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Abstract

Mirror detection aims to identify mirror areas in a scene,

with recent methods either integrating depth information

(RGB-D) or making use of temporal information (video).

However, utilizing both data is still under-explored due to

the lack of a high-quality dataset and an effective method

for the RGB-D Video Mirror Detection (DVMD) problem.

To the best of our knowledge, this is the first work to

address the DVMD problem. To exploit depth and tem-

poral information in mirror segmentation, we first con-

struct a large-scale RGB-D Video Mirror Detection Dataset

(DVMD-D), which contains 17977 RGB-D images from 273

diverse videos. We further develop a novel model, named

DVMDNet, which can first locate the mirrors based on

triple consistencies: local consistency, cross-modality con-

sistency and global consistency, and then refine the mirror

boundaries through content discontinuity, taking the tem-

poral information within videos into account. We conduct

a comparative study on the DVMD dataset, evaluating 12

state-of-the-art models (including single-image mirror de-

tection, single-image glass detection, RGB-D mirror detec-

tion, video shadow detection, video glass detection, and

video mirror detection methods). Code is available from

https://github.com/UpChen/2025_DVMDNet.

1. Introduction
Mirror Detection aims to distinguish reflective areas,

also known as mirror regions, from a scene. Reflection from
mirrors can help with some computer vision tasks, such as
locating objects [27], 3D human pose reconstruction [5],
and 3D scene reconstruction [25]. However, the presence
of mirrors can also affect the performance of existing com-
puter vision tasks. For example, object detection methods
may identify objects in the mirror as real objects. Thus, it is
necessary for current computer vision systems to have the
ability to detect mirrors accurately.

Some mirror detection methods, especially RGB image-
based methods [7–10, 12, 22, 29, 32] have been developed
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Figure 1. Although existing depth-based mirror detection meth-
ods such as PDNet [16] have shown their effectiveness by using
spatial consistency in static scenes, and existing video-based mir-
ror detection methods such as VMDNet [11] have proved their
effectiveness by using spatial and temporal consistency in seman-
tic sequence, they may fail when there are obvious discontinuities
inside the mirror (1st and 2nd rows) or when the number of mir-
rors is changed (2nd and 3rd rows). The lack of exploiting spa-
tial and temporal consistency in depth sequence (green and blue
arrows) and consistency information across the RGB and depth
(red arrows) causes the current mirror detection methods to pro-
duce unsatisfactory results when applied to the DVMD task. On
the contrary, our method can perform well by utilizing the pro-
posed triple consistency module to exploit the spatial, temporal,
and cross-modality consistencies in both RGB and depth.

in recent years. However, these methods may fail when
there is a large variation inside the mirror (first column of
Fig. 1), or the reflection of the mirror and the surroundings
are too similar. Objects that look like mirrors, e.g., paint-
ings, windows, etc., also pose challenges to these methods.
As observed in [16], there are obvious depth discontinuities
between the reflections inside the mirror and the surround-
ing outside the mirror. Consequently, depth information is a
strong cue for mirror detection, and has been used in mirror
from RGB-D image [16, 18, 35, 36].

In addition to RGB image-based methods, there has been
considerable progress in video mirror detection (VMD) by
taking into account dynamic scenes. Compared with static
images, dynamic scenes are more challenging because of
various motion modes, occlusion, blurring, and object de-
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formation. By encoding temporal consistency within dy-
namic scenes, VMD methods [11,24,30] have demonstrated
effectiveness in mitigating these problems.

Detecting mirrors from RGB-D images and videos has
received research interest individually. However, there re-
mains a gap in research with combining depth information
and temporal information, both of which are important for
accurately distinguishing mirrors from scenes. First, the
correlation between inside and outside the mirror regions
in RGB and depth is exploited in [16] which we call lo-
cal consistency in this paper, as shown by the green arrow
in Fig. 1. Second, we observe that there is consistent in-
formation between RGB and depth which we call cross-
modality consistency. The red arrow of Fig. 1 shows that
content discontinuities are obvious in both RGB and depth,
thereby creating consistency across modalities. By consid-
ering cross-modality consistency, we can align the RGB and
depth features more effectively. Third, we observe that the
global consistency between inside and outside the mirror re-
gions not only exists in semantic sequence but also exists in
depth sequence. The former can be detected in the RGB do-
main and has been exploited by prior mirror segmentation
works [8,11,12]. The latter, global consistency in depth se-
quence is still not explored. The blue arrow of Fig. 1 shows
that there is global consistency in multiple frames’ depth
discontinuities at mirror boundaries. Based on the above
three consistencies, we propose the Triple Consistency (TC)
Module to first determine the initial mirror area by consid-
ering local consistency between the inside and outside of
the mirror and the consistent information between RGB and
depth, and then detect the mirror by taking into account the
global consistency in both RGB and depth sequences.

