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A B S T R A C T

Seismic and outcrop data from SE Brazil, Greece and SW England are used to develop a new method to correctly 
identify tectonic fault segments – either active or quiescent - using a machine learning approach. Three- 
dimensional (3D) analyses of tectonic faults are often based on the mapping of throw values (T) along their 
full length (D) or depth (Z) using a wide range of data. Yet, the collection of these throw values using geophysical 
or outcrop data is often time-consuming and onerous. In contrast to many empirical measurements of T/D and T/ 
Z, our new method supports the mapping of active (or potentially active) fault segments and limits data 
undersampling, a caveat that results in the grouping of faults as single zones, systematically overlooking their 
natural segmentation. The new method is scale-independent and resulted in the definition of a minimum sam
pling ratio necessary for accurate fault segment mapping. Determined through the gradual downsampling of T/D 
and T/Z data to a critical point of information loss, the minimum sampling interval (δ) in T/D and T/Z data, 
expressed as a percentage of fault length, or height, is: a) 1.02% ± 0.02 for faults that are longer or higher than 
3.5 km; b) 4.167% ± 0.18 for isolated faults that are shorter than 3.5 km in either length or height. This work is 
therefore important as it shows that one should never acquire T/D and T/Z data above a threshold δ value of 4% 
to identify successive, linked fault segments, whatever their scale. Total accuracy in fault-segment detection is 
only assured for δ values of 1% when in the presence of fault zones with segments longer than 3.5 km. As a 
corollary, we confirm that T/D and T/Z data are often undersampled in the published literature, leading to a 
significant bias of subsequent interpretations towards coherent constant-length growth models when analyzing 
both active and old, quiescent fault systems.

1. Introduction

The mapping and geometrical characterization of faults and joints at 
varied scales of observation are vital to geological, structural and 
earthquake-risk analyses. Recognizing faults and joints is also important 
in hydrocarbon and geothermal energy production, in engineering 
works, and to the implementation of sub-surface storage solutions 
(Gudmundsson, 2012; Misra and Mukherjee, 2018; Trippetta et al., 
2019; Torabi et al., 2023). Measurements of both active and quiescent 
tectonic faults need to be accurate because: a) the trapping and accu
mulation of subsurface fluid often depend on the geometry and inter
action styles of faults and joints (Yielding, 2015), b) drilling-related 
hazards are frequent in highly faulted areas, as well as in prospects 
where reservoir quality is much reduced by joint systems (Saeidi et al., 

2014; Kozłowska et al., 2017), c) the migration and preservation of 
sub-surface fluid is, in many a prospect, associated with the timing of 
formation, growth, and sizes of tectonic faults and joints (Ferrill et al., 
2017, 2020). In summary, the size of tectonic faults, their inherent ge
ometry, and the location of their intersection (linkage) points are 
important for a safe and sustainable production of geological resources 
(Jentsch et al., 2020; Purba et al., 2019; Moska et al., 2021; Huenges 
et al., 2013).

Another key characteristic of tectonic faults is that their size is a 
predictor of earthquake magnitude, i.e. faults over a certain length are 
capable of generating destructive earthquakes and associated geo
hazards (Trippetta et al., 2019). Large magnitude earthquakes can be 
generated in seemingly discrete fault segments that are connected to 
form a single large fault zone, at depth, whereas relatively isolated, 
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smaller fault segments present a much lower seismic risk (Cloetingh 
et al., 2010; He et al., 2019; Alves, 2024). Generally speaking, fault 
intersections, geotechnically unstable fault zones and active faults 
capable of generating earthquakes must be avoided in engineering 
projects. The systematic undersampling of tectonic faults’ geometries 
can result in a rapid degradation of infrastructure after the completion of 
construction works, or in unexpected cost increases (Aydin et al., 2004; 
Wang et al., 2022).

Notwithstanding the fact that accurate fault analyses are crucial in 
structural geology, producing a high-resolution image of geological 
faults is time-consuming, expensive, and not always practical. Auto
matic methods to extract faults using remote sensing data have been 
developed by authors such as Gloaguen et al. (2007), but these types of 
data are not always available or concern the scales of observation that 
are only appropriate for a particular aim, or analysis. In most instances, 
the solution followed by both academia and industry is to reduce data 
collection to the minimum required level, just enough to understand 
where the loci of fault interactions are. Unfortunately, such an approach 
results in coarse and often random data sampling techniques, as one can 
easily verify in most scientific articles published in the past 20–30 years. 
Purposely anonymous examples from the published literature, include: 
a) fault-throw values measured every 600 m for a single fault segment 
that is 4 km-long, in which only 6.6 data points were acquired for such a 
segment (for an average of 15 measurements per fault in the same 
article), b) fault throws measured every 3 cm for faults that are 1.0 
m-long, returning 33 measurements per fault, on average, c) a third 
example in which fault throws are measured every 100–200 m for a fault 
zone that is 4 km-long, returning an average of less than 20 data points 
per fault segment. Coarse, and often random samplings of throw/
distance (T/D) and throw/depth (T/Z) data are, surprisingly, not always 
derived from the use of seismic and geophysical data of relatively poor 
resolution.

Such erratic sampling strategies can lead to a generic failure in 
recognizing that fault segments are components of a larger fault zone 
(Walsh et al., 2003). In fact, Tao and Alves (2019) have shown the 
systematic undersampling of fault throws in seismic, remote sensing and 
outcrop data will inevitably lead to an over-reliance of models reflecting 
coherent ‘fast propagation’ styles of fault growth (Walsh et al., 2003; 
Nicol et al., 2020). In other words, naturally segmented faults, or fault 
zones, will appear as single long structures if fault throws are under
sampled. This caveat is compounded when interpreters overlook faults’ 
map-view geometries and concentrate only on collecting throw values 
without an accurate structural mapping accompanying their workflows.

The aim of this work is to produce reliable predictions of fault seg
mentation in an automated manner, without human bias, and avoiding 
any under- or overfitting of data to emphasize a particular fault growth 
model. Overfitting in this case would involve finding more faults than 
exist through misinterpretation of signal noise and height undulation 
caused by erosion or poor exposure, for instance. Underfitting would be 
to exaggerate fault throw so that multiple segments appear coherent in 
their growth and part of a single fault zone (Torabi and Berg, 2011; Tao 
and Alves, 2019). Our approach is scale-independent and works for both 
active and quiescent (ancient) tectonic faults that may or may not 
reactivate by anthropogenic means. In summary, the research questions 
addressed in the work include: 

a) What mathematical methods can be applied to Machine Learning 
tools to avoid interpretative errors when identifying tectonic faults?

b) What are the implications of misrepresenting fault segmentation in 
terms of understanding their growth modes?

c) What is the minimum spacing of fault-throw (or displacement) data 
that is necessary for a correct identification of fault segmentation in 
nature?

2. Theoretical aspects concerning fault-segment recognition

2.1. Coherent vs. isolated growth modes and scale variance in structural 
observations

Tectonic faults and joints, universally named as ‘rock fractures’ in 
the published literature, comprise sets of related segments, or strands, 
that can be kinematically and spatially related (Pollard and Segall, 1987; 
Gudmundsson, 2012) (Fig. 1). They represent continuous, brittle breaks 
in rocks formed as a result of crustal-scale stress in the case of tectonic 
faults, or smaller localized stresses that hardly offset rocks in the case of 
polygonal faults and joints (Peacock et al., 2017; Laubach et al., 2018). 
The largest of faults, those documenting a clear vertical or horizontal 
offset in strata and rocks, are often part of system of related fault seg
ments that interact and link - they are restricted to a relatively narrow 
band or volume, also called a Fault Zone (Peacock et al., 2000; 2017). 
Fault zones are formed by the 3D linkage of multiple segments in a broad 
region of deformation, leaving behind fault segments not frequently 
affected by such a strain (Nicol et al., 2020).

