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Abstract
The asymptotic behavior of an extended family of integral geometric random functionals,
including spatiotemporal Minkowski functionals under moving levels, is analyzed in this
paper. Specifically, sojournmeasures of spatiotemporal long-range dependence (LRD)Gaus-
sian random fields are considered in this analysis. The limit results derived provide general
reduction principles under increasing domain asymptotics in space and time. The case of
time-varying thresholds is also studied. Thus, the family of morphological measures consid-
ered allows the statistical and geometrical analysis of random physical systems displaying
structural changes over time. Motivated by cosmological applications, the derived results
are applied to the context of sojourn measures of spatiotemporal spherical Gaussian random
fields. The results are illustrated for some families of spatiotemporal Gaussian random fields
displaying complex spatiotemporal dependence structures.

Keywords Central limit theorem · Gaussian subordinated random fields · LRD in physics ·
Moving levels · Reduction theorems · Spatiotemporal increasing domain asymptotics

1 Introduction

1.1 Connections with Statistical Physics

Geometric integral functionals defining sojourn measures in the context of random fields
play a crucial role in Statistical Physics. These morphological descriptors arising in integral
geometry allow the characterization of connectivity, content and shape of stochastic spatial
structures in the analysis of physical systems. In particular, they complement the spatial
statistical and physical analysis of systems, whose stochastic structures are characterized by
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the Boolean model. Several physical phenomena involved in different issues of Statistical
Physics, such as complex fluids, porous media, and pattern formation in dissipative systems,
can be suitably analyzed in terms of these morphological measures. Particularly, Minkowski
functionals, as additive functionals of spatial patterns, provide the geometric description of
physical phenomena from integral instead of differential expressions. Special attention has
been paid to Minkowski formalism in the three dimensional Euclidean space, where this
family of functionals consists of the volume, the surface area of the pattern, its integral mean
curvature, and the Euler characteristic or integral of the Gaussian curvature.

The additivity property of Minkowski functionals is well-suited and applicable in sev-
eral areas of statistical mechanics where systems have structures or properties that can be
decomposed and analyzed in a linear manner. Some scenarios where additivity ofMinkowski
functionals is suitable, and hence, effectively applied are homogeneous and isotropic systems.
Additivity is used in porous media or composite materials to quantify geometric properties
like volume, surface area, and connectivity. For well-separated pores or grains, the functional
is evaluated over the entire structure by summing of the functional values for each com-
ponent. This approach is useful in estimating properties such as permeability, mechanical
strength, and conductivity by decomposing the overall geometry into additive components.
In percolation theory, additivity is applicable in the analysis of disconnected clusters. For
systems below the percolation threshold, where clusters are typically separated and finite,
the additivity property allows easy computation of geometric measures by summing the
contributions of individual clusters. In materials science, Minkowski functionals are used to
describe the geometric features of grains. If the grains are mostly non-overlapping or exhibit
simple intersections, the additivity property is useful in characterizing grain growth, phase
boundaries, and interfaces in such materials, simplifying the calculation of volume, surface
area, and curvature. Summarizing, in systems where interactions are weak or the geometry
approximates simple shapes (like spheres or cubes), Minkowski functionals can be applied.
Assuming limited or negligible overlap, in density fields or point distributions, like Poisson
point processes or random tessellations, the Minkowski functionals for each region can be
summed to describe the global geometry.

Minkowski formalism offers robust morphological measures contributing to the introduc-
tion of order parameters characterizing pattern transitions in dissipative systems, dynamical
quantities characterizing spinodal decomposition, generalized molecular distribution func-
tions for the characterization of the atomic structure of simple fluids (see, e.g., Sect. 3 in
Mecke [37] and the references therein). Related statistical physical problems arising in these
fields can be solved applying mathematical properties of Minkowski functionals (e.g., com-
putation of virial coefficients and definition of accurate density functionals, prediction of
percolation thresholds, and formulation of general morphological models for complex flu-
ids based on the completeness of these additive functionals). Some drawbacks still must be
solved opening new research lines related to tractability of third and higher virial coefficients
in a cluster expansion; the improvement of the accuracy of threshold estimates based on
Minkowski functionals; the computation of analytic expressions of Minkowski functionals
beyond mean values of additive measures, and the definition of these functionals on lattices
and their associated second-order moments (see Sects. 4 and 5 in Mecke [37]).

The additivity property ofMinkowski functionals becomes a limitation in systems exhibit-
ing non-linear interactions, non-linear phase behavior (e.g., phase separation in binary fluids
or emulsions), fractal or self-similar structures (non-integer dimensions and scale-dependent
structures), complex topologies (the presence of higher-order holes, handles, or cavities),
overlapping particles in granular and disordered systems, systems with non-additive energy
contributions (e.g., curvature effects in membranes and vesicles involve non-linear energy
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terms), and complex percolation structures, where near the critical threshold, clusters exhibit
scale-free and non-linear growth. In these cases, additional tools, such as fractal analysis,
non-additive geometric measures, or topological data analysis (TDA), may complement or
replace the use of Minkowski functionals to better describe the system’s behavior.

The present paper considers a more general family of morphological measures allowing
the dynamical analysis of spatial random structures in physical systems, beyond the purely
spatial analysis previously developed in the literature, addressing the case where thresholds
can change over time. The asymptotic probabilistic properties of this extended family of geo-
metric functionals allow, in particular, the characterization and prediction of future spatial
configurations in random physical systems, providing basic quantities, like asymptoticmeans
and variances, that play a crucial role in morphological analysis. In the context of percolation
theory and Boolean model, our approach introduces a more flexible stochastic modelling of
spatial patterns incorporating structural changes over time induced by time-varying thresh-
olds.

It is worthwhile noticing the interest in Cosmology of the extended asymptotic spatiotem-
poral analysis ofMinkowski functionals addressed in this paper. Particularly, this analysis has
special significance in Cosmic Microwave Background (CMB) Radiation Variation studies
over time (see, e.g., Carones et al. [9], Duque et al. [12], Marinucci [34], among others).
The CMB encodes information from the Early Universe in the intensity and polarisation of
the light. The characterization of the statistical distribution of CMB plays a crucial role in
these studies. The analysis of morphological properties of CMB spherical maps is based on
completeness theorem, the invariance assumption under translations and rotations, and on
the additivity property of Minkowski functionals. Departure from Gaussianity or deviations
from isotropy assumption must be detected to validate statistical inference procedures, and
to discriminate between competitive scenarios for Big Bang dynamics. The central role of
Minkowski functionals in non-Gaussianity tests is well-known (see, e.g., Marinucci [34]). In
addition, Minkowski functionals allow to address computational burden, the ease of masking
or weighting data, and the analysis of deviations from different thresholds. To go beyond the
limited computation of Minkowski functionals to CMB temperature and weak lensing, in
Duque et al. [12], Minkowski functionals are applied to CMB polarisation data, introducing
a new formalism that incorporates spin effects. CMB polarisation field is decomposed into
two rotationally invariant fields, usually analyzed through their angular power spectra (see
Sect. 7). The angular power spectrum is not sensitive to the possible deviations from Gaus-
sianity or departure from statistical isotropy. This fact motivates the extended application of
Minkowski functionals to CMB polarisation data, exploiting their more efficient discrimi-
nation of Gaussian or isotropic deviations, with respect to the bispectrum, based on three
point correlation function, and trispectrum, based on four point correlation function (see also
Carones et al. [9] for further insights in the analysis of CMB polarisation intensity maps
from Minkowski functionals). The asymptotic probability distribution results derived in the
present paper, in particular, for spatiotemporal Minkowski functionals, provide new tools
for the derivation of a wider family of non-Gaussianity tests detecting changes or deviations
through time (see Sect. 7).

From a statistical point of view, the implementation of non-Gaussianity tests, in the spa-
tiotemporal context addressed in this paper, also requires the choice of a suitable parametric
scenario for the family of spatiotemporal covariance functions, characterizing the two point
correlation structure of the underlying spatiotemporal isotropic random field. Note that vari-
ances ofMinkowski functionals also depend on the parameters of these covariance functions.
In the context of spatiotemporal Gaussian randomfields (STGRFs), the Gneiting class of spa-
tiotemporal covariance functions offers a flexible nonseparable modelling framework (see
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Gneiting [14]). An extended formulation of Matérn covariance function family to the spa-
tiotemporal context can be achievedwithin this Gneiting class (see Bevilacqua et al. [6] for an
unified framework in the purely spatial case). See also Sect. 4.1, where additional examples
of Gneiting class of nonseparable spatiotemporal covariance functions are analyzed in the
illustration of Theorem 2, providing the asymptotic Gaussian distribution of spatiotemporal
Minkowski functionals.

1.2 State of the Art

Sojourn functionals were extensively analyzed since the nineties in the context of weak-
dependent random fields (see, e.g., Bulinski [7] and Ivanov and Leonenko [19]). Special
attention has been paid to the long-range dependent random field case (see Berman [5],
Leonenko [24], Leonenko and Olenko [26], Makogin and Spodarev [33], Marinucci et al.
[35], among others). Limit theorems for level functionals of stationary Gaussian processes
and fields constitute a major topic in this literature (see, e.g., Auffinger and Ben Arous [2],
Azäis and Wschebor [3], Cabaña [8], Estrade and León [13], Iribarren [18], Kratz and León
[21], Kratz andLeón [22],Marinucci andVadlamani [36], Slud [43]). These papers contribute
to the characterization of topological and geometrical properties of random fields, from the
analysis of morphological descriptors like the Euler characteristic of an excursion set, the
number of up-crossings at level u on a bounded closed cube of Rd , the probability of the
maximum to be greater than a given threshold u, or the analysis of anisotropy based on the
line integral with respect to the level curve at any threshold u (see also Müller [39], Kratz
and Vadlamani [23] and Pham [40]).

