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ABSTRACT

The spatiotemporal development of impulsively excited two-dimensional linear disturbances in acceleration-skewed and velocity-skewed
Stokes layers is investigated using numerical simulations of the linearized Navier-Stokes equations. This study focuses on the long-term
behavior of linearly unstable disturbances within these skewed flows. The onset of linear instability in the symmetric Stokes layer is known to
coincide with absolute instability, with disturbances forming family tree structures, characterized by multiple wavepackets spread across the
spatiotemporal plane, coupled with pointwise subharmonic temporal growth [Ramage et al., “Numerical simulation of the spatiotemporal
development of linear disturbances in Stokes layers: Absolute instability and the effects of high-frequency harmonics,” Phys. Rev. Fluids 5,
103901 (2020)]. However, the introduction of acceleration and velocity skewness disrupts the formation of the family tree structure. Instead,
the onset of linearly unstable behavior is matched to convective instability, with disturbances predominantly propagating in the direction of
the maximum acceleration or maximum velocity. As the Reynolds number increases, absolute instability emerges, albeit with pointwise tem-
poral growth less than the growth obtained by the disturbance maximum.

© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0249527

I. INTRODUCTION

Time-periodic flows are commonly observed in various physio-
logical, environmental, and industrial processes. Examples include the
pulsatile blood flow in arteries, the respiratory system in the lungs, and
the propagation of waves in near-shore seas. Understanding the

the linear stability of the flow, including quasi-steady instability the-
ory,”” Floquet theory,”” and spatiotemporal disturbance develop-
ment."'”"" In addition, the effects of wall roughness have been
considered'” " and several experimental studies modeled oscillatory
motion in a channel and pipe.””'® More recently, investigations of
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dynamics of these oscillating flows and their stability characteristics
holds practical and theoretical significance for the field of fluid
dynamics.

The Stokes layer represents a fundamental example of a time-
periodic flow. It occurs when an infinite flat plate oscillates sinusoidally
along the streamwise direction with a velocity U, cos(wt), beneath a
stationary semi-infinite layer of incompressible fluid. This oscillatory
flow is characterized by a boundary layer thickness 6 = \/2v/w, for
the kinematic viscosity of the fluid, v, and frequency of wall oscillation,
. The Reynolds number of the flow is defined as Re = Uy/+/2vwm
and specifies regions of linear stability and instability as well as the
transition to turbulence.

An early review of the Stokes layer and other related time-
periodic flows was undertaken by Davis.” Since then, the Stokes layer
has been the subject of numerous theoretical investigations relating to

oscillatory and pulsatile flows have focused on linear and nonlinear
dynamics of the Floquet modal instability'” and non-modal transient
behavior.”’**

This paper is concerned with the spatiotemporal development of
linear disturbances in a skewed Stokes layer, following the approach of
Thomas et al.'’ and Ramage et al,' for both acceleration-skewed”” and
velocity-skewed”* oscillatory motion.

A. Floquet theory

The linear stability of both finite and semi-infinite geometries
was initially investigated by Von Kerczek and Davis® and Hall,” respec-
tively, using Floquet theory. This theory assumes that perturbations to
the base flow can be expressed as the product of a time-periodic func-
tion, f(7), and an exponential function, exp(yt), where t denotes the
non-dimensional time and the real part of the Floquet exponent, y,
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encapsulates the net growth of the linear disturbance. Due to the com-
putational demands associated with the linear stability problem, these
early investigations were limited to relatively low Reynolds numbers,
Re. Hall” observed only decaying disturbances for Reynolds numbers
Re <160 in the semi-infinite Stokes layer, while Von Kerczek and
Davis” found no linearly unstable modes for Re < 400 in the finite
channel model they considered. Nevertheless, following significant
improvements in computational resources, Blennerhassett and
Bassom” identified linearly unstable behavior in the Stokes layer for a
critical Reynolds number Re;. ~ 708. Their observations were later
confirmed by Luo and Wu’ and Thomas et al.””> Moreover, similar
methods were used to compute linear instability in related flows,
including the finite Stokes layer in channels and pipes.”* >’

B. Spatiotemporal disturbance development

While Floquet theory can identify the onset of linear instability, it
cannot determine the nature of the instability, specifically whether it
corresponds to convective or absolute instability. However, numerical
simulations can be employed to analyze disturbance development by
constructing wavepackets in the spatiotemporal plane. Convective
instability arises when an unstable disturbance propagates away from
the point of excitation (decaying at fixed spatial locations). On the
other hand, a disturbance is absolutely unstable if it grows at every spa-
tial location.”

The spatiotemporal development of two-dimensional linear dis-
turbances in the semi-infinite Stokes layer was first considered by
Thomas et al."’ using numerical simulations of the linearized Navier—
Stokes (LNS) equations. Using a velocity—vorticity form of the LNS
equations,”’ Thomas and coworkers observed a so-called family tree
structure within the spatiotemporal plane, characterized by the succes-
sive birthing of individual wavepackets. Although numerical computa-
tions were restricted to the first three periods of wall motion, excellent
agreement was observed with the earlier Floquet analysis of
Blennerhassett and Bassom.” Subsequent studies by Ramage™'" suc-
cessfully simulated linear disturbance development for a longer dura-
tion for both the classical Stokes layer and the flow generated when the
wall motion incorporates a form of low-amplitude, high-frequency
noise.”” The family tree structure was shown to be characterized by
both harmonic and subharmonic phenomena. In addition, the longer-
time simulations indicated that the onset of linear instability in the
Stokes layer coincides with absolute instability instead of convective
instability. Indeed, this was confirmed by Pretty et al.” using a modified
form of the Briggs™’ method based on the formulation of Brevdo and
Bridges.”

C. Skewed oscillatory flow

Wave propagation in near-shore seas is characterized by skew-
ness, including wave depth, wave height, and wave period. Velocity
skewness generates a wave with a narrow, sharp crest and a broad flat
trough, whereas acceleration skewness establishes wave asymmetry
[examples of each are depicted in Figs. 2(a) and 2(b)]. In coastal hydro-
dynamics, much of the focus is aimed at understanding how accelera-
tion and velocity skewness affect the net transport of sediment.”” "'
For instance, experiments undertaken by Watanabe and Sato*’ and
Abreu et al.”” showed that in an acceleration-skewed oscillatory flow,
the net sand transport is non-zero and propagates along the direction
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of maximum acceleration. In addition, acceleration skewness affects
turbulent flows, including the emergence of streaky structures*’ and
enhancing turbulent intensities in the flow over a rough surface.**

In the context of laminar flow, Thomas’>** undertook a linear
stability analysis of the acceleration-skewed and velocity-skewed
Stokes layers using Floquet theory. Modeling skewness via the methods
developed by van der A et al.** and Scandura et al.”” Thomas showed
that acceleration skewness destabilizes the Stokes layer and reduces the
critical Reynolds number for linear instability. On the other hand,
velocity skewness increases the critical Reynolds number for linearly
unstable behavior and stabilizes the flow.

