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Abstract: 

Engineer-to-order (ETO) supply chains, common in industries such as shipbuilding and capital 

goods manufacturing, face unique challenges due to customization and project-based designs, 

leading to high uncertainty, cost overruns, and delays. This highlights the need for resilience 

improvement. While system dynamics (SD) archetypes are well-established for make-to-stock, 

make-to-order, and assemble-to-order systems, an ETO-SD model is lacking.  

The thesis aims to create a resilient ETO systems archetype to improve its performance under 

various rework scenarios. It finds that a holistic order book controller can maintain desired lead 

times despite rework and disturbances. Critical sable conditions across archetypes with 

different rework ratios show that longer lead times negatively impact system stability. 

Additionally, the study quantifies the ‘Think Slow Act Fast’ theory, demonstrating that it can 

reduce overall lead times and production subsystem costs, with a slight increase in design 

subsystem costs. The research also examines how order book parameters affect system 

resilience, recommending optimal order book controller settings for different rework ratios, 

which form a 'bathtub-like' curve as rework ratios increase. 

This thesis significantly advances the field by developing a comprehensive suite of ETO-SD 

archetypes, filling a critical gap in existing literature. It provides a deeper understanding of 

dynamic behaviours in ETO systems, particularly how they respond to disturbances and rework, 

and extends the application of SD models to ETO environments. 
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Practically, this research offers actionable solutions for resilience improvement in ETO 

industries, including effective capacity planning through system parameter selection, strategies 

to mitigate rework effects, and methods to minimize system dynamics variance, thereby 

enhancing both efficiency and effectiveness. These contributions offer practical tools and 

strategies directly applicable to real-world ETO environments, bridging the gap between theory 

and practice. 

Keywords: System Dynamics; Control Theory; Stability Analysis; Frequency Analysis, 

Project Management, Rework 

 

 

 

 

 

 

 

 

 



iv 

 

Publications 

Zhou, Yuxuan, Wang, Xun, Gosling, Jonathan and Naim, Mohamed 2023. The system 

dynamics of engineer-to-order construction projects: past, present, and future. Journal of 

Construction Engineering and Management 149 (5) 10.1061/JCEMD4.COENG-12926 

Zhou, Yuxuan, Wang, Xun, Naim, Mohamed M.  and Gosling, Jonathan 2022. A system 

dynamics archetype to mitigate rework effects in engineer-to-order supply chains. International 

Journal of Production Economics 250, 108620. 10.1016/j.ijpe.2022.108620 

  



v 

 

Table of content 

Chapter 1 Introduction ........................................................ 1 

1.1 Background ........................................................................................................3 

1.1.1 ETO Systems ...............................................................................................4 

1.1.2 Resilience in ETO context ...........................................................................7 

1.1.3 System Dynamics ........................................................................................8 

1.2 Research Gaps ....................................................................................................9 

1.2.1 Research Gap One: The Absence of an ETO Archetype for Aggregated 

Planning ..................................................................................................................9 

1.2.2 Research Gap Two: Foundational Dynamic Analysis of ETO Systems ...... 13 

1.2.3 Research Gap Three: Resilience Analysis of ETO Systems ........................ 14 

1.2.4 Research Motivation .................................................................................. 15 

1.3 Research Objectives ......................................................................................... 17 

1.3.1 Objective 1 ................................................................................................ 18 

1.3.2 Objective 2 ................................................................................................ 19 

1.3.3 Objective 3 ................................................................................................ 21 

1.4 Road Map ........................................................................................................ 24 



vi 

 

1.5 Summary .......................................................................................................... 28 

Chapter 2 Literature Review ............................................. 29 

2.1 ETO Systems ................................................................................................... 30 

2.1.1 An Overview of the ETO System............................................................... 30 

2.1.2 ETO and CODP ......................................................................................... 34 

2.1.3 Non-conformance and Rework .................................................................. 39 

2.2 Application of SD in the ETO Field.................................................................. 44 

2.2.1 An Overview of SD and CT ....................................................................... 45 

2.2.2 Literature Review Process ......................................................................... 46 

2.2.3 Findings from the Descriptive Analysis ..................................................... 54 

2.2.4 Findings from the Categorization ............................................................... 59 

2.2.5 Review of the Aggregate level Planning Group.......................................... 61 

2.2.6 Review of the Pre-project Phase ................................................................ 64 

2.2.7 Review of the Project Execution Phase ...................................................... 67 

2.2.8 Review of the Post-Delivery Phase ............................................................ 71 

2.2.9 Cross-phase Research ................................................................................ 73 

2.2.10 Summary of the section 2.2 ................................................................. 74 



vii 

 

2.3 Production System Resilience .......................................................................... 76 

2.3.1 The Meaning of Resilience within an ETO System .................................... 76 

2.3.2 Measurement of Resilience ........................................................................ 81 

2.4 Reduce the Impact of Rework: ‘Think Slow, Act Fast’ ..................................... 85 

2.5 Summary of Research Gaps .............................................................................. 86 

Chapter 3 Methodology ..................................................... 88 

3.1 Research Philosophy and Paradigm .................................................................. 88 

3.1.1 Research Philosophy and Paradigm in Production System Management .... 89 

3.1.2 The Research Paradigm of this Thesis........................................................ 90 

3.2 Research Methods and Tools ............................................................................ 90 

3.2.1 Mathematical Modelling ............................................................................ 91 

3.2.2 Simulation: SD Approach .......................................................................... 92 

3.3 Research Design ............................................................................................... 93 

3.3.1 The Design of the ETO Archetype ............................................................. 95 

3.3.2 ETO Archetype Dynamic Analysis ............................................................ 99 

3.3.3 The ETO Resilience Study ....................................................................... 107 

3.3.4 Syntheses of the Results .......................................................................... 111 



viii 

 

3.4 Summary ........................................................................................................ 114 

Chapter 4 ETO Archetype Design and Modelling ......... 115 

4.1 ETO System Structure .................................................................................... 115 

4.2 Key Elements ................................................................................................. 118 

4.3 Rework Scenarios........................................................................................... 120 

4.4 Conceptual Modelling .................................................................................... 122 

4.4.1 Model Assumptions ................................................................................. 124 

4.4.2 CLD Modelling ....................................................................................... 126 

4.5 Mathematical Modelling ................................................................................ 135 

4.5.1 ETOAR#P Order Book Controller ........................................................... 135 

4.5.2 ETOAR#D Order Book Controller .......................................................... 150 

4.5.3 ETOAR#PTD Order Book Controller ...................................................... 166 

4.5.4 Modelling Summary ................................................................................ 183 

4.6 Lead Time Linearisation ................................................................................. 185 

4.6.1 ETOAR#P Result Comparison ................................................................ 186 

4.6.2 ETPAR#D Result Comparison ................................................................ 191 

4.6.3 ETOAR#PTD Result Comparison ........................................................... 195 



ix 

 

4.6.4 Lead Time Linearisation Summary .......................................................... 200 

4.7 Summary ........................................................................................................ 201 

Chapter 5 Dynamic Analysis of the ETO Archetype Family

 …………………………………………………………...202 

5.1 Transfer Function ........................................................................................... 202 

5.2 Frequency Domain Analysis ........................................................................... 210 

5.2.1 ETOAR#P Production Rework ................................................................ 211 

5.2.2 Result Analysis ........................................................................................ 221 

5.2.3 Summary of Section 5.2........................................................................... 228 

5.3 Stability Analysis ........................................................................................... 230 

5.3.1 Low-order System Stability Analysis ....................................................... 232 

5.3.2 High-order System Stability Analysis ...................................................... 236 

5.3.3 A Summary of the Stability Analysis ....................................................... 240 

5.4 Summary ........................................................................................................ 241 

Chapter 6 ETO Resilience ............................................... 243 

6.1 PSE Contour Map .......................................................................................... 243 

6.1.1 Contour Map ........................................................................................... 244 



x 

 

6.1.2 Exploration of the Transient Responses ................................................... 250 

6.1.3 Summary of Findings .............................................................................. 254 

6.2 Proportional Controller’s Role in Resilience Improvement ............................. 256 

6.2.1 A Wider Scope ........................................................................................ 256 

6.2.2 A Narrowed-Down Scope ........................................................................ 270 

6.3 Analysis of Results ......................................................................................... 275 

6.4 How to Select ‘Good’ τOB for Resilience Enhancement .................................. 279 

6.5 Summary ........................................................................................................ 282 

Chapter 7 Implications and Sensitivity Analysis ........... 284 

7.1 Value Determination for τOB ........................................................................... 285 

7.1.1 Result Synthesis ...................................................................................... 285 

7.1.2 The Implication of τOB: Aggregate Planning and MRL/MRC ................... 288 

7.2 Sensitivity Analysis ........................................................................................ 290 

7.2.1 Sensitivity Analysis on the Subsystems’ Lead Time Change .................... 293 

7.2.2 Sensitivity Analysis on the Rework Scheduling Time .............................. 299 

7.2.3 Sensitivity Analysis of Different Rework Types ...................................... 301 

7.2.4 Summary for Section 7.2 ......................................................................... 302 



xi 

 

7.3 Think Slow, Act Fast ...................................................................................... 305 

7.3.1 Experiment Process ................................................................................. 306 

7.3.2 Archetype Development of ETOAR#D+X and ETOAR#U ...................... 309 

7.3.3 Model Simulation .................................................................................... 316 

7.3.4 Findings from Experiment A ................................................................... 318 

7.3.5 Findings from Experiment B .................................................................... 319 

7.3.6 Summary for Section 7.3 ......................................................................... 323 

7.4 Summary ........................................................................................................ 324 

Chapter 8 Discussion ........................................................ 326 

8.1 Insights from the Development of the ETO Archetype ................................... 329 

8.1.1 Summary of Findings .............................................................................. 329 

8.1.2 Discussion ............................................................................................... 331 

8.2 Insights from the Dynamic Performance Assessment...................................... 335 

8.2.1 Summary of Findings .............................................................................. 335 

8.2.2 Discussion ............................................................................................... 337 

8.3 Insight from the ETO Resilience Measurement............................................... 344 

8.3.1 Summary of Findings .............................................................................. 344 



xii 

 

8.3.2 Discussion ............................................................................................... 345 

8.4 Implications ................................................................................................... 347 

8.5 Summary ........................................................................................................ 351 

Chapter 9 Conclusion and Future Research Agenda .... 353 

9.1 Theoretical Contributions ............................................................................... 353 

9.1.1 The Contribution from Addressing Research Objective 1 ......................... 354 

9.1.2 The Contribution from Addressing Research Objective 2 ......................... 358 

9.1.3 The Contribution from Addressing Research Objective 3 ......................... 362 

9.1.4 Summary of Theoretical Contribution ...................................................... 367 

9.2 Contribution to Practice .................................................................................. 368 

9.2.1 Practical Implications from Addressing Research Objective 1.................. 368 

9.2.2 Practical Implications from Addressing Research Objective 2.................. 372 

9.2.3 Practical Implications from Addressing Research Objective 3.................. 373 

9.3 Limitations and Future Research Agenda of Model Development................... 374 

9.3.1 Limitations .............................................................................................. 375 

9.3.2 Future Research Agenda .......................................................................... 375 

9.4 Limitation and Future Research Agendas for Dynamic Analysis..................... 377 



xiii 

 

9.4.1 Limitations .............................................................................................. 378 

9.4.2 Future research agendas ........................................................................... 378 

9.5 Limitations and Future Research Agenda for Resilience ................................. 379 

9.5.1 Limitations .............................................................................................. 379 

9.5.2 Future Research Agenda .......................................................................... 381 

Appendix ………………………………………………...431 

A.1 Bode Plots ............................................................................................................ 431 

ETOAR#D Internal Design Rework .................................................................... 431 

ETOAR#PTD External Design Rework .............................................................. 438 

A.2 Verification .......................................................................................................... 444 

A.3 Sensitive Analysis ................................................................................................ 451 

Sensitivity Analysis on the Lead Time Change. ................................................... 451 

Sensitivity Analysis on the Rework Scheduling Time. ......................................... 462 

 

 

 

 



xiv 

 

List of Figures  

Figure 1.1 Scope of the research .....................................................................................4 

Figure 1.2 Relationship among the research’s aim, gaps, and objectives ........................ 17 

Figure 1.3 Thesis roadmap ............................................................................................ 25 

Figure 2.1: Relationship of non-conformance and rework [source: Author’s own work] 40 

Figure 2.2 The literature review process ........................................................................ 47 

Figure 2.3 Citation network produced by Vosviewer ..................................................... 54 

Figure 2.4 Publications trend from 1985 to 2022 ........................................................... 55 

Figure 2.5 A summary of the distribution of sampled literatures.................................... 60 

Figure 2.6 A conceptual SD model for project management (Lyneis and Ford 2007) .... 71 

Figure 2.7 The trade-off between lead time flexibility and volume flexibility, adapted from 

Wikner et al. (2007). ............................................................................................. 80 

Figure 2.8 An example of a resilience curve, illustrating the work rate dynamics across the 

preparation, response, and recovery stages of the system during a disturbance....... 82 

Figure 3.1 The research process for archetype development .......................................... 95 

Figure 3.2 Two-dimensional experiment ..................................................................... 113 

Figure 4.1 CLD for ETOAR#P ................................................................................... 132 



xv 

 

Figure 4.2 CLD for ETOAR#D ................................................................................... 134 

Figure 4.3 CLD for ETOAR#PTD .............................................................................. 135 

Figure 4.4 Experiment 1: A candidate ETO archetype with a local controller. ............. 136 

Figure 4.5 ETOAR#P experiment 1, scenario 1: Order Book transient state outputs, with 

local order book controller and rework ratio = 0 .................................................. 140 

Figure 4.6 ETOAR#P experiment 1, scenario 1: Lead time transient state outputs, with 

local order book controller and rework ratio = 0 .................................................. 140 

Figure 4.7 ETOAR#P experiment 1, scenario 2: Order book transient state outputs, with 

local order book controller and rework ratio = 0.2 ............................................... 141 

Figure 4.8 ETOAR#P experiment 1, scenario 2: Lead time transient state outputs, with 

local order book controller and rework ratio = 0.2 ............................................... 142 

Figure 4.9 Experiment 2: A candidate ETO archetype with a holistic controller .......... 144 

