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ABSTRACT: Current limitations in implant design often lead to trade-offs between minimally invasive
surgery and achieving the desired post-implantation functionality. Here, we present an artificial intelligence
inverse design paradigm for creating deployable implants as planar and tubular thermal mechanical
metamaterials (thermo-metamaterials). These thermo-metamaterial implants exhibit tunable mechanical
properties and volume change in response to temperature changes, enabling minimally invasive and
personalized surgery. We begin by generating a large database of corrugated thermo-metamaterials with various
cell structures and bending stiffnesses. An artificial intelligence inverse design model is subsequently developed
by integrating an evolutionary algorithm with a neural network. This model allows for the automatic
determination of the optimal microstructure for thermo-metamaterials with desired performance,i.e., target
bending stiffness. We validate this approach by designing patient-specific spinal fusion implants and tracheal
stents. The results demonstrate that the deployable thermo-metamaterial implants can achieve over a 200%
increase in volume or cross-sectional area in their fully deployed states. Finally, we propose a broader vision for
a clinically informed artificial intelligence design process that prioritizes biocompatibility, feasibility, and
precision simultaneously for the development of high-performing and clinically viable implants. The feasibility of this proposed
vision is demonstrated using a fuzzy analytic hierarchy process to customize thermo-metamaterial implants based on clinically
relevant factors.
KEYWORDS: thermal mechanical metamaterials, medical implants, inverse design, artificial intelligence

■ INTRODUCTION
The field of biomedical engineering is undergoing a trans-
formation with the emergence of mechanical metamaterials.
Engineered with unique properties beyond those found in
nature, these materials open exciting possibilities for patient-
specific implants.1 Mechanical metamaterials exhibit character-
istics such as a negative Poisson’s ratio,2 negative compres-
sion,3 and negative thermal expansion.4 Additionally, their
microstructures can be rationally designed with responsive
materials and as composite systems, enabling advanced
functionalities beyond the mechanical domain, including
sensing,5 programmability,6 magnetic actuation,7 and shape
memory effect.8 Traditional materials used for clinical
implants, such as metals and ceramics, are inherently stiff
and lack the intricate, adaptive structures found in natural
tissues. This rigidity can cause stress shielding in specific
applications (e.g., bone healing), where the implant absorbs
most of the load.9,10 Unlike traditional implants with fixed
properties, mechanical metamaterials can be tailored to an
individual’s specific needs due to their tunable performance.
This customization optimizes factors like stiffness and porosity
to match the surrounding tissue.11 Furthermore, advancements
in additive manufacturing technology allow for the creation of
these complex structures directly during surgery. This
capability can potentially eliminate the need for premanufac-

tured implants and offer customization and convenience for
patients and surgeons.1 A notable innovation within this field is
the creation of deployable mechanical metamaterial im-
plants.12,13 In their compact form, these implants can be
delivered to the surgical site through minimally invasive
procedures.13 Such implants require smaller incisions and
minimize patient discomfort and recovery time. Once in place,
they can expand to their functional size. Deployable
metamaterial implants can be made from different shape
memory polymers such as polylactic acid (PLA), poly(glycerol
sebacate) (PGS), poly(ε-caprolactone) (PCL), poly(ethylene
glycol) (PEG)-based hydrogels, etc. The unique properties of
these polymers within deployable metamaterial implant frame
could provide a significant advantage in surgical applications.13

However, a major challenge lies in designing these intricate
implantable structures. Unit cells, the building blocks of
mechanical metamaterials, can be configured with diverse sizes,
dimensions, and shapes. This results in an expansive design
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space that is impractical to navigate manually or explore
through experimental testing. Arguably, optimizing the
structure and performance of these implants for specific
applications requires a powerful approach. Artificial intelli-
gence (AI) emerges as a viable solution for this complex
problem.14−18 Conventional AI methods, such as neural
networks, have recently been used to predict the performance
of mechanical metamaterials like octet truss metamaterials,19

curved beams,20 and lattice structures.21 More recently, AI
inverse design has been applied to create specific mechanical

metamaterials with predefined performance characteristics for
applications such as energy absorption,22,23 smart soles,24 and
soft robots.25 While AI methods offer remarkable potential for
exploring the design space of mechanical metamaterials, their
application in designing implantable systems, especially
deployable implants, remains largely unexplored. Deployable
implants are particularly important for this purpose because
traditional implants may not possess the necessary mechanical
properties once deployed in the body. Conversely, sturdier
implants that offer the desired properties often require larger