D. The current investigation

In the following study, we consider the spatiotemporal develop-
ment of two-dimensional linear disturbances in acceleration-skewed
and velocity-skewed Stokes layers, using the numerical approach
developed by Ramage et al.' The aim is to determine the nature of line-
arly unstable disturbances in these skewed flows, i.e., are disturbances
matched to convective or absolute instability. Our investigation reveals
that acceleration and velocity skewness alter the development of the
family tree structure, with disturbances primarily propagating in one
streamwise direction only, either to the right or the left, depending on
the skewness specifications. Moreover, the onset of linear instability
coincides with a convective form of instability rather than the absolute
instability observed for the symmetric Stokes layer."”'’ The latter
form of instability is subsequently found to emerge at higher Reynolds
numbers.

The remainder of this paper is structured as follows: in Sec. I,
acceleration-skewed and velocity-skewed oscillatory wall motion are
modeled, and the equations governing the development of linear dis-
turbances are described. In Secs. I1] and 1V, the results and conclusions
of our study are presented.

Il. FORMULATION
A. Base flow

Consider the two-dimensional flow that develops in a semi-
infinite layer of viscous incompressible fluid that is bounded by a flat
plate located in the plane y* = 0. The wall oscillates back and forth
along the streamwise x*-direction with a skewed velocity
U = Uy(t).”**">*" For an acceleration-skewed flow, the wall velocity
is defined as

N

UO(t) = Up,max Z Vn Sin(”(Wt + (i)))v (1a)

n=1
for a phase shift, ¢, and coefficients
Ca2p—1)""

7
n n Iy

(1b)

that establishes asymmetric sinusoidal motion. On the other hand, for
a velocity-skewed flow, the wall velocity is given as

N
Up(t) = Up max Z O cos(n(wt + @)), (2a)

n=1

for6; = 1 and
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Sy =02k —1)"" for n>2, (2b)

that establishes oscillatory motion with a narrow sharp crest and a
broad flat trough. Here, Uy mayx is the maximum wall velocity, N is the
total number of harmonics used to represent the wall motion, @ is the
frequency of oscillation, and the coefficient, o, ensures
max(Up) = Upmax. Figure 1 displays the relative sizes of o for both
acceleration-skewed and velocity-skewed flows.

Acceleration skewness is quantified by the parameter

U
f=—"20 <o,1], 3)
UO,max - UOA,min

where U represents the acceleration of the wall motion. (Here, a dot
denotes differentiation with respect to time, 7.) Whereas velocity skew-
ness is quantified by the parameter
UO,max

" UO,max - UO,min < [07 1]‘ (4)
The classical Stokes layer is recovered in each instance by setting f =
0.5 or kK =0.5 for N=1 harmonics. In the instance f§ # 0.5 or
K # 0.5, the number of harmonics, N, must be sufficiently large to
achieve the desired skewed wall motion. Moreover, those flows gener-
ated for § € [0, 0.5] are the mirror images of those flows established for
f € 0.5,1]. Similarly for x € [0,0.5] and « € [0.5, 1]. Consequently,
the subsequent analysis is limited to those acceleration-skewed flows
with § € [0.5, 1] and velocity-skewed flows with x € [0.5, 1].

The dimensionless base flow is obtained by scaling the velocity
and length on the respective scales Uy may and \/2v/w, where v is the
kinematic viscosity of the fluid. In addition, on setting 7 = wt, the
non-dimensional base flow is given as

UB:(UB(y>T;ﬁ7K)7O)7 (53)

and for the acceleration-skewed flow
Us(y, 7 B) = ZN: yee VP sin(n(t+ ¢) — vny),  (5b)
n=1
while for the velocity-skewed flow
Up(y,t5K) = XN: dne V" cos(n(t + ¢) — V/ny). (5¢)
n=1

Moreover, the Reynolds number of both acceleration-skewed and
velocity-skewed flows is defined as

0.9  ~_
0.8+ RN
3 SO
0.7+ S
06" N
-k ..
0.5 L L L L bS] L
05 055 06 065 07 075 08 085
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U
Re = —max 6)

V2vm
Figure 2 illustrates the base flow, Ug, acceleration, U B> and shear stress,
Uj, at the wall y=0, for acceleration-skewed flows f = 0.6 and
B = 0.75, and velocity-skewed flows x = 0.6 and x = 0.75. (Here, a
prime denotes differentiation with respect to the wall-normal y-direc-
tion.) The wall motion of the classical Stokes layer (ie., f = k = 0.5)
is included for comparison (solid blue lines).

B. Governing equations for linear disturbances
1. Velocity-vorticity formulation

The development of linear disturbances to the skewed base flow
(5) is investigated using a two-dimensional version of the velocity—
vorticity formulation developed by Davies and Carpenter.’’ This study
focuses on the long-term behavior of linearly unstable disturbances,
and since Squire’s theorem has been extended to temporally periodic
flows,” we limit our analysis to two-dimensional disturbances. Total
velocity and vorticity fields are defined as

(U,V) = (Up,0) + (u,v), (7a)
and
Q=Qp+¢, (7b)

where Qp = Uy, is the vorticity field associated with the base flow (5).
Here, u and v denote the respective streamwise and wall-normal veloc-
ity perturbations, and { represents the vorticity perturbation.

Following the approach of Ramage,"'" a spectral treatment is
implemented along the streamwise x-direction by decomposing linear
disturbances into the following Fourier form:

{u,v, 3 (x,,7) = {), v, (7, D) + cc., (8)

where c.c. denotes the complex conjugate and a; = jAa specifies a dis-
crete set of streamwise wavenumbers for j =0, ...,J, and the wave-
number increment, Aa. The governing system of equations for each a;
comprises a vorticity transport equation for {; and the Poisson equa-
tion for v;

L aCj : e w1 > 2
Re Dc +ia;Up(; + Ugvy = e \ By a |G, (9a)
0 .

In addition, the streamwise u;-velocity perturbation is given by the
integral expression

y

Perturbations are impulsively excited by a small temporally and
spatially localized vertical wall displacement, 7. The linearized bound-
ary conditions are then implemented through the no-slip and no-

B, & penetration conditions
FIG. 1. Relative sizes of the coefficient «, as a function of the acceleration skew- u;(0,7) = _U (0,7)n;(7) (11a)
ness, f3, and velocity skewness, i, that ensure max(Up) = Uy max- " BYS P
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(b)

—kr =05
- - k=06
B k=0.75
0 1 2 3 4 5 6

T/2m

FIG. 2. Base flow, Us, acceleration, Ug, and shear stress, Ug, at the wall, as a function of time, 7. (a), (c), and (e) Acceleration-skewed flow for variable f. (b), (d), and (f)

Velocity-skewed flow for variable «. The phase shift, ¢, is chosen to ensure Ug(0,0) = 1.

on;
v;(0,7) = 6—;, (11b)

where 7; represents a Fourier j-component of the decomposed vertical
wall displacement, 7. The localized impulsive forcing is defined by
setting