Figure 4.10 ETOAR#P experiment 2, scenario 1: Lead time transient state outputs, with 

whole-system order book controller and rework ratio = 0 .................................... 145 

Figure 4.11 ETOAR#P experiment 2 scenario 1: Transient state outputs, with whole-

system order book controller and rework ratio = 0 ............................................... 146 

Figure 4.12 ETOAR#P experiment 2, scenario 2: Order book transient state outputs, with 

whole-system order book controller and rework ratio = 0.2 ................................. 147 



xvi 

 

Figure 4.13 ETOAR#P experiment 2, scenario 2: Lead time transient state outputs, with 

whole-system order book controller and rework ratio = 0.2 ................................. 147 

Figure 4.14 The work rate transient response of the ETOAR#P ................................... 150 

Figure 4.15 Experiment 1—a candidate ETO archetype with a local controller and design 

rework. ................................................................................................................ 151 

Figure 4.16 ETOAR#D experiment 1, scenario 1: Order book transient state outputs, with 

local order book controller and rework ratio = 0 .................................................. 154 

Figure 4.17 ETOAR#D experiment 1, scenario 1: Lead time transient state outputs, with 

local order book controller and rework ratio = 0 .................................................. 155 

Figure 4.18 ETOAR#D experiment 1, scenario 2: Order book transient state outputs, with 

local order book controller and rework ratio = 0.2 ............................................... 157 

Figure 4.19 ETOAR#D experiment 1, scenario 2: Lead time transient state outputs, with 

local system order book controller and rework ratio = 0.2 ................................... 158 

Figure 4.20 Experiment 2: A candidate ETO archetype with holistic order book controller, 

with design rework. ............................................................................................. 159 

Figure 4.21 ETOAR#D experiment 2, scenario 1: Order book transient state outputs, with 

whole-system order book controller and rework ratio = 0 .................................... 161 

Figure 4.22 ETOAR#D experiment 2, scenario 1: Lead time transient state outputs, with 

whole-system order book controller and rework ratio = 0 .................................... 162 



xvii 

 

Figure 4.23 ETOAR#D experiment 2 scenario 2: Order book transient state outputs, with 

whole-system order book controller and rework ratio = 0.2 ................................. 163 

Figure 4.24 ETOAR#D experiment 2, scenario 2: Lead time transient state outputs, with 

whole-system order book controller and rework ratio = 0.2 ................................. 164 

Figure 4.25 ETOAR#D experiment 2, scenario 2: work rate transient state outputs, with 

whole-system order book controller and rework ratio = 0.2 ................................. 165 

Figure 4.26 The work rate transient response of the ETOAR#D .................................. 166 

Figure 4.27 Experiment 1, a candidate ETO archetype with dual local controller and 

production to design rework. ............................................................................... 168 

Figure 4.28 ETOAR#PTD experiment 1, scenario 1: Order book transient state outputs, 

with dual local order book controllers and rework ratio = 0 ................................. 171 

Figure 4.29 ETOAR#PTD experiment 1, scenario 1: Lead time transient state outputs, with 

dual local order book controllers and rework ratio = 0 ......................................... 172 

Figure 4.30 ETOAR#PTD experiment 1, scenario 2—order book transient state outputs, 

with dual local order book controllers and rework ratio = 0.2 .............................. 173 

Figure 4.31 ETOAR#PTD experiment 1, scenario 2: Lead time transient state outputs, with 

dual local order book controller and rework ratio = 0.2 ....................................... 174 

Figure 4.32 Experiment 2, a candidate ETO archetype with holistic order book controller 

and production to design rework.......................................................................... 175 



xviii 

 

Figure 4.33 ETOAR#PTD experiment 2, scenario1: Order book transient state outputs, 

with whole-system order book controller and rework ratio = 0 ............................ 178 

Figure 4.34 ETOAR#PTD experiment 2, scenario1 Lead time transient state outputs, with 

whole-system order book controller and rework ratio = 0 .................................... 179 

Figure 4.35 ETOAR#PTD experiment 2, scenario 2: Order book transient state outputs, 

with whole-system order book controller and rework ratio = 0.2 ......................... 180 

Figure 4.36 ETOAR#PTD experiment 2, scenario 2: Lead time transient state outputs, with 

whole-system order book controller and rework ratio = 0.2 ................................. 181 

Figure 4.37 The work rate transient response of ETOAR#PTD ................................... 182 

Figure 4.38 A comparison between linearised lead time with the estimated lead time 

(week), when rework = 0, step input, ETOAR#P ................................................. 188 

Figure 4.39 A comparison between linearised lead time with the estimated lead time 

(week), when rework = 0.2, step input, ETOAR#P .............................................. 189 

Figure 4.40 A comparison between the linearised lead time with the estimated lead time 

(week) under cyclical demand, when rework = 0, frequent input, ETOAR#P....... 190 

Figure 4.41 A comparison between linearised lead time with the estimated lead time (week) 

under cyclical demand, when rework = 0.2, frequent input, ETOAR#P. .............. 190 

Figure 4.42 A comparison between linearised lead time with the estimated lead time 

(week), when rework = 0, step input, ETOAR#D. ............................................... 192 



xix 

 

Figure 4.43 A comparison between linearised lead time with the estimated lead time (week) 

under cyclical demand, when rework = 0.2, step input, ETOAR#D. .................... 193 

Figure 4.44 A comparison between linearised lead time with the estimated lead time (week) 

under cyclical demand, when rework = 0, frequent input, ETOAR#D.................. 194 

Figure 4.45 A comparison between linearised lead time with the estimated lead time (week) 

under cyclical demand, when rework = 0.2, frequent input, ETOAR#D. .............. 194 

Figure 4.46 A comparison between linearised lead time with the estimated lead time 

(week), when rework = 0, step input, ETOAR#PTD. ........................................... 196 

Figure 4.47 A comparison between linearised lead time with the estimated lead time (week) 

under cyclical demand, when rework = 0.2, step input, ETOAR#PTD. ................ 197 

Figure 4.48 A comparison between linearised lead time with the estimated lead time (week) 

under cyclical demand, when rework = 0, frequent input, ETOAR#PTD. ............ 198 

Figure 4.49 A comparison between linearised lead time with the estimated lead time (week) 

under cyclical demand, when rework = 0.2, frequent input, ETOAR#PTD. ......... 198 

Figure 4.50 A comparison between linearised lead time with the estimated lead time 

(week), under cyclical demand, when rework = 0.2 and amplitude = 50, high 

amplitude input. .................................................................................................. 199 



xx 

 

Figure 4.51 A comparison between linearised lead time with the estimated lead time 

(week), under cyclical demand, when rework = 0.2 and amplitude = 100, high 

amplitude input. .................................................................................................. 200 

Figure 5.1 Bode plot for the ETOAR#P τOB orientated for RW = 0.5 .......................... 213 

Figure 5.2 Bode plot for the ETOAR#P rework orientated for τOB = 20. ...................... 215 

Figure 5.3 Bode plot for the ETOAR#P rework orientated for τOB = 20 ....................... 216 

Figure 5.4 Amplitude of the order book with cyclical input; demand frequency = 1.6 

rad/week; one cycle is four-time units. ................................................................ 216 

Figure 5.5 Bode plot for ETOAR#P rework orientated for τOB = 0.5 ........................... 217 

Figure 5.6 Lead time Bode plot of the ETOAR#P rework orientated for τOB = 20 ........ 219 

Figure 5.7 Lead time Bode plot of the ETOAR#P rework orientated for τOB = 0.5 ....... 220 

Figure 5.8 Stability boundary of production rework, design rework, and delayed design 

rework scenarios. ................................................................................................ 236 

Figure 5.9 Stability of the ETOAR#P using the PSE method ....................................... 238 

Figure 5.10 Stability of the ETOAR#D using the PSE method .................................... 239 

Figure 5.11 Stability of the ETOAR#PTD using the PSE method. ............................... 240 

Figure 6.1 The contour map of ETOAR#P work rate................................................... 245 

Figure 6.2 The contour map of ETOAR#P lead time ................................................... 246 



xxi 

 

Figure 6.3 The contour map of the ETOAR#D work rate ............................................ 247 

Figure 6.4 The contour map of the ETOAR#D lead time ............................................. 248 

Figure 6.5 The contour map of ETOAR#PTD work rate ............................................. 249 

Figure 6.6 The contour map of ETOAR#PTD lead time. ............................................. 249 

Figure 6.7 The lead time transient response of the ETOAR#D; rework ratio = 0.6; τOB 

ranges from 5 to 200. .......................................................................................... 251 

Figure 6.8 The lead time transient response of the ETOAR#D; τOB = 20; the rework ratio 

ranges from 0 to 0.99. ......................................................................................... 252 

Figure 6.9 The work transient response of the ETOAR#D, rework ratio = 0.6, τOB ranges 

from 5 to 200. ..................................................................................................... 253 

Figure 6.10 The work rate transient response of the ETOAR#D; τOB = 20; the rework ratio 

ranges from 0 to 0.99. ......................................................................................... 253 

Figure 6.11 The ‘good’ τOB value for different rework ratios for each variable of interest, 

with work rate transient response, ETOAR#P. Note: The small figures illustrate the 

transient response of the system under varying RW and TOB values. For the transient 

response figures, the Y-axis represents the work rate, while the X-axis represents the 

time period. ......................................................................................................... 261 

Figure 6.12 The ‘good’ τOB value for different rework ratios for each variable of interest, 

with lead time transient response, ETOAR#P. Note: The small figures illustrate the 



xxii 

 

transient response of the system under varying RW and TOB values. For the transient 

response figures, the Y-axis represents the lead time, while the X-axis represents the 

time period. ......................................................................................................... 262 

Figure 6.13 The ‘good’ τOB value for different rework ratios for each variable of interest, 

with work rate transient response, ETOAR#D. Note: The small figures illustrate the 

transient response of the system under varying RW and TOB values. For the transient 

response figures, the Y-axis represents the work rate, while the X-axis represents the 

time period. ......................................................................................................... 264 

Figure 6.14 The ‘good’ τOB value for different rework ratios for each variable of interest, 

with work rate transient response, ETOAR#D. Note: The small figures illustrate the 

transient response of the system under varying RW and TOB values. For the transient 

response figures, the Y-axis represents the lead time, while the X-axis represents the 

time period. ......................................................................................................... 265 

Figure 6.15 The ‘good’ τOB value for different rework ratios for each variable of interest, 

with work rate transient response, ETOAR#PTD. Note: The small figures illustrate 

the transient response of the system under varying RW and TOB values. For the 

transient response figures, the Y-axis represents the work rate, while the X-axis 

represents the time period. ................................................................................... 268 

Figure 6.16 The ‘good’ τOB value for different rework ratios for each variable of interest, 

with lead time transient response, ETOAR#PTD. Note: The small figures illustrate 



xxiii 

 

the transient response of the system under varying RW and TOB values. For the 

transient response figures, the Y-axis represents the lead time, while the X-axis 

represents the time period. ................................................................................... 269 

Figure 6.17 Transient responses for the τOB comparison in the low rework domain. Note: 

The small figures illustrate the transient response of the system under varying RW 

and TOB values. For the transient response figures, the Y-axis represents the work 

rate, while the X-axis represents the time period. ................................................. 271 

Figure 6.18 Transient responses for the τOB comparison in a moderate rework domain. 

Note: The small figures illustrate the transient response of the system under varying 

RW and TOB values. For the transient response figures, the Y-axis represents the 

work rate, while the X-axis represents the time period. ........................................ 273 

Figure 6.19 Transient responses for the τOB comparison in a high rework domain. Note: 

The small figures illustrate the transient response of the system under varying RW 

and TOB values. For the transient response figures, the Y-axis represents the work 

rate, while the X-axis represents the time period. ................................................. 274 

Figure 6.20 Matching theoretical results with management strategies in ETOAR#D. .. 280 

Figure 6.21 Matching theoretical results with management strategies in ETOAR#P. ... 280 

Figure 6.22 Matching theoretical results with management strategies ETOAR#PTD. .. 281 

Figure 7.1 ‘Good’ τOB summarisation from different perspectives. .............................. 286 



xxiv 

 

Figure 7.2 Sensitivity analysis of ETOAR#P’s deliver rate to the design lead time, with a 

determined demand. ............................................................................................ 294 

Figure 7.3 Sensitivity analysis of ETOAR#P’s deliver rate to the production Lead time, 

with a determined demand. .................................................................................. 295 

Figure 7.4 Sensitivity analysis of ETOAR#P’s deliver rate to the design Lead time, with 

stochastic demand ............................................................................................... 297 

Figure 7.5 Sensitivity analysis of ETOAR#P’s deliver rate to the production Lead time, 

with stochastic demand ....................................................................................... 297 

Figure 7.6 Sensitivity analysis of the ETOAR#P on the bullwhip effect. ..................... 298 

Figure 7.7 Sensitivity analysis of the ETOAR#P bullwhip effect................................. 299 

Figure 7.8 ETOAR#P delivery rate transient response with determined demand ......... 300 

Figure 7.9 ETOAR#P delivery rate transient response with stochastic demand............ 301 

Figure 7.10 Research process for experiment A .......................................................... 307 

Figure 7.11 Research process for Experiment B .......................................................... 308 

Figure 7.12 The block diagram of ETOAR#D+X ........................................................ 310 

Figure 7.13 The block-diagram for ETOAR#U ........................................................... 312 

Figure 7.14 The transient response for both models..................................................... 318 



xxv 

 

Figure 8.1 Summary of research insights and contribution of this thesis. [Blue represents 

objective one, yellow represents objective two, and green represents objective three.]

