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 11 

Abstract 12 

Seismic and outcrop data from SE Brazil, Greece and SW England are used to develop 13 

a new method to correctly identify tectonic fault segments – either active or quiescent - using 14 

a machine learning approach. Three-dimensional (3D) analyses of tectonic faults are often 15 

based on the mapping of throw values (T) along their full length (D) or depth (Z) using a 16 

wide range of data. Yet, the collection of these throw values using geophysical or outcrop 17 

data is often time-consuming and onerous. In contrast to many empirical measurements of 18 

T/D and T/Z, our new method supports the mapping of active (or potentially active) fault 19 

segments and limits data undersampling, a caveat that results in the grouping of faults as 20 

single zones, systematically overlooking their natural segmentation. The new method is 21 

scale-independent and resulted in the definition of a minimum sampling ratio necessary for 22 

accurate fault segment mapping. Determined through the gradual downsampling of T/D and 23 
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T/Z data to a critical point of information loss, the minimum sampling interval () in T/D and 24 

T/Z data, expressed as a percentage of fault length, or height, is: a) 1.02% ± 0.02 for faults 25 

that are longer or higher than 3.5 km; b) 4.167% ± 0.18 for isolated faults that are shorter 26 

than 3.5 km in either length or height. This work is therefore important as it shows that one 27 

should never acquire T/D and T/Z data above a threshold 𝛿 value of 4% to identify 28 

successive, linked fault segments, whatever their scale. Total accuracy in fault-segment 29 

detection is only assured for  values of 1% when in the presence of fault zones with 30 

segments longer than 3.5 km. As a corollary, we confirm that T/D and T/Z data are often 31 

undersampled in the published literature, leading to a significant bias of subsequent 32 

interpretations towards coherent constant-length growth models when analyzing both active 33 

and old, quiescent fault systems. 34 

 35 

Keywords: Data sampling; Machine Learning; Tectonic faults; fault growth; Sampling 36 

errors; Fault propagation models 37 

 38 

1. Introduction 39 

The mapping and geometrical characterization of faults and joints at varied scales of 40 

observation are vital to geological, structural and earthquake-risk analyses. Recognizing 41 

faults and joints is also important in hydrocarbon and geothermal energy production, in 42 

engineering works, and to the implementation of sub-surface storage solutions 43 

(Gudmundsson et al., 2002; Misra and Mukherjee, 2018; Trippetta et al., 2019; Torabi et al., 44 

2023). Measurements of both active and quiescent tectonic faults need to be accurate 45 

because: a) the trapping and accumulation of subsurface fluid often depend on the geometry 46 

and interaction styles of faults and joints (Yielding, 2015), b) drilling-related hazards are 47 
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frequent in highly-faulted areas, as well as in prospects where reservoir quality is much 48 

reduced by joint systems (Saeidi et al., 2014; Kozłowska et al., 2017), c) the migration and 49 

preservation of sub-surface fluid is, in many a prospect, associated with the timing of 50 

formation, growth, and sizes of tectonic faults and joints (Ferrill et al., 2017; 2020). The size 51 

of tectonic faults, their inherent geometry, and the location of their intersection (linkage) 52 

points are important for a safe and sustainable production of geological resources (Jentsch et 53 

al., 2020; Purba et al. 2019; Moska et al., 2021; Huenges et al., 2013).  54 

Another characteristic of tectonic faults is that their size is a predictor of earthquake 55 

magnitude, i.e. faults over a certain length are capable of generating destructive earthquakes 56 

and associated geohazards (Trippeta et al., 2019). Importantly, large magnitude earthquakes 57 

can be generated in seemingly discrete fault segments that are connected to form a single 58 

large fault zone, at depth, whereas relatively isolated, smaller fault segments present a much 59 

lower seismic risk (Cloetingh et al. 2010; He et al. 2019; Alves, 2024). Generally speaking, 60 

fault intersections, geotechnically unstable fault zones and active faults capable of generating 61 

earthquakes must be avoided in engineering projects. The systematic undersampling of 62 

tectonic faults’ geometries can result in a rapid degradation of infrastructure after the 63 

completion of construction works, or in unexpected cost increases (Aydin et al., 2004; Wang 64 

et al. 2022).  65 

Notwithstanding the fact that accurate fault analyses are crucial in structural geology, 66 

producing a high-resolution image of fault structures is time-consuming, expensive and not 67 

always practical. Automatic methods to extract faults using remote sensing data have been 68 

developed by authors such as Gloaguen et al. (2007), but these types of data are not always 69 

available or concern the scales of observation necessary for a particular aim, or analysis. In 70 

most instances, the solution followed by both academia and industry is to reduce data 71 

collection to the minimum required level, just enough to understand where the loci of fault 72 
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interactions are. Unfortunately, such an approach results in coarse and often random data 73 

sampling ratios and techniques, as one can easily verify in most scientific articles published 74 

in the past 20-30 years. Purposely anonymous examples from the published literature, 75 

include: a) fault-throw values measured every 600 m for a single fault segment that is 4 km-76 

long, in which only 6.6 data points were acquired for such a segment (for an average of 15 77 

measurements per fault in the same article), b) fault throws measured every 3 cm for faults 78 

that are 1.0 m-long, returning 33 measurements per fault, on average, c) a third example in 79 

which fault throws are measured every 100-200 m for a fault zone that is 4 km-long, 80 

returning an average of less than 20 data points per fault segment. The coarse, and often 81 

random samplings of throw/distance (T/D) and throw/depth (T/Z) data are common in the 82 

literature, and surprisingly not always deriving from the use of seismic and geophysical data 83 

of relatively poor resolution.  84 

Such erratic sampling strategies can lead to a generic failure in recognizing that fault 85 

segments are components of a larger fault zone (Walsh et al., 2003). In fact, Tao and Alves 86 

(2019) have shown the systematic undersampling of fault throws in seismic, remote sensing 87 

and outcrop data will inevitably lead to an over-reliance of models reflecting coherent ‘fast 88 

propagation’ styles of fault growth (Walsh et al., 2003; Nicol et al., 2020). In other words, 89 

naturally segmented faults, or fault zones, will appear as single long structures if fault throws 90 

are undersampled. This caveat is compounded when interpreters overlook map-view 91 

geometries and concentrate only on collecting throw values without an accurate structural 92 

mapping accompanying their workflows. 93 

The aim of this work is to produce reliable predictions of fault segmentation in an 94 

automated manner, without human bias, and avoiding any under- or overfitting of data to 95 

emphasize a particular fault growth model. Overfitting in this case would involve finding 96 

more faults than exist through misinterpretation of signal noise and height undulation caused 97 
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by erosion or poor exposure, for instance. Underfitting would be to exaggerate fault throw so 98 

that multiple segments appear coherent in their growth and part of a single fault zone (Torabi 99 

and Berg, 2011; Tao and Alves, 2019). Our approach is scale-independent and works for both 100 

active and quiescent (ancient) tectonic faults that may or may not reactivate by anthropogenic 101 

means. In summary, the main research questions addressed in the work include: 102 

 103 

a) What mathematical methods can be applied to Machine Learning tools to avoid 104 

interpretative errors when identifying tectonic faults? 105 

b) What are the implications of misrepresenting fault segmentation in terms of 106 

understanding their growth modes? 107 

c) What are the threshold fault-throw (or displacement) values necessary for a correct 108 

identification of fault segmentation in nature? 109 

 110 

2. Theoretical aspects concerning fault-segment recognition 111 

2.1 Coherent vs. isolated growth modes and scale variance in structural observations 112 

Tectonic faults and joints, universally named as ‘rock fractures’ in the published 113 

literature, comprise sets of related segments, or strands, that can be kinematically and 114 

spatially related (Pollard and Segall, 1987; Gudmundsson, 2012) (Fig. 1). They represent 115 

continuous, brittle breaks in rocks, be it crustal-scale stress in the case of tectonic faults or 116 

smaller localized stresses that hardly offset rocks in the case of polygonal faults and joints 117 

(Peacock et al., 2017; Laubach et al., 2018). The largest of faults, those documenting a clear 118 

vertical or horizontal offset in strata or rocks, are often part of system of related fault 119 

segments that interact and link - and are restricted to a relatively narrow band or volume - 120 
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also called a Fault Zone (Peacock et al., 2000; 2017). Fault zones are formed by the 3D 121 

linkage of multiple segments in a broad region of deformation, leaving behind fault segments 122 

not frequently affected by such a strain (Rotevatn et al., 2019). 123 

Fault segments may show geometries that are indicative of a ‘fault-linkage’ and 124 