Fault segments may show geometries that are indicative of ‘fault- 
linkage’ and ‘coherent’ growth (Kim and Sanderson, 2005) or, instead, 
develop individually to obey an ‘isolated’ growth mode (Walsh et al., 
2003) (Fig. 2). In practice, many ‘linked’ or ‘coherent’ faults are part of a 
larger zone of deformation, while isolated faults show growth histories 
and throw distributions that are independent or disparate from nearby 
faults segments (Nicol et al., 2020) (Fig. 2). The recognition of such fault 
growth modes in geophysical or outcrop data relies on the correct 
mapping of fault throws (T) against fault zone length (D) and depth (Z) 
to produce T/D and T/Z plots (Cartwright et al., 1998; Baudon and 
Cartwright, 2008) (Figs. 1 and 2). Multiple examples of how throw data 
can be used to understand fault growth modes are given in the published 
literature for Norway (Tvedt et al., 2013; King and Cartwright, 2020), SE 
Brazil (Varela and Mohriak, 2013; Plawiak et al., 2024), Gulf of Mexico 
(Cartwright et al., 1998) and for tectonically active areas in the Gulf of 
Corinth (Fernández-Blanco et al., 2019; Robertson et al., 2020; Nixon 
et al., 2024), onshore Crete (Caputo et al., 2010; Nicol et al., 2020; 
Mechernich et al., 2023) or the USA’s Basin and Range, where topo
graphic information has been combined with local tectonic analyses 
(Lee et al., 2023). Whenever available, fault displacement data should 
be used instead of throw (see Fig. 3), but their acquisition is 
time-consuming in practice when analysing outcrop or geophysical data 
- as a result, fault throw (T) is more frequently measured (e.g. Cartwright 
et al., 1998). Fault throw is a measure of the vertical distance between 
the footwall tip of a fault and its corresponding hanging-wall tip 
(Mukherjee, 2019) (Fig. 3). Fault displacement concerns the total 
movement of two fault blocks along a fault plane, measured in any 
specified direction. It represents the distance between two separated 
pieces of a marker layer on both sides of a fault. The time and effort 
needed to systematically measure throw (or displacement) in faults is 
often the source of ‘censorship’ and ‘truncation’ in data (Torabi and 
Berg, 2011), leading to incorrect assumptions regarding the relative 
timing of fault activity.

A caveat often overlooked by structural interpreters is that recog
nizing fault segments depends on the distinction of meaningful throw 
gradients that represent segment linkages on T/D (or Dmax/L) plots, 
accompanied by their analysis on vertical sections and map view (Walsh 
and Watterson, 1991; Walsh et al., 2002, 2003; Kim and Sanderson, 
2005) (Fig. 1). With lower resolution images, or remote-sensing data of 
lower quality, comes a high level of uncertainty over the linkage points 
of discrete fault segments when acquiring such T/D or T/Z data. The lack 
of chronostratigraphic markers, when compounded by the coarse aqui
sition of throw data, can also result in the misinterpretation of important 
gaps between faults. Multiple small segments may appear as a single 
large fault when a coarse, low-resolution dataset obscures lows, or 
minima, in throw (Tao and Alves, 2019).
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2.2. Use of T/D and T/Z data in fault-segment recognition

Fault throw/distance (T/D) and throw/depth (T/Z) data are often 
measured on a seismic section, or exhumed fault plane, in order to 
identify distinct fault segments and interpret their propagation modes 
(Torabi and Berg, 2011). Fault throw (T) is often used instead of 
displacement as it is an easier variable to define, and quantify, in 
geophysical and field data, regardless if a fault is planar or listric. Throw 
measurements in listric faults will overlook their horizontal component 
(heave) but can still be used to identify discrete fault segments. In 

parallel, throw/distance (T/D) plots measure throw distributions along 
a fault’s length and can be complemented by Throw-Depth (T/Z) mea
surements. While T/D data help an interpreter recognize distinct, linked 
fault segments, T/Z data indicate the areas where the mechanical 
properties of rocks may vary across a fault, at the same highlighting any 
evidence for vertical fault linkage (Cartwright et al., 1998; Baudon and 
Cartwright, 2008).

Distinct faults, and also their constituting segments, show distinct 
orientations and curvatures in map view (Kim and Sanderson, 2005). On 
T/D profiles, steep decreases in throw values relate to the existence of an 

Fig. 1. Schematic representation of how tectonic faults interact and link in nature. Faults evolve from isolated to interacting faults by linking vertically and laterally. 
The ratio of dmax/L (maximum displacement vs. length) increases as lateral propagation occurs in a fault. Stage 1 corresponds to the formation of isolated, non- 
interacting fault segments. Stage 2 relates to the start of fault interaction, overlap and concerted growth. Stage 3 represents a fully linked pair of faults that 
grow together from that moment onwards. Figure is modified from Kim and Sanderson (2005).
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intersection (a ‘hard’ or ‘soft’ linkage point) between two fault segments 
or, instead, points out to a fault’s lateral tip (Figs. 1 and 2). Two linking 
fault segments will also be recorded as sudden gradient changes in T/D 
and T/Z plots (Figs. 1 and 2). Conversely, variations in fault height 
caused by erosion and local sediment deposition will be seen as 
high-frequency, low-magnitude undulations that resemble a noise-like 

pattern of throw distributions (Torabi et al., 2019). Throw and 
displacement can be particularly affected by erosion of a fault scarp, as 
both are measured from a defined height at the immediate footwall 
block of a fault (Fig. 3).

Fig. 2. Schematic representation of normal-fault evolution. Isolated propagating faults (left) consist of isolated segments that coalesce to form long, interlinked fault 
strands. The coherent constant-length growth model (right) assumes that lateral fault propagation is rapid but vertical propagation is limited. Figure modified from 
Nicol et al. (2020).

Fig. 3. Diagram summarizing the way fault-throw data are measured at outcrop, or using stratigraphic markers in seismic data. The diagram is modified from Tao 
and Alves (2016) and based on the Ierapetra Fault Zone, SE Crete, one of the faults analyzed in this work. Throw measurements are usually taken relative to a 
correlative surface that is present on the footwall and hanging-wall blocks of faults. However, this can be made difficult by fault scarp erosion, and by the covering of 
the immediate hanging-wall depocentre to the fault by strata. Heave corresponds to the lateral displacement accommodated by a fault during its movement. Fault 
displacement is the resultant vector of throw and heave.
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3. Data and machine learning methods

3.1. Fault-throw data

Measurements of fault throw used in this work were taken from 
distinct parts of the world (Fig. 4a). T/D and T/Z measurements for 415 
faults were used in our analysis - they were collected at regular intervals 
and used to test the sampling distance necessary to correctly interpreted 
fault linkages and their growth modes. The primary sources of seismic 
data are the Southern North Sea and Southeast Brazil (Alves et al., 2022; 
Zhang et al., 2019, 2022). Outcrop data were gathered in various loca
tions in Crete and Somerset (Tao and Alves, 2019; Gaki-Papanastassiou 
et al., 2009; Caputo et al., 2010; Alves and Cupkovic, 2018).

