
Academic Editor: Jiangtao Li

Received: 22 November 2024

Revised: 19 December 2024

Accepted: 24 December 2024

Published: 28 December 2024

Citation: Yang, T.; Sun, R.; Rathore,

R.S.; Baig, I. Enhancing Cybersecurity

and Privacy Protection for Cloud

Computing-Assisted Vehicular

Network of Autonomous Electric

Vehicles: Applications of Machine

Learning. World Electr. Veh. J. 2025, 16,

14. https://doi.org/10.3390/

wevj16010014

Copyright: © 2024 by the authors.

Published by MDPI on behalf of the

World Electric Vehicle Association.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Review

Enhancing Cybersecurity and Privacy Protection for Cloud
Computing-Assisted Vehicular Network of Autonomous Electric
Vehicles: Applications of Machine Learning
Tiansheng Yang 1,* , Ruikai Sun 2,* , Rajkumar Singh Rathore 3 and Imran Baig 3

1 South Wales Business School, University of South Wales, Cardiff CF37 1DL, UK
2 Cardiff Business School, Cardiff University, Cardiff CF10 3EU, UK
3 Cardiff School of Technologies, Cardiff Metropolitan University, Llandaff Campus, Cardiff CF5 2YB, UK;

rsrathore@cardiffmet.ac.uk (R.S.R.); ibaig@cardiffmet.ac.uk (I.B.)
* Correspondence: tiansheng.yang1@southwales.ac.uk (T.Y.); sunr10@cardiff.ac.uk (R.S.)

Abstract: Due to developments in vehicle engineering and communication technologies,
vehicular networks have become an attractive and feasible solution for the future of electric,
autonomous, and connected vehicles. Electric autonomous vehicles will require more
data, computing resources, and communication capabilities to support them. The com-
bination of vehicles, the Internet, and cloud computing together to form vehicular cloud
computing (VCC), vehicular edge computing (VEC), and vehicular fog computing (VFC)
can facilitate the development of electric autonomous vehicles. However, more connected
and engaged nodes also increase the system’s vulnerability to cybersecurity and privacy
breaches. Various security and privacy challenges in vehicular cloud computing and its
variants (VEC, VFC) can be efficiently tackled using machine learning (ML). In this paper,
we adopt a semi-systematic literature review to select 85 articles related to the application
of ML for cybersecurity and privacy protection based on VCC. They were categorized
into four research themes: intrusion detection system, anomaly vehicle detection, task
offloading security and privacy, and privacy protection. A list of suitable ML algorithms
and their strengths and weaknesses is summarized according to the characteristics of each
research topic. The performance of different ML algorithms in the literature is also collated
and compared. Finally, the paper discusses the challenges and future research directions of
ML algorithms when applied to vehicular cloud computing.

Keywords: machine learning; vehicular networks; vehicular edge computing; vehicular
fog computing; privacy preserving; secure communication

1. Introduction
With the development of communication technology and vehicle engineering, ve-

hicular networks combining vehicles and the Internet can increase the efficiency of the
whole transport system, improve user experience, reduce environmental pollution, and
bring economic benefits. Vehicular cloud computing (VCC) is an emerging technology
that combines the features of vehicular networks and cloud computing to further enhance
the resource utilization and communication efficiency of vehicular networks. Although
VCC has many advantages, new variants of VCC, such as vehicular edge computing (VEC)
and vehicular fog computing (VFC), have emerged to support the increasingly power-
ful application software in vehicular networks. The vehicular network architecture that
incorporates these new computing paradigms consists of an on-board unit (OBU), edge

World Electr. Veh. J. 2025, 16, 14 https://doi.org/10.3390/wevj16010014

https://doi.org/10.3390/wevj16010014
https://doi.org/10.3390/wevj16010014
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/wevj
https://www.mdpi.com
https://orcid.org/0000-0001-7833-5386
https://orcid.org/0000-0002-9015-3515
https://orcid.org/0000-0003-4571-1888
https://orcid.org/0000-0002-3142-6958
https://doi.org/10.3390/wevj16010014
https://www.mdpi.com/article/10.3390/wevj16010014?type=check_update&version=2


World Electr. Veh. J. 2025, 16, 14 2 of 32

devices/fog nodes, a roadside unit (RSU), and cloud servers [1]. As illustrated in Figure 1,
the structure of cloud computing-assisted vehicular networks. Information is transmitted
from sensors to the vehicular network and then connected to the main network via the edge
network, resulting in different types of communication, such as vehicle-to-sensor (V2S),
vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), infrastructure-to-infrastructure
(I2I), and so on. However, the increase in the types of communication and participating
nodes also poses challenges in terms of data security and privacy [2–5].
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security researchers discovered and demonstrated a vulnerability that allowed remote 
control of Jeep Cherokee vehicles [8]. An attacker accessing the vehicle’s Uconnect system 
via the Internet could control critical functions such as braking, acceleration, and steering. 
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Cybersecurity protects computers, networks, programs, and data from attack, damage,
or unauthorized access through technology and processes [6]. Privacy protection, on
the other hand, prevents the disclosure of any information relating to an identifiable
person. Both cybersecurity and privacy protection are critical to VCC adoption, as security
vulnerabilities can reveal sensitive information, vehicle systems can be attacked, and even
lead to large-scale traffic safety accidents. In 2015, a vulnerability was discovered in BMW’s
ConnectedDrive system that allowed an attacker to remotely unlock a vehicle’s doors by
simulating a BMW server communicating with the vehicle [7]. In the same year, security
researchers discovered and demonstrated a vulnerability that allowed remote control of
Jeep Cherokee vehicles [8]. An attacker accessing the vehicle’s Uconnect system via the
Internet could control critical functions such as braking, acceleration, and steering. In
2016, Tesla fixed a major security vulnerability in its Model S models via an OTA update
that allowed an attacker to remotely control the vehicle’s braking system [9]. Machine
learning (ML) is widely used in the field of artificial intelligence and has rich applications
in cybersecurity and privacy protection. The characteristics of data-driven, automated,
and generalized capabilities of ML can be exploited to effectively monitor both known
and unknown cybersecurity threats. There have been several literature reviews that have
started to review the application of machine learning in vehicular networks [10–12] and
the challenges of cybersecurity and privacy in vehicular networks [13–15]. The review on
applying machine learning to address cybersecurity and privacy is based on all types of
vehicular networks [13,16]. As per the information we collected so far, we can say that there
has been no particular systematic literature review on cloud computing-assisted vehicular
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networks. If not specifically stated, the vehicular cloud computing referred to in this paper
includes its variants vehicular edge computing and vehicular fog computing.

This paper focuses on a specific research question. How can machine learning enhance
cybersecurity and privacy in cloud computing-assisted vehicular networks? The four main
contributions of this paper are as follows:

(1) A comprehensive overview of computational paradigms and machine learning algo-
rithms for vehicular networks is presented, describing the similarities and differences
and the security and privacy challenges faced between VCC and variant computing
paradigms (e.g., VEC and VFC).

(2) Four key themes related to cybersecurity and privacy protection in VCC are summa-
rized: intrusion detection system, anomaly vehicle detection, task offloading security
and privacy, and privacy protection-related existing ML algorithms. The strengths
and weaknesses of different ML algorithms are also shown.

(3) A meta-analysis of ML algorithms’ performances in intrusion detection systems
is conducted.

(4) The limitations of current ML algorithms to realize VCC network security and privacy
protection are presented, and future research directions are discussed.