In the characterization of the asymptotic distribution of geometric functionals under LRD,
the limit results derived are based on reduction principle. This principle was first discov-
ered by Taqqu [44] (see also Dobrushin and Major [11], Leonenko et al. [29, 30], Taqqu
[45]). Theorem 1 in Leonenko and Ruiz-Medina [28] provides a general reduction principle,
under increasing domain asymptotics in time, leading to the limiting distributions of prop-
erly normalised integral functionals, when the underlying spatiotemporal Gaussian random
field displays LRD in time. The restriction of this Gaussian field to the sphere allows the
application of these results in the context of CMB analysis. In this spherical context, inter-
esting asymptotic results for sojourn functionals, under increasing domain asymptotics in
time, have been derived in Marinucci et al. [35], covering the cases where the underlying
spatiotemporal random field displays Short-Range Dependence (SRD) and LRD (see also
Marinucci and Vadlamani [36]). The special case of Hermite rank equal to two deserves
special attention, since this case can be connected with Chi-squared statistics, usually arising
in non-Gaussianity tests in CMB analysis (see, e.g., Marinucci [34]). See also Leonenko et
al. [29]. The results of this paper extend the asymptotic analysis achieved in the above cited
references to the case of increasing domain asymptotics in time and space, incorporating
moving thresholds (see Sect. 1.3 for more technical details).

1.3 Our Contribution

Up to our knowledge, the problem of determining, via reduction theorems, the asymptotic
probability distribution of integral functionals of nonlinear transformations of LRDSTGRFs,
under increasing domain asymptotics in space and time, has not been addressed in the current
literature. The extended analysis to the case of time-varying subordination, via a nonlinear
transformation dependingon the size of the temporal domain constitutes themain contribution
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of the present paper. First Minkowski functionals involving moving levels subordinated to
STGRFs arise as interesting particular case of this extended analysis. Namely, we restrict
our attention to the case where time domain is a temporal continuous interval [0, T ], and
�(T ) = T γ , γ ≥ 0, defines the scale factor of the homothetic transformation of a convex
compact set K ⊂ R

d ,with center at point 0 ∈ K .The case γ = 0was addressed in Leonenko
and Ruiz-Medina [28] (see also Marinucci and Vadlamani [36], where alternative conditions
were formulated in a Hilbert space framework, under a parametric modelling of spherical
scale dependent LRD). When γ = 1, our Theorem 1 extends Theorem 1 in Leonenko et al.
[29] to the spatiotemporal context (see also Leonenko et al. [30]).

In the second part of the paper, Theorem 3 provides a general reduction principle under
T -varying nonlinear transformations of Gaussian random fields, with, as before, T denoting
the size of the time interval. Additionally to the assumed conditions on LRD in the first part
of the paper, in the derivation of Theorem 4, the divergence rate of the moving threshold
parameter must be controlled at the logarithm scale by the increasing of the size T of the
temporal interval (see Condition 6). In that sense, the methodological approach adopted
in the proof of this result is not standard. This reduction principle characterizes the limit
Gaussian distribution of Minkowski functionals involving moving levels. The application
of the above results to the context of sojourn measures of spatiotemporal Gaussian random
fields restricted to the sphere is then contemplated, motivated by the current literature on
CMB radiation variation analysis.

The outline of the paper is now introduced. Some preliminary results on geometrical
probabilities are first reviewed in Sect. 2. Section3 derives the conditions for a general reduc-
tion principle under increasing domain asymptotics in time and in space (see Theorem 1). In
Sect. 4, Theorem2derives the asymptoticGaussian distribution of spatiotemporalMinkowski
functionals by applying reduction principle provided in Theorem 1. Some examples are also
analyzed, where subordination to STGRFs with nonseparable covariance function is con-
sidered. The case where geometric integral functionals are computed from a T -dependent
nonlinear transformations of a Gaussian random field is studied in Sect. 5 (see Theorem 3).
In Sect. 6, the asymptotic distribution of suitable normalized first Minkowski functionals
involving moving levels, under increasing domain asymptotics in space–time, is derived in
Theorem 4. The obtained results are applied in Sect. 7 to the case of γ = 0, when the under-
lying Gaussian spatiotemporal random field is the restriction to the sphere of a stationary in
time, and homogeneous and isotropic in space, STGRF.

2 Preliminaries

Under spatial isotropy, variance components in the chaotic expansion of spatiotemporal
geometric integral functionals can be computed from geometrical probabilities (see, e.g.,
Lord [31], Ivanov andLeonenko [19]). Some extended results can also be found inAharonyan
and Khalatyan [1], and the references therein. We now summarize them and introduce the
corresponding notation.

Let νd(·) be the Lebesgue measure in R
d , d ≥ 2, and K be a convex body in R

d , i.e.,
a compact convex set with non-empty interior with center at the point 0 ∈ K . Let D(K ) =
max {‖x − y‖, x, y ∈ K } be the diameter of K . Let also νd(K ) = |K | be the volume of
K , and νd−1(δK ) = Ud−1(K ) be the surface area of K , where δK is the boundary of K .

Note that for K = B(1) = {x ∈ R
d ; ‖x‖ ≤ 1} is the unit ball, and δK = Sd−1(1) = {x ∈
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R
d ; ‖x‖ = 1} is the unit sphere, then D(B(1)) = 2, and |B(1)| = πd/2

�
(
d
2 +1

) , Ud−1(B(1)) =

|Sd−1| = 2π
d
2

�
(
d
2

) .

Let�(T )K be a homothetic transformation of body K with center 0 ∈ K , and coefficient
or scaling factor�(T ) > 0.Weassume that�(T ) = T γ , γ ≥ 0. Then, |�(T )K | = |K |T γ d .

Following the approach presented in Lord [31] (see also Ivanov and Leonenko [19]), the
probability density ψ�(T ),B(1)(z) of the random variable Z = ρB(1) = ‖P1 − P2‖, with P1
and P2 being two independent random points with uniform distribution in B(1), is given by,
for 0 ≤ z ≤ 2T γ ,

ψ�(T ),B(1)(z) = d

[�(T )]d z
d−1 I

1−
(

z
2�(T )

)2
(
d + 1

2
,
1

2

)
, (1)

in terms of the incomplete beta-function

Iμ(p, q) = �(p + q)

�(p)�(q)

∫ μ

0
t p−1(1 − t)q−1dt, μ ∈ (0, 1]. (2)

In formula (2.6) in Aharonyan and Khalatyan [1], an extended version of the probability
density of the distance between two independent uniformly distributed points in a convex
body K in R

d is derived, applying an alternative methodology to Lord [31] for the case of
hyperspheres. Specifically, let J be the space of all straight lines inRd , and dγ is an element
of a locally finite measure in the space J , which is invariant, with respect to the group M of
all Euclidean motions in the space Rd (the uniform measure on J ). Let also FK (v) be the
chord length distribution function of body K , defined as

FK (v) = 2(d − 1)

|Sd−2|
∫

|χ(γ )|≤v

dγ,

where χ(γ ) = γ ∩ K is a chord in K . Then, for 0 ≤ z ≤ D(K ),

ψρK (z) = 1

|K |2
[
zd−1|Sd−1||K | − zd−1|Sd−2|Ud−1(K )

d − 1

∫ z

0
(1 − FK (v)) dv

]
. (3)

From (3), we also have, for 0 ≤ z ≤ D(�(T )K ),

ψ�(T ),K (z) = ψρ�(T )K (z) = 1

[(|K |[�(T )]d)]2
[(

|K |[�(T )]d
)
zd−1|Sd−1|

−|Sd−2|zd−1Ud−1(�(T )K )

d − 1

∫ z

0

(
1 − F�(T )K (v)

)
dv

]
. (4)

3 Reduction Theorems for Spatiotemporal Random Fields with LRD

We consider the spatiotemporal random field Z : (� × R
d × R

) −→ R, with (�,A, P)

denoting the basic probability space.

Condition 1. Assume that Z is a measurable mean-square continuous homogeneous and
isotropic in space and stationary in time Gaussian random field with

E[Z(x, t)] = 0, E[Z2(x, t)] = 1

C̃(‖x − y‖, |t − s|) = E [Z(x, t)Z(y, s)] ≥ 0.
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Under Condition 1, one can write

C(z, τ ) = C̃(‖x − y‖, |t − s|), z = ‖x − y‖ ≥ 0, τ = |t − s| ≥ 0,

where C denotes the covariance function as a function of the arguments z and τ, respectively
representing the norm of the spatial argument, and the absolute value of the time argument.
While C̃ means that we are considering the values of the covariance function depending on
the input arguments x − y ∈ R

d and t − s ∈ R.