]
1 "
_ 717(}(7}(]')2(1 o 7012) -t ) i(jAa)x 12
X,T)=¢e e e’ o~ 7)e ,
() THT 2O, (2
where ¢ prescribes the time duration of the impulse, b is a scale factor
that determines the spread of the forcing along the streamwise x-direc-
tion, and xs (set to zero here) denotes the location about which the
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impulse is centered. The parameter ¢ is chosen to ensure that for
7 > 0.1, the wall displacement, 7, is essentially zero, while the scale fac-
tor, b, is chosen such that Fourier coefficients, j» have equal weighting.
Finally, an integral constraint on the vorticity perturbation, {j is
derived by coupling the definition for the streamwise u;-velocity in Eq.
(10) with the no-slip condition (11a) to give

00

J {jdy = Up(0, 7)n;(1) — J ia;v; dy. (13)
0 0

The temporal evolution of each Fourier j-component of the total
linear disturbance (8) is computed independently; a decoupling arises
due to the spatial homogeneity of the base flow and the linearity of the
governing equations. The full spatiotemporal disturbance development
established by the localized impulsive wall forcing, #, can be recon-
structed by superimposing all Fourier j-components. Key to this recon-
struction is the size of the wavenumber increment, Aa, which naturally
establishes a spatial periodicity of 27t/Aa. To ensure the spatial devel-
opment of disturbances is captured in full detail, Aa is chosen to be
sufficiently small. In addition, the range of streamwise wavenumbers
a;j € [0, dmax] for ama = JAa, has to be large enough to ensure that
both large and small stability characteristics are resolved accurately.

In the subsequent study, Aa = 2.5 x 10™* ensured that the peri-
odic box was sufficiently large that the disturbance remained far from the
periodic boundaries for the ten periods of wall motion simulated. A choice
of amax = 0.6 was sufficient to achieve accurate results since Fourier j-
components at larger wavenumbers were subject to rapid temporal decay.

2. Numerical methods

The governing system of Eq. (9) is solved using the numerical
scheme developed by Davies and Carpenter’' that implements a spec-
tral discretization along the wall-normal y-direction. The wall-normal
velocity and vorticity perturbations, g; = {v;,{;}, are expanded in
terms of an odd Chebyshev series

M
qi(y,7) = Z i (1) To-1 (), (14)
k=1

where Tj is the kth Chebyshev polynomial of the first kind, M is the
number of Chebyshev polynomials, and & denotes the mapped wall-
normal coordinate. Here, the semi-infinite physical domain y €
[0, 00) is mapped onto ¢ € (0, 1] via the transformation

_ L 7 (15)

L+y

where L is a stretching parameter that fixes the spread of data points
along the Stokes layer. A similar expansion is implemented for the
streamwise u;-velocity in terms of even Chebyshev polynomials in &.
Equations (9) are integrated twice with respect to the mapped wall-
normal coordinate, ¢, and the evolution of the linear perturbation is
numerically simulated using a semi-implicit procedure.

3. Reconstructing the physical disturbance
development

The full spatiotemporal disturbance development can be recon-
structed by taking a superposition of all Fourier j-components of the
linear disturbance (8), for each streamwise wavenumber, a; € [0,0.6].

pubs.aip.org/aip/pof

(Recall a; = jAa forj=0,...,], and Aa = 2.5 x 10~*.) For instance,
the vorticity perturbation, {, at each streamwise x-position, can be
determined by setting

]

{x,y,1) =D Gy 1), (16)

Jj=0

The streamwise domain was chosen to be sufficiently large to satisfy
the previously described natural spatial periodicity of 27/Aa. In addi-
tion, perturbation fields were computed at the streamwise locations
x = xj = jAx, for Ax = 21/((J + 1)Aa).

In addition to selecting a sufficiently small wavenumber incre-
ment, Aa, to capture the linear disturbance development in full, the
number of Chebyshevs, M, and the mapping parameter, L, were cho-
sen based on previous experience with this numerical approach.”'"*
In this study, setting M = 96 and L = 4 produced accurate solutions, as
further increases in M or varying L did not alter the results. Moreover,
the time step in the time-marching procedure was defined as
At = 0.1/Re, which allowed O(10*) time steps per period of
oscillation.

lll. RESULTS
A. Stokes layer

To better understand the observations of Thomas et al.'’ and
Ramage et al.' on the development of linear disturbances in the Stokes
layer, and the relation to the current investigation, we first reproduce
the stability characteristics of the family tree structure. The Stokes layer
is established by setting x = 0.5 in Eq. (5¢) for the velocity-skewed
flow. Alternatively, setting f = 0.5 in Eq. (5b) establishes the Stokes
layer but with a phase shift of 7/2. (Recall the formula for the
acceleration-skewed and velocity-skewed flows in Sec. IT A.) Figure 3
illustrates the spatiotemporal development of two linear disturbances,
impulsively excited at x;=0, with Reynolds number Re= 715, which
corresponds to linearly unstable conditions.” (Recall the critical
Reynolds number for linear instability is Re,. ~ 708.) Contours are
based on the logarithm of the absolute valued wall vorticity perturba-
tion, In|{|, and solutions are plotted in the non-dimensional
(x,7/2m)-plane, where 7/27 denotes the number of wall oscillations.
In addition, each solution is normalized on the maximum absolute
value attained during the first period of wall motion, t € [0, 27].

In Fig. 3(a), the impulse is imposed at time t = 0 for a phase shift
¢ = 0, while in Fig. 3(b), a phase shift of half a period is implemented
with ¢ = 7. The phase shift, ¢, is chosen to ensure the wall velocity at
time t =0 is Uy(0,0) = 1 in Fig. 3(2) and Us(0,0) = —1 in Fig. 3(b).
Initially, the acceleration of the oscillating wall is zero in both cases but
then passes into the deceleration phase for the former case and the
acceleration phase for the latter case. Due to the symmetry of the
Stokes layer, the half-period phase-shift between these cases results in
an exact reversal of the direction of the flow at any point in space and
time. The disturbance development presented in Fig. 3(b) is therefore
the mirror image of that shown in Fig. 3(a), reflected about a vertical
line at x=0.

Focusing on the behavior illustrated in Fig. 3(a), the initial
impulse excites a disturbance wavepacket that propagates to the right.
[The behavior is reversed in Fig. 3(b).] Subsequently, this initial parent
wavepacket births two child wavepackets during each period of wall
oscillation: one convects to the left and one to the right of the parent
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FIG. 3. Spatiotemporal contour plots of the linear disturbance in the Stokes layer
with Reynolds number Re = 715. Contours are based on the logarithm of the abso-
lute valued wall vorticity perturbation, In |¢|. Disturbances are impulsively excited at
x¢= 0 for the base flow given in Eqg. (5¢) with k = 0.5 and a phase shift (a) ¢ = 0
and (b) ¢ = 7. Solutions are normalized on maxy z¢[0.27|{|-

wavepacket. The birthing of each child wavepacket coincides with the
wall shear stress, Uy, changing sign. A negative to positive change in
the wall shear stress excites the wavepacket that convects to the right.
On the other hand, the left convecting wavepacket is brought about by
a positive to negative reversal in the wall shear stress. Each child wave-
packet births two further grandchild wavepackets, and so on, leading
to the formation of the family tree structure.