The rest of the paper is organized as shown in Figure 2.
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2. Vehicular Networks
2.1. Vehicular Networks Concept

A vehicular network is a network composed of automobiles with wireless connec-
tivity. It serves as a platform to support various application software, including path
planning, road safety, green transportation, and infotainment services, and is one of the
most important supporting technologies for the realization of intelligent transportation
systems [17,18]. In such a network, connected vehicles can communicate with their internal
and external environments via an on-board unit (OBU) with sensing and communication
capabilities [19]. This communication includes V2S, V2V, V2I, and vehicle-to-everything
(V2X) communications [20,21]. These data channels to the vehicular information system
ensure that drivers receive sufficient information and maintain vehicle situational aware-
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ness in complex traffic environments. However, the huge amounts of data and the need for
low-latency communication challenge the computational capabilities of vehicles [22–24].
To address these challenges, various computational paradigms can be utilized. The most
common computing paradigms for vehicular networks include vehicular cloud computing,
vehicular edge computing, and vehicular fog computing. Their similarities and differences
are summarized in Table 1.

Table 1. Difference among VCC, VEC, VFC.

VCC VEC VFC

Computer capabilities Strong Weak Moderate

Storage capabilities Strong Weak Moderate

Energy consumption High Low Low

Mobility support Weak Strong Strong

Geographical distribution Centralized Decentralized Decentralized

Cloud serve distance Far Near Near

Edge node None RSU Mobility

Bandwidth cost High Low Low

Latency High Low Low

2.2. Vehicular Cloud Computing

In a traditional cloud-centric approach, data collected by individual vehicles is up-
loaded to a cloud-based server or data center for centralized processing. This approach
leads to unacceptable latency and burdens the backbone network [25]. Therefore, VCC,
which is created by combining vehicular networks with cloud computing, can effectively
utilize the spare resources of the remaining vehicular computers in the vehicular network
as shown in Figure 3. Compared with traditional clouds, the ownership of VCC resources is
distributed and highly dynamic but also has much less communication and computational
resources [26]. So sometimes vehicles with insufficient cloud computing resources will
use an external cloud to ensure computing performance, which will significantly increase
communication latency and costs [27]. Therefore, this computing paradigm is more suitable
for scenarios with fixed clusters of vehicles, such as parking lots or traffic congestion.
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2.3. Vehicular Edge Computing

Vehicular edge computing complements vehicular cloud computing. As the commu-
nication and computation needs of vehicular applications grow, VEC moves computation
to the edge of the network close to the vehicle [28]. As shown in Figure 3, the edge network
is the server on the RSU between the vehicle and the remote cloud server. Installing mul-
tiple servers on different RSUs can balance the load of a single server. VEC reduces the
communication delay and balances the computational load compared with VCC [29].

2.4. Vehicular Fog Computing

Vehicular fog computing can be viewed as a variant of VEC. As shown in Figure 3,
VFC outsources computational resources to fog nodes, edge devices in the vicinity of users,
and parked/mobile vehicles. Due to the high construction cost of RSUs, VFC reduces the
number of infrastructure placements by replacing them with street-parked vehicles. Thus,
in a way, the biggest difference between VFC and VEC is that VEC uses RSUs as edge nodes
while VFC will use vehicles as fog nodes [30]. Resource allocation is a major challenge for
VFCs due to the diversity and geographic dispersion of fog nodes [31].

3. Vehicular Networks Security and Privacy Challenges
The emergence of VCC, VEC, and VFC has made vehicular networks more flexible,

allowing vehicle users to fully enjoy the convenience of in-vehicle applications while
traveling without worrying about latency and limited computing resources. However,
dynamic vehicular networks hide several security and privacy challenges that must be
addressed to fully capitalize on the benefits of vehicular networking technologies and
expand their adoption.

3.1. Security Challenges

In vehicular networks, VCCs, VECs, and VFCs utilize task offloading techniques to
support devices with fewer resources. Due to the limited computing resources of the
vehicle itself, tasks with low latency requirements (e.g., fleet data analysis, navigation
map updates) can be offloaded to cloud servers for execution. However, other tasks
that require fast response time need to be offloaded to edge servers (e.g., RSUs) or other
vehicles to provide more computational support to the vehicular network [32,33]. Without
efficient offloading of tasks, high-latency communications will reduce the efficiency of
the entire network, giving attackers more opportunity and time to threaten vehicular
network cybersecurity [34]. When vehicles use V2I and V2V services to offload tasks to
edge servers or other vehicles, they encounter malicious nodes [35]. These malicious nodes
can perform cyber-attacks on other vehicles or vehicular networks by joining the vehicular
network and uploading malicious information by masquerading as a trusted user. For
example, malicious nodes can masquerade as other existing vehicles, provide false location
information, fake or tamper with events occurring in the target vehicle’s surroundings,
and so on. It will be a challenge to recognize these cyber-attacks [13,36]. In addition to
securing vehicles by detecting cyber-attacks, identifying malicious or anomalous vehicles
in the vehicular network can also improve the overall security level of the network [16,37].
Detailed challenges are summarized in Table 2.
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Table 2. Summary of security challenges.

Theme Challenges

Task offloading security

High latency

Limited computational resource

High energy consumption

Resistance to cyber-attack

Intrusion detection system

Cyber-attack detection performance

Ability to detect unknown risks

Limited system resource

Anomaly vehicle detection
Vehicle credit assessment

Anomaly vehicle detection performance

3.2. Privacy Challenges

Privacy includes the vehicle (driver) and the location of the vehicle [38]. Only au-
thorized users can access and control the real identity and location information of the
vehicle. In vehicular networks, application software is dependent on beacon messages
broadcast periodically by the vehicles [39]. These messages include the GPS coordinates,
real-time speed, message timestamps, the real identity of the vehicle, and other information.
By analyzing these beacon messages, sensitive data such as location information and the
whereabouts of the vehicle and passengers can be obtained. In addition to this, different
kinds of data can be collected by different stakeholders in the vehicular network, such as
companies, government departments, other users of the vehicular network, or even mali-
cious users [40]. These data can be misused by companies or government departments and
can also be exploited by malicious users, which can lead to security risks. Thus, vehicular
networks face serious privacy threats. In vehicular networks, privacy challenges are not
only present in the data transmitted to each other. Artificial intelligence models are used
in various protection programs for vehicular cybersecurity. However, the leakage of AI
model parameters can also cause hidden dangers [41,42]. Malicious users can deduce the
working principle of the model through the model parameters so that they can bypass or
even spoof the AI model to make the cybersecurity protection program ineffective. How to
protect model training parameters has become a new challenge in the privacy protection
field. Detailed challenges are summarized in Table 3.

Table 3. Summary of privacy challenges.

Theme Challenges

Data privacy

Data encryption

Data authorization

User authentication

Data transmission

Model privacy
Model parameter encryption

Model performance based on transformed data

4. Machine Learning in Vehicular Cloud Computing
Machine learning is a product of the intersection of computer science and statistics.