Remark 1 The non-negativeness condition of the covariance function has been usually
assumed in the literature of LRD stationary Gaussian processes, and isotropic random fields
during nineties, as standard assumption in reduction theorems, leading to central and non-
central limit results for integral functionals of nonlinear transformations of Gaussian random
fields. For an alternative approach in the derivation of limit results for weighted nonlinear
transformations of LRD Gaussian stationary processes we refer the reader to Ivanov et al.
[20]. See also Mainia and Nourdin [32], where the application of the Malliavin-Stein method
and Fourier analysis techniques in the derivation of spectral limit theorems is considered.
The general setting of product of spatial domains of different dimensions requiring different
scaling factors is also analyzed in Leonenko et al. [25].

Let Z ∼ N (0, 1) be a standard Gaussian random variable with density

φ(w) = 1√
2π

exp

(
−w2

2

)
, w ∈ R, �(u) =

∫ u

−∞
φ(w)dw.

Let G(z) be a real-valued Borel function satisfying

Condition 2. EG2(Z(x, t)) < ∞.

Under Condition 2, G admits a chaotic expansion in terms of the normalized Hermite
polynomials in the Hilbert space L2(R, φ(u)du) of square integrable functions with respect
to the standard Gaussian measure. This expansion is given by

G(z) =
∞∑
n=0

Jn

n! Hn(z), Jn =
∫

R

G(z)Hn(z)φ(z)dz,

where the Hermite polynomial of order n, denoted by Hn(z), is defined by the equation
dn
dzn φ(z) = (−1)nHn(z)φ(z). Note that H0 = 1, H1(z) = z, and H2(z) = z2 − 1, . . .

Following Taqqu [44], we will introduce the following condition:

Condition 3. The Hermite rank of the function G is m ≥ 1. Hence, for m = 1, J1 �= 0, or
for m ≥ 2, J1 = · · · = Jm−1 = 0, Jm �= 0 (see also Taqqu [45]).

UnderCondition 3, the following spatiotemporal integral functional of Z(x, t) is defined:

AT =
∫ T

0

∫

�(T )K
G(Z(x, t))dxdt = J0 +

∑
n≥m

Jn

n! ξn,T

E[AT ] =
∫ T

0

∫

�(T )K
J0dxdt = J0|T ||K |[�(T )]d

ξn,T =
∫ T

0

∫

�(T )K
Hn(Z(x, t))dxdt

E[ξn,T ] = 0, E[ξn,T ξl,T ] = 0, n �= l, n, l ≥ m, (5)
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where, as given in Condition 3, m denotes the Hermite rank of function G, and the integrals
are interpreted in the mean square sense.

Thus, for n ≥ m,

σ 2
n,K (T ) = Var(ξn,T )

= 2n!T
∫ T

0

(
1 − τ

T

) ∫

K�(T )×K�(T )

C̃n(‖x − y‖, τ )dτdxdy

= 2n!T |K�(T )|2
∫ T

0

(
1 − τ

T

)
E
[
C̃n (‖P1 − P2‖, τ )

]
dτ

= 2n!T |K |2T 2γ d
∫ T

0

(
1 − τ

T

) ∫ D(K�(T ))

0
ψ�(T ),K (z)Cn(z, τ )dzdτ,

(6)

where ψ�(T ),K (z), denotes, as before, the probability density of the random variable
ρ�(T )K = ‖P1 − P2‖, where P1 and P2 are two independent random points with uniform
distribution in �(T )K . In particular, from Eq. (1), for K = B(1), for 0 ≤ z ≤ 2T γ ,

ψT γ ,B(1)(z) = d

T γ d
zd−1 I

1−
(

z
2T γ

)2
(
d + 1

2
,
1

2

)
, (7)

in terms of the incomplete beta function (2). Thus,

σ 2
m,B(1)(T ) = Var

(∫ T

0

∫

�(T )B(1)
Hm (Z(x, t))

)
dxdt

= 2m!T |B(1)|2[�(T )]2d
∫ T

0

(
1 − τ

T

) ∫ D(K�(T ))

0
Cm(z, τ )

×
[

d

[�(T )]d z
d−1 I

1−
(

z
2�(T )

)2
(
d + 1

2
,
1

2

)]
dzdτ

= 2m!|B(1)|2dT γ d+1
∫ T

0

(
1 − τ

T

)

×
∫ 2T γ

0
zd−1Cm(z, τ )I

1−
(

z
2T γ

)2
(
d + 1

2
,
1

2

)
dzdτ

= 8m! πd

d�2
( d
2

)T γ d+1
∫ T

0

(
1 − τ

T

) ∫ 2T γ

0
zd−1Cm(z, τ )

×I
1−

(
z

2T γ

)2
(
d + 1

2
,
1

2

)
dzdτ. (8)

Remark 2 In the following,wewill applyLord (1954) results on the derivation of the probabil-
ity density of the distance between two independent uniform points in hypersheres. Consider
the positive constants F1 and F2 respectively defining the supremum and infimum of the
radius of the balls such that the following inclusions hold

F1B (1) ⊆ K ⊆ F2B (1) . (9)

From Eqs. (4)–(6) in Lord (1954),

C1ψT γ ,B(S1) ≤ ψT γ ,K ≤ C2ψT γ ,B(S2), 0 ≤ C1 ≤ C2, (10)
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where ψT γ ,K (z) denotes the probability density of the random variable ρKT γ = ‖P1 − P2‖,
with P1 and P2 being two independent random points with uniform distribution in KT γ . As
before, K denotes a compact convex set with non-empty interior, and with center at the point
0 ∈ K . In particular, B (Si ) denotes the ball with center 0 ∈ B (Si ) , and radius Si , i = 1, 2,
according to constants Fi , i = 1, 2, in Eq. (9).

The following additional condition will be assumed.
Condition 4.

(i) C(z, τ ) → 0, if max{z, τ } → ∞.

(ii) For some fixed m ∈ {1, 2, 3 . . . }, there exist δ1 ∈ (0, 1) and δ2 ∈ (0, 1) such that for
�(T ) = T γ , for certain γ ≥ 0,

lim
T→∞

σ 2
m,K (T )

T 1+δ1T γ d(1+δ2)
= ∞.

From Remark 2 (see also Eqs. (6), (8) and (10)), it is straightforward that Condition 4(ii)
holds if there exist δ1 ∈ (0, 1) and δ2 ∈ (0, 1) such that as T → ∞,

1

T δ1+γ dδ2

∫ T

0

(
1 − τ

T

) ∫ 2T γ

0
zd−1Cm(z, τ )I

1−
(

z
2T γ

)2
(
d + 1

2
,
1

2

)
dzdτ → ∞.

(11)

In the subsequent development, Condition 4(ii) will be verified in terms of Eq. (11).

Remark 3 Condition 4 and Eq. (11) mean that the spatiotemporal Gaussian random field
Z displays LRD in space and time. The general reduction principle provided in Theorem
1 essentially follows from this condition, for any function G ∈ L2(R, φ(u)du), under the
Gaussian scenario introduced in Condition 1 (see also Eq. (28) in the proof of this result).
This fact is illustrated in Sects. 3.1 and 4.1. Specifically, the case of separable covariance
functions in space and time is considered in Sect. 3.1. In this case, Condition 4(ii) holds for
0 < A < 1/m, and 0 < α̃ < d/m (see Eqs. (14) and (16)), which corresponds to the case of
LRD in time and space. The nonseparable covariance function case is illustrated in Sect. 4.1
within the Gneiting covariance function class (see Eqs. (30)–(34)). The sufficient conditions
considered, 0 < δ2 < 1 − αβ

γ
< 1, 0 < δ1 < 1 − 2γ̃ (γ − 2αβ) < 1, in the first example,

and 0 < δ2 < 1 − αβ
γ

< 1, 0 < δ1 < 1 − 2νγ̃ (γ − 2αβ) < 1, in the second example,
reflect LRD in time and space, involving space–time interaction in the restrictions on the LRD
parameters α, β (time), γ̃ , ν (space), as well as on the shape parameter γ characterizing the
scaling factor of the homothetic transformation of K ⊂ R

d .Note that, in both cases separable
and nonseparable covariance function cases, the LRD parameter are involved in the variance
of Minkowski functionals.

3.1 Separable Covariance Functions

For the case of separable spatiotemporal covariance functions in the unit ball,

C(z, τ ) = CSpace(z)CTime(τ ),

we have
σ 2
m,B(1)(T ) = m!b1m(T )b2m(T ), (12)
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where

b1m(T ) = 2T
∫ T

0

(
1 − τ

T

)
Cm
T ime(τ )dτ

b2m(T ) = |B(1)|2dT γ d
∫ 2T γ

0
zd−1Cm

Space(z)I1−
(

z
2T γ

)2
(
d + 1

2
,
1

2

)
dz.

Then, in the weak dependent case in time, i.e., when the temporal covariance function is
absolutely integrable, as T → ∞, we obtain

b1m(T ) = 2L1T (1 + o(1))

L1 =
∫ ∞

0
Cm
T ime(τ )dτ < ∞,

∫ ∞

0
Cm
T ime(τ )dτ �= 0. (13)

Suppose that for some bounded slowly varying functions at infinity L1(τ ) :

CTime(τ ) = L1(τ )

τ A
, A > 0. (14)

Then,

b1m(T ) = 2T
∫ T

0

(
1 − τ

T

) [L1(τ )

τ A

]m
dτ.