The disturbance maximum convects along those wavepackets
found on the right-hand side of the family tree formation [and the
left-hand side in Fig. 3(b)], with the temporal development of the
maximum wall vorticity, max,|(|, plotted in Fig. 4(a). There is a
small increase in the disturbance amplitude from one period of

ARTICLE pubs.aip.org/aip/pof

Assuming that disturbances display behavior consistent with
Floquet stability theory, we can derive expressions for computing tem-
poral growth rates. Disturbances have the form F(t) = exp(ut)f (1),
where F represents a disturbance field such as the wall vorticity, , f is
2n-periodic in 7, and the real part of the complex Floquet exponent, (1,
denotes the temporal growth rate. The temporal growth rate associated
with the disturbance maximum was computed using the formula

1 ! (maxxK(x,y =0,7+ 2n)|>

,le(‘[) =——In maXx|C(x7}/:0,‘L')|

gy (17)

Here, max,|{(x, 0, 7)| was measured about the mid-point of each cycle
of wall motion. The corresponding growth rate, ,, plotted in
Fig. 4(d) (solid blue line), approaches a positive value for large time, 7,
indicating linear instability. Indeed, as time increases, u,, approaches
the value of the real part of the Floquet exponent, i, obtained via the
Floquet theory.” For larger Reynolds numbers, Re, larger temporal
growth rates and stronger linearly unstable behavior ensue.

The streamwise location, Xy, of the disturbance maximum is
plotted as a function of time in Fig. 4(b). Here, blue star markers indi-
cate the corresponding x-location as measured at the mid-point of
each wall cycle and the solid line represents the line of best fit. There is
a distinct, fixed spacing between successive disturbance wavepackets,
with the maximum amplitude propagating a streamwise distance A
~ 850 units from one period of wall oscillation to the next. Moreover,
it was shown by Ramage et al.' that the streamwise spacing, A,
between all neighboring parent and child wavepackets is proportional
to the Reynolds number, Re.

In addition to the A-spacing between adjacent wavepackets, the
distance 2A corresponds to the spacing between disturbance wave-
packets of commensurate size. For instance, at time t/27 =4 in
Fig. 3(a), there are three distinct wavepackets with amplitudes of the
order In|{| ~ —5 (green-turquoise contours) located about the
streamwise positions x ~ —2000, x ~ —300, and x ~ 1400, separated
by a streamwise distance of 2A. Similarly, at the same point in time, a
second set of smaller-sized wavepackets, of the order In|{| ~ —7,
develop about the mid-point between the first set of larger-sized wave-
packets, i.e., at x & —1200, x ~ 500, and x ~ 2200. Analogous behav-
ior is observed at other points in time. Thus, aside from the
wavepacket containing the disturbance maximum that is convected
along the outermost right wavepackets, the family tree structure is
symmetric about x = 0 and characterized by a 2A-spatial periodicity.

Finally, at fixed streamwise x-locations, the disturbance exhibits
subharmonic temporal growth. This particular observation is best
demonstrated in Fig. 4(c), with the temporal development of the abso-
lute valued wall vorticity, |{|, plotted at the two fixed streamwise
x-positions, x =500 and x = 1400. On ignoring the first two cycles of
wall motion (due to transient behavior), a peak amplitude is realized
about odd-valued 7/27 at x =500, whereas a maximum amplitude is
attained for even-valued 7/27 at x = 1400. Moreover, at both stream-
wise x-locations, the amplitude increases in size every two periods.
Hence, subharmonic behavior with periodicity twice that of the basic
state emerges. Remarkably, the pointwise growth rate, p, at these fixed
x-positions is comparable with the growth rate of the disturbance max-
imum, f,,. Indeed, computing the pointwise growth rate using

wall oscillation to the next, which is a clear indication of linear 1o(T) = iln <\C(x7y =07+ 471)‘)7 (18)
instability. 4n [{(x,y = 0,7)]
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FIG. 4. Disturbance characteristics of the family tree structure presented in Fig. 3(a). (a) Temporal development of the maximum amplitude of the wall vorticity perturbation,
maxy|(|. (b) Streamwise location, Xmax, at which the maximum occurs at the mid-point of each wall cycle (blue star markers) and line of best fit (solid blue line). (c) Temporal
development of the absolute valued wall vorticity perturbation, ||, at two fixed streamwise x-locations: x =500 (solid blue) and x = 1400 (dashed red). (d) Temporal growth

rate, ., of the disturbance maximum in (a) (solid blue) and pointwise growth rate, 1, at the fixed x-locations in (c).

at x=>500 and x = 1400, establishes the dashed red line (for x = 500)
and chain yellow line (for x=1400) shown in Fig. 4(d). As time
increases, the pointwise growth rate, 11, at each location approaches a
similar (positive) value to the growth of the disturbance maximum,
U Thus, the disturbance displays absolutely unstable behavior, as
confirmed separately by Pretty, Davies, and Thomas’ using a modified
Briggs”’ and Brevdo and Bridges™* approach.

B. Acceleration-skewed Stokes layer
1. Disturbance development in the flow =0.6

Linear disturbance development in an acceleration-skewed
Stokes layer is established for the acceleration skewness parameter
f = 0.6. (Setting § = 0.4 generates the same resulting behavior as that
presented here but with the direction of disturbance development
flipped due to a reversal of the acceleration and deceleration phases of
the oscillatory wall motion.) In addition, the number of harmonics, N,
in the definition of the acceleration-skewed base flow (5b), was chosen
to be sufficiently large to ensure the asymmetric wall motion was
smooth and disturbance development unchanged by further increases

in N. Following the Floquet stability analysis undertaken by
Thomas,”>*" N = 20 harmonics were used here and for all subsequent
skewness configurations modeled.

The impulse response of two linear disturbances, excited about
x;=0, is depicted in Fig. 5 for the unstable Reynolds number
Re=635; Floquet theory”” predicts the critical Reynolds number
Re. =~ 630 for f = 0.6. In Fig. 5(a), the phase shift, ¢, is chosen to
ensure the base flow at the wall at time =0 is Ug(0,0) = 1, and in
Fig. 5(b), ¢ is set so Ug(0,0) = —1, i.e., the wall acceleration is initially
zero in both cases, but with the flow transitioning into the decelerating
phase in the former case and the accelerating phase in the latter case
(recall Fig. 2). Like those contour plots presented in Fig. 3, disturbance
development is again based on the logarithm of the absolute valued
wall vorticity, In |{|, and normalized on the maximum absolute value
attained during the first period of wall motion.