 ........................................................................................................................... 328 

Figure A.1  Bode plot for the ETOAR#2 τOB orientated RW = 0.5 .............................. 433 

Figure A.2 Bode plot for the ETOAR#2 rework orientated τOB = 20 ............................ 434 

Figure A.3  Order book bode plot of the ETOAR#D, τOB orientated. RW = 0.5 ........... 435 

Figure A.4  Order book bode plot of the ETOAR#D, rework ratio orientated τOB = 20 436 

Figure A. 5  Lead time bode plot of the ETOAR#D, τOB orientated. RW = 0.5 ............ 437 

Figure A. 6  Lead time bode plot of the ETOAR#D, rework orientated τOB = 20 ......... 438 

Figure A. 7  Bode plot for the ETOAR#PTD τOB orientated RW = 0.5 ........................ 439 

Figure A. 8  Bode plot for the ETOAR#PTD rework orientated τOB = 20 ..................... 440 

Figure A. 9 Order book bode plot of the ETOAR#PTD, τOB orientated. RW = 0.5 ..... 441 

Figure A. 10 Order book bode plot of the ETOAR#PTD, rework orientated τOB = 20 . 442 

Figure A. 11  Lead time bode plot of the ETOAR#PTD, τOB orientated.RW = 0.5 ...... 443 

Figure A. 12 Lead time bode plot of the ETOAR#PTD, rework orientated τOB = 20 ... 444 

Figure A. 13 Order book transient responses produced by spreadsheet. ....................... 445 

Figure A. 14 Order book transient responses produced by Simulink. ........................... 446 



xxvi 

 

Figure A. 15 Lead time transient responses produced by spreadsheet. ......................... 446 

Figure A. 16 Lead time transient responses produced by spreadsheet. ......................... 446 

Figure A. 17 Order book transient responses produced by spreadsheet. ....................... 447 

Figure A. 18 Order book transient responses produced by spreadsheet. ....................... 447 

Figure A. 19 Lead time transient responses produced by spreadsheet. ......................... 448 

Figure A. 20 Lead time transient responses produced by Simulink. ............................. 448 

Figure A. 21 Order book transient responses produced by spreadsheet. ....................... 449 

Figure A. 22 Order book transient responses produced by Simulink. ........................... 449 

Figure A. 23 Lead time transient responses produced by Spreadsheet. ........................ 450 

Figure A. 24 Lead time transient responses produced by Simulink. ............................. 450 

Figure A.25 Sensitivity analysis of ETOAR#D’s deliver rate to the design Lead time, with 

determined demand. ............................................................................................ 452 

Figure A. 26 Sensitivity analysis of ETOAR#D’s deliver rate to the production Lead time, 

with determined demand. .................................................................................... 453 

Figure A. 27 Sensitivity analysis of ETOAR#D’s deliver rate to the design Lead time, with 

stochastic demand. .............................................................................................. 454 

Figure A. 28 Sensitivity analysis of ETOAR#D’s deliver rate to the production Lead time, 

with stochastic demand. ...................................................................................... 455 



xxvii 

 

Figure A. 29 Sensitivity analysis of the ETOAR#D on the bullwhip effect. ................. 456 

Figure A. 30 Sensitivity analysis of the ETOAR#D on the bullwhip effect. ................. 456 

Figure A. 31  Sensitivity analysis of ETOAR#PTD’s deliver rate to the design Lead time, 

with determined demand. .................................................................................... 458 

Figure A. 32  Sensitivity analysis of ETOAR#PTD’s deliver rate to the production Lead 

time, with determined demand............................................................................. 458 

 Figure A. 33 Sensitivity analysis of ETOAR#PTD’s deliver rate to the design Lead time, 

with stochastic demand ....................................................................................... 460 

Figure A. 34 Sensitivity analysis of ETOAR#PTD’s deliver rate to the production Lead 

time, with stochastic demand ............................................................................... 460 

Figure A. 35 Sensitivity analysis of the ETOAR#PTD on the bullwhip effect. ............ 461 

Figure A. 36 Sensitivity analysis of the ETOAR#PTD on the bullwhip effect. ............ 462 

Figure A. 37 ETOAR#D delivery rate transient response with determined demand ..... 463 

Figure A. 38 ETOAR#D delivery rate response with stochastic demand ..................... 463 

Figure A. 39 ETOAR#PTD delivery rate transient response with determined demand. 464 

Figure A. 40 ETOAR#PTD delivery rate response with stochastic demand ................. 464 

 



xxviii 

 

List of Tables  

Table 1.1 The application of SD in production planning and control systems ..................7 

Table 2.1 Production system categorisation based on the CODP. .................................. 35 

Table 2.2 Keyword setting process ................................................................................ 49 

Table 2.3 Final version of searched keyword combinations ........................................... 49 

Table 2.4 Keyword combinations used for searching databases ..................................... 50 

Table 2.5 Coding table .................................................................................................. 53 

Table 2.6 Sample distribution across journals................................................................ 56 

Table 2.7 Sample distribution across phases .................................................................. 57 

Table 2.8 Publications distribution over methods and project stages (DES: discrete event 

simulation; ABM: agent-based modelling) ............................................................ 58 

Table 2.9 Aggregate-level planning category ................................................................ 63 

Table 2.10 Pre-project category .................................................................................... 66 

Table 2.11 Project execution category (DEMATE: Decision-making trial and evaluation 

laboratory) ............................................................................................................ 69 

Table 2.12 Post-delivery category ................................................................................. 70 

Table 2.13 Cross-phase category ................................................................................... 73 



xxix 

 

Table 2.14 A summary of the resilience measurements (Han et al. 2020) ...................... 84 

Table 4.1 Distinguishing elements of combined PM and SCM perspectives of an ETO 

system and synthesis results ................................................................................ 118 

Table 4.2 Definitions of the ETO archetypes ............................................................... 122 

Table 4.3 Nomenclature for the ETO archetype .......................................................... 124 

Table 4.4 Initial value and co-efficient value for experiment 1, with local order book 

controller............................................................................................................. 139 

Table 4.5 Initial value and co-efficient value for experiment 2, scenario 1, with whole-

system order book controller and rework ratio = 0 ............................................... 145 

Table 4.6 Initial value and co-efficient value for experiment 1, scenario 1, with whole-

system order book controller and rework ratio = 0 ............................................... 153 

Table 4.7 Initial Value and co-efficient value for experiment 1 scenario 2, with whole 

system level order book controller and rework ratio =0 ....................................... 160 

Table 4.8 Initial value and co-efficient value for experiment 1, scenario 1, with whole-

system order book controller and rework ratio =0 ................................................ 170 

Table 4.9 Initial value and co-efficient value for experiment 2, scenario 1, with whole-

system order book controller and rework ratio = 0 ............................................... 177 

Table 4.10 A summary of the developed archetypes .................................................... 184 



xxx 

 

Table 4.11 Simulation configuration ........................................................................... 187 

Table 4.12 Simulation configuration ........................................................................... 191 

Table 4.13 Simulation configuration ........................................................................... 195 

Table 5.1 Initial value for the Bode plot analysis ......................................................... 210 

Table 5.2 ETOAR#P work rate magnitude summary ................................................... 222 

Table 5.3 ETOAR#P order book magnitude summary ................................................. 222 

Table 5.4 ETOAR#P lead time magnitude summary ................................................... 223 

Table 5.5 The MRC and MRL of ETOAR#P, derived from the Bode plot. Assumption: 

demand level = 100 working units per week; amplification = 10 working units per 

week ................................................................................................................... 224 

Table 5.6 ETOAR#D Work rate magnitude summary ................................................. 225 

Table 5.7 ETOAR#D Order book magnitude summary ............................................... 225 

Table 5.8 ETOAR#D lead time magnitude summary................................................... 226 

Table 5.9 The MRC and MRL of ETOAR#D, derived from the Bode plot. Assumption: 

demand level = 100 working units per week; amplification = 10 working units per 

week ................................................................................................................... 226 

Table 5.10 ETOAR#PTD work rate magnitude summary. ........................................... 227 

Table 5.11 ETOAR#PTD order book magnitude summary.......................................... 227 



xxxi 

 

Table 5.12 ETOAR#PTD lead time magnitude summary ............................................ 228 

Table 5.13 MRC and MRL of ETOAR#PTD, derived from the Bode plot. Assumption: 

demand level = 100 working units per week; amplification = 10 working units per 

week ................................................................................................................... 228 

Table 6.1 A summarisation for the phenomena observed from the experiment. ........... 276 

Table 6.2 Pros and cons of prioritising work rate and lead time resilience ................... 278 

Table 7.1 MRC and MRL of the ETO system with rework ratio = 0.2, and ‘good’ τOB 290 

Table 7.2 The initial value and parameter setting for the ETOAR#P lead time sensitivity 

analysis. .............................................................................................................. 293 

Table 7.3 Bullwhip ratio for each scenario .................................................................. 296 

Table 7.4 The initial value and parameter setting for the ETOAR#P rework scheduling 

time sensitivity analysis....................................................................................... 300 

Table 7.5 The workload of subsystems for each archetype, τOB = 20. .......................... 302 

Table 7.6 Simulation parameter settings for both ETOAR#D+X and ETOAR#PTD .... 317 

Table 7.7 ITAE percentage for Experiment A ............................................................. 319 

Table 7.8 Result summary of Experiment B from the simulation. ................................ 321 

Table 7.9 Results from experiment B and a workload orientated summary from the 

simulation. .......................................................................................................... 323 



xxxii 

 

Table 8.1 τOB influence on the variables of various ETO archetypes (0.01 to 0.02 rad/week 

628314 weeks). ................................................................................................... 343 

Table A.1  The initial value and parameter setting for the ETOAR#D lead time sensitivity 

analysis. .............................................................................................................. 451 

Table A.2 Bullwhip ratio for each experiment ............................................................. 454 

Table A.3 The initial value and parameter setting for the ETOAR#PTD lead time 

sensitivity analysis. ............................................................................................. 456 

Table A.4 Bullwhip ratio for each experiment ............................................................. 459 

Table A.5 The initial value and parameter setting for the ETOAR#D rework scheduling 

time sensitivity analysis....................................................................................... 462 

  



xxxiii 

 

Notation 

CLD Causal loop diagram 

CODP Customer order decoupling point 

CT Control theory 

ETO Engineer to order 

ETOAR Engineer to order system archetype 

ETOAR#D Engineer to order system archetype design rework scenario 

ETOAR#P Engineer to order system archetype production rework scenario 

ETOAR#PTD Engineer to order system archetype production to design rework scenario 

IOBPCS Inventory and order-based production control system 

MTO Make to order 

MTS Make to stock 

MRC Minimal reasonable capacity 

MRL Maximum reasonable lead time 

OB Order book 

PM  Project management  

PSE Parameter space exploration 

RW Rework 

SD System dynamics 

STS Ship to stock 

VIOBBPCS Variable inventory and order-book based production control system 



1 

Chapter 1 Introduction 

In 2019, the COVID-19 pandemic wreaked havoc on global production and manufacturing 

industries, leading to widespread stoppages and a subsequent decline in the global economy. 

This disruption sparked an increased demand for resilient production systems that can minimise 

the impacts of uncertainties and demand fluctuations. While the need for resilience has been 

extensively researched in traditional production systems (Purvis et al. 2016; Ivanov and 

Sokolov 2013), the specialised design and rework activities specific to engineer-to-order (ETO) 

production systems lack extensive research and appropriate methodologies. Therefore, it is 

imperative to explore ways to enhance the resilience in an ETO system. The concept of 

resilience adopted here measures how effectively a system recovers from impacts and adapts to 

new environments (Spiegler et al. 2012). 

An ETO system is defined as a production system in which the CODP is located at the design 

stage. This system is prevalent in industries such as shipbuilding, construction, capital goods 

manufacturing and other ETO type manufacturing. In these industries, product designs are 

customised or adapted according to specific customer requirements and products are often 

considered as projects due to their one-of-a-kind or first-of-a-kind nature. Simultaneously, 

design and production in an ETO system are not separate processes but are integrated (Naim et 

al. 2021) A notable characteristic of an ETO system is the absence of a finished product 

inventory. This is because ETO companies cannot anticipate customer requirements before 

receiving orders, thus leaving them without inventory buffers in the event of disruptions. These 
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features distinguish ETO systems from other production systems, thereby increasing their 

complexity and vulnerability. Consequently, ETO systems encounter more uncertainties, such 

as rework issues (Ansari 2019), design uncertainty (Neumann et al. 2022), and delays from 

upstream suppliers (Park 2005). Therefore, an ETO system requires production systems that 

are more flexible, adaptive, and resilient than others in order to effectively manage these 

uncertainties while maintaining operational efficiency. 

The application of system dynamics (SD) in production systems can be traced back to Towill 

(1982). It involves planning workflows, scheduling tasks, managing resources, and monitoring 

progress to ensure smooth operations. Over the last four decades, the SD methodology has been 

applied across a diverse range of contexts. According to the CODP categorisation (Gosling et 

al. 2017), production systems can be categorised into six groups, ranging from speculative 

make-to-stock (MTS) to highly customised ETO. SD-based research has addressed various 

aspects, including ship-to-stock (STS) (Wikner et al. 2017), make-to-order (MTO) (Wikner et 

al. 2007), and assemble-to-order (ATO) (Lin et al. 2020) systems. SD methods have contributed 

to the reduction of the bullwhip effect (Ponte et al. 2017), studies on ripple effects (Ivanov et 

al. 2016), and capacity management (Wikner et al. 2007). Despite extensive research, the 

application of SD in the ETO context remains underexplored, which limits the understanding 

of ETO system behaviour. Investigating the dynamic behaviour of ETO systems provides a 

clear view of how these systems’ structures—that is, the combination of delays, feedback loops, 

and decision rules—respond to changes in demand patterns and disruptions, thus offering a 

comprehensive understanding of ETO systems. The outcomes of such research are beneficial 



3 

for ETO system benchmarking, strategy formulation, and performance improvement in terms 

of both time and cost. 

In summary, the lack of a quantitative ETO model, insufficient understanding of ETO SD, and 

gaps in extant research on improving resilience in ETO systems drive this research.  

This chapter introduces the research by establishing its context, motivation, and objectives. 

Section 1.1 presents the background, outlining the broader context and key challenges in the 

domain of ETO systems. Section 1.2 highlights the research gaps identified through a 

background study, followed by an explanation of the motivation for this study. Section 1.3 

defines the research aim and objectives, detailing how they are derived from the identified gaps. 

Lastly, Section 1.4 outlines the thesis structure, providing an overview of the subsequent 

chapters to guide the reader through the research journey. 