In addition, content discontinuity caused by mirrors not
only exists in static scenes but also exists in dynamic scenes.
Besides discontinuity in static scenes that can be efficiently
detected [8, 12, 16, 32], the temporal discontinuity in RGB
and depth sequences has still not been explored. The short-
term discontinuity can provide spatial prior information on
the mirror boundary, and the long-term discontinuity can
provide context information on the mirror boundary. Based
on this, we propose a Temporal Discontinuity (TD) module
that captures local and global contextual contrasted features
in RGB and depth sequences, for refining the mirror bound-
aries.

To further support leveraging both depth and temporal
information for mirror detection, we further propose a large-
scale dataset for DVMD, which contains 17977 RGB-D im-
ages from 273 diverse videos. We have conducted extensive
experiments to evaluate our model against state-of-the-art
methods. The results demonstrate that our proposed model
outperforms existing methods on the proposed large-scale
DVMD-D.

Our main contributions can be summarized as:

• We construct a large-scale RGB-D video mirror detec-
tion dataset, called DVMD-D. The new dataset con-
tains 17977 RGB-D images from 273 videos with
pixel-wise annotated masks.

• We propose a novel network, called DVMDNet, which
leverages local, cross-modality, and global consistency
via a triple consistency (TC) module to initialize the
mirror region and local and global contextual con-
trasted features in RGB and depth sequences to refine
the mirror boundaries.

• Extensive experiments show that our method outper-
forms existing state-of-the-art methods for mirror de-
tection on our proposed DVM-D dataset.

2. Related Work
2.1. Mirror Segmentation from RGB-D Images

In recent years, numerous studies [16, 18, 35, 36] have
been proposed to detect mirrors from RGB-D images such
as geometric relationship [18], color and depth disconti-
nuities and correlations [16], global contextual relation-
ship [35] and morphology knowledge [36]. While RGB-
D single-image mirror detection models have achieved reli-
able results, their performance on video data remains sub-
optimal due to insufficient exploitation of temporal infor-
mation.

2.2. Mirror Segmentation from Videos
Video Mirror Segmentation has recently started to gain

attention [11, 24, 30]. Lin et al. [11] propose the first video
detection network, named VMDNet. It focuses on extract-
ing spatial and temporal correspondences between mirror
and non-mirror to detect the mirror. Alex et al. [24] model
motion inconsistency between the mirror and its surround-
ings for mirror detection. Xu et al. [30] model the tempo-
ral variation in similarity and contrast to detect the mirror.
These methods improve the performance of video mirror
segmentation but still perform poorly in some challenging
scenarios.

3. RGB-D Video Mirror Detection Dataset
(DVMD-D)

Our first contribution is the RGB-D Video Mirror
Detetion Dataset (DVMD-D), which contains 17,977 RGB-
D images from 273 videos and corresponding pixel-level
annotations. Instead of collecting all the data ourselves, we
construct the DVMD-D by extending the recently proposed
ViMirr dataset [31] to ensure a wide variety and extensive
range. The composition and split of our dataset are shown
in Tab. 1. Our dataset consists of 223 videos from ViMirr
and 50 videos self-captured over different scenes. Fig. 2 (a)
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Figure 2. DVMD-D examples and statistics.

shows some examples of DVMD-D. In line with the com-
mon practices [16] [11] used for constructing datasets for
RGB-D-based and video-based mirror problems, we make
sure that each frame in the DVMD-D includes at least one
mirror region. To the best of our knowledge, DVMD-D is
the first RGB-D Video Mirror Dataset dedicated to mirror
segmentation.

Dataset Images Videos Train Test
Images Videos Images Videos

ViMirr [31] 13967 223 7484 114 6483 109
Self-captured 4010 50 2160 27 1850 23

Total 17977 273 9644 141 8333 132

Table 1. Composition of our benchmark for RGB-D video mirror
detection. The fourth and fifth columns show the dataset split.

Dataset Construction: The ViMirr dataset [31] contains
19,255 frames from 276 videos. The data comes from three
sources: NYUv2 [20], ScanNet [4], and videos captured by
themselves. The former two have depth maps as well. So,
we first include all data in ViMirr that come from NYUv2
and ScanNet, which is called Part ViMirr below. However,
we find that the mirror area distribution of the Part ViMirr
is biased. From Fig. 3 (a), we can see that Part ViMirr only
contains mirrors covering the range of 0 to 0.6 area ratios.
In addition, we also notice that almost 60% of the dataset is
less than 0.1 mirror area ratio. To address the above prob-
lem, we first manually reduced the number of frames with
a mirror area of less than 0.1 only in the beginning or end

(a) Part ViMirr (b) DVMD

Figure 3. Mirror area ratio of the Part ViMirr and DVMD datasets.

of videos in Part ViMirr, and then used the Intel RealSense
Camera to collect the RGB-D videos with mirrors in daily-
life scenes. From Fig. 3 (b), we can see that our dataset
includes mirrors that span a broad spectrum of area ratios.
The pixel-level mirror masks of our data are created by pro-
fessional annotators. All collected videos have a frame rate
of 30 fps.

