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ABSTRACT
Healthy brain aging involves changes in both brain structure and function, including alterations in cellular composition and 
microstructure across brain regions. Unlike diffusion- weighted MRI (dMRI), diffusion- weighted MR spectroscopy (dMRS) can 
assess cell- type specific microstructural changes, providing indirect information on both cell composition and microstructure 
through the quantification and interpretation of metabolites' diffusion properties. This work investigates age- related changes 
in the higher- order diffusion properties of total N- Acetyl- aspartate (neuronal biomarker), total choline (glial biomarker), and 
total creatine (both neuronal and glial biomarker) beyond the classical apparent diffusion coefficient in cerebral and cerebellar 
gray matter of healthy human brain. Twenty- five subjects were recruited and scanned using a diffusion- weighted semi- LASER 
sequence in two brain regions- of- interest (ROI) at 3T: posterior- cingulate (PCC) and cerebellar cortices. Metabolites' diffusion 
was characterized by quantifying metrics from both Gaussian and non- Gaussian signal representations and biophysical models. 
All studied metabolites exhibited lower apparent diffusivities and higher apparent kurtosis values in the cerebellum compared 
to the PCC, likely stemming from the higher microstructural complexity of cellular composition in the cerebellum. Multivariate 
regression analysis (accounting for ROI tissue composition as a covariate) showed slight decrease (or no change) of all metabo-
lites' diffusivities and slight increase of all metabolites' kurtosis with age, none of which statistically significant (p > 0.05). The 
proposed age- trajectories provide benchmarks for identifying anomalies in the diffusion properties of major brain metabolites 
which could be related to pathological mechanisms altering both the brain microstructure and cellular composition.
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1   |   Introduction

Healthy aging involves numerous and heterogeneous func-
tional and structural changes in the brain depending also on 
the considered anatomical region. For instance, in  vivo stud-
ies showed that the cerebellum presents slower age- related 
morphological changes compared to the cerebral cortex (Liang 
and Carlson  2020), possibly due to different microstructural 
properties. Indeed, the cerebellum contains 60% to 80% of the 
total amount of neurons in the brain for only 10% of the brain 
mass (Colin, Ris, and Godaux  2001; Walløe, Pakkenberg, and 
Fabricius  2014). Investigating the neurobiological underpin-
nings of aging in the cerebellum is of interest as this structure 
projects to the entire brain and mediates cognitive functions af-
fected by aging (Manto  2022). Age- related changes have been 
shown in the cerebellum and cerebral cortices only at the macro-
scopic level by in vivo studies, whereas microstructural changes 
have been mostly observed ex vivo throughout life (Andersen, 
Gundersen, and Pakkenberg  2003), and in patients with dis-
eases progressing with aging (Grimaldi and Manto 2013; Louis 
et al. 2014). These studies showed different results, with loss of 
white matter (WM) up to 25% associated with loss of Purkinje 
and Granule cells (Andersen, Gundersen, and Pakkenberg 2003; 
Arleo et  al.  2024) and thinning of dendritic trees of Purkinje 
cells (Louis et al. 2014).

Magnetic resonance imaging (MRI) studies have shown 
global macrostructural changes (volume loss) of gray matter 
(GM) and WM in the brain with aging (Andersen, Gundersen, 
and Pakkenberg  2003; MacDonald and Pike  2021; Walhovd 
et  al.  2005); cortical thinning in the cerebral cortex (Sowell, 
Thompson, and Toga 2004) with prefrontal and frontal cortices 
(alongside hippocampus) most affected during aging (Jernigan 
et  al.  2001); and loss of GM in the cerebellar cortex (Stalter 
et al. 2023).

Diffusion- weighted MR imaging (dMRI) is a powerful and 
widely used imaging tool to quantify human brain micro-
structure in  vivo and non- invasively (Alexander et  al.  2019; 
Jones 2010). Recent dMRI studies investigating variations of dif-
fusion metrics with age observed a significant increase of mean 
diffusivity and decrease of fractional anisotropy in the cerebral 
cortex and subcortical regions (Helenius et al. 2002; Pfefferbaum 
et al. 2010; Raghavan et al. 2021; Schilling et al. 2022; Watanabe 
et al. 2013), while others remained inconclusive regarding the 
cerebellum (Behler, Kassubek, and Müller  2021; van Aalst 
et al. 2022).

Although very sensitive to microstructural changes, dMRI 
cannot unambiguously inform on changes in cellular composi-
tion due to the poor cell- type specificity of water molecules. In 
contrast, diffusion- weighted MRS (dMRS) provides higher cell- 
type specificity (Cao and Wu 2017; Ligneul et al. 2024; Palombo 
et al. 2016, 2018; Palombo, Ligneul, and Valette 2017; Ronen and 
Valette 2015; Vincent, Palombo, and Valette 2020), offering the 
opportunity to inform on alterations of both cellular composi-
tion and microstructure with age, through the interpretation of 
measurements of metabolite diffusion properties. Some of the 
major brain metabolites are purely intracellular (e.g., N- Acetyl- 
aspartate, NAA; creatine and phosphocreatine, tCr, and cho-
line compounds, tCho) and cell- type specific (e.g., NAA mostly 