Under covariance model (14), Eq. (13) holds for A > 1/m, corresponding to the weak-
dependent case in time. For A = 1

m , b1m(T ) = 2T log(T )Lm
1 (T )(1 + o(1)). While for

0 < A < 1
m , applying the change of variable x = τ

T ,

b1m(T ) = 2T 2−mALm
1 (T )

∫ 1

0

L1(xT )

Lm
1 (T )

1

x Am
(1 − x)dx

= 2L2T
2−mALm

1 (T )(1 + o(1))

L2 =
[∫ 1

0
(1 − τ)τ−Amdτ

]
= [(1 − mA)(2 − Am)]−1 . (15)

Similarly, as T → ∞, under weak-dependence in space, i.e., when the spatial covariance
function is absolutely integrable over the spatial domain,

b2m(T ) = L3T
dγ (1 + o(1)),

where

L3 = |B(1)|2d
∫ ∞

0
zd−1Cm

Space(z)dz < ∞
∫ ∞

0
zd−1Cm

Space(z)dz �= 0.

Furthermore, if for some bounded slowly varying functions at infinity L(z) :

CSpace(z) = L(z)

zα̃
, α̃ > 0, (16)

then, for α̃ = d
m ,

b2m(T ) = |B(1)|2dT γ d
∫ 2T γ

0
zd−1

[L(z)

zα̃

]m
I
1−

(
z

2T γ

)2
(
d + 1

2
,
1

2

)
dz

= L4T
γ d log(T γ )Lm(T γ )(1 + o(1)),
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with L4 = 4πd

d�2(d/2)
. For 0 < α̃ < d

m , considering the change of variable u = z
T γ

b2m (T ) = |B(1)|2dT γ d
∫ 2T γ

0
zd−1

[L(z)

zα̃

]m
I
1−

(
z

2T γ

)2
(
d + 1

2
,
1

2

)
dz

= |B(1)|2dT γ (2d−mα̃)Lm (T γ )

∫ 2

0
ud−1

(Lm (T γ u)

Lm (T γ )
− 1 + 1

)
I
1−( u

2
)2
(
d + 1

2
,
1

2

)
du

= |B(1)|2dT γ (2d−mα̃)Lm (T γ )

[∫ 2

0
ud−1 I

1−( u
2
)2
(
d + 1

2
,
1

2

)
du

+
∫ 2

0
ud−1

(Lm (T γ u)

Lm (T γ )
− 1

)
I
1−( u

2
)2
(
d + 1

2
,
1

2

)
du

]

= L5T
γ (2d−mα̃)Lm (T γ )(1 + o(1)), (17)

where

L5 = 2d−mα̃+1πd− 1
2 �

( d−mα̃+1
2

)

(d − mα̃)�
( d
2

)
�
( 2d−mα̃+2

2

) ,

since
∫ 2

0
ud−1 I1−( u

2 )
2

(
d + 1

2
,
1

2

)
du = 2d

∫ 1

0
wd−1 I1−w2

(
d + 1

2
,
1

2

)
dw

= 2d

B
( d+1

2 , 1
2

)
∫ 1

0

∫ 1−w2

0
wd−1t

d−1
2 (1 − t)−1/2dtdw

= 2d

B
( d+1

2 , 1
2

)
∫ 1

0
t
d−1
2 (1 − t)−1/2

[∫ √
1−t

0
wd−1dw

]
dt

= 2d

dB
( d+1

2 , 1
2

)
∫ 1

0
(1 − t)(d−1)/2t

d−1
2 dt

= 2d B
( d+1

2 , d+1
2

)

dB
( d+1

2 , 1
2

) ,

and

lim
T→∞

∫ 2

0
ud−1

(Lm(T γ u)

Lm(T γ )
− 1

)
I1−( u

2 )
2

(
d + 1

2
,
1

2

)
du = 0 (18)

(see also Lemma 2.1.3 of Ivanov and Leonenko [19]).
Summarizing, for the introduced separable covariance function family, when K = B(1),

Condition 4(ii) holds in the following cases:
From Eq. (12), when γ = 0, and 0 < A < 1

m ,

σ 2
m,B(1)(T ) = m!L2T

2−mALm
1 (T )(1 + o(1)), (19)

hence,

lim
T→∞

σ 2
m,B(1)(T )

T 1+δ1
= ∞, (20)

for 0 < δ1 < 1 − mA < 1, in the case of LRD in time. This case has been considered by
Leonenko and Ruiz-Medina [28]. While for γ > 0, 0 < A < 1

m , and 0 < α̃ < d
m ,

σ 2
m,B(1)(T ) = m!L2L5T

2−mALm
1 (T )T γ (2d−mα̃)Lm(T γ )(1 + o(1)), (21)
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and

lim
T→∞

σ 2
m,B(1)(T )

T 1+δ1T γ d(1+δ2)
= ∞,

for 0 < δ1 < 1 − mA < 1, and 0 < δ2 < 1 − (mα̃)/d < 1, in the case of LRD in time and
space. For the remaining cases,

lim
T→∞

σ 2
m,B(1)(T )

T 1+δ1T γ d(1+δ2)
= 0, (22)

for any δi > 0, i = 1, 2, and Condition 4(ii) does not hold.

Theorem 1 Under Conditions 1,2,3 and 4, the random variables

YT = [AT − E[AT ]]
|Jm |σm,K (T )/m! (23)

and

Ym,T = sgn(Jm)
∫ T
0

∫
T γ K Hm(Z(x, t))dxdt

σm,K (T )
(24)

have the same limiting distributions as T → ∞ (if one of them exists).

Proof We consider the decomposition AT − E[AT ] = S1,T + S2,T , where

S1,T = Jm

m! ξm,T , S2,T =
∞∑

n=m+1

Jn

n! ξn,T ,

∞∑
n=m

J 2
n

n! < ∞. (25)

From (5),
Var(AT ) = Var[S1,T ] + Var[S2,T ], (26)

and we will prove that Var[S2,T ]/σ 2
m,K�(T )(T ) → 0, T → ∞.

From Condition 4(i),

sup
(z,τ )∈Bδ1,δ2

T

C(z, τ ) → 0, T → ∞

Bδ1,δ2
T = {(z, τ ); τ ≥ T δ1 or z ≥ T γ δ2}. (27)

Furthermore, for the set

B
δ1,δ2
T = {

(z, τ ); 0 ≤ τ ≤ T δ1 , 0 ≤ z ≤ T γ δ2
}
,

one can use the estimate Cm+1(z, τ ) ≤ 1. Let us consider δ1 ∈ (0, 1), δ2 ∈ (0, 1) as in
Condition 4. Then, from Eq. (6),

Var(S2,T ) =
∞∑

n=m+1

J 2
n

(n!)2 σ 2
n,K (T )

≤ k1

{
T 1+γ 2d

[∫

B
δ1,δ2
T

+
∫
B

δ1,δ2
T

](
1 − τ

T

)
Cm+1(z, τ )ψT γ ,K (z)dzdτ

}
,
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for some positive constant k1 > 0,wherewe have used
∑∞

n=m
J 2
n
n! < ∞, andCm+l ≤ Cm+1,

for l ≥ 2, since C(z, τ ) ≤ 1, under Condition 1. We then obtain for some positive constants
k2, k3, k4, keeping in mind equation (6), and Remark 2

Var(S2,T ) ≤ k2

⎧
⎨
⎩k3T

1+δ1 [T γ ]d(1+δ2)

+ k4T
1+γ 2d sup

(z,τ )∈Bδ1,δ2
T

{C(z, τ )}
∫

B
δ1,δ2
T

(
1 − τ

T

)
Cm(z, τ )ψT γ ,K (z)dzdτ

⎫⎬
⎭ .

Hence, as T → ∞,

Var(S2,T )

σ 2
m,K (T )

≤ k5

⎧
⎪⎨
⎪⎩

1
σ 2
m,K (T )

T 1+δ1T γ d(1+δ2)

+ k6 sup
(z,τ )∈Bδ1,δ2

T

{C(z, τ )}

×
∫
B

δ1,δ2
T

(
1 − τ

T

)
Cm(z, τ )ψT γ ,K (z)dzdτ

∫
B

δ1,δ2
T ∪B

δ1,δ2
T

(
1 − τ

T

)
Cm(z, τ )ψT γ ,K (z)dzdτ

⎫⎬
⎭ → 0,

(28)

where we have applied that from Condition 1, for all T > 0,
∫
B

δ1,δ2
T

(
1 − τ

T

)
Cm(z, τ )ψT γ ,K (z)dzdτ

∫
B

δ1,δ2
T ∪B

δ1,δ2
T

(
1 − τ

T

)
Cm(z, τ )ψT γ ,K (z)dzdτ

≤ 1,

and that from Condition 4(i), sup
(z,τ )∈Bδ1,δ2

T
{C(z, τ )} → 0, T → ∞, as well as from

Condition 4(ii) (see also Remark 2 and Eq. (11))

σ 2
m,K (T )

T 1+δ1T γ d(1+δ2)
→ ∞

as T → ∞. From Eqs. (25), (26) and (28),

Var
(
YT − Ym,T

) → 0, T → ∞, (29)

as we wanted to prove. ��
Remark 4 From Eq. (29), if the limit exists, YT and Ym,T have the same limit in probability,
and hence, in distribution.

