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Abstract

INTRODUCTION: White matter hyperintensity volumes (WMHVs) are dispropor-

tionally prevalent in individuals with Alzheimer’s disease (AD), potentially reflecting

neurovascular injury. We quantify the association between AD polygenic risk score

(AD-PRS) and WMHV, exploring single-nucleotide polymorphisms (SNPs) that are

proximal to genes overexpressed in cerebrovascular cell species.

METHODS: In a UK-Biobank sub-sample (mean age = 64, range = 45–81 years), we

associate WMHV with (1) AD-PRS estimated via SNPs across the genome (minus

apolipoprotein E [APOE] locus) and (2) AD-PRS estimated with SNPs proximal to

specific genes that are overexpressed in cerebrovascular cell species.

RESULTS: We observed a positive association between non-APOE-AD-PRS and

WMHVs. We further demonstrate an association between WMHVs and AD-

PRS constructed with SNPs that are proximal to genes over-represented in

smooth muscles cells (SMCs; β = 0.135, PFWE < 0.01) and internally replicated

(PDISCOVERY+REPLICATION< 0.01).

DISCUSSION: Common AD genetic risk could explain physiological processes under-

lying vascular pathology in AD. SMC function may offer a treatment target to prevent

WMHV-related AD pathophysiology prior to the onset of symptoms.

KEYWORDS
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Highlights

∙ Alzheimer’s disease (AD) risk factors such as apolipoprotein E (APOE) ε4, link to

increased white matter hyperintensity volume (WMHV).

∙ WMHVs indicate vascular risk and neurovascular injury in AD.

∙ The broader genetic link between AD risk andWMHV is not fully understood.
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2 CHANDLER ET AL.

∙ We quantify AD polygenic risk score (PRS) associations with WMHV, excluding

APOE.

∙ AD-PRS in smooth muscle cells (SMCs) shows a significant association with

increasedWMHV.

1 INTRODUCTION

Alzheimer’s disease (AD) has a complex, polygenic component, and

our understanding of specific genetic contributions are limited by het-

erogeneity in clinical and neurobiological features.1 However, recent

advances the provide potential for biological specificity including

determining how genetic profiles for specific brain cell types are impli-

cated in AD.2,3 Cerebrovascular pathophysiology in AD is evident

decades prior to symptom onset and is one of the earliest changes to

occur in AD development.4–6 Recently described vascular gene sets

are therefore an ideal target for assessing AD-related pathophysiology

with known neurovascular dysfunction.3 White matter hyperintensi-

ties (WMHs) represent lesions on fluid-attenuated inversion recovery

(FLAIR)magnetic resonance imaging (MRI) scans,7 reflecting patholog-

ical events including vascular changes, increased blood–brain barrier

(BBB) permeability, and myelin degeneration,8 and are more severe

in individuals with AD.9 Although WMH load has been linked to mid-

life AD risk factors/morbidity such as age, hypertension, diabetes,

and hyperlipidemia,10–12 the precise neural processes that lead to the

development ofwhitematter hyperintensity volume (WMHV) as a pre-

clinical feature of AD are less established. Increases in WMHV may

be independent of established AD pathology and present in asymp-

tomatic individuals years before the onset of clinical symptoms.13

Although they frequently co-occur with other preclinical AD fea-

tures such as amyloid deposition and cortical thinning, suggestive of

a shared contribution to AD development,14 the precise mechanism

linking increased risk for AD to WMHV load is largely unknown. The

association between AD and WMHV may be partly explained by AD

genetic risk, such as the association with single-nucleotide polymor-

phisms (SNPs) in the apolipoprotein E (APOE) locus, where an APOE

ε4 allele is associated with higher WMH load and increased risk for

AD. For example, three independent studies have identified a posi-

tive association between APOE ε4 status and larger WMHV in UK

Biobank.15–17 However inter-individual WMHV variation is likely to

be genetically complex and multifaceted, with some initial evidence

that a non-APOE association between AD polygenic risk score (AD-

PRS) is linked to WMH features via pathways such as cell migration

and clearance.18 However, little is known about molecular features of

the genetic architecture implicated in the association between com-

mon AD risk and WMHV. WMHV has a polygenic common genetic

architecture, explaining a proportion of an individual’s susceptibility to

WMHV burden19; however, the genetics of AD that confer develop-

ment of WMHV above and beyond APOE and rare missense variations

such asNOTCH3/TRIM320–23 are not well established. PRSs for AD can

explain variation across a range of prodromal AD features across the

entire lifespan,2,24–29 before theonset of symptoms.30 For instance,we

have demonstrated previously that AD-PRS can shape feature of brain

vasculature such as cerebral blood flow4,5 decades before the onset of

symptoms. Prior studies have demonstratedAD-PRS is associatedwith

an increased burden of WMHV31 in an asymptomatic sample, posi-

tioningWMHVas neurobiological antecedent to AD,32 andwarranting

the further investigation we propose here. Understanding of specific

biological processes linking AD genetic risk to WMHV could further

help clarify individual risk and inform treatment strategies and early

intervention/prevention of WMHV. Here, we construct cell-specific

AD-PRS via genetic variants proximal to genes that are overexpressed

in specific vascular cell species, as well as AD-PRS constructed using

established cell types.3,33 Specific vascular cell types preferentially

harbour AD risk loci, more so than all other brain cell types, apart from

established overexpression in microglia. We anticipate that by parsing

the AD-PRS by gene sets linked to specific vascular cell types, we will

be able to establish specific biological process that link AD genetic risk

to neurovascular injury. This analysis will provide further clarification

into the pathophysiology underlying AD-related alterations in brain

health with a specific focus on neurovascular insult.34 Understanding

preclinical risk factors that confer risk to ADvia neuroimaging can help

uncover pathophysiologicalmechanisms that occur decades before the

onset of symptoms.

2 METHODS

2.1 Sample characteristics

Genome-wide association study (GWAS) summary data were derived

fromaneuroimaging-genetic sample of 39,691 individuals from theUK

Biobank cohort. Briefly, just under500,000 individual samples included

in the Spring 2018 release of the UK Biobank were first considered.