Dataset Analysis: Fig. 2 (b) (c) provide the statistical
results of our DVMD-D from two dimensions. (1) Mirror

location distribution: To analyze the spatial distribution of
mirrors in DVMD-D, we compute probability maps to il-
lustrate the likelihood of each pixel belonging to a mirror,
as shown in Fig. 2 (b). Despite the fact that our DVMD-
D includes mirrors in various locations, they predominantly
cluster in the upper part of the image. This clustering is rea-
sonable, given that mirrors are typically positioned around
human eye level. In addition, the mirror location distribu-
tion for the training and test splits aligns closely with the
distribution across the entire dataset. (2) Color contrast dis-

tribution: We analyze the global color contrasts between the
contents inside and outside of the mirror by computing the
X 2 distance between their RGB histograms. In addition,
we compare the distribution between RGBD-Mirror [16]
and VMD [11], as shown in Fig. 2 (c). In general, DVMD-
D includes more frames with extremely low color contrast
(< 0.2) compared to the existing mirror datasets RGBD-
Mirror and VMD, which makes the mirror segmentation
task more challenging.

4. Method
Our approach builds on two core ideas. First, we observe

that consistency between the real object and its correspond-
ing reflection not only exists in the RGB sequence, but also
exists in the depth sequence, and there is consistent infor-
mation across semantics and depth. Based on this idea, we
propose a Triple Consistency Module to estimate the mirror
location initially. Second, we observe that content disconti-
nuity caused by mirrors occurs not only in static scenes but
also in dynamic scenes. Temporal discontinuity is divided
into short-term temporal discontinuity and long-term tem-
poral discontinuity. The former obtained from the previous
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Figure 4. The overview of our proposed model. We first feed three RGB-D images from the same video to the backbone feature extractor
to extract multi-scale features, then the TC module extracts triple consistency features to locate the mirror. Each decoder subsequently
processes the triple consistency features and produces intermediate mirror maps as output. Second, the TD module extracts temporal
contextual contrasted features to refine the mirror boundary.

frame can provide spatial prior for the mirror boundary, and
the latter obtained from the random frame can provide con-
textual information for the mirror boundary. Based on this
idea, we propose the Temporal Discontinuity Module to re-
fine the mirror boundary further.

Fig. 4 shows the overall architecture of the proposed
DVMDNet. DVMDNet takes three RGB-D image pairs as
input and passes them through two different multi-level fea-
ture extractors to derive features separately from RGB and
depth information. The first two RGB-D images are from
adjacent video frames, the third RGB-D images are ran-
domly selected from other frames. We employ SegFormer
[28] as our backbone feature extractor to extract multi-scale
RGB features. Following [11], we also add an Atrous Spa-
tial Pyramid Pooling (ASPP) after the SegFormer to obtain
enhanced high-level features. To reduce computation, we
employ a sequence of five cascaded 3 → 3 convolutional
blocks, where each block includes an increasing number
of channels (64-128-256-512-512), followed by max pool-
ing to extract depth features. Its channel configuration is
the same as that of the RGB backbone feature extractor.
Again, we add an ASPP module behind the simple net-
work. After obtaining RGB and depth backbone features,
we feed them into a triple consistency module (Fig. 5) and
a temporal discontinuity module (Fig. 6). The triple con-
sistency (TC) module estimates the mirror’s location using
the local, cross-modality, and global consistency features in
both RGB and depth sequences. The temporal discontinuity
(TD) module refines the mirror boundary based on the tem-
poral discontinuity features from both the short-term (pre-
vious frame) and long-term (random frame) information.