concentrated in neurons and tCho mostly concentrated in glia) 
and can be used to infer compartment specific microstructural 
changes (Ligneul et  al.  2019, 2024; Palombo et  al.  2016, 2018; 
Palombo, Ligneul, and Valette  2017). Previous dMRS studies 
focusing on aging reported on the changes in the apparent dif-
fusion coefficient (ADC) of major brain metabolites across var-
ious brain regions in both healthy and pathological conditions 
(Branzoli et al. 2016; Deelchand et al. 2020; Zheng et al. 2012). 
Deelchand et  al. investigated the five major intracellular me-
tabolites' (tCr, tCho, Glutamate, myo- Inositol and NAA) ADC 
and T2 dependence on healthy aging (N = 32 young adults versus 
N = 26 older adults) in the occipital, posterior and prefrontal cor-
tices and concluded that the metabolite ADCs at short echo time 
(TE = 21.22 ms) was faster in healthy older adults and depended 
on the brain region, suggesting region- specific alterations in 
the intra- cellular microenvironment (Deelchand et  al.  2020). 
However, it is still unknown how other informative diffusion 
properties of brain metabolites diffusion beyond the ADC 
change with aging. For example, the apparent diffusional kurto-
sis, a higher- order diffusion metrics that quantifies the degree of 
non- Gaussianity, could inform on the effect of restrictions and 
hinderance imposed by the microenvironment on the diffusion 
of intracellular metabolites (Jensen et al. 2005).

This work aims to fill this gap and provide first age- trajectories 
of higher- order diffusion properties of major intracellular me-
tabolites (total N- acetyl- aspartate, tNAA: NAA + N- acetyl- 
aspartyl- glutamate, NAAG; tCho: glycero- phosphoryl- choline, 
GPC + phosphoryl- choline, PCho; and tCr: Cr, + PCr) and to 
highlight potential microstructural changes with age in the ce-
rebral and cerebellar GM using dMRS. We focused our inves-
tigation on the cerebral and cerebellar cortices due to several 
factors: the cerebellum's role in mediating cognitive functions 
affected by brain aging, the greater complexity of dMRS/dMRI 
signals in the cerebellum compared to the cerebral cortex, and 
the cerebellum's unique cellular microstructure, including 
highly arborized, spiny Purkinje cells and Bergmann glia.

2   |   Material and Methods

2.1   |   Subjects

A cohort of 25 healthy adults consisting of 11 females and 14 
males were recruited for this study. The age range of the par-
ticipants spanned from 25 to 80 years, with a mean age of 
50.2 years and a standard deviation of 20.2 years. Dividing the 
cohort into younger (< 50 years) and older (> 50 years) adults, we 
have 13 participants (6 females) with a mean age of 31.8 and a 
standard deviation of 7.1 years, and 12 participants (5 females) 
with a mean age of 70.2 and a standard deviation of 5.3 years, 
respectively. The age distribution of the subjects is shown in the 
Figure 1C. The inclusion criteria for healthy participants were: 
(i) no known history of neurological or psychiatric conditions, 
(ii) no current treatments at the time of the study, with any prior 
treatments completed at least 2 weeks before recruitment, (iii) 
age greater than 18, and (iv) no contraindications related to MRI 
safety. No cognitive tests were conducted to confirm that the 
participants were cognitively intact. All subjects provided in-
formed consent according to local procedures prior to the study. 
The study was approved by the local ethics committee.
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2.2   |   Data Acquisition and Processing

dMRS data were acquired using a 3T Siemens Prisma scanner 
(Siemens Healthineers, Erlangen, Germany) with a 64- channel 
receive- only head coil at the Paris Brain Institute (Institut 
du Cerveau, ICM), France. Three- dimensional T1- weighted 
magnetization- prepared rapid gradient echo images (field 
of view, 256 (anterior—posterior) × 256 (foot—head) × 231 
(right—left) mm3); isotropic resolution, 0.9 mm; repeti-
tion and echo time (TR/TE), 2300/2.08 ms; total acquisition 
time, 5 min. 17 s. were acquired to position the spectroscopic 

region- of- interest (ROI) and to perform tissue segmentation. 
Two ROIs targeting GM in the cerebellum and posterior- 
cingulate- cortex (PCC) were examined using a diffusion- 
weighted semi- LASER sequence (Genovese et  al.  2021). The 
ROIs were defined as 5.3 cm3 (15 × 16 × 22 mm3) in the cere-
bellum and 8.0 cm3 (20 × 20 × 20 mm3) in the PCC to maxi-
mize GM volume fraction (above 70%) in both ROIs. Spectral 
data was recorded with a spectral bandwidth of 3000 Hz and 
complex data points of 2048 at TE of 125 ms. During mea-
surements, pulse triggering was applied and maintained 
the average TR at three cardiac cycles. Hence, the average 