Following genotyping quality-control procedures for sample removal,

a maximally unrelated samples with recent UK ancestry resulted in

a subset of 34,298 samples with acceptable genotyping and imag-

ing quality control. Consistent with prior UK Biobank genetic-imaging

approaches, the imaging-GWAS sample was further randomly divided

into sex- and age-matched discovery (N = 22,138) and replication

cohorts (N= 11,086).35

2.2 WMH imaging

WMHVs were calculated independently via central UK Biobank

image-derived phenotype (IDP) processing, using prior training data
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CHANDLER ET AL. 3

established as part of the broader UK Biobank IDP pipeline.35 Briefly,

WMHV as an IDP was derived using a combination of structural

T1-weighted (three-dimensional magnetization-prepared rapid gra-

dient echo [3D MPRAGE], sagittal, R = 2, T1/TR 880/2000 ms) and

T2-weighted FLAIR imaging (1.05 × 1.0 × 1.0 mm 192 × 256 × 256,

FLAIR, 3D SPACE, sagittal,R= 2, PF 7/8, fat sat, T1/TR 1800/5000ms),

and estimated using BIANCA.36

2.3 WMHV GWAS summary statistic data

The WMHV GWAS summary statistic data were downloaded from

UK Biobank (IDP IDs: 1437, IDP_T2_FLAIR_BIANCA_WMH_volume),

available at https://open.win.ox.ac.uk/ukbiobank/big40/release2.

After removing individuals with no available genetic data (N = 2184),

the imaging-genetic data set comprised 32,114 (N DISCOVERY = 21381;

N REPLICATION =10,733) participants,whichwas corrected for an exten-

sive array of confounds (including subject specific, such as sex, age,

head size, motion; scanner specific; table position; and genetic ances-

try and relatedness) as employed previously to optimize confound

modeling in neuroimaging UK Biobank data.35,37 The WMHV GWAS

summary statistic data were considered as our exposure/outcome,

where SNPs/beta coefficients are aligned to the AD-PRS exposure

instruments (see Section 2.6 for further clarification).

2.4 AD-PRS generation

In this study, all SNPs with a low minor allele frequency (MAF <0.01)

and lower imputationquality (INFO<0.9)wereexcluded.AD-PRSwere

created using PRSice v1.25 risk profile software38 using a stringent

clumping procedure [clump.kb = 10mb, clump.r2 = 0.001] to remove

correlated alleles, with 1000 Genomes Project (phase 3) as refer-

ence data to model linkage disequilibrium. To estimate whole-genome

AD-PRS and cell-type specific derivatives, we included SNPs across a

range of p—thresholds at p < 0.01–1.0 from the a recent AD-GWAS

described in Kunkle et al.,39 with minimal known inclusion or overlap

with individuals fromUK Biobank.40 For the whole-genome non-APOE

AD-PRS, all SNPs across the genome were considered (regardless of

SNP–gene annotation), apart from SNPs within the APOE (chr 19:

44,500–46,000 kb) and the major histocompatibility complex (MHC)

(chr 6: 26,000–34,000 kb) regions, which were removed from the

pruned data to ensure putative associations where not influenced by

prior APOE-linked observations or bias from complex linkage disequi-

librium (LD) structure.41–43 As a sensitivity analysis, we added the

APOE locus back to theAD-PRSmodel to establish ifAPOE effectswere

consistent with prior observations in the UKBiobank.15,44

2.5 Cell-type specific AD-PRS

After AD-PRS quality control, pruning, and estimation, N = 23,869

uncorrelated SNPs were brought forward for consideration. We fur-

RESEARCH INCONTEXT

1. Systematic review: We reviewed the literature linking

white matter hyperintensity (WMH) with Alzheimer’s

disease (AD) and genetic risk factors that were consid-

ered previously such as apolipoprotein E (APOE) ε4. We

assessed studies exploring polygenic risk score (PRS) and

its association with WMH volume (WMHV) and current

models that increase biological interpretation such as

cell-specific AD-PRS.

2. Interpretation: Our findings first show a non-specific,

whole-genome positive association between non-APOE

AD-PRSandWMHV.We further identified a link between

WMHV and AD-PRS in smooth muscle cells (SMCs), sug-

gesting a specific genetic basis for vascular pathology in

AD. Common AD risk alleles proximal to genes overex-

pressed in SMCs increasesWMHV load before the onset

of AD.

3. Future directions: Future research should investigate

the role of SMC function in AD-related WMHV. Studies

should focus on how these genetic factors influence vas-

cular health and explore potential treatments targeting

SMC to prevent WMHV-related pathophysiology before

AD symptoms appear.

thermapped these SNPs to proximal genes using “g:SNPense” function

provided as part of the gprofiler2 toolbox.45 Briefly, “g:SNPense”

maps a list of human SNP rs-codes to corresponding gene names,

retrieves chromosomal coordinates, and predicts variant effects. The

mapping process is limited to variants that overlap with at least one

protein-coding gene. The “gSNPense” function retrieves genome vari-

ant SNP data from dbSNP, mapping to specific genes from National

Center for Biotechnology Information (NCBI) gene database,46 using

upstream/downstream cutoffs of 2 and 0.5 kbps, respectively.47 After

removing any SNPs that were mapped to the same gene in multiple

instances, a total of 754 SNPswere considered for AD-PRS estimation.