Figure 1. Vision for designing deployable implants using an AI inverse design approach. (A) Corrugated metasurfaces are 2D counterparts of
corrugated mechanical metamaterials. Engineered with customized microstructures and patterned with periodic surface corrugations, they achieve
specific mechanical characteristics, in particular tunable BS. Biocompatible shape memory polymers can be used to create these metasurfaces, which
can then be rolled into tubular configurations to form tubular thermo-metamaterials. (B) Potential applications of corrugated metasurfaces with
tunable BS include their use in minimally invasive and personalized surgery. These metasurfaces can fashioned in either planar or tubular
configurations to fabricate thermo-metamaterial humeral fracture implants or vascular scaffolds. These implants can be designed to respond to
changes in body temperature or externally induced temperature variations, expanding or contracting as needed, thus facilitating their insertion
through small incisions with minimal invasiveness. Once deployed, they assume their predetermined functional shape within the body. (C)
Accelerating the design and discovery of thermo-metamaterials via an AI inverse design approach. Integrating clinically informed criteria into the AI
inverse design process ensures the feasibility, precision and biocompatibility of the explored designs. (D) The deployment process of the thermo-
metamaterial implants 4D printed using shape memory polymers. This process consists of heating the thermo-metamaterial structure to its pliable
state, deforming it for insertion, cooling it and finally reheating it to regain its original shape.
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incisions, leading to increased patient recovery time and
discomfort.

Here, we introduce an AI-guided inverse design approach to
develop deployable implants in the form of planar and tubular
thermal mechanical metamaterials (thermo-metamaterials) for
minimally invasive and personalized surgery. Initially, corru-
gated thermo-metamaterials featuring square and hexagonal
cells with different structural parameters and bending
stiffnesses are designed. The created database of corrugated
thermo-metamaterials is used to construct a neural network
that can accurately predict their bending stiffnesses. Then, an
AI inverse design model is proposed by integrating an
evolutionary process to the network to derive microstructural
parameter sets for thermo-metamaterials with desired bending
stiffnesses. We validate the effectiveness of the proposed

approach by designing deployable spinal fusion implants and
lung stents. Finally, we present a novel vision for a clinically
informed AI inverse design approach that prioritizes
biocompatibility, feasibility, and precision for successful clinical
translation.

■ RESULTS AND DISCUSSION
Here, we define thermo-metamaterials as mechanical meta-
materials tailored to exhibit unique mechanical responses to
thermal stimuli. This unique characteristic allows them to be
used as deployable implants. Thermo-metamaterial implants
can be designed to expand or contract in response to body
temperature or externally induced temperature variations,
allowing for minimally invasive insertion through a small
incision and subsequent deployment to their functional shape

Figure 2. Design of microstructures and generation of data set for planar thermo-metamaterials. (A) Planar thermo-metamaterials with various
corrugation patterns. (B) Experimental testing for the BS and out-of-plane deformation procedures. (C) Numerical simulations of planar thermo-
metamaterials with square corrugations. Comparisons of the experimental and numerical results on the planar thermo-metamaterials with the (D)
square and (E) hexagonal corrugations. Bending stiffness variations of the planar thermo-metamaterials with respect to the (F) thickness T, (G)
height H and (H) side length S.
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within the body. This adaptability can potentially simplify
surgical procedures and enhance the performance and
integration of the implant within biological tissues. Figure 1
illustrates the overarching vision of this research, wherein we
employ an AI approach for the inverse design of thermo-
metamaterial implants. We consider corrugated metasurfaces
to design thermo-metamaterial implants with tunable bending
stiffness (BS) (Figure 1A). Corrugated metasurfaces are
essentially 2D counterparts of corrugated mechanical meta-
materials with periodic surface corrugations designed to obtain
desired properties.26−29 These metasurfaces can be utilized in
planar form to design plate-like implants such as humeral
fracture implants to stabilize and support the healing of bone
fractures. Alternatively, they can be rolled to create tubular

metamaterials, serving as stents for hollow organs such as the
lungs, esophagus, or blood vessels (Figure 1B). From a
structural standpoint, corrugated metasurfaces can be rationally
designed to provide substantially larger BS compared to
conventional plates of the same thickness, while also offering
opportunities for more versatile structural configurations. For
instance, preliminary tests conducted in this study demonstrate
that a proof-of-concept corrugated metasurface exhibits
approximately 55.7% higher BS than a plain plate (see Figure
S1 in the Supporting Information).