4 Sojourn Functionals for Spatiotemporal Fields

We consider the first Minkowski functional

M1(T ) = ∣∣{0 ≤ t ≤ T , x ∈ T γ K ; Z(x, t) ≥ u
}∣∣

=
∫ T

0

∫

T γ K
Gu(Z(x, t))dxdt, u ≥ 0, γ ≥ 0,

where Gu(z) = Iz≥u, that is, Gu(Z(x, t)) is the indicator function of the set
{
0 ≤ t ≤ T , x ∈ T γ K ; Z(x, t) ≥ u

}
.
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Then,

E[M1(T )] = (1 − �(u))T |K |T γ d

Jq(u) = φ(u)Hq−1(u), q ≥ 1,

and from Theorem 1 with m = 1 we arrive to the following result.

Theorem 2 Under Conditions 1–4 with m = 1, the random variable
{
M1(T ) − (1 − �(u))|K |T 1+γ d

}

×
⎛
⎝φ(u)

[
2|K |2T 1+2γ d

∫ T

0

(
1 − τ

T

) ∫ D(T γ K )

0
C(z, τ )ψT γ ,K (z)dzdτ

]1/2
⎞
⎠

−1

converges to a standard normal distribution as T → ∞.

Note that the case γ = 0 was proved in Theorem 1 of Leonenko and Ruiz-Medina [28].
In particular, for the ball K = B(1) ⊂ R

d , the random variable
{
M1(T ) − (1 − �(u))πd/2T 1+γ d

[
�

(
d

2
+ 1

)]−1
}[

φ(u)
[
(8πd�−2 (d/2) (1/d))

×T 1+γ d
∫ T

0

(
1 − τ

T

) ∫ 2T γ

0
zd−1C(z, τ )I

1−
(

z
2T γ

)2
(
d + 1

2
,
1

2

)
dzdτ

]1/2
⎤
⎦

−1

is asymptotically distributed as a standard normal random variable, as T → ∞.

4.1 Examples

Let us analyze Condition 4(ii) with m = 1 for nonseparable covariance functions in the
Gneiting class (see Gneiting [14]). This family of covariance functions is given by

C̃(‖x‖ , τ ) = σ 2

[ψ(τ 2)]d/2 ϕ

(
‖x‖2
ψ(τ 2)

)
, σ 2 ≥ 0, (x, τ ) ∈ R

d × R, (30)

in terms of a completely monotone function ϕ and a positive function ψ(u), u ≥ 0, with a
completely monotone derivative. We will analyze two special cases of functions ϕ and ψ in
(30) in the following two examples.

4.1.1 Example 1

Let us consider the one-parameter Mittag–Leffler function Eν, for 0 < ν ≤ 1, which is a
completely monotone function (see, e.g., Gorenflo et al. [15], Haubold et al. [17]), given by

Eν(z) =
∞∑
k=0

zk

�(kβ + 1)
, z ∈ C, 0 < β < 1.

Let function ϕ in Eq. (30) be defined as

ϕν(z) = Eν(−zγ̃ ), 0 < ν ≤ 1, 0 < γ̃ < 1, (31)
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for nonnegative argument z ≥ 0. This function is a complete monotone function, that is,

(−1)r
dr

dzr
ϕν(z) ≥ 0,

for all r = 0, 1, 2, . . . , and 0 < ν ≤ 1 (see Barndoff-Nielsen and Leonenko [4]). From
Theorem 4 in Simon [42], for z ∈ R+, that is, for z ∈ R and z ≥ 0, and ν ∈ (0, 1),

1

1 + �(1 − ν)z
≤ Eν(−z) ≤ 1

1 + [�(1 + ν)]−1z
. (32)

The function ψ(τ) = (1 + aτα)β, a > 0, 0 < α ≤ 1, 0 < β ≤ 1, τ ≥ 0, has completely
monotone derivatives (see Gneiting [14]).

From Eqs. (7) and (32),

∫ T

0

(
1 − τ

T

) ∫ 2T γ

0
zd−1C(z, τ )I

1−
(

z
2T γ

)2
(
d + 1

2
,
1

2

)
dzdτ

≥
∫ T

0

(
1 − τ

T

) ∫ 2T γ

0

zd−1σ 2

(aτ 2α + 1)βd/2[1 + �(1 − ν)
(
z2γ̃ /((aτ 2α + 1)βγ̃ )

)]
×I

1−
(

z
2T γ

)2
(
d + 1

2
,
1

2

)
dzdτ

= T 1+γ d−αβd−2γ̃ γ+2αβγ̃

∫ 1

0
(1 − u)

∫ 2

0

xd−1σ 2

(au2α + T−2α)βd/2

×
I1−( x

2 )
2
( d+1

2 , 1
2

)

T 2αβγ̃−2γ̃ γ + �(1 − ν)
[
x2γ̃ /(au2α + T−2α)βγ̃

]dudx,
(33)

where the last equality in Eq. (33) has been obtained by applying the change of variables
τ = Tu and z = T γ x . From ( 33),Condition 4(ii) holds if 1+γ d −αβd −2γ γ̃ +2αβγ̃ >

γ dδ2 + δ1 for some δ1, δ2 ∈ (0, 1). In particular, a sufficient condition for Condition 4(ii)
to hold is γ > αβ, and γ̃ < 1

2(γ−αβ)
. Under this condition, one can consider, for instance,

γ d − αβd > γ dδ2, and 1 − 2γ γ̃ + 2αβγ̃ > δ1, and hence, 0 < δ2 < 1 − αβ
γ

< 1,
0 < δ1 < 1 − 2γ̃ (γ − 2αβ) < 1.

4.2 Example 2

Consider now, in Eq. (30),

ϕ(z) = 1

(1 + c̃zγ̃ )ν
, z > 0, c̃ > 0, 0 < γ̃ ≤ 1, ν > 0

ψ(τ) = (1 + aτα)β, a > 0, 0 < α ≤ 1, 0 < β ≤ 1, τ ≥ 0. (34)

It is known that the function ϕ(z) is completely monotone while, as before, functionψ(τ)

has completely monotone derivatives. We restrict our attention to the ball B(1). In a similar
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way to Eq. (33), one can obtain
∫ T

0

(
1 − τ

T

) ∫ 2T γ

0
zd−1C(z, τ )I

1−
(

z
2T γ

)2
(
d + 1

2
,
1

2

)
dzdτ

= T 1+γ d−αβd−2γ̃ γ ν+2αβγ̃ ν

∫ 1

0
(1 − u)

∫ 2

0

xd−1σ 2

(au2α + T−2α)βd/2

×
I1−( x

2 )
2
( d+1

2 , 1
2

)

T 2αβγ̃ ν−2γ̃ γ ν + c̃
[
x2γ̃ ν/(au2α + T−2α)βγ̃ ν

]dudx .
(35)

Condition 4(ii) is then satisfied if 1+γ d−αβd−2γ γ̃ ν+2αβγ̃ ν > γ dδ2+δ1, for some
δ1, δ2 ∈ (0, 1). In particular, a sufficient condition for Condition 4(ii) to hold is γ > αβ, and
γ̃ ν < 1

2(γ−αβ)
. Under this condition, one can consider, for instance, γ d −αβd > γ dδ2, and

1−2γ γ̃ ν+2αβγ̃ ν > δ1, leading to 0 < δ2 < 1− αβ
γ

< 1, 0 < δ1 < 1−2νγ̃ (γ −2αβ) < 1.

5 Reduction Theorem for Time Varying Subordination

For each fixed T > 0, let GT ∈ L2(R, φ(z)dz) such that

GT (z) =
∞∑
q=0

Jq(T )

q! Hq(z), Jq(T ) =
∫

R

GT (z)Hq(z)φ(z)dz.

For example, one can consider the indicator function with moving threshold,

GT (Z(x, t)) = IZ(x,t)≥u(T ),

or, equivalently,
GT (z) = Iz≥u(T ) ∈ L2(R, φ(z)dz),

for each fixed T > 0. Here, u : R+ → R be such that u(T ) → ∞, as
T → ∞, and GT (z) admits the following orhogonal expansion in terms of Hermite polyno-
mials:

J0(T ) =
∫ ∞

u(T )

φ(ξ)dξ = 1 − �(u(T ))

Jq(T ) =
∫ ∞

u(T )

Hq(x)φ(x)dx = Hq−1(u(T ))φ(u(T )), q ≥ 1. (36)

In the subsequent development, we consider the general case of a T -varying nonlinear
transformation GT ∈ L2(R, φ(z)dz). We then analyze the asymptotic behavior of the func-
tional

A(T ) =
∫ T

0

∫

�(T )K
GT (Z(x, t))dxdt =

∞∑
n=0

Jn(T )

n! ξn(T ), (37)

where, as before, �(T ) = T γ , γ ≥ 0, and

ξn(T ) =
∫ T

0

∫

T γ K
Hn(Z(x, t))dxdt, ∀n ∈ N, T > 0.
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The mean and variance can be computed as follows:

E[A(T )] = T 1+γ d |K |J0(T ).