FIGURE 1    |    (A) Regions of interest are demonstrated on T1- weighted images. (B) Diffusion- weighted spectra are illustrated for both regions of 
interest; cerebellum (blue frame, left) and PCC (red frame, right). Direction averaged dMRS signals exhibit excellent spectral quality. Color- coding in 
the legends displays b- values in the units of ms/μm2. (C) Histogram of participants' age with an interval of five years. (D) Age- trajectories of fGM

fWM
 ratio 

in both ROIs and the results of statistical analyses reporting only a significant decrease in fGM
fWM

 in the cerebellum with age. (*p < 0.00833 indicates 
statistical significance for the t- test). fGM, gray matter volume fraction; fWM, white matter volume fraction; PCC, posterior cingulate cortex; ROI, 
region of interest; tCho, total choline; tCr, total creatine; tNAA, total N- Acetyl- aspartate.
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acquisition time per ROI was around 25 min on average. 
Diffusion- weighting was applied using tetrahedral- encoding 
scheme in directions of (−1 −1 −1), (−1 1 1), (1 −1 1), and (1 1 
−1). Six b- values (b = [0.01, 1.012, 4.03, 9.06, 16.09, 25.1] ms/
μm2) were applied with an effective gradient duration (δ) of 
26.4 ms (two pairs of bipolar gradients with 6.6 ms duration) 
and an effective diffusion gradient separation (Δ) of 62.5 ms. 
The effective b- values were computed by including crusher 
and slice selection gradients as well as cross- terms compen-
sation. The estimated coefficient of variation of b value across 
direction was consistently < 3%, justifying averaging across 
direction with minimal negligible bias. Twenty- four tran-
sients were acquired for each diffusion- weighted condition 
and saved individually for further postprocessing. Water sup-
pression was performed using variable power with optimized 
relaxation delays (VAPOR) and outer volume suppression 
(Tkac et al. 1999). The water suppression flip- angle was cal-
ibrated for each participant. Additionally, water signals were 
acquired using the same diffusion- weighted conditions for 
eddy- current correction, excluding ultra- high b- values due to 
poor water signal. B0 shimming was performed using a fast 
automatic shimming technique with echo- planar signal trains 
utilizing mapping along projections, FASTESTMAP (Gruetter 
and Tkac 2000).

Spectral processing was performed by following the state- of- 
the- art guidelines (Ligneul et al. 2024) on MathWorks MATLAB 
R2022a (The MathWorks Inc. 2022).

Zero- order phase fluctuations and frequency drifts were cor-
rected on single transients before averaging using the NAA 
peak. A peak- thresholding procedure was applied, for each dif-
fusion condition, to discard the transients with artefactual low 
signal- to- noise ratio (SNR) caused by non- translational tissue 
motion (Genovese et al. 2021). After processing of the transients 
in an acquisition, for example, a b- value measurement in a dif-
fusion direction, the transients were averaged for independent 
data fitting.

GM, WM, and cerebrospinal fluid (CSF) volume fractions were 
calculated in the ROIs using the T1- weighted images and the 
segment tool of SPM12 and MATLAB routines.

2.3   |   Data Fitting

For each diffusion- weighted condition, averaged spectra were 
fitted independently with LCModel (Provencher 1993). The SNR 
of spectra was reported from LCModel's output (i.e., the ratio 
between signal intensity at 2.01 ppm and twice the root mean 
square of fit residuals) together with Cramer- Rao lower bounds 
(CRLB).

The basis set was simulated with an in- house written routine 
in MATLAB based on the density matrix formalism (Henry 
et al. 2006) and using previously reported chemical shifts and 
J- couplings (Govindaraju, Young, and Maudsley  2000; Kaiser 
et al.  2010). The basis set included ascorbate, aspartate, Cr, γ- 
aminobutyric acid, glucose, glutamate, glutamine, glutathione, 
GPC, myo- inositol, lactate, NAA, NAAG, PCr, PCho, phos-
phorylethanolamine, scyllo- inositol, and taurine. Independent 

spectra for the CH3 and CH2 groups of NAA, Cr, and PCr were 
simulated and included in the basis set.

2.4   |   Data Analysis

To characterize the metabolites' higher order diffusion proper-
ties, multiple diffusion signal analyses were conducted includ-
ing diffusion signal representations and biophysical models 
(Jensen et al. 2005; Ligneul et al. 2024; Palombo, Ligneul, and 
Valette  2017). All the data and analysis codes underpinning 
the results presented here can be found upon publication in 
the Cardiff University data catalog and on Github: https://
github.com/kdrsimsek/aging_dMRS_project.

2.4.1   |   dMRS Signal Representations

First, the direction- averaged diffusion signals were fitted mon-
oexponentially up to b < 5 ms/μm2 to estimate the apparent 
diffusion coefficient (ADC) and characterize Gaussian proper-
ties (Ligneul et al. 2024). Kurtosis signal representation (from 
Equation  5 in (Jensen et  al.  2005)) was used to estimate the 
apparent diffusion kurtosis (K) and determine non- Gaussian 
properties of metabolites up to b < 10 ms/μm2 (Genovese 
et al. 2021).