3.1.1. 3D seismic data
Seismic data in this work comprise two high-quality seismic volumes 

from the SE Brazil (Fig. 4a and b and 5a). The volume was stacked with a 
bin (or trace) spacing of 12.5 m and a vertical sampling rate of 2 ms. The 
vertical resolution of the seismic data varies from 5 to 8 m near the 
seafloor, and is c. 12 m at the maximum depth of faults investigated in 
this work (Fig. 5a). Amongst our fault dataset, fifty-nine (59) faults, 
including crestal faults, radial faults and low-angle normal faults 
flanking salt diapirs, were interpreted every 1, 3, 5, 10 and 20 inlines 
and crosslines (Fig. 5a). Composite lines were also used, when needed, 
to collect data perpendicularly to fault-plane dip. Interpreted faults are 
225 m to 5,000 m long and show throw values varying from 6 ms to 73 
ms two-way time (twt). These faults are still active at present due to on- 
going salt tectonics in SE Brazil, as some offset strata are very close to the 
modern seafloor (Fig. 5a).

3.1.2. Ierapetra Fault Zone (SE Crete)
The modern Ierapetra Fault Zone is located in SE Crete and is > 25 

km long (Fig. 4a–c and 5b). It has been active since, at least, the Late 
Miocene and is one of the most prominent structures on the island 
(Caputo et al., 2010; Gaki-Papanastassiou et al., 2009). Several fault 
segments striking NNE–SSW and dipping to the WNW played a crucial 
role in the evolution of the fault zone, namely the Kavousi, Ha and 
Ierapetra segments (Gaki-Papanastassiou et al., 2009) (Fig. 5b). Each of 
these segments has its own characteristic geometry (Fig. 5b). Due to its 
activity, thick sediments cover the fault zone’s hanging-wall, while the 
immediate footwalls are barren of marine sediment and feed adjacent 
basins at present (Fig. 5b).

Throw/distance (T/D) data reveal that discrete fault segments are 
0.5–7.1 km long, and show maximum throw values between 250 and 
1000 m. A synchronous Holocene reference horizon was identified in the 
study area and used as a marker to compile T/D plots for outcropping 
fault segments (Fig. 3). During the collection of fault-throw data, the 
following were performed: 

(i) Fault scarps were mapped in detail in the field and projected on 
1:50,000 maps from the Hellenic Mapping and Cadastral Orga
nization – the maps with the highest resolution in the region. The 
present-day height of footwall tips and any associated erosional 
and depositional features were taken into consideration in our 
throw measurements of active tectonic faults,

(ii) Throw data were collected at a regular interval of 50 m along the 
fault segments observed in the field. Throw measurements were 
gathered where the geometry of the faults is clear on the maps 
and in panoramic photos (Fig. 5b).

3.1.3. Sub-seismic scale faults from SW England (Kilve)
The Bristol Channel Basin records four distinct stages of faulting: 1) 

N-S extension and associated normal faulting in the Mesozoic, accom
panying the development of the Bristol Channel Basin, 2) reactivation of 
some of the normal faults formed during the first stage, 3) reverse 
reactivation of Mesozoic and older structures during the Alpine orogenic 

pulses (Underhill and Paterson, 1998), 4) reverse reactivation of normal 
faults that were subsequently cut by conjugate strike-slip faults (Dart 
et al., 1995), 5) jointing of strata after Alpine-related fault reactivation 
(Rawnsley et al., 1998).

A certain degree of tectonic reactivation thus occurred in the Bristol 
Channel Basin during the Cenozoic and was of an enough magnitude to 
generate: a) structures formed by N-S contraction - chiefly reverse 
reactivated planar normal faults, b) structures formed by east–west 
contraction, c) intersecting N- to NNW-trending and NE-trending faults 
(Glen et al., 2005). Importantly, the faults analyzed in this paper were 
formed by N-S extension, record no apparent tectonic reactivation, and 
only occur in Liassic limestones and shales (Peacock et al., 2017).

Thirteen (13) faults with lengths varying from 1.65 m to 7.55 m, and 
maximum throw values ranging from 3 cm to 29 cm, were measured and 
interpreted in the field (Figs. 4 and 5c,d). Fault-throw measurements 
depended on how clear they were exposed at the surface. Throw values 
were measured where the hanging-wall and footwall were totally 
exposed on the two sides of the fault trace. The throw-distance data were 
acquired along the exposed fault trace every 5 cm. T/D plots were also 
computed and analyzed for these faults considering different sampling 
spacings, as exemplified in the Supplementary Materials in Tao and 
Alves (2019).

3.2. Machine learning and mathematical algorithms

Machine Learning algorithms were implemented using the Python 
programming language applied on NumPy (Harris et al., 2020), PyWa
velets/Pywt V1.4.1 (Lee et al., 2022) and SciPy 1.0 (Virtanen et al., 
2020) software libraries.

3.2.1. Wavelet transforms for fault-segment detection
The main advantage of using Wavelet Transforms to detect discrete 

fault segments is that they permit the analysis of features that vary in 
character over different scales (Kalbermatten et al., 2012; Shen et al., 
2022). For acoustic or optical signals, such features are often frequencies 
varying over time. In image data, features of interest include edges and 
textures, as is the case of throw maxima and minima in T/D and T/Z 
curves (Shen et al., 2022), or object-based classes of images recorded 
after segmenting remote sensing data into homogeneous regions 
(Gloaguen et al., 2007).

In mathematical terms, Wavelet Transforms allow for the decom
position of an input signal into the intensity of individual frequency 
bands. The advantage of the Wavelet Transforms over the Fast Fourier 
Transform method is the former’s ability to identify both the frequency 
and spatial position of frequencies in the data. Fast Fourier Transforms 
only provide frequency information over a fixed range, with no location 
value along that range (Sifuzzaman et al., 2009). A wavelet can thus be 
convolved with a signal, with the resulting convolution giving the in
tensity of the wavelet at each point along a fault. The wavelet size can be 
changed to give an intensity for each frequency band.

In order to have a successful Wavelet Transform, a wavelet must 
follow a set of criteria, namely the wavelet function ψ needs to return a 
zero average: 
∫ +∞

− ∞
ψ(t)dt=0. (Eq. 1) 

The wavelet is then multiplied by a scale parameter s and translated 
by u such as: 

ψu,s(t)=
1
̅̅
s

√ ψ
(t − u

s

)
(Eq. 2) 

The Wavelet Transform of f, at a scale s and position u, is finally 
computed by correlating f with a wavelet atom: 

Wf(u, s)=
∫ +∞

− ∞
f(t)

1
̅̅
s

√ ψ*
(t − u

s

)
dt (Eq. 3) 
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Fig. 4. a) World map showing the location of the regions where T/D and T/Z data were acquired for this study. b) Location of the seismic surveys interpreted in SE 
Brazil from which fault-throw data were acquired. c) Location of the Ierapetra Fault relative to other fault families, local sedimentary basins and regional basement 
terrains. d) Map of SW England’s coast highlighting the locations from where fault-throw data were acquired at the sub-seismic scale (see black squares on the map). 
Fig. 4b is modified from Alves and Cupkovic (2018). Fig. 4d is modified from Glen et al. (2005).
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The above equations use t as the measure of displacement across the 
signal, as wavelets are most often related to signals represented as a 
function of time. In our particular case, the Wavelet Transform will not 
be reprocessed as a function of time; it will be estimated along a 
measured distance, but making no difference to the mathematics used. 
Time (t) will be replaced by distance (D) in Wavelet Transforms, this 

parameter D being the distance along a fault plane considered earlier in 
the paper, with frequency and wavelength being also be processed in 
reference to distance. By convention, t is used in signal processing, but 
for our case study distance (D) is used where t is seen in Equations (1)– 
(3).