Learning from experience from large amounts of data enables machine learning models to
improve their algorithms automatically. In vehicular networks, the interaction between
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vehicles and their environment generates a large amount of data. These data will drive
machine learning algorithms to have better performance in vehicular cloud computing. As
shown in Figure 4, machine learning, when applied to vehicular cloud networks, usually
involves three steps, i.e., training, testing, and validation. First, the raw data are divided
into two parts: training and testing. In the training phase, the machine learning algorithm
generates a model based on the training data collected by vehicles or historical data. In
the testing phase, the trained model is used for prediction or classification on the test
dataset. Finally, in the validation phase, the performance of the model is evaluated, and
the model is optimized by updating the data or adding more features. Once the model
is trained, the vehicle can use the model to accomplish specific tasks. Existing machine
learning can be categorized in terms of types: supervised learning, unsupervised learning,
and reinforcement learning [43]. In terms of learning strategies, they can be categorized as
centralized learning, federated learning, and transfer learning.
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4.1. The Use of Various Types of Machine Learning in Vehicular Cloud Computing
4.1.1. Supervised Learning

A key feature of supervised learning is that the dataset on which the algorithm
is trained must contain the correct labels or results [44]. Therefore, in vehicular cloud
computing, after the data have been collected, it needs to be labeled before training or using
historical data. When training the model, the real results of the training dataset are fed in
and compared with the model’s predictions; thus, supervised algorithms continuously learn
and improve the model, ultimately making the model’s predictions as accurate as desired.
Supervised learning is generally divided into two categories, classification algorithms and
regression algorithms. Machine learning applied to the security of vehicular cloud networks
mainly uses classification algorithms. The common supervised algorithms include Bayesian
networks (BNs), logistic regression (LR), decision trees (DTs), random forests (RFs), support
vector machines (SVMs), neural networks, and so on [45,46].

4.1.2. Unsupervised Learning

The biggest difference between unsupervised learning and supervised learning is that
the training dataset is not labeled in advance. Thus, unsupervised learning is well suited
for recognizing unknown categories or anomaly detection in vehicular cloud computing.
By feeding the features of the training objects into the unsupervised learning algorithm, the
model can infer some intrinsic connections of the data. Unsupervised learning algorithms
can be divided into six main categories: hierarchical learning, data clustering, latent variable
models, dimensionality reduction, and anomaly detection [47]. Common unsupervised
learning algorithms include K-means, restricted Boltzmann machine, auto-encoder, and
GAN [48]. In addition, RNNs belonging to neural networks are also widely used in
unsupervised learning [49]. Thus, it can be noticed that the boundaries of supervised and
unsupervised learning are gradually intermingling as the technology is updated.
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4.1.3. Reinforcement Learning

Unlike supervised and unsupervised learning, the nature of reinforcement learning is
to learn by interacting with the environment. This is ideal for offloading tasks in vehicular
cloud computing and searching for optimal strategies in changing environments. The
agent controlled by the reinforcement learning algorithm observes the state, which is
sufficient statistical data about the environment. Based on these data, the agent can infer
the best action for the moment. The agent will optimize the agent’s behavioral pattern
based on the rewards it will receive after performing each action, thus deciding the best
order of actions to maximize the expected reward from the environment. Thus, the agent
needs to update the algorithm by generating more information with the environment
through repeated experiments. This learning paradigm of repeated experimentation is
derived from behaviorist psychology and is one of the main foundations of reinforcement
learning [50]. The process of transferring states and actions is constructed through Markov
Decision Processes (MDP), which enable mathematically analyzing the interactions between
the agent and the environment. Common algorithms include Q-learning, Monte Carlo
(MC) control methods, Q-network (DQN), trust region policy optimization (TRPO), and
asynchronous advantage actor–critic (A3C) [51,52].

4.2. Machine Learning Training Strategy in Vehicular Cloud Computing Environment
4.2.1. Centralized Training

Centralized training strategy refers to uploading data to a central server to train
machine learning models using a centralized approach [53]. As shown in Figure 5, each
node in the vehicular cloud acquires raw data from the environment, performs some simple
initial preprocessing on it, and then transmits the training data to the central cloud. The
central cloud performs the corresponding computational tasks using centralized machine
learning models. The centralized training strategy has the advantages of simplicity and
economy. There is no need to add additional equipment to the vehicular cloud computing
environment. Individual nodes only require lower power and performance compared with
the central cloud. However, this training strategy imposes a huge transmission burden
on the vehicular cloud network. Meanwhile, the centralized cloud requires powerful
computing power and data storage space. Moreover, centralized data storage in the cloud
poses privacy risks [54].
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4.2.2. Federated Learning

Distributed machine learning utilizes multiple processing nodes to overcome the
limitations of centralized machine learning as compared with centralized training strate-
gies [55,56]. Federated learning belongs to the distributed training approach, which allows
collaboration between different nodes to learn machine learning models. This training
strategy is well suited for vehicular cloud computing structures. As shown in Figure 6, the
central cloud sends the machine learning model to all the nodes, and then the local data
collected by the nodes are fed into the model for training and updating the parameters
and weights of the local model. Afterwards, the parameters and weights of the model
are uploaded to the central cloud, fed into the global model for improvement, and again
the upgraded model is sent back to the nodes for further iteration. This process reduces
the communication burden on the vehicular cloud network and eliminates the need for
extensive data transfer. At the same time, all the local data are stored in the local nodes,
reducing the risk of data privacy leakage [57].
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4.2.3. Transfer Learning

The transfer learning strategy is to transfer knowledge from similar domain tasks to
the target task to speed up model training and performance [58]. Vehicular cloud com-
puting requires a large amount of training data to build the model, but the processing
of the data and the initial training process will consume a lot of resources. Therefore,
inputting trained model parameters from similar domains into the vehicular cloud and
fine-tuning them according to the input data will greatly improve the efficiency of model
training. Transfer learning can be divided into two categories: homogeneous transfer
learning and heterogeneous transfer learning [58,59]. Homogeneous transfer learning
applies when the domains have the same feature space and adapts to the domain by
correcting sample selection bias or covariate bias. Heterogeneous transfer learning is
the process of transferring knowledge when the domains have different feature spaces.
Unlike centralized and federated learning, which have clear boundaries, transfer learn-
ing strategies can be combined with other learning strategies such as federated transfer
learning strategies [60].

5. Methodology
Semi-systematic evaluation was used in this study. This method is applicable to cross-

disciplinary research topics, which are often not amenable to full systematic evaluation.
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The literature for the semi-systematic evaluation consisted mainly of research articles that
provided a clear and critical description of the existing knowledge on the topic using a
combination of quantitative and qualitative methods [61]. The literature review process
consists of three steps: planning, conducting, and reporting the review [62]. Translated into
the research process of this paper, the first step is to formulate the research question, the
second step is to determine the scope of the literature search, the third step is to screen the
literature that meets the criteria, and finally, to analyze and evaluate the selected literature.
The research question has been stated in the introduction section, and the literature search
and screening will be described next.

5.1. Search Scope

In this paper, the Web of Science and Scopus databases were selected for literature
search. The search terms based on the research questions then included keywords in
the four areas of vehicular networks, cybersecurity, computing paradigms, and machine
learning. Based on the previous literature review [16,29,63–65], the following search terms
were selected to search in the two databases in the topic of literature, and a total of
575 papers were included in the initial literature base for further screening.

Search term: (connected AND vehicles) OR (vehicular AND networks) OR (internet
AND vehicles) OR VANETs OR CAV) AND (cybersecurity OR security) AND (“Edge
Computing” OR “Fog Computing” OR “Cloud Computing”) AND (“Machine learning”
OR “Deep learning” OR “Artificial intelligence”).