4.1. Triple Consistency (TC) Module

Fig. 5 shows the structure of the proposed TC mod-
ule. The TC module is designed to model local and global
consistency and cross-modality consistency in both RGB
and depth sequences to first locate the mirror. Then the
output features of the TC module will guide the subse-
quent TD module to refine the mirror boundaries. The
gray part in Fig. 5 shows the overall network architecture,
in which there are three main blocks: Local Consistency
(LC) block, Cross-modality Consistency (CMC) block, and
Global Consistency (GC) block. LC and CMC blocks aim
to locate the mirror region in one single frame. By consid-
ering the temporal consistency in both RGB and depth se-
quences extracted by the GC block, the TC module can con-
firm the mirror location in RGB-D dynamic scenes. Spe-
cially, given the RGB {Rt→1, Rt, Rn} and depth features
{Dt→1, Dt, Dn}, we first extract the modality-wise local
consistency features {Rlc, Dlc} with LC blocks to initially
estimate the mirror location (light blue part of Fig. 5), and
then confirm the mirror location with CMC blocks by con-
sidering consistent information between the semantic and
depth (deep blue part of Fig. 5). After locating the mir-
ror region in a single frame, GC blocks extract global con-
sistency {F g

t→1, F
g
t , F

g
n} to detect the mirror region in dy-

namic scenes (green part of Fig. 5). The fusion block is
used to combine short-term and long-term global consis-
tency features for F g

t to obtain the final global consistency
feature F̂ g

t for the current frame. Following the [11], our
TC module only exploits the low-level features at the 2nd
scale and high-level features at the last scale (5th scale for
RGB features and 6th scale for depth features).

Local Consistency (LC) Block: Our LC block aims to
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Figure 5. The schematic illustration of our Triple Consistency (TC) module and its three main building blocks: the local consistency block
(light blue part), the cross-modality consistency block (green part), and the global consistency block (dark blue part).

extract the local consistency inside and outside of the mir-
ror in one single frame in both RGB and depth. It follows
the design of Long-Range Context Information Gathering
(LCG) module in [23] which can efficiently and effectively
extract the long-range relations in a pixel-patch way. We
use LCG to extract the consistency between the real object
and its corresponding reflection in the mirror. As the light
blue part of Fig. 5 demonstrated, we extract modality-wise
local consistency for each pixel of RGB and depth respec-
tively. For computational efficiency, a pooling operation is
used to obtain low-resolution template patches. Then the
correlation between each pixel and each template patch is
calculated and finally, modality-wise local consistency is
obtained.

Cross-Modality Consistency (CMC) Block: Our CMC
block aims to align RGB and depth features by considering
cross-modality consistency. An intuitive way to fuse RGB
and depth features is concatenation. However, simply con-
catenating the RGB and depth features and ignoring some
useful consistent information between them is insufficient
to handle complex scenes. Toward better performance, we
introduce the CMC block that aligns RGB and depth by ex-
tracting useful intrinsic consistency features across modal-
ities. It is inspired by the Cross-Modality Context Infor-
mation Fusion (CCIF) module in [23] which only enhances
the RGB features with cross-modality consistency. We ex-
tend it by enhancing both RGB and depth features with
cross-modality consistency. The reasons we also enhance
the depth features are 1) the color and texture information
from the RGB image is complimentary for depth features;
and 2) the enhanced depth features will help the subsequent
GC block to extract more accurate global consistency fea-
tures. Given the modality-wise local consistency features
Rlc, Dlc, the cross-modality consistency features Corrcm

is obtained by a simple average. Then, we reduce the chan-
nel of Corrcm to keep the same channel number with corre-
sponding RGB and depth features by the 1→ 1 convolution
layer. With the CorrR and CorrD, we enhance the RGB
features with layout information and the depth features with
the color and texture information. The enhancing process is
formally defined as:

Corrcm = (Rlc +Dlc)/2 (1)

Rcm = Conv1↑1(Cat(Rlc, Corrcm)) (2)

Dcm = Conv1↑1(Cat(Dlc, Corrcm)) (3)

where Rcm and Dcm are the layout-aware RGB features
and semantic-aware depth features.

Following the Refinement with Local Depth Structure
Information (RLDSI) module in [23], to make up for the
loss caused by the relatively low-resolution patch feature
obtained by downsampling operation in the LC block, we
further refine the cross-consistency aware RGB feature with
the depth layout information in a content-adaptive way.
Compared with the original RLDSI module which directly
uses depth backbone features D to refine the layout-aware
RGB features Rcm, we choose semantic-aware depth fea-
tures Dcm to refine it. The reason is that depth features
can vary significantly within a mirror region, where these
in salient object regions are usually the same. Therefore,
semantic-aware depth features which are complemented by
the mirror consistency based on the color and texture in-
formation in RGB can provide more accurate scene layout
information. With the Dcm, PAC [21] operation is used
to further weight the layout-aware RGB features Rcm with
depth structure information. The refinement process is for-
mally defined as:



R̂cm(xi) =
∑

j↓{(→1,→1)(→1,0),...,(1,1)} Ker(i, i+ j)W (j)Rcm(xi+j)

(4)

Ker(i, i+ j) = exp(↑1

2

c∑

c=1

(Dcm(xi)↑Dcm(xi+j))
2)

(5)
where W is the convolution filter weights and Ker adap-
tively calculates the coefficients of feature within each local
convolution window according to the Gaussian function. C
is the channel number. In the end, we obtain refined layout-
aware RGB feature R̂cm and semantic-aware depth feature
Dcm which are the inputs of the GC block.