2.4.2   |   dMRS Biophysical Models

For biophysical modeling, the astro- sticks model was fitted to 
the direction- averaged signals at all b- values to estimate the ap-
parent intra- stick axial diffusivity (Dintra) (Ligneul et  al.  2024; 
Panagiotaki et al. 2012)

here, the equation describes direction- averaged diffusion 
signal for the astro- sticks model. � is the angle between the 
main axis of a given stick and the applied diffusion gradient. 
Additionally, astro- sticks model was modified to incorporate an 
effective intra- stick axial diffusivity (Deff) defined as (Palombo, 
Ligneul, and Valette 2017; Palombo et al. 2018; Sukstanskii and 
Yablonskiy 2008; Yablonskiy and Sukstanskii 2010):

here, Kintra is the apparent intra- neurite axial kurtosis and 
quantifies non- Gaussian diffusion characteristics stemming 
from hindering or restricting structures randomly displaced 
along the cellular processes, such as dendritic spines (Palombo 
et  al.  2018; Sukstanskii and Yablonskiy  2008; Yablonskiy and 
Sukstanskii  2010). The corresponding powder- averaged signal 
for the modified astro- sticks model is computed by numerical 
integration given in the following equation:

(1)S

S0
= ∫

1

0

e−bDintracos
2�d(cos�) =

√

�

2

erf
�

√

bDintra

�

√

bDintra

(2)Deff

(

Dintra,Kintra, b, �
)

= Dintra

(

1 − KintraDintrabcos
2�
)

(3)S∕S0 = ∫
1

0

e−bDeffcos
2�d(cos�)
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2.4.3   |   Fitting Routine

Data analysis was conducted within the Python program-
ming environment. Following spectral quantification using 
LCModel, we estimated the diffusion- weighted signal am-
plitude from the area under each metabolites' peak(s) and 
direction- averaged it at each b value to obtain the direction- 
averaged diffusion signal decay for each metabolite. Diffusion 
fitting was performed using Levenberg–Marquardt non- 
linear least squares optimization in the Python library ‘lmfit’ 
(https:// pypi. org/ proje ct/ lmfit/  ). No constraints were imposed 
on the modeling functions, but boundary conditions of each 
model parameter were defined to be positive and not to exceed 
free metabolites' diffusivity 1.0 μm2/ms (Döring et  al.  2018) 
and 3.0 for apparent kurtosis parameters (Jensen et al. 2005). 
Three major metabolites were examined: tNAA as a neuronal 
biomarker; tCho as a glial biomarker; and tCr as a biomarker 
comprised in both neuronal and glial cells. Notably, one data-
set in the cerebellum, acquired from an older subject, suffered 
from very poor SNR; hence, excluded from the whole analysis 
from the start.

2.5   |   Statistical Analysis

Linear regression was performed on all estimated parameters 
to determine age- trajectories with computed 95% confidence 
interval and prediction limits. To analyze the specific impact 
of age on the changes of diffusion metrics, a regression anal-
ysis with age as the independent variable and each estimated 
model parameter as the dependent variable was performed, 
also accounting for fGM

fWM
 (the ratio between GM and WM vol-

ume fractions) as covariate by fitting the following expression: 
y ∼ �0 + �1 ⋅ age + �2 ⋅

fGM

fWM
. Additionally, an independent t- test 

between younger (age < 50) and older (age ≥ 50) people was 
performed to assess statistically significant differences be-
tween younger and older adult groups. Bonferroni correction 
was applied for only t- test, including two brain regions and 
three metabolites for each diffusion metric and the p- value, 
the threshold for statistical significance, was redefined to be 
0.0083 (0.05/6). In both statistical analyses, the model param-
eters' values converging to the lower bound in the fitting were 
excluded from the age- trajectory analysis because considered 
unreliable.

3   |   Results

To simplify inspection of the findings, a color- coding scheme is 
used to identify the cerebellum and the PCC results as blue and 
red more clearly, respectively.

Exemplary diffusion- weighted spectra acquired from both brain 
regions are shown in Figure 1B which exhibit good spectral qual-
ity—linewidths at b0/bmax: 4.17/4.84 Hz in the cerebellum and 
3.30/4.67 Hz in the PCC. SNRs obtained from the corresponding 
LCModel fit results were 18 ± 3 and 24 ± 4 (mean ± standard de-
viation over all subjects) at b = 0 (i.e., no diffusion- weighting) 
and 7 ± 2 and 6 ± 2 at the highest b value in the cerebellar and 
cerebral cortexes, respectively. The tissue volume fractions 

(mean ± standard deviation over all subjects) were as follows: 
fGM: 0.82 ± 0.05 (GM volume fraction), fWM: 0.12 ± 0.05 (WM 
volume fraction), and fCSF: 0.06 ± 0.03 (CSF volume fraction) in 
the cerebellum; fGM: 0.69 ± 0.07, fWM: 0.14 ± 0.03, and fCSF: 
0.17 ± 0.08 in the PCC. The localizations of spectroscopic voxels 
in both ROIs are depicted in Figure 1A. Furthermore, the age- 
trajectory for fGM

fWM
 ratio was investigated for variations with age 

and reported in Figure 1D. A significant decrease (~17%) of fGM 
with age in the cerebellum, while a small (~4%) not significant 
change in the PCC was observed.

The CRLB obtained from LCModel fit was used to assess the 
quality of the quantification but not as an exclusion criterion. 
Overall fit results are excellent with low CRLBs (< 5%) in both 
ROIs for the non- diffusion weighted spectra. For the diffusion- 
weighted spectra, we quantified metabolites' areas for each 
b value and each direction, resulting in a CRLB value per di-
rection. Here, as a summary measure, we report the mean of 
the estimated CRLBs across diffusion directions at the highest 
b values: CRLBtNAA = 4%, CRLBtCho = 6%, and CRLBtCr = 4% 
in the cerebellum and CRLBtNAA = 7%, CRLBtCho = 10%, and 
CRLBtCr = 5% in the PCC.