5.2. Inclusion and Exclusion Criteria

The development of precise inclusion and exclusion criteria allowed for the selection
of appropriate literature for review. The search for this paper was conducted up to June
2024. Also, only peer-reviewed academic journal papers and conference papers were
included in the search process. Literature needs to be written in English and have full-text
permission. The research must include the application of machine learning in vehicular
network cybersecurity and privacy. Gray literature, such as book chapters, theses, etc., is
not included, and review literature is also excluded. The specific search process is shown
in Figure 7, Based on these criteria, after screening by type, duplication, title, abstract, and
full text, we finally selected 85 literatures for analysis and review.
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6. Machine Learning Applications in Security and Privacy Challenges for
Vehicular Cloud Computing
6.1. Machine Learning Application Summary

Out of the semi-systematic review, 85 relevant papers were selected after a compre-
hensive review. Figure 8 shows the publication trend of the literature and the distribution
of the training strategies involved. From this figure, we can find that the literature on the
topic of cybersecurity and privacy in vehicular networks has been increasing year by year,
and the publication volume in 2024 is twice that of 2023. This indicates that the concern for
security and privacy in vehicular networks continues to rise. There is also a trend in the
distribution of machine learning training strategies, with the number of publications using
federated learning trending upwards from 2021, and the proportion of centralized learning
declining over time. Transfer learning is currently seen only once in 2023.
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From the literature, four themes can be summarized for the application of machine
learning in vehicular networks, which are intrusion detection systems, anomaly vehicle
detection, task offloading security and privacy, and privacy protection. They correspond to
Theme A, Theme B, Theme C, and Theme D in Figure 9. An alluvial diagram is used to show
the relationship between machine learning algorithms and research themes. The different
colors represent the machine learning categories, and the grey areas in the figure represent
the existence of two or more machine learning categories. The first column shows the
machine learning algorithms that appear in the literature; the machine learning algorithms
that were used as benchmarks were not counted. If there is a variant, it is counted into
its base algorithm; e.g., two-layer Q-learning is counted as Q-learning, and asynchronous
advantage actor–critic (A3C) is counted as actor–critic (AC). It can be seen that AC and
Q-learning are reinforcement learning algorithms; auto-encoders, generative adversarial
networks (GANs), and particle swarm optimization (PSO) are unsupervised learning;
and decision trees (DTs), k-nearest neighbors (KNNs), random forests (RFs), support
vector machines (SVMs), and extreme gradient boosting (XGB) are supervised learning
algorithms. Convolutional neural networks (CNNs), gated recurrent units (GRUs), long
short-term memory (LSTM), and recurrent neural networks (RNNs) have the potential to
be supervised or unsupervised learning depending on the input and output. The preferred
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machine learning algorithms for different research topics are also different; intrusion
detection systems and anomaly vehicle detection mostly use supervised and unsupervised
learning. On the contrary, for task offloading security and privacy, only reinforcement
learning is used. Because of the wide range of privacy protection research, all three types
of machine learning algorithms are covered. The reasons for this will be explained in the
following sections.
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6.2. Intrusion Detection System (IDS) for Vehicular Cloud Computing

Due to the existence of numerous connectivity interfaces between vehicular networks
and external networks, it increases the ways for malicious attackers to intrude. Intru-
sion detection systems (IDSs) are low-cost and easy to deploy and can effectively de-
fend against attacks implemented on vehicular networks. IDSs can be categorized into
two categories based on the detection strategy: signature-based detection and anomaly-
based detection [66–68]. Signature-based IDSs are weak in detecting novel attacks as
they require updating the database of known attacks. Anomaly-based detection is highly
adaptable and can find attacks not recorded in the database; thus, it has become a popular
research direction and is also more suitable for machine learning applications [68]. A total
of 30% of the selected literature pertains to the application of machine learning in intrusion
detection techniques, which reflects the fact that machine learning has been widely used
to identify various kinds of intrusions into vehicular cloud networks. An IDS essentially
classifies and identifies categories of cyber-attacks, and hence is well suited for the appli-
cation of learning. An IDS mainly uses supervised and unsupervised learning to train
machine learning models, with the majority of the literature (69%) employing supervised
learning algorithms. There is only one case of reinforcement learning use, as IDS decisions
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do not affect the state of the environment. The algorithms that appear most frequently in
this literature are CNN and LSTM. Most of the literature uses four performance metrics to
measure the model: accuracy rate, precision, recall, and F1-score. Accuracy rate indicates
the proportion of correct predictions made in the entire dataset; precision indicates the
proportion of true positive predictions out of all positive predictions; recall denotes the
proportion of true positive predictions among actual positive instances; and F1-score is
a metric that balances precision and recall. All metrics are closer to 1, indicating better
model performance. For an IDS with a low accuracy rate, it may not be able to detect all
attacks, thus making the system vulnerable to attacks. On the contrary, if the IDS has low
precision, it may generate costly false alarms. In this paper, we have collected the detection
results of the models that have appeared in the selected literature, including the benchmark
model, to compare the performance of IDS machine learning algorithms. The performance
of the different machine learning models is illustrated in Figure 10. The accuracy rate was
chosen as a comparison metric because it is more intuitive and appears most frequently in
the literature. Although the literature uses different datasets and includes different types
of attacks, the results in the figure can describe the overall performance of the models as
a reference for model selection. Most of the machine learning models have an accuracy
rate higher than 95%, with PSO, CNNs, and CNN-LSTMs having an accuracy rate of 99%,
which is in line with our previous observation that most of the studies will use CNNs and
LSTMs as the base model for development. Naive Bayes (NB), auto-encoders (AEs), GANs,
and simple RNNs are less accurate compared with other algorithms.
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In addition, 64% of the literature uses a centralized learning strategy, and 32% uses
a federated learning strategy. Some of the literature also compares the performance of
algorithms under different learning strategies [69–72]. As shown in Figure 11, we can find
that the accuracies of federated learning and centralized learning are basically close in
most cases. Although decentralized training reduces the detection rate of most models [69],
the adoption of federated learning in vehicular cloud networks can provide data privacy
protection, as well as improve the efficiency of the training process and reduce the latency
associated with data transmission [73]. It was also found that in vehicular edge networks,
the higher the number of edge vehicles involved, the better the federated learning [69,74].
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There is also a literature that employs a transfer learning strategy [75] to test eight pre-
trained models trained on large-scale datasets with an F1-score of 99.47%.
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The training datasets used in these literatures focus on ToN-IoT, CICIDS-2017, UNSW-
NB15, NSL-KDD, and Car-Hacking. ToN-IoT is a comprehensive dataset that integrates
multiple data sources, including network traffic, IoT device telemetry, and system logs,
making it suitable for cross-domain attack detection research [76]. The CICIDS-2017 dataset,
developed by the Canadian Institute for Cybersecurity (CIC), captures modern network
traffic with realistic normal and malicious activities. NSL-KDD, an improved version
of the KDD Cup 1999 dataset, is widely utilized for network intrusion detection tasks.
UNSW-NB15, developed by the University of New South Wales, addresses the limitations
of older datasets such as NSL-KDD. The Car-Hacking dataset focuses on evaluating the
security of in-vehicle communication systems, particularly the Controller Area Network
(CAN) bus. While these datasets are widely used in cybersecurity and intrusion detection
research, only the Car-Hacking dataset specifically targets vehicular networks. Most exist-
ing datasets (e.g., CICIDS-2017, UNSW-NB15, NSL-KDD) primarily focus on traditional
networks and fail to capture the unique characteristics of vehicular networks. For example,
specialized communication protocols in automotive networks, such as the CAN bus, and
specific attack patterns, including replay and spoofing attacks, are absent in these datasets.
Additionally, some datasets, such as NSL-KDD, are outdated, with data characteristics and
attack methods that no longer align with modern network environments, making them not
suitable for addressing the security requirements of real-world scenarios. Consequently,
there is a critical need for more dedicated and realistic datasets in the field of automotive
network security to effectively evaluate IDS. Furthermore, Sousa et al. [77] state that the
higher the diversity of the training data, the better the model’s ability to generalize on the
test set. Multiple datasets are significantly better than using a single dataset for training.
Kumar et al. [72] tested that transforming the dataset does not affect the model accuracy,
which allows the model to perform unsupervised learning on the transformed data to
improve the applicability of the model while providing privacy protection of the training
data. More detailed information is shown in Table 4.
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Table 4. Summary of characteristics of ML applications in IDS.

