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Abstract
Bearings are critical components in machinery, and accurately predicting their remaining useful life (RUL) is essential
for effective predictive maintenance. Traditional RUL prediction methods often rely on manual feature extraction and
expert knowledge, which face specific challenges such as handling non-stationary data and avoiding overfitting due
to the inclusion of numerous irrelevant features. This paper presents an approach that leverages Continuous Wavelet
Transform (CWT) for feature extraction, a Channel-Temporal Mixed MLP (CT-MLP) layer for capturing intricate
dependencies, and a dynamic attention mechanism to adjust its focus based on the temporal importance of
features within the time series. The dynamic attention mechanism integrates multi-head attention with innovative
enhancements, making it particularly effective for datasets exhibiting non-stationary behaviour. An experimental
study using the XJTU-SY rolling bearings dataset and the PRONOSTIA bearing dataset revealed that the proposed
deep learning algorithm significantly outperforms other state-of-the-art algorithms in terms of RMSE and MAE,
demonstrating its robustness and accuracy.
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1 Introduction
The widespread use of rotating machinery is in the aero-
space, automotive manufacturing, and textile manufactur-
ing industries. These machines typically work in hostile
settings and under variable loadings, exposing them to the
possibility of faults that pose significant security threats
[1, 2]. Bearing, as essential parts of machinery, has a ma-
jor effect on the reliable operation. The accurate predic-
tion of the remaining useful life (RUL) of bearings is im-
portant for predictive maintenance [3], preventing unex-
pected failures and increasing the lifespan of machinery
[4]. The traditional RUL prediction methods are highly de-
pendent upon feature extraction and expert knowledge,
which takes much time and cost [5].

Many feature extraction techniques have been explored
in the realm of RUL prediction to increase accuracy. In
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particular, due to their capability to utilize spatial hi-
erarchies in data [6, 7], convolutional neural networks
(CNNs) are particularly effective. Other techniques have
been used to extract important features from complex sig-
nals such as Principal Component Analysis (PCA) [8] and
Wavelet Transforms [9]. Although these techniques can
consume much computational resources and may have dif-
ficulty with nonstationary data as is common in bearing
degradation processes, there are other possible solutions.
However, classical deep learning algorithms such as Long
Short-Term Memory (LSTM) networks [10] and Recur-
rent Neural Networks (RNNs) [1] show promising results
in practice, but they are not computationally or scalable
efficient.

For the last few years, models with both feature extrac-
tion techniques, such as wavelet transforms and convo-
lution and multi-head attention mechanisms have been
shown to perform exceptionally well in predicting bearing
life. While these models have achieved success, their ro-
bustness remains insufficient, especially when applied to
nonstationary data characteristic of the bearing degrada-
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tion process. Moreover, the high computational overhead,
as well as the inconsistency of performance across differ-
ent datasets demonstrate a clear demand for stronger and
more generalizable models.

To address these challenges, this paper proposes a hy-
brid approach: CWT for feature extraction, a Channel-
Temporal Mixed MLP layer for exploiting the intricate
dependencies, and a dynamic attention mechanism. Us-
ing CWT and CT-MLP, we enhanced feature extraction
and captured complex temporal dependencies in the deep
learning model that we developed. This model makes the
model robust to non-stationary data through a dynamic at-
tention mechanism that focuses on relevant features over
time. Our approach leads to improvement of prediction
accuracy and generalization capability and is validated on
comprehensive evaluations with XJTUSY and PRONOS-
TIA bearing datasets. These results highlight the model’s
potential to enhance the reliability and efficiency of predic-
tive maintenance strategies, facilitating broader adoption
in industrial applications. In summary, the main contribu-
tions of this study are:

• The integration of Continuous Wavelet Transform
(CWT) for effective feature extraction from
non-stationary signals and a Channel-Temporal
Mixed MLP (CT-MLP) layer to capture complex
dependencies in the data.

• The development of a dynamic attention mechanism
that adapts to temporal importance, enhances the
model’s ability to focus on relevant features over time,
thereby improving robustness and prediction
accuracy.

• Comprehensive experimental validation on the
XJTU-SY and PRONOSTIA bearing datasets,
demonstrating superior performance in terms of
RMSE and MAE compared to state-of-the-art
algorithms.

The rest of this paper is organized as follows. This the-
sis begins by reviewing prior work in RUL prediction and
on the use of wavelet transforms and attention mecha-
nisms in either speech recognition or other sequence pre-
diction tasks in Sect. 2. In Sect. 3, we present our pro-
posed methodology including the model architecture and
dynamic attention mechanism. In Sect. 4, we describe the
experimental setup, datasets used, and our results for the
ablation studies and parameter tuning. The results are pre-
sented in Sect. 5 and further discussed in detail. Section 6
is the conclusion of the paper and a sift of future directions
for research.

2 Literature review
2.1 The studies of feature extraction in RUL prediction
Model-based (or physics-based) and data-driven models
are two broad categories of RUL estimation methods [11].
However, physical models in [12] for RUL estimation are

difficult to specify in practical applications in which fault
propagation mechanisms are complex and not well under-
stood. Since robust data-driven RUL prediction is reliant
on efficient extraction of representative features through
appropriate signal processing techniques, the focus of this
work is on the selection of a signal representation method
that is best suited to RUL prediction. Typically, data-driven
RUL prediction encompasses three stages: The second
step deals with data acquisition and processing, feature ex-
traction and computation, and finally deep learning model
training and RUL prediction [13]. Bearing RUL prediction
generally involves three types of features: There are time-
domain features, frequency-domain features, and time-
frequency domain features. Features in the time domain
directly extract statistical attributes from the raw time se-
ries data. It has been documented in the literature that
up to 22 such time domain features exist for RUL pre-
diction [14]. Nevertheless, using these features as input
parameters to predict RUL can result in overfitting and
requires optimization of the feature extraction technique
for improved RUL prediction outcomes. One technique is
the feature attention mechanism [15], in which input fea-
tures are dynamically weighted to allow the model to place
more emphasis on the most important attributes. However
traditional prediction methods such as Recurrent Neural
Networks (RNNs) suffer from problems such as gradient
explosion [1] and inspired us to employ Long Short-Term
Memory (LSTM) [16] networks for temporal prediction.