‘coherent’ growth (Kim and Sanderson, 2005) or, instead, develop individually to obey an 125 

‘isolated’ growth mode (Walsh et al., 2003) (Fig. 2). In practice, many ‘linked’ or ‘coherent’ 126 

faults are part of a larger zone of deformation, while isolated faults show growth histories and 127 

throw distributions that are independent or disparate from nearby faults segments (Nicol et 128 

al., 2020) (Fig. 2). The recognition of such fault growth modes in geophysical or outcrop data 129 

relies on the correct mapping of fault throws (T) against fault zone length (D) and depth (Z) 130 

to produce T/D and T/Z plots (Cartwright et al., 1998; Baudon et al., 2008) (Figs. 1 and 2). 131 

Multiple examples of how throw data can be used to understand fault growth modes are given 132 

in the literature for Norway (Tvedt et al., 2013; King and Cartwright, 2020), SE Brazil 133 

(Varela and Mohriak, 2013; Plawiak et al., 2024), Gulf of Mexico (Cartwright et al., 1998; 134 

Shen et al., 2018) and for tectonically active areas in the Gulf of Corinth (Fernández-Blanco 135 

et al., 2019; Robertson et al., 2020; Nixon et al., 2024), offshore Crete (Caputo et al., 2010; 136 

Nicol et al., 2020; Mechernich et al., 2023) or the Basin and Range, where topographic 137 

information has been combined with local tectonic analyses (Lee et al., 2023). Whenever 138 

available, fault displacement should be used instead of throw (see Fig. 3), but the acquisition 139 

of such data is time-consuming in practice when analysing outcrop or geophysical data - as a 140 

result, fault throw (T) is more frequently measured (e.g. Cartwright et al., 1998). Fault throw 141 

is a measure of the vertical distance between the footwall tip of a fault and its corresponding 142 

hanging-wall tip (Mukherjee, 2019) (Fig. 3). Fault displacement concerns the total movement 143 

of two fault blocks along a fault plane, measured in any specified direction. It represents the 144 

distance between two separated pieces of a marker layer on both sides of a fault. The time 145 
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and effort needed to collect such fault data is often the source of ‘censorship’ and ‘truncation’ 146 

in data (Torabi and Berg, 2011), leading to incorrect assumptions regarding the relative 147 

timing of fault activity. 148 

A caveat often overlooked by structural interpreters is that recognizing fault segments 149 

depends on the distinction of meaningful throw gradients that represent segment linkages on 150 

T/D (or Dmax/L) plots, accompanied by their analysis on vertical sections and map view 151 

(Walsh and Watterson, 1991; Walsh et al., 2002, 2003; Kim and Sanderson, 2005) (Fig. 1). 152 

With lower resolution images, or remote-sensing data of lower quality, comes a high level of 153 

uncertainty over the linkage points of discrete fault segments when acquiring such T/D or T/Z 154 

data. The lack of chronostratigraphic markers can also result in the misinterpretation of 155 

important gaps between faults, and multiple small segments may appear as a single large fault 156 

when a low-resolution dataset obscures lows, or minima, in throw (Tao and Alves, 2019).  157 

 158 

2.2 Use of T/D and T/Z data in fault-segment recognition 159 

Fault throw/distance (T/D) and throw/depth (T/Z) data are often measured on a seismic 160 

section, or exhumed fault plane, in order to identify distinct fault segments and interpret a 161 

fault propagation mode (Torabi and Berg, 2011). Fault throw (T) is often used instead of 162 

displacement as it is an easier variable to define, and quantify, in geophysical and field data, 163 

regardless if a fault is planar or listric. Throw measurements in listric faults will overlook 164 

their horizontal component (heave) but can still be used to identify discrete fault segments.  165 

In parallel, throw/distance (T/D) plots measure throw distributions along a fault’s length and 166 

can be complemented by Throw-Depth (T/Z) measurements. While T/D data help 167 

recognizing distinct, linked fault segments, T/Z data indicate the areas where the mechanical 168 
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properties of rocks may vary across a fault, at the same highlighting any evidence for vertical 169 

fault linkage (Cartwright et al., 1998; Baudon et al., 2008). 170 

Distinct faults, and also their constituting segments, show distinct orientations and 171 

curvatures in map view (Kim and Sanderson, 2005). On T/D profiles, steep decreases in 172 

throw values relate to the existence of an intersection (a ‘hard’ or ‘soft’ linkage point) 173 

between two fault segments or, instead, points out to a fault’s lateral tip (Figs. 1 and 2). Two 174 

linking fault segments will also be recorded as sudden gradient changes in T/D and T/Z plots 175 

(Figs. 1 and 2). Conversely, variations in fault height caused by erosion and local sediment 176 

deposition will be seen as high-frequency, low-magnitude undulations that resemble a noise-177 

like pattern of throw distributions (Torabi et al., 2019). Throw and displacement can be 178 

particularly affected by erosion of a fault scarp, as both are measured from a defined height at 179 

the immediate footwall block of a fault (Fig. 3). 180 

 181 

3. Data and Machine Learning methods 182 

 183 

3.1 Fault-throw data 184 

Measurements of fault throw used in this work were taken from distinct parts of the 185 

world (Fig. 4a). T/D and T/Z measurements for 415 faults were used in our analysis - they 186 

were collected at regular intervals and used to test the sampling distance necessary to 187 

correctly interpreted fault linkages and their growth modes. The primary source of data 188 

comes from the Southern North Sea and Southeast Brazil (Alves et al. 2022; Zhang et al., 189 

2022; Tao and Alves, 2016; 2019). Outcrop data were gathered in various locations in Crete 190 
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and Somerset (Tao and Alves 2019; Gaki-Papanastassiou et al. 2009; Caputo et al. 2010; 191 

Alves and Cupkovic 2018).  192 

 193 

3.1.1 3D Seismic data 194 

Seismic data in this work comprises two high-quality seismic volumes from the SE 195 

Brazil (Figs. 4a,b and 5a). The volume was stacked with a bin (or trace) spacing of 12.5 m 196 

and a vertical sampling rate of 2 ms. The vertical resolution of the investigated seismic data 197 

varies from 5 to 8 m near the seafloor, and c. 12 m at the maximum depth of faults 198 

investigated in this work (Fig. 5a). Fifty-nine (59) faults, including crestal faults, radial faults 199 

and low-angle normal faults flanking salt diapirs were interpreted every 1, 3, 5, 10 and 20 200 

inlines and crosslines (Fig. 5a). Composite lines were also used, when needed, to collect data 201 

perpendicularly to fault-plane dip. Interpreted faults are 225 m to 5,000 m long and show 202 

throw values varying from 6 ms to 73 ms two-way time (twt). These faults are still active at 203 

present as some offset strata that are very close to the modern seafloor due to on-going salt 204 

tectonics in SE Brazil (Fig. 5a). 205 

 206 

3.1.2 Ierapetra Fault Zone (SE Crete) 207 

The modern Ierapetra Fault Zone is located in SE Crete and is >25 km long (Fig. 4a,c 208 

and 5b). It has been active since, at least, the Late Miocene and is one of the most prominent 209 

structures on the island (Caputo et al., 2010; Gaki-Papanastassiou et al., 2009). Several fault 210 

segments striking NNE–SSW and dipping to the WNW played a crucial role in the evolution 211 

of the fault zone, namely the Kavousi, Ha and Ierapetra segments (Gaki-Papanastassiou et al., 212 

2009) (Fig. 5b). Each of these segments has its own characteristic geometry (Fig. 5b). Due to 213 
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its activity, thick sediments cover the fault zone’s hanging-wall, while the immediate 214 

footwalls are barren of marine sediment and feed adjacent basins at present (Fig. 5b). 215 