3.1   |   Metabolite Diffusion Properties

Metabolite diffusion signals obtained from all subjects are dis-
played in Figure 2A for both cerebellum and PCC. The diffusion 
signals obtained from all participants (light) are reported along-
side the corresponding cohort averages (dark). Figure 2B com-
pares the cohort averaged diffusion signal decays at the highest 
b- values with the characteristic scaling (∼ b

1

2) of the astro- sticks 
models and displays the corresponding slopes for all metabolites 
in both ROIs. A mildly faster decay was observed in the glial 
biomarker tCho. Overall, slower metabolite diffusion was ob-
served for all metabolites in the cerebellum compared to PCC. 
Figure 2C presents the results of the estimated diffusion param-
eters from all subjects as a box- whiskers plot for all signal rep-
resentations and biophysical models. The corresponding mean 
values of the estimated parameters obtained from the cohort 
are charted in Table 1. In the cerebellum, the model parameters 
for one dataset could not be estimated (and highlighted as an 
outlier with values of zero), due to low SNR at higher b- values. 
In all cases, the estimated apparent diffusivities (ADCs & Dintra) 
are lower in the cerebellum than in the PCC. Correspondingly, 
the kurtosis estimates (K & Kintra) are higher in the cerebellum 
than in the PCC, for all metabolites. Noticeably, Kintra of tCho 
and tCr in both ROIs exhibit high variability due to relatively 
higher CRLB; e.g. in the tCho results, the median values in each 
metabolite result are at the lower bound while the mean values 
are higher as shown in Figure 2C.

3.2   |   Age- Trajectories

The age- trajectories for apparent diffusivities (ADC & Dintra) 
of monoexponential representation and astro- sticks model are 
grouped together and presented in Figure 3. The apparent dif-
fusivities presented similar trends with age for all metabolites: 
increasing in the PCC and decreasing in the cerebellum.
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The age- trajectories for diffusion kurtosis (ADC & K) and mod-
ified astro- sticks model (Dintra & Kintra) analyses were grouped 
together and showed in Figure  4. The age- trajectories for the 

diffusion kurtosis parameters depicted in Figure  4A predom-
inantly show similar trends for all metabolites except for the 
ADC of tCr in the PCC and K of tCho in the cerebellum, which 

FIGURE 2    |     Legend on next page.
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exhibit an opposite trend. Likewise, the age- trajectories of mod-
ified astro- sticks model parameters show a decreasing trend in 
Dintra and an increasing trend in Kintra for all metabolites in both 
ROIs as illustrated in Figure 4B. The only exception is the Dintra 
of tCr in the PCC showing an increasing trend.

Overall, the statistical analyses performed over diffusion met-
rics of tNAA (the neuronal biomarker), tCho (glial biomarker) 
and tCr (less cell- type specific) do not report any significant 
change with age for all the higher- order diffusion metrics inves-
tigated in this study (p > 0.05). Notably, the t- test results of tCho 
Kintra show only a significant increase in the PCC. Considering 
the high noise level in tCho and the median value of tCho Kintra 
at the lower bound in the modified astro- sticks model fitting, 
this outcome needs to be treated carefully.

4   |   Discussion

This work investigates variations in the higher- order diffusion 
properties of major intracellular brain metabolites with healthy 
aging in the cerebral and cerebellar GM in vivo in the human 
brain using dMRS and clinical 3T MRI scanner.

4.1   |   Metabolites Apparent Diffusivity in 
Cerebellar and Cerebral GM

Apparent diffusivities (ADC & Dintra) of the studied metabolites 
agree with literature findings (Branzoli et al. 2014; Deelchand, 
Auerbach, and Marjańska 2018; Döring et al. 2018; Döring and 
Kreis 2019; Ingo et al. 2018; Kan et al. 2012; Najac et al. 2016; 
Palombo et al. 2016; Şimşek et al. 2022). Relatively slower me-
tabolite apparent diffusivities in the cerebellum might stem 
from higher microstructural complexity of cellular composition 
compared to PCC: the Purkinje and granule cells are highly 
abundant in the cerebellum (Louis et al. 2014) while the PCC is 
comprised by the less complex Pyramidal neurons. The higher 
values in a few metabolites' ADC estimates in PCC (outliers in 
Figures 2C, 3 and 4A) is most likely due to the lower SNR of the 
corresponding datasets.