Two of the most frequently employed feature extraction
methods either make direct use of deep learning models
(e.g., Convolutional Neural Networks (CNNs)) for extract-
ing features from time series data or use signal process-
ing techniques like Short-Time Fourier Transform (STFT),
Continuous Wavelet Transform (CWT), or Hilbert Huang
Transform (HHT). Extensive Fourier-based methods have
been used, such as CNNs for multi-scale feature extrac-
tions with the help of STFT to obtain the time-frequency
information from original data [17]. MFCC and STFT
spectra are also used to extract time-frequency features
[18]. In particular, the wavelet functions are increasingly
becoming popular for the ability to simultaneously cap-
ture frequency and location information, which is more
appropriate for the analysis of nonstationary signals, hence
analysis is increasingly performed with CWT, Discrete
Wavelet Transform (DWT), Wavelet Packet Decomposi-
tion (WPD), and so on. For example, a multivariate time
series is decomposed into wavelet domains using DWT
[19], and graphical convolution is used to extract the fea-
ture and model inter-variable relationships. Graph convo-
lutional networks (GCNs) capture frequency domain and
time domain features, and modelling variable dependen-
cies at different resolutions improve long sequence predic-
tion accuracy.
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Since CWT is primarily explained in several studies,
however, DWT can be employed for signal decomposi-
tion into frequency components to individualize features
associated with the motor degradation, or faults. This en-
ables more complex patterns to be revealed that may not
be captured easily by traditional methods increasing fault
diagnosis and possible reliability for fault detection under
varying load conditions. For instance, CWT produces sca-
leograms that capture energy variability concerning time-
frequency scales, which increases leakage detection abil-
ity. A combination of the advantages of the CWT and the
STFT allows a detailed interpretation of the acoustic emis-
sion signals of oil pipelines and thus the accuracy and re-
liability of oil leakage detection systems can be improved
[20]. The flexibility in analyzing the signal frequency is
one for which CWT has accomplished its name while the
computational overhead is large. However, DWT enables
efficient computation and multi-resolution analysis and
hence is appropriate for signal denoising and compression.
In engineering and computer science settings, DWT is
usually used as a signal encoding tool whereas CWT is the
preferred tool for signal analysis in scientific research [21].
The wide acceptance of wavelet transforms as a replace-
ment for Fourier transforms in many domains is indis-
putable, and this has occurred even to the point where they
have taken the place of Fourier transforms in many appli-
cation fields. The primary distinction between DWT and
CWT lies in their operational approach: CWT operates in
all possible scales and shifts; DWT works with a particular
subset of scale and shift values. Therefore, DWT is em-
ployed for the position encoding and learning from seg-
mented data signals. For research purposes, we use CWT,
but it doesn’t cover the entire research basis. This is highly
suitable given the fact that the fault signals degrade grad-
ually.

Finally, I conclude that feature extraction techniques are
of great importance to RUL prediction model accuracy and
efficiency. Different methods like, time domain, frequency
domain, etc. have been studied but wavelet transforms like
CWT, and DWT have a better competence in processing
a nonstationary signal. Furthermore, with the aid of these
techniques, combined with state-of-the-art deep learning
models, we can build much more robust and generalizable
RUL prediction models, allowing for the adoption of more
trustworthy preventive maintenance strategies in indus-
trial settings.

2.2 The studies of attention mechanism in PHM
Time series prediction has been a hallmark task for long
Short-Term Memory (LSTM) networks since they can
learn long-range dependencies in sequential data. Further,
try to improve the performance of the standard LSTM and
a ton of variants have been proposed. One example is a
method for estimating remaining useful life (RUL) via a

sequence-to-sequence LSTM encoder-decoder structure
[22]. A sliding window is being used to read a sequence of
multi-dimensional time series sequences of our inputs and
outputs, which has a tremendous effect on the sample ef-
ficiency of the training. In particular, the M-LSTM model
employs two subnetworks of features extracted from lay-
ered Fully Connected Neural Networks (FCNN) and lay-
ered Long Short Term Memory (LSTM) networks. The ex-
tracted features are used to integrate with a cascading layer
and ultimately used to deploy the FCNN for the final RUL
prediction [23]. In [24], Niazi et al. showed that utilization
of a TT-ConvLSTM model is effective in handling spa-
tiotemporal dependencies for RUL prediction of bearings
on time-series data. The second approach utilizes Deep
Neural Networks (DNN) on top of the LSTM model, cre-
ating Health Indices (HI) that seamlessly combine multi-
ple sensor signals into the degradation process for multiple
engineering systems. This method also leverages domain
knowledge (i.e., failure thresholds and the monotonicity
of the degradation process) for improved interpretability
[25]. The LSS model combines the advantages of LSTM
networks and statistical process analysis on bearing vi-
bration signal temporal features extraction and feeds the
multilevel signals into LSS for prediction [26]. Further, bi-
directional LSTM (Bi LSTM) networks have been used to
capture dependency across forward and backward time di-
rections enhancing the accuracy of time series prediction
[27].

Transformers and attention mechanisms have spied the
light on the world of time series prediction, especially
for large datasets. These are exceedingly resource-hungry
models yet they manage to deliver very good quality. For
example, a new deep feature learning method is proposed
for RUL estimation in [28] by using Time-Frequency Rep-
resentation (TFR) and Multi-Scale Convolutional Neu-
ral Network (MSCNN). MTS Mixers, a framework for
multivariate time series forecasting using factorized tem-
poral and channel mixing to capture the dependency
and be more efficient than the traditional transformer-
based approach is proposed by Li et al. [29]. An alter-
native model, known as the Multi-Head Neural Network
(MHNN), predicts the RUL of industrial equipment by uti-
lizing an asymmetric constraint and an architecture con-
sisting of bidirectional gated recurrent units (BGRU) and
self-attention mechanisms to extract temporal features
from condition monitoring data [30]. Additionally, the ro-
bustness and accuracy of RUL predictions have been im-
proved using deep adversarial neural networks [31]. DC-
NNs in combination with multi-layer perceptrons (MLP)
in dual network architecture have also been proposed for
feature extraction and RUL estimation [32]. More specif-
ically, a multi-domain adversarial network with stacked
convolutional autoencoders is used to reduce discrepan-
cies in extracted degradation features to improve the fea-
ture transfer process [33].