However, a major challenge in designing such metasurfaces
lies in the intricate process of precisely tailoring the shape, size,
and periodicity of the corrugations. This process involves
navigating a vast array of potential configurations. The design

Figure 3. AI inverse design for tailoring the performance of thermo-metamaterials. (A) The architecture of the BP neural networks for predicting
the BS of the planar thermo-metamaterials with corrugations. (B) Normalized training, validation and testing results by the AI model for the square
thermo-metamaterials. (C) Normalized training, validation and testing results by the AI model for the hexagonal thermo-metamaterials. (D) The
proposed AI inverse design process to explore the optimal microstructures for the desired performance (i.e., target BS). (E) Variations of BS and
the error rate during the entire evolutionary AI inverse design process. A comparison of the experimental BS values and numerical values for the
thermo-metamaterials designs generated by the AI inverse design model: (F) square and (G) hexagonal corrugations. Comparisons and average
errors of the BS results between the multiple inverse design and experiments for the (H) square and (I) hexagonal thermo-metamaterials.
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and discovery of these configurations can be facilitated by an
AI-powered inverse design approach that integrates a standard
neural network with an evolutionary computational process
(Figure 1C). The inverse design algorithm can generate
designs for implantable devices with a targeted mechanical
response informed by physicians’ recommendations. These
designs are then modeled and fabricated, facilitating person-
alized surgery tailored to individual patient needs. For a
material perspective, thermo-metamaterial implants can be
made from biocompatible shape memory polymers and 4D
printed using additive manufacturing techniques, such as
stereolithography, fused deposition modeling, or selective laser
sintering, to create deployable implants. 4D printing involves
materials that can self-transform or self-assemble over time
when subjected to external stimuli like heat, moisture, or light,
adding a temporal dimension to the 3D printing process. The
deployment process involves four steps (Figure 1D): first, the
thermal metamaterial is heated above its transition temperature
to become pliable (initial configuration); second, it is
deformed into a compact configuration for easy insertion
(deforming configuration); third, it is cooled below this
temperature while maintaining its shape to lock in the
temporary form (programming process); finally, once in
place, the material is reheated above the transition temper-
ature, allowing it to return to its original, functional shape
(recovery process). This entire shape transformation process
can be theoretically formulated for a precise and efficient
deployment of the implant within the body.
Thermo-Metamaterials with Various Corrugations.

To investigate the design possibilities for thermo-metamate-
rials, we first examine planar structures in the form of
corrugated metasurfaces. These metasurfaces feature various
corrugation patterns, including triangular, square, rectangular,
pentagonal, hexagonal, and heptagonal configurations, as
depicted in Figure 2A. We maintained constant length,
width, cellular distribution, and other parameters of the
plate. Additionally, PLA with an elastic modulus (E) of 2400
MPa was used to fabricate the specimens. This resulted in
three tunable parameters for the planar thermo-metamaterials:
the thickness (T) of the plate, the height (H) of the cell, and
the side length (S) of the cells. Three-point bending
experiments were conducted to obtain the BS of the planar
thermo-metamaterials (Figure 2B). The upper and lower
fixations were clamped on the fatigue test machine, the sample
was placed flat on the lower fixation, and the upper fixation was
loaded in the middle position of the corrugated plate. Details
of the 4D printing fabrication and testing are presented in
Materials and Methods. Next, we develop the numerical
models to investigate the bending deformations of the planar
thermo-metamaterials, as shown in Figure 2C. The same
boundary and loading conditions were used to obtain the
bending stiffness and out-of-plane deformations (Figure 2C,i).
To simplify the building steps of the numerical model and save
the time cost of data set building, we proposed another
cantilever bending method, as shown in Figure 2C,ii. More
details are provided in Materials and Methods.

Figure 2D,E show the comparisons of the experimental and
numerical results for the planar thermo-metamaterials with the
square and hexagonal corrugations, respectively. The observed
acceptable agreement indicates the accuracy of the numerical
models. A comparison of the FE and experimental results for
the square thermo-metamaterials is shown in Movie S1,
Supporting Information. The overall size of the device,

generally determined for a specific implanting area, is
influenced by T, H and S. Holding other parameters constant,
these parameters particularly affect BS, as shown in Figure 2F−
H. Figure 2F indicates that BS significantly increases with the
increasing T. Figure 2G shows that BS initially increases and
then decreases as T increases within the studied parameter
range. Figure 2H demonstrates that BS gradually increases with
increasing S at larger thicknesses, while at smaller thicknesses,
BS first increases and then decreases as S increases.
Consequently, numerous simulations were conducted regard-
ing these three parameters, enriching the data sets to 720
groups of correspondences between structures and BS.
AI-Guided Inverse Design for Thermo-Metamaterials