4.2   |   Age- Dependence of Metabolites Apparent 
Diffusivity

Overall, estimated apparent diffusivities did not present 
any significant trend nor changes with age, in contrast to 

FIGURE 2    |    (A) Diffusion signals of tNAA, tCho, and tCr obtained from each subject (light) and cohort averaged signals (dark) are illustrated in 
the figure for both brain regions: Cerebellum (blue) and posterior- cingulate- cortex (red). (B) Comparison between the cohort averaged signal decays 
at the highest b- values with the characteristic b−1∕2 scaling (dashed black lines) of the astro- sticks models. Error bands denote the standard deviation 
across subjects. We report the fitted slope of the log(S) versus log(b) for each metabolite and ROI. (C) The estimated parameters of each metabolite 
by mono- exponential, kurtosis representations and astro- sticks and modified astro- sticks models from each subject are illustrated in the box- and- 
whiskers plot for both region of interests: Cerebellum (blue) and PCC (red). ADC: Apparent diffusion coefficient; Dintra, apparent intra- neurite axial 
diffusivity; K, apparent diffusion kurtosis; Kintra, apparent intra- neurite axial kurtosis; PCC, posterior cingulate cortex; tCho, total choline; tCr, total 
creatine; tNAA, total N- Acetyl- aspartate.

TABLE 1    |    Estimated model parameters obtained from cohort averaged diffusion signals are charted with the corresponding error values in the 
fit (estimation ± error).

ROI Fit Parameter tNAA tCho tCr

CEREBELLUM Monoexp ADC 0.105 ± 0.007 0.093 ± 0.004 0.088 ± 0.004

Kurtosis ADC 0.126 ± 0.006 0.107 ± 0.002 0.103 ± 0.002

K 2.108 ± 0.107 1.992 ± 0.077 2.197 ± 0.072

Astro- sticks Dintra 0.346 ± 0.012 0.325 ± 0.007 0.287 ± 0.007

Modified Astro- sticks Dintra 0.384 ± 0.015 0.325 ± 0.022 0.311 ± 0.011

Kintra 0.071 ± 0.014 — 0.063 ± 0.018

PCC Monoexp ADC 0.122 ± 0.005 0.108 ± 0.002 0.120 ± 0.003

Kurtosis ADC 0.145 ± 0.002 0.124 ± 0.001 0.141 ± 0.002

K 1.767 ± 0.034 1.718 ± 0.027 1.732 ± 0.028

Astro- sticks Dintra 0.440 ± 0.006 0.407 ± 0.012 0.440 ± 0.006

Modified Astro- sticks Dintra 0.468 ± 0.009 0.407 ± 0.043 0.440 ± 0.021

Kintra 0.046 ± 0.011 — —

Note: All signal representations and biophysical model results are tabulated in the table. “—” indicates that the estimations converge to zero.
Abbreviations: ADC: Apparent diffusion coefficient; Dintra, apparent intra- neurite axial diffusivity; K, apparent diffusion kurtosis; Kintra, apparent intra- neurite axial 
kurtosis; PCC, posterior cingulate cortex; tCho, total choline; tCr, total creatine; tNAA, total N- Acetyl- aspartate.
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8 of 14 Aging Cell, 2025

mono- exponential ADCs reported by the only study in the lit-
erature (Deelchand et al. 2020). This difference might originate 
from having a different sample size and more likely from dif-
ferent ROI tissue volume composition. In contrast to our work, 
Deelchand et al. recruited more participants, in two age groups 

(N = 32 young: 18–22 and N = 26 old: 70–83 years old); investi-
gated two more metabolites (Glu and mI); and reported on T2 
relaxation dependence on aging. Regarding distinctions in tis-
sue composition, the WM content in the PCC ROI in our work is 
around half that in the Deelchand's work (our work, fWM = 14%; 

FIGURE 3    |    The results obtained from monoexponential signal analysis (b < 5 ms/μm2) (ADC) and astro- stick model (Dintra) are documented in 
the figure. The independent t- test analyses performed between younger (age < 50) and older groups (age ≥ 50) do not report any statistically signifi-
cant change in these parameters with aging. The p- value in linear regression is a measure for how significant the estimated slope is in the analysis. 
(*p < 0.00833 indicates statistical significance for the t- test). ADC: Apparent diffusion coefficient; Dintra, apparent intra- neurite axial diffusivity; fGM, 
gray matter volume fraction; fWM, white matter volume fraction; PCC, posterior cingulate cortex; tCho, total choline; tCr, total creatine; tNAA, total 
N- Acetyl- aspartate.
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Deelchand's work, fWM ≃ 30%). Higher fGM in our ROIs leads 
to a more isotropic microenvironment for metabolite diffusion; 
thus, a weaker dependence of metabolite apparent diffusivity on 
the fiber orientation. Other contributing factors might be dif-
ferences in diffusion times (~50 ms in our work and 118 ms in 
Deelchand's work) and encoding schemes. Previous studies have 
shown that diffusion times have strong effects on estimated 
ADCs in both GM and WM (Assaf and Cohen 1998; Döring and 
Kreis  2019; Ligneul, Palombo, and Valette  2017; Ligneul and 
Valette  2017), while TE- dependence of metabolites ADC was 
only significant in ROIs with high content of WM (Branzoli 
et al. 2014) like in Deelchand's work (TE = 21.2 ms) and was neg-
ligible for ROIs with high content of GM (Ligneul, Palombo, and 
Valette 2017), like in our study.