Global Consistency (GC) Block: Our GC block ex-
tracts and fuses temporal consistency features for RGB se-
quence (R̂cm

t→1 and R̂cm
t ) and depth sequence (Dcm

t→1 and
Dcm

t ). Each of these features is extracted by a cross-
attention module proposed in [11] which can effectively
extracting long-range temporal consistency between the
contents inside and outside of the mirror across different
frames. After obtaining single-modality temporal consis-
tency features Rg

t→1, Rg
t , Dg

t→1 and Dg
t , we concatenate

them to obtain cross-modality temporal consistency fea-
tures F g

t→1 and F g
t which consider temporal consistency

based on the color and texture feature from the RGB se-
quence and the layout feature from the depth sequence.
In the green part of Fig. 5, we omitted the global consis-
tency extracting process for RGB (R̂cm

t and R̂cm
n ) and depth

(Dcm
t and Dcm

n ) for clarity.
The fusion block aims to fuse the short-term global con-

sistency features F g
t and long-term global consistency fea-

tures F̂ g
t . In our experiment, the performance was wors-

ened by simply plus or concatenating them because their
distribution ranges of the correlation values are inconsis-
tent. Therefore, we adopt the same design as the SLF mod-
ule proposed in [31] which can effectively fuse short-term
and long-term features by encoding both the appearance of
the mirror from the short-term features and the position of
the mirror from the long-term features. The decoders fol-
lowing the TC module comprise a 3 → 3 convolution layer
and a 1→ 1 convolution layer, which generate intermediate
mirror maps.

4.2. Temporal Discontinuity (TD) Module
After the TC module locates the mirror, our TD mod-

ule can refine the mirror boundaries. The core of the TD
module takes advantage of both short-term and long-term
discontinuities in both RGB and depth sequences to refine
the mirror boundary. Unlike the contextual contrasted fea-
ture extraction (CCFE) in [32] and the delineating module
in [16], which only focus on local contextual contrasted in-
formation in the single modality or the single image, our
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Figure 6. The schematic illustration of Temporal Discontinuity
module. The gray part denotes the whole architecture of the Tem-
poral Discontinuity module. The blue part denotes the low-level
Global Discontinuity Block.

module exploits temporal discontinuity within RGB-D dy-
namic scenes. In the TD module, the local discontinuity
features we extracted from the previous frame contain the
location information of the boundary, and the local disconti-
nuity features extracted from the next frame contain the ap-
pearance information of the boundary. After fusing the local
discontinuity features of the previous and random frames
with the local discontinuity features of the current frame,
we obtain global discontinuity features that encode both lo-
cation information and appearance information.

The gray part of Fig. 6 shows the architecture of the TD
module. Our TD module consists of two kinds of blocks:
the local discontinuity (LD) block and the global discon-
tinuity (GD) block. LLD and HLD are low-level and high-
level local discontinuities. LGD and HGD are low-level and
high-level global discontinuity. They are used to deal with
high-level (4th scale) and low-level (2nd scale) features.
The difference between (LLD, LGD) and (HLD, HGD) is
that low-level blocks accept one extra input(high-level dis-
continuity features) to narrow down the mirror region. The
difference between the LD and GD is that GD needs to ac-
cept two extra inputs (short-term and long-term disconti-
nuity features from the LD). Given the intermediate mir-
ror maps M , RGB features R, depth features D, high-level
global discontinuity features G4

t and local discontinuity fea-
tures L2

t→1, L
2
n, we first multiply RGB R and depth D fea-

tures by their corresponding mirror maps M , which are nor-
malization by a sigmoid function to get the potential mirror
area. Then, we extract the global contextual contrasted fea-
ture G for RGB, depth, and RGB+depth. The contextual
contrasted block is formally defined as:

G = fl(F ↓ L2
t→1 ↓ L2

n ↓ Ĝ4
t ,!l)↑ fc(F ↓ L2

t→1 ↓ L2
n ↓ Ĝ4

t ,!c)

(6)
Ĝ4

t = U4(R(N (Conv3↑3(G
4
t )))) (7)

where fl with corresponding parameters !l denotes a con-
volution operation with a kernel size of 3 and a dilation rate
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Figure 7. Visual comparison of DVMDNet with state-of-the-art segmentation methods retrained on the DVMD-D demonstrates that
DVMDNet outperforms the competing methods on scenes with small mirrors (row 1), large mirrors (row 2), multiple mirrors (row 3),
and challenging scenes featuring similar boundaries and appearances (row 4). You can find more visual results in Section 1.1 of the
supplementary material.