Particular wavelet types are more often used in signal processing, 

Fig. 5. Examples of faults analyzed in this work from where throw measurements were acquired. a) Salt-related faults at the scale of industry seismic data interpreted 
from a high-resolution seismic survey acquired in SE Brazil. b) Panoramic view of the central part of the Ierapetra Fault Zone and its constituting fault segments. In 
parentheses are shown the height of footwall blocks associated with what is a >25 km long normal fault zone. c) and d) Faults in the SW England (Bristol Channel) at 
the sub-seismic scale.
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and is thus best to choose one of these common types when performing a 
Wavelet Transform. A wavelet that follows a similar shape to the ex
pected signal is required to get the best results (Mallat, 2009). In this 
work we used the so-called Ricker wavelet (see Fig. 6). Such a wave shape 
allows for the isolation of peaks, or throw maxima, in a fault segment, 
with throw minima being mathematically defined as the wavelet 
boundaries – as with distinct fault segments that are part of a fault zone 
(Mallat, 2009). Hence, the Ricker wavelet closely matches the linkage 
behaviour of fault segments (see Wang, 2015a, 2015b), i.e. it better 
identifies sharp throw minima, which are known to indicate the places 
where distinct fault segments were originally linked (Fig. 6). Such an 
approach results in the strongest correlation possible whenever the 
Ricker wavelet is equal to the fault size.

3.2.2. Polynomial regressions as a complementary method for fault-segment 
detection

Polynomial regressions follow a similar process to linear regressions 
whereby a line with a minimum average distance to the data points is 
found. Such a distance is quantified by a Sum of Square Errors 
(Heiberger and Neuwirth, 2009). The advantage of such a polynomial 
regression relates to the ability of using a higher order equation to define 
the line of best fit to T/D and T/Z data, respectively where the x-axis is 
distance (D) and the y-axis corresponds to depth (Z). In the case of a 
third order polynomial the key values are the coefficients, and a poly
nomial regression model can be simplified to these coefficient terms, i.e. 
the terms can be used as predictors for the values in the ‘real’ field data. 
This simplification to a single equation is important in our work, as it 
allows for data comparisons for the same fault whenever the T/D and 
T/Z measurements are correctly sampled vs. when data are down
sampled (see Sections 5 and 6.2).

To avoid data overfitting, we used a lower degree polynomial of 
degree 3. In practical terms, a three-parameter polynomial equation is 
first generated for each of the identified fault segments. The absolute 
minimum number of sample points used to generate this first model of 
fault shape is three (3), so the sampling space is so low that only the two 
tips and the point of maximum throw of a fault are identified (e.g. 
Fig. 7). The purpose of this method is to allow a comparison of fault 
detection approaches, using different sampling ratios, by reducing them 
all to the same dimensions. The low complexity of this method also helps 
to ensure that the model does not overfit the T/D and T/Z data in this 
work. We verified that the above findings could be generalized to our 
specific data by verifying that the error between the model and the T/D 

and T/Z data in question was small. A more detailed explanation of the 
polynomial regression process can be found in Ostertagová (2012) and 
James et al. (2013) and Section 4.4 in this work.

The modelling of faults via polynomials works well due to the pro
cess of fault creation, itself the result of forces, or stresses, developing 
and growing fractures in a volume of rock. Over geological periods of 
time, such forces change in terms of their direction and magnitude, and 
multiple factors can cause local variations in space and time (4D) in 
stress-strain relationships (Kim and Sanderson, 2005). At a single point 
in time, a skewed polynomial shape can accurately follow the shapes of 
faults and joints in nature, as the forces acting on a volume of rock result 
in a fault following a path of least resistance. This promotes the for
mation, in nature, of Gaussian T/D and T/Z curve shapes in faults and 
joints. The various (unpredictable) factors acting on these same struc
tures, and altering their T/D and T/Z profiles, can thus be simplified as 
skewed Gaussian curves. Goff (1991) found that a skewed Gaussian 
curve provides a model of low complexity that accurately fits our type of 
data.

4. Results

As a summary, the workflow used in this work is shown in Fig. 8 to 
highlight the different steps of the proposed machine learning 
methodology.

4.1. Step 1 – Application of discrete continuous Wavelet Transforms 
(CWT) to resolve faults at different scales

Theoretically, Continuous Wavelet Transforms (CWTs) can produce 
a 2D plot of frequency band strength. For the purposes of this work, 
these band strengths correspond to variations in fault throw (T) when 
this throw is interpreted as a part of a wave. Hence, fault segments in the 
field or in seismic data can be represented as wavelets.

In this work, computed CWTs were visualized against T/D plots, with 
a clear correlation being observed between frequency band strength and 
the throw maxima recorded for each fault segment (Figs. 7 and 8). In 

Fig. 6. Normalized Ricker wavelet, a symmetrical wavelet used to represent 
signal changes in the time domain Wang (2015a), 2015b). In this work, the time 
domain was replaced with by a spatial component (length or height) in order to 
apply the Ricker wavelet theory to the identification of fault segments.

Fig. 7. Graphical example of the Continuous Wavelet Transform technique 
used to identify discrete fault segments (Step 1 in this work, Section 4.1) at the 
lower polynomial degree 3. Note the obvious correlation between frequency 
band strength and the throw maxima recorded for each fault segment. Fault- 
segment identification using this technique results in the smallest of segments 
being ignored by the algorithm. This figure thus stresses the fact that a 
Continuous Wavelet Transform cannot identify throw maxima in the smaller 
fault segments – it is focused on picking the largest throw maxima in a given T/ 
D and T/Z dataset.
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fault zones containing multiple throw maxima, the largest fault seg
ments correlate with a peak in low frequency wavelet amplitude (Fig. 7).

When performing a CWT, the wavelets of various frequencies are 
compared across the input signal. The correlation of the signal with that 
wavelet is measured at each point. Therefore, when reaching the throw 
maxima of fault segments with a similar frequency, the accuracy behind 
correlating wavelets with T/D (and T/Z) plots (i.e. correlation strength) 

reaches a maximum. Such an approach simplifies the recognition of fault 
segments by splitting the throw measurements made in the field, or in 
seismic data, into frequency bands. This allows a computer algorithm to 
pick out certain frequencies that are likely to correspond to fault seg
ments. Wavelets that are most similar in shape and size to fault seg
ments, will result in a higher correlation between the CWTs and real T/D 
and T/Z data after convolution, meaning that the peak in convolution 

Fig. 8. Workflow suggested in this paper for the identification of fault segments using a Machine Learning approach.
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output will give the ‘best match’ from possible wavelet sizes and loca
tions along a fault. Peaks in the CWTs’ output can then be assumed to be 
the ‘top’ (i.e. the point of maximum throw) of a fault of a particular size.

Modifications were made in our analysis to the CWT technique so 
that discrete fault segments could be found. The main modification 
consisted in changing how the frequency of a fault is decided. Initially, 
the frequency of discrete faults was found by identifying the point of 
greatest throw amplitude across a fault, or a fault zone, for each fre
quency. We then visually confirmed which of these amplitude maxima 
coincides with the throw maxima of fault segments by comparing then 
with acquired throw data, acquired at maximum resolution. However, 
such an approach was deemed unreliable when: a) multiple segments in 
a fault zone show similar lengths, and b) an entire fault zone follows a 
shape similar to the wavelet, in which case a very low frequency will be 
used, spanning the entire fault zone. This caveat results in the smallest 
segments being ignored by the algorithm. An example can be found in 
Fig. 7, where some small fault segments were missed.

A successful solution was found using an approach that required the 
application of a computational step to remove the highest frequencies 
representing a ‘noisy’ signal. Peaks and Troughs in the computed 
wavelets were found by a comparison of points to their immediate 
neighbours (see Section 4.2). Mathematically, this is defined as calcu
lating prominence. Prominence is calculated by finding the minimum 
between a Peak and the next highest Peak, so the comparison happens 
over a range around a Peak, not just the immediate neighbours - a full 
mathematical explanation of prominence as a measure is given in 
https://www.mathworks.com/help/signal/ug/prominence.html. If a 
point was found to be higher in value than its adjacent points, and had 
sufficient prominence in the whole of the fault zone, it was taken as a 
Peak by our algorithm. Troughs were found in the same way, using an 
inverse algorithm so the same function could be used.