4.3   |   Metabolites Apparent Kurtosis 
and Non- Gaussianity in Cerebellar and Cerebral GM

Estimated metabolite diffusion kurtosis K values agree with 
current literature (Döring et al. 2023; Genovese et al. 2021; Ingo 
et al. 2018; Mougel, Valette, and Palombo 2023). In accordance 
with metabolite apparent diffusivities, the K & Kintra for all me-
tabolites in the cerebellum compared to PCC agree with the ex-
pected higher complexity of the cellular microenvironment. For 
instance, the Purkinje cells in the cerebellum have higher spine 
density and higher branching order (Santamaria et  al.  2006) 
in contrast to the PCC, which comprises mostly Pyramidal 
cells with lower spine density and branching order (Holtmaat 
et  al.  2005). Therefore, the higher microstructural complexity 
in the cerebellum might lead to higher tNAA (the neuronal bio-
marker) apparent K & Kintra. Additionally, the relatively higher 
K & Kintravalues for tCho (glial biomarker) in the cerebellum 
might be due to the presence of highly arborized Bergmann 
glia (Sild and Ruthazer 2011). The same rationale can explain 
the observed lower diffusivities in the cerebellum compared to 
the PCC.

The functional form of the signal at the highest b- values sup-
ports the choice of the astro- sticks models (see Figure 2B), since 
the signal consistently scales as ∼ b−1∕2. Notably, for tCho, we 
observed a slight deviation toward a faster decay (∼ b−0.6), po-
tentially indicating a modest influence of non- negligible fiber 
calibers associated with glial processes (Palombo, Ligneul, and 
Valette 2017).

4.4   |   Age- Dependence of Metabolites Apparent 
Kurtosis and Non- Gaussianity

The age- trajectories of metabolite diffusion properties re-
veal overall similar trends for apparent diffusivities (ADC & 
Dintra) from signal representations and biophysical models. 
The significant increase with age in Kintra of tCho in the PCC 
requires cautious interpretation due to the low SNR leading 
to incompatibility in the model fitting (i.e., higher- order term 
converges to the lower- bound). Figure 2C illustrates that the 
median value of tCho Kintra is at the lower bound. Therefore, 
the low SNR in tCho might cause instability in fitting of mod-
ified astro- sticks model that resulted in a significant increase 
in Kintra in the PCC.

The observed overall decrease in diffusivities and increase in 
the non- Gaussianity of tNAA (and tCr) align with histologi-
cal evidence (McElroy et al. 2024) showing that, with healthy 
aging, Purkinje cell somas can shrink by up to 33% in volume 
(Andersen, Gundersen, and Pakkenberg  2003), alongside re-
structuring of their dendritic trees (Hadj- Sahraoui et al. 2001; 
Quackenbush, Ngo, and Pentney  1990; Zhang et  al.  2006). 
Additionally, in cerebellar basket cells, there is an increase in 
Golgi volume, dense bodies, and ground substance, accompa-
nied by a significant reduction in rough endoplasmic reticulum 
surface area (Henrique et  al.  2001; Sturrock  1990). Together, 
these factors likely elevate the viscosity of the intracellular space 
and increase the restriction of metabolite diffusion, resulting in 
lower diffusivities and greater non- Gaussianity.

4.5   |   Analysis of Potential Confounders: The 
Negligible Impact of ROI Tissue Composition

Our findings of ~4% decrease in fGM
fWM

 in the PCC and ~ 17% de-
crease in fGM

fWM
 in the cerebellum agree with evidence from the lit-

erature. For example, Mann et al. (Mann et al. 2011) found ~6% 
decrease in the whole cingulate GM volume between decades 
20–80s. Bernard and Seidler (Bernard and Seidler 2013) found 
that young adults have larger cerebellar GM volume than older 
adults, with Crus I (where the majority of our spectroscopic 
voxel is located) having up to ~15% decrease in GM volume. The 
reason why cerebellar GM declines more with age than cerebral 
GM remains a topic of debate in the literature; however, investi-
gating this issue is beyond the scope of our study.

The multivariate regression analysis does not report any sig-
nificant impact of the accounted variables age (as independent) 
and fGM

fWM
 (as dependent) on the variation of diffusion metrics 

(p > 0.05). Hence, the trend in age- trajectory cannot be at-
tributed to changes in the volume fractions of tissue composi-
tions in the ROIs despite the slight underestimations of fWM in 
the cerebellum (< 5%) over all participants. The only exception 
is for the tCho Kintra in the PCC (Figure 4B), having p- value for 
age just below the threshold (p = 0.013). However, the observed 
change possibly arises from the encountered model fitting issues 
in tCho, the glial biomarker.

A previous study reported that the ADC of tNAA changes by 8% 
between young and old groups and argued that the contribution 
stemming from their ROIs tissue composition would be rela-
tively small in comparison to the observed percentage change 
in the tNAA ADC (Deelchand et al. 2020). A similar argument 
can be made in our study. For instance, Dintra of tCr from the 
astro- sticks model exhibits the strongest change of about 10% 
increase within the age limit in the PCC (Figure 4B). However, 
the change in the ROI tissue composition, fGM

fWM
, is only around 

2% (Figure 1C) and cannot alone explain the changes observed 
in the PCC. Moreover, the multivariate analysis of the corre-
sponding age- trajectory does not demonstrate any dependence 
on fGM

fWM
 (p > 0.05). Therefore, other factors, more directly linked 

to changes in the tissue microstructure and cellular composition 
might explain the observed trends in age- trajectories. A longi-
tudinal study monitoring microstructural alterations in stroke 
linked an increase of tCr ADC with astrogliosis and glial reac-
tivity in the presence of neuroinflammation in stroke patients 
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(Genovese et al. 2023). Accordingly, an increase in astrogliosis 
and glial reactivity with aging was also reported in the literature 
(Cotrina and Nedergaard 2002) that might explain the slight in-
creasing trend in the Dintra of tCr.