of 1. fc with corresponding parameters !c denotes a convo-
lution operation with a kernel size of 5 and a dilation rate of
2. U2 represents a bilinear upscaling (by a factor of 4). Af-
ter obtaining glocal contextual contrasted features for RGB,
depth, and RGB+depth, we concatenate them together to
get the final global discontinuity features. In the end, we
forward the output features of the TD module to individual
decoders to obtain the final output predictions Pt→1,Pt,Pn.
In the blue part of Fig. 6, we only show the details of the
LGD block for clarity.

4.3. Loss Function
Following the suggestion of [2], we adopt the binary

cross-entropy (BCE) and the Lovász-hinge loss to both su-
pervise the training of our network. The final loss function
is:

L =

i↓{t→1,t,n}∑

i

Lh(Mi, Gi) + Lb(Mi, Gi) + Lh(Pi, Gi)

+ Lb(Pi, Gi)
(8)

where Lhinge and Lbce represent the Lovász-hinge loss and
the binary cross-entropy (BCE) loss, respectively. Mi de-
notes the intermediated predicted map, Pi denotes the final
predicted map, and Gi represents the ground truth mirror
map.

5. Experiments
5.1. Experimental Setting and Evaluation Metrics

Our proposed segmentation architecture is developed us-
ing the PyTorch [19] deep learning framework. The fea-
ture extraction encoder parameters are initialized with the

weights from the MiT-B3 model, pre-trained for image seg-
mentation on the ADE20K dataset [33, 34] and publicly
available on HuggingFace [26]. The other parameters, in-
cluding those for attention modules and the MLP decoder,
are randomly initialized using the “Xavier” method [6]. For
training, we employ the AdamW optimizer [15] with an ini-
tial learning rate of 1→10→5 with a weight decay of 5→10-4.
All experiments and ablation studies are conducted for 15
epochs on an NVIDIA A100 GPU with 40GB RAM and
a batch size of 5. We adopt four widely recognized met-
rics to quantitatively assess the performance of the tested
methods: intersection over union (IoU), pixel accuracy, F-
measure(Fω) [1], and mean absolute error (MAE).

5.2. Comparison to SOTA Techniques
Due to the lack of existing methods for RGB-D video

mirror detection, we compare our approach with 12 state-
of-the-art methods from related fields. These include TVSD
[3] and SCOTCH [14] for video shadow detection, GDNet
[17] for glass detection, VGNet [13] for video glass detec-
tion, MirrorNet [32], PMD [12], SANet [7], HetNet [8] and
SATNet [9] for mirror detection, VMDNet [11] for video
mirror detection, and PDNet [16] for RGB-D mirror de-
tection. We trained and tested all baseline methods on our
video mirror detection dataset VMD-D using their released
codes on the same platform. Tab. 2 presents the quantitative
results, demonstrating that our method significantly outper-
forms all others across all four metrics.

Fig. 7 provides a visual comparison of the results pro-
duced by our method with those obtained from two prior
mirror segmentation methods (i.e., PDNet [16] and VMD-
Net [11]) as well as the best approach from each of the three
other categories (i.e., glass detection method GDNet [17],



Methods Pub. Year IoU↔ Fω ↔ Accuracy↔ MAE↗
TVSD [3] CVPR’2021 0.4088 0.6748 0.8829 0.1169
SCOTCH [14] CVPR’2023 0.6211 0.7847 0.9064 0.0836

GDNet [17] CVPR’2020 0.5602 0.7338 0.9036 0.0936
VGDNet [13] AAAI’2024 0.5163 0.7197 0.9059 0.0939

MirrorNet [32] ICCV’2019 0.5442 0.7509 0.9061 0.0937
PMD [12] CVPR’2020 0.5753 0.7795 0.9201 0.0797
SANet [7] CVPR’2022 0.5340 0.7133 0.9012 0.0986
HetNet [8] AAAI’2023 0.4828 0.7420 0.8997 0.1001
SATNet [9] AAAI’2023 0.6401 0.7985 0.9013 0.0887
CSFwinformer [29] TIP’2024 0.6638 0.8148 0.9118 0.0780

VMDNet [11] CVPR’2023 0.5673 0.7873 0.9060 0.0939

PDNet [16] CVPR’2021 0.5851 0.7925 0.9144 0.0855

DVMDNet w/o D Ours 0.7024 0.8388 0.9452 0.0547
DVMDNet Ours 0.7423 0.8581 0.9490 0.0509