Jin et al. Autonomous Intelligent Systems             (2025) 5:2 Page 4 of 16

We also found success in the deployment of gated con-
volutional unit layers as the first hidden layer, followed
by linear layers and position encoding operations to ex-
tract high-level features before the data is fed into trans-
former blocks [34]. The vanishing gradient problem is
addressed using deep attention residual neural networks
(DARNN) [35] and deep residual networks that use skip
connections [36] to achieve better learning capabilities
in RUL prediction models. Further prediction accuracy
has been improved by integrating a dual network within
a Bootstrap framework. In this method, three Hoyer in-
dices are used to assess the important contribution of dif-
ferent frequency components to the bearing degradation
from the frequency domain perspective [37]. In general,
the RUL prediction models with advanced attention mech-
anisms and transformer models have performed better.
These methods capture subtle temporal and frequency do-
main features which are especially suited for nonstationary
and complex datasets.

Over the past few years, however, many modern time
series prediction algorithms have started to incorporate
attention mechanisms for better interpretability and per-
formance. Examples of such global-local attention mech-
anisms in RNNs already exist for datasets with seasonal
characteristics, [38] that learn to capture local and global
dependencies in time series datasets. In this approach, a
simple multi-scale framework is employed that uses down-
sampling convolution to obtain local features and isomet-
ric convolution for capturing global correlations and offers
a balance between computational efficiency and the capa-
bility of extracting complex temporal correlations. Since
data on bearing failure generally does not have seasonal-
ity, we turn to dynamic attention mechanisms. They are
dynamically controlled concerning both context and con-
tent, permitting models to focus on pertinent elements to
the task at hand and to neglect less important data, im-
proving performance. There are variations of dynamic at-
tention which are multi-head adaptive attention, shifted
window dynamic attention, dynamic sparse attention, and
hybrid adaptive attention.

A form of dynamic attention mechanism is the multi-
head Gaussian Adaptive Attention Mechanism (GAAM),
which adapts attention by Gaussian distribution parame-
ters (mean and variance) to account for changes in the data
[39]. Although computationally expensive, this method
enables greater accuracy and adaptiveness to nonstation-
ary data provided valid knowledge of the data distribution
is available. Another giant advancement is the develop-
ment of dynamic sparse attention mechanisms in vision
transformers. These mechanisms are intended to control
computational and memory limits only where there is a
need. Applying a two-stage routing method to implement
this strategy, has been seen to improve performance in vi-
sual tasks like image classification and object detection by

reducing unneeded computations and focusing on seman-
tically meaningful regions [40]. In addition, we proposed a
dynamic attention mechanism to enhance the robustness
of the transformer-based model to adversarial attacks. The
second method, which consists of dynamically adjusting
attention weights to minimize the influence of the inputs
that could mislead the output of the model [41], is applied.
The Multi-Scale Fusion Transformer (MSFT) is another
innovative approach that fuses dynamic attention mech-
anisms for time series prediction. The MSFT model en-
compasses local and global information in a time series
dataset, and this works dynamically so that more emphasis
is provided to a more significant event or anomaly in the
dataset. At the cost of simplicity, this approach excels at
integrating multi-scale data to achieve a holistic view that
improves prediction accuracy [42]. Fu et al. [43] presented
a dual-task learning framework to perform First Prediction
Time (FPT) detection and Remaining Useful Life (RUL)
prediction in a united model, using a multichannel atten-
tion mechanism to calculate the importance of input pa-
rameters and extracted features adaptively and eventually
provide more accurate and more adaptable predictions. It
also uses an improved Temporal Convolutional Network
(TCN) to leverage long-term dependencies within multi-
dimensional time series data.

These advanced methods focus on specific local anoma-
lies and global overall trends improving sensitivity to
changes in bearing conditions over time. Introducing lay-
ers to learn local features like particular wear patterns to-
gether with the layers corresponding to systemic trends in
overall degradation improves the ability to predict RUL.
To develop robust, generalizable models that can perform
effective predictive maintenance in industrial applications,
this integration is key.

3 Methodology
This section outlines the methodology employed for pre-
dicting the remaining useful life (RUL) of bearings using a
combination of Continuous Wavelet Transform (CWT)
for feature extraction and a dynamic attention mecha-
nism within a multi-head attention framework to enhance
prediction accuracy. Figure 1 shows the flow chart of
the methodology. Additionally, we introduce a Channel-
Temporal Mixed MLP (CT-MLP) layer to capture intricate
dependencies within the time series data. The method-
ology consists of several key steps: Data acquisition and
preprocessing, feature extraction using CWT, dynamic at-
tention mechanism implementation, and the integration
of the CT-MLP layer.

3.1 Data acquisition and preprocessing
Data from the XJTU-SY rolling element bearing dataset
and the PRONOSTIA bearing dataset are utilized for
model training and evaluation. The datasets consist of
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Figure 1 The flow chart of the methodology

time-series data capturing the degradation process of
bearings under various operational conditions. Initially,
the raw vibration signals are subjected to preprocessing
steps, including normalization and denoising, to ensure
the quality and consistency of the input data.

3.2 Feature extraction using Continuous Wavelet
Transform (CWT)

The time-domain signals are then converted into time-
frequency domain representations by using CWT, which
can capture temporal and frequency characteristics of the
vibration signals at the same time. The ability to analyze
nonstationary signals, prevalent in bearing degradation,
makes this transformation particularly desirable. The de-
composition of time-series data into wavelet coefficients
is achieved by convolving the signal with scaled and trans-
lated versions of a wavelet function. Being able to track os-
cillatory behaviours in the data, we decide to use the Mor-
let wavelet. CWT’s formula can be expressed as follows:

CWT(a, b) =
∫ ∞

–∞
x(t)

1√
a
ψ∗

(
t – b

a

)
dt. (1)

The output of the CWT is a scaleogram, an image-like
representation where the x-axis represents time, the y-axis
represents a scale (related to frequency), and the pixel in-
tensity corresponds to the magnitude of the wavelet coef-

ficients. These scaleograms serve as input features for the
subsequent deep learning mode.