In a second stage of this process, a wavelet band was chosen by 
removing wavelets that were not considered relevant, as they mostly 
represent noise (Fig. 8). The highest wavelet frequency band remaining 
in the dataset was then deemed ready for fault scanning. The use of the 
highest wavelet frequency avoided locating the longest faults early in 
the process, as the scale (and wavelet range) of these long faults usually 
overprints the smallest of fault segments before these are found. For 
instance, in Fig. 7 we can identify discrete throw maxima relating to the 
presence of small fault segments that were overlooked by the algorithm 
which, in Step 1, was focused on picking the greatest throw maxima. 
This means that the identification of relatively small throw maxima 
needs to be prioritized in a Machine Learning approach.

In summary, the maximum value in the wavelet band that is not 
interpreted by the algorithm as a discrete fault segment was defined as 
the maximum throw value of a new segment. Conversely, the throw 
minima on each side of this maximum were taken as comprising the 
lateral tips of a fault segment. Such a method could be applied to a map 
all maxima and minima in the produced CWT matrix; it allows for a 
rigorous definition of fault segment distribution and their linkage points. 
To avoid errors in our analysis, a cross-validation was used to select the 
most suitable frequency. We split the data into training and test cases. 
The frequency was selected using the training cases and determined as 
suitable through evaluating these same test cases. A subset of the dataset 
was chosen randomly to use for validation of the frequency constant. A 
ground-truthed set of fault locations was then marked on the dataset. 
The constant that came closest to this ground-truthed data was taken 
and modified by smaller amounts for a different subset of the data, 
repeating the same process to address any bias introduced.

4.2. Step 2 – Detection of throw gradients from the point of throw minima

Step 2 in this work consisted in the application of a gradient descent 
from the point of frequency minima. The aim was to find the nearest 
throw minimum representing the linkage point between two fault seg
ments. If no frequency minima are found before reaching the end of the 

dataset, the last value picked by the algorithm is taken as the end of the 
segment (Figs. 8 and 9).

The method consisted in the scanning of every wavelet frequency for 
their Peaks and Troughs, which are then reduced down to frequencies 
that contain enough Peaks and Troughs to form at least one discrete fault 
segment. A second reduction is completed by removing the frequencies 
that result in too many Peaks per meter. Such a step is important for 
removing frequencies that reflect irrelevant, spurious throw maxima, 
usually comprising measurement errors and resolution issues when 
measuring throw data in seismic and at outcrop (truncation and 
censoring cf. Torabi and Berg, 2011). The threshold Peak values can be 
changed, with a stricter threshold resulting in the identification of only 
the larger fault segments (see Fig. 9), and a looser threshold resulting in 
multiple fault segments being found. Naturally, if it is set too loose, 
unwanted segments may appear in one’s fault tracing.

4.3. Step 3 – Integration of continuous Wavelet Transforms (CWTs) with 
a threshold Peak rate

To improve the accuracy of our results, a re-sampling was applied as 
a third step before undertaking a CWT. The sample count was scaled to 
1,000 times the longest wavelet length, which resulted in a less unusual 
behavior whereby fault segments are too large to be detected by any of 
the wavelets. This allows the wavelet bands to be kept the same for all 
tests, even as the dataset sample sizes vary. After all processing was 
done, an optional process allowed for the joining of the fault segments so 
to remove gaps between them. Step 3 returned more accurate results 
when undertaken on a series of faults where no gaps are expected, i.e. 
the approach also meant the smallest throw between any two segments 
was always considered as the linkage point of successive segments, 
regardless of their scale in nature.

A value between 0.03 and 0.04 for the threshold Peak rate (number 
of Peaks per sample) was found to provide good results in the datasets 
tested in this work. This value was decided by plotting Peak rate values 

Fig. 9. Example of the improved fault recognition that results from applying 
gradient measurements from the point of threshold minima (Step 2 in this work, 
Section 4.2). Step 2 focused on finding the nearest throw minimum representing 
the linkage point between two fault segments. Threshold values can be changed 
in the algorithm, with a stricter threshold only resulting in the identification of 
the larger fault segments, and a looser threshold resulting in multiple fault 
segments being found. If no frequency minimum is found before the end of the 
dataset is reached, the last value picked by the algorithm is taken as the end of 
the segment. In Step 2, some of the smallest fault segments were still overlooked 
by the algorithm, but not on such a scale as revealed in Step 1 (see Figs. 7 
and 8).
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against frequency and finding where the graph in Fig. 10 begins to level 
out. In this graph, the rapid descent recorded with increasing wave
length size represents the reduction in noise occurring as the small 
changes in throw are filtered out by the algorithm. Once this noise is 
filtered out, and the curve approaches a flat, we can be confident that the 
remaining data is accurate. Cross-validation can then be used to select 
the above values for the threshold Peak rate.

A threshold Peak rate must be consistently applied across all tests to 
make one’s results comparable later on. However, in practical terms, the 
threshold can be changed based on the smallest fault sizes one has to find 
in a dataset, although using a threshold too high results in the detection 
of throw maxima that result from random noise, or constitute extraneous 
changes in fault height in a discrete segment. The adoption of a 0.04 
Peak rate returned positive results in this work - all Peaks that are clearly 
not part of faults were ignored, without overlooking any possible small- 
scale segments, examples of which can be seen in Fig. 11. Cross- 
validation against the ground-truthed throw data was again used to 
obtain a value of 0.04. If a different dataset with different properties is 
used, then cross-validation is also performed with respect to that dataset 
to select the most appropriate value. In practice, 0.04 was chosen by 
validating it across a large dataset and should be considered a ‘default’ 
value to use, but can also be changed depending on whether its use re
sults in the identification of false positive or false negative faults. This 
approach allowed us to use the previously defined method of Wavelet- 
Transform scanning described in Section 4.1, starting with the highest 
frequency, as we have now removed noisy wavelet bands that could 
hinder our Machine Learning approach.

4.4. Step 4 – Throw-profile fitting via a cubic model

The computational steps so far described are successful in identifying 
the tips and throw maxima for each fault segment, but fault shape is 
often not accurately depicted. To best represent fault segment shape, a 

third order polynomial regression was applied individually to each fault 
segment (Fig. 12).

In our database, fault shape approaches a cubic equation in almost all 
cases; the evolution of fault shape is a result of stress and ruptures in the 
lithosphere that can be interpreted using the same models that dictate 
the geometry of failure in the smaller scale, and in varied materials 
(Scholz and Aviles, 2013). A discrete fracture developing in a rheolog
ical uniform material usually produces a parabolic fault in 2D (Walsh 
et al., 2002, 2003; Kim and Sanderson, 2005). However, in nature the 
interaction with varying rock types, adjacent faults, and other irregu
larities within the crust, add an order of complexity to fault shapes. This 
is correctly accounted for with the use of a cubic model (Goff, 1991; 
Ostertagová, 2012). A second order polynomial is only capable of 
modelling a curve with a single Peak or a single Trough. Since the 
dataset used in this work contains multiple peaks and troughs, such a 
model is unsuitable; using a third order polynomial overcomes this 
limitation whereby it can model curves with multiple peaks and troughs.