The initial response to the impulsive forcing is similar to that pre-
sented in Fig. 3 for the Stokes layer. A parent wavepacket is established
that propagates to the right in Fig. 5(a) and the left in Fig. 5(b).
Similarly, two child wavepackets are birthed by the parent that propa-
gate a spatial distance, A, to the left and right, with the birthing event
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FIG. 5. Spatiotemporal contour plots of the linear disturbance in an acceleration-
skewed Stokes layer with # = 0.6 and Reynolds number Re = 635. Contours are
based on the logarithm of the absolute valued wall vorticity perturbation, In |{|.
Disturbances are impulsively excited at x;=0 for a phase shift (a) ¢ = 1.37 and
(b) ¢ = 4.91. Solutions normalized on max, .c(o.2- || and the phase shift, ¢, is
chosen to ensure Ug(0,0) = 1in (a) and Ug(0,0) = —1in (b).

again coinciding with a reversal of the wall shear stress, Ug. However,
beyond these initial, comparable wavepacket formations, disturbance
development is distinctly different from that found for the Stokes layer.
Left propagating wavepackets dissipate and, except for two small-sized
wavepackets (one in each subplot), develop at magnitudes below the
low-amplitude cutoff, ie., In|{| < —10. In addition, despite the two
disturbances being excited at different phases of the acceleration-
skewed wall motion, only the right propagating wavepackets remain,
with the disturbance maximum passing through the right-most wave-
packets in Fig. 5(a) (dark red contours) and the second to right-most
wavepackets in Fig. 5(b) (yellow contours). Thus, disturbance develop-
ment is predominantly directed to the right. Indeed, this particular
disturbance feature was observed for other phase shifts ¢ € [0,27).

ARTICLE pubs.aip.org/aip/pof

In the case depicted in Fig. 5(b), the smaller magnitude of the distur-
bance maximum and the fact that this occurs in the second rightmost
wavepacket is a consequence of the disturbance initially propagating to
the left in the spatiotemporal plane.

Acceleration skewness, for > 0.5, increases the amplitude of
acceleration, U > during the accelerating phase of wall motion and
reduces the amplitude of Up during the decelerating phase.
Furthermore, acceleration skewness establishes a longer period of posi-
tive shear stress, Ug, at the wall [see Fig. 2(e)]. Consequently, the dis-
turbance is characterized by large-sized right propagating wavepackets
only. The reverse is true for f < 0.5. In addition, while the A-spacing
between neighboring wavepackets persists, the 2A-spatial periodicity
has vanished since all wavepackets at a given time are of different sizes.
Moreover, at fixed streamwise x-locations, the magnitude of the distur-
bance decreases, attaining values below the low-amplitude cutoff
within 5-6 periods of wall motion. Thus, the disturbance does not
exhibit pointwise temporal growth, nor the subharmonic phenomenon
previously observed for the symmetrical Stokes layer. Therefore, the
symmetry of the family tree structure is lost, and the onset of linear
instability is characterized by convective behavior rather than the abso-
lute form of instability found for the Stokes layer.

Figure 6 displays the temporal development of the disturbance
maximum, max,|(|, and the corresponding streamwise location, Xuax,
of the two disturbances plotted in Fig. 5. Similar to Fig. 4(b), the
streamwise location, Xmay, in Fig. 6(b) is plotted at the mid-point of
each wall cycle, along with the line of best fit. With the notable excep-
tion of the respective size differences in max,|{| and xy,y, due to the
phase at which each disturbance is initially excited, the long-term
trends are similar. Each disturbance maximum, max,|{|, exhibits a
marginal increase in amplitude from one period to the next, and the
corresponding location, xmay, increases by A ~ 750 after each succes-
sive period of wall motion.

Figure 5 demonstrates that the asymmetry brought about by
acceleration skewness results in the breakdown of the family tree struc-
ture. Notably, the onset of linear instability now aligns with convective
instability rather than absolute instability. To further illustrate this
behavior, additional stability characteristics are presented in Fig. 7.
Figure 7(a) displays instantaneous snapshots of the absolute valued
wall vorticity, |{|, at four successive points in time. The plot demon-
strates the propagation of the disturbance to the right with increasing
time, 7. In addition, results illustrate the pointwise decay observed at
fixed streamwise x-locations. For instance, a considerable reduction in
|| is observed at x & 1250. Similarly, at x ~ 2000 and x ~ 2750.

The wavenumber power spectra, P, of the wall vorticity, , are
plotted in Fig. 7(b). Here, P is computed by taking a Fast Fourier
Transform of the reconstructed, physical vorticity perturbation at the
wall, {(x, 0, 7), at those four times shown in Fig. 7(a). The distributions
of P are all centered about a narrowing range of wavenumbers, a, with
the peaks located about a = 0.385, which is consistent with the
Floquet stability calculations of Thomas.”’ This corresponds to a wave-
length 2 = 27/0.385 ~ 16 and is comparable with that observed for
the Stokes layer,'” with each of the larger-sized wavepackets extending
over a distance of approximately 20 wavelengths, 4.

In Fig. 7(c), the temporal development of the disturbance is plot-
ted at three streamwise locations, which coincide with the center of the
parent, child, and grandchild wavepackets to the immediate right of the
impulsive forcing. The plot demonstrates pointwise temporal decay,
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FIG. 6. Characteristics of the linear disturbance plotted in Fig. 5, with 5 = 0.6 and Re = 635. (a) Temporal development of the maximum amplitude of the wall vorticity pertur-
bation, max,|{|. (b) Streamwise location, Xmax, at which the maximum occurs at the mid-point of each wall cycle (star and diamond markers) and the lines of best fit (solid and
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with the amplitude of the disturbance decreasing by several orders of
magnitude over the time interval shown. Moreover, the pointwise tem-
poral growth rate, u, at these fixed streamwise locations, approaches a
negative value of y, ~ —0.1 for large time, 7/27, compared with the
positive-valued temporal growth rate, i,,, obtained for the disturbance
maximum [see Fig. 7(d)]. In addition, the subharmonic behavior
observed for the Stokes layer is replaced with periodic decay at
x=1250 and x = 2000, and a half-periodic decay at x = 500.

Further disturbance development was simulated for ff = 0.6 at
higher, linearly unstable Reynolds numbers. The aim being to deter-
mine whether absolute instability emerges at larger Reynolds numbers
or if the convective behavior persists. Figure 8 depicts the wavepacket
formations for the Reynolds numbers Re = 650 and Re = 675, with the
phase shift, ¢, again set to 1.37 to ensure Ug(0,0) = 1. In both instan-
ces, the disturbance exhibits convectively unstable behavior, as each
parent wavepacket gives rise to larger-sized right-propagating wave-
packets, indicating strong temporal growth. As before, left propagating
wavepackets develop at magnitudes below the low-amplitude cutoff.
Moreover, the disturbance is similarly diminished at fixed streamwise
x-locations, with the size of the disturbance less than the low-
amplitude cutoff within one or two periods of wall motion. Thus, dis-
turbances are again characterized by pointwise temporal decay and
convective instability, even at these relatively large Reynolds numbers.