Tailored Performance. We first develop a standard AI
prediction model using the backpropagation (BP) neural
networks. Three variables in the microstructural corrugations,
i.e., T, H and S, were selected as the three input neurons in the
BP model (Figure 3A). Input neurons start converging to the
only output neuron (i.e., BS). The database created in the
previous step was used for developing the AI model. A
comparison of the normalized predicted and measured BS
values for the square and hexagonal plates is shown in Figure
3B,C, respectively. The mean squared errors of the network are
1.86 × 10−7 N m2 and 5.26 × 10−7 for the square and
hexagonal thermo-metamaterials, respectively. The well-trained
BP model can efficiently predict the BS of the planar thermo-
metamaterials with arbitrary corrugations. However, the main
challenge for inverse design is achieving desirable bending
performance due to the lack of a quantitative relationship
between the microstructural parameters and performance. To
address this gap, an AI inverse design approach for thermo-
metamaterials is developed by combining BP neural networks
with the evolution strategy (ES) algorithm,30 (Figure 3D).
Initially, a total of 300 primordial planar metamaterials were
randomly generated by the ES algorithm with varying
microstructural parameters. Next, the generated plate
structures were fed into the BP neural network to predict
their BS. The maladjustment index was calculated by |
BSprediction − BStarget|, representing the absolute value of the
difference between the predicted BS and the target BS. This
value characterizes how well adapted the individual is to the
population in terms of the desired performance; the smaller the
value, the more likely the individual’s genes will be passed on
to the next generation. Finally, the offspring population was
obtained by applying the genetic operations commonly used in
the ES process, namely selection, crossover, and mutation
within the population. A total of 600 individuals from the
offspring population and the parent population of this
generation were considered for maladjustment sequencing,
and the 300 individuals with the least maladjustment were used
as the parent population of the next generation. The
termination condition for the inverse design iterative process
was achieving an error less than 0.1%, while ensuring that the
number of generations was not less than 100.

The variations of BS and error rate during the entire
iteration process are shown in Figure 3E. The genetic changes
have a higher probability of optimizing the performance of the
population in the early stage of the evolutionary process, which
leads to the changes of the curves from rapid variation to
saturate in the later stages of evolution. Seven square and
hexagonal thermo-metamaterial designs generated by the BP-
ES inverse design model were randomly selected and printed
to compare their BS with the numerical results. In the
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Figure 4. AI inverse design of patient-specific deployable thermo-metamaterial implants. (A) Spinal fusion surgery is performed to permanently
connect two or more vertebrae to eliminate motion and treat various conditions. Spinal fusion cages provide critical structural support, withstand
significant mechanical loads, and promote bone growth during the fusion process. (B) Implanting a deployable spinal fusion cage in a synthetic
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experimental and numerical model, we guide the output
displacement curve by designing a three-point bending
condition. In this case, the slope of the force displacement
curve is proportional to BS, so the coincidence of the force
displacement curve indicates the coincidence of BS. We
transform the inverse design of target BS into the inverse
design of target force−displacement curve to compare the
target force value for a given displacement with that in the
experiment and numerical model to display the effect of
inverse design more directly. Figure 3F,G display the
satisfactory agreement obtained on the target force between
the experimental and numerical results. The average error rates
are 4.69% and 5.92% for the square and hexagonal thermo-
metamaterials, respectively (Figure 3H,I). The experimental
results for the square thermo-metamaterials are shown in
Movie S2, Supporting Information. Due to the stochastic
nature of the initial population generation, the optimal designs
obtained by the BP-ES model are not unique (see Table S2 in
the Supporting Information).
AI-Guided Inverse Design of Patient-Specific Deploy-

able Implants. In order to assess the viability of the proposed
AI inverse design approach, we devise it to create deployable
implants in the form of spinal fusion cages and tracheal stents.
We chose these two types of implants because they represent
the application of thermo-metamaterials in both planar and
tubular forms. Thus, they can provide an acceptable evaluation
of the design method across different geometrical and
functional requirements. Spinal fusion surgery is a procedure
aimed at permanently connecting two or more vertebrae in the
spine to eliminate motion between them.1 This procedure is
often performed to treat conditions such as degenerative disc
disease, scoliosis, and spinal instability.10 It is crucial for
relieving pain, restoring spinal stability, and improving overall
function and quality of life in patients suffering from severe
spinal disorders.10 Spinal fusion cages are critical in providing
structural support and stability in the spine after surgery
(Figure 4A). These cages must withstand specific mechanical
loads and promote bone growth.31 Here, we present a
deployable spinal fusion cage that is flat during implantation
and expands once placed with thermal triggering (Figure 4B−
D). Such a deployable spinal implant offers advantages in
minimally invasive surgery. The flat form allows for easier and
less invasive insertion, reducing the size of the incision needed
and minimizing tissue damage (Figure 4C). Once in position,
the cage can be recovered to its programmed full size,
providing the necessary structural support and stability to the
spine.