4.6   |   Limitations

Our study has a few limitations that future studies may want 
to address. Although exploring additional brain regions beyond 
the PCC and cerebellum would have been valuable, the extended 
acquisition time required by our advanced dMRS protocol lim-
ited our ability to examine further areas. Nonetheless, investi-
gating alterations in the cellular microstructure of cerebellar 
GM is particularly promising for clinical applications, such as 
the early diagnosis and treatment planning of conditions like 
essential tremor (Louis et  al.  2014). Diffusion- weighted spec-
tra are very sensitive to the bulk or physiological motion oc-
curring during the acquisition, causing variations in signal 
amplitude and phase (Branzoli et al.  2014; Döring et al.  2018; 
Ligneul et  al.  2024; Şimşek et  al.  2022). Employing cardiac 
triggering during measurements and performing SNR thresh-
olding partially eliminated these (Genovese et al. 2021; Ligneul 
et  al.  2024). Due to poor water signal at high b- values, eddy- 
current correction was not applied to the spectra acquired at 
ultra- high b values. However, we investigated the effect of ECC 
correction on the highest and lowest SNR datasets for the two 
lowest b- values (~1 and ~4 ms/μm2) across all directions. The 
difference in tNAA signals with and without ECC remained 
below 5% for each direction and b- value in both SNR cases. 
Another crucial limiting factor in this study is smaller sample 
size (25) – the sample size is 58 in the Deelchand's work, reduc-
ing the statistical power of the current study. Because of the rel-
atively small sample size, the t- test analysis was performed on 
two age groups (age < 50 and age ≥ 50) to accommodate enough 
datasets. We acknowledge that the tetrahedral encoding might 
be insufficient to encode diffusion isotropically at high b- values 
in ROI with high anisotropy. However, the relative GM fraction 
in both of our ROIs is very high (89%) and the impact of a po-
tential bias due to partial powder averaging is expected to be 
minor and negligible. Furthermore, across these four directions, 
no significantly faster or slower decay was observed, with only 
slight variations in diffusion signals between directions. Finally, 
our ability to include more directions at such ultra- high b- values 
was constrained by the maximum gradient strength of our clin-
ical scanner (80 mT/m), which is why we had to utilize tetrahe-
dral encoding to maximize diffusion weighting.

4.7   |   Importance and Potential Impact

The age- trajectories here reported are a precious resource for 
the community because they provide reference values for a large 
set of diffusion properties in two brain regions of potential in-
terest for many diseases (e.g., Alzheimer's disease and motor 
disorders), previously unavailable. As an example, choline com-
pound is known as a neuroinflammation biomarker (De Marco 
et  al.  2022; Genovese et  al.  2021). A recent dMRS study (De 
Marco et  al.  2022; Genovese et  al.  2021) showed a significant 
increase in tCho ADC in the thalamus with neuroinflamma-
tion. The age- trajectories reported here provide reference values 

for the healthy brain cerebellum and PCC, suggesting that the 
age- related changes of tCho ADC are less than 10% (decrease 
in the cerebellum and increase in the PCC with age) which can 
help further interpreting tCho diffusivity results in studies of 
neuroinflammation in these brain regions. Age is often found 
to be a significant covariant in the analyses of the changes of 
metabolites' diffusivity. Here we show to what extent age in-
deed alter the diffusion properties of major metabolites in ROIs 
mostly comprised of GM (> 70%). For instance, for the widely 
used ADC index, no statistically significant changes are ob-
served for tNAA, tCr and tCho between younger (< 50) and older 
(≥ 50) adults, with metabolites ADCs being overall less than 10% 
lower in older adults in the cerebellum, and less than 5% higher 
in older adults in the PCC.

It is important to note that our findings are primarily applicable 
to spectroscopic ROIs with a high GM content (> 80%). Studies 
have reported substantial differences in the diffusion properties 
of intracellular brain metabolites between gray and white mat-
ter in humans (Ercan et al. 2015; Lundell et al. 2021). Therefore, 
we do not expect our results to generalize to spectroscopic ROIs 
with markedly different tissue compositions. We suggest that fu-
ture studies should explore age- related changes in higher- order 
diffusion metrics of metabolites in ROIs with a high WM con-
tent and/or a balanced mix of GM and WM.

5   |   Conclusion

This study offers previously unavailable age- trajectories of major 
intracellular brain metabolites' diffusion properties in cerebral 
and cerebellar GM. We showed that observed variations in me-
tabolite diffusion properties with healthy aging are minimal 
and most likely caused by age- related microstructural changes, 
demonstrating the potential utility of the metabolites high- order 
diffusion parameters as new (neuronal and glial) biomarkers of 
tissue pathology. The proposed age- trajectories provide bench-
marks for identifying anomalies in the diffusion properties of 
major brain metabolites, which could be related to pathological 
mechanisms altering both the GM microstructure and cellular 
composition.
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