We further considered AD-PRS for specific genes that are preferen-

tially expressed in specific cell types across the vasculature and other

brain cell types, as identified by Yang et al.48 We considered AD-

PRS consisting of SNPs mapped to genes that were disproportionally

expressed across all 14 brain cell types, including a series of recently

described vascular cell species such as endothelial, pericyte, ependy-

mal, and smooth muscle cell (SMC) species (see Tables S1–S3, for all

(1) cell types considered and (2) the number of SNPs mapped to each

specific cell type AD-PRS). We define genes “overexpressed” as those

serving as specific markers/show enriched expression in particular cell

types as outlined in Yang et al.48 This enrichment is measured as a log-

transformed fold change, comparing expression levels in each cell type

to background levels. Significance is assessed using cumulative hyper-

geometric testing, corrected for the false discovery rate. To first assess

 15525279, 0, D
ow

nloaded from
 https://alz-journals.onlinelibrary.w

iley.com
/doi/10.1002/alz.14455 by W

elsh A
ssem

bly G
overnm

ent, W
iley O

nline L
ibrary on [10/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://open.win.ox.ac.uk/ukbiobank/big40/release2


4 CHANDLER ET AL.

the validity/reliability of this cell-specific AD-PRS model approach, we

first perform a pseudo-replication of Yang et al.,33 who assessed the

relationship between cell-specific AD-PRS and AD diagnosis. Here, we

explore a whole-genome AD-PRS and six cell-specific AD-PRS, using

SNP effect sizes from the Kunkle et al.39 AD GWAS summary statis-

tics as our exposure/independent variable instruments and SNP effect

sizes from the UK Biobank Family history/AD-by-proxy GWAS49 as

our outcome. Here we observed a ranked set of cell-specific AD-PRS

effect sizes comparable to Yang et al.,33 where whole genome AD-

PRS explained the most variance in AD as an outcome in our analysis

(rho= 0.82, p= 0.034; see Figure S1).

2.6 Statistical analysis

We employ a PRS approach using the “gtx” method first described by

Johnson50 for regressing the response variable onto the risk score

first described in previous studies.2,51,52 This PRS approach is equiva-

lent to the “inverse variance weighted” (IVW) approach in two-sample

Mendelian randomization studies. However, in PRS analysis, there is no

stringent inclusion criteria for genetic variants: we do not require the

variants to be strongly associated with the exposure and pleiotropic

effects are allowed. Briefly, the risk score coefficients, represent the

“weights” used to compute the risk score for a set of SNPs (in this

case, the exposure—AD-PRS), measured in units per dose of the coded

allele. Typically, these weights are single-SNP regression coefficients

estimated from AD GWAS summary statistic data.39 The aligned beta

coefficients reflect the regression coefficients for the outcome vari-

able (in this case, the outcome—WMHV GWAS summary statistics),

calculated for the same set of SNPs and using the same coded allele

as for weights, typically estimated from single-SNP regression models,

but from an independent GWAS summary statistic data set. In causal

inference studies, the aim is often to estimate the causal effect of an

intermediate trait or biomarker on an outcome variable. Here, weights

represent the estimated effects on the intermediate trait or biomarker,

whereas the beta coefficient captures the estimated effects on the

outcome variable and its standard errors. The sample size, n, is used

to compute the (pseudo) variance explained in the testing data set,

derived from the likelihood ratio test statistic. This method is exact

when SNPs are uncorrelated (in this case, R2 < 0.001) and when a

quadratic log-likelihood is used, which can be obtained under a nor-

mal linear model or any regression model with a large sample size. We

employ a family-wise error (FWE) rate alpha to the beta/p-values inde-

pendently considering all 14 cell-specific AD-PRS and 3 progressive

p-thresholds. In order to ascertain whether a significant cell-specific

AD-PRS SNP set size was contributing to putative explained variance,

the relationship between AD-linkedWMHVwas validated using a per-

mutation analysis that was conducted to set an empirical threshold

by creating AD-PRS from 1000 permuted SNP sets,53 controlling for

SNP set size and p-threshold. To assess the generalizability of spe-

cific cell-specific AD-PRS sets associated with WMHV, we performed

a split-sample approach, where we employ GWAS from two samples of

21,360 and 10,727.

3 RESULTS

3.1 Whole-genome and cell-specific AD-PRS
associations with WMH-V

We observed a positive association between whole-genome AD-

PRS and WMHV, across all AD-PRS p-thresholds (β LOWEST > 0.01,

pFWE < 0.05, Figure 1A—whole-genome). We then separated the AD-

PRS into an extended set of 14 cell-specific AD-PRS and repeated the

analyses. We observed that the SMC AD-PRS was positively associ-

ated with WMHV (β > 0.13, p FWE < 0.05, Figures 1B and 2B). (See

Table S1 for all associations.) The SNPs within the SMC AD-PRS did

not fully explain the full-genome AD-PRS association, as removing

the SNPs from the full-genome AD-PRS analysis remained significant

(p< 0.03, in all cases) andwas not significantly attenuated (Figure 1A—

whole-genome excluding SMC SNPs). Consistent with prior positive

associations between APOE and WMHV, we further observed that

including the APOE locus in the AD-PRS model increased the strength

of the association (β= 0.025± 0.0053, p= 1.49e-06 Figure 1A—whole-

genome + APOE). In order to assess the generalizability of this finding,

we demonstrate that the positive SMC AD-PRS–WMHV association

could be observed in both the discovery (N = 21,360; β LOWEST > 0.12,

p HIGHEST < 0.010) and replication (N = 10,727; β LOWEST > 0.14, p

HIGHEST < 0.031) samples (see Figure 2A, Tables S2 and S3 for all asso-

ciations). We further demonstrate that the association between SMC

AD-PRS and WMHV was not linked to SNP set size, as AD-PRS con-

structed of random AD risk SNPs of comparable set sizes did not

associate with WMHV in a comparable manner (Z = 2.47; p = 0.013,

1000 simulations—Figure 2C).

4 DISCUSSION

Here we investigated how gene sets expressed within a range of cell

types (including a novel array of genes expressed more in specific vas-

cular cell species3) influence AD by contributing to WMHV burden.