A synthetic biomimetic lumbar spine model (Sawbones,
WA, USA) was used to test the developed deployable cage
(Figure 4B). The cage is composed of two parts: a frame made
of thermoplastic polyurethane (TPU) and a planar thermo-
metamaterial plate made of PLA. The dimensions of the cage

implanted at the L3−L4 vertebrae level are shown in Figure
4D. Both TPU and PLA are well-known for their
biocompatibility.32,33 The E of the human disc does not
exceed 100 MPa.34 Thus, we target this value as the effective E
of the fusion cage. Using the dimensions of the cage, the
moment of inertia will be approximately 2866 mm4, resulting
in a target BS for the entire deployable cage system, including
the TPU frame and buckled PLA plate system, of
approximately 0.287 N m2. To determine the BS of the
plate, we conducted a series of cyclic tests on the cage frame
only. With the cage frame providing a BS of 0.275 N m2, the
thermo-metamaterial plate should provide a BS close to 0.02 N
m2. Knowing the required BS for the thermo-metamaterial
plate, AI inverse design was implemented to find a plate
configuration with that BS, the procedures of which same as
before. The explored design is composed of 98 square
corrugated unit cells, with T, H, and S equal to 0.75, 0.6,
and 2 mm, respectively. Figure 4E shows how the flat thermo-
metamaterial plate restores its programmed shape, achieving a
height equivalent to the height of the cage frame after being
placed in a bath at 55 °C for 137 s. The cage recovery process
is shown in Movie S3, Supporting Information. The flattened
cage has a 53% smaller volume compared to its fully deployed
state. The cage was then tested under cyclic loading to
determine its BS when the plate is fully deployed (Movie S4,
Supporting Information). The results shown in Figure 4F
indicate that the entire cage with its buckled thermo-
metamaterial plate offers a BS value of 0.298 N m2, which is
merely 4% higher than the target BS value. The E of the cage
and its corresponding BS can be tuned to any desired range
based on clinician recommendations using the proposed
approach.

For the second clinical demonstration, we consider a
tracheal stent. These classes of stents are used to keep airways
open in patients with conditions such as tracheal stenosis.35

Tracheal implants require a balance of mechanical properties.
They need to be flexible enough to accommodate natural
movement during breathing but also possess sufficient strength
to resist collapse and maintain an open airway.36 Designing
tracheal stents with thermo-metamaterials enables investigating
the thermal and mechanical performance in a dynamic
environment, where the implant must adapt to physiological
movements and temperature variations. This makes tracheal
stents a reasonable case study for evaluating the adaptability
and functional integration of the designed materials in living
tissues. The procedure for implanting the tracheal stent in
porcine models is shown in Figure 4G. In this work, we
considered designing a thermo-metamaterial tracheal stent for
a porcine model (Figure 4H). The corrugated structure of the
thermo-metamaterial tracheal stent was designed to achieve a
similar diameter to the porcine trachea diameter when fully
deployed (diameter = 1.75 mm), as shown in Figure 4H. The