Throw/distance (T/D) data reveal that the fault segments are 0.5 to 7.1 km long, show 216 

maximum throw values between 250 and 1000 m. Nevertheless, a synchronous Holocene 217 

reference horizon was identified in the study area and used as a marker to compile T/D plots 218 

for outcropping fault segments (Fig. 3). During the collection of fault-throw data, the 219 

following were performed: 220 

    (i)    Fault scarps were mapped in detail in the field and projected on 1:50,000 maps 221 

from the Hellenic Mapping and Cadastral Organization – the maps with the highest resolution 222 

in the region. The present-day height of footwall tips and any associated erosional and 223 

depositional features were taken into consideration in our throw measurements of active 224 

tectonic faults, 225 

    (ii)    Throw data were collected at a regular interval of 50 m along the fault segments 226 

observed in the field. Throw measurements were gathered where the geometry of the faults is 227 

clear on the maps and in panoramic photos (Fig. 5b). 228 

 229 

3.1.3 Sub-seismic scale faults from SW England (Kilve) 230 

The Bristol Channel Basin records four distinct stages of faulting: 1) N-S extension and 231 

associated normal faulting in the Mesozoic, accompanying the development of the Bristol 232 

Channel Basin, 2) reactivation of some of the normal faults formed during the first stage, 3) 233 

reverse reactivation of Mesozoic and older structures during the Alpine orogenic pulses 234 

(Underhill and Paterson, 1998), 4) reverse-reactivation of normal faults that were 235 
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subsequently cut by conjugate strike-slip faults (Dart et al., 1995), 5) jointing of strata after 236 

Alpine-related fault reactivation (Rawnsley et al., 1998).  237 

A certain degree of tectonic reactivation thus occurred in the Bristol Channel Basin 238 

during the Cenozoic and was of an enough magnitude to generate: a) structures formed by N-239 

S contraction - chiefly reverse reactivated planar normal faults, b) structures formed by east–240 

west contraction, c) intersecting N- to NNW-trending and NE-trending faults (Glen et al., 241 

2005). Importantly, the faults analysed in this paper were formed by N-S extension, record no 242 

apparent tectonic reactivation, and only occur in Liassic limestones and shales (Peacock et 243 

al., 2017). 244 

Thirteen (13) faults with lengths varying from 1.65 m to 7.55 m, and maximum throw 245 

values ranging from 3 cm to 29 cm, were measured and interpreted in the field (Figs. 4 and 246 

5c,d). Fault-throw measurements in the field depended on how clear they were exposed at the 247 

surface. Throw values were measured where the hanging-wall and footwall were totally 248 

exposed on the two sides of the fault trace. The throw-distance data were acquired along the 249 

exposed fault trace every 5 cm. T/D plots were also computed and analyzed for these faults 250 

considering different sampling spacings as exemplified in the Supplementary Materials in 251 

Tao and Alves (2019).  252 

 253 

3.2 Machine Learning and mathematical algorithms 254 

Machine Learning algorithms were implemented using the Python programming 255 

language applied on NumPy (Harris et al., 2020), PyWavelets/Pywt V1.4.1 (Lee et al., 2023) 256 

and SciPy 1.0 (Virtanen et al., 2020) software libraries. 257 

 258 
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3.2.1 Wavelet transforms for fault-segment detection 259 

The main advantage of using Wavelet Transforms to detect discrete fault segments is 260 

that they permit the analysis of features that vary in character over different scales 261 

(Kalbermatten et al., 2012; Shen et al., 2022). For acoustic or optical signals, such features 262 

are often frequencies varying over time. In image data, features of interest include edges and 263 

textures, as is the case of throw maxima and minima in T/D and T/Z curves (Shen et al., 264 

2022), or object-based classes of images recorded after segmenting remote sensing data into 265 

homogeneous regions (Gloaguen et al., 2007).  266 

In mathematical terms, Wavelet Transforms allow for the decomposition of an input 267 

signal into the intensity of individual frequency bands. The advantage of the Wavelet 268 

Transform method over the Fast Fourier Transform is the former’s ability to identify both the 269 

frequency and spatial position of frequencies in the data. Fast Fourier Transforms only 270 

provide frequency information over a fixed range, with no location value along that range 271 

(Sifuzzaman et al., 2009). A wavelet can thus be convolved with a signal and the resulting 272 

signal gives the intensity of the wavelet at each point along the signal. The wavelet size can 273 

be changed to give an intensity for each frequency band. 274 

In order to have a successful Wavelet Transform, a wavelet must follow a set of 275 

criteria, namely the wavelet function 𝜓 needs to return a zero average: 276 

 277 

∫ 𝜓
+∞

−∞
(𝑡)𝑑𝑡 = 0.     (Eq. 1) 278 

 279 

The wavelet is then multiplied by a scale parameter s and translated by u such as: 280 
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 281 

𝜓𝑢,𝑠(𝑡) =
1

√𝑠
𝜓 (

𝑡−𝑢

𝑠
)      (Eq. 2) 282 

 283 

The Wavelet Transform of f, at a scale s and position u, is finally computed by correlating f 284 

with a wavelet atom: 285 

 286 

𝑊𝑓(𝑢, 𝑠) = ∫ 𝑓
+∞

−∞
(𝑡)

1

√𝑠
𝜓∗ (

𝑡−𝑢

𝑠
) 𝑑𝑡    (Eq. 3) 287 

 288 

The above equations use t as the measure of displacement across the signal, as wavelets 289 

are most often related to signals represented as a function of time. In our particular case the 290 

Wavelet Transform will not be reprocessed as a function of time; it will be estimated along a 291 

measured distance, making no difference to the mathematics used. Time (t) will be replaced 292 

by distance (D) in Wavelet Transforms, this parameter D being the distance along a fault 293 

plane considered earlier in the paper, with frequency and wavelength being also be processed 294 

in reference to distance. By convention, t is used in signal processing, but for our case study 295 

distance (D) is used where t is seen in Equations 1 to 3. 296 

Particular wavelet types are more often used in signal processing, and is thus best to 297 

choose one of these common types when performing a Wavelet Transform. A wavelet that 298 

follows a similar shape to the expected signal is required to get the best results (Mallat, 299 

2009). In this work we used the so-called Ricker wavelet (see Fig. 6). Such a wave shape 300 

allows for the isolation of peaks, or throw maxima, in a fault segment, with throw minima 301 

being mathematically defined as the wavelet boundaries – as with distinct fault segments that 302 
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are part of a fault zone (Mallat, 2009). Hence, the Ricker wavelet closely matches the linkage 303 

behaviour of fault segments (see Wang, 2015a; 2015b), i.e. it better identifies sharp throw 304 

minima, which are known to indicate the places where distinct fault segments were originally 305 

linked (Fig. 6). Such an approach results in the strongest correlation possible whenever the 306 

Ricker wavelet is equal to the fault size. 307 

 308 

3.2.2 Polynomial regressions as a complementary method for fault-segment detection 309 

Polynomial regressions follow a similar process to linear regressions whereby a line 310 

with a minimum average distance to the data points is found. Such a distance is quantified by 311 

a Sum of Square Errors (Heiberger and Neuwirth, 2009). The advantage of such a polynomial 312 

regression relates to the ability of using a higher order equation to define the line of best fit to 313 

T/D and T/Z data, respectively where the x-axis is distance (D) and the y-axis corresponds to 314 

depth (Z). In the case of a third order polynomial, the key values are the coefficients, and a 315 

polynomial regression model can be simplified to these coefficient terms, i.e. the terms can 316 

be used as predictors for the values in the ‘real’ field data. This simplification to a single 317 

equation is important in our work, as it allows for data comparisons for the same fault 318 

whenever the T/D and T/Z measurements are correctly sampled vs. when data are 319 

downsampled.  320 

To avoid data overfitting, we used a lower degree polynomial of degree 3. In practical 321 

terms, a three-parameter polynomial equation is first generated for each of the identified fault 322 

segments. The absolute minimum number of sample points used to generate this first model 323 

of fault shape is three (3), so the sampling space is so low that only the two tips and the point 324 

of maximum throw of a fault are identified (e.g. Fig. 7). The purpose of this method is to 325 

allow a comparison of fault detection approaches, using different sampling ratios, by 326 
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reducing them all to the same dimensions. The low complexity of this method also helps to 327 

ensure that the model does not overfit the T/D and T/Z data in this work. We verified that the 328 

above findings could be generalized to our specific data by verifying that the error between 329 

the model and the T/D and T/Z data in question was small. A more detailed explanation of 330 

the polynomial regression process can be found in Ostertagová (2012) and James et al. (2013) 331 

and Section 4.4 in this work.  332 

The modelling of faults via polynomials works well due to the process of fault creation, 333 

itself the result of forces, or stresses, developing and growing fractures in a volume of rock. 334 