Our initial analysis revealed a positive association between whole-

genome AD-PRS and WMHV for all AD-PRS p-thresholds. When

constructing AD-PRS from genes preferentially expressed in 14 cell-

specific subtypes, we observed a significant association between the

genes that are expressed in vascular SMCs and WMHV. Although our

observations corroborate prior accounts linking APOE loci to WMHV

in the UK Biobank,15–17 all of which suggest that AD risk at the APOE

locus increases WMHV, this is the first evidence to our knowledge

linking AD genetic risk in SMCs to WHMV and to any AD imaging

biomarkers, more broadly.We also note thatwe observed a similar, but

weaker (and not significant after multiple testing) association between

WMHV and AD-PRS restricted to genes expressed in ependymal cells,

which line the ventricles proximal to typical sites of periventricular

WMHV presentation,54 adding construct validity to our inferences.

In the brain, SMCs surround arteries and arterioles, moderating key

functions in the neurovascular unit and regulating cerebral blood flow

to meet tissue energy demands.55 Increased WMHV burden is asso-
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CHANDLER ET AL. 5

F IGURE 1 (A)Whole-genome AD-PRS; minus the SMC SNPs and including the APOE region. (B) Cell type–specific AD-PRS. Beta coefficients
in red reflect pFWE-CORRECTED< 0.05). Error bars reflect 95% confidence intervals of the beta coefficient for the combined sample (N= 32,087).
APOE, apolipoprotein E; BEC, brain endothelial cell; FWE, family-wise error; SMC, smoothmuscle cell.

F IGURE 2 (A) Association between AD-PRS andWMHV. Red beta coefficients reflect pFWE-CORRECTED< 0.05. Error bars reflect 95%
confidence intervals of the beta coefficient for discovery (N= 21,360) and replication samples (N= 10,727). (B) The association between SNP
effect sizes for AD andWMHV for the whole-genome AD-PRS (gray line-of-best-fit), a whole-genome AD-PRS (including APOE—blue
line-of-best-fit), and SMCAD-PRS (red line-of-best-fit). Gene IDs reflect gene proximal to SNPs in the SMCAD-PRS. Each SNP is plotted by
coefficient in the AD risk (x axis) versus estimated effect size forWMHV in the independent data set (y axis). (C) The SMCAD-PRSwas associated
withWMHV to a higher degree compared to themajority of a 1000 SNP-set size-matched, randomly sampled AD-PRS (two tailed). Vertical red
line represents degree of association (absolute standard beta coefficient) between SMCAD-PRS andWMHV. FWE, family-wise error; SMC,
smoothmuscle cell;WMHV, white matter hyperintensity volume.

ciated with impaired cerebrovascular reactivity (CVR) and reduced

vasoconstriction,56,57 indicating a dysfunction in SMCs. In healthy

whitematter, impaired CVR also precedes the development ofWMHV,

suggesting that dysfunction in contractability may contribute to the

pathogenesis of cerebral small vessel disease and the development of

WMH burden.58 SMCs are also implicated in the early development

and progression of atherosclerosis,59–61 a condition highly prevalent

in AD62 and also associated with the development of WMH burden.63

Furthermore, SMCs regulate blood pressure by altering the luminal

diameter to constrict and relax blood vessels.64 In hypertensive con-

ditions, chronic vasoconstriction or vasodilation/reduced compliance

may lead to reduced blood flow, oxygen deprivation, and hypoxia con-

tributing to microvascular damage and WMH burden.65 However, the

role of SMCs inWMHdevelopment ismultifaceted andnot fully under-

stood. The precise causal process, as well as moderating effects of

environmental risk factors, remain the subject of ongoing investigation.

Recent evidence demonstrates associations between WMHV and

AD, even when accounting for genetic confounding from pulse

pressure,32 suggesting that targeting vascular pathophysiology and

WMHs is an important to consider for intervention/prevention strate-

gies. Despite identifying a specific vascular link between WMHs and

AD genetic risk, the pathogenesis and genetic basis of WMHs is still

poorly understood. As a model mechanism of action, one of the patho-

physiological markers of Cerebral Autosomal Dominant Arteriopathy

with Subcortical Infarcts and Leukoencephalopathy (CADASIL) and

mutations in the NOTCH3 gene includes an increase in WMHs and a

loss of vascular smooth muscle cells.66 The pathophysiological corre-

lates ofWMHs inCADASIL suggest lower baseline total cerebral blood

flow in NOTCH3 mutation carriers that precedes the development of

WMHs.67 This may suggest that changes in the mechanisms that help

regulate cerebral blood flow (including SMCs) and reduce pulsatile

pressure can lead to downstream microvascular damage resulting in

the development ofWMHs.

SMCs are expressed in both superficial (sub-cortical arteries)55 and

deep (medullary arteries) white matter vasculature before branching

into arterioles and capillaries.68 These arteries (and the associated

veins) are surrounded by perivascular spaces (PVSs), which form part

of the glymphatic system and are important conduits of brain drainage

implicated in neurovascular injury.69–71 Interstitial fluid and solutes

diffuse through extracellular spaces at the capillary level and then
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6 CHANDLER ET AL.

drain between the capillary endothelial basement membrane and the

SMC basement membrane.72,73 Pathophysiological events in this pro-

cess lead to BBB breakdown andmicrobleeds such as cerebral amyloid

angiopathy (CAA), where amyloid beta is deposited into the base-

ment membranes of SMCs74 and in CADASIL, where loss of arterial

SMCs reduces the amplitude of pulsations that facilitate the drainage

along PVSs. Vascular SMCs carrying the mutated NOTCH3 receptor

diminish, thereby reducing SMC function, leading to abnormal arte-

rial tone and contractibility.75 This cerebrovascular dysfunction often

precedes WMHV increases.76 Both CAA and CADASIL are associated

with microbleeds and increased WMHV. Examination of white mat-

ter in these conditions reveals that vascular degeneration progresses

from a loss of SMCs.77 Although other cerebrovascular cell species,

such as pericytes78 and endothelial cells,79 have been linked to AD

through BBB dysfunction, we did not observe any evidence of com-

mon AD genetic risk driving an association with WMHV via SNPs

linked to genes preferentially expressed in these cell types. If changes

in pericyte or endothelial function are associated with AD-PRS and

are present in a largely asymptomatic group, T2-FLAIR MRI may not

have the sensitivity to assess dysfunction at the capillary/BBB level.