Figure 4. continued

biomimetic lumbar spine model at the L3−L4 vertebrae level. (C) Spinal fusion cage in a fully deformed state. (D) Dimensions of the deployable
spinal fusion cage. (E) Deployment of the spinal fusion cage. (F) Changes of BS and volume of the fusion cage before and after implant
deployment. (G) The procedure for implanting the tracheal stent in porcine models. (H) Deployment of the tracheal stent in a porcine trachea. (I)
Changes of BS of tracheal tubes before and after implant deployment. (J) Clinically informed AI inverse design results for the thermo-
metamaterials with square corrugations (i) biocompatibility score of seven designs, (ii) feasibility score of seven designs, (iii) precision score of the
seven designs, and (iv) practicality score of seven designs to determine the optimal design. (K) Clinically informed AI inverse design results for the
thermo-metamaterials with hexagonal corrugations (i) biocompatibility score of seven designs, (ii) feasibility score of seven designs, (iii) precision
score of the seven designs, and (iv) practicality score of seven designs to determine the optimal design.
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designed stent was first flattened at 55 °C, entered through the
trachea, then transported to the designated location and
secured by the appropriate medical instruments, and finally
restored to its original shape by stimulation at 55 °C. The stent
was restored to its original shape within 200 s in a water bath
at 55 °C. The incision length reduction test, material recovery
test and deformation recovery of the tracheal stent in porcine
lung in Figures S3−S5 and Movies S5, S6 in Supporting
Information. The porcine tracheal stent gained more than 421-
fold stiffness enhancement after incorporation (Figure 4I). The
cross-sectional area of the stent increased by 223%. The
explored design is composed of 98 hexagonal corrugated unit
cells, with T, H, and S equal to 0.5, 1, and 3.7 mm, respectively.
Clinically Informed AI Inverse Design. While focusing

solely on the precision of AI-powered inverse design for
implants in achieving targeted mechanical properties can be
advantageous, it might overlook other crucial aspects. The AI
inverse design process can generate multiple parameter sets
that deliver the same target performance, such as similar BS
values. However, the challenge lies in identifying which designs
are most suitable for clinical use in terms of biocompatibility
and feasibility. A promising solution to address this issue is
developing a clinically informed AI (CIAI) design approach.
This approach should integrate biocompatibility, feasibility,
and precision simultaneously. By incorporating these factors,
the design strategy ensures implants are safe and effective for
long-term use, reducing the risks of rejection and complica-
tions. Additionally, it improves the practicality of manufactur-
ing and implantation, making advanced treatments more
accessible and reliable. Here, we propose a broad vision for
the CIAI design approach that prioritizes biocompatibility,
feasibility, and precision for successful clinical translation. We
demonstrate this vision using corrugated plates as an example.
The aim is to pave the way for future development of implants
that are both high-performing and clinically viable. The BP
neural network-based AI inverse design model can be
expressed as

T H LAI (plate) Set( , , ) BST H L i i i
1

, , target| = (1)

where AI−1 refers to the BP-based AI inverse design model for
the planar thermo-metamaterials with respect to the micro-
structural thickness T, height H, and side length L, and
Set(Ti,Hi,Li) is the parameter sets consisted of series of Ti, Hi
and Li that lead to the same target bending stiffness, BStarget.
Taking into account the biocompatibility and feasibility
aspects, the CIAI model can be expressed as

T H L

CIAI (plate)

UltOpt( , , )

BS

1
biocompatibility,feasibility,precision

target

|

=

(2)

where, CIAI−1 represents the CIAI inverse design model
defined in terms of the criteria of biocompatibility, feasibility
and precision, and UltOpt(T,H,L) is the optimal parameters
for BStarget. The biocompatibility of an implant is influenced by
several factors, such as cytotoxicity (the implant’s potential to
harm or kill living cells), stability (chemical stability against
corrosion and leaching of harmful chemicals, and long-term
mechanical stability), and inflammation (the implant’s
potential to trigger an inflammatory response).37 Feasibility
is also affected by multiple factors, such as manufacturability,
implantation difficulty, and cost (including material cost, labor,

etc.). Precision is influenced by the configuration of the
implant and the mechanical properties of the material used in
its design. These parameters can be formulated as follows:

l

m

oooooooooo

n

oooooooooo

f

f

f T H L E

Biocompatibility (cytotoxicity, stability, inflammatio
n, ...)

Feasibility (manufacturability, implantation, cost, ...)

Precision ( , , , , ...)

1

2

3

=

=

=
(3)

The parameters shown in eq 3 represent only a subset of the
potential biocompatibility and feasibility-related parameters
that are used to simply evaluate the viability in the proposed
vision. However, it is possible to assign a weight score to each
of these parameters to show how clinically relevant the created
designs are. Accordingly, a CIAI practicality score can be
defined as

Score Score biocompatibility

Score feasibility Score

precision

B

F P
CIAI CIAI

CIAI CIAI

= ×

+ × +
× (4)

where ScoreCIAI
B , ScoreCIAI

F and ScoreCIAI
P refer to the practicality

score of biocompatibility, feasibility, and precision of the
implants, respectively. ScoreCIAI