3.3 Feature extraction with convolutional layers
High-level features are automatically extracted by supply-
ing CWT scaleograms to convolutional layers. The CNN
layers make use of multiple consecutive convolutional and
pooling layers that aim to encode spatial hierarchies of
the scaleogram at multiple scales. These layers aid in the
discovery of informative patterns indicative of bearing
health. More specifically, convolutional layers scan the sca-
leograms against filters to identify specific features, and
the pooling layers reduce the spatial dimensionality of the
feature maps to make the maps more manageable — and
less prone to overfitting — by performing maximum, min-
imum, or average operations. In the CNN layers, the out-
put is a set of feature maps, which are flattened and further
processed by the transformer-based architecture. We can
write the convolutional operation as:

xl
j = σ (

∑
i∈Mj

xl–1
i ∗ kl

ij + bl
j) (2)

3.4 Dynamic attention mechanism for time series
prediction

The model is endowed with a multi-head attention mech-
anism to dynamically focus on the most relevant features
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Figure 2 Data Flow from Dynamic Attention Mechanism to CT-MLP

to better predict RUL. The multi-head attention mecha-
nism allows us to project the input into several sub-spaces
so that the model can attend to different parts of the in-
put sequence at once. The improved convergence of the
model to capture the complex spatiotemporal dependen-
cies within the data. The dynamic attention mechanism fo-
cuses on how important the features in the time series are
with a dynamic attention rectification that attenuates less
important features by weakening their attention or mask-
ing through zeroing out their attention. Moreover, this
process is essential for dealing with non-stationary data
and cases of varying operational conditions. Also, the dy-
namic attention mechanism dynamically creates the set of
the candidate features and adjusts their attended scores in
every transformer layer, thus the model focuses on various
features at different times and highlights the most relevant
information at all times.

3.5 Channel-Temporal Mixer MLP (CT-MLP) layer
Following the dynamic attention mechanism, the CT-MLP
layer is designed to capture intricate dependencies be-
tween different channels (features) and time steps in the
multivariate time series data. Initially, the output from the
dynamic attention mechanism is reshaped into a suitable
format for the CT-MLP layer.

The CT-MLP layer operates in two stages: Channel mix-
ing and temporal mixing. Assume the input feature tensor
is X ∈ RT×C , where T is the sequence length and C is the
number of channels.

Channel Mixing: A fully connected layer is applied along
the channel dimension to model interactions between fea-
tures within each time step:

XC = LayerNorm(X) + σ (XWC + bC), (3)

where:
WC ∈ RC×d and bC ∈ Rd are the weights and biases of the

channel mixing layer, σ is a non-linear activation function
(GELU in this case).

Temporal Mixing: A fully connected layer is applied
along the temporal dimension to capture dependencies

across time steps:

Xt = LayerNorm(Xc) + σ (XcWt + bt), (4)

where:
Wt ∈ RT×d and bt ∈ Rd are the weights and biases for

temporal mixing.
Residual Connections: Residual connections are in-

cluded to ensure effective gradient flow and prevent van-
ishing gradients in deeper architectures.

The CT-MLP layer then applies a fully connected (dense)
layer across the channel dimension to learn interactions
between different features at each time step, followed
by another fully connected layer across the temporal
dimension to capture dependencies and patterns over
time for each feature. Figure 2 shows data flow from dy-
namic attention mechanism to CT-MLP. Each fully con-
nected layer is followed by a non-linear activation func-
tion, GELU, and a normalization layer, Layer Norm, to
ensure stable training and improve model performance.
Residual connections are incorporated to facilitate gradi-
ent flow and prevent vanishing gradients, ensuring that
the model can learn effectively even with deep architec-
tures. The specific hyperparameters for this layer include
a learning rate of 0.001, a batch size of 64, two layers for
both channel and temporal mixing, and a dropout rate
of 0.1.

3.6 Model architecture
The key components of the overall architecture are,
amongst other things. We first input the CWT scale-
ograms to CNN layers, which extract spatial features from
the scaleograms and yield feature maps. The transformer
encoder maximizes the feature representation by process-
ing these feature maps through multi-head and dynamic
attention mechanisms. Finally, we obtain the attention-
enhanced feature maps, which are further processed by
the Channel temporal Mixed MLP (CT MLP) layer. Fig-
ure 3 shows the network structure. The CT MLP layer
fuses channel and temporal information in the time se-
ries data, leveraging their inherent dependencies to help
the model better learn complex patterns and relationships
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Figure 3 Network structure

in the input data. The hybrid of channel mixing and tem-
poral mixing, this layer provides a much more complete
picture. In this architecture, the tentative phase combines
the strengths of CWT, which captures fine-grained de-
tails in the data, as well as the dynamic attention mech-
anism, which captures broad trends in the data. It is fur-
ther fed into a linear layer to predict the RUL of the bear-
ings.

3.7 Training and evaluation
The XJTU-SY and PRONOSTIA datasets are used to
train the model. In the training process, lots of Hyper-
parameters have to be tuned to make the model perform
better. We systematically performed hyperparameter tun-
ing with Bayesian optimization, a probabilistic model-
based approach. The reason for this is that this method
is very efficient in exploring big and complex hyperparam-
eter spaces by repeating the search and refining it by using
previous evaluations. In the convolutional neural network
(CNN), the number of convolutional layers (3 to 5), kernel
size (3 × 3 or 5 × 5), number of filters (32, 64, 128), the
pooling size (2 × 2), activation function (ReLU), dropout
(0.2 to 0.5) are chosen as parameters. Parameters for the
transformer model were tuned, including the number of
transformer layers (2 to 4), number of attention heads (4,
8, 12), model dimension (128, 256), feedforward network
dimension (512, 1024), and the dropout rate (0.1 to 0.3).
We also carefully select training parameters such as batch
size (32, 64), learning rate (0.001 to 0.0001 with learning
rate decay), optimizer (Adam), and number of epochs (50
to 100) so that the performance is optimized. Configura-
tions that balanced predictive performance with compu-
tational cost were identified through the use of Bayesian
optimization and ultimately selected a model with eight

attention heads, a model dimension of 256, a feedforward
dimension of 1024, four MLP layers with GELU activa-
tion, and a learning rate of 0.0005. We evaluate the per-
formance of the model according to metrics such as root
mean square error (RMSE) and maximum absolute er-
ror (MAE). The proposed approach is shown through a
large number of experiments to provide not only better
prediction accuracy but also better generalization skills
on various datasets. In particular, the dynamic attention
mechanism significantly improves the model’s capacity to
concentrate on key features, eliminating the model’s sensi-
tivity to operational conditions and signal characteristics’
changes.