However, SMCdysfunction because of increased SMCAD-PRS burden

could lead to macrostructural alterations such as elevatedWMHV and

other observable presentations such asmicrobleeds.

We suggest that these observations are considered with the fol-

lowing limitations. First, we acknowledge that the impact of both

genome-wide and SMC AD-RPS on WMHV is minimal, explaining less

than 0.05% of the variance in both cases. Second, becauseWMHVwas

collected inmid- to later-life,we cannotdeterminewhether these asso-

ciations are fixed or dynamic throughout the lifespan. Third, although

we acknowledge that the p-thresholds we use have good predic-

tive performance, we cannot fully infer the potential causal inference

between genetic risk for AD and WMHV, and our associations may

be biased by horizontal pleiotropy. Given these collective limitations,

we advise caution when interpreting the effect sizes and variance

explained by whole-genome and SMC AD-RPS in this study. Fourth,

we only considered SNPs proximal to genes for brain cell–specific

species, not biological function or subtypeor cell state.Wealso suggest

that fine-mapping SNPs with known downstream function may also

improve the performance in such pathway-specific approaches.80,81

Future bioinformatics research should aim to refine and uncover the

principal biological gradients that underpin AD genetic risk.82 This

research will help delineate the various AD-linked processes that may

contribute toWMHV across both early and later life stages.

To conclude, we demonstrate that there is a common genetic risk

factor for AD associated with an increased WMHV burden expressed

in SNPs that are proximal to genes disproportionally expressed in

SMCs. Further experimental models are required to establish the pre-

cise mechanisms and to explore potential therapeutic strategies to

target SMCaction inWMHV-relatedADmorbidity. Understanding the

links between AD genetic risk and WMH holds promise for advancing

our comprehension of AD and may provide implications for early diag-

nosis, personalized risk assessment, and the development of targeted

therapeutic interventions. Understanding the role of SMC in the devel-

opment of AD could therefore be instrumental in the development

toward interventions to prevent or mitigate WMH burden and atten-

uate associated cognitive impairment and other neurodegenerative

sequalae.

ACKNOWLEDGMENTS

The authors have nothing to report. T. L. acknowledges funding

via Ser Cymru II fellowship [PNU-80762-CU-14]. H.C. and I.D. are

funded by Wellcome Strategic Award (104943/Z/14/Z). H.C. and

K.M. are funded by a Wellcome Senior Fellowship (WT200804 and

WT224267). V.E.-P. acknowledges funding from a Medical Research

Council grant (MR/L010305/1). This work is supported by the UK

Dementia Research Institute, which receives its funding from UK

DRI Ltd, funded by the UK Medical Research Council (UKDRI-3003),

Alzheimer’s Society, and Alzheimer’s Research UK.

CONFLICT OF INTEREST STATEMENT

All authors declare that they have no competing interests. Author

disclosures are available in the supporting information.

CONSENT STATEMENT

All participants were recruited to the wider UK Biobank study, and

provided informed consent. UK Biobank has approvals from the

Northwest Multi-centre Research Ethics Committee (MREC) as a

Research Tissue Bank (RTB). This approval means that researchers

do not require separate ethical clearance and can operate under

the RTB approval (there are certain exceptions to this which are

set out in the Access Procedures, such as re-contact applications).

https://www.ukbiobank.ac.uk/media/p4yjfqcp/2021-nwrec-rtb-

application-and-approval.pdf.

ORCID

ThomasMatthewLancaster https://orcid.org/0000-0003-1322-

2449

REFERENCES

1. Sims R, Hill M, Williams J. The multiplex model of the genetics of

Alzheimer’s disease.Nat Neurosci. 2020;23(3):311-322.
2. Lancaster TM, Hill MJ, Sims R,Williams J. Microglia—mediated immu-

nity partly contributes to the genetic association betweenAlzheimer’s

disease and hippocampal volume. Brain Behav Immun. 2019;79:267-
273.

3. Yang AC, Vest RT, Kern F, et al. A human brain vascular atlas reveals

diverse mediators of Alzheimer’s risk. Nature. 2022;603(7903):885-
892.

4. Chandler H, Wise R, Linden D, et al. Alzheimer’s genetic risk effects

on cerebral blood flow across the lifespan are proximal to gene

expression.Neurobiol Aging. 2022;120:1-9.
5. Chandler HL, Wise RG, Murphy K, Tansey KE, Linden DEJ, Lancaster

TM. Polygenic impact of common genetic risk loci for Alzheimer’s

disease on cerebral blood flow in young individuals. Sci Rep.
2019;9(1):467.

6. Iturria-Medina Y, Sotero RC, Toussaint PJ, Mateos-Perez JM, Evans

AC. Alzheimer’s disease neuroimaging I. Early role of vascular dys-

regulation on late-onset Alzheimer’s disease based on multifactorial

data-driven analysis.Nat Commun. 2016;7:11934.

 15525279, 0, D
ow

nloaded from
 https://alz-journals.onlinelibrary.w

iley.com
/doi/10.1002/alz.14455 by W

elsh A
ssem

bly G
overnm

ent, W
iley O

nline L
ibrary on [10/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://www.ukbiobank.ac.uk/media/p4yjfqcp/2021-nwrec-rtb-application-and-approval.pdf
https://www.ukbiobank.ac.uk/media/p4yjfqcp/2021-nwrec-rtb-application-and-approval.pdf
https://orcid.org/0000-0003-1322-2449
https://orcid.org/0000-0003-1322-2449
https://orcid.org/0000-0003-1322-2449


CHANDLER ET AL. 7

7. YoshitaM, Fletcher E, DeCarli C. Current concepts of analysis of cere-

bralwhitematter hyperintensities onmagnetic resonance imaging.Top
Magn Reson Imaging. 2005;16(6):399-407.