B and ScoreCIAI
F are influenced by

many “qualitative” factors, as shown in eq 3, subjective to user
opinion. This issue can be addressed using a fuzzy evaluation
method like the fuzzy analytic hierarchy process (AHP),38

which enables converting qualitative measures to quantitative
scoring of biocompatibility and feasibility within the CIAI
inverse design model. AHP is a structured decision-making
approach grounded in mathematics and psychology. Fuzzy
AHP extends the classical AHP method by incorporating the
decision-maker’s uncertainty.38,39 To demonstrate the feasi-
bility of fuzzy AHP for determining ScoreCIAI

B , ScoreCIAI
F and

ScoreCIAI
P , a simple experiment was conducted. Ten clinical

surgeons were asked to grade the importance of biocompat-
ibility, feasibility, and precision of the implants on a scale of 0−
10, resulting in a 3 × 3 matrix (see Materials and Methods).
Subsequently, the fuzzy AHP method was employed to
determine practicality scores. Based on this analysis, ScoreCIAI

B ,
ScoreCIAI

F and ScoreCIAI
P were calculated to be 0.57, 0.24, and

0.19, respectively.
Thus, eq 4 can be expressed as

Score 0.57 biocompatibility 0.24 feasibility

0.19 precision
CIAI = × + ×

+ × (5)

The same fuzzy AHP method can be used to score the
chosen factors impacting biocompatibility and feasibility (see
eq 3). The analysis for this case study is presented in Note S1,
Supporting Information. Accordingly, we have

l

m

ooooooooooo

n

ooooooooooo

Biocompatibility 0.79 cytotoxicity
0.09 stability
0.12 inflammation

Feasibility 0.46 manufacturability
0.33 implantation 0.21 cost

= ×
+ ×
+ ×

= ×
+ × + × (6)
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The weights for each factor shown in eq 6 are normalized to
range from 0.1 to 0.9, with 0.1 representing the lowest value
and 0.9 indicating the highest. For example, a weight of 0.1 for
cytotoxicity signifies that the material used has the potential to
harm cells, while a weight of 0.9 implies no cytotoxicity. The
precision score can be calculated by comparing the predicted
BS with given T, H, S, E and the target BS as

Precision 1 error= (7)

where error is
BS BS

BS
prediciton target

target

| |
. Substituting eqs 6 and 7 into eq

5, the practicality score ScorePract is obtained as

Score 0.45 cytotoxicity 0.05 stability
0.07 inflammation
0.11 manufacturability 0.08

Implantation 0.05 cost 0.19

0.19
BS BS

BS

CIAI

prediciton target

target

= × + ×
+ ×
+ × + ×

+ × +

×
| |

(8)

The AI inverse design plays a crucial role in the CIAI
approach by enabling the customization of precision based on
other clinically relevant factors. For example, the precision for
the sixth square thermo-metamaterial implant (Table S3 in the
Supporting Information) is 0.93. Clinical surgeons consulted in
this work assigned values of 0.9, 0.7, 0.9, 0.5, 0.9, and 0.7 to
cytotoxicity, stability, inflammation, manufacturability, implan-
tation difficulty, and cost, respectively. Using eq 8, the
ScoreCIAI for this design is calculated to be 0.84. If clinicians
prioritize maintaining the same biocompatibility and feasibility
levels but desire a higher ScoreCIAI, AI inverse design can be
employed to explore the design space for increased precision.
In this scenario, the seventh square thermo-metamaterial
implant (Table S3 in the Supporting Information) with T, H,
S, and E values of 1.15, 1.49, 5.12 mm, and 2400 MPa emerges
as a potential optimal design, offering a precision score of 0.97
and a ScoreCIAI of 0.85. Assuming the same set of
biocompatibility and feasibility factors for all square and
hexagonal plates in this study, their calculated ScoreCIAI are
shown in Figure 4J,K respectively. More analysis details are
presented in Tables S3 and S4 in the Supporting Information.

A limitation of this approach is that the assigned weights are
still subjective to experts’ opinion. However, such an approach
is a common practice in many clinical fields that rely on
clinician judgment. For instance, the widely used Mirels’ score
incorporates multiple qualitative factors weighted by clinicians
to determine the degree of cortical destruction solely based on
radiographic images.40 In practice, it is possible to determine
the weights for parameters such as cytotoxicity, stability and
inflammation from laboratory testing of the materials used in
the implants compared to a controlled material widely used in
implant design, such as titanium. Given the novelty of this
approach, it is crucial to establish a standardized protocol. This
can be achieved by considering a substantially larger group of
clinicians and developing a range of acceptable ScoreCIAI
values. These values should encompass not only the limited
parameters included in eq 3 but also account for various
implant types like those used in cardiac stents, orthopedic
implants, and so on.