Sources Computing
Paradigms

ML Training
Strategy ML Method Blockchain

Enabled Performance Metric Database Accuracy Rate

[78] VCC Centralized
training DT No

Accuracy rate;
detection rate;

false positive rate;
false negative rate;

service retrieval delay

NSL-KDD 99.43%

[74] VEC Federated
training CNN Yes

Accuracy rate;
time cost;

precision rate;
recall rate

KDDCup99 95.00%

[79] VEC Centralized
training RF No

Accuracy rate;
precision; recall;

F1-score;
false negative rate

CICIDS-2017 99.94%

[80] VFC Centralized
training CNN No

Accuracy rate;
precision; recall;

F1-score

VeReMi
Extension 99.65%

[81] VFC Centralized
training

Neuro-fuzzy
algorithm (FNN) Yes

Accuracy rate;
precision; recall;

F1-score
NS-3 91.50%

[82] VCC Federated
training ConvLSTM No

Accuracy rate;
precision; recall;

F1-score

CAN
messages 94.58%

[83] VEC
Centralized

training SAE-ABIGRU Yes

Accuracy rate;
precision; recall;

F1-score;
false alarm rate

ToN-IoT 99.09%

CICIDS2017 98.49%

[71] VEC
Federated
training Transformer Yes

Accuracy rate;
F1-score ToN-IoT 94.85%

Car-Hacking 97.82%

[84] VCC
Centralized

training A-RNN Yes

Accuracy rate;
Precision;

detection rate;
F1-score;

false alarm rate

ToN-IoT 99.77%

CICIDS-2017
99.35%

[85] VEC Centralized
training GAN No Accuracy rate;

network latency Independent 90.00%

[86] VCC
Centralized

training LSTM No

Accuracy rate;
precision; recall;

F1-score
NSL-KDD 99.47%

UNSW-
NB15 78.88%

[77] VCC Centralized
training DT No

Accuracy rate;
precision; recall;

F1-score
NS-3 97.00%

[87] VFC Centralized
training CAaDet No precision; recall;

F1-score NSL-KDD Not available

[72] VCC
Centralized

training ABiLSTM Yes

Accuracy rate;
Precision;

detection rate;
F1-score;

false alarm rate

ToN-IoT 98.97%

CICIDS-2017
98.80%

[73] VEC Federated
training

Extra Trees
Classification Yes

Accuracy rate;
precision;

recall; F1-score;
time to train;

time to predict;
total time

UNSW-
NB15 93.07%

[75] VCC Transfer learning CNN No
Accuracy rate;

precision;
recall; F1-score

AV-CPS 99.47%
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Table 4. Cont.

Sources Computing
Paradigms

ML Training
Strategy ML Method Blockchain

Enabled Performance Metric Database Accuracy Rate

[88] VEC Centralized
training CNN No

Accuracy rate;
precision; recall;

F1-score
Car-Hacking 100.00%

[89] VFC Centralized
training CNN-LSTM No Accuracy rate;

precision; recall CICIDS-2017 99.86%

[90] VEC Centralized
training BiGAN No

Accuracy rate;
precision; recall;

F1-score
NSL-KDD 92.15%

[70] VEC
Federated
training PCC-CNN No

Accuracy rate;
loss; time

NSL-KDD 97.08%
Car-Hacking 99.92%

[91] VCC Centralized
training

XGBoost multi-
classification No

Accuracy rate;
precision; recall;

false positive rate;
false negative rate

Independent 96.30%

[69] VEC
Federated
training

Feature Select
Transformer

No
Accuracy rate;

precision; recall;
F1-score

UNSW-
NB15 99.79%

CICIDS2018 97.10%

[92] VFC Federated
training CNN Yes

Accuracy rate;
precision; recall;

F1-score

UNSW-
NB15 99.00%

[93] VCC Centralized
training CNN No

Accuracy rate;
precision; recall;

F1-score
Independent 98.88%

[94] VEC
Centralized

training ESA-DBGRU No
Accuracy rate;

precision; recall;
F1-score

Car-Hacking 99.97%
ToN-IoT 99.2%

CICIDS-2017 99.02%

[95] VEC
Centralized

training CV-DRNN No

Accuracy; specificity;
positive likelihood
ratio; bookmaker

informedness;
Fowlkes–Mallows

index

CICIDS-2017 Not available
Car-Hacking Not available
KDDCup99 Not available

UNSW-
NB15 Not available

[96] VCC Centralized
training GA-EBT No

Accuracy rate;
precision; recall;

F1-score
Car-Hacking 99.99%

[97] VEC Federeted
training CNN No Accuracy CICIDS-2017 97.07%

[98] VEC
Centrialized

training

One-Class
Support Vector

Machine
(OCSVM)

No
Accuracy rate;

precision; recall;
F1-score

VeReMi 98%
UNSW-
NB15 98%

6.3. Anomaly Vehicle Detection in Vehicular Cloud Computing

Anomaly vehicle detection is also an area where machine learning algorithms can be
applied. It is very similar to the concept of Intrusion Recognition Systems, but while IDS
recognizes the subject of its own vehicular state, anomaly vehicle detection is specific to
the vehicles in the vehicular network. Anomaly vehicle detection can be used to enhance
the overall system security of a network [99,100]. Anomaly vehicle detection is removed
from the vehicular network to ensure the safety of the remaining vehicles. The dataset
used to train the anomaly vehicle detection machine learning model typically includes
features of the vehicle’s external environment, such as timestamps, pseudo-identity of the
vehicle, and X and Y coordinates of position, velocity, acceleration, and heading. A traffic
simulator is required to create an operational environment simulating a real vehicular
network. Anomaly vehicle detection is essentially a classification and recognition problem
like IDS, and the most commonly used algorithm in the selected literature is LSTM. There is
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only one case for reinforcement learning use since the decision-making for anomaly vehicle
detection does not affect the state of the environment. More detailed information is shown
in Table 5.

Table 5. Summary of characteristics of ML applications in anomaly vehicle detection.

Sources Computing
Paradigms

ML Training
Strategy ML Method Strength Weakness

[101] VEC Centralized
training LSTM High efficiency in learning spatio-temporal

parameters More parameters need to be input

[102] VCC Centralized
training Q-Learning High average number of true feedback; low

communication costs; low computational costs
Need to add more research cases

of cyber-attacks

[103] VEC Centralized
training PSO High detection rate; Low classification error Probability of misclassification

needs to be improved

[99] VEC Federated
training

Random
Forest

Able to detect passive mobile attackers with
high speed and accuracy

A large number of features and FL
clients are required to maintain

the accuracy of the model.