Table 2. Quantitative comparison between the proposed DVMD-
Net and 12 state-of-the-art methods from relevant fields. The best
results are shown in bold.

single-image mirror detection CSFwinformer [29], video
shadow detection method SCOTCH [14]). You can find
more visual results in Section 1.1 of the supplementary ma-
terial. The first row presents segmentation examples of
small mirrors. In this example, only DVMDNet accurately
segments the mirror region on the bathroom wall thanks to
considering both depth and temporal information. DVMD-
Net can also accurately handle large mirrors (row 2) by con-
sidering depth information. We can see that PDNet and
DVMDNet both exploit depth information not treat the iron
ring as a mirror. Benefiting from their extracted textual fea-
tures, CSFwinformer also detects the mirror correctly. For
the multiple mirrors (row 3), only DVMDNet can accurately
handle it by considering triple consistency and global con-
tent discontinuity over the RGB and depth. The example in
the 4th row presents a challenging case with similar bound-
aries and appearance. Although the glass door on the cabi-
net appears similar to the oval makeup mirror on the table,
DVMDNet can still accurately distinguish between them.

Method IoU↔ Fω ↔ Accuracy↔ MAE↗
Baseline 0.6873 0.8258 0.9389 0.0589
Baseline + TC 0.7283 0.8478 0.9463 0.0526
Baseline + TD 0.7122 0.8508 0.9455 0.0533

DVMDNet w/o D 0.7024 0.8388 0.9452 0.0547
DVMDNet 0.7423 0.8581 0.9490 0.0509

Table 3. Ablation study results, trained and tested on the proposed
DVMD-D. “Baseline” denotes our network without all proposed
modules. “TC” is the triple consistency module. “TD” is the tem-
poral discontinuity module.

RGB Image GTDVMDNetDepth Map Baseline+TC Baseline+TD DVMDNet w/o D

B

Baseline

Figure 8. Visual ablation comparison of various DVMDNet vari-
ants.

We can see that although PDNet utilizes the depth cue, it
still cannot detect it correctly without considering temporal
information.

5.3. Ablation Study
We conducted an ablation study to validate the effective-

ness of each key component in DVMDNet. Our findings are
summarized in Tab. 3 and Fig. 8.

Benefits of Depth Cues. We want to explore the benefit
of the depth cue for video mirror segmentation. To do this,
we conduct following experiment: Retrain DVMDNet from
scratch without including the depth branch and test it with-
out depth information (Tab. 3 5th row and Fig. 8 6th col-
umn); Compared to the original DVMDNet (Tab. 3 5th row
and Fig. 8 7th column), it can not achieve the same qual-
ity. Notably, DVMDNet without depth information (also
included in Tab. 2) outperforms all relevant state-of-the-art
methods.

Effectiveness of the Triple Consistency and Tempo-
ral Discontinuity Modules. Tab. 3 illustrates the effective-
ness of each component in our model. As shown in the last
row, our final proposed network, which includes the TC and
TD modules, outperforms all other baselines across all met-
rics. It is noteworthy that the base model achieves competi-
tive results, further demonstrating the critical importance of
depth information for video mirror segmentation. We can
see that adding the TC module achieves better results than
“Baseline” indicating that it significantly benefits the mirror
detection task from the prospect of triple consistency. Fur-
thermore, adding the TD on “Baseline+TC” (i.g., “DVMD-
Net”) further improves performance. Fig. 8 provides a vi-
sual example of the component analysis. We can see that
the TC module helps the base model predict more mirror
regions, and the TD module helps improve the performance
of “Baseline+TC” by removing the overpredicted region.

6. Conclusion
In this paper, we proposed a method for detecting mirrors

in RGB-D videos. The method includes two novel modules:
the TC module and the TD module. Additionally, we con-
structed a challenging large-scale benchmark with diverse
scenes. Our method is not without limitations. You can find
a discussion in Section 2 of the supplementary material.



References
[1] Radhakrishna Achanta, Sheila Hemami, Francisco Estrada,

and Sabine Susstrunk. Frequency-tuned salient region de-
tection. In 2009 IEEE Conference on Computer Vision and

Pattern Recognition, pages 1597–1604, 2009. 7
[2] Maxim Berman, Amal Rannen Triki, and Matthew B

Blaschko. The lovász-softmax loss: A tractable surrogate
for the optimization of the intersection-over-union measure
in neural networks. In CVPR, 2018. 7

[3] Zhihao Chen, Liang Wan, Lei Zhu, Jia Shen, Huazhu Fu,
Wennan Liu, and Jing Qin. Triple-cooperative video shadow
detection. In CVPR, 2021. 7, 8