2. Onset of linear instability

The temporal development of the disturbance maximum is illus-
trated in Fig. 9 for four Reynolds numbers, from Re =600 through to
Re=675, with the acceleration skewness parameter again given as
f = 0.6. A noticeable reduction in the disturbance amplitude emerges
at Re=600 and a notable growth at Re =650 and Re = 675. The tem-
poral growth rate, y,,, associated with each disturbance maximum was
computed via Eq. (17). The large time asymptotic values of f,, (as
measured at time /27 = 10) for § = 0.6 are indicated by red circular
markers in Fig. 10(a), with the red dashed line representing the line
of best fit. In addition, similar results are shown for the Stokes layer
f =05 (blue solid line and star markers) and the stronger
acceleration-skewed flow f = 0.75 (yellow chain line and square

markers). In each case, the temporal growth rate exhibits an almost lin-
ear increase with the Reynolds number, Re, like that shown in
Blennerhassett and Bassom® and Thomas et al,”” with the onset of lin-
ear instability (i.e.,, i, = 0) consistent with the Floquet stability calcu-
lations.”  Furthermore, Fig. 10(a) highlights the significant
destabilizing effect due to acceleration skewness, with the critical
Reynolds number, Re,, decreasing as f§ increases.

Table I compares the critical Reynolds numbers, Re,, as computed
from Fig. 10(a), with the results of the Floquet theory.25 The Re. values
are consistent across both methods, providing validation for the cur-
rent numerical approach. The minor differences in Re, can be attrib-
uted to the finite simulation time for disturbance development, and
with longer numerical simulations, we would expect these differences
to diminish.

Figure 10(b) displays the streamwise distance, A, between neigh-
boring disturbance wavepackets in the spatiotemporal plane, as a func-
tion of the Reynolds number. Solutions are given for those acceleration
skewness, f3, and Reynolds numbers, Re, modeled in Fig. 10(a). In each
instance, A increases linearly with Re, with nearly identical gradients.
However, at fixed Reynolds numbers, the distance A between adjacent
wavepackets decreases as [ increases. Specifically, A is approximately
20 and 60 streamwise units greater in the case of the Stokes layer,
f = 0.5, compared to the acceleration-skewed flows ff = 0.6 and
p = 0.75, respectively. Thus, as the acceleration skewness of the oscil-
latory flow increases, the distance between adjacent wavepackets
decreases.

3. Disturbance development for flows c[0.5, 0.54]

The above results indicate that the onset of linear instability in
acceleration-skewed Stokes layers corresponds to convective instability.
However, it is unclear whether this behavior persists for all Reynolds
numbers, Re, or if absolute instability eventually sets in. In the case
P = 0.6, the analysis was limited to Reynolds numbers Re < 675 due
to the considerable temporal growth rate, 1, observed at large Re.
Indeed, in Fig. 8(b), wavepackets attained amplitudes large enough to
induce significant round-off errors that limited the analysis to the first
six periods of wall motion. Thus, extending disturbance development
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FIG. 7. Characteristics of the linear disturbance plotted in Fig. 5(a), with = 0.6,
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(d) Temporal growth rate, 1, along the disturbance maximum (solid blue lin), and point-
wise growth rate, 11, at the three fixed x-locations given in (c).

beyond that illustrated above proved very difficult. Moreover, it was
impossible to establish distinct wavepacket structures in the spatiotem-
poral plane at Re > 675 or accurately trace the pointwise evolution of
the disturbance.

ARTICLE pubs.aip.org/aip/pof

In an attempt to predict the behavior of disturbances at large
Reynolds numbers, Re, and ascertain whether the loss of the family
tree structure occurs immediately following the introduction of accel-
eration skewness, further disturbances were simulated for acceleration-
skewed flows f € [0.5,0.54]. Figure 11 depicts spatiotemporal contour
plots for f=0.5 (ie, the Stokes layer), f = 0.52, and f = 0.54.
Solutions on the left correspond to Re=700, and the right to
Re=715. Contour plots reaffirm several stability features brought
about by acceleration skewness. First, acceleration skewness induces a
significant destabilizing effect, with disturbances for ff = 0.54 [see
Figs. 11(e) and 11(f)] attaining considerably larger amplitudes than
those realized for f = 0.5 [see Figs. 11(a) and 11(b)]. Second, the sym-
metry of the family tree structure, including the 2A-spatial periodicity
between similar-sized wavepackets, disappears following the applica-
tion of acceleration skewness, with disturbance development predomi-
nantly directed to the right and along the positive x-direction. This is
especially true for those cases plotted on the left of Fig. 11. For
Re=700 and f§ = 0.52 and § = 0.54 [see Figs. 11(c) and 11(e)], the
left propagating wavepackets diminish in size and shrink below the
low-amplitude cutoff. In addition, these disturbances exhibit pointwise
temporal decay.

A significant change in behavior occurs at the larger Reynolds
number Re =715 [see Figs. 11(d) and 11(f)]. Wavepackets propagating
to the left no longer diminish but instead grow in size, albeit at ampli-
tudes less than those wavepackets propagating to the right. Moreover,
solutions exhibit a pointwise temporal growth at fixed streamwise
x-locations. For instance, in Fig. 11(f), the disturbance amplitude at
x=—360 grows every two periods of wall motion. Similarly, at
x=—1250 and x=500. Thus, subharmonic pointwise temporal
growth emerges.

Further evidence of the subharmonic phenomenon and pointwise
temporal growth for > 0.5 is presented in Fig. 12. The temporal
development of the disturbance maximum, max,|(|, and the size of |(]
at the fixed streamwise locations x = 500 and x = —360, are plotted for
those acceleration skewness, f3, and Reynolds numbers, Re, modeled in
Fig. 11. The evolution of the disturbance maxima, as depicted in
Figs. 12(a) and 12(b), further demonstrates the destabilizing effect due
to acceleration skewness. At the streamwise location x = 500, the tem-
poral evolution of the disturbance is shown to be almost identical in all
cases considered [see Figs. 12(c) and 12(d)]. On the time interval
shown, disturbances exhibit comparable amplitudes and subharmonic
behavior, with pointwise temporal growth observed at Re=715.
Moreover, similar behavior emerges at x=- 360 [see Figs. 12(¢) and
12(f)], albeit with a reduction in the disturbance amplitude as the
acceleration skewness parameter, B, increases. However, in contrast to
the behavior shown for the Stokes layer, notable differences emerge
between the pointwise growth rate, o, and the temporal growth rate
along the disturbance maximum, p,,,, for the acceleration-skewed flows
p = 0.52 and f§ = 0.54. As shown in Fig. 13, the size of u,, (measured
at large time, 7) associated with these two acceleration-skewed flows is
significantly greater than the corresponding i, with the latter positive
for Re=715. Hence, disturbances associated with flows f = 0.52 and
f = 0.54 are absolutely unstable for the Reynolds number Re =715,
albeit with a pointwise temporal growth rate less than that associated
with the disturbance maximum.

Thus, acceleration-skewed flows f € (0.5,0.54] display both
convective and absolute instability. The onset of linear instability
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coincides with convective instability at a Reynolds number, Re,, less
than that found for the Stokes layer, ie, Re. < Re,. = 708.
Convectively, unstable behavior prevails on a finite interval of
Reynolds numbers before absolute instability emerges for Re ~ Re;.