1.1    Background  

Figure 1.1 illustrates the scope of this research, depicted as the central area where the triangles 

meet to create an inverted triangle. Each triangle represents a distinct research topic that 

collectively forms the theoretical foundation of this study. The subsequent sections provide 

details for each of these topics, thereby providing a background of the three research fields that 

intersect to shape the focus of this investigation. This structured approach helps clarify the 

multidisciplinary nature of the study and sets the stage for a deeper exploration of how these 

distinct areas converge within the research framework. 
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1.1.1 ETO Systems  

ETO systems can be defined as production systems wherein the CODP is located at or before 

the design stage (Naim et al. 2021). This kind of system has been widely adopted in shipbuilding 

(Alfnes et al. 2021), bespoke capital goods manufacturing (Birkie et al. 2017), and construction 

industries (Gosling et al. 2013a). The products produced by these industries are usually tailored 

for the customers during the designing stage and, consequently, design activities are included 

in the ETO system, which is a distinguishing characteristic of the ETO.  

Project management (PM) plays a crucial role in ETO systems by coordinating complex and 

variable processes from design to production. Unlike standard production systems, ETO 

systems rely on a project-oriented approach to manage unique customer requirements, and 

design adaptations (Gosling and Naim 2009; Mello et al. 2017; Bäckstrand and Powell 2021). 

Resilience in 
ETO Context

ETO System

Building a 
Resilient 

ETO Supply 
Chains

System 
Dynamic

Figure 1.1 Scope of the research 
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This ensures alignment between customer specifications, design changes, and production, 

which is vital for ETO industries. 

The close coupling of design with production then raises the issue of the degree of novelty of 

the design in satisfying customer requirements. Therefore, effort was made to further categorise 

ETO systems in accordance with the novelty of the design. Gosling et al. (2017) proposed a 

categorisation method on ETO systems in accordance with the novelty of the engineer, based 

on a previous study by Wikner and Rudberg (2005). The categorisation is presented below:  

1. ‘Research’ type of ETO project: ETO project’s/product’s design requires research in the 

design stage. 

1.1 Mathematical research, 1.2 Science Research, 1.3 Engineer Research  

2. ‘Codes and Standards’ type of ETO project: ETO project’s/product’s design can be 

developed based on the codes and standards. 

2.1 Develop Codes, 2.2 Integrated Codes, 2.3 New Design from Codes 

3. ‘Existing Designs’ type ETO project: ETO project/product’s design is created based on 

previous design.  

3.1 Adapted Design, 3.2 Finalised Design, 3.3 Completed Design  

The lead times for ‘Research’ and ‘Code and Standards’ types of ETO project/products are 

usually difficult to estimate, given that products for these two may still be in the early research 

or experimental stage. In such ETO systems, tailored project structures are required that can 
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readily adapt to the construction environments and local infrastructure, such as bridges 

(Peckens et al. 2019), tunnels (Nasirzadeh et al. 2014), and oil platforms (Engelseth et al. 2020). 

Hence, a pure PM view rather than a production system view may be more suitable, with 

management strategies that can be customised on a case-by-case basis in alignment with the 

unique needs of the project and environment. Therefore, this research focuses on the third type 

of ETO system, wherein both the design and production lead time are certain and estimable and 

the system is more amenable to the SD approach. Such kinds of ETO systems are widely 

adopted in capital goods manufacturing (Barbosa and Azevedo 2018a) and ship component 

manufacturing industries (Alfnes et al. 2021). Furthermore, according to Naim et al. (2021), 

only those that integrate design with production can be regarded as ETO systems, and this 

criterion is also adopted in this research.  

Considering the project-orientated feature of ETO, the thesis refers to Lee et al. (2005a) to 

clarify the focus of the management levels. According to their research, there are four levels 

for PM, ranging from macro to micro: strategic aggregate planning, tactical pre-project 

planning, operational project execution, and post-delivery planning. This research majorly 

focuses on the strategic aggregated planning level, which is in alignment with the other dynamic 

study in the production systems field, as summarised in Table 1.1. However, the literature from 

the other three management levels is also reviewed to provide a comprehensive view of the 

operation of the ETO system, particularly in the interface between aggregate planning with the 

others. Therefore, the model developed is at an aggregate level. 
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Table 1.1 The application of SD in production planning and control systems 

System 

Type 

Original 

reference 

Typical 

CODP 

Location 

Feedback 

Path 

Feedforward 

Path 
Flow 

Main 

analysis 

technique 

MTS 
(Towill 

1982) 

Finished 

stock 
Inventory Demand Material 

Laplace 

transform 

ATO 
(Lin et al. 

2020) 

Sub-

assembly 

WIP 

Inventory 

Backlog 

Demand Material 
Laplace 

transform 

MTO 

(Wikner 

et al. 

2007) 

Raw 

materials 

Order 

Book 

WIP 

Demand Material Simulation 

ETO 
This 

thesis 
Design 

Order 

Book 

 

 Demand 
Working 

Units 
Z-domain 

 

1.1.2 Resilience in ETO context 

Resilience refers to a system’s ability to recover from the impact of disruptions and disturbances 

(Ponomarov & Holcomb 2009). Moreover, Spiegler et al. (2012) define resilience as a system’s 

ability to get used to change while evolving itself to a new status. Although a variety of papers 

study the resilience of manufacturing and production systems, there exists a paucity of literature 

that discusses the meaning of resilience in the context of ETO systems, with even fewer 

proposed methods that can measure the resilience of such systems. Therefore, this research also 

seeks to formulate a definition for ETO-based resilience through a literature review and, 

subsequently, find a suitable resilience measure index for the ETO system. Moreover, the 
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research attempts to develop a method to improve the resilience of ETO systems and link the 

theoretical outputs with practical implications.  

1.1.3 System Dynamics  

SD modelling has been widely used in supply chain system and PM. From the supply chain 

perspective, SD has been successfully adopted in explaining and mitigating the bullwhip effect 

(Towill et al. 2007; Naim et al. 2017). In the PM field, SD has been adopted to model the project 

execution system, which has been used in rework management (Love et al. 1999) and ripple 

effect explanation (Lyneis 2012).  

The control theory (CT), which originates in the engineering field, provides researchers with a 

set of tools for system analysis. This method was first introduced by Towill (1982) in the 

dynamic modelling of an inventory and order-based production control system (IOBPCS), 

which mathematically explained the system’s dynamic behaviour and has become the 

foundational archetype for various production systems (Wikner et al. 2017), although not for 

an ETO system. The combination of SD and the CT has deepened researchers’ understanding 

of inventory control (Disney et al. 2004), capacity optimisation (Wikner et al. 2007), and the 

bullwhip effect (Ponte et al. 2017). Compared to the application of both the SD and CT in the 

MTS, ATO, and MTS field, their application in the ETO field is relatively limited. This can be 

attributed to the dichotomous views of researchers in the PM and production system fields on 

the project versus the product, while ETO research merges the two perspectives regarding the 

design and production of a product as a unique activity (Naim et al. 2021). Hence, ETO systems 
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include a unique activity, which is design, making them difficult to characterize through a 

traditional supply chain perspective that treats products as homogeneous unit. 

1.2  Research Gaps 

Based on the background study of relevant topics, three major research gaps are identified: the 

absence of a comprehensive archetype for ETO systems (Section 1.2.1), the limited exploration 

of dynamic performance assessment on ETO system (Section 1.2.2), and the lack of solutions 

for improving system resilience (Section 1.2.3). These gaps underscore the need for a deeper 

understanding of ETO system dynamics, which serves as the primary motivation (Section 1.2.4) 

for this research.   

1.2.1 Research Gap One: The Absence of an ETO Archetype for 

Aggregated Planning 

Aggregate planning refers to the strategic level of production planning, which balances capacity 

and demand over a medium to long-term horizon (Tiedemann et al. 2020; Brachmann and 

Kolisch 2021). It integrates multiple operational components, such as design, production, and 

production planning, into a unified framework. In the context of ETO systems, aggregate 

planning is crucial for managing complex, high-variability workflows that involve customized 

products and integrated design-production stages (Willner et al. 2016a) . By coordinating 

design and production department, aggregate planning enables organizations to better the 

capacity management, minimize delays, and enhance overall system resilience. Despite its 
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importance, ETO systems currently lack archetypes tailored to aggregate-level planning. Such 

archetypes are necessary to address the complexities of ETO systems, including high variability, 

integrated workflows, and project-specific constraints. 

An archetype is defined as a typical and general model for a specific system, which could be 

used as a benchmark for future study and practice (Batista et al. 2018). ETO system archetypes 

could benefit this research in various ways: 1) Provide an insight into the ETO system’s 

dynamics (Willner et al. 2016); 2) help researchers understand the mechanisms underlying a 

dynamic phenomenon, such as bullwhip and chaos (Lin et al. 2020); 3) provide an abstract 

model for researchers to study the nature of the system, for testing newly developed 

interventions, such as information feedback (Wikner et al. 2017); 4) archetypes developed via 

an SD method can be easily extended or upgraded, as has happened with the IOBPCS 

archetypes (Towill 1982; Lin et al. 2017); 5) for ETO systems, the research at an aggregate 

level remains inadequate, which is because the model/archetypes developed for other 

production systems, such as MTS and MTO systems, ignored the differences among the 

products (Schoenwitz et al. 2017) and the existing models developed in the PM field merely 

focused on the execution of a single project (Lee et al. 2006b). An archetype can be used as a 

‘strategic core’ to coordinate the design and production activities and estimate the capacity level 

of the ETO system at an aggregated level. This usage of the archetype can fill the research gap 

of the aggregated level planning.  

Since no archetype has been developed for an ETO system, its absence can be attributed to 

several complex factors inherent in ETO operations. The challenges include ones listed below: 
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1. Variation in the type of ETO products: ETO systems encompass a customisable array of 

products, ranging from large-scale projects such as oil platforms and construction to 

medium-scale projects like capital goods manufacturing lines, down to smaller items like 

artificial limbs and specially designed machines. Despite falling under the ETO umbrella, 

the features and nature of these products vary significantly. This variation complicates 

summarising the main structure of the ETO system (Adrodegari et al. 2015).  

2. The Challenge of Transitioning from Product Focus to Process Focus in ETO Systems  

The interdisciplinary and process-driven nature of ETO studies complicates the positioning 

of products within the industrial ecosystem. Unlike standard production systems, ETO 

systems are characterized by the uniqueness of their design, which makes them distinct from 

traditional production models (Jiang et al. 2019). A key challenge in ETO systems lies in 

shifting from a product-focused to a process-focused approach, given the high variability 

of products (Adrodegari et al. 2015). This process focus, supported by SD, better aligns 

with the dynamic and complex workflows inherent in ETO systems. This shift is crucial for 

managing variability and ensuring operational efficiency in ETO environments. 

3. Difficulty in design and production integration: Additionally, modelling the design 

processes within the ETO system presents significant challenges that need to be addressed, 

including how to synchronise the flow between the design and production phases. A design 

blueprint may demand extensive labour for hundreds of hours, and this blueprint might 

require adjustments during production to meet customer requirements. The resolution of 
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such issues remains an area of ongoing research (Hafeez et al. 1996; Wikner and Rudberg 

2005). 

4. Difficulty in comprehensively modelling aggregated level planning: The difficulties in 

ETO aggregated level modelling can be summarised from three perspectives: model scope, 

interaction, and assumptions. From the model scope perspective, the modeler needs to deal 

with the trade-off between the model’s conciseness and comprehensiveness (Khanzadi et 

al. 2018). A comprehensive model, when it is sufficiently detailed, can represent the real 

production system and capture the dynamic features of the system. However, a detailed 

model may increase the computational difficulty of the system and that would affect the 

model’s utilisation in the decision-making process. The interaction of the model refers to 

how aggregate-level models simulate the interactions between departments or elements in 

the model. In reality, such interactions are usually complex and dynamic; however, in the 

model, these interactions might be oversimplified. The third difficulty in the aggregate-level 

model is the model assumptions. Assumptions are necessary for model simplification, but 

this may also decrease the fidelity of the model. Thus, when modelling an ETO system, the 

assumptions need to be appropriately determined and designed to ensure that the system is 

sufficiently real but also not too complex (Lee et al. 2006a).  

These reasons collectively explain the absence of an ETO archetype. Therefore, this thesis aims 

to bridge this gap by facilitating the development of ETO archetypes  
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1.2.2 Research Gap Two: Foundational Dynamic Analysis of ETO 

Systems 

Dynamic analysis is necessary for a profound investigation of the nature, performance, and 

mechanisms of a system. Since the early 1980’s (Towill 1982), production SD research has 

contributed to the understanding of the bullwhip effect (Disney et al. 2004), inventory 

management (Lin et al. 2017), and chaos study (Hwarng & Xie 2008). Underpinned by the CT, 

researchers have a better understanding of the mechanism regarding how parameters affect the 

system’s performance. Simultaneously, the adaptation of the CT also provides a tool kit for 

single, dyadic (e.g. vendor managed inventory), and whole production SD assessment, 

measurement, and improvement (Lin et al. 2020).  

Compared to the use of SD in production system research, SD modelling in the PM field is 

typically utilised as a simulation tool rather than for mathematical dynamic performance 

analysis (Lee et al. 2005). In PM, models are often employed to explain the effects of design 

changes (Motawa et al. 2007) or assess the impact of revisions on project timelines (Lyneis and 

Ford 2007). However, no SD model in the PM field has been analysed using the CT, which 

limits the understanding of the system’s underlying mechanisms and the influence of model 

parameters. 

The dynamic behaviours of the ETO system, which embody both production and project 

characteristics, are rarely considered and analysed (Barbosa and Azevedo 2018b). This 

oversight can be attributed to the lack of a unified quantitative ETO model archetype and 
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insufficient research on project dynamics analysis. This research gap has partially motivated 

this thesis. 

1.2.3 Research Gap Three: Resilience Analysis of ETO Systems 

Resilience research in the production system field is still at an incipient stage, with even less 

focus on ETO systems. As mentioned earlier, resilience can be defined as the ability of a 

system’s recovery from the impact of external disturbances (Zarghami and Zwikael 2022). A 

production system with good resilience should always be ready for uncertainties, respond to 

changes swiftly, and recover from an abnormal status accurately and promptly (Spiegler et al. 