In this fourth step, the regression model developed for fault segment 
detection is provided with throw data at the maximum resolution 
possible. However, a set weighting was added for the minima, maxima 
and Peak throw values of a fault, thus ensuring the final curve passes 
through each of these points. In addition, a lower weighting is given to 
the Peak to prevent the detection of unusual shapes due to other points 
being ignored by the model. A regression was then applied through the 
implementation of the python software library Scikit-learn (Grisel et al., 
2023), which implements a simple and effective regression algorithm 
that allows for quick implementation into the code used in previous 
steps (Grisel et al., 2023; Raschka and Mirjalili, 2018). An advantage of 
this step is that the resulting curves can model each fault segment using a 
single equation, and the computation of such equation simplifies any 
further analysis needed for a whole fault (Fig. 12). However, it should be 
noted that the resulting equation will only give an accurate model of 
fault shape within the range of the fault’s predicted length. Outside this 

Fig. 10. Graph used to estimate noise floor in the data used in this work (Step 3 in this work, Section 4.3). The rapid descent recorded with increasing wavelength 
sizes represents the reduction in noise occurring as a result, as small changes in throw are filtered out by the algorithm. Once this noise is filtered out, and the curve 
approaches a flat, we can be confident that the remaining data is accurate. Peak rate values, when plotted against the frequency of data, show that adopting a 
threshold peak rate of 0.04 is a valid approach.
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range the cubic equation does not fit with the real fault shape (Fig. 12).

5. Critical mathematical tests of minimum sampling rates for T/ 
D and T/Z analyses

A minimum sampling rate for T/D and T/Z analyses was previously 
estimated by Tao and Alves (2019) as a percentage of the smallest 
segment being analyzed in a fault zone, or region. They approached the 
detection of fault linkage points to the mapping of a fault’s total area, 
and geometry, in the 2D space. Hence, a downsampling method was 
gradually applied by Tao and Alves (2019) to throw data collected at 
maximum resolution so to highlight fault linkage points in T/D and T/Z 
plots. Fault-segment linkage points were detected for each iteration. The 
number of fault segments was then measured and, once this number was 
reduced, fault segments could not be detected below a specific sampling 

rate δ.
Mathematically speaking, the standard approach to downsampling a 

dataset is through decimation, which involves the application of an 
integer decimation factor M. The new decimated data are obtained by 
simply selecting every Mth value of a signal x(n), a step that returns a 
new sample rate of: 

nʹ=
n
M

(Eq. 4) 

Decimation methods most commonly involve the application of a 
low-pass filter prior to decimation so that aliasing is avoided. However, 
to most accurately simulate the degradation of data that derives from a 
lower sampling of field measurements, we decided to avoid the appli
cation of a low-pass filter to our data. In fact, the decimation approach in 
Equation (4) is the most basic and allows only for quick tests of the effect 
of sampling reductions on the shape of T/D and T/Z data.

In our analysis, decimation was found to introduce a bias to down
sampled data. The results were often determined by the locations of the 
decimated samples relative to the ‘real’ linkage points of discrete fault 
segments. Hence, to allow for a consistent approach to downsampling, 
an interpolation algorithm was used whereby an interpolation function 
was generated and followed the input data. This interpolation function 

Fig. 11. Examples of the improvement in fault recognition observed after 
applying a Peak rate threshold to a Continuous Wavelet Transform (Step 3 in 
this work, Section 4.3). a) Fault R2_H3 interpreted in high-resolution seismic 
data from SE Brazil. b) Fault L2 H4-1 from offshore SE Brazil. Note the 
improved results in Step 3 when compared with Step 2, but with some smaller 
peaks being still overlooked in parts of the fault segments analyzed. The 
adoption of a 0.04 peak rate (see Fig. 10) returned positive results in Step 3 - all 
Peaks that are clearly not part of discrete segments were ignored, without 
overlooking any possible faults.

Fig. 12. Examples of regression curves modelling fault shape in T/D and T/Z 
data using a cubic model (Step 4 in this work, Section 4.4). Overall, this was the 
method that returned a better correlation between the fault segments identified 
in our dataset and the segments identified by the algorithm used. a) Fault R2 H2 
analyzed from high-resolution 3D seismic data from SE Brazil. b) Segmented 
fault zone R2 H3 interpreted in SE Brazil using high-resolution seismic data. c) 
Fault L2 H4-1, also from offshore SE Brazil.
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was then applied to a new set of sample points, an approach most closely 
following what happens when acquiring T/D and T/Z data in the field, 
or in seismic data, as we can choose – by using this interpolation func
tion - a completely new set of sampling points independently of how the 
original data was acquired.

A linear interpolation was therefore followed in our approach by 
computing two adjacent samples, with the desired sampling point falling 
between these adjacent sample locations along the throw axis. The 
normalized spacing between these two samples is 1/U. If the distance of 
the first sample comes before the desired sample distance by xm, then the 
sampling distance of the second sample leads the desired sampling 
distance by (1 /U) − xm. If we designate the two samples as y1(m) and 
y2(m), and use a linear interpolation, the approximation of the desired 
sample becomes (Proakis, 1992): 

y(m) = (1 − am)y1(m) + amy2(m)

where am = Uxm and ​ 0 ≤ am ≤ 1 (Eq. 5) 

Through this resampling approach, a sampling ratio can be increased 
and decreased while retaining the original fault shape. The position of 
sampling points can also be tweaked to find possible sampling intervals 
that cause information loss.

5.1. Integral Error test

The main outcome of performing a polynomial regression fit is that 
an interpreter can obtain a discrete equation for each perceived fault. 
Building upon the method of Modulus Error analysis in Tao and Alves 
(2019), we created a measure of the scale of changes caused by a 
reduction in throw sampling. We subtracted the equations of faults 
measured at different sampling spaces and took the absolute value of the 
resultant equation, where x is distance: 

Total error ​ =

∑n

i=0

∫ pi+1
pi

|fi(x) − gi(x)|dx

∑n

i=0

∫ pi+1
pi

fi(x)dx

p = Intersection points

(Eq. 6) 

For a single fault, Equation (6) can be simplified to: 

Fault error ​ =
∫ q

p |f(x) − g(x)|dx
∫ q

p f(x)dx

p = Fault start and q = Fault end

(Eq. 7) 

Performing an Integral Error calculation on each step of a sampling 
reduction test reveals some of the effects imposed on the identification 
of fault-linkage points when one randomizes data (throw) sampling 
(Fig. 13). As the sampling is reduced, the Integral Error increases, 
responding to the fact that the sampled locations may miss the fault 
linkage points if the sampling is too coarse. The error will reach a 
maximum value and then decrease over smaller changes in sampling. 
This means that coarse and random sampling techniques can drastically 
change the results, leading to erroneous estimations of fault segments’ 
shape, hindering their subsequent identification. In other words, it is 
certain that one is overlooking the presence of discrete fault segments 
when the error starts to decrease in its magnitude (Fig. 13). In addition, 
when the sampled points are being incrementally reduced along a fault, 
the distance to the nearest sample may also vary with some degree of 
randomness. An interpreter may thus be fortunate enough (or not) to 
collect data near a point where fault segments are linked solely by 
chance. The influence this has on the error value means that sometimes, 
but also randomly, error will decrease for a lower number of samples.

5.2. Modulus Error test

The approach in Section 5.1 resulted in the calculation of a ratio 

resolving the size of the error relative to the size of the fault f(x). As we 
mostly recorded an increase in Integral Error up to the point where a 
fault is no longer detected, the variation in Integral Error became a good 
indication of the reliability of predictions made at decreasing sampling 
space. The similarity of this equation to the Modulus Error equation in 
Tao and Alves (2019) allows for a direct comparison between different 
error-calculating methods as a function of sampling space: 

Modulus Error=

∑n

1

⃒
⃒Am − Aʹ

m

⃒
⃒

∑n

1
Am

(Eq. 8) 

Taking the integral of Equation (8) will give a value for the area 
between the two faults, which can be used as a way to gauge errors 
between two measurements of the same fault zone. In our case, it was 
used to compare the downsampled datasets to the original ground- 
truthed ones as the sampling space is being tested.