Over geological periods of time, such forces change in terms of their direction and 335 

magnitude, and multiple factors can cause local variations in space and time (4D) in stress-336 

strain relationships (Kim and Sanderson, 2005). At a single point in time, a skewed 337 

polynomial shape can accurately follow the shapes of faults and joints in nature, as the forces 338 

acting on a volume of rock result in a fault following a path of least resistance. This promotes 339 

the formation, in nature, of Gaussian T/D and T/Z curve shapes in faults and joints. The 340 

various (unpredictable) factors acting on these same structures, and altering their T/D and T/Z 341 

profiles, can thus be simplified as skewed Gaussian curves. Goff (1991) found that a skewed 342 

Gaussian curve provides a model of low complexity that accurately fits our type of data.  343 

 344 

4. Results 345 

As a summary, the workflow used in this work is shown in Fig. 8 to highlight the 346 

different steps of the proposed machine learning methodology. 347 

 348 
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4.1 Step 1 – Application of discrete Continuous Wavelet Transforms (CWT) to resolve faults 349 

at different scales 350 

Theoretically, Continuous Wavelet Transforms (CWTs) can produce a 2D plot of 351 

frequency band strength. For the purposes of this work, these band strengths correspond to 352 

variations in fault throw (T) when this throw is interpreted as a part of a wave. Hence, fault 353 

segments in the field or in seismic data can be represented as wavelets.  354 

In this work, computed CWTs were visualized against T/D plots, with a clear 355 

correlation being observed between frequency band strength and the throw maxima recorded 356 

for each fault segment (Figs. 7 and 8). In fault zones containing multiple throw maxima, the 357 

largest fault segments correlate with a peak in low frequency wavelet amplitude (Fig. 7).  358 

When performing a CWT, the wavelets of various frequencies are compared across the 359 

input signal. The correlation of the signal with that wavelet is measured at each point. 360 

Therefore, when reaching the throw maxima of fault segments with a similar frequency, the 361 

accuracy behind correlating wavelets with T/D (and T/Z) plots (i.e. correlation strength) 362 

reaches a maximum. Such an approach simplifies the analysis of fault segments by splitting 363 

the throw measurements made in the field, or in seismic data, into frequency bands. This 364 

allows a computer algorithm to pick out certain frequencies that are likely to correspond to 365 

fault segments. Wavelets that are most similar in shape and size to fault segments, will result 366 

in a higher correlation between the CWTs and real T/D and T/Z data after convolution. This 367 

means the peak in convolution output will give the ‘best match’ from possible wavelet sizes 368 

and locations along a fault. Peaks in the CWTs’ output can then be assumed to be the ‘top’ 369 

(i.e. the point of maximum throw) of a fault of a particular size. 370 

Modifications were made in our analysis to the CWT technique so that discrete fault 371 

segments could be found. The main modification consisted in changing how the frequency of 372 
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a fault is decided. Initially the frequency of discrete faults was found by identifying the point 373 

of greatest throw amplitude across a fault, or a fault zone, for each frequency. We then 374 

visually confirmed which of these amplitude maxima coincides with the throw maxima of 375 

fault segments by comparing then with acquired throw data, acquired at maximum resolution. 376 

However, such an approach was deemed unreliable when: a) multiple segments in a fault 377 

zone show similar lengths, and b) an entire fault zone follows a shape similar to the wavelet, 378 

in which case a very low frequency will be used, spanning the entire fault zone. This caveat 379 

results in the smallest segments being ignored by the algorithm. An example can be found in 380 

Fig. 7, where some obvious local fault segments were missed. 381 

A successful solution was found using an approach that required the application of a 382 

computational step to remove the highest frequencies representing a ‘noisy’ signal. Peaks and 383 

Troughs in the computed wavelets were found by a comparison of points to their immediate 384 

neighbours (see Section 4.2). This is called mathematically as calculating prominence. 385 

Prominence is calculated by finding the minimum between a peak and the next higher peak, 386 

so the comparison happens over a range around a peak, not just the immediate neighbours - a 387 

full mathematical explanation of prominence is given in 388 

https://www.mathworks.com/help/signal/ug/prominence.html. If a point was found to be 389 

higher in value than its adjacent points and had sufficient prominence in the whole of the 390 

fault zone, it was taken as a Peak by our algorithm. Troughs were found in the same way, 391 

using an inverse algorithm so the same function can be used. 392 

In a second stage of this process, a wavelet band was chosen by removing wavelets that 393 

are not considered relevant, as they mostly represent noise (Fig. 8). The highest wavelet 394 

frequency band remaining in the dataset was then considered to be ready for fault scanning. 395 

The use of the highest wavelet frequency avoided locating the longest faults early in the 396 

process, as the scale (and wavelet range) of these long faults usually overprint the smallest 397 
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fault segments before these are found. For instance, in Fig. 7 we can identify discrete throw 398 

maxima relating to the presence of small fault segments that were overlooked by the 399 

algorithm that, in Step 1, was focused on picking the greatest throw maxima. This means that 400 

the identification of relatively small throw maxima need to be prioritized in a Machine 401 

Learning approach. 402 

In summary, the maximum value in the wavelet band that is not interpreted by the 403 

algorithm as a discrete fault segment was defined as the maximum throw value of a new 404 

segment. Conversely, the throw minima on each side of this maximum were taken as 405 

comprising the lateral tips of a fault segment. Such a method could be applied to a map all 406 

maxima and minima in the produced CWT matrix. This method allows for a rigorous 407 

definition of fault segment distribution and their linkage points. To avoid errors in our 408 

analysis a cross-validation was used to select the most suitable frequency. We split the data 409 

into training and test cases. The frequency was selected using the training cases and this was 410 

determined to be a suitable frequency through evaluation of the test cases. A subset of the 411 

dataset was chosen randomly to use for validation of the frequency constant. A ground-412 

truthed set of fault locations was then marked on the dataset. The constant that came closest 413 

to this ground-truthed data was taken and modified by smaller amounts for a different subset 414 

of the data, repeating the same process to address any bias introduced. 415 

 416 

4.2 Step 2 – Detection of throw gradients from the point of throw minima 417 

Step 2 in this work consisted in the application of a gradient descent from the point of 418 

frequency minima. The aim was to find the nearest throw minimum representing the linkage 419 

point between two fault segments. If no frequency minima are found before reaching the end 420 
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of the dataset, the last value picked by the algorithm is taken as the end of the segment (Figs. 421 

8 and 9). 422 

The method consisted in the scanning of every wavelet frequency for their Peaks and 423 

Troughs, which are then reduced down to frequencies that contain enough Peaks and Troughs 424 

to form at least one discrete fault segment. A second reduction is completed by removing the 425 

frequencies that result in too many Peaks per meter. Such a step is important for removing 426 

frequencies that reflect irrelevant, spurious throw maxima, usually comprising measurement 427 

errors and resolution issues when measuring throw data in seismic and at outcrop (truncation 428 

and censoring cf. Torabi and Berg, 2011). The threshold Peak values can be changed, with a 429 

stricter threshold resulting in the identification of only the larger fault segments (see Fig. 9), 430 

and a looser threshold resulting in multiple fault segments being found. Naturally, if it is set 431 

too loose, unwanted segments may appear in one’s fault tracing. 432 

 433 

4.3 Step 3 – Integration of Continuous Wavelet Transforms (CWTs) with a threshold Peak 434 

rate 435 

To improve the accuracy of our results, a re-sampling was applied as a third step before 436 

undertaking a CWT. The sample count was scaled to 1,000 times the longest wavelet length, 437 

which resulted in a less unusual behavior whereby segments are too large to be detected by 438 

any of the wavelets. This allows the wavelet bands to be kept the same for all tests, even 439 

while the dataset sample sizes vary. After all processing was done, an optional process 440 

allowed for the joining of the segments, to remove gaps between them. Step 3 returned more 441 

accurate results when undertaken on a series of faults where no gaps are expected, i.e. the 442 

approach also meant the lowest throw between any two segments was always considered as 443 

the linkage point of successive fault segments, regardless of their scale in nature.  444 
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A value between 0.03 and 0.04 for the threshold Peak rate (number of peaks per 445 

sample) was found to provide good results in the datasets tested in this work. This value was 446 

decided by plotting Peak rate values against frequency and finding where the graph in Fig. 10 447 

begins to level out. In this graph, the rapid descent recorded with increasing wavelength sizes 448 

represents the reduction in noise occurring as the small changes in throw are filtered out by 449 

the algorithm. Once this noise is filtered out, and the curve approaches a flat, we can be 450 

confident that the remaining data is accurate. Cross-validation can then be used to select the 451 

above values for the threshold Peak rate. 452 

Selecting a threshold Peak rate must be consistently applied across all tests to make 453 

one’s results comparable later on. However, in practical terms, the threshold can be changed 454 

based on the smallest fault sizes one has to find in a dataset, although using a threshold too 455 

high results in the detection of throw maxima that are the result of random noise or constitute 456 

irrelevant changes in fault height in a discrete segment. The adoption of a 0.04 Peak rate 457 

returned positive results in this work - all Peaks that are clearly not part of faults were 458 

ignored, without overlooking any possible faults, examples of which can be seen in Fig. 11. 459 