[99] VFC Centralized
training

Sparse auto-
encoders High throughput; low jitter High computation cost

[104] VCC Federated
training

FedTimeDis
LSTM

Improves the accuracy and robustness of the
models, both within the same region and

across different regions

Model performance needs further
enhancement

[100] VEC Federated
training CNN-LSTM Effective for different data distributions and

under different deep learning models
Need to improve robustness and

accuracy

[105] VEC Centralized
training

Graph
Neural

Networks
(GNN)

Comprehensive detection; scalability and
resource optimization

Dependency on high-quality
sensor data; challenges with

real-time applications

[106] VCC Centralized
training GAN Lightweight model for deployment; balanced

accuracy and efficiency
Performance degradation with

high pruning ratios

6.4. Task Offloading Security and Privacy

To support the operation of vehicular networks, application software requires a large
amount of computational resources and generates a large amount of data. However, some
application software is latency sensitive [107,108]. If the vehicle resources are limited, the
tasks cannot be completed within the specified time constraints. To avoid this situation,
relying on VEC or VFC, task offloading is a technique to solve the resource limitation
problem. It enables resource-limited vehicles to perform their computational tasks on
nearby resource-rich vehicles or edge server nodes. However, data sharing also poses
security risks; task offloading involves sensitive data of vehicles, which will seriously
threaten cybersecurity and privacy if there are malicious nodes in the roadside servers
or collaborating vehicles [109,110]. Machine learning algorithms are effective in assisting
vehicles with safe, reliable task offloading. Most studies transform the task offloading
process into a Markov chain and then optimize it using machine learning [109,111]. It has
also been pointed out that VCC is a multi-agent environment, so it is more appropriate to
introduce Markov games [112]. Therefore, most of the literature (95%) uses reinforcement
learning algorithms to address security challenges in task offloading. Two of the most
common reinforcement learning algorithms are Q-learning and AC. Improved algorithms
based on these two algorithms have also emerged. Zhang et al. [113] found that the AC
algorithm is prone to suboptimal solutions, and the entropy introduced by soft actor-critic
(SAC) encourages the algorithm to explore better results. The emergence of double-layer
deep Q-learning can efficiently balance the different objectives and perform complex trade-
off analysis, which can better optimize the overall performance of the algorithm compared
with Q-learning [34,114].
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The most direct application of machine learning in task offloading security is to ensure
the integrity of data transmission by optimizing the efficiency of task offloading, thus
ensuring cybersecurity [34,115]. Incorporating PLS techniques into task offloading and then
optimizing it using machine learning is also one of the common applications. VCCs are also
vulnerable to eavesdropping due to the open nature of the wireless offload channel. Many
works have investigated physical layer security (PLS) techniques that exploit the inherent
physical characteristics of the wireless channel, thereby weakening eavesdropper reception
in wireless networks. Using non-orthogonal multiple access (NOMA) in conjunction with
task offloading and optimization using A3C learning algorithms can further improve the
confidentiality performance and reduce the transmission delay [116,117]. Utilizing the
Wyner eavesdropping coding scheme in PLS technology and optimizing it using double-
layer deep Q-learning is also a strategy [110,118]. The third type of application is the
use of blockchain technology to solve the problem of secure computational offloading
in VCC. Under blockchain technology, data confidentiality, integrity, authentication, and
privacy for task offloading can be achieved, but at the same time, it brings the problem of
high dimensionality and time-varying features [119]. Introducing reinforcement learning
algorithms can result in suboptimal blockchain task offloading decisions [113,120]. The
last category of application is assisting IDS task offloading. Mourad et al. [121] proposed
a VEC-enabled scheme to offload intrusion detection tasks to joint vehicular nodes in a
temporary vehicular fog formed nearby and optimized using genetic algorithms to execute
them collaboratively with minimal latency. More detailed information for ML applications
in task offloading security and privacy is shown in Table 6.

Table 6. Summary of characteristics of ML applications in task offloading security and privacy.

Sources Computing
Paradigms

ML
Training
Strategy

ML Method
Used

Optimization
Target Strength Weakness Blockchain

Enabled

[115] VEC Centralized
training Q-Learning Utility of system

High learning efficiency;
avoid local optimum;
reliable transmission

Unable to sustainably
improve offloading

utility; no reinforcement
learning methods

benchmark

No

[34] VEC Centralized
training DDQN Customer cost

Fast convergence; high
offloading rate; multiple

sub-models

Inadequate experimental
scenarios; reliability not

considered
No

[121] VFC Centralized
training GA

Offloading
survivability;
computation

execution time;
energy

consumption

Extensive experimental
scenarios

Unstable vehicular fog
federation formation No

[122] VFC Centralized
training MAB Average task

offloading delay

Enable smart contract;
good convergence

performance; high robust

Insufficient experimental
scenarios Yes

[123] VEC Centralized
training Q-Learning

Long-term
system of delays;

energy
consumption;

flow costs

Low energy
consumption; low latency

Need to design
lightweight blockchain;
sensitive to bandwidth

allocation

Yes

[124] VEC Federated
training Q-Learning Time delay;

computing cost
Fast convergence; reduce
system cost; low latency

Need to be tested in real
road environment No

[109] VEC Centralized
training AC Task latency

Low latency; consider
multi-vehicle
coordination

Only suitable for vehicle
to rsu Yes
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Table 6. Cont.

Sources Computing
Paradigms

ML
Training
Strategy

ML Method
Used

Optimization
Target Strength Weakness Blockchain

Enabled

[119] VEC Distributed
training

Distributed
Deep

Q-Learning
(DDQL)

Time
consumption;

energy
consumption;
pricing cost

Consider scenarios of
malicious user attacks

Need to consider more
general situation Yes

[110] VEC Centralized
training DDQN System

processing delay
Enable pls; improved
resource utilization

Insufficient benchmark;
insufficient scenario No

[125] VEC Centralized
training DDPG Delay; energy

consumption

Improve training speed;
reduce time latency;

reduce energy
consumption

Low adaptability No

[113] VEC Centralized
training SAC Processing time Avoid local optimum;

low total computing time
Not suitable for large

number of tasks Yes

[117] VEC Centralized
training AC Energy

consumption
Enable PLS; moderate
computation latency

Small resource block
increases energy

consumption
No

[116] VEC Centralized
training AC Energy

consumption
Enable PLS; moderate
computation latency

Only consider a
single-cell base station

scenario
No

[118] VEC Centralized
training DDQN System

processing delay

Enable PLS; use spectrum
sharing architecture;

improve resource utility

Some V2V link quality is
sacrificed to improve

system latency
performance

No

[120] VEC Distributed
training AC Latency Consider multiple

calculation methods Low task complete rate Yes

[126] VFC Federated
training AC

Expected
discounted

future utility
Fast convergence

Low network utilization;
vulnerable to gradient

spoofing attacks
No

[114] VEC Centralized
training DDQN

Energy efficiency;
data offloading

ratio; block
generation time;

transaction
validation time

Consider the dynamic
and heterogeneous

character of vehicular
networks

Not suited to handle
larger, more complex

networks
Yes

[127] VFC Federated
training

Deep
Q-learning
Network

Energy
consumption;