Fig. 13. a) Visualization of T/D plots before and after a critical sampling ratio 
is applied. b) Example of the changes in fault shape when sampling ratio is 
reduced to an Integral Error of 11.6%.
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5.3. Intersection error test

The lateral tips of discrete fault segments can sometimes change in 
their relative position (as identified by our algorithm) if data decimation 
is too coarse. Once again, an interpreter may be fortunate enough (or 
not) to collect data near a point where fault segments are linked solely 
by chance. As a result, information is lost; when fault linkage points are 
not identified in their accurate location, any resulting interpretations of 
a fault’s geometry may be inaccurate. Small changes in the location of 
fault segments’ linkage points may not indicate issues with their iden
tification, so a threshold value needs to be defined if a particular sample 
strategy is inaccurate.

We devised a way to measure the change in intersection points, i.e. 
the difference between the lateral tip of a fault in one case is compared to 
the closest lateral tip of a fault in another measurement of the same fault 
zone. This distance is divided by the length of the fault to give an error 
value. The average of all the faults’ errors gives a final Intersection Error 
for the comparison. 

Intersection Error = (nmax − nmin) +
∑nmin

i=1

min
( ⃒
⃒ai,0 − b(1→nmax),0

⃒
⃒
)

ai,2 − ai,0

n = number of faults ac,d, bc,d = sequence of faults

c = fault number d = fault start,peak and end

(9) 

The Intersection Error returns similar values to the Integral Error. 
However, it will more clearly identify situations where a fault segment 
has been overlooked. Other measures of error also prioritize changes in 
the general shape of faults, while in many cases the more important 
aspect of the faults we analyzed is where they lateral tips are, i.e. where 
they begin and end laterally.

6. Discussion

6.1. Downsampling techniques to highlight interpretation errors

A comparison of error percentages when reducing the sampling 
spacing in T/D and T/Z data reveals some interesting trends (Fig. 14). In 
most cases, the error gradually increases when sampling decreases, but 
there are some examples of minima in Integral and Intersect errors 
occurring due to a sample coinciding exactly with a fault segment 
linkage point (see low error percentages in Fig. 14). In other words, by 
simple coincidence, one can select a sample that coincides exactly with, 
or be very close to, a fault intersection point. This finding constitutes an 
important addition to the analysis of Tao and Alves (2019); it provides 
further confirmation that obeying a minimum threshold sampling ratio 
is paramount to recognizing fault segmentation in nature.

We applied an iterative downsampling approach to all the available 
415 faults to find a minimum sample ratio as a percentage of fault 
length. Three (3) approaches were followed to measure minimum 
sampling ratios from the strictest to the most lenient: 

a) Strict - sampling considers a percentage of the total data input range, 
i.e. the total length of a fault zone that is composed of multiple 
segments,

b) Moderate - sampling is calculated considering the longest segment 
found in a fault zone, and,

c) Lenient - sampling only considers the very first fault lost as a result of 
reducing throw sampling rate.

The use of these multiple definitions allowed us to identify what are 
the upper and lower sampling limits required to map discrete fault 
segments with accuracy. Our datasets often include a wider range of 
fault geometries, with faults varying in size along a fault zone. Results 
are shown in Fig. 15.

The results show that, with relatively short fault zones, in which only 

a few faults need to be found and modelled, Moderate sampling ratios 
are sufficient when compared to long fault zones. However, a known 
caveat of analyzing entire fault zones is that they may contain long and 
short fault segments, and the shortest segments need to be accurately 
identified using Strict sampling ratios. This means some fault zone ge
ometries require a much higher sampling ratio than that needed, for 
instance, for two-three linked segments with relatively constant sizes.

6.2. Minimum sampling ratios in T/D and T/Z analyses

Fig. 16 illustrates the relationship between each error-testing 
approach and the critical sampling ratio, with detailed information 
being provided in Table 1. The purpose of quantifying error is to un
derstand how much information is lost by a reduction in the data sam
pling ratio. The larger the percentage error observed in Fig. 16, at a 
critical sample ratio, the better the measure of the accuracy of fault 
predictions is. The critical sample ratio is the point at which important 
fault information is lost.

Modulus Error works independently of any fault shape data, so it 
results in a smaller distribution error - it cannot reliably tell an inter
preter how much information is lost in terms of fault shapes and their 

Fig. 14. Change in error rate observed while the number of samples is reduced. 
a) In keystone fault 6–11, Modulus Error increases at a constant rate, whereas 
Integral and Intersect errors vary erratically due to the random picking of fault 
linkage points when using differing sample numbers. b) Fault C24 records a 
rapid oscillation of error values is recorded. In most cases, the error gradually 
increases when decreasing the number of throw samples, but there are some 
examples of minima in Integral and Intersect errors occurring due to a sample 
coinciding exactly with a fault-segment linkage point (see Section 5.1 in 
this article).
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linkage points. In comparison, Integral Error reflects a compromise be
tween the Modulus and the Intersection errors, though it only returns 
information on the accuracy of lateral tips (start and end points) of fault 
segments. In spite of this, Integral Error has a much higher average result 
for error, meaning the changes in fault shape are relatively greater than 
the change in position of faults’ linkage points.

From these results, and also via the successful visualization of fault 
shape, we demonstrate that Integral Error is a superior tool to gauge the 
loss in information when comparing variable sampling ratios for faults. 
The high correlation with Intersection Error also tells us that there is 
little use for combining the two error-defining methods (Intersection 
and Interval errors) in individual cases, as they are heavily dependent. 

Fig. 15. Total distribution of minimum sample ratios (δ) for all datasets in this work. Results are shown separately for three different downsampling approaches, 
Strict, Moderate, and Lenient, before considering a threshold 95% success rate for the data (see Section 6.2 in this article).

Fig. 16. Error distribution after a critical sampling ratio is applied to all fault-throw data considered in this work.
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The Intersection Error can therefore be used separately to Interval Error 
as a good indication for how trustworthy the identification of fault 
linkage points will be.

After establishing a relationship between error values and critical 
sample ratios, we could reach a conclusion on the minimum sample 
ratios necessary for accurate fault analyses. We found a minimum 
sample ratio that would be appropriate for various cases, with a 95% 
success rate (Table 2). The success rate measured in these cases is based 
on the use of a fully automated wavelet method (Fig. 17 and Table 2). 
With the use of other tools, as well as a human input (fault segment and 
curvature mapping sensu Kim and Sanderson, 2005), an even higher 
success rate can be achieved.

The critical values in Fig. 17 show the minimum sampling ratios 
calculated for the three downsampling approaches considered in Section 
6.1. The Strict approach can be taken as reflecting the minimum sam
pling length/fault length ratio (δ) for large fault zones comprising fault 
segments of varied dimensions (see also Table 2). These were commonly 
observed in the datasets gathered in SE Crete where fault-segment 
length is variable, but some segments are >3.5 km long. Based on 
these constraints, the point of data loss over a wide range of data sets 
was calculated in this work and resulted in the estimate of the following 
δ values: 

a) A δ of 1.02% ± 0.02 if one uses a Strict approach for the sampling of 
throw data. This value is particularly important when interpreting 
fault zones that are >3.5 km long,

b) A δ of 4.167% ± 0.18 for a Moderate approach, in which the choice 
of sampling ratio prioritizes the identification of the longest segment 
in a fault zone,

c) A minimum δ of 5.882% ± 1.26 is necessary to identify segments in a 
fault zone using a Lenient sampling approach.