2012). Traditionally, maintaining safety inventory is one way to prepare for uncertainty 

(Ribeiro and Barbosa-Povoa 2018). When unexpected disturbances occur, the safety inventory 

can help to buy more time by absorbing the impact, thereby enabling a company to seek 

solutions. Alternatively, a company may retain excess capacity to respond to the disturbance 

(Ribeiro and Barbosa-Povoa 2018). However, the cost for these strategies is relatively high. 

Simultaneously, without appropriate management strategies, when disturbances occur, this 

extra stock and capacity still cannot help the system to swiftly recover from the disturbance. 

Thus, to improve the overall performance of the production system in a volatile market, 

companies need to develop strategies with consideration of the resilience versus cost balance 

(Purvis et al. 2016).  

Research on the resilience of ETO systems is ongoing, and it is evident that compared to more 

stock-based systems, ETO faces several unique challenges. The inherent design activities and 
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frequent rework within an ETO system create an internal, as opposed to external, environment 

of uncertainty. Another critical challenge is determining the appropriate amount of production 

capacity to reserve. The ETO system does not hold any finished products in its inventory 

because production does not begin until a customer places an order (Gosling and Naim 2009). 

This feature allows the ETO system to only utilise lead time or extra capacity as the buffer for 

uncertainties. The challenges outlined above render greater vulnerability to the ETO system 

when compared to other forms and emphasise the importance of exploring ways to enhance the 

resilience. 

1.2.4 Research Motivation 

The unique characteristics of ETO systems, such as high customization, integrated design and 

production processes, and significant uncertainty, pose substantial challenges to operational 

efficiency and resilience (Mwesiumo et al. 2021; Reid et al. 2019). Despite the critical 

importance of these systems in industries like shipbuilding, construction, and capital goods 

manufacturing, there remain significant gaps in understanding and managing their dynamic 

behaviours. This research is motivated by the need to address these gaps and provide practical 

solutions to improve the resilience and performance of ETO systems. 

Importance of Aggregated Planning for ETO Systems 

ETO systems lack well-defined archetype for aggregated planning due to their reliance on 

customized processes and unique product configurations. Existing production planning models, 

designed for MTS or MTO systems, fail to capture the integrated nature of design and 
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production in ETO systems. Developing tailored SD archetypes is essential for enabling better 

aggregated planning and providing a foundation for both academic research and industrial 

application. 

Need for Dynamic Analysis in ETO Systems 

While SD modelling has been widely applied in other production systems (Lin et al. 2017), its 

use in ETO environments remains limited. Understanding the dynamic interactions between 

design and production processes is critical for identifying factors that influence performance, 

such as delays, rework, and capacity constraints. This research seeks to fill this gap by 

conducting a foundational dynamic analysis of ETO systems, providing insights into their 

unique behaviours and performance drivers. 

Enhancing Resilience in ETO Systems 

Resilience is crucial for ETO systems to effectively respond to disruptions, such as fluctuating 

demand, design changes, and rework. However, resilience research in the context of ETO 

systems is sparse. Developing strategies to measure and improve resilience will enable 

organizations to mitigate risks, maintain operational stability, and enhance overall system 

performance. This research is driven by the need to bridge this gap and offer actionable insights 

for practitioners. 

These motivations form the foundation for the research objectives, which aim to address these 

pressing challenges and provide both theoretical and practical contributions to the field. 
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1.3  Research Objectives 

Based on the research gaps identified above, the main aim of ‘establishing SD archetypes to 

enhance the resilience of ETO systems’ emerges. This aim is divided into three research 

objectives, based on the three gaps identified. Figure 1.2 illustrates how the main aim emerges 

at the intersection of these gaps and depicts the alignment of the research questions with the 

identified gaps. 

In summary, the first objective is to build ETO archetypes to provide a CT model which can be 

used as a quantitative platform for further study. The second objective is to assess the dynamic 

performance of the ETO archetypes. The third objective is to measure and improve the ETO 

archetypes’ resilience from an SD perspective. The following sections provide more details on 

each objective. 

 

Figure 1.2 Relationship among the research’s aim, gaps, and objectives 
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Objective 1 
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1.3.1 Objective 1  

Objective 1: Build ETO archetypes to provide a CT model which can be used as a 

quantitative platform for further study. 

A literature review is conducted to extract the structure, key variables, and main feedback 

controls of the model. Considering the multidisciplinary nature of the ETO study, pooling 

concepts and knowledge from both PM and ETO system becomes necessary. This objective 

was addressed by literature review, production system modelling, and simulation. The intended 

outcome was the formulation of well-developed system archetypes that can capture and 

reproduce the key behaviours of ETO systems. This objective can be further divided into the 

following three sub-objectives.  

Sub-objective 1 a): Develop a causal loop diagram (CLD) of a general ETO system. 

CLDs are visual representations of the causal relationship among variables. Developing a CLD 

model is the first step in the archetype’s development. The establishment of a CLD is usually 

based on a literature review; hence, the key variables and the causal relationships are 

summarised from previous research. The developed CLD can serve as a straightforward 

illustration for the ETO system and help users to identify any reinforcement and/or balancing 

loops. The archetype is designed to represent a single company's production system, where 

design and production processes are seamlessly integrated. 

Sub-objective 1 b); Transform the CLD into a block diagram using discrete time, z-

domain notation. 



19 

This sub-objective transforms the qualitative CLD model into a quantitative CT block diagram 

representation formulated through difference equations. Subsequently, this model will be 

converted into z-transform notation, leveraging dynamic analysis tools. Unlike the CLD, the 

block diagram model enables researchers to apply mathematical formulas to describe the 

system, thereby allowing for the quantification of variables and the development of an overall 

mathematical transfer function equation. This facilitates cross-checking the logic with the 

originally developed CLD model and through SD simulation. 

. 

1.3.2 Objective 2 

Objective 2: Assess the dynamic performance of the ETO archetypes.  

For this objective, a comprehensive dynamic analysis of the ETO archetypes is undertaken, 

which encompasses stability analysis, frequency domain analysis, and sensitivity analysis. The 

findings from these analyses will enhance the understanding of the newly developed ETO 

archetypes and illuminate the effects of various parameters on system performance across 

different demand patterns and environments. The insights gained from addressing objective 2 

will enrich the body of knowledge by establishing a robust foundation for further selection of 

‘good’ system parameters.  

Sub-objective 2 a): Verification and transfer function analysis. 
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This sub-objective involves conducting verification and transfer function analysis of the 

archetypes. Before the models are analysed by other methods, researchers must guarantee the 

accuracy of the model. The correctness in this section refers to the logic and mathematical 

correctness of the model. For verification, a triangulation method has been adopted. 

Triangulation refers to a cross-checking technique which requires users to replicate the model’s 

behaviours on multiple simulation platforms and cross-check the results. In this research, the 

model is simulated in Excel and Simulink, with a transient deterministic step change input. 

Only if the transient responses visualised by all simulations provide reasonably the same output, 

then the model is qualified to be used as a foundational archetype.  

To further guarantee replicability, the transfer function cross-checking will also be used for 

model verification exploiting MATLAB. The derived transfer function will be used to 

reproduce the transient responses and cross-check the output with the simulation results. The 

archetypes model will be employed for further study and investigation only if the transfer 

function results match reasonably with the simulation. The analysis for this sub-objective is 

undertaken using deterministic transient responses. In addition, the initial/final value theorem 

is implemented based on the transfer function. 

Sub-objective 2 b): Determine how the ETO archetypes perform under different 

frequency inputs. 

Frequency domain analysis has been widely used in studies on the bullwhip effect in the 

production control field (Sarimveis et al. 2008); this analysis illustrates how the system’s 
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magnitude and phase changes along with the demand frequency. This method has been proved 

to be useful in capacity and inventory management (Lin et al. 2020). In the ETO context, 

frequency domain analysis can contribute to capacity management and provide an insight on 

how system parameters affect a system’s performance under different demand frequencies. 

Sub-objective 2 c): Define the critical stability boundary of the ETO archetypes.  

Stability is a core requirement for a system. Without stability, the system’s output will be highly 

fluctuating, which may dramatically increase the operational costs for the ETO company. Thus, 

stability analysis is necessary for the study of the archetypes, which will provide critical 

stability conditions for the ETO archetypes. This sub-objective aims to derive the critical 

stability boundary of the ETO archetypes, with consideration of the rework ratio and the lead 

time effect of the subsystem.  

1.3.3 Objective 3 

Objective 3: Measure and improve the ETO archetype’s resilience from a SD perspective 

The third research gap emphasises the importance of resilience in the ETO system. Therefore, 

objective three is designed to explore methods to enhance the resilience of the ETO system by 

optimising the parameter settings of the developed ETO archetypes. This exploration will lead 

to the development of practical guidance, bridging the gap between theoretical frameworks and 

practical application. The results from this objective will contribute to the body of knowledge 

by offering a methodology for resilience improvement and providing practical insights for 

managing ETO systems. The step change is used as an input to simulate disturbances occurring 
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in the ETO system. It represents an abrupt and significant change, placing the system in extreme 

conditions to evaluate its resilience. While a step change may not fully capture the complexity 

of real-world disturbances, it serves as a standardized tool for testing the system's response to 

extreme scenarios and assessing its ability to recover from disruptions. 

Sub-objective 3 a): Select a suitable resilience index for the ETO archetype. 

This objective focuses on investigating the origins and development of specific resilience 

indices. By conducting a thorough literature review on various resilience measurement indices, 

a comprehensive analysis will be performed, thereby enabling these indices to be categorised 

into distinct groups. This categorisation will serve as a toolbox for subsequent steps in the 

research. 

Based on the review of the resilience index, a suitable index that can be adopted for block-

diagram model resilience measurement will be selected. Thereafter, this index will be adopted 

to measure the resilience of the system. This adaptation extends the ETO archetype’s usage into 

resilience research and provides an effective means to test the resilience improvement strategy’s 

effect on the ETO system.  

Sub-objective 3 b): Select decision rule parameter settings to achieve the ETO archetype’s 

best resilience. 

Based on the developed archetype and selected index, this research will attempt to select ‘good’ 

parameter settings for the system to achieve its highest level of resilience. Considering that the 

ETO archetype transfer function modelling may yield a high-order system, this objective will 



23 

primarily consider simulation-based tools to achieve this objective. The outcome of this 

objective can lead to the provision of managerial suggestions on how to improve resilience by 

changing the parameter settings in the production system decision rule.  

Sub-objective 3 c): Result synthesis for a ‘good’ parameter selection 

The results from stability analysis, bode plot analysis, and resilience analysis provide different 

suggestions on parameter selection because these three analyses focus on different aspects of 

system performance. Therefore, to offer comprehensive recommendations on tuning the 

production system’s parameters, an analysis of the synthesis results from different chapters is 

conducted. The aim is to determine how to effectively establish the decision parameter(s) value 

and how to implement this concept in practice. 

Sub-objective 3 d): Assess the ETO archetype’s sensitivity to parameter uncertainty 

Sensitivity analysis can be used to test how the system would react to parameter uncertainties 

(Towill and Mehdi 1970). In practice, physical system parameters—such as design or 

production delays or rework rates—may often be wrongly estimated. If so and the system is 

highly sensitive to parameter estimation, there may be a huge impact on the system’s dynamic 

response. In such circumstances, sensitivity analysis can play a role in identifying which 

parameters the system is sensitive to by examining which factor’s or parameter’s change has 

the greatest influence on the system. With this information, the selection of a ‘good’ decision 

rule for parameter settings may be judged not merely for a specific output metric but also for 

how large the variance in the output is when a physical parameter varies from the expected 
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value. Moreover, considering the ETO as a two-echelon system, it is worth observing how an 

individual design or production subsystem’s parameter change affects the entire ETO system. 

1.4  Road Map 

Chapter 1: This introductory chapter provides the background of this study, explains the 

research gaps and motivation for this thesis. Thereafter, it presents the research objectives and 

questions to define the scope of this study. Moreover, Chapter 1 also provides a roadmap for 

the subsequent research, which can be used a guide to this thesis, with Figure 1.3 providing a 

visual roadmap. 

Chapter 2: This chapter undertakes a literature review that is divided into three sub sections: 

1) Reviewing the definition and development of ETO systems, with a particular focus on the 

CODP; 2) Reviewing the SD method’s application in general and specifically for ETO systems; 

3) reviewing the development of resilience in production. This chapter provides a foundation 

for this thesis. The outcome of the literature review will finally be used in model development, 

model analysis, and resilience study. 

Chapter 3: This chapter outlines the methodology used in this thesis, which encompasses 

ontological and epistemological positions, research design, and research methods. This chapter 

also justifies why SD modelling, CT, and simulation are selected as the main methods for this 

research. At the same time, this chapter explains how each method will be adopted in this thesis. 
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 Figure 1.3 Thesis roadmap 

Chapter 4: This chapter develops the ETO archetype based on the findings from Chapter 2, 

beginning with the CLD and then transforming to the block-diagram model, followed by its 

further development into transfer function models. Given the fact that ETO systems include 

design and production subsystems, coupled with the existence of rework, the chapter also 
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discusses where and how the rework may occur within the ETO system and how it can be 

represented within the model. Next, it investigates the measure via which the controller should 

be set to maintaining the lead time and order book at the desired level. In this experiment, a 

transient response of the model under a step change input is visualised to see whether the target 

variable can settle down at the targeted level after a step input. Furthermore, as the lead time is 

a nonlinear function, a linearisation technique is adopted to aid the development of a transfer 

function. The outcome of this chapter is a well-developed ETO archetype family rather than 

any one generalisable archetype. Moreover, the models developed in this chapter are a 

foundation for the following research, whilst simultaneously addressing Objective 1. 

Chapter 5: This chapter presents a dynamic analysis of the newly developed ETO archetype 

family. To guarantee the accuracy of the developed archetype, the triangulation technique is 

adopted to verify the model by examining whether the results from difference equation 

simulation (Spreadsheet), Simulink simulation, and transfer function simulation are all 

reasonably the same. To maintain the consistency with the previous experiments in Chapter 4, 

the input for all simulations is a deterministic step change input.  