Cross-validation against the ground-truthed throw data was again used to obtain a value of 460 

0.04. If a different dataset with different properties is used, then cross-validation is also 461 

performed with respect to that dataset to select the most appropriate value. In practice, 0.04 462 

was chosen by validating it across a large dataset and should be considered a ‘default’ value 463 

to use but can also be changed depending on whether its use causes false positive or false 464 

negative faults. This approach allowed us to use the previously defined method of Wavelet-465 

Transform scanning described in Section 4.1, starting with the highest frequency, as we have 466 

now removed noisy wavelet bands that could hinder such a Machine Learning approach. 467 
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4.4 Step 4 – Throw-profile fitting via a cubic model 468 

The computational steps so far described are successful in identifying the tips and 469 

throw maxima for each fault segment, but fault shape is often not accurately depicted. To best 470 

represent fault segment shape, a third order polynomial regression needs to be applied 471 

individually to each fault segment (Fig. 12). 472 

In our database, fault shape approaches a cubic equation in almost all cases; the 473 

evolution of fault shape is a result of stress and ruptures in the lithosphere that can be 474 

interpreted using the same models that dictate the geometry of failure in the smaller scale and 475 

in other materials (Scholz and Aviles, 2013). A discrete fracture developing in a rheological 476 

uniform material usually produces a parabolic fault in 2D (Walsh et al., 2002; 2003; Kim and 477 

Sanderson, 2005). However, in nature the interaction with varying rock types, adjacent faults 478 

and other irregularities within the crust add an order of complexity to fault shapes. This is 479 

correctly accounted for with the use of a cubic model (Goff, 1991; Ostertagová, 2012). A 480 

second order polynomial is only capable of modelling a curve with a single peak or a single 481 

trough. Since the dataset used in this work contains multiple peaks and troughs, such a model 482 

is unsuitable; using a third order polynomial overcomes this limitation whereby it can model 483 

curves with multiple peaks and troughs. 484 

In this fourth step, the regression model developed for fault segment detection is 485 

provided with throw data at the maximum resolution possible. However, a set weighting was 486 

added for the minima, maxima and Peak throw values, thus ensuring the final curve passes 487 

through each of these points. In addition, a lower weighting is given to the peak to prevent 488 

the detection of unusual shapes due to other points being ignored by the model. A regression 489 

was then applied through the implementation of the python software library Scikit-learn 490 

(Grisel et al., 2023), which implements a simple and effective regression algorithm that 491 
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allows for quick implementation into the code used in previous steps (Grisel et al., 2023; 492 

Raschka and Mirjalili, 2018). An advantage of this step is that the resulting curves can model 493 

each fault using a single equation, and the computation of such equation simplifies any 494 

further analysis needed for a fault (Fig. 12). It should be noted that the resulting equation will 495 

only give an accurate model of fault shape within the range of the fault’s predicted length. 496 

Outside this range the cubic equation does not fit with the real fault shape (Fig. 12).  497 

5. Critical mathematical tests of minimum sampling rates for T/D and T/Z analyses 498 

A minimum sampling rate for T/D and T/Z analyses was previously estimated by Tao 499 

and Alves (2019) as a percentage of the smallest fault segment. They approached the 500 

detection of fault linkage points to the mapping of a fault’s total area, and geometry, in the 501 

2D space. Hence, a downsampling method was gradually applied by Tao and Alves (2019) to 502 

data collected at maximum resolutions so to highlight fault linkage points in T/D and T/Z 503 

plots. Fault-segment linkage points were detected for each iteration. The number of fault 504 

segments was then measured and, once this number was reduced, fault segments could not be 505 

detected below a specific sampling rate . 506 

Mathematically speaking, the standard approach to downsampling a dataset is through 507 

decimation, which involves the application of an integer decimation factor M. The new 508 

decimated data are obtained by simply selecting every Mth value of a signal x(n), a step that 509 

returns a new sample rate of: 510 

 511 

        𝑛′ =
𝑛

𝑀
     (Eq. 4) 512 

 513 
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Decimation methods most commonly used involve the application of a low-pass filter prior to 514 

decimation so that aliasing is avoided. However, to most accurately simulate the degradation 515 

of data that derives from a lower sampling of field measurements, we decided to avoid the 516 

application of a low-pass filter to our data. In fact, the decimation approach in Equation 4 is 517 

the most basic and allows only for quick tests of the effect of sampling reductions on the 518 

shape of T/D and T/Z data. 519 

In our analysis, decimation was found to introduce a bias to downsampled data. The 520 

results were often determined by the locations of the decimated samples relative to the ‘real’ 521 

linkage points of discrete fault segments. Hence, to allow for a consistent approach to 522 

downsampling, an interpolation algorithm was used whereby an interpolation function was 523 

generated and followed the input data. This interpolation function was then applied to a new 524 

set of sample points, an approach most closely following what happens when acquiring T/D 525 

and T/Z data in the field, or in seismic data, as we can choose – by using this interpolation 526 

function - a completely new set of sampling points independently of how the original data 527 

was acquired. 528 

A linear interpolation was therefore followed in our approach by computing two 529 

adjacent samples, with the desired sampling point falling between these adjacent sample 530 

locations along the throw axis. The normalized spacing between these two samples is 1/U. If 531 

the distance of the first sample comes before the desired sample distance by 𝑥𝑚, then the 532 

sampling distance of the second sample leads the desired sampling distance by (1/𝑈) − 𝑥𝑚. 533 

If we designate the two samples as 𝑦1(𝑚) and 𝑦2(𝑚), and use a linear interpolation, the 534 

approximation of the desired sample becomes (Proakis, 1992): 535 

 536 
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𝑦(𝑚) = (1 − 𝑎𝑚)𝑦1(𝑚) + 𝑎𝑚𝑦2(𝑚)

where 𝑎𝑚 = 𝑈𝑥𝑚 and 0 ≤  𝑎𝑚  ≤ 1
 537 

(Eq. 5) 538 

 539 

Through this resampling approach, a sampling ratio can be increased and decreased while 540 

retaining the original fault shape. The position of sampling points can also be tweaked to find 541 

possible sampling intervals that cause information loss. 542 

 543 

5.1 Integral Error test 544 

The main result of performing a polynomial regression fit is that an interpreted can 545 

obtain a discrete equation for each perceived fault. Building upon the method of Modulus 546 

Error analysis in Tao and Alves (2019), we created a measure of the scale of changes caused 547 

by a reduction in throw sampling. We subtracted the equations of faults measured at different 548 

sampling spaces and took the absolute value of the resultant equation, where x is distance: 549 

Total error =
∑ ∫ |𝑓𝑖(𝑥) − 𝑔𝑖(𝑥)|

𝑝𝑖+1

𝑝𝑖

𝑛
𝑖=0 𝑑𝑥

∑ ∫ 𝑓𝑖
𝑝𝑖+1

𝑝𝑖

𝑛
𝑖=0 (𝑥)𝑑𝑥

𝑝 = Intersection points

 550 

(Eq. 6) 551 

 552 

For a single fault, Equation 6 can be simplified to: 553 

 554 
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Fault error =
∫ |𝑓(𝑥) − 𝑔(𝑥)|

𝑞

𝑝
𝑑𝑥

∫ 𝑓
𝑞

𝑝
(𝑥)𝑑𝑥

𝑝 = Fault start  and 𝑞 = Fault end

 555 

(Eq. 7) 556 

 557 

Performing an Integral Error calculation on each step of a sampling reduction test 558 

reveals some of the effects imposed on the identification of fault-linkage points when one 559 

randomizes data (throw) sampling (Fig. 13). As the sampling is reduced, the Integral Error 560 

increases, responding to the fact that the sampled locations may miss the fault linkage points 561 

if the sampling is too coarse. The error will reach a maximum value and then decrease over 562 

smaller changes in sampling. This means that coarse and random sampling techniques can 563 

drastically change the results, leading to erroneous estimations of fault segments’ shape, 564 

hindering their subsequent identification. In other words, it is certain that one is overlooking 565 

the presence of discrete fault segments when the error starts to decrease in its magnitude (Fig. 566 