[4] Angela Dai, Angel X Chang, Manolis Savva, Maciej Hal-
ber, Thomas Funkhouser, and Matthias Nießner. Scannet:
Richly-annotated 3d reconstructions of indoor scenes. In
CVPR, pages 5828–5839, 2017. 3

[5] Qi Fang, Qing Shuai, Junting Dong, Hujun Bao, and Xiaowei
Zhou. Reconstructing 3d human pose by watching humans
in the mirror. In CVPR, 2021. 1

[6] Xavier Glorot and Yoshua Bengio. Understanding the diffi-
culty of training deep feedforward neural networks. In Pro-

ceedings of the thirteenth international conference on artifi-

cial intelligence and statistics, pages 249–256. JMLR Work-
shop and Conference Proceedings, 2010. 7

[7] Huankang Guan, Jiaying Lin, and Rynson W H Lau. Learn-
ing Semantic Associations for Mirror Detection. In CVPR,
pages 5941–5950, 2022. 1, 7, 8

[8] Ruozhen He, Jiaying Lin, and Rynson WH Lau. Efficient
mirror detection via multi-level heterogeneous learning. In
AAAI, volume 37, pages 790–798, 2023. 1, 2, 7, 8

[9] Tianyu Huang, Bowen Dong, Jiaying Lin, Xiaohui Liu,
Rynson WH Lau, and Wangmeng Zuo. Symmetry-aware
transformer-based mirror detection. In AAAI, volume 37,
pages 935–943, 2023. 1, 7, 8

[10] Jiaying Lin and Rynson WH Lau. Self-supervised pre-
training for mirror detection. In Proceedings of the

IEEE/CVF International Conference on Computer Vision,
pages 12227–12236, 2023. 1

[11] Jiaying Lin and Xin Tan. Learning to detect mirrors from
videos via dual correspondences. In CVPR, 2023. 1, 2, 3, 4,
6, 7, 8

[12] Jiaying Lin, Guodong Wang, and Rynson W.H. Lau. Pro-
gressive mirror detection. In CVPR, 2020. 1, 2, 7, 8

[13] Fang Liu, Yuhao Liu, Jiaying Lin, Ke Xu, and Rynson WH
Lau. Multi-view dynamic reflection prior for video glass sur-
face detection. In Proceedings of the AAAI Conference on

Artificial Intelligence, volume 38, pages 3594–3602, 2024.
7, 8

[14] Lihao Liu, Jean Prost, Lei Zhu, Nicolas Papadakis, Pietro
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1. Experiments

1.1. Comparison to SOTA Techniques

Fig. 2 provides a visual comparison of the results pro-
duced by our method with those obtained from two prior
mirror segmentation methods (i.e., PDNet [3] and VMDNet
[1]) as well as the best approach from each of the three other
categories (i.e., glass detection method GDNet [4], single-
image mirror detection CSFwinformer [5], video shadow
detection method SCOTCH [2]). The first two rows present
segmentation examples of small mirrors. In this example,
only DVMDNet accurately segments the mirror region on
the bathroom wall thanks to considering both depth and
temporal information. DVMDNet can also accurately han-
dle large mirrors (rows 3-4) by considering depth informa-
tion. We can see that PDNet and DVMDNet both exploit
depth information not treat the iron ring as a mirror. Ben-
efiting from their extracted textual features, CSFwinformer
also detects the mirror correctly. For the multiple mirrors
(rows 5-6), only DVMDNet can accurately handle it by con-
sidering triple consistency and global content discontinu-
ity over the RGB and depth. The example in the 7th and
8th rows presents a challenging case with similar bound-
aries and appearance. Although the glass door on the cabi-
net appears similar to the oval makeup mirror on the table,
DVMDNet can still accurately distinguish between them.
We can see that although PDNet utilizes the depth cue, it

RGB Image GTDepth Map DVMDNet

Figure 1. An example of a failure case is a mirror that covers
almost the entire image.

still can not detect it correctly without considering temporal
information.

2. Conclusion
Our method is not without limitations. Fig. 1 shows that

our method fails when the mirror covers almost the entire
image. In this scenario, the local consistency between the
inside and outside of the mirror is difficult to extract, which
leads to errors in global consistency based on local consis-
tency. In addition, the content discontinuities between the
inside and outside of the mirror over RGB and depth are
also hard to quantify. It is a challenging situation even for
human perception, and leaves an interesting direction for
future research.
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Figure 2. Visual comparison of DVMDNet with state-of-the-art segmentation methods retrained on the DVMD-D demonstrates that
DVMDNet outperforms the competing methods on scenes with small mirrors (rows 1-2), large mirrors (rows 3-4), multiple mirrors (rows
5-6), and challenging scenes featuring similar boundaries and appearances (rows 7-8).