Whether the latter observation holds for acceleration-skewed

flows

f > 0.54 is difficult to quantify due to the significant numerical diffi-
culties outlined earlier. However, given the form of the base flow (5b),
we predict that absolute instability will occur for a Reynolds number
Re > Re, . =~ 708 > Re.. The acceleration-skewed base flow (5b) can

be decomposed as

Ug(y,7; ) = yre 7sin(t + ¢ — y)

Reynolds numbers. Indeed, we might expect absolute instability to
develop for Reynolds numbers, Re, near Re./o. Given the slow
variation in a for acceleration-skewed flows (see Fig. 1), this would
explain why absolutely unstable behavior emerges for flows = 0.52
and f§ = 0.54 at Reynolds numbers Re ~ Re; .

Figure 14(a) plots the critical Reynolds number, Re,, for the
onset of linear instability and convectively unstable behavior
(solid blue line), along with the predicted Reynolds number Re
= Re, /o for the emergence of absolute instability (dashed red),
as a function of the acceleration skewness parameter, 5. The dot-
ted horizontal line marks the onset of linear instability in the
Stokes layer. [Figure 14(b) depicts equivalent behavior for the
velocity-skewed base flow (5¢), which is discussed in more detail
in Sec. [11 C.]

N
+ Zynef‘/;}’ sin(n(t + ¢) —Vny),  (19)
n=2

where y, = o < 1, ie., the base flow is a linear combination of the
scaled Stokes layer (which exhibits absolute instability for Re = Re )
and higher-order frequency oscillations. Consequently, due to the line-
arity of the problem, we might anticipate the emergence of absolute
instability for all acceleration-skewed flows at sufficiently high
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FIG. 9. Temporal development of the maximum amplitude of the wall vorticity per-

turbation, max,|¢|, with # = 0.6 and ¢ = 1.37.

FIG. 10. (a) Large time asymptotic values of the temporal growth rate, p,,, along
the disturbance maximum and (b) streamwise distance, A, between neighboring
wavepackets as a function of Re. The acceleration skewness parameter # = 0.5
(solid blue line), f = 0.6 (dashed red), and 3 = 0.75 (chain yellow).
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TABLE . Critical Reynolds numbers, Re,, for linear instability, with the equivalent Floquet stability calculations given in brackets.”***
f=Kk=05 p=0.6 p=0.75 K=0.6 K =0.75
Re, 708.3 (707.8) 631.5 (630.1) 550.2 (548.7) 747.8 (746.1) 881.5 (879.6)
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FIG. 12. Temporal development of (a) and (b) the maximum amplitude of the wall vorticity, max,|(|, (c) and (d) || at the fixed streamwise location x =500, and (e) and (f) |¢|
at x=-360. The Reynolds number Re =700 in (a), (c), and (e) and Re =715 in (b), (d), and (f). The acceleration skewness and phase shift (5, ¢) = (0.5, 7/2) (solid blue

lines), (B, ¢) = (0.52, 1.49) (dashed red), and (3, ¢) = (0.54, 1.41) (dotted yellow).

4. Discussion

The above analysis demonstrates the disruptive impact of acceler-
ation skewness on the symmetry of the family tree structure. Pointwise
temporal growth is negated, and the onset of linear instability coincides
with convective instability, with absolute instability emerging at larger
Reynolds numbers. Such observations are expected, given that acceler-
ation skewness establishes asymmetric oscillatory motion and thereby
eliminates the antiperiodic nature of the flow. In the absence of

acceleration skewness, the Stokes layer is periodic with period 27 and
antiperiodic with period 7, meaning Up(y,t + 27) = Ug(y, 1) and
Up(y,7+ n) = —Up(y, ), which implies there is no distinction
between the negative (i.e., motion to the left) and positive (i.e., motion
to the right) x-directions. Conversely, acceleration-skewed flows
are not antiperiodic, with Ug(y,7+ m) # —Ug(y, 7). Thus, the
behavior along the negative and positive x-directions is no longer
equivalent.
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FIG. 13. Large time asymptotic values of the temporal growth rate, s, along the
disturbance maximum (solid lines and star markers), and large time asymptotic
pointwise growth rate, 1, at fixed streamwise locations (dashed lines and square
markers), for acceleration-skewed flows # = (0.5,0.52,0.54) and Reynolds num-
bers Re =700 (blue) and Re = 715 (red).

In acceleration-skewed flows f§ > 0.5, disturbance development
is predominantly directed to the right and along the positive x-direc-
tion. For this family of flows, acceleration skewness induces a flow
characterized by short periods of strong accelerating flow with long
periods of weak decelerating flow, as illustrated in Fig. 2(c). Moreover,
acceleration-skewed flows feature longer and shorter intervals of posi-
tive and negative shear stress, respectively [see Fig. 2(e)].
Consequently, regardless of the timing of the impulsive forcing, distur-
bance development is primarily directed along the positive x-direction
for acceleration-skewed Stokes layers f§ > 0.5. The reverse is true for
p < 0.5.

C. Velocity-skewed Stokes layer

The analysis of Sec. III B is extended to velocity-skewed flows (5¢)
specified by the velocity skewness parameter, x. For x > 0.5, this
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FIG. 14. Critical Reynolds numbers, Re,, for linear instability”*** (solid blue lines),

predicted Reynolds number Re = Res /o for the onset of absolute instability
(dashed red), and Res . = 708 for the Stokes layer (dotted black). (a) Acceleration-
skewed flows, f3, and (b) velocity-skewed flows, .
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family of oscillatory flows is characterized by short intervals of high,
positive velocity and extended intervals of low, negative velocity.
Moreover, much like the acceleration-skewed flows f8 > 0.5, the
velocity-skewed flow experiences longer intervals of positive-valued
shear stress (see Fig. 2). The reverse is true for k < 0.5. Figure 15 dis-
plays the spatiotemporal development of two disturbances impulsively
excited at x;=0 for ¥ = 0.6 and the unstable Reynolds number
Re=746. (Recall that velocity skewness is stabilizing and raises the
critical Reynolds number, Re,, for linear instability.”) The phase shift,
¢, in Eq. (5¢), is again chosen to ensure Ug(0,0) = 1 in Fig. 15(a) and
Up(0,0) = —1 in Fig. 15(b). Much like those acceleration-skewed
flows modeled above, disturbance development is directed to the right,
corresponding to the direction that the velocity attains a peak value.
Although each disturbance displays unstable behavior, with the distur-
bance maximum passing through the right-most wavepackets in
Fig. 15(a) and second to right in Fig. 15(b), each disturbance exhibits
pointwise temporal decay at fixed streamwise x-locations.
Consequently, similar to the acceleration-skewed flows, the onset of
linear instability coincides with convective instability.