After the model verification, two specific techniques are utilised to analyse the archetype’s 

dynamic performance: 1) Frequency domain analysis: This technique assesses the archetype’s 

performance from a frequency domain perspective. A Bode plot is generated to evaluate how 

the system’s magnitude and phase shift in response to changes in demand frequency. 2) Stability 

analysis: Given that this research models the system in a discrete time framework, introducing 

a one-unit delay results in an increase in the system dimension, thereby, complicating algebraic 
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calculations and potentially leading to errors in the stability analysis. To address this, two 

methods are employed: For low-order models (where the characteristic equation’s order is 

below four), the pure Routh-Hurwitz method is utilised, which provides accurate results. For 

higher-order models (where the characteristic equation’s order exceeds three), a hybrid method 

is used to identify the stable region.  

Chapter 6: This chapter discusses the meaning of resilience for an ETO system and established 

the integrated time and absolute error (ITAE) as the main index for resilience. To have a 

universal method to test the resilience performance of the ETO archetypes, the parameter space 

exploration (PSE) method is utilised and the model subsequently analysed is a high-order 

system with an eighth dimension. Therefore, the results present the change in the resilience 

along with the parameter setting and present a calculation of the best proportional controller 

value to achieve the system’s best resilience under different rework ratios. The research 

outcomes can potentially assist the managers to create a capacity adjustment plan when the 

rework ratio of an ETO system is known and steady. 

Chapter 7: This chapter aims to bridge the gap between research outcomes and real-world 

practice. This chapter comprises three subsections. Section 7.1 synthesises the research results 

regarding system parameter settings. Section 7.2 conducts a sensitivity analysis on the 

developed system with the recommended parameter settings. Finally, Section 7.3 presents an 

adaptation of the developed archetype in the ‘Think Slow, Act Fast’ philosophy. 
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Chapter 8: This chapter discusses all the findings and insights from the thesis; this chapter 

contains four sub sections, with each section focusing on one chapter.  

Chapter 9: This chapter 9 provides a summary of this thesis along with a future research agenda 

for prospective study.  

1.5  Summary 

The above was an introduction to the background of this thesis as well as to how the 

inadequacies in the current research provided motivation for developing this project. The ETO 

archetype family development, SD analysis, and resilience measurement and improvement 

form the main structure of this thesis. At the end of this chapter, a road map is provided to 

demonstrate how each chapter addresses the specific research objectives.  
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Chapter 2 Literature Review 

This chapter provides a literature review on the three core topics of this research project, namely 

ETO systems, SD analysis, and resilience. Both quantitative and qualitative literature is 

reviewed to provide a comprehensive view of the ETO system. Since quantitative studies are 

still at their incipient stage of exploration, research papers are collected from both qualitative 

and quantitative perspectives.  

This review contains four major sections. In Section 2.1, there is an exploration of ETO systems, 

aims to provide an overview of the development of the ETO system, subsequently developing 

an understanding of their main structure. Section 2.2 reviews the development and application 

of the SD and CT in production system management. Section 2.3 reviews previous papers 

related to the production system resilience measurement. Section 2.4 provides an overview of 

the concept ‘Think Slow Act Fast’, which is believed to mitigate the impact of rework.  

The outcome of this chapter is that it provides a foundation for the subsequent chapters. Sections 

2.1 and 2.2 extract the main features of the ETO system, thereby providing a reference point 

for SD analysis. The findings from Sections 2.1 and 2.2 are used in Chapter 4 and they also 

contribute to Chapter 5. Section 2.3 contributes to Chapter 6 by providing a background for 

resilience study and measurements. Section 2.4 provides a review of the ‘Think Slow Act Fast’ 

philosophy, which can be used in rework effect mitigation in an ETO system.  
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2.1  ETO Systems  

This section reviews the literature on ETO systems, providing a theoretical foundation for the 

subsequent research. This section also identifies key themes, including the definition of ETO, 

the role of the CODP, and the impact of rework and non-conformance in ETO processes. By 

exploring these elements, the review establishes a contextual understanding of how ETO 

systems operate and the challenges they face in balancing efficiency, flexibility, and resilience. 

2.1.1 An Overview of the ETO System  

Definition:  

The ETO system can be defined in the following manner:  

‘Engineer-to-order (ETO) is characterised by high levels of customisation for each product and 

is typically managed in a project environment, with the decoupling point at the design stage’ 

(Gosling et al. 2013, p. 552). 

As has been previously introduced, ETO is a unique production system that does not require 

holding of any stock and requires customer engagement in the designing stage. Therefore, it 

has increasingly attracted attention from both PM and SCM fields in the last three decades 

(Gosling and Naim 2009). According to the definition, two core activities are included in ETO: 

design and production.  

Design:  
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The ETO system is marked by its unique complexities, particularly in integrating design and 

production processes to meet highly specific customer requirements. However, one of the 

persistent challenges in ETO research lies in defining the depth of design involvement and its 

implications for production. Hicks et al. (2000) highlighted the difficulties in coordinating 

procurement and design in low-volume, highly customized products, emphasizing the interplay 

between tendering and production functions. Porter et al. (1999) underscored the variability in 

how deeply customer specifications influence the design stage, a feature that sets ETO apart 

from other production systems. Olhager (2003) examined ETO systems within the Order 

Penetration Point (OPP) framework, where the positioning of customer engagement 

significantly impacts operational efficiency and delivery. Hameri (1997) further noted that 

effective communication and configuration management are essential to manage this depth of 

design and ensure alignment with customer expectations. Due to the inclusion of design in the 

production process, ETO systems often raise confusion when compared to Design-to-Order 

(DTO) systems. Wikner and Rudberg (2005) explored the differences between these two 

systems and reviewed various perspectives on their definitions. To clarify the distinction, they 

proposed a new categorization method for ETO systems based on the position of the CODP. 

They suggest three categories of ETO systems:  

Engineer-to-order type of engineer design (ETOED): This design is created based on the 

customer’s order. 

Adopted-to-order type of engineer design (ATOED): This design is adapted from a previous 

design. 
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Engineer-to-stock type of engineer design (ETSED): The design utilises an already existing 

design. 

Gosling et al. (2017) further develop this categorisation and categorise ETO systems into the 

following types: 1) Research for design refers to the design required for research and 

development (R&D) activities. Such types of projects provide customers with a bespoke 

tailoring service, with a unique and first-of-a-kind design that usually requires a time-

consuming and expensive formulation. 2) Codes and standards design refers to designs for 

integrated codes or standards. This group also includes those unique designs that use codes and 

standards as a starting point. Compared with the first kind of service, this group of ETO systems 

provide limited design services. 3) Existing design includes those projects that use existing 

designs, drawings, and subsystems as the starting point. 

Production: 

The production process in the ETO system can be regarded as a make-to-order (MTO) system, 

wherein no finished products are in stock, and production can only begin after the order is 

placed (Zhou et al. 2022). The significant difference between ETO and MTO is that the rework 

in ETO systems cannot be ignored. This is because, for ETO service providers who allow 

customers to tailor their product design, doing everything right the first time is ideal but 

impossible (Neumann et al. 2022; Han et al. 2013). The existence of the rework dramatically 

increases the complexity of the ETO system, which can be attributed to 1) rework that may 



33 

occur at any stage, 2) the detection is occasionally not on time, and 3) these issues lead to new 

dynamic behaviour showing up in the system.  

The ETO systems are mainly adopted in shipbuilding, construction, and capital goods 

manufacturing industries. In the shipbuilding industry, the ship itself can be regarded as a highly 

customised ETO product; moreover, components such as sonar systems, tank measuring, and 

electric power systems are also ETO products (Mello et al. 2017). Alfnes et al. (2021) conducted 

a study on these ship-related products and the systematic factors that create uncertainties in 

these production system. The research by Kristianto et al. (2015) developed a system-level 

configuration approach and a prototype that could improve the performance of the ship’s engine 

room production. In the construction industry, researchers from PM backgrounds provide a 

solid foundation for ETO study. However, it should be noted that not all construction can be 

regarded as ETO products. Only those companies that integrate design with the building process 

can be categorised as ETO. Ding et al. (2022) conducted a focus review on the modular medical 

and quarantine facilities and introduce the process and technologies adopted in the construction 

of these facilities. Gosling et al. (2013) explored the factors that affect the adaptability of the 

building and develop a CLD to demonstrate the adaptation system. In the capital goods 

manufacturing industry, Adrodegari et al. (2013) investigated the main weaknesses and 

strengths of the one-of-a-kind production system, and propose a framework for the specific 

purposes of the machine industry to guide the practice in multi PM planning and control.  

With the increasing demand for high-performance and more innovative productions, there is an 

increased demand for high-value and highly customised and intelligent production systems 
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(Müller and Voigt 2018). This new demand challenges the traditional production system 

research and provides a valuable opportunity for ETO system development. ETO system 

practitioners also confront several challenges, which can be summarised in the following 

manner: 1). How to provide the appropriate design service to customers considering cost and 

customisation degree? 2) How to guarantee the production quality and deliver the products on 

time when producing a one-of-a-kind and even first-of-a-kind items. 3) How can the capacity 

for both design and production systems be estimated, and how can the system’s flexibility and 

adaptability to various demands and disturbances be improved? 4) How can the downstream 

production system for the ETO company be managed, and how can the labour force be 

synchronised with the material supply? These questions that tend to arise as common 

difficulties in the ETO system shall be duly addressed in the thesis. 

2.1.2 ETO and CODP  

CODP: A new way of categorisation 

One of the most important concepts that act as a distinguishing factor between different types 

of production system is the CODP (Gosling et al. 2017). Sharman (1984) defines the CODP as 

the point at which product specifications typically become frozen and as the last point at which 

inventory is held. For the periods before or after CODP, the company can set different targets 

and apply various strategies to balance the trade-off between customer service level with 

operation cost (Olhager 2003). For example, for the pre-CODP period, the company may use a 

push strategy to manage the inventory to stabilise the production rate, thereby reducing the cost 
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entailed by production fluctuation. For the post-CODP period, the company may adopt a pull 

strategy; the shipment of products occurs after the customers place their order, thereby reducing 

the cost from the inventory and improving the utilisation of facilities. Intriguingly, the 

introduction of the CODP point provides a new research stream for production system 

management. It also provides a categorisation method for all production system, as presented 

in Table 2.1.  

Although there are many variants of CODP such as customer order penetration point (Cannas 

et al. 2019) or order penetration point (Olhager 2003), but within this thesis, the terminology 

CODP is adopted at all places. 

Table 2.1 Production system categorisation based on the CODP. 

System Type 
Original 

reference 

Typical 

CODP 

Locatio

n 

Feedback 

Path 

Feedforwar

d 

Path 

Flow 
Main analysis 

technique 

MTS (Towill 1982) 
Finished 

stock 
Inventory Demand Material Laplace transform 

ATO 
(Lin et al. 

2020) 

Sub-

assembl

y 

WIP 

Inventory 

Backlog 

Demand Material Laplace transform 

MTO 
(Wikner et al. 

2007) 

Raw 

material

s 

Order Book 

WIP 
Demand Material Simulation 

ETO This paper Design Order Book Demand 
Work 

Unit 
z-transform 

Table 2.1 presents the production system categorisation based on CODP. Herein, the 

penetration points shift from downstream to the upper stream from top to bottom of the table, 

which also implies the customers’ engagement with the production system is deepened from 

top to bottom. MTS refers to a production system where the CODP is situated at the distribution 

stage and the customer is not engaged in the production system. An example of this is mass 
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production, which was first adopted by Henry Ford (Duguay et al. 1997). ATO refers to the 

production system which holds components in the inventory, and the company assembles the 

components after the customers’ orders are placed. Typical examples for such manufacturing 

industries’ goods are personal computers and washing machines (Ceryan et al. 2012). MTO 

represents a production system that produces the products after the customers’ order is placed. 

Typical industries include personalised capital goods manufacturing and specially designed 

machines (Sahin & Robinson 2005). ETO, as the most unique case, is defined as a production 

system wherein the CODP point is situated at the design stage itself, thereby facilitating 

customer engagement right from the design stage and leading to customised designs with 

bespoke requirements—for example, in industries associated with ship building (Mello et al. 

2017), special designed capital goods (Yang 2013) and construction (Naim et al. 2021).  

The introduction of the CODP concept provides researchers with a new method to analyse 

production systems, thereby providing a valuable categorisation method for the production 

system study. Based on this, CODP can also be used as a positioning tool, which lets users 

easily locate the production system type among all categories; these benefits promote 

knowledge sharing and development in the production system study. From the practical 

perspective, CODP can assist managers in having an awareness of what kind of environment 

they are in and what type of production system they are managing. With this information, 

managers can develop suitable strategies with a particular focus on their production systems by 

referencing relevant research and previous experience. 
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As mentioned in the previous paragraphs, CODP is a valuable tool for both researchers and 

practitioners to position their production system and design different strategies for the pre-

CODP and post-CODP period. It is important to remember that although ETO systems contain 

a common thread of design in their service, they belong to a diverse set of industries. Therefore, 

a single definition is an insufficient representation of the ETO system. Thus, the ETO system 

needs to be further defined to clarify the research scope of this project. To achieve that clarity, 

the CODP concept is a useful measure coupled with a special focus on the design. 

As mentioned above, Gosling et al. (2017) introduce and summarise the typical activities in the 

ETO system and further classified ETO systems into three groups. This research gives us a 

deeper and more comprehensive understanding of ETO industries, which can benefit 

researchers through a refined and complete ETO category. By using the refined ETO category, 

Cannas et al. (2019) upgrade the CODP concept to a 2D form map, which uses engineer design 

processes on the y-axis and production processes on the x-axis, each point representing a kind 

of ETO system, with different depths in design and production. The users can position their 

business in this figure, thereby modifying and improving their production system management 

by extrapolating their experience with similar production systems. This is suggestive of 

managers potentially designing their management strategies depending upon both the design 

penetration point as well as the production penetration point. Importantly, the different 

combinations of design and production penetration points have different resource and capacity 

management requirements. 