4 Experiment study
4.1 Data description
Choosing suitable datasets to evaluate our proposed model
is very important. For our experiments, there was the
XJTU-SY rolling element bearing dataset and the
PRONOSTIA bearing dataset owing to their wide accep-
tance and use in the field of bearing RUL prediction. These
are common datasets used to benchmark and validate the
performance of several bearing prediction algorithms, and
therefore, are good candidates to assess the robustness
and accuracy of our model. The XJTU and PRONOSTIA
datasets both are well-known public datasets due to their
comprehensive and detailed recordings of bearing degra-
dation in various operation conditions. We demonstrate
the generalization ability of our model across various sce-
narios and data characteristics by using these datasets. Our
results are therefore comparable to existing studies given
that these well-established datasets are included in the val-
idation framework.

The XJTU-SY bearing dataset contains complete run-
to-failure data for 15 rolling element bearings. Figure 4
shows the XJTU-SY test bench [44]. Each subset of the
XJTU-SY dataset (e.g., 1-1, 1-2) corresponds to a specific
bearing tested under distinct operational conditions. The
dataset includes three experimental conditions defined by
combinations of rotational speed and radial force: 2100
RPM and 12 kN (Condition 1), 2250 RPM and 11 kN
(Condition 2), and 2400 RPM and 10 kN (Condition 3).
For each condition, five bearings were tested (e.g., Bear-
ings 1_1 to 1_5 for Condition 1), with run-to-failure vi-
bration signals sampled at 25.6 kHz every minute. Each
subset also records the bearing’s failure mode and ac-
tual lifespan, providing diverse scenarios for RUL predic-
tion.

The PRONOSTIA dataset is part of the IEEE PHM 2012
Data Challenge and contains run-to-failure data for bear-
ings under different operating conditions. Figure 5 shows
the PRO-NOSTIA test bench [45]. The platform consists
of a rotating part (asynchronous motor with gearbox), a
degradation generation part (pneumatic jack applying ra-
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Figure 4 The XJTU-SY test bench [44]

Figure 5 PRO-NOSTIA test bench [45]

dial force), and a measurement part (vibration and temper-
ature sensors). In the accelerated degradation test, there
are three operational conditions which are 1800 rpm and
4 kN, 1650 rpm and 4.2 kN, and 1500 rpm and 5 kN.
Vibration signals were sampled at 25.6 kHz, with 2560
samples recorded every 10 seconds. Temperature signals
were sampled at 10 Hz, with 600 samples recorded every
minute.

4.2 Modal setup
The Modal steps involve several key processes, including
data preprocessing, feature extraction, and model train-
ing. The raw vibration signals are first normalized and de-
noised to ensure consistency and quality. The normaliza-
tion process adjusts the amplitude of the signals to a com-
mon scale, while denoising removes unwanted noise that
could affect the accuracy of the feature extraction process.
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After preprocessing, the time-domain signals are con-
verted into time-frequency domain representations using
Continuous Wavelet Transform (CWT). The CWT de-
composes the time-series data into wavelet coefficients by
convolving the signal with scaled and translated versions
of a wavelet function. The Morlet wavelet is chosen due
to its suitability for capturing oscillatory behaviours in the
data. The output of the CWT is a scaleogram, an image-
like representation where the x-axis represents time, the
y-axis represents a scale (related to frequency), and the
pixel intensity corresponds to the magnitude of the wavelet
coefficients. These scaleograms are then fed into con-
volutional layers to automatically extract high-level fea-
tures. The CNN layers consist of multiple convolutional
and pooling layers designed to capture spatial hierarchies
within the scaleogram. These layers help in extracting rel-
evant patterns that are indicative of bearing health. The
output of the CNN layers is a set of feature maps, which
are then flattened and passed on to the transformer-based
architecture for further processing.

During model training, we tune many hyperparameters
to find the best-performing one. The CNN parameters
like the number of conv layers, kernel size, number of fil-
ters, pool size, activation function, and dropout rate are
changed. Parameters such as the number of transformer
layers, the number of attention heads, model dimension,
feedforward network dimension, and dropout rate, are
tuned for the transformer model. Careful selection of their
training parameters – batch size, learning rate with decay,
optimizer, and number of epochs – is performed for the
best performance. The temporal importance of features
in the time series is used to adjust the mechanism of the
dynamic attention diagnostic, focusing on where it mat-
ters most. Attention rectification corrects attention scores
that have been assigned to different features, i.e., masks or
weakens the attention that has been given to less impor-
tant features. This allows for handling nonstationary data
and varying operating conditions. Moreover, the dynamic
attention mechanism dynamically constructs and updates
the attention scores of the set of candidate features in each
transformer layer. With this, the model will emphasize dif-
ferent features at different times to always highlight the
most important information.

The performance of the model is evaluated based on
metrics such as root mean square error (RMSE) and
maximum absolute error (MAE). Extensive experiments
demonstrate that the proposed approach improves predic-
tion accuracy and generalization capability across different
datasets. The dynamic attention mechanism enhances the
model’s ability to focus on relevant features, particularly
making it robust to variations in operational conditions
and signal characteristics.

4.3 Ablation experiments
We do ablation experiments in this section to measure
the importance of the MLP layer and dynamic attention
on model performance. Specifically, we compare the orig-
inal model with three variants: I compare two variants
of our overlay, one without the MLP layer (NoMLP), one
without the dynamic attention mechanism (NoAttention),
and one without both MLP layer and dynamic attention
mechanism (NoMLP+NoAttention). The XJTU-SY and
PRONOSTIA bearing datasets are then used in these ex-
periments.

• Original Model: Incorporates both the MLP layer and
dynamic attention mechanism.

• NoMLP Model: Removes the MLP layer while
retaining the dynamic attention mechanism.

• NoAttention Model: Removes the dynamic attention
mechanism while retaining the MLP layer.

• NoMLP+NoAttention Model: Removes both the MLP
layer and dynamic attention mechanism for
comparison.

To identify the optimal number of attention heads and
MLP layers, a systematic series of experiments was con-
ducted on both the XJTU-SY and PRONOSTIA datasets.
The number of attention heads (H) was varied across (4,
8, 12), and the number of MLP layers (L) was tested with
configurations of 2 and 4 layers. Each combination of H
and L was evaluated using root mean square error (RMSE)
and mean absolute error (MAE) as performance metrics.