13). In addition, when the sampled points are being incrementally reduced along a fault, the 567 

distance to the nearest sample may also vary with some degree of randomness. An interpreter 568 

may thus be fortunate enough (or not) to collect data near a point where fault segments are 569 

linked solely by chance. The influence this has on the error value means that sometimes, but 570 

also randomly, error will decrease for a lower number of samples. 571 

 572 

5.2 Modulus Error test 573 

The approach in Section 5.1 resulted in the calculation of a ratio resolving the size of 574 

the error relative to the size of the fault 𝑓(𝑥). As we mostly recorded an increase in Integral 575 

Error up to the point where a fault is no longer detected, the variation in Integral Error 576 
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became a good indication of the reliability of predictions made at decreasing sampling space. 577 

The similarity of this equation to the Modulus Error equation in Tao and Alves (2019) allows 578 

for a direct comparison between different error-calculation methods as a function of sampling 579 

space: 580 

 581 

Modulus Error =
∑ |𝐴𝑚 − 𝐴′𝑚|𝑛

1

∑ 𝐴𝑚
𝑛
1

 582 

(Eq. 8) 583 

 584 

Taking the integral of Equation 8 will give a value for the area between the two faults, which 585 

can be used as a measure of error between two measurements of the same fault zone. In our 586 

case it was used to compare the downsampled datasets to the original ground-truth ones as 587 

the sampling space is being tested. 588 

 589 

5.3 Intersection Error test 590 

The lateral tips of discrete fault segments can sometimes change in their relative 591 

position (as identified by our algorithm) if data decimation is too ‘coarse’. Once again, an 592 

interpreter may be fortunate enough (or not) to collect data near a point where fault segments 593 

are linked solely by chance. As a result, information is lost; when fault linkage points are not 594 

identified in their accurate location, any resulting interpretations of a fault’s geometry may be 595 

inaccurate. Small changes in the location of fault segments’ linkage points may not indicate 596 

issues with their identification, so a threshold value needs to be defined if a particular sample 597 

strategy is inaccurate. 598 
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We devised a way to measure the change in intersection points, i.e. the difference 599 

between the lateral tip of a fault in one case is compared to the closest lateral tip of a fault in 600 

another measurement of the same fault zone. This distance is divided by the length of the 601 

fault to give an error value. The average of all the faults’ errors gives a final Intersection 602 

Error for the comparison. 603 

Intersection Error = (𝑛𝑚𝑎𝑥 − 𝑛𝑚𝑖𝑛) + ∑
min(|𝑎𝑖,0 − 𝑏(1→𝑛𝑚𝑎𝑥),0|)

𝑎𝑖,2 − 𝑎𝑖,0

𝑛𝑚𝑖𝑛

𝑖=1

 604 

𝑛 = number of faults  𝑎𝑐,𝑑 , 𝑏𝑐,𝑑 = sequence of faults

𝑐 = fault number  𝑑 = fault start, peak and end
 605 

(Eq. 9) 606 

The Intersection Error returns similar values to the Integral Error. However, it will 607 

more clearly identify situations where a fault segment has been overlooked. Other measures 608 

of error also prioritize changes in the general shape of faults, while in many cases the more 609 

important aspect of the faults we analyzed is where they lateral tips are, i.e. where they begin 610 

and end laterally. 611 

6. Discussion 612 

 613 

6.1 Downsampling techniques to highlight interpretation errors 614 

A comparison of error percentages when reducing the sampling spacing in T/D and T/Z 615 

data reveals some interesting trends (Fig. 14). In most cases the error gradually increases 616 

when sampling decreases, but there are some examples of minima in Integral and Intersect 617 

errors occurring due to a sample coinciding exactly with a fault segment linkage point (see 618 

low error percentages in Fig. 14). In other words, by simple coincidence, one can select a 619 
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sample that coincides exactly with, or be very close to, a fault intersection point. This finding 620 

constitutes an important addition to the analysis of Tao and Alves (2019); it provides further 621 

confirmation that obeying a minimum threshold sampling ratio is paramount to analyzing 622 

fault segmentation in nature.  623 

We applied an iterative downsampling approach to all the fault data available to find a 624 

minimum sample ratio as a percentage of fault length. Three (3) approaches were followed to 625 

measure minimum sampling ratios from the strictest to the most lenient:  626 

a) Strict - sampling considers a percentage of the total data input range, i.e. the total 627 

length of a fault zone that is composed of multiple segments,  628 

b) Moderate - sampling is calculated considering the longest segment found in a fault 629 

zone, and, 630 

c) Lenient - sampling only considers the very first fault lost as a result of reducing 631 

throw sampling rate.  632 

The use of multiple minimum sampling definitions allowed us to identify what are the 633 

upper and lower limits for the required sampling ratio in order to map discrete fault segments 634 

with accuracy. Our datasets often include a wider range of fault geometries, with faults 635 

varying in size along a fault zone. Results are shown in Fig. 15. 636 

The results show that, with relatively short fault zones, in which only a few faults need 637 

to be found and modelled, relatively lenient sample ratios are sufficient when compared to 638 

long fault zones. The main caveat of analyzing fault zones is that they may contain long and 639 

short fault segments, and the shortest segments need to be accurately identified using strict 640 

sampling ratios. This means some fault zone geometries require a much higher sample ratio 641 

than, for instance, two-three linked segments with relatively constant sizes. 642 
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 643 

6.2 Minimum sampling ratios in T/D and T/Z analyses 644 

Figure 16 illustrates the relationship between each error-testing approach and the 645 

critical sampling ratio, with detailed information being provided in Table 1. The purpose of 646 

quantifying error is to understand how much information is lost by a reduction in the 647 

sampling ratio, or distance. The larger the percentage error observed in Fig. 16, at a critical 648 

sample ratio, the better the measure of the accuracy of fault predictions is. The critical sample 649 

ratio is the point at which important fault information is lost.  650 

Modulus Error works independently of any fault shape data, so it results in a smaller 651 

distribution error - it cannot reliably tell an interpreter how much information is lost in terms 652 

of fault shapes and their linkage points. In comparison, Integral Error reflects a compromise 653 

between the Modulus and the Intersection errors, though it only returns information on the 654 

accuracy of lateral tips (start and end points) of fault segments. In spite of this, Integral Error 655 

has a much higher average result for error, meaning the changes in fault shape are relatively 656 

greater than the change in position of faults’ linkage points. 657 

From these results, and also via the successful visualization of fault shape, we 658 

demonstrate that Integral Error is a superior tool to gauge the loss in information when 659 

comparing variable sampling ratios for faults. The high correlation with Intersection Error 660 

also tells us that there is little use for combining the two error-defining methods (Intersection 661 

and Interval errors) in individual cases, as they are heavily dependent. The Intersection Error 662 

can therefore be used separately to Interval Error as a good indication for how trustworthy the 663 

identification of fault linkage points will be. 664 

After establishing a relationship between error values and critical sample ratios, we 665 

could reach a conclusion on the minimum sample ratios necessary for accurate fault analyses. 666 
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We found a minimum sample ratio that would be appropriate for various cases, with a 95% 667 

success rate (Table 2). The success rate measured in these cases is based on the use of a fully 668 

automated wavelet method (Fig. 17 and Table 2). With the use of other tools, as well as a 669 

human input (fault segment and curvature mapping sensu Kim and Sanderson, 2005) a higher 670 

success rate will be likely achieved. 671 

The critical values in Fig. 17 show the minimum sampling ratios calculated for the 672 

three downsampling approaches considered in Section 6.1. The Strict approach can be taken 673 

as reflecting the minimum sampling length/fault length ratio (𝛿) for large fault zones 674 

comprising fault segments of varied dimensions (see also Table 2). These were commonly 675 

observed in the datasets gathered in SE Crete where fault-segment length is variable, but with 676 

some segments >3.5 km long. Based on these constraints, the point of data loss over a wide 677 

range of data sets was calculated in this work and resulted in the estimate of the following 𝛿 678 

values: 679 

a) A  of 1.02% ± 0.02 if one uses a Strict approach for the sampling of throw data. This 680 

value is particularly important when in the presence of fault zones that are >3.5 km long, 681 

b) A  of 4.167% ± 0.18 for a Moderate approach, in which the choice of sampling ratio 682 

prioritizes the identification of the longest segment in a fault zone, 683 

c) A minimum  of 5.882% ± 1.26 is necessary to identify segments in a fault zone using a 684 