Var(A(T )) = E[A(T ) − E[A(T )]]2 =
∞∑

q=m

J 2
q (T )

(q!)2 σ 2
q,K�(T )(T ), (38)

where

σ 2
q,�(T )K (T ) = 2q!T |K |2T 2dγ

∫ T

0

(
1 − τ

T

) ∫ D(T γ K )

0
Cq(z, τ )ψT γ K (z)dzdτ. (39)

We assume that function GT has Hermite rank m ≥ 1, for every T > 0, i.e., Condition 3 is
satisfied. The derivation of Theorem 3 is obtained under the following additional condition.

Condition 5. For some m ≥ 1,

limT→∞
Var(A(T ))

J 2
m (T )

(m!)2 σ 2
m,K�(T )(T )

≤ 1. (40)

The technical nature of Condition 5 does not hinder its verification in practice, as follows
from the proof of Theorem 4, where this condition is proved to hold for spatiotemporal
Minkowski functionals with moving levels.

Theorem 3 Under Eq. (40) in Condition 5,

Y (T ) = [A(T ) − E[A(T )]]
|Jm(T )|σm,T γ K (T )/m! (41)

and

Ym(T ) = sgn(Jm(T ))
∫ T
0

∫
T γ K Hm(Z(x, t))dxdt

σm,T γ K (T )
(42)

have the same limiting distributions as T → ∞ (if one of them exists).

Proof The proof is straightforward from Condition 5. Specifically, from Eq. (38),

Var(A(T )) ≥ J 2
m(T )σ 2

m,�(T )K (T )

(m!)2 . (43)

Considering R(T ) = Y (T ) − Ym(T ), or, equivalently, Y (T ) = R(T ) + Ym(T ), since
Var(Ym(T )) = 1, from Eq. (43 ), under Eq. (40),

1 = limT→∞
Var(A(T ))

J 2
m (T )

(m!)2 σ 2
m,K�(T )(T )

= 1 + limT→∞Var(R(T )).

Thus, limT→∞ Var(R(T )) = 0 (if the limit exists). ��
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6 First Minkowski Functional with Moving Level

We consider the geometric functional

M(T ) = ∣∣{0 ≤ t ≤ T , x ∈ T γ K ; Z(x, t) ≥ u(T )
}∣∣

=
∫ T

0

∫

T γ K
IZ(x,t)≥u(T )dxdt

= (1 − �(u(T ))) |K |T γ d +
∞∑
q=1

Jq(T )

q!
∫ T

0

∫

T γ K
Hq(Z(x, t))dxdt, (44)

where
Jq(T ) = φ(u(T ))Hq−1(u(T )),

and u(T ) is a continuous function such that u(T ) → ∞, as T → ∞.

In the next result, the following condition is assumed:

Condition 6. Assume thatCondition 4 is satisfied, and u(T ) is such that u2(T ) = o(log(T )),

and u2(T ) sup
(z,τ )∈Bβ1,β2

T
C(z, τ ) → 0, as T → ∞, where

Bβ1,β2
T = {(z, τ ); τ ≥ T β1 or z ≥ T γβ2}, (45)

for some β1 ∈ (0, δ1), β2 ∈ (0, δ2).

Remark 5 Note that, for

�(T ) = T γ , γ ≥ 0, u2(T ) = o(log(T [�(T )]d)) = o((γ d + 1) log(T )), T → ∞,

if and only if u2(T ) = o(log(T )). In particular, for any εi > 0, i = 1, 2, u2(T ) =
o(log(T ε1 [�(T )]dε2)) = o((γ dε2 + ε1) log(T )) = o(log(T )).

Remark 6 Note that the set Bδ1,δ2
T introduced in Eq. (27) is not included in the set family{

Bβ1,β2
T , β1 ∈ (0, δ1), β2 ∈ (0, δ2)

}
. This set family is considered in the proof of Theorem

4 (see Eqs. (52)–(53)), to applyCondition 6 incorporatingCondition 4(ii) (see also Remark
5).

Theorem 4 Under Conditions 1–3, and Condition 6, as T → ∞, the random variables

M(T ) − T 1+γ d |K |(1 − �(u(T )))

φ(u(T ))
[
2T |K |2T 2γ d

∫ T
0

(
1 − τ

T

) ∫D(T γ K )

0 C(z, τ )ψρT γ K (z, τ )dzdτ
]1/2

and ∫ T
0

∫
T γ K Z(x, t)dxdt

[
2T |K |2T 2dγ

∫ T
0

(
1 − τ

T

) ∫D(T γ K )

0 C(z, τ )ψρT γ K (z, τ )dzdτ
]1/2

have the same asymptotic distribution, that is, a standard normal distribution, where M(T )

has been introduced in (44).
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Proof It is known that for bivariate normal density (see, e.g.,Eq. 10.8.3 in Cramer and Lead-
better [10])

φ(x, y, ρ) = 1

2π
√
1 − ρ2

exp

(
− 1

2(1 − ρ2)
(x2 + y2 − 2ρxy)

)
, (46)

the following identity holds:

∫ ∞

u(T )

∫ ∞

u(T )

φ(x, y, ρ)dxdy

=
(∫ ∞

u(T )

φ(y)dy

)2

+ 1

2π

∫ ρ

0
exp

(
−u2(T )

1 + v

)
dv√
1 − v2

. (47)

In our case, in Eq. (47), ρ = C̃(‖x − y‖, |t − s|), we then obtain

E[M(T )] = (1 − �(u(T )))|K |T 1+γ d

E[M2(T )] =
∫

[0,T ]×[0,T ]

∫

T γ K×T γ K
E
[
IZ(x,t)>u(T )IZ(y,s)>u(T )

]
dxdydtds

=
∫

[0,T ]×[0,T ]

∫

T γ K×T γ K

∫ ∞
u(T )

∫ ∞
u(T )

φ(u, w, ρ)dudwdxdydtds

= T 2+2dγ |K |2
[∫ ∞

u(T )
φ(u)du

]2

+ 1

2π

∫ T

0

∫ T

0

∫

T γ K×T γ K

∫ C̃(‖x−y‖,|t−s|)
0

exp

(
− u2(T )

1 + v

)
dv√
1 − v2

dxdydtds

= T 2+2dγ |K |2[1 − �(u(T ))]2

+ 1

2π

∫ T

0

∫ T

0

∫

T γ K×T γ K

∫ C̃(‖x−y‖,|t−s|)
0

exp

(
− u2(T )

1 + v

)
dv√
1 − v2

dxdydtds.

(48)

Thus, from Eq. (48), operating in a similar way to Eq. (6) in the integrals over time and
space, we have

Var(M(T )) = E
[
M2(T )

] − [E[M(T )]]2

= 2T |K |2T 2γ d
∫ T

0

(
1 − τ

T

) ∫ D(T γ K )

0
zd−1ψ̃ρT γ K (z)

× 1

2π

∫ C(z,τ )

0
exp

(
−u2(T )

1 + v

)
dv√
1 − v2

dzdτ, (49)

where ψ̃ρT γ K (z) = (z−(d−1))ψρT γ K (z), with ψρTγ K (z) being, as before, the probability
density of the random variable ρK = ‖P1 − P2‖, where P1 and P2 are two independent
random points with uniform distribution in T γ K (see also Remark 2). The proof is based on
verifying that Condition 5 holds under the assumptions made, and hence, applying Theorem
3 for m = 1. Specifically, we prove that

limT→∞
Var(M(T ))

J 2
1 (T )σ 2

1,KT γ (T )
≤ 1.
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Note that J1(T ) = φ(u(T )) = 1√
2π

exp(−(u2(T ))/2) > 0, and

exp
(
− u2(T )

1+v

)

φ2(u(T ))
= 2π exp

(
u2(T )

(
v

1 + v

))
. (50)

Hence, from Eqs. (49) and (50),

Var(M(T ))

[φ(u(T ))]2 = 2T |K |2T γ 2d
∫ T

0

(
1 − τ

T

) ∫ D(T γ K )

0
zd−1ψ̃ρTγ K (z)

×
∫ C(z,τ )

0
exp

(
u2(T )

(
v

1 + v

))
dv√
1 − v2

dzdτ

= 2T |K |2T 2γ d

[∫

B
β1,β2
T

+
∫

B
β1,β2
T

](
1 − τ

T

)
zd−1ψ̃ρT γ K (z)

×
∫ C(z,τ )

0
exp

(
u2(T )

(
v

1 + v

))
dv√
1 − v2

dzdτ

= S1(T ) + S2(T ), (51)

where the set Bβ1,β2
T has been introduced in Eq. (45), and the set B

β1,β2
T is defined as

B
β1,β2
T = {

(z, τ ); 0 ≤ τ ≤ T β1 , 0 ≤ z ≤ T γβ2
}
,

with β1 ∈ (0, δ1), β2 ∈ (0, δ2).
From Condition 6, applying Remark 5, u2(T ) = o

(
log((T )ε1([�(T )]d)ε2)) , for any

ε1, ε2 > 0. Keeping in mind that v
1+v

≤ 1, we obtain

S1(T ) ≤ k8 T
1+2γ d

∫

B
β1,β2
T

(
1 − τ

T

)
zd−1ψ̃ρTγ K (z)

× exp
(
u2(T )

) ∫ C(z,τ )

0

dv√
1 − v2

dzdτ

= k8 T
1+2γ d exp

(
u2(T )

) ∫

B
β1,β2
T

(
1 − τ

T

)
zd−1ψ̃ρTγ K (z)