8. Haller S, Kovari E, Herrmann FR, et al. Do brain T2/FLAIR white mat-

ter hyperintensities correspond to myelin loss in normal aging? A

radiologic-neuropathologic correlation study. Acta Neuropathol Com-
mun. 2013;1:14.

9. Garnier-Crussard A, Chetelat G. White matter hyperintensities in

Alzheimer’s disease: beyond (but not instead of) the vascular contri-

bution. Alzheimers Dement. 2023;19(9):4262-4263.
10. Ten Kate M, Sudre CH, den Braber A, et al. White matter hyperinten-

sities and vascular risk factors in monozygotic twins. Neurobiol Aging.
2018;66:40-48.

11. Alijanpourotaghsara A, Strelnikov D, Piroska M, et al. Genetic and

environmental effects on the development of white matter hyperin-

tensities in amiddle age twin population.Medicina. 2022;58(10):1425.
12. Siedlinski M, Carnevale L, Xu X, et al. Genetic analyses identify brain

structures related to cognitive impairment associated with elevated

blood pressure. Eur Heart J. 2023;44(23):2114-2125.
13. Mortamais M, Artero S, Ritchie K. White matter hyperintensities

as early and independent predictors of Alzheimer’s disease risk. J
Alzheimers Dis. 2014;42(4):S393-S400.

14. Zhang J, Chen H, Wang J, et al. Linking white matter hyperintensities

to regional cortical thinning, amyloid deposition, and synaptic density

loss in Alzheimer’s disease. Alzheimers Dement. 2024;20(6):3931-
3942.

15. Lyall DM, Cox SR, Lyall LM, et al. Association between APOE e4

and white matter hyperintensity volume, but not total brain vol-

ume or white matter integrity. Brain Imaging Behav. 2020;14(5):
1468-1476.

16. Heise V, Offer A, Whiteley W, Mackay CE, Armitage JM, Parish S. A

comprehensive analysis of APOE genotype effects on human brain

structure in the UK biobank. Transl Psychiatry. 2024;14(1):143.
17. Lumsden AL, Mulugeta A, Zhou A, Hypponen E. Apolipoprotein

E (APOE) genotype-associated disease risks: a phenome-wide,

registry-based, case-control study utilising the UK biobank. EBioMed.
2020;59:102954.

18. Lorenzini L, Collij LE, Tesi N, et al. Alzheimer’s disease genetic

pathways impact cerebrospinal fluid biomarkers and imaging

endophenotypes in non-demented individuals. Alzheimers Dement.
2024;20(9):6146-6160.

19. Persyn E, HanscombeKB,Howson JMM, Lewis CM, TraylorM,Markus

HS. Genome-wide association study of MRI markers of cerebral small

vessel disease in 42,310 participants.Nat Commun. 2020;11(1):2175.
20. Ramirez J, Dilliott AA, Binns MA, et al. Parkinson’s disease, NOTCH3

genetic variants, and white matter hyperintensities. Mov Disord.
2020;35(11):2090-2095.

21. Liu B, Tang Y, Yang P,Wu C, Huang Y. TRIM65 in white matter lesions,

innate immunity, and tumor. Curr Mol Pharmacol. 2021;14(5):798-805.
22. Joutel A, Corpechot C, Ducros A, et al. NOTCH3 mutations in

CADASIL, a hereditary adult-onset condition causing stroke and

dementia.Nature. 1996;383(6602):707-710.
23. Stojanov D, Vojinovic S, Aracki-Trenkic A, et al. Imaging character-

istics of cerebral autosomal dominant arteriopathy with subcortical

infarcts and leucoencephalopathy (CADASIL). Bosn J Basic Med Sci.
2015;15(1):1-8.

24. Foo H, Thalamuthu A, Jiang J, et al. Associations between Alzheimer’s

disease polygenic risk scores and hippocampal subfield volumes in

17,161UK biobank participants.Neurobiol Aging. 2021;98:108-115.
25. Murray AN, Chandler HL, Lancaster TM.Multimodal hippocampal and

amygdala subfield volumetry in polygenic risk for Alzheimer’s disease.

Neurobiol Aging. 2021;98:33-41.
26. Chandler HL, Hodgetts CJ, Caseras X, Murphy K, Lancaster TM.

Polygenic risk for Alzheimer’s disease shapes hippocampal scene-

selectivity.Neuropsychopharmacology. 2020;45(7):1171-1178.

27. Walhovd KB, Fjell AM, Sorensen O, et al. Genetic risk for Alzheimer

disease predicts hippocampal volume through the human lifespan.

Neurol Genet. 2020;6(5):e506.
28. Kauppi K, Ronnlund M, Nordin Adolfsson A, Pudas S, Adolfsson R.

Effects of polygenic risk for Alzheimer’s disease on rate of cognitive

decline in normal aging. Transl Psychiatry. 2020;10(1):250.
29. Foley SF, Tansey KE, Caseras X, et al. Multimodal brain imaging reveals

structural differences in Alzheimer’s disease polygenic risk carriers: a

study in healthy young adults. Biol Psychiatry. 2017;81(2):154-161.
30. Escott-Price V, Sims R, Bannister C, et al. Common polygenic varia-

tion enhances risk prediction for Alzheimer’s disease. Brain: J Neurol.
2015;138(12):3673-3684.

31. Rutten-Jacobs LCA, Tozer DJ, DueringM, et al. Genetic Study of white

matter integrity inUKbiobank (N=8448) and the overlapwith stroke,

depression, and dementia. stroke. 2018;49(6):1340-1347.
32. Sargurupremraj M, Soumare A, Bis JC, et al. Genetic complexities of

cerebral small vessel disease, blood pressure, and dementia. JAMA
NetwOpen. 2024;7(5):e2412824.

33. Yang HS, Teng L, Kang D, et al. Cell-type-specific Alzheimer’s disease

polygenic risk scores are associated with distinct disease processes in

Alzheimer’s disease.Nat Commun. 2023;14(1):7659.
34. Patel Y, Parker N, Shin J, et al.; Writing Committee for the Attention-

Deficit/Hyperactivity Disorder; Autism Spectrum Disorder; Bipolar

Disorder; Major Depressive Disorder; Obsessive-Compulsive Disor-

der; and Schizophrenia ENIGMAWorking Groups. Virtual histology of

cortical thickness and shared neurobiology in 6 psychiatric disorders.