Lenient sampling approach. 685 

 686 

For a typical fault zone that is longer than 20 km, such as Ierapetra’s with its largest segments 687 

c. 3.5 km long, the results above indicate that the collection of throw values every 35 m is the 688 

minimum sampling ratio one should use. In 3D seismic data, this translates into mapping 689 
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fault throws every 3 lines for a typical volume with a bin spacing of 12.5 m. Moderate and 690 

Lenient approaches will respectively translate into the collection of throw data every 140 m 691 

and 200 m along the Ierapetra Fault, i.e. every 11 and 16 lines for a similar fault in a 3D 692 

seismic volume processed with a bin spacing of 12.5 m. In SW England, sub-seismic faults 693 

are 1.65 m to 7.55 m long, and that results in a Strict sampling that varies from 1.68 cm to 7.7 694 

cm. A more Lenient sampling would require throws sampled every 9.7 cm and 44.39 cm for 695 

such structures.  696 

It is worth noting these are not prescriptive sampling distances as, recognizing, the 697 

minimum sampling length/fault length ratio (𝛿) is a function on fault length. Moreover, this 698 

same rule also applies to the collection of throw data for T/Z (throw-depth) plots so to 699 

prevent the grouping of distinct segments into a single unlinked (coherent) fault.   700 

 701 

6.3 Implications for T/D and T/Z analyses 702 

 703 

Ze and Alves (2019) recognized that depositional rates near active normal faults vary 704 

significantly on their hanging-wall and footwall blocks, as well as recording variable 705 

sediment pathways. This renders the use of expansion indexes and layer-by-layer 706 

interpretations of throw troublesome in seismic data imaging relatively old, buried basins. 707 

The Strict approach to using a  of 1.02% will compensate for any of the issues indicated in 708 

Tao and Alves (2019), helping in the identification of early-stage fault segmentation. It will 709 

prevent the tendency, in the published literature, of considering the constant-length model as 710 

predominant in nature. In order to reduce risk of important data loss in the interpretation of 711 

short, minor faults, we recommend the use of a  value of 1.0% preventing the loss of 712 
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important fault information. Taking the smallest fault in the area as the reference point for a 713 

 value also gives less room for interpretation error. 714 

A limitation concerning the use of T/D and T/Z data in fault analyses is that the scale at 715 

which structural geologists acquire and interpret fault throw (or displacement) data is 716 

variable. It depends on the inherent scale of the structures of interest, and the aims of the 717 

survey or study in question. The chosen scale of observation is also dependent on data 718 

resolution and pre-defined structural criteria (e.g. Walsh and Watterson, 1991, Walsh et al., 719 

2002, Walsh et al., 2003, Kim and Sanderson, 2005, Torabi and Berg, 2011). Therefore, to 720 

acquire data at a scale that is several orders of magnitude greater than that in which fault 721 

segmentation likely occurred, e.g. interpreting deeply buried faults using seismic data of 722 

poorer quality persuades interpreters to readily recognize coherent fault-growth models to the 723 

detriment of the isolated growth model. This is particularly the case when faults crossing 724 

sedimentary basins, but not rooted into basement units (and, therefore, not developed at a 725 

crustal scale), are interpreted in seismic data. At what temporal scale is the ‘fast-propagation’, 726 

coherent fault model applicable is another important caveat in many of these models – the 727 

time-dependent growth and ultimate linkage of small faults is not easily resolved in seismic 728 

data, nor are stratigraphic (age) constraints often accurate enough. For these reasons, we 729 

consider that fault segmentation can be systematically overlooked by interpreters when 730 

adopting of broad, one-fits-all, attitude to data sampling, against which the Strict  values 731 

suggested in this work should be used in fault analyses, but rarely are. 732 

7. Conclusions 733 

This work shows that the application of a Wavelet-Transform detection system in fault 734 

analysis is useful to automate fault mapping and remove human bias from interpretation 735 

workflows. With human oversight and adjustments, this system improves the productivity of 736 
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interpreters analyzing complex fault arrays. As a corollary, this work proves the need to 737 

consider a threshold sampling ratio () in T/D and T/Z data as necessary, based on the 738 

following results: 739 

a) A lower sampling ratio () is required when interpreting long, segmented fault zones 740 

composed of faults of multiple lengths and heights. This is important as the linkage points 741 

between fault segments often coincide with regions of throw minima that are much smaller 742 

than the throw maxima of adjacent faults. The adoption of a low sampling ratio is 743 

independent of the style of linkage between discrete fault segment, e.g. hard-linkage, soft-744 

linkage, or relay ramps. It is also independent of the type of fault one considers (normal, 745 

reverse or strike-slip). 746 

b) This work suggests a minimum sampling ratio () of 4.167% for faults that are 747 

relatively short, and clearly isolated. This is, however, a rough guideline, as faults in nature 748 

can have some unpredictable geometries and a Strict approach ( of 1.02% ± 0.02) may still 749 

be the appropriate, in many instances, if recognizing fault segmentation is the main aim of a 750 

study. 751 

c) For the fault zones we analyzed in the field and at outcrop, a Strict sampling ratio of 752 

1.02% will translate into throw data collected every 35 m if a fault zone contains segments 753 

greater than 3.5 km. In 3D seismic data, this translates into mapping fault throws every 3 754 

lines for a typical volumes with a bin spacing of 12.5 m. Moderate and Lenient approaches to 755 

fault measurements will respectively translate into the collection of throw data every 140 m 756 

and 200 m for such a fault zone geometry. The smaller sub-seismic faults of SE England 757 

require a sampling every 1.65 cm (Strict approach) to 44.39 cm (Lenient approach). 758 

d) The final decision regarding the use of Strict sampling ratios of 1.02% ± 0.02 should 759 

be based on all geological information available on the fault zone, or region, being analyzed. 760 

Jo
urn

al 
Pre-

pro
of



34 
 

If there is any major uncertainty around fault size, one should follow a Strict approach and 761 

consider a 𝛿 of 1.02% ± 0.02. 762 

e) Mathematically speaking, a combination of Continuous Wavelet Transforms and 763 

Polynomial Regressions allows for an accurate mapping of fault segmentation from T/D and 764 

T/Z data. The Continuous Wavelet Transform is used to define fault ranges. A cubic 765 

(polynomial) regression model is later applied on these ranges to obtain fault shape in a 766 

separate stage. The high reliability of this technique allows for its systematic application 767 

using Machine Learning tools. 768 

The results in this work are based on mathematical methods tested on a large dataset 769 

comprising 415 faults. The method we propose are applied with minimal human intervention, 770 

meaning results can be directly linked to the mathematical equations. The results also 771 

demonstrate the significant impact data sampling techniques can have on the resulting 772 

interpretation of fault location, and growth modes, particularly whenever small faults are 773 

quickly lost due to sub-scale imaging or incorrect measuring approaches. Significant changes 774 

to the perception of the entire fault zone can be seen when a single fault becomes 775 

indistinguishable. For these reasons, we recognize that fault segmentation is systematically 776 

overlooked in the published literature when adopting a broad, one-fits-all, attitude to data 777 

sampling, against which the  values suggested in this work should be used. 778 
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Figure and table captions 1026 

 1027 

Figure 1 – Schematic representation of how tectonic faults interact and link in nature. Faults 1028 

evolve from isolated to interacting faults by linking vertically and laterally. The ratio of 1029 

dmax/L (maximum displacement vs. length) increases as lateral propagation occurs in a fault. 1030 

Stage 1 corresponds to the formation of isolated, non-interacting fault segments. Stage 2 1031 

relates to the start of fault interaction, overlap and joint growth. Stage 3 represents a fully 1032 

linked pair of faults that grow together from that moment onwards. Figure is modified from 1033 

Kim and Sanderson (2005). 1034 

 1035 

Figure 2 – Schematic representation of normal-fault evolution. Isolated propagating faults 1036 

(left) consist of isolated segments that coalesce to form long, interlinked fault strands. The 1037 

coherent constant-length growth model (right) assumes that lateral fault propagation is rapid 1038 

but vertical propagation is limited. Figure modified from Nicol et al. (2020). 1039 