time
consumption;
survivability

Optimized resource
utilization; scalability

Communication
latency becomes high

with a high speed
No

6.5. Privacy Protection

Machine learning has a very large number of applications for privacy protection in
vehicular networks, focusing on two main areas: sensitive data classification and model
encryption. Sensitive data classification is a classification and identification problem.
Vehicles need to continuously collect data from the surrounding environment through
sensors while traveling. At this time, it is necessary to distinguish which are sensitive
data and which are non-sensitive data. Kaci and Rachedi [128] used a machine learning
classifier, k-Nearest Neighbors (k-NNs), to classify data based on its confidentiality so that
data classified as sensitive are protected and unnecessary processing of non-sensitive data
is reduced. Machine learning models are also required to further classify the data when it
is encrypted so that the data are given new features but without compromising privacy.
Lidkea et al. [129] used a CNN framework to perform classification by partially decrypting
encrypted images so that sensitive private information carried by the classified data are
not exposed.
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Not only is the data collected by cars a privacy risk, but if the parameters and data
used to train the model are in the hands of a malicious user, the user’s information could be
accessed through reverse engineering [130]. Federated learning is a very effective method
for data privacy protection, which enables user training data to be kept locally and only
model parameters to be uploaded. Compared with centralized learning, federated learning
has less communication time [131]. However, traditional federated learning with server-
side weighted averaging based on the number of samples is difficult to overcome the
variance due to vehicle heterogeneity, which leads to an increase in communication costs
and a decrease in model accuracy. To further ensure reliability and trust, blockchain can
be combined with machine learning [132–134]. By converting machine learning data to
blockchain before transmission, we can increase the throughput of the system and also
prevent data leakage during transmission. Since block generation is very resource intensive,
it will consume a lot of computational power in the vehicular network, and the allocation
of computational resources needs to be optimized by machine learning. Chen et al. [135]
goes a step further by simultaneously applying machine learning, blockchain, and full
homomorphic encryption (FHE) techniques to VEC to propose a decentralized privacy
protection deep learning (DPDL) model. It first performs full homomorphic encryption
on the data and then inputs it into the model training and then communicates the data
via blockchain, thus effectively protecting data privacy protection and trustworthiness. In
addition to using fully homomorphic encrypted data, including local differential privacy
(LDP) in the data ensures that malicious users are unable to derive valid information from
compromised data [130,136–138]. More detailed information on the characteristics of ML
applications in privacy protection is shown in Table 7.

Table 7. Summary of characteristics of ML applications in privacy protection.

Sources Computing
Paradigms ML Method Application Strength Weakness Blockchain

Enabled

[133] VEC DDPG Design blockchain
content caching scheme

High permanence and
security

Communication
distance and block size

affect utility
Yes

[128] VCC KNN Selective encryption
and adaptive security

High efficiency of the
encryption process;
low computational

resources

The accuracy of the
model needs to be

improved
No

[129] VCC CNN Classify encrypted
images

Less training data;
low computation time

The accuracy of the
model needs to be

improved
No

[133] VEC DDPG Design blockchain
content caching scheme

High permanence and
security

Communication
distance and block size

affect utility
Yes

[139] VEC PPO-A3C Resource optimization
for blockchain

Improve blockchain
throughput and

resource efficiency;
against multiple types

of attacks

Higher demand for
computing resources Yes

[136] VEC CNN Improve model privacy High resilience to
adversarial attacks

Not consider
computational

complexity and delays
Yes

[134] VEC CNN Improve model privacy
High scalability; high

robust; resistant to
malicious attacks

Network
communication needs
to be further enhanced;

faster filtering of
malicious upload
models is needed

Yes
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Table 7. Cont.

Sources Computing
Paradigms ML Method Application Strength Weakness Blockchain

Enabled

[135] VEC Q-Learning Improve model
privacy

Low channel loss; high
block mining rate; high

edge latency; High
FL-learning rate

Need to further
improve algorithm
performance and
communication

efficiency

Yes

[132] VEC CNN Improve model
privacy

Combining federated
learning with LDP to

enhance model privacy
and accuracy

Need to enhance
effectiveness,

multifunctionality and
adaptability

No

[137] VFC GRU Improve model
privacy

Combining federated
learning with LDP to

enhance model privacy
and accuracy;

considered simulation
scenarios for cyber

attacks

The computational and
communication costs of

the model need to be
further increased

Yes

[141] VEC CNN Improve model
privacy

Encrypts data using
multi-key

homomorphic
encryption (MKHE) and

optimizes
computational and

communication costs

Enhancements are
needed for inference in

ICVs through
zero-knowledge proofs;

encrypted data
increases the program

runtime.

No

[142] VEC DQN-BPO Blockchain parameter
optimization

Balancing transaction
throughput and energy

consumption

Need to improve model
robustness and

introduce a reputation
system to prevent
potential attacks

Yes

[143] VEC ANN Improve model
privacy

High training accuracy;
low communication

burden; high computing
performance

Need to balance
training performance

with training time
Yes

[144] VCC QPSO Blockchain parameter
optimization

Low average access
delay; low backhaul

load

Vehicle movement will
impact on data

acquisition efficiency
Yes

[145] VEC Double-
dueling DQN

Improve model
privacy

Reliable service
delivery; low energy

consumption

High latency; security
needs to be enhanced Yes

[146] VEC CNN Capturing RFF
Features

Fast convergence; high
recognition accuracy;

smaller training
samples required

Huge computational
resources and stable
communication are

needed

No

[147] VEC DNN Improve model
privacy

Decentralized
framework; efficient

communication;
security against attacks

Scalability challenges;
limited real-world

testing
No

[148] VEC AD-GRU Improve model
privacy

Resilience to attacks;
improved scalability

High initial costs;
computational

complexity
Yes

[138] VCC GAN-LSTM Improve model
privacy

Improved model
convergence;

personalized privacy

Loss of fine-grained
data; potential overhead

in privacy budget
allocation

No

[149] VEC VED-PPFE Improve model
privacy

Effective against MI
attacks; good

privacy-preserving
ability

Dependency on stable
infrastructure; slight
utility degradation

No
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7. Challenges and Future Scope
Although advances in machine learning have enhanced the security of vehicular

networks. However, it still faces multiple challenges based on the new network computing
paradigm. The relationships among challenges, solutions, and future scope are shown in
Figure 12. Emerging technology may also offer innovative solutions to cybersecurity and
privacy issues in vehicular networks.
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7.1. Computation Cost and Energy Consumption

Vehicle systems have limited computing power, storage space, and energy supply.
And machine learning schemes need to repeatedly compute a large amount of data, so the
computational cost and energy consumption need to be paid attention to when designing
machine learning schemes. In the themes of task offloading security and privacy and
privacy protection, most of the literature considers the optimization of communication cost,
energy consumption, and other indexes when adopting machine learning schemes, instead
of pursuing the performance of model accuracy. However, in the themes of intrusion
detection systems and anomaly vehicle detection, only a portion of the literature considers
these metrics. Therefore, lightweight machine learning solutions are an important area for
further research.

By applying feature selection techniques tailored to vehicular network data, the most
relevant features can be identified to reduce the dimensionality of input data while main-
taining model accuracy [150]. Compressing input data before processing can further
decrease energy consumption during transmission and storage [151]. According to the
unique characteristics of vehicular networks, model frameworks can be optimized, and
distributed multi-agent algorithms can be developed to improve model efficiency [12]. Dur-
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ing the training and deployment of machine learning algorithms, energy-aware objective
functions can minimize power usage. Additionally, optimizing resource distribution across
the network can balance energy and computation costs by offloading locally processed
tasks to central servers or edge nodes during periods of low network traffic or when more
energy-efficient resources are available [34]. These advancements effectively reduce the
computational cost and energy consumption of the model, promoting more sustainable
and efficient vehicular network operations.