4.4 Compare with different models
We validated the superiority of the proposed approach
through comparison with several state-of-the-art (SOTA)
models, which are well used in the area of Remaining Use-
ful Life (RUL) prediction. Baseline models include tradi-
tional as well as recent deep learning-based models, pro-
viding a complete evaluation. For benchmark datasets in
industrial applications on RUL prediction, the compari-
son was conducted on the XJTU-SY and PRONOSTIA-
bearing datasets. Included in this comparison are models:

• CNN: Convolutional Neural Network for feature
extraction from time-series data.

• ConvLSTM: A hybrid Convolutional LSTM network
that combines spatial and temporal feature learning.

• MLP-MSCNN: A Multi-Layer Perceptron integrated
with Multi-Scale CNN for capturing multi-resolution
features.

• CNN-ResNet: Convolutional ResNet architecture
leveraging residual connections to enhance feature
learning.

• TT-ConvLSTM: The TT-ConvLSTM model
effectively combines tensor-train (TT) decomposition
and Convolutional Long Short-Term Memory
(ConvLSTM) networks to handle spatiotemporal
dependencies in time-series data.
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These comparisons highlight the diversity of baseline
models considered, ranging from traditional CNNs to ad-
vanced hybrid architectures. This comprehensive evalua-
tion ensures a fair and robust assessment of the proposed
approach’s performance relative to existing methods.

5 Results and discussion
5.1 Ablation experiment
The results of the ablation study on the XJTU-SY dataset
can be found in Table 1. The data shows that the model
as originally designed featuring the MLP layer and dy-
namic attention is superior. We found that all the zero-
shot variants in this model consistently outperformed the
NoMLP and NoAttention variants, highlighting the key
importance of both components to improved model per-
formance. In particular, the RMSE was 0.195 and MAE
was 0.179 for the original model in Test 1-1, compared to
RMSE 0.210 and MAE 0.204 for NoMLP and RMSE 0.221
and 0.216 for NoAttention. Our results demonstrate the
ability of the MLP layer, the dynamic attention mechanism,
and the reported combination to improve both the model’s
prediction accuracy and robustness.

Results on the PRONOSTIA dataset (Table 2) show the
original model’s superior accuracy, with an RMSE of 0.168
and MAE of 0.154 in Test 1-1, outperforming NoMLP
(RMSE 0.183, MAE 0.166) and NoAttention (RMSE 0.199,
MAE 0.187).

The XJTU-SY bearing dataset and the PRONOSTIA
bearing dataset were used for conducting the ablation ex-
periments whose results are listed. The experiments aimed
to evaluate the performance impact of two key compo-

nents in the proposed model: the dynamic attention mech-
anism and the MLP layer. Four different model configu-
rations were tested. From these ablation experiments, we
show that the MLP layer and dynamic attention mecha-
nism are key components to boosting the performance of
the model. With these components added in, the Origi-
nal Model can capture intricate dependencies, apply dy-
namic focus on important features through their temporal
importance, and increase prediction accuracy and robust-
ness.

Figure 6 shows the comparison of the number of lay-
ers in the model and its performance. In the first con-
figuration with 4 attention heads and 2 MLP layers, the
model reached RMSE equal to 0.195 and MAE 0.179. In-
creasing the MLP layers to 4 (and keeping the number of
the attention heads constant) showed some improvement
— RMSE and MAE both improved to 0.190 and 0.174.
The results suggest that the more layers of MLP intro-
duced into the model can help derive more complex de-
pendencies, and hence increase prediction accuracy. For
the case where the number of attention heads was in-
creased to 8, with 2 MLP layers, the RMSE and MAE
further decreased to 0.185 and 0.169 respectively. This
showed that a larger number of attention heads results in
the model implicitly focusing on various parts of the in-
put features, thereby increasing the overall robustness and
accuracy. With 8 attention heads and 4 MLP layers, the
model can improve its performance with an RMSE of 0.180
and an MAE of 0.164. At first, for configurations with 12
attention heads, the model did better with 2 MLP layers
(RMSE = 0.175, MAE = 0.159, accuracy = 42.5). Yet, as

Table 1 Ablation experiments in the XJTU-SY dataset

Metric 1-1 1-2 1-3 1-5 2-1 2-2 2-3 2-4 2-5 3-3 3-4 3-5

RMSE Original 0.195 0.220 0.162 0.173 0.122 0.143 0.159 0.149 0.126 0.179 0.153 0.209
Non-MLP 0.210 0.235 0.181 0.195 0.147 0.154 0.191 0.173 0.153 0.201 0.169 0.243
Non-Attention 0.221 0.249 0.194 0.213 0.183 0.176 0.189 0.193 0.149 0.215 0.187 0.274
Non-MLP+Non-Atten 0.314 0.251 0.218 0.357 0.221 0.240 0.255 0.247 0.199 0.248 0.239 0.313

MAE Original 0.179 0.199 0.127 0.156 0.099 0.131 0.140 0.142 0.113 0.154 0.137 0.194
Non-MLP 0.204 0.213 0.168 0.187 0.132 0.143 0.170 0.163 0.139 0.192 0.151 0.215
Non-Attention 0.216 0.224 0.184 0.193 0.173 0.159 0.166 0.170 0.127 0.197 0.173 0.266
Non-MLP+Non-Atten 0.279 0.233 0.190 0.315 0.211 0.219 0.240 0.232 0.176 0.224 0.199 0.304

Table 2 Ablation experiments in the PRONOSTIA dataset

Metric 1-1 1-2 1-3 1-4 1-5 1-7

RMSE Original 0.168 0.213 0.226 0.190 0.135 0.194
Non-MLP 0.183 0.251 0.246 0.214 0.174 0.210
Non-Attention 0.199 0.276 0.257 0.229 0.195 0.233
Non-MLP+Non-Atten 0.211 0.317 0.304 0.267 0.231 0.274

MAE Original 0.154 0.194 0.187 0.139 0.107 0.177
Non-MLP 0.166 0.233 0.201 0.207 0.155 0.189
Non-Attention 0.187 0.250 0.231 0.210 0.167 0.211
Non-MLP+Non-Atten 0.202 0.293 0.284 0.243 0.217 0.238