The shifting CODP 
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The CODP is not always situated at the same place; the CODP may shift downward when the 

business becomes increasingly mature (Olhager 2003). For example, if certain designs are 

frequently used as a primary platform for further modification or as a core component of the 

customers’ demand, they could be packaged and modularised by the company to mitigate the 

cost and lead time from the design stage (Gosling et al. 2013a). According to the categorisation 

in the previous section, the production system changes from a ‘research-to-order’ type 

production system to a ‘standard and code to order’ production system. Apart from 

unintentionally shifting the position of CODP in the production system, the management may 

bring about an intentional positional change to cope with the strategies and targets for the 

market. For example, the company could shift the CODP point upward by introducing the ATO 

concept to traditional MTS production systems to provide greater freedom-of-choice and 

interactions with the customers (Gosling et al. 2017). On the contrary, if the company wants to 

improve the utilisation of the facility and reduce the number of SKU numbers, then the CODP 

is moved downward, which will reduce the variety of the products and, thus, reducing the 

hurdles in inventory management (Gosling and Naim 2009). The concept of shifting the CODP 

not only provides strategic foundations for the production system researchers and managers, 

but also provides a dynamic view to the production systems. By holding this dynamic view, the 

management could better adjust their strategies to adapt to the changing environment and the 

changes that occur within the production system. 

Apart from the research that stems from the production system field, Adrodegari et al. (2013) 

developed a one-of-a-kind production framework to demonstrate the production process of 
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special design machine industries (capital good products), thereby highlighting the critical role 

of information and communication technologies (ICTs) in ETO environments. Wang et al. 

(2016) designed a domain model of the service system, which could be used for facilitating 

computer assistance and human-centred decision-making. Bajomo et al. (2022) provides an SD 

model which simulates the material management system of the engineering, procurement, and 

construction (EPC) industry and reproduces the dynamic behaviour of material volume.  

2.1.3 Non-conformance and Rework  

Non-conformance is a common issue in the construction industry. It is defined as “something 

that has not been executed in accordance with the design, specifications, or works information 

contract” (Ford et al. 2023). Moreover, in some research, non-conformance can also be termed 

as defects or errors (Love et al. 2019). Non-conformance usually leads to cost- and time- 

overrun due to extra rework and rectifications. In a few extreme cases, non-conformance may 

finally result in project failure (Taylor and Ford 2008). Occasionally, the company can combat 

non-conformance via rework or simply accept its existence as a compromise on the quality, as 

depicted in Figure 2.1. In the ETO environment, non-conformance also exists due to the first-

of-a-kind nature of ETO systems (Zhou et al. 2022). Non-conformance may appear in the design 

and production periods; these resulting issues usually require extra work in terms of the 

rectification of the errors or the defects, which are generalised as rework.  
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Figure 2.1: Relationship of non-conformance and rework [source: Author’s own work] 

Rework—which refers to the extra work that is created by errors, defects, and/or changes, has 

been well studied in construction field. According to the research conducted by Love et al. 

(2002), rework occupies 12.4% of the total contract cost, on average; however, Love and 

Edwards (2004) postulate the range of rework costs to be from 3% to 23% of the contract price, 

which makes companies suffer a huge loss in the construction industry. Such a difference in 

opinions could be a consequence of the varied craftmanship levels and project complexity. But 

it can be observed that rework occupies 13% of the total cost, on average, which may directly 

reduce the profit of the project. This contention has made rework reduction and rework 

management research a major topic of discussion within the construction industry in the last 25 

years (Love et al. 1999), with the problem continuing to plague many companies.  

However, in transitional production system, rework is poorly represented. The reason for this 

is that, typically, within the traditional production system environment, the aim is to eliminate 
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unqualified products (Dabhilkar & Åhlström 2013), thereby minimizing waste. In contrast, in 

the PM scenario, rework is an inevitable issue, with researchers and practitioners reaching an 

agreement that doing everything right the first time in a project, particularly for a mega project, 

is not only impossible but also costly (Love et al. 1999). Thus, it becomes imperative to learn 

how to manage rework at a lower level and, subsequently, develop rework management 

strategies that can contribute to feasibility and cost effectiveness in PM (Love et al. 2019).  

Hence, although, rework is typically considered a waste, but in the ETO environment, rework 

is equivalent to an inevitable necessary evil. There are several reasons for this. First, the design 

process usually involves multiple rounds of communication and modifications before it is sent 

to the production department. These changes and modifications create additional work for the 

design team (Strandhagen et al. 2018). Second, every new design, due to its unique nature, adds 

complexity and difficulty for the production department (Seth and Rastogi 2019). The afore-

mentioned factors pose significant challenges to the attainment of the ‘right first time’ paradigm, 

thereby necessitating a proactive approach towards rework management in an ETO system 

(Barbosa and Azevedo 2019).  

According to extant literature, rework can be divided into two groups; Design rework and 

production rework (Lee et al. 2006a; Park et al. 2011; Han et al. 2013). Design rework refers to 

the rework that is attributed to the design defects or change; however, the detection of these 

defects made by the customers is not always timely. In certain cases, the detection of design 

errors occurs in the production stage. In such circumstances, the rectification of the non-

conformance requires efforts from both the design and production department, and the 
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subsequent production may need to be postponed while awaiting the completion of the rework. 

According to Love et al. (1999), most of the rework can be tracked back to design defects, with 

the design rework being one of the largest contributors to cost and time overruns. Thus, design 

defects and errors, including the design changes introduced after production has begun, should 

be possibly controlled at the lowest level. Production rework refers to a scenario in which the 

production stage is riddled with defects and faults. Such problems are usually caused by the 

simultaneous issues of material management and poor craftmanship (Ford et al. 2023), which 

can be attributed to the complexity of the project (Love et al. 1999) .  

The influence of non-conformance can be categorised into direct and indirect groups. Direct 

consequence refers to the extra cost and resources spent on rectification. To fix the errors and 

defects, the project manager has to schedule extra work with the implementation team and extra 

materials need to be purchased. If the detection of non-conformance occurs after the follow-up 

work, the management needs to face a demolition and rework scenario. In this case, more work 

needs to be spent on rectification. The indirect consequences can be summarised into the 

following aspects: 1) Overtime works—since the rework needs to be done as soon as possible, 

the managers often face difficulties related to labour shortage, and one of the common solutions 

to this is to ask workers to work overtime (Chritamara et al. 2002; Park 2005). However 

working overtime may not be entirely free of negative consequences, such as pressure on the 

workers, safety issues, and morale (Zhou et al. 2023), which may lower the morale for the entire 

project. Love (2003) developed an SD model which illustrates how the rework affects the whole 

system and found that the effect of the rework will eventually be exaggerated as the knock-on 
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effect, with the consequence not always being time or cost but, occasionally, project failure as 

well.  

To mitigate the rework in the project, the company needs to dig out the root causes of the rework, 

instead of focusing on the superficial. Therefore, it is essential to attend to the root causes for 

rework, which may be summarised in the following manner: 1) Human error—humans make 

errors, which usually manifest as wrong installations and wrong implementations. The 

engagement of the human labour in a project, particularly a construction project, is relatively 

high and that makes rework an inevitable issue in PM (Taofeeq et al. 2020). 2) Poor skills and 

craftsmanship—the poor skills of the workers can also be one of the main contributing factors 

towards rework. In certain companies, the percentage of fresh workers is rather high, which 

implies that the workers are often inexperienced and lacking training (Akkermans & Vos 2003). 

This could potentially lead to a high rate of non-conformance, which eventually manifests as a 

high rework rate. Intriguingly, the project may require some time to recruit more people for the 

fulfilment of the capacity and labour shortage caused by rework, thereby resulting in a vicious 

cycle where the recruitment leads to another batch of fresh workers (Lyneis and Ford 2007). 

This invariably increases the rework rates due to the formation of a cycle, or rather, a negative 

reinforcement loop in the project, which increases both the lead time and the costs (Lee and 

Peña-Mora 2007). 3) Supplier errors—this is yet another root cause for rework. The products 

provided by the supplier may contain quality issues or may be lacking in the standards and 

specifications of the project. In such cases, rework is necessary to replace the components 
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provided by the supplier or improve the quality of products by other means to make them meet 

the desired standards (Barbosa and Azevedo 2018b).  

As mentioned above in previous sections, in the other kinds of production system, rework is 

usually considered as waste and seldom considered in the production system modelling. While 

for an ETO system, because of its one-of-a-kind project orientation and high human 

engagement features, rework must not only be considered but rather be managed well through 

ETO system modelling in the actual practice (Love et al. 2002). Additionally, in typical ETO 

industries, like construction and shipbuilding, the rework analysis has diverged to pave the way 

for a new research direction (Papachristos et al. 2020b; Ecem Yildiz et al. 2020), which further 

substantiates its importance in the manufacturing and production system operations. The above 

reasons make rework a distinguishing feature indispensable to the ETO system. 

2.2  Application of SD in the ETO Field  

This section reviews the application of the SD approach in the ETO area, with a special focus 

on both the production system and PM fields, to comprehensively summarise the models that 

have been developed in this area. The reason for broadening the research scope to include PM 

is because, as a multi-disciplinary field, the terminology of the ETO has not been determined 

and unified, which results in certain researchers using different words and terms to describe the 

ETO system—for example, bespoke projects, highly customised products etc.  
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2.2.1 An Overview of SD and CT 

SD was developed in the mid-1950s by Forrester (1958) and has been widely used as a 

simulation method in production system management and PM (Lyneis 2012; Wikner et al. 

2017). By simulating the causal relationships among quantified variables, SD combines the 

advantages of conceptual systems thinking with mathematical formulation, providing a 

platform for designing solutions to problems.  

SD is widely used in production system management, such as inventory control, lead time 

analysis, and ordering policies development (Lin et al. 2020). Multiple effective and efficient 

models are developed based on SD, such as the IOBPCS family (Wikner et al. 2017) which 

have been adopted in multiple production system but not yet for ETO systems. Adopting SD in 

production system design helps managers to understand the potential variability induced by 

internal systems structure and internal and external disturbances. Hence, SD provides 

management with a policy testing platform to determine stock holding, lead-time, and capacity 

level requirements (Wikner et al. 2017). 

SD also plays a decision support role in PM, especially in construction. Compared with the 

production system quantity-oriented applications, most SD in PM are process-oriented (Lee 

2006; Shafieezadeh et al. 2020). SD has been adopted in most project phases, covering 

aggregate level planning (Huang and Wang 2005), pre-construction planning (Lingard and 

Turner 2017), project execution (Alvanchi et al. 2011), and post-delivery (Hao et al. 2007). SD 

is used in national macro real estate regulation (Huang and Wang 2005), policymaking (Park et 
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al. 2011), and execution from the management level (Lee et al. 2006), which enables SD to 

become a potential bridge to connect PM and production system management.  

Because of SD's excellent scalability, more and more SD-based hybrid simulation modelling 

approaches have emerged, such as SD-Agent Based Modelling (SD-ABM) (Barbosa and 

Azevedo 2019; Papachristos et al. 2020b) and SD-Discrete Event Simulation (SD-DES) (Shin 

et al. 2014; Goh and Askar Ali 2016). Such amalgamations extend the application range of the 

models and improve their fidelity, which shows greater potential for their adoption in a complex 

system simulation and modelling. 

The application of the SD in the production system has been reviewed by several authors (Lin 

et al. 2017; Rebs et al. 2019) whilst not much research has been undertaken on the SD approach 

in the ETO field. Therefore, to explore the application of SD and CT in the ETO field, the given 

research project adopts a review. Within this the four-step process and guidelines as proposed 

by Seuring and Gold (2012), namely, (1) Material collection and filtering, (2) Descriptive 

analysis, (3) Category selection, and (4) Material Evaluation are followed. 

2.2.2 Literature Review Process 

The literature review on SD and CT’s application in ETO field is composed of four steps: 

Material collection, Descriptive analysis, Categorisation selection and Material Evaluation. 

Figure 2.2 is provided to illustrates the process of the review.  
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Figure 2.2 The literature review process 

Material Collection: This review includes research that adopt SD and CT in modelling ETO 

projects, to provide insights into the status and development of these methods, thereby 
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addressing Research Questions 1 and 2. The reason for focusing on SD and CT is that, while 

there have been more generic ETO system literature reviews (Gosling and Naim 2009; Cannas 

and Gosling 2021), there has been no review focused on those specific methods. After 

preliminary research, it was found that those systems-based approaches are widely used in both 

fields, hence potentially providing a bridge for knowledge sharing between PM and Production 

system Management. Although the focus of this review is placed on the quantitative SD and 

CT techniques, there is also research aiming for developing qualitative research adopted soft 

system theory and system thinking (Naim and Gosling 2022). However, such methods are 

beyond the scope of this study.  

Given the consideration that terminology in PM and SCM might be different, the Key Word 

Search method adopted dealt with two mainstream academic databases "Web of Science" (WoS) 

and "Scopus," thereby comprehensively sampling papers across a range of journals and related 

disciplines.  The keyword-setting process went through two iterations to collect papers precisely 

and comprehensively, as shown in Table 2.2, which also explains the rationale for redefining 

the terms of the keywords. The final keyword terms were determined and are presented in Table 

2.3. Because of the limitations of character representations in the Scopus and WoS databases, 

four search terms combinations were utilised in Table 2.4. To narrow down the scope and focus 

on the SD and CT applications in ETO fields, five exclusive criteria were adopted which are 

listed in Figure 2.2. The first and second criteria guarantee the material’s quality and readability, 

and the third criterion limited the scope prior to November 2023. The fourth and fifth criteria 

exclude papers that were irrelevant to the study. 575 papers were identified by exploiting the 
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search terms combinations, and five filtering criteria were used to ensure adequate scope, as 

listed in Figure 2,2 yielding 145 articles that were then the subject of the analysis. 

Table 2.2 Keyword setting process 

Keywords combination Reasons for choosing Reasons for changing 

"engineer to order" AND 

("system dynamics" OR 

"control theor*" OR "control 

engineer*") 

1. Narrow down the scope to ETO 

and SD. 

2. Control theory is the 

mathematical foundation for SD. 

1. Sample size is too small because the 

terminology has not been unified in 

ETO fields. 

 

("construction industry" OR 

"construction management "OR 

shipbuilding OR "engineer to 

order") AND "supply chain" 

AND "system dynamics. " 

1. Construction and shipbuilding 

belong to the ETO field. 

2. Adding the Keyword "supply 

chain" because the research scope 

is limited to the supply chain 

management field. 

1. ETO is Interdisciplinary; limited 

scope on the supply chain will miss 

the process-oriented nature of ETO 

products. 