■ CONCLUSION
In this paper, we introduced a novel approach for designing
deployable implants using an AI-powered inverse design
paradigm. The created implants leverage thermo-metamaterials
that exhibit tunable mechanical properties in response to
temperature changes. This enables minimally invasive surgery
through a small incision and subsequent deployment to the
desired functional shape within the body. The core of our
approach is an AI inverse design model that integrates an
evolutionary algorithm with a neural network. This model
automatically determines the optimal microstructural param-
eters for thermo-metamaterials to achieve desired mechanical
properties, such as BS. The effectiveness of this approach is
validated through the design of patient-specific spinal fusion
cages and tracheal stents. Our results demonstrate that
deployable thermo-metamaterial implants can achieve signifi-
cant increases in volume or cross-sectional area upon
deployment. Beyond achieving the desired mechanical proper-
ties, we present a broader vision for a CIAI design process.
This process prioritizes biocompatibility, feasibility, and
precision for successful clinical translation. The proposed
fuzzy AHP method is a potential tool for incorporating these
crucial factors into the design process, generating practicality
scores for various designs. This CIAI design process can
potentially pave the way for developing high-performing and
clinically viable implants tailored to individual patient needs.
Future work should focus on establishing standardized
protocols for the CIAI design process and conducting in
vivo studies to evaluate the long-term performance of these
innovative thermo-metamaterial implants. Additionally, opti-
mizing deployment mechanisms can improve the predictability
and control of the shape memory behavior of the implants.
Investigating new biocompatible materials with enhanced
properties, such as biodegradability, higher mechanical
strength, and improved thermal responsiveness, is also crucial.

■ MATERIALS AND METHODS
3D Modeling. The corrugated metasurfaces were first parametri-

cally modeled using Rhino 7 software by entering two parameters,
side length and height, to obtain a surface. The model is then stored
as a 3dm file using the Grasshopper plug-in, and imported into
Solidworks 2020. A downward surface thickening operation was
considered to create 3D printable plate models. For the stent, the
bending function was introduced on top of the plate, and the stent
model was obtained by setting the bending angle to 360 deg.
Numerical Model. The commercial software ABAQUS was used

to build numerical models. For the model in Figure 2C,i three rigid
shell models were established through extrusion, and then planar
metamaterial model was imported from Solidworks and assembled.
The contact between the individual components was the universal
contact from surface to surface. The tangential behavior penalty was
selected. The friction coefficient was set to 0.3, with hard contact
selected for normal behavior. A static general approach was used for
the analysis step, and C3D10 was chosen for the grid type. The setup
in Figure 2C,ii remains consistent with the above parameters, except
for a modification in the loading method. Despite this change, the
results obtained were nearly identical.
4D Printing. The printing consumables used in this paper are

from Anycubic Company. The stl model file of the corrugated
metasurfaces was imported into ideaMaker 4.3.3 software for slicing.
The automatic repair was performed first, the fill rate was selected
100%. No support structure was used and only the Brim base plate
was attached. The sliced file was imported into the printer RAISE3D
Pro2, using only a single side nozzle, a print speed of 35.0 mm/s, a
wire diameter of 1.75 mm, a print temperature of 230 °C, a hot bed
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temperature of 60 °C, and an experimentally measured E of 2400
MPa.
Training of the Neural Network. In order to achieve an effective

accuracy for the neural network, for both square and hexagon cells, we
performed 480 sets of structural design and FEA calculations,
respectively. We divided the data set into training, validation and test
sets in the ratio of 8:1:1 and used MATLAB software and Intel Core
i7-9700 CPU @ 3.00 GHz for computation. The optimal BP models
were built with 5 hidden layers, every hidden layer with 15 neurons.
Evolutionary Strategy Details. The number of initial population

was set to 300. We used three genetic operations for the evolutionary
method: selection, crossover and mutation. For selection, we used the
tournament selection method to randomly select two individuals from
the parent population. For crossover, we used the single-point
crossover method, where two individuals are first selected randomly
from the parent population, then the location of the crossover point is
randomly selected, and finally the genes are exchange at the crossover
point. The crossover probability was set at 0.8 to speed up population
evolution. For mutation, we used a single point mutation method.
The mutation probability was set at 0.2 to prevent a locally optimal
outcome. The ES algorithm was combined with neural network to
form inverse design algorithm. The codes in this paper were
implemented in MATLAB.
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