×arc sinC(z, τ )dzdτ

≤ k̃8 T
1+ε1T 2dγ+dγ ε2

∫

B
β1,β2
T

(
1 − τ

T

)
zd−1ψ̃ρT γ K (z)dzdτ

≤ k9T
1+β1+ε1 [�(T )]d+dβ2+dε2 , (52)

for some positive constants k8, and k9. In particular, for εi = δi − βi , i = 1, 2, under
Condition 4(ii), as T → ∞,

S1(T )

σ 2
1,K (T )

≤ k9
1

T 1+δ1T γ d(1+δ2) σ
2
1,K (T )

→ 0. (53)

Let us now consider S2(T ), under Condition 6,

sup
(z,τ )∈Bβ1,β2

T

C(z, τ ) → 0, T → ∞

Bβ1,β2
T = {(z, τ ); τ ≥ T β1 or z ≥ T γβ2},
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and, since 1
1+v

≤ 1 and 1√
1−v2

→ 1, 0 ≤ v ≤ C(z, τ ), C(z, τ ) → 0, (z, τ ) ∈ Bβ1,β2
T , as

T → ∞, we obtain that S2(T ) satisfies

S2(T ) = 2T 1+2γ d |K |2
∫

B
β1,β2
T

(
1 − τ

T

)
ψρTγ K (z)

×
∫ C(z,τ )

0
exp

(
u2(T )

v

1 + v

)
dv√
1 − v2

dzdτ

≤ 2T 1+2γ d |K |2
∫

B
β1,β2
T

(
1 − τ

T

)
ψρTγ K (z)

×
∫ C(z,τ )

0
exp

(
u2(T )v

) dv√
1 − v2

dzdτ

≤ k102T
1+2γ d |K |2 exp

⎛
⎝u2(T ) sup

(z,τ )∈Bβ1,β2
T

C(z, τ )

⎞
⎠

×
∫

B
β1,β2
T

(
1 − τ

T

)
ψρT γ K (z)C(z, τ )dzdτ,

for some positive constant k10. Hence, for T sufficiently large,

S2(T )

σ 2
1,K (T )

≤ k11 exp

⎛
⎝u2(T ) sup

(z,τ )∈Bβ1,β2
T

C(z, τ )

⎞
⎠

×
∫
B

β1,β2
T

(
1 − τ

T

)
ψρT γ K (z)C(z, τ )dzdτ

∫
B

β1,β2
T ∪B

β1,β2
T

(
1 − τ

T

)
ψρT γ K (z)C(z, τ )dzdτ

≤ 1, (54)

since under Condition 6,

exp

⎛
⎝u2(T ) sup

(z,τ )∈Bβ1,β2
T

C(z, τ )

⎞
⎠ → 1, T → ∞,

and k11 ≤ 1, for sufficiently large T . Finally, from (53)–(54),

limT→∞
Var(M(T ))

φ2(u(T ))σ 2
1,K (T )

= limT→∞

(
S1(T )

σ 2
1,K (T )

+ S2(T )

σ 2
1,K (T )

)
≤ 1. (55)

Thus, the desired result follows from Theorem 3, and the asymptotic normality of

∫ T
0

∫
T γ K Z(x, t)dxdt

[
2T |K |2T 2dγ

∫ T
0

(
1 − τ

T

) ∫D(T γ K )

0 C(z, τ )ψρT γ K (z, τ )dzdτ
]1/2 .

��
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7 Sojourn Functionals for a Class of Spherical Random Fields

This section derives a central limit result for sojourn functionals subordinated to STGRFs
homogeneous and isotropic in space, and stationary in time, restricted to the unit sphere.

Let Sd−1(1) = {x ∈ R
d ; ‖x‖ = 1} be the unit sphere embedded into R

d , for some
d ≥ 2, and denote by dνd−1(x) the normalized Riemannian measure on Sd−1(1). Denote
also by θ = arccos

(〈
x, x ′〉) the angle between two points x, x ′ ∈ Sd−1(1). For every

x, x ′ ∈ Sd−1(1), ‖x − x ′‖ = 2 sin
(

θ
2

)
, with ‖ · ‖ being the Euclidean distance. Let us

denote S(d)
lm (u), u ∈ Sd−1(1), m = 1, 2, . . . , h(l, d), l ∈ N0, the real spherical harmon-

ics on Sd−1(1) (see Leonenko [24], Müller [38], and the references therein), with h(l, d)

= (2l + d − 2) (l+d−3)!
(d−2)!l! denoting the dimension of the eigenspace of the Laplace Beltrami

operator generated by
{
S(d)
lm , m = 1, 2, . . . , h(l, d)

}
, l ∈ N0.

Let
{
Z(x, t), x ∈ R

d , t ∈ R
}
be a zero-mean, mean-square continuous, STGRF, homo-

geneous and isotropic in space, and stationary in time, with covariance function satisfying

C̃(‖x‖, τ ) = 2
d−2
2 +1�

(
d

2

)∫ ∞

0
cos (μτ)

∫ ∞

0

Jd−2
2

(λ‖x‖)
(λ‖x‖) d−2

2

G(dλ, dμ),

(56)

where G is defined from the spectral measure F of Z arising in Bochner Theorem (see, e.g.,
Ivanov and Leonenko [19], Schoenberg [41]) satisfying

∫

R

∫

Rd
F(dω̃, dμ̃) =

∫ ∞

0

∫ ∞

0
G(dλ, dμ) < ∞,

G(λ, μ) =
∫

‖ω̃‖<λ

∫

|μ̃|<μ

F(dω̃, dμ̃). (57)

Let us consider TR(x, t) = Z(x, t), for every x ∈ Sd−1(1), and t ∈ R, defining the
restriction of Z(x, t) to the unit sphere Sd−1(1). The following identities will be applied in
the characterization of the second-order pure point spectral properties of TR(x, t) from the
spectral representation (56) of the covariance function C̃ of Z .

In the following, we denote Sd−1(u) = {
x ∈ R

d ; ‖x‖ = u
}
. Let us first consider the

characteristic function of Sd−1(u)

1

|Sd−1(u)|
∫

Sd−1(u)

exp (i 〈λ, x〉) dνd−1(λ) = Yd(ux), (58)

where Yd denotes the spherical Bessel function, and dνd−1 is the normalized Riemannian
measure on Sd−1(1). Applying Eq. (1.2.13a) in Ivanov and Leonenko [19], the following
relationship holds between the spherical Bessel function and the Bessel function of the first
kind

Yd(z) = 2(d−2)/2�

(
d

2

)
Jd−2

2
(z)z(2−d)/2, z ≥ 0, (59)

where

Jν(z) =
∞∑

m=0

(−1)m
( z
2

)2m+ν

[m!�(m + ν + 1)]−1

is the Bessel function of the first kind of order ν > 1/2.
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Thus, from Eqs. (58) and (59),

1

|Sd−1(u)|
∫

Sd−1(u)

exp
(
i
〈
λ, x − x ′〉) dνd−1(λ)

= 2(d−2)/2�

(
d

2

) Jd−2
2

(u‖x − x ′‖)
(u‖x − x ′‖) d−2

2

. (60)

Applying now addition theorem of spherical Bessel function

Yd(λρ) = c21(d)

∞∑
l=0

h(l,d)∑
m=1

S(d)
lm (u)S(d)

lm (v)
Jl+ d−2

2
(λr1)

(λr1)
d−2
2

Jl+ d−2
2

(λr2)

(λr2)
d−2
2

, (61)

where c21(d) = 2d−1�
( d
2

)
πd/2, and

x = (r1, u), r1 ≥ 0, u = x/‖x‖ ∈ Sd−1(1)

y = (r2, v), r2 ≥ 0, v = y/‖y‖ ∈ Sd−1(1)

ρ = ‖x − y‖ =
√
r21 + r22 − 2r1r2 cos(γ ), cos(γ ) = 〈x, y〉

‖x‖‖y‖ , λ ≥ 0.

(62)

From Eqs. (58)–(62),

C̃(‖x − y‖, τ )

= 2[c1(d)]2
∞∑
l=0

[∫ ∞

0

∫ ∞

0
cos(μτ)

Jl+ d−2
2

(λr1)

(λr1)
d−2
2

Jl+ d−2
2

(λr2)

(λr2)
d−2
2

G(dλ, dμ)

]

×
h(l,d)∑
m=1

S(d)
lm (u)S(d)

lm (v), (63)

where (x, y), (u, v), and (r1, r2) are defined as in Eq. (62). For r1 = r2 = 1, that
is, in the case of considering the covariance function C̃R of the restricted random field
{TR(x, t), x ∈ Sd−1(1), t ∈ R} , we obtain

C̃R(‖x − y‖, τ )

= 2[c1(d)]2
∞∑
l=0

⎡
⎣
∫ ∞

0

∫ ∞

0
cos(μτ)

[
Jl+ d−2

2
(λ)

λ
d−2
2

]2

G(dλ, dμ)

⎤
⎦

×
h(l,d)∑
m=1

S(d)
lm (u)S(d)

lm (v). (64)

Randomfield {TR(x, t), x ∈ Sd−1(1), t ∈ R} then has τ -varying angular power spectrum
{Al(τ ), τ ≥ 0, l ∈ N0} given by

Al(τ ) = 2�

(
d

2

)
πd/2

∫ ∞

0

∫ ∞

0
cos(μτ)

[
Jl+ d−2

2
(λ)

λ
d−2
2

]2

G(dλ, dμ), τ ≥ 0, l ∈ N0.