For a typical fault zone that is longer than 20 km, such as Ierapetra’s 
with its largest segments c. 3.5 km long, the results above indicate that 
the collection of throw values every 35 m is the minimum sampling 
length, or spacing, one should use. In 3D seismic data, this translates into 
mapping fault throws every two (2) lines for a typical volume with a bin 
spacing of 12.5 m. Moderate and Lenient approaches will respectively 
translate into the collection of throw data every 140 m and 200 m along 
the Ierapetra Fault, i.e. every 11 and 16 lines for a similar fault in a 3D 
seismic volume processed with a bin spacing of 12.5 m. In SW England, 
sub-seismic faults are 1.65 m–7.55 m long, and that results in a Strict 
sampling that varies from 1.68 cm to 7.7 cm. A more Lenient sampling 
would require throws sampled every 9.7 cm and 44.39 cm for such 
structures.

It is worth noting these are not prescriptive sampling distances as, 
recognizingly, the minimum sampling length/fault length ratio (δ) is a 
function on fault length. Moreover, this same rule also applies to the 

collection of throw data for T/Z (throw-depth) plots so to prevent the 
grouping of distinct segments into a single unlinked (coherent) fault.

6.3. Implications for T/D and T/Z analyses

Tao and Alves (2016) understood that depositional rates near active 
normal faults vary significantly on their hanging-wall and footwall 
blocks, as well as recording variable sediment pathways. This renders 
the use of expansion indexes and layer-by-layer interpretations of throw 
troublesome in seismic data imaging relatively old, buried basins. The 
Strict approach to using a δ of 1.02% ± 0.02 will compensate for any of 
the issues indicated in Tao and Alves (2019), helping in the identifica
tion of early-stage fault segmentation. It will prevent the tendency, in 
the published literature, of considering the constant-length model as 
predominant in nature. In order to reduce risk of important data loss in 
the interpretation of short, minor faults, we recommend the use of a δ 
value of 1.0% preventing the loss of important fault information. Taking 
the smallest fault in the area as the reference point for a δ value also 
gives less room for interpretation error.

A limitation concerning the use of T/D and T/Z data in fault analyses 
is that the scale at which structural geologists acquire and interpret fault 
throw (or displacement) data is variable. It depends on the inherent 
scale of the structures of interest, and the aims of the survey or study in 
question. The chosen scale of observation is also dependent on data 
resolution and pre-defined structural criteria (e.g. Walsh and Watterson, 
1991; Walsh et al., 2002; Walsh et al., 2003; Kim and Sanderson, 2005; 
Torabi and Berg, 2011). Therefore, to acquire data at a scale that is 
several orders of magnitude greater than that in which fault segmenta
tion likely occurred, e.g. interpreting deeply buried faults using seismic 
data of poorer quality persuades interpreters to readily recognize 
coherent fault-growth models to the detriment of the isolated growth 
model. This is particularly the case when faults crossing sedimentary 
basins, but not rooted into basement units (and, therefore, not devel
oped at a crustal scale), are interpreted in seismic data. At what temporal 
scale is the ‘fast-propagation’, coherent fault model applicable is another 
important caveat in many of these models – the time-dependent growth 
and ultimate linkage of small faults is not easily resolved in seismic data, 
nor are stratigraphic (age) constraints often accurate enough. For these 
reasons, we consider that fault segmentation can be systematically 
overlooked by interpreters when adopting of broad, one-fits-all, attitude 
to the sampling of fault data, against which the Strict δ values suggested 
in this work should be used in structural analyses, but rarely are.

7. Conclusions

This work shows that the application of a Wavelet-Transform 
detection system in fault analysis is useful to automate fault mapping 
and remove human bias from interpretation workflows. With human 
oversight and adjustments, this system improves the productivity of 
interpreters analyzing complex fault arrays. As a corollary, this work 
proves the need to consider a threshold sampling ratio (δ) in T/D and T/ 
Z data as necessary, based on the following results: 

a) A low sampling ratio (δ), defined as minimum sampling length/fault 
length, is required when interpreting long, segmented fault zones 
composed of faults of multiple lengths and heights. This is important 
as the linkage points between fault segments often coincide with 

Table 1 
Key statistics concerning the box plot in Fig. 16.

Error Type Min. Q1 Median Mean Q3 Upper Maximum

Integral 2.48% 55.5% 89.5% 71.8% 96.8% 99.97% 99.97%
Modulus 0.401% 4.50% 6.72% 11111% 10.1% 17.7% 49.1%

Intersection 0% 21.0% 40.4% 36.6% 59.7% 86.0% 86.0%
Reduction (%) 10% 19.5% 27.3% 31.7% 52.9% 90.4% 90.4%

Table 2 
Minimum sampling ratios (δ) calculated based on a 95% success rate in fault- 
segment recognition for each downsampling approach: Strict, Moderate, and 
Lenient. See Fig. 17 for a graphical representation of these values.

Method Critical Value Uncertainty

Lenient 5.882% ±0.37%
Moderate 4.167% ±0.18%

Strict 1.020% ±0.02%
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regions of throw minima that are much smaller than the throw 
maxima of adjacent faults. The adoption of a low sampling ratio is 
independent of the style of linkage between discrete fault segment, e. 
g. hard-linkage, soft-linkage, or relay ramps. It is also independent of 
the type of fault one considers (normal, reverse or strike-slip).

b) This work suggests a minimum sampling ratio (δ) of 4.167% for 
faults that are relatively short, and clearly isolated. This is, however, 
a rough guideline as faults in nature can have unpredictable geom
etries, and a Strict approach (δ of 1.02% ± 0.02) may still be the 
appropriate, in many instances, if recognizing local, early-stage fault 
segmentation is the main aim of a study.

c) For the fault zones we analyzed, a Strict sampling ratio of 1.02% will 
mean acquiring throw data every 35 m if a fault zone contains seg
ments greater than 3.5 km. In 3D seismic data, this translates into 
mapping fault throws every two (2) lines for typical volumes with a 
bin spacing of 12.5 m. Moderate and Lenient approaches to fault 
measurements will respectively translate into the collection of throw 
data every 140 m and 200 m for such a fault zone geometry. The 
smaller sub-seismic faults of SE England require a sampling every 
1.65 cm (Strict approach) to 44.39 cm (Lenient approach).

d) The final decision regarding the use of Strict sampling ratios of 
1.02% ± 0.02 should be based on all geological information avail
able on the fault zone, or region, being analyzed. If there is any major 
uncertainty around fault-segment size, one should follow a Strict 
approach and consider a δ of 1.02% ± 0.02.

e) Mathematically speaking, the combination of Continuous Wavelet 
Transforms and Polynomial Regressions allows for an accurate 
mapping of fault segmentation from T/D and T/Z data. The 
Continuous Wavelet Transform is used to define fault ranges. A cubic 
(polynomial) regression model is later applied on these ranges to 
obtain fault shape in a separate stage. The high reliability of this 
technique allows for its systematic application using Machine 
Learning tools.

The results in this work are based on mathematical methods tested 
on a large dataset comprising 415 faults. The method we propose are 
applied with minimal human intervention, meaning results can be 
directly linked to the mathematical equations. The results also demon
strate the significant impact data sampling techniques can have on the 
resulting interpretation of fault location, and growth modes, particularly 
whenever small faults are quickly lost due to sub-scale imaging or 
incorrect data-acquisition approaches. Significant changes to the 
perception of an entire fault zone can occur when a single fault becomes 
unrecognizable due to poor throw (or displacement) sampling. For these 
reasons, we recognize that fault segmentation can be systematically 
overlooked when adopting a broad, one-fits-all, attitude to data sam
pling, against which the δ values suggested in this work should be used.
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