Additional disturbances (not shown here) were simulated at
higher Reynolds numbers (750 < Re < 800) for k = 0.6. However, in
each case, convectively unstable behavior prevailed. Like the study into
acceleration-skewed flows, establishing disturbance development at
higher Reynolds numbers was difficult due to the considerable tempo-
ral growth observed along the disturbance maximum. Nevertheless,
recognizing that velocity-skewed flows (5¢) can be decomposed into a
form comprising a scaled Stokes layer with higher-order frequency
oscillations akin to Eq. (19), we predict that absolute instability is likely
to emerge for a Reynolds number Re near Re; /o, where
Re; /o0 > Re. > Re, ~ 708. (See the solid blue and dashed red lines
in Fig. 14(b) for Re. and Res/a, respectively.) Given the rapid varia-
tion in o for velocity-skewed flows (see Fig. 1), we might expect abso-
lute instability to appear for Re = Re;./o ~ 885 for x =0.6. A
significantly higher Reynolds number than what we could accurately
simulate for this velocity-skewed flow.

For the weaker velocity-skewed flow x = 0.52, disturbances were
established for Reynolds numbers Re = (700, 725, 750) to test the via-
bility of our approach in predicting the onset of absolute instability.
Figure 16 plots the large time asymptotic temporal growth rate, i,,, of
the disturbance maximum (star markers), along with the large time
asymptotic pointwise growth rate, po, at fixed x-locations (square
markers). A line of best fit connects each set of markers. The two verti-
cal chain lines indicate the critical Reynolds number, Re,, for linearly
unstable behavior (as computed via Floquet theory”*) and the pre-
dicted Reynolds number, Re; ./, for absolute instability. The point-
wise growth rate, p, increases linearly with the Reynolds number, Re,
with a positive-valued i, realized for Re &~ Re; /0. Thus, Re ~ Re; /o
gives a reasonable estimate for absolute instability, at least for weak
velocity-skewed flows.

Figure 17 displays the variation in the large time asymptotic tem-
poral growth rate, u,,, and the corresponding streamwise distance, A,
between neighboring wavepackets in the spatiotemporal plane, as a
function of the Reynolds number, Re. Solutions are matched to the
velocity-skewed flows x = 0.5 (ie, Stokes layer), x = 0.6, and
Kk = 0.75. Results demonstrate the significant stabilizing effect due to
velocity skewness, with the critical Reynolds numbers, Re,, agreeing
with Floquet stability calculations™ (see Table I). In addition, similar
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FIG. 15. Spatiotemporal contour plots of the linear disturbance in a velocity-skewed Stokes layer with k = 0.6 and Reynolds number Re = 746 and phase shift (a) ¢ = 0 and
(b) ¢ = m/2. Contours are based on the logarithm of the absolute valued wall vorticity perturbation, In |, and normalized on maxy - (021 |{|-

to the acceleration-skewed flow, the distance A increases linearly with
Re and decreases with k. However, the reduction in A is far more pro-
nounced for these velocity-skewed flows compared with those
acceleration-skewed flows plotted in Fig. 10.

IV. CONCLUSIONS

A numerical study has been undertaken on the evolution of
two-dimensional, linear disturbances impulsively excited in
acceleration-skewed and velocity-skewed Stokes layers. This extends
earlier investigations based on Floquet theory,”** with the aim to
determine whether linearly unstable behavior corresponds to convec-
tive or absolute instability. It is well-established that linear disturbances
in the symmetric Stokes layer are characterized by a family tree wave-
packet structure and subharmonic phenomena, with the onset of linear
instability coinciding with absolute instability.""’

Following the methodology of Ramage et al,' we numerically
simulated disturbance development and analyzed the effects of skew-
ness. Both acceleration and velocity skewness were found to disrupt
the family tree wavepacket formation, with disturbances primarily con-
vecting in the direction of the highest acceleration or highest velocity.
For acceleration-skewed flows characterized by the skewness

0.2

700 725 750
Re

FIG. 16. Large time asymptotic temporal growth rate, u, along the disturbance
maximum (solid line and star markers), and large time asymptotic pointwise growth
rate, 1, at fixed streamwise locations (dashed line and square markers), for the
velocity-skewed flow x = 0.52 and Reynolds numbers Re =700, Re =725, and
Re =1750. The vertical chain lines indicate the critical Reynolds number, Re,, for
the onset of linear instability” and the predicted Reynolds number, Res/, for
absolute instability.

parameter f, linear disturbances in flows > 0.5 were directed to the
right, regardless of the phase that disturbances were initially excited.
The same was true for velocity-skewed flows x > 0.5, with disturban-
ces propagating to the left for flows matched to f < 0.5 or k < 0.5.

At the onset of linear instability, the pointwise, subharmonic
temporal growth observed for the Stokes layer' was replaced by point-
wise temporal decay. In contrast to the symmetric Stokes layer, where
critical linear instability coincides with absolute instability, disturban-
ces in acceleration-skewed and velocity-skewed oscillating flows exhib-
ited convectively unstable behavior. Nonetheless, results suggest that
convective instability is only prevalent on a finite interval of Reynolds
numbers, and absolute instability eventually emerges at sufficiently
large Reynolds numbers. However, the pointwise temporal growth
is significantly less than that associated with the disturbance
maximum.
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FIG. 17. (a) Large time asymptotic temporal growth rate, s, along the disturbance
maximum, and (b) streamwise distance, A, between neighboring wavepackets as a
function of Re. The velocity skewness parameter x = 0.5 (solid blue line), x = 0.6
(dashed red), and x = 0.75 (chain yellow).
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The above study focused on two-dimensional linear disturbances,
neglecting three-dimensional and nonlinear effects. In addition to
growing or decaying over one period of oscillation (as determined by
the Floquet exponent, 1), linear disturbances can experience intervals
of substantial growth during the wall motion, leading to large varia-
tions in magnitude. Consequently, maintaining disturbances at a level
small enough to prevent nonlinearity poses a significant challenge.
Indeed, experimental investigations on the symmetric Stokes layer
show that transition to turbulence occurs at Reynolds numbers consid-
erably lower than those associated with the onset of linear instabil-
ity.].%—lx

Vittori and co-workers'*'* demonstrated that transition to tur-
bulence can be initiated by a resonance mechanism, where wall imper-
fections amplify disturbance growth during certain phases of the wall
motion. They identified four flow regimes, with each occurring before
the onset of the Floquet linear instability: a laminar regime and a dis-
turbed laminar regime where the flow is locally unstable during parts
of the oscillatory cycle, followed by an intermittently turbulent regime
and a fully developed turbulent regime. Using a momentary stability
criterion (or quasi-steady flow approximation),”” Blondeaux and
Vittori*® determined the Reynolds number range in which the Stokes
layer experiences these four regimes.

Thomas et al.”* proposed an alternative strategy to model the
oscillatory flow by superimposing the Stokes layer with a low-
amplitude, high-frequency harmonic. This approach aimed to rep-
licate experimental imperfections that introduce low-level noise
into an otherwise purely sinusoidal oscillatory motion. A Floquet
analysis based on this modulated oscillatory flow revealed that the
critical Reynolds number for linear instability was reduced by half,
aligning the theoretical predictions with experimental
observations.

Future investigations of skewed oscillatory flows could build
upon the results of this study and the aforementioned earlier works by
exploring three-dimensional and nonlinear effects and high-frequency
modulation.
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