(65)

Equation (65) allows the interpretation of the elements of the τ -varying angular spectrum
{Al(τ ), τ ≥ 0, l ∈ N0} as the inverse Fourier transforms of the temporal spectral measures
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f (dμ) = 2�
( d
2

)
πd/2

∫∞
0

[
J
l+ d−2

2
(λ)

λ
d−2
2

]2
G(dλ, dμ). Equivalently,

Al(τ ) =
∫ ∞

0
cos(μτ) f (dμ)

= 2�

(
d

2

)
πd/2

∫ ∞

0
cos(μτ)

∫ ∞

0

[
Jl+ d−2

2
(λ)

λ
d−2
2

]2

G(dλ, dμ). (66)

Note also that, from (56), applying trigonometric identity ‖x − x ′‖ = 2 sin
(

θ
2

)
, for every

x, x ′ ∈ Sd−1(1),

C̃R(‖x − x ′‖, τ ) = 2
d−2
2 +1�

(
d

2

)∫ ∞

0
cos (μτ)

∫ ∞

0

Jd−2
2

(λ‖x‖)
(λ‖x‖) d−2

2

G(dλ, dμ)

2
d−2
2 +1�

(
d

2

)∫ ∞

0
cos (μτ)

∫ ∞

0

Jd−2
2

(
λ2 sin

(
θ
2

))

(
λ2 sin

(
θ
2

)) d−2
2

G(dλ, dμ)

= CR(cos(θ), τ ), (67)

where as before, θ denotes the angle between vectors x and x ′ in Sd−1(1). Thus, TR has
covariance function (67) (see, e.g., Leonenko and Ruiz-Medina [27]).

Condition K. Random field {TR(x, t), x ∈ Sd−1(1), t ∈ R} is defined on the sphere as the
restriction of a zero-mean STGRF with covariance function (56).

UnderCondition K (see Eqs. (64)–(66)), random field TR admits the following orthogonal
expansion, in the mean-square sense, for every fixed t ∈ R, and x ∈ Sd−1(1),

TR(x, t) =
∞∑
l=0

h(l,d)∑
m=1

alm(t)S(d)
lm (x),

where alm(t), m = 1, . . . , h(l, d), l ∈ N0, are independent zero-mean Gaussian stochastic
processes such that E[alm(t)] = 0, E[alm(t)al ′m′(t ′)] = δll ′δmm′ Al(|t − t ′|), with Al(|t −
t ′|) = Al(τ ) satisfying (66), and

∑∞
l=0 h(l, d)Al(τ ) < ∞, for every τ ∈ R+.

Let now consider the first Minkowski functional subordinated to TR(x, t), given by

NT =
∫ T

0

∫

Sd−1(1)
ITR(x,t)≥udνd−1(x)dt

= |{0 ≤ t ≤ T ; TR(x, t) ≥ u, x ∈ Sd−1(1)}|
= E[NT ] +

∑
n≥1

Jn

n! ηn(T ), (68)

where E[NT ] = (1 − �(u)) 2π
d/2

�
(
d
2

) , and Jn(u) = φ(u)Hn−1(u), n ≥ 1, and

ηn(T ) =
∫ T

0

∫

Sd−1(1)
Hn(TR(x, t))dνd−1(x)dt .
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Thus, E[ηn(T )] = 0, E[ηn(T )ηl(T )] = 0, n �= l, and

σ 2
n (T ) = [η2n(T )]

= 2n!
∫ T

0

∫ T

0

∫

Sd−1(1)×Sd−1(1)
C̃n (‖x − x ′‖, |t − t ′|) dν(x)dν(x ′)dtdt ′

= 2n!T |Sd−1(1)|2
∫ T

0

(
1 − τ

T

)
E
(
C̃n(‖W1 − W2‖, τ )

)
dτ

= 2n!T |Sd−1(1)|2 1√
π

�

(
d

2

)
�−1

(
d − 1

2

)

×
∫ T

0

∫ 2

0

(
1 − τ

T

)
zd−2

(
1 − z2

4

) d−3
2

Cn(z, τ )dzdτ

= 2n!T 4πd−1/2�

(
d

2

)[
�

(
d − 1

2

)]−1

×
∫ T

0

∫ 2

0

(
1 − τ

T

)
zd−2

(
1 − z2

4

) d−3
2

Cn(z, τ )dzdτ, (69)

where Cn denotes, as before, the nth power of the covariance function C . Here, W1 and
W2 are two independent uniformly distributed random vectors on Sd−1(1) with probability
density of their Euclidean distance given by, for 0 ≤ z ≤ 2 (see Lemma 1.4.4 in Ivanov and
Leonenko [19])

d

dz
P [‖W1 − W2‖ ≤ z] = 1√

π
�

(
d

2

)
�−1

(
d − 1

2

)
zd−2

(
1 − z2

4

) d−3
2

. (70)

Condition L.

(i) Assume that supz∈[0,2] C(z, τ ) → 0 as τ → ∞.

(ii) There exists δ ∈ (0, 1), such that

lim
T→∞

1

T δ

∫ T

0

(
1 − τ

T

) ∫ 2

0
zd−2C(z, τ )

(
1 − z2

4

) d−3
2

dzdτ = ∞.

Remark 7 Note that, for the restriction to the sphere of a STGRF with covariance function
as in Example 1, Condition L holds if d ≥ 3.

Under Conditions K and L, applying the corresponding reduction theorem, the following
central limit result follows.

Theorem 5 Assume that Conditions K and L hold. Then, the random variable

NT − T (1 − �(u))|Sd−1(1)|

φ(u)

[
8πd− 1

2

�
(
d
2

)
�
(
d−1
2

)T
∫ T
0

(
1 − τ

T

) ∫ 2
0 C(z, τ )zd−2

(
1 − z2

4

) d−3
2

dzdτ

]1/2

has asymptotically standard normal distribution as T → ∞.

The following central limit result is obtained for T -varying thresholds.
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Theorem 6 Assume that Conditions K and L hold, and there exists β ∈ (0, δ) such that as
T → ∞,

u2(T ) sup
u∈(0,2)

C(u, T β) → 0, u2(T ) = o(log(T )).

Then, the random variable

N �
T − T (1 − �(u(T ))|Sd−1(1)|

φ(u(T ))

[
8πd− 1

2

�
(
d
2

)
�
(
d−1
2

)T
∫ T
0

(
1 − τ

T

) ∫ 2
0 C(z, τ )zd−2

(
1 − z2

4

) d−3
2

dzdτ

]1/2 ,

has asymptotically a standard normal distribution, as T → ∞, where

N �
T = |{0 ≤ t ≤ T ; TR(x, t) ≥ u(T ), x ∈ Sd−1(1)}| .

The proofs of Theorems 5 and 6 can be obtained from Eqs. (69) and (70), in a similar way
to the proofs of Theorems 2 and 4, respectively.

7.1 Spherical Spatiotemporal Covariance Functions

Special cases of stationary covariance functions on spheres cross time have recently been
analyzed in White and Porcu [46]. In our case, we pay special attention to the family of
nonseparable covariance functions introduced in Eq. (11) in White and Porcu [46], since
its restriction to Sd−1(1) can be considered as proposed here. In addition, in Theorem 2 in
White and Porcu [46], competitive models of spatiotemporal spherical covariance functions
are proposed for real data analysis. In particular, the covariance function family

C(θ, u) = σ 2

ψ(u2)
ϕ

(
θ

ψ(u2)

)
, θ ∈ [0, π], u ∈ R,

is considered for surface air temperature reanalysis data. These covariance modes capture the
strong spatial structure displayed by data given by daily temperature averages over a global
grid. Since the overall temperature distribution is similar across days displaying a clear
spatial structure, the implemented spatiotemporal spherical covariance models that rescale
space with time, and are expressed in terms of the geodesic spherical distance instead of the
Euclidean distance, allow to effectively capture the strong spatial structure in this type of
data.

Note also that, one can consider the restriction to the sphere of the covariance function
family considered in Eqs. (6) and (11) in White and Porcu [46], and beyond. Equations (64)
and (67) then hold for such a restriction. Specifically, in Eq. (30), we consider, for every
u ≥ 0,

ϕ(u) = (
2ν−1� (ν)

)−1 (
cu1/2

)ν
Kν

(
cu1/2

)
, c > 0, ν > 0

ψ(u) = (1 + auα)β, a > 0, 0 < α ≤ 1, 0 < β ≤ 1, (71)

where Kν(z) is the modified Bessel function of the second kind of order ν, or MacDonald
function (see, e.g., Gradshteyn and Ryzhik [16]). Thus,

ϕ(‖z‖2) = σ 2 (2ν−1� (ν)
)−1

(c ‖z‖)ν Kν (c ‖z‖) , σ 2 > 0, c > 0, ν > 0, z ∈ R
d

(72)
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with associated Fourier transform

ϕ̂(λ) = M (
c2 + ‖λ‖2)−

(
ν+ d

2

)
, λ ∈ R

d , M > 0, (73)

that is involved in the definition of the spectralmeasure F in Eq. (57). Its restriction toSd−1(1)
then leads to an alternative family of spherical covariance functions to the ones considered
in White and Porcu [46].
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