Jin et al. Autonomous Intelligent Systems             (2025) 5:2 Page 11 of 16

Figure 6 The comparison of the number of layers in the model and its performance

Table 3 Performance comparisons of different models for XJTU-SY bearing dataset

Test CNN ConvLSTM MLP-MSCNN CNN-ResNet TT-ConvLSTM Proposed(ours)

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

1-1 0.214 0.189 0.242 0.213 0.206 0.176 0.212 0.187 0.210 0.190 0.195 0.179
1-2 0.233 0.204 0.262 0.229 0.240 0.207 0.225 0.195 0.231 0.196 0.220 0.199
1-3 0.252 0.162 0.184 0.155 0.178 0.151 0.153 0.132 0.174 0.133 0.162 0.127
1-5 0.221 0.175 0.215 0.181 0.184 0.155 0.160 0.148 0.177 0.164 0.173 0.156
2-1 0.217 0.209 0.148 0.126 0.117 0.099 0.115 0.097 0.124 0.101 0.122 0.099
2-2 0.203 0.179 0.232 0.194 0.122 0.102 0.123 0.112 0.137 0.128 0.143 0.131
2-3 0.196 0.176 0.199 0.164 0.158 0.126 0.168 0.135 0.163 0.151 0.159 0.140
2-4 0.243 0.201 0.231 0.195 0.177 0.141 0.152 0.134 0.152 0.131 0.149 0.142
2-5 0.143 0.121 0.108 0.090 0.091 0.075 0.164 0.148 0.133 0.120 0.126 0.113
3-1 0.257 0.223 0.247 0.214 0.244 0.204 0.254 0.217 0,213 0.191 0.206 0.181
3-3 0.221 0.196 0.191 0.156 0.158 0.129 0.161 0.240 0.183 0.163 0.179 0.154
3-4 0.198 0.167 0.165 0.139 0.132 0.107 0.157 0.121 0.155 0.141 0.153 0.137
3-5 0.223 0.214 0.267 0.225 0.266 0.219 0.207 0.188 0.211 0.187 0.209 0.194

we move from 2 MLP layers to 4 MLP layers the RMSE
and MAE jumped to 0.200 and 0.185. Therefore the re-
sults also suggest that going beyond a certain point, more
MLP layers and attention heads do not improve the model
accuracy but incur overfitting and higher computational
cost.

The experiments show how, although adding more at-
tention heads and MLP layers in general improves model
performance, they point out an optimal combination after
which performance plateaus or even degrades. Therefore,
this balance must be managed carefully to avoid unnec-
essary computational overhead and to produce the most
efficient and accurate predictions of the remaining useful
life of bearings.

5.2 Comparison with different models
We also compare the performance of our proposed
model with several state-of-the-art algorithms, including
CNN, ConvLSTM, MLP-MSCNN, CNN-ResNet, and TT-
ConvLSTM, on the XJTU-SY and PRONOSTIA bearing
datasets. In Table 3, we observe that our proposed model
has competitive performance across a variety of test cases
and does especially well in cases with nonstationary and
complicated data patterns. The proposed model demon-
strates clear advantages in many cases but is not always
the winning baseline under all conditions. It demonstrates
the possible impact of dataset-specific characteristics and
operational conditions on performance. However, the out-
come highlights the efficacy of the proposed model for
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dealing with a wide range of challenging RUL prediction
tasks when both training data are sufficient and the degra-
dation pattern is consistent.

Figures 7 and 8 show the RMSE and MAE compari-
son for the XJTU-SY bearing dataset. It can be observed
that the proposed method achieves the best results in
most tests on the XJTU–SY bearing dataset, especially for
RMSE and MAE. In Test 1-1, for instance, the proposed
model yields an RMSE of 0.195 and an MAE of 0.179 while

CNN’s RMSE was 0.214 and MAE was 0.189. A similar
trend can be seen across different test cases, and this shows
the potential of the proposed model in dealing with com-
plicated and nonstationary data.

This is mainly because CWT is used for feature ex-
traction and the dynamic attention mechanism is applied.
CWT provides effective time domain to time-frequency
domain transformation of the raw time series data that is
both temporal and spectral. Additionally, this is further en-

Figure 7 RMSE Comparison for XJTU-SY Bearing Dataset

Figure 8 MAE Comparison for XJTU-SY Bearing Dataset
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Table 4 The detailed result for the PRONOSTIA rolling element dataset

Test CNN ConvLSTM MLP-MSCNN CNN-ResNet TT-ConvLSTM Proposed(ours)

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

1-1 0.301 0.265 0.268 0.245 0.194 0.161 0.157 0.135 0.174 0.161 0.168 0.154
1-2 0.314 0.268 0.281 0.242 0.254 0.219 0.271 0.226 0.237 0.211 0.213 0.194
1-3 0.337 0.289 0.331 0.270 0.199 0.164 0.180 0.154 0.240 0.199 0.226 0.187
1-4 0.416 0.379 0.513 0.443 0.132 0.107 0.148 0.125 0.193 0.144 0.190 0.139
1-5 0.231 0.199 0.208 0.174 0.187 0.158 0.147 0.123 0.141 0.122 0.135 0.107
1-7 0.198 0.169 0.165 0.141 0.205 0.172 0.208 0.180 0.205 0.189 0.194 0.177

Figure 9 RMSE Comparison for PRONOSTIA Bearing Dataset

hanced with the use of the dynamic attention mechanism,
which lets the model focus on the most relevant features
in different settings to boost RUL prediction accuracy and
robustness.

Similarly, we present the performance comparison of
various models for RUL estimation using the PRONOS-
TIA bearing dataset. Table 4 summarizes the results of dif-
ferent models on the PRONOSTIA dataset.

Figures 9 and 10 show the results on the PRONOS-
TIA bearing tested dataset demonstrating that our pro-
posed model consistently produces lower values of RMSE
and MAE than other models. For example, the proposed
model exhibits the RMSE of 0.168, and the MAE of 0.154 in
Test 1-1, outperforming the RMSE of 0.301 and the MAE
of 0.265 obtained by CNN. It shows that the model gen-
eralizes well across datasets and operational conditions.
Test 1-4 in that tests of increased variability and noise
also demonstrate how effective the proposed model is in
the PRONOSTIA dataset. More importantly, we show that
the proposed model significantly outperforms ConvLSTM

and CNN-ResNet in RMSE (0.190) and MAE (0.139) while
being robust to challenging data.