JAMA Psychiat. 2021;78(1):47-63.
35. Smith SM, Douaud G, ChenW, et al. An expanded set of genome-wide

association studies of brain imaging phenotypes in UK biobank. Nat
Neurosci. 2021;24(5):737-745.

36. Griffanti L, Zamboni G, Khan A, et al. BIANCA (brain intensity abnor-

mality classification algorithm): a new tool for automated segmenta-

tion ofwhitematter hyperintensities.Neuroimage. 2016;141:191-205.
37. Alfaro-Almagro F,McCarthy P, Afyouni S, et al. Confoundmodelling in

UK biobank brain imaging.Neuroimage. 2021;224:117002.
38. Euesden J, Lewis CM, O’Reilly PF. PRSice: polygenic risk score soft-

ware. Bioinformatics. 2015;31(9):1466-1468.
39. Kunkle BW, Grenier-Boley B, Sims R, et al. Genetic meta-analysis of

diagnosed Alzheimer’s disease identifies new risk loci and implicates

Abeta, tau, immunity and lipid processing. Nat Genet. 2019;51(3):414-
430.

40. Choi SW,MakTS,O’Reilly PF. Tutorial: a guide toperformingpolygenic

risk score analyses.Nat Protoc. 2020;15(9):2759-2772.
41. Leonenko G, Baker E, Stevenson-Hoare J, et al. Identifying individuals

with high risk of Alzheimer’s disease using polygenic risk scores. Nat
Commun. 2021;12(1):4506.

42. Ware EB, Faul JD, Mitchell CM, Bakulski KM. Considering the APOE

locus in Alzheimer’s disease polygenic scores in the health and retire-

ment study: a longitudinal panel study. BMCMedGenet. 2020;13:1-13.
43. Persyn E, Hanscombe KB, Howson JM, Lewis CM, Traylor M, Markus

HS. Genome-wide association study of MRI markers of cerebral small

vessel disease in 42,310 participants.Nat Commun. 2020;11(1):2175.
44. Li Y, Zheng J, Li T, Zhang J. White matter and Alzheimer’s dis-

ease: a bidirectional mendelian randomization study. Neurol Ther.
2022;11(2):881-892.

45. Kolberg L, Raudvere U, Kuzmin I, Vilo J, Peterson H. gprofiler2–an R

package for gene list functional enrichment analysis and namespace

conversion toolset g: profiler. F1000Research. 2020;9:709.
46. Brown GR, Hem V, Katz KS, et al. Gene: a gene-centered information

resource at NCBI.Nucleic Acids Res. 2015;43:D36-D42.
47. Sherry ST,WardMH, KholodovM, et al. dbSNP: the NCBI database of

genetic variation.Nucleic Acids Res. 2001;29(1):308-311.
48. Yang AC, Vest RT, Kern F, et al. A human brain vascular atlas reveals

diverse mediators of Alzheimer’s risk. Nature. 2022;603(7903):885-
892.

 15525279, 0, D
ow

nloaded from
 https://alz-journals.onlinelibrary.w

iley.com
/doi/10.1002/alz.14455 by W

elsh A
ssem

bly G
overnm

ent, W
iley O

nline L
ibrary on [10/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



8 CHANDLER ET AL.

49. Marioni RE, Harris SE, Zhang Q, et al. GWAS on family history of

Alzheimer’s disease. Transl Psychiatry. 2018;8(1):99.
50. Johnson T. gtx: genetics ToolboX. R package version 00. 2013;8.

51. Palla L, Dudbridge F. A fast method that uses polygenic scores

to estimate the variance explained by genome-wide marker panels

and the proportion of variants affecting a trait. Am J Hum Genet.
2015;97(2):250-259.

52. Munroe PB, Rice KM, Bochud M, et al. International Consortium

for Blood Pressure Genome-Wide Association Studies and Georg B

Ehret. Genetic variants in novel pathways influence blood pressure

and cardiovascular disease risk.Nature. 2011;478(7367):103-109.
53. Cabrera CP, Navarro P, Huffman JE, et al. Uncovering networks from

genome-wide association studies via circular genomic permutation.

G3. 2012;2(9):1067-1075.
54. Visser VL, Rusinek H, Weickenmeier J. Peak ependymal cell stretch

overlaps with the onset locations of periventricular white matter

lesions. Sci Rep. 2021;11(1):21956.
55. Smyth LCD, Rustenhoven J, Scotter EL, et al. Markers for human brain

pericytes and smoothmuscle cells. J ChemNeuroanat. 2018;92:48-60.
56. Lee BC, Tsai HH, Huang AP, et al. Arterial spin labeling imaging

assessment of cerebrovascular reactivity in hypertensive small vessel

disease. Front Neurol. 2021;12:640069.
57. Blair GW, ThrippletonMJ, Shi Y, et al. Intracranial hemodynamic rela-

tionships in patients with cerebral small vessel disease. Neurology.
2020;94(21):e2258-e2269.

58. Sam K, Crawley AP, Conklin J, et al. Development of white matter

hyperintensity is preceded by reduced cerebrovascular reactivity. Ann
Neurol. 2016;80(2):277-285.

59. Pan H, Ho SE, Xue C, et al. Atherosclerosis is a smooth muscle

cell-driven tumor-like disease. Circulation. 2024;149(24):1885-1898.
60. Grootaert MOJ, Bennett MR. Vascular smooth muscle cells

in atherosclerosis: time for a re-assessment. Cardiovasc Res.
2021;117(11):2326-2339.

61. Bennett MR, Sinha S, Owens GK. Vascular smooth muscle cells in

atherosclerosis. Circ Res. 2016;118(4):692-702.
62. Xie B, Shi X, Xing Y, Tang Y. Association between atherosclerosis

and Alzheimer’s disease: a systematic review and meta-analysis. Brain
Behav. 2020;10(4):e01601.