 1040 

Figure 3 – Diagram summarizing the way fault-throw data are measured at outcrop, or using 1041 

stratigraphic markers in seismic data. The diagram is modified from Ze and Alves (2019) and 1042 

based on the Ierapetra Fault Zone, SE Crete, one of the faults analyzed in this work. Throw 1043 

measurements are usually taken relative to a correlative surface that is present on the footwall 1044 

and hanging-wall blocks of faults. However, this can be made difficult by fault scarp erosion, 1045 

and by the covering of the immediate hanging-wall depocentre to the fault by strata. Heave 1046 

corresponds to the lateral displacement accommodated by a fault during its movement. Fault 1047 

displacement is the resultant vector of throw and heave. 1048 

 1049 
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Figure 4 – a) World map indicating the location of the regions where T/D and T/Z data were 1050 

acquired for this study. b) Location of the seismic surveys interpreted in SE Brazil from 1051 

which fault-throw data were acquired. c) Location of the Ierapetra Fault relative to other fault 1052 

families, local sedimentary basins and regional basement terrains. d) Map of SW England’s 1053 

coast highlighting the locations where fault-throw data were acquired at a sub-seismic scale 1054 

(see black squares on the map). Figure 4b is modified from Alves and Cupkovic (2018). 1055 

Figure 4d is modified from Glen et al. (2005). 1056 

 1057 

Figure 5 – Examples of faults analyzed in this work, from where throw measurements were 1058 

acquired. a) Some of the salt-related faults at the scale of industry seismic data acquired from 1059 

a high-resolution seismic survey shot in SE Brazil. b) Panoramic view of the central part of 1060 

the Ierapetra Fault Zone and its constituting fault segments. In the parentheses are shown the 1061 

height of footwall blocks associated with what is a > 25 km long normal fault zone. c) and d) 1062 

Faults in the SW England (Bristol Channel) at the sub-seismic scale.  1063 

 1064 

Figure 6 – Normalized Ricker wavelet, a symmetrical wavelet used to represent signal 1065 

changes in the time domain Wang, 2015a, 2015b). In this work, the time domain was 1066 

replaced with by a spatial component (length or height) in order to apply the Ricker wavelet 1067 

theory to the identification of fault segments. 1068 

 1069 

Figure 7 – Graphical example of the Continuous Wavelet Transform technique used to 1070 

identify discrete fault segments (Step 1 in this work, Section 4.1) at the lower polynomial 1071 

degree 3. Note the obvious correlation between frequency band strength and the throw 1072 

maxima recorded for each fault segment. Note that fault segmentation using this technique 1073 
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results in the smallest segments being ignored by the algorithm. This figure thus stress the 1074 

fact that a Continuous Wavelet Transform cannot identify throw maxima in the smaller fault 1075 

segments – it is focused on picking the greatest throw maxima in a given T/D and T/Z 1076 

dataset. 1077 

 1078 

Figure 8 – Workflow suggested in this paper for the identification of fault segments using a 1079 

Machine Learning approach. 1080 

 1081 

Figure 9 – Example of the improved fault recognition resulting from applying gradient 1082 

measurements from the point of threshold minima (Step 2 in this work, Section 4.2). Step 2 1083 

focused on finding the nearest throw minimum representing the linkage point between two 1084 

fault segments. Threshold values can be changed in the algorithm, with a stricter threshold 1085 

resulting in the identification of only the larger fault segments, and a looser threshold 1086 

resulting in multiple fault segments being found. If no frequency minimum is found before 1087 

reaching the end of the dataset, the last value picked by the algorithm is taken as the end of 1088 

the segment. In Step 2, some of the smallest fault segments were still overlooked by the 1089 

algorithm but not on such a scale as revealed in Step 1 (see Figs. 7 and 8). 1090 

 1091 

Figure 10 – Graph used to estimate noise floor in the data used in this work. The rapid 1092 

descent recorded with increasing wavelength sizes represents the reduction in noise occurring 1093 

as a result, as small changes in throw are filtered out by the algorithm. Once this noise is 1094 

filtered out, and the curve approaches a flat, we can be confident that the remaining data is 1095 

accurate. Peak rate values, when plotted against the frequency of data, show that adopting a 1096 

threshold peak rate of 0.04 is a valid approach. 1097 
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 1098 

Figure 11 – Example of the improved fault recognition after applying a peak rate threshold to 1099 

a Continuous Wavelet Transform (Step 3 in this work, Section 4.3). a) Fault R2_H3 1100 

interpreted in high-resolution seismic data from SE Brazil. b) Fault L2 H4-1 from onshore SE 1101 

Brazil. Note the improved results in Step 3 when compared with Step 2, but with some 1102 

smaller peaks being still overlooked in parts of the fault segments analyzed. The adoption of 1103 

a 0.04 peak rate (see Fig. 10) returned positive results in Step 3 - all Peaks that are clearly not 1104 

part of discrete segments were ignored, without overlooking any possible faults. 1105 

 1106 

Figure 12 - Examples of regression curves modelling fault shape in T/D and T/Z data using a 1107 

cubic model (Approach 4). Overall, this was the method that returned a better correlation 1108 

between the fault segments identified in our dataset and the segments identified by the 1109 

algorithm used. a) Fault R2 H2 analyzed from high-resolution 3D seismic data from SE 1110 

Brazil. b) Segmented fault zone R2 H3 interpreted in SE Brazil using high-resolution seismic 1111 

data. c)  Fault L2 H4-1 from offshore SE Brazil. 1112 

 1113 

Figure 13 – a) Visualization of T/D plots before and after a critical sampling ratio is applied. 1114 

b) Example of the changes in fault shape when sampling ratio is reduced to an Integral Error 1115 

of 11.6%. 1116 

 1117 

Figure 14 – Change in error rate observed while the number of samples is reduced. a) In 1118 

keystone fault 6-11, Modulus Error increases at a constant rate, whereas integral and intersect 1119 

errors vary erratically due to loss of fault intersection points. b) Fault C24 records a rapid 1120 

oscillation of error values is recorded. In most cases the error gradually increases when 1121 
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decreasing the sampling ratio, but there are some examples of minima in Integral and 1122 

Intersect errors occurring due to a sample coinciding exactly with a fault segment linkage 1123 

point (see Section 5.1 in this article). 1124 

 1125 

Figure 15 – Total distribution of minimum sample ratios () for all datasets in this work. 1126 

Results are shown separately for three different downsampling approaches: Strict, Moderate, 1127 

and Lenient (see Section 6.2 in this article). 1128 

 1129 

Figure 16 – Error distribution after a critical sampling ratio is applied to the throw data in this 1130 

work. 1131 

 1132 

Figure 17 – Graph showing the minimum sampling ratio calculated for Strict, Moderate and 1133 

Lenient approaches to T/D and T/Z sampling. The sampling ratio () values corresponding to 1134 

a 95% success rate in fault-segment recognition are highlighted, with each data point 1135 

represented by a vertical line. 1136 

 1137 

Table 1 - Key statistics concerning the box plot in Fig. 16. 1138 

 1139 

Table 2 – Minimum sampling ratios () calculated based on a 95% success rate in fault-1140 

segment recognition for each downsampling approach: Strict, Moderate, and Lenient. See 1141 

Fig. 17 for a graphical representation of these values. 1142 
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Table 1 - Key statistics concerning the box plot in Fig. 16. 

 

Error Type Min. Q1 Median Mean Q3 Upper Max. 

Integral 2.48% 55.5% 89.5% 71.8% 96.8% 99.97% 99.97% 

Modulus 0.401% 4.50% 6.72% 11111% 10.1% 17.7% 49.1% 

Intersection 0% 21.0% 40.4% 36.6% 59.7% 86.0% 86.0% 

Reduction (%) 10% 19.5% 27.3% 31.7% 52.9% 90.4% 90.4% 

 

Jo
urn

al 
Pre-

pro
of



Table 2 – Minimum sampling ratios () calculated based on a 95% success rate in fault-

segment recognition for each downsampling approach: Strict, Moderate, and Lenient. See 

Fig. 17 for a graphical representation of these values. 

 

Method Critical Value Uncertainty 

Lenient 5.882% ±0.37% 

Moderate 4.167% ±0.18% 

Strict 1.020% ±0.02% 
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Figure 3
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Figure 8
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Figure 12
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Figure 14
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