5.3 Discussion
The model was trained on the XJTU-SY dataset in nearly
2 hours with NVIDIA GTX 1660Ti GPU, and on the
PRONOSTIA dataset in nearly 1.5 hours, with an average
inference time of 20 ms /sequence. The proposed model,
under its optimal configuration, consists of approximately
5.9 M parameters. Smaller kernel and pooling sizes, while
increasing parameter count significantly (up to 17.9 M),
did not yield proportional performance gains, highlight-
ing the trade-offs in model design. The use of CWT and a
dynamic attention mechanism adds computational over-
head over more simple CNN models. However, this over-
head is acceptable as the overhead is mitigated with ef-
ficient GPU parallelization and batch processing, and al-
lows scaling to larger datasets. The model yields a large
reduction in RMSE as compared to the baseline models
despite a modest addition of the computational cost of up
to 15% less compared to the baseline models. These results
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Figure 10 MAE Comparison for PRONOSTIA Bearing Dataset

show a good compromise between accuracy and efficiency;
the model is shown to be applicable for predictive main-
tenance and to have the potential for further optimization
in constrained operating environments.

The experimental results indicate that the proposed
model, which integrates Continuous Wavelet Transform
(CWT) for feature extraction and a dynamic attention
mechanism within a Channel-Temporal Mixed MLP (CT-
MLP) framework, provides significant improvements in
Remaining Useful Life (RUL) prediction accuracy and
generalization capability. Specifically, the dynamic atten-
tion mechanism enhances the model’s ability to focus on
the most relevant features, effectively handling the non-
stationary nature of bearing degradation data. The in-
corporation of a multi-head attention mechanism further
strengthens the model by capturing complex temporal de-
pendencies, thereby improving the robustness and reli-
ability of the predictions. The CT-MLP layer also con-
tributes to performance gains by comprehensively under-
standing the intricate dependencies within the time series
data, which is reflected in the lower RMSE and MAE val-
ues across different test scenarios on both the XJTU-SY
and PRONOSTIA datasets.

In most scenarios, the proposed algorithm shows mer-
its, especially when the dataset has a constant degradation
pattern and sufficient training data (Tests 1-1 and 2-1 of
the XJTU-SY dataset). Two primary challenges might ac-
count for the proposed algorithm’s lack of superiority in
many cases, as observed in Table 3 and Fig. 7: 1) High
Dataset Variability: Higher complexity of the model can re-
sult in overfitting such subset when degradation patterns
present themselves irregular (e.g., Test 3-3) or noise is

highly present (e.g., Test 4-1). 2) Limited Training Samples:
In contrast, the dynamic attention mechanism can fail to
capture dependent features in subsets with fewer training
samples, hence causing a performance reduction. Never-
theless, the overall performance of the model remains sta-
ble and can reliably process nonstationary and highly com-
plex datasets. These results demonstrate the effectiveness
of the proposed approach as well as its limitations in the as-
pects that can be further optimized: Adaptability to highly
variable or sparse datasets.

Although this study mainly addresses data imbalance
and improves prediction performance by the use of dy-
namic attention mechanisms and CWT-based feature ex-
traction, it is important to test the robustness of the model
concerning varied noise cases. By the richness of the fea-
ture extraction and attention mechanisms, the proposed
methodology can inherently offer some resilience to non-
stationary and noisy signals. In future work, we will carry
out targeted experiments on different noise settings to
evaluate and strengthen the robustness of the model. We
will introduce a controlled noise in benchmark datasets
and assess the model’s capacity to maintain its accuracy
and reliability. Additionally, we hope that by addressing
this aspect, we can further demonstrate the practical use-
fulness of the proposed approach in industrial practice.

For all that was accomplished, there are still problems to
be fixed. The dynamic attention mechanism and CT-MLP
layers are computationally expensive, imposing stringent
requirements on computational resources, and may not
suit the real-time needs of such resource-constrained envi-
ronments. The model can demonstrate robustness on each
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of these datasets, and it would be interesting to run exper-
iments to visualize performance on more diverse datasets
to ensure broad generalization. The second limitation is
that adding more attention heads and more MLP layers
beyond an optimal point will not make the accuracy dra-
matically increase, rather it would induce a waste of the
computational costs.

From these challenges, future work could seek to opti-
mize the computational efficiency of the model. For ex-
ample, a lightweight dynamic attention mechanism and
CT-MLP layers could be developed which reduce com-
putational overheads without losing on predictive per-
formance. Alternatively, transfer learning techniques for
model generalization across a range of datasets and oper-
ational conditions is an area for additional improvement.
Further, more sophisticated regularization techniques can
be incorporated to help counter the problem of overfitting.
Additionally, future studies can investigate the integration
of additional types of sensor data into the predictive main-
tenance model construction to provide a more robust and
accurate predictive maintenance model.

6 Conclusions
In this work, we explore an approach to bearing remaining
useful life (RUL) prediction based on Continuous Wavelet
Transform (CWT) for feature extraction integrated with
a dynamic attention mechanism in a multi-head attention
formation. The CT-MLP layer part is also proposed in the
model to exploit the temporal and channel dependencies
within time series data. The model was evaluated against
two public datasets, XJTU-SY and PRONOSTIA, and was
shown to reduce root mean square error (RMSE) and max-
imum absolute error (MAE) performance compared to
other state-of-the-art models. CWT’s integration in the
model gives the model the ability to manage nonstation-
ary signals and convert them to expressive time-frequency
domain representations. The CT-MLP layer provides a
comprehensive understanding of the data, whereas the dy-
namic attention mechanism improves its performance, by
paying attention to the most important features. However,
the model’s complexity increases the computational costs,
which may hinder its use in resource-constrained environ-
ments. Finally, its performance concerning some of the op-
erational conditions did not outperform all baseline meth-
ods in all situations. The overall result of the proposed ap-
proach is to improve the reliability and efficiency of RUL
predictions, facilitating more effective predictive mainte-
nance strategies in industrial applications. Finally, future
work would look into integrating more data sources and
additional refinement of the attention mechanisms in an
attempt to improve the performance of the model even
more.
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