the algorithm’s consistent ability to attain
near-optimal solutions, emphasizing its effectiveness in addressing the
minimization challenge presented.

Fig. 23 reveals that the Random Placement algorithm displays a
broad spectrum of execution times, ranging from 1.84 s to 37.75 s,
with an average time of around 12.14 s and a median slightly lower
at 11.74 s. This range, evidenced by an IQR of 8.56 s, indicates a
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Fig. 22. For ‘‘Energy Forecasting’’: Box plot showing execution times for algorithms.
Median and mean (blue dot with 95% CI bars) indicated. EO-GNH series highlights
efficiency gains with added mappers.

Fig. 23. For ‘‘Energy Forecasting’’: Box plot comparing execution times of Random
Placement and Round Robin algorithms. Median and mean (with 95% CI bars) are
also highlighted. Figure also shows efficiency comparisons between algorithms.

Table 9
Performance comparison of placement algorithms in 100 RPis setup (Smart
Cooling System).
Algorithm Utilized locations Makespan SR (%)

Greedy 3.34 1.37 73.00
GNH 5.10 2.02 98.00
EO-GNH-1 4.53 2.00 100.00
EO-GNH-2 4.48 2.00 100.00
EO-GNH-3 4.44 1.99 100.00
EO-GNH-4 4.42 1.99 100.00

wide variability in its performance. In comparison, the Round Robin
algorithm, while also showing a diverse range of execution times, has
a slightly better average of around 11.78 s and a median of 11.38 s.
Its IQR is marginally narrower at 8.72 s, coupled with a 95% CI of
0.38 s, suggesting a more consistent grouping of sample means than
the Random Placement. This indicates towards a more stable yet still
varied performance profile.

Analyzing the performance across two different RPi setups for a
Energy Forecasting System, the EO-GNH algorithm demonstrated a
consistent trend of efficiency and effectiveness. When comparing the
algorithms in a 100 RPi environment (Table 9), we observed that EO-
GNH variants (1 through 4) achieved a perfect SR of 100% with a
closely packed makespan around the 4.5 s mark, indicating a high
level of reliability and performance. On the other hand, the Greedy
algorithm, while using fewer locations, lagged behind in SR and had a
shorter makespan, suggesting less effective resource allocation. Expand-
ing the infrastructure to 1000 RPis (Table 10) showed a similar pattern.
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Table 10
Performance comparison of placement algorithms in a 1000 RPis setup (Smart
Cooling System).
Algorithm Utilized locations Makespan SR (%)

Greedy 3.55 1.48 71.00
GNH 5.27 2.01 99.00
EO-GNH-1 4.26 2.00 100.00
EO-GNH-2 4.24 2.00 100.00
EO-GNH-3 4.24 1.99 100.00
EO-GNH-4 4.23 1.99 100.00

EO-GNH’s performance remained stable in terms of success rate, achiev-
ing a full score across its variants, and its makespan slightly improved
as well. Interestingly, both GNH and Greedy showed marginal vari-
ations in their makespan when scaled up, with Greedy still trailing
slightly in success rate. These tables suggest that EO-GNH is robust
across different scales, maintaining high success rates without sig-
nificant increases in makespan, which is indicative of an algorithm
well-suited for scalable systems.

The consistent performance of EO-GNH across the three application
scenarios describes its potential as a reliable choice for distributed
edge-cloud infrastructures. In Table 6, the reduction in the number of
utilized locations has a direct effect on time efficiency. In this specific
scenario, the scalarization method gives priority to cost considerations
over the makespan, which can be seen as a minor overall enhancement
for the cost but significantly impacted the makespan. Tables 7 to 9
demonstrate that merely increasing the number of mappers does not
always lead to improved performance. This is attributed to the fact
that when a solution has already achieved its optimal state, further
optimization becomes redundant. Therefore, for future improvements,
it is imperative that the framework integrates a mechanism to ascertain
the optimal number of available mappers. This strategy is vital to avoid
the unnecessary usage of resources, ensuring that the resources are
utilized in the most efficient manner possible.

10. Conclusion

The paper describes Enhanced Optimized-Greedy Nominator Heuris-
tic (EO-GNH), a sophisticated framework specifically designed for
optimizing ML and AI application placement within edge computing
environments. The detailed evaluation across diverse setups – ranging
from smart agriculture to healthcare – has demonstrated EO-GNH’s
proficiency in improving the Quality of Service (QoS) parameters
significantly. The adaptability of EO-GNH, coupled with its advanced
hierarchical meta-heuristic design, is inherently independent of specific
problems and addresses the issue of slow convergence by concurrently
investigating multiple approximations of the Pareto Front. This capa-
bility extends the scope of EO-GNH way beyond the domain of IoT
task allocation/placement. The approach can be adeptly applied for
selecting features and fine-tuning parameters within the domain of ML
and AI.

The EO-GNH framework represents a significant advancement in the
field of edge computing and IoT. Its capacity to adapt to varying scales,
maintain high success rates, and improve computational efficiency
positions it as a powerful tool for future developments in designing
intelligent systems. We plan to explore the potential of reinforcement
learning, temporal difference learning, and the Markov decision pro-
cess in the future work. Implementing these methods as optimization
algorithms could significantly enhance the system’s adaptability and
performance. In future, we also plan to design safe and secure methods
for sharing computational resources at the edge/fog layers. This will
require the development of a robust mechanism for establishing a trust
chain in the infrastructure.
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