7.2. Latency and Accuracy

The balance between latency and accuracy is also an unavoidable challenge. Although
high-accuracy machine learning schemes can protect the security and privacy protection
of vehicular networks more effectively, the communication latency brought about makes
some latency-sensitive applications unable to run. Therefore, the use of federated learning
or other distributed learning can effectively reduce the latency of vehicular networks.
However, many studies have pointed out that the performance of federated learning
is slightly inferior to centralized learning under the same conditions. In addition, the
latency problem can also be addressed in transfer learning. By migrating models trained
locally at the edge between nodes, more knowledge is gained, and less data need to be
migrated. And federated learning and transfer learning can be combined with each other,
and future research on federated transfer learning can be expanded. When training models,
Latency-Aware Neural Architecture Search (LA-NAS) can be utilized to add both latency
and accuracy into the objective function. LA-NAS is a neural architecture search (NAS)
method that optimizes latency and performance simultaneously. Specifically designed for
deploying efficient deep learning models in resource-constrained environments, it achieves
an optimal balance between latency and accuracy. For machine learning, hierarchical
models can be designed to allocate workloads according to task requirements. Lightweight
models are well-suited for real-time decision-making, while more complex models can be
reserved for batch processing or offline analysis [152]. A collection of models with varying
complexity can also be employed, dynamically selecting the appropriate model based
on latency constraints [153]. Similarly, real-time adaptive models can dynamically adjust
their complexity in response to current network conditions, achieving comparable results.
Adjusting model complexity based on task complexity can further optimize performance,
ensuring efficient resource utilization and improved adaptability.

7.3. Model Data Privacy Protection

When designing machine learning solutions, it is essential to protect training data
privacy. Techniques such as data encryption and local differential privacy can effectively
mitigate privacy risks. Homomorphic encryption enables computations to be performed
on encrypted data, preserving data privacy throughout the cloud processing cycle. Dif-
ferential privacy enhances individual privacy by adding statistical noise to data before
sharing or processing, effectively concealing sensitive information while maintaining the
utility of traffic analysis, such as preventing the identification of personal driving patterns.
However, training models on transformed data can impact model accuracy, highlighting a
research direction: improving model learning capabilities on encrypted data. To ensure the
confidentiality of training model parameters, blockchain technology can be used to prevent
data theft during transmission. Blockchain offers an anonymous and traceable data-sharing
mechanism, ensuring that only authorized entities can access vehicle data. Additionally,
self-sovereign identity frameworks can protect the identities of vehicles and drivers. Never-
theless, blockchain implementation requires substantial computational resources, making
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the optimization of resource allocation across the vehicular network a critical challenge for
future research.

7.4. Robustness and Scalability

Maintaining the robustness and scalability of machine learning models is also an
important challenge in vehicular cloud computing. Training machine learning algorithms
with accuracy as the only metric can result in overfitting the data. This makes the model
sensitive to data noise and abnormalities. As a result, the model may perform poorly on
new data and have reduced scalability. Vehicular cloud networks receive data collected
from different sources, such as various sensors, vehicles, and infrastructures. The structure
and quality of these data will be different and thus require good robustness of the model.
Overfitting can be avoided by increasing the variety of experimental datasets and perform-
ing robustness tests on the model. Future research can focus on the study and application
of transfer models. Also enhancing the scalability of the model is a necessary research
direction. Decomposing machine learning functionalities into modular components that
can be independently scaled and updated would facilitate better combinations across func-
tionalities. Additionally, the open sharing of models could promote collaboration within
the research community and enable cross-validation of experimental results. Currently,
most studies rely on general network datasets rather than specialized datasets for vehicle
networks. Future research should use real vehicle data and investigate systems employing
advanced communication protocols beyond CAN, such as Ethernet and FlexRay. Estab-
lishing unified standards for data collection is also critical to ensuring interoperability of
training data across regions. Consequently, studying methods for collecting training data
for machine learning models across different applications of vehicular cloud computing is
a valuable research direction.

7.5. Emerging Technology with Machine Learning for Cybersecurity

The introduction of emerging technologies brings new possibilities to vehicular net-
work security. When combined with machine learning, these technologies enable more
intelligent and efficient identification and defense against various cybersecurity threats.
The decentralized and tamper-proof nature of blockchain can enhance the integrity and
reliability of vehicular network data. Combined with machine learning, blockchain can
be used for anomaly detection and attack tracing. Blockchain can be used to build dis-
tributed trust models, preventing forged data or identities. Machine learning can analyze
transaction data recorded in the blockchain to identify potential malicious activities [154].
Quantum computing can significantly accelerate the training of complex machine learning
models, facilitating large-scale optimization and encryption analysis for vehicular network
security [155]. Quantum machine learning can rapidly analyze massive vehicular network
data, while quantum cryptography-based secure communication protocols can be devel-
oped for vehicular networks. Additionally, machine learning can process biometric data
(e.g., driver facial or behavioral features) to enhance authentication and behavior moni-
toring capabilities. An anomaly detection system based on driver behavior can identify
unauthorized vehicle takeovers using multimodal biometric technologies [156]. Digital
twin technology is crucial to the development of vehicular networks as it enables the
monitoring and evaluation of dynamic and complex vehicle environments [157]. When
combined with machine learning, digital twins can simulate and predict security risks in
real time, perform virtual simulations and tracing analysis of network attacks, and optimize
defense strategies and vulnerability scanning in real time. Privacy-preserving computing is
another vital emerging technology. Techniques such as secure multi-party computation
and differential privacy, combined with machine learning, can protect user privacy data in
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vehicular networks, enabling collaborative network threat modeling while ensuring privacy
protection [158]. Beyond software protection, hardware security modules combined with
machine learning can monitor and protect vehicular network devices from physical-layer
threats [158]. Machine learning-based analysis of hardware signals can detect anomalies
and improve defenses against physical attacks, such as side-channel attacks. Urban air
mobility (UAM) expands the scope of vehicular network applications while presenting
new security challenges. Adding UAM systems with vehicular networks will create a
multimodal transportation network, necessitating robust security mechanisms to ensure
seamless coordination between ground and aerial vehicles [159]. Machine learning can
be employed to monitor communication data between vehicles and aerial systems in real
time, detecting abnormal behaviors or potential attacks. Furthermore, the development of
multimodal traffic signal coordination algorithms can optimize ground-air collaborative
path planning and enhance emergency response capabilities. In the future, as these tech-
nologies continue to evolve, the security and reliability of vehicular networks are expected
to improve significantly.

8. Conclusions
This paper is all concerned with the applications of machine learning in ensuring

cybersecurity and privacy in cloud computing-assisted vehicular networks. It provides a
literature review of vehicular networks and three recent computing paradigms, defining
the scope of the types of vehicular networks studied in this paper. The characteristics of
different machine learning types and learning strategies under a vehicular cloud computing
environment are then discussed. A total of seventy-two papers were selected through a
semi-systematic review and categorized into four research themes: intrusion detection
systems, anomaly vehicle detection, task offloading security and privacy, and privacy
protection. The review summarizes the applicable machine learning algorithms for ve-
hicular cloud computing, highlighting their advantages and disadvantages according to
the characteristics of each research theme. For intrusion detection systems, this paper
collects the test results from the literature for the study and demonstrates the selection
of the current optimal machine learning algorithms. For anomaly vehicle detection, task
offloading security and privacy, and privacy protection. This paper further breaks down the
application scenarios of machine learning algorithms and briefly describes how machine
learning algorithms can safeguard vehicular cloud computing cybersecurity and privacy. In
addition, the challenges that the application of machine learning algorithms for vehicular
cloud computing can face are analyzed based on the review results. It provides a good ref-
erence for researchers on cybersecurity and privacy protection in cloud computing-assisted
vehicular networks.
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