63. PicoF,DufouilC, LevyC, et al. Longitudinal studyof carotid atheroscle-

rosis and white matter hyperintensities: the EVA-MRI cohort. Cere-
brovasc Dis. 2002;14(2):109-115.

64. Touyz RM, Alves-Lopes R, Rios FJ, et al. Vascular smooth muscle

contraction in hypertension. Cardiovasc Res. 2018;114(4):529-539.
65. Pantoni L. Pathophysiology of age-related cerebral white matter

changes. Cerebrovasc Dis. 2002;13(2):7-10.
66. Chabriat H, Vahedi K, Iba-Zizen MT, et al. Clinical spectrum of

CADASIL: a study of 7 families. Cerebral autosomal dominant arte-

riopathy with subcortical infarcts and leukoencephalopathy. Lancet.
1995;346(8980):934-939.

67. van den Boom R, Lesnik Oberstein SA, Spilt A, et al. Cerebral hemo-

dynamics andwhitematter hyperintensities in CADASIL. J Cereb Blood
FlowMetab. 2003;23(5):599-604.

68. Smirnov M, Destrieux C, Maldonado IL. Cerebral white matter vascu-

lature: still uncharted? Brain. 2021;144(12):3561-3575.
69. Wardlaw JM, Benveniste H, Nedergaard M, et al. Perivascular spaces

in the brain: anatomy, physiology and pathology. Nat Rev Neurol.
2020;16(3):137-153.

70. Jessen NA, Munk AS, Lundgaard I, Nedergaard M. The glymphatic

system: a beginner’s guide.Neurochem Res. 2015;40(12):2583-2599.

71. Wardlaw JM, Smith C, Dichgans M. Small vessel disease: mechanisms

and clinical implications. Lancet Neurol. 2019;18(7):684-696.
72. AgarwalN,CarareRO.Cerebral vessels: anoverviewof anatomy, phys-

iology, and role in the drainage of fluids and solutes. Front Neurol.
2020;11:611485.

73. Weller RO, Subash M, Preston SD, Mazanti I, Carare RO. Perivascu-

lar drainage of amyloid-beta peptides from the brain and its failure

in cerebral amyloid angiopathy and Alzheimer’s disease. Brain Pathol.
2008;18(2):253-266.

74. Carare RO, Hawkes CA, Jeffrey M, Kalaria RN, Weller RO. Review:

cerebral amyloid angiopathy, prion angiopathy, CADASIL and the

spectrum of protein elimination failure angiopathies (PEFA) in neu-

rodegenerative disease with a focus on therapy. Neuropathol Appl
Neurobiol. 2013;39(6):593-611.

75. Dubroca C, Lacombe P, Domenga V, et al. Impaired vascular mechan-

otransduction in a transgenic mouse model of CADASIL arteriopathy.

Stroke. 2005;36(1):113-117.
76. Joutel A,Monet-LepretreM,Gosele C, et al. Cerebrovascular dysfunc-

tion and microcirculation rarefaction precede white matter lesions in

a mouse genetic model of cerebral ischemic small vessel disease. J Clin
Invest. 2010;120(2):433-445.

77. Weller RO, Hawkes CA, Kalaria RN, Werring DJ, Carare RO. White

matter changes in dementia: role of impaired drainage of interstitial

fluid. Brain Pathol. 2015;25(1):63-78.
78. NortleyR, KorteN, IzquierdoP, et al. Amyloid beta oligomers constrict

human capillaries in Alzheimer’s disease via signaling to pericytes.

Science. 2019;365(6450).
79. Custodia A, Aramburu-Nunez M, Rodriguez-Arrizabalaga M, et al.

Biomarkers assessing endothelial dysfunction in Alzheimer’s disease.

Cells. 2023;12(6):eaav9518.
80. Pyun JM, Park YH, Wang J, et al. Transcriptional risk scores in

Alzheimer’s disease: from pathology to cognition. Alzheimers Dement.
2024;20(1):243-252.

81. Brookes KJ. Evaluating the classification accuracy of expression quan-

titative trait loci calculated polygenic risk scores in Alzheimer’s

disease. Int J Mol Sci. 2023;24(16):12799.
82. Tansey KE, Cameron D, Hill MJ. Genetic risk for Alzheimer’s disease

is concentrated in specific macrophage and microglial transcriptional

networks.GenomeMed. 2018;10(1):14.

SUPPORTING INFORMATION

Additional supporting information can be found online in the Support-

ing Information section at the end of this article.

How to cite this article: Chandler HL,Wheeler J, Escott-Price

V,Murphy K, Lancaster TM. Non-APOE variants predominately

expressed in smoothmuscle cells contribute to the influence of

Alzheimer’s disease genetic risk onwhite matter

hyperintensities. Alzheimer’s Dement. 2024;1-8.

https://doi.org/10.1002/alz.14455

 15525279, 0, D
ow

nloaded from
 https://alz-journals.onlinelibrary.w

iley.com
/doi/10.1002/alz.14455 by W

elsh A
ssem

bly G
overnm

ent, W
iley O

nline L
ibrary on [10/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1002/alz.14455

	Non-APOE variants predominately expressed in smooth muscle cells contribute to the influence of Alzheimer’s disease genetic risk on white matter hyperintensities
	Abstract
	1 | INTRODUCTION
	2 | METHODS
	2.1 | Sample characteristics
	2.2 | WMH imaging
	2.3 | WMHV GWAS summary statistic data
	2.4 | AD-PRS generation
	2.5 | Cell-type specific AD-PRS
	2.6 | Statistical analysis

	3 | RESULTS
	3.1 | Whole-genome and cell-specific AD-PRS associations with WMH-V

	4 | DISCUSSION
	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST STATEMENT
	CONSENT STATEMENT
	ORCID
	REFERENCES
	SUPPORTING INFORMATION