Table 2.3 Final version of searched keyword combinations 

Application or Problems Methods 

construction sector system dynamics 

construction industry system dynamic 

shipbuilding sector project dynamics 

shipbuilding industry control theory 

engineer to order control engineering 

one of a kind  

first of a kind  
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Table 2.4 Keyword combinations used for searching databases 

("construction sector" OR "construction industry") AND ("system dynamic" OR "system 

dynamics" OR "project dynamics" OR "control engineering" OR "control theory") 

("capital goods") AND ("system dynamic" OR "system dynamics" OR "project dynamics" 

OR "control engineering" OR "control theory") 

("shipbuilding sector "OR "shipbuilding industry") AND ("system dynamic" OR "system 

dynamics" OR "project dynamics" OR "control engineering" OR "control theory") 

("engineer to order" OR "one of a kind "OR "first of a kind") AND ("system dynamic "OR" 

system dynamics" OR "project dynamics" OR "control engineering" OR "control theory") 

 

Descriptive analysis: Following the material collection, descriptive analysis was conducted to 

quantitatively analyse the publication trends and distribution of publications in journals, which 

provides readers with an up-to-date introduction to the status of knowledge development. In 

addition, after categorisation, the detailed descriptive analysis will be presented in section 2.2.2 

to illustrate the allocation of sampled papers across each category.  

Categorisation Selection: Two categorisation methods are selected for this review: Phases 

categorisation and topic categorisation. 

(1) Phases categorisation: The phases categorisation was developed based on Gosling et al. 

(2016)'s work, which contains four groups, namely: Aggregating planning, Pre-project planning, 
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Project Execution, and Post-Delivery. Aggregating planning includes papers that study ETO 

from a macro level, and that group of research provides readers with analysis, understanding, 

or guidelines in company, organization, or market level management. The pre-project phase 

refers to the project preparation and mobilization stage, covering papers focusing on enhancing 

the project performance at the preparation stage. The project execution phase comprises papers 

studied at project level management. Compared with the aggregating planning phase, project 

execution phase research mainly focuses on individual project (product) execution (production). 

Post-delivery contains research focus on activities after the project is delivered, including but 

not limited to waste management, demolition management, and maintenance. As a 

complementary to the phase categorisation, papers will be categorised into two groups based 

on their purposes, namely, to demonstrate the structure of the system, and to demonstrate the 

mechanism of interventions. Finally, the categorisation result will be shown in a matrix, with 

phases as the horizontal axis, with model’s purpose as the vertical axis. 

(2) Topics Categorisation: Considering the dispersed status of current research in ETO systems, 

an inductive method is adopted to classify papers according to the main goal or topics. These 

topics were identified based on emerging themes from each paper read. Adopting the inductive 

approach in this paper contributes to the comprehensiveness of this review. This advantage has 

been recognized in the following review papers. Seuring and Gold (2012) adopted inductive 

methods to collect the research direction of the production system literature review. Wu et al. 

(2020) undertook a topic identification method in the construction management field, nine 

popular topics were summarized. 
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Material Evaluation: The collected papers will be evaluated according to the coding table in 

Table 2.5 and analysed by categorisation. Each article was reviewed by in-depth reading and 

subsequently coded by Table 2.5, which provides the description and reason for using each 

code to extract information from papers. To note here, the first column indicates where each 

code will be used and match each code to a particular categorisation or analysis.  
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Table 2.5 Coding table 

 

 
Code Description Reason for using 

D
es

cr
ip

ti
v
e 

an
al

y
si

s 

ID Identification number Ensure all papers identified were coded 

Title Title of the paper Convenient for coding in spreadsheet 

Authors Who wrote this paper Identify any groups of papers by the same author 

Journal Journal of final publication Identify the distribution of the papers in different 

journals 

Publication 

Year 

The year paper publication Enable a longitudinal view of the sample to be 

made 

Industry In which ETO field the paper 

focus. 

Assess the application of SD in each ETO field. 

P
h

as
e 

C
at

eg
o
ri

sa
ti

o
n
 

Phases For which phase are models 

simulating. 

Used for phase categorisation 

Modelling 

Methods 

Modelling techniques used in this 

research 

Distinguish between different modelling methods 

and analyse its distribution over phases 

T
o
p
ic

s 
C

at
eg

o
ri

sa
ti

o
n
 

Topic The research focuses on which 

topic? 

Identify the primary research direction in the 

current stage 

Purpose of 

the model 

The purpose of the model, what 

are objectives of building this 

model 

Evaluate the applicability of the different models 

across different scenarios. 

Contribution How this research contributes to 

the existing ETO modelling 

technique: 

Identify how this research contributes to the 

existing structure of ETO system modelling 



54 

2.2.3 Findings from the Descriptive Analysis 

Figure 2.3 demonstrates the citation network of sampled papers, wherein 61 papers do not cite 

or are cited by other articles, 84 articles cite or are cited by at least one paper. This finding 

illustrates that adoption of SD in ETO field is scattered because almost a quarter of the research 

in the sample group is independent. However, some research direction emerges; the coloured 

knots in Figure 2.3 represent the cluster that the paper belongs to and are then duly labelled. 

These clusters are automatically generated by the Vosviewer's algorithm, which follows a five-

step procedure, 1) extracting, 2) categorising 3) counting. 4) association strength calculation 5) 

Euclidean norm value calculation (Van Eck et al. 2008).  

 

Figure 2.3 Citation network produced by Vosviewer 
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Figure 2.4 Publications trend from 1985 to 2022 

Figure 2.4 shows the trend of the publications from 1985 to 2022. This paper aggregates 

research in a 5-year bucket, which helps readers have a clear view of the primary trend instead 

of fluctuations. A rising interest in applying SD simulation in ETO can be seen. However, only 

three papers adopt CT in research. Compared to the SD, CT can analyse the system and explain 

how certain phenomena happen (Lin et al. 2017). This finding suggests that most models' built-

in research is simulation-orientated, and analytical research is inadequate in the current stage.  

The distribution of papers across journals highlights the appropriateness of using the keywords 

searching method. Fifty-four different journals are identified, contributing three or more papers 

to the sample listed in Table 2.7. Listed journals contributing 59% of the total collection of 

papers is 145. 
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Table 2.6 Sample distribution across journals 

Journal title Number of Papers 

Journal of Construction Engineering and Management 16 

Construction Management and Economics 9 

Automation in Construction 6 

International Journal of Construction Management 5 

Accident Analysis and Prevention 4 

Journal of Cleaner Production 3 

Journal of Management in Engineering 3 

Construction Innovation 3 

Engineering, Construction and Architectural Management 3 

International Journal of Environmental Research and Public Health 3 

Journal of Computing in Civil Engineering 3 

Mathematical and Computer Modelling 3 

Resources, Conservation and Recycling 3 

Safety Science 3 

Waste Management 3 

 

The collected literature utilizing SD in ETO systems covers four industries: construction (94%), 

shipbuilding (3%), capital goods (2%), and generic ETO systems (2%). Additionally, three 

papers incorporate CT, distributed across construction (2 papers) and shipbuilding (1 paper). 

This dominance of construction journals may reflect both the widespread adoption of ETO 

practices in the construction sector and the maturity of SD research in this field. However, it 

also highlights a potential gap in exploring SD applications in other ETO-related industries, 

such as shipbuilding and capital goods.  
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Table 2.7 Sample distribution across phases 

Phases Total Proportion 

Aggregate level Planning (AP) 28 20% 

Pre-Project Planning (PP) 37 26% 

Project Execution (PE) 34 23% 

Post-Delivery (PD) 36 25% 

PP-PE 8 5% 

AP-PP-PE 2 1% 

Grand Total 145 100% 

 

The papers’ distribution across phases is shown in Table 2.7. The pre-project stage attracts 

most of the attention from researchers, which occupies 26%, followed by the post-delivery 

phase, which contributes 25%. 23% of papers focus on the project execution phase, and 120% 

focus on the aggregate level planning period. 

Besides research focusing on a single-phase, 6% of papers undertake cross-phase simulation, 

which indicates the start of research looking at inter-phase and a more holistic view to analysing 

the ETO system. This novel direction provides a potential foundation for ETO archetype 

building. 
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Table 2.8 Publications distribution over methods and project stages (DES: discrete event 

simulation; ABM: agent-based modelling) 

Row Labels CT SD 
SD-

ABM 

SD-ABM-

DES 

SD-

DES 

Game 

theory-

SD 

Grand 

Total 

Aggregate 

level 

Planning 

(AP) 

2 26     28 

Pre-Project 

Planning 

(PP) 

 33 1 1 1 1 37 

Project 

Execution 

(PE) 

2 28 1  3  34 

Post-Delivery 

(PD) 
 32    4 36 

PP-PE  5  2 1  8 

AP-PP-PE  1   1  2 

Total Number 4 125 2 3 6 5 145 

Percentage 3% 86% 1% 2% 4% 3% 100% 

 

According to Table 2.8, SD is the dominant simulation method in the papers identified, while 

only four papers exploit CT. It is also observed that 16 papers, almost 9%, adopt hybrid 

simulation techniques in ETO research. Therein, eight papers study Project Execution (PE) or 

PE centred cross-phase modelling, while the other four are in Pre-Project planning (PP), with 

the other four in post-delivery phase. The first hybrid modelling paper of the sampling group 

was published in 2006 and yet the application of hybrid modelling in the ETO field is still in 

its infancy. 
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2.2.4 Findings from the Categorization 

In this section, papers will be categorised, summarized, and analysed. Figure 2.5 demonstrates 

an aggregated map to give readers an overview of the categorisation results from a macro level. 

Section 2.2.5-2.2.8 will dive into the categorisation and analyse the topics distribution of each 

group. In each section, a discussion regarding the research topic is provided (the result of topic 

categorisation) to give an in-depth review of each topic.  

It is important to distinguish between aggregate planning and aggregate-level planning (AP). 

Aggregate planning is a formal process in operations management focused on production 

planning and capacity management. In contrast, Aggregate-level planning refers to a broad 

category of research and literature that focuses on high-level, strategic planning across multiple 

domains. Unlike detailed, operational-level planning, this approach encompasses areas such as 

innovation management, financial strategies (e.g., cost management and cash flow policies), 

market analysis (e.g., construction, shipbuilding, and capital goods manufacturing markets), 

supplier management, and prefabrication diffusion. 
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Figure 2.5 A summary of the distribution of sampled literatures 

96% of the papers take a PM perspective instead of an ETO-production system view. That may 

be attributed to the following reasons: 1) ETO is an emerging topic in production system that 

has not received adequate attention, while PM, especially in construction, is a well-established 

field of endeavour. 2) As ETO production tends to be 'one/first of a kind,' scholars take a project 

perspective to study this field. 3) ETO systems require models representing both the production 

system and project perspectives; however, such techniques are in the infancy stage of 

development, and there is a lack of related modelling guidance. Although much of the PM 

research included in this review does not explicitly mention ETO, they do offer PM models 

that provide a reference base to allow simulation of the production aspect in the ETO system, 

thereby enriching the toolbox for ETO research and promote knowledge sharing between PM 
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and SCM. The following analysis provides a systematic assessment of Phase-Topics 

categorisation in a tabular form Figure 2.5.  

2.2.5 Review of the Aggregate level Planning Group 

This group covers papers focusing on aggregate level planning, including innovation, finance, 

and marketing topics (See Table 2.9).  

Research in this group holds an aggregated view and aims to improve the organization's 

performance by providing a better understanding of the system nature and the policies' 

influences. While few papers in this group investigate aggregate-level capacity management, 

even fewer papers study the impacts of an organizations’ capacity on the tendering decision. 

Although capacity shortage may sometimes be overcome by outsourcing, if not addressed, such 

capacity limitations will directly result in lead time delays and customer service levels will 

decrease. 

Innovation: The construction industry often confronts new and complex problems that require 

unique, innovative solutions (Park et al. 2004), while it is often criticized for lacking innovation 

(Suprun et al. 2019). SD was adopted to investigate innovation management and explore 

solutions to accelerate the development and diffusion of innovations.  

Finance: As mentioned in the introduction section, ETO companies are often confronted with 

schedule and cost overrun. Four papers focus on cost management, including cost overrun 

causes analysis and construction financial performance investigation. The other group focuses 

on cash flow policies development, which utilises SD to simulate the cash flow system.  

Marketing: 12 papers target the ETO market modelling and analysis, covering shipbuilding, 

houses, and capital goods manufacturing markets. Research in this group often holds a macro 
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view to investigate the mechanism and structure of the market system and assesses intervention 

policies' impact on the market. 

Others: Besides those topics mentioned above, another two topics are detected. One aims at 

supplier management and the other aims at the government's role in diffusing prefabrication 

constructions
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Table 2.9 Aggregate-level planning category 

Topics Innovation Financial Marketing Others sum 
W

h
a
t 

sy
st

em
 h

a
s 

b
ee

n
 s

tu
d
ie

d
 

Innovation system 
Describes how project managers' 
attitudes, team members and 
organizational climate impact the 
innovation. (Park et al. 2004) 
The authors model the innovation 
system and highlight government 
incentives' importance. (Suprun et 
al. 2018) 
Innovation transition 
Modelling the innovation 
transition pathway (Suprun et al. 
2019).  
Pasqualino et al.(2021) present a 
model to display the dynamics of 
innovation, inequality and 
inflation, within the context of 
Industry 4.0. 

Cost management. 
This paper demonstrates the causes for 
cost overrun and its interrelations. 
(Asiedu and Ameyaw 2020)  
Kim et al. (2020) simulates the income 
and cost system of the Korean studio 
apartment. 
Lou and Guo (2020) modelled various 
factors' impact on the prefabrication 
construction 
Tang and Ogunlana (2003b)  built an SD 
model to evaluate the performance of 
several construction projects in Malaysia 
from a financial perspective. 
Asiedu and Ameyaw (2021b) develop a 
model to demonstrate how cost overrun 
is caused and illustrate the interaction 
between variables. 

Construction market. 
Dangerfield et al. (2010) adopted the SD illustrate the interactions 
among competitiveness factors. In 2013 competitiveness model was 
further developed and modelled the process of contracts allocation 
in a stylized market. (Gilkinson and Dangerfield 2013) 
Huang and Wang (2005) develops a model to forecast the supply 
sides units 
Choi et al. (2017) analyse the core mechanisms of brand 
management. 
Tang and Ogunlana (2003a) investigated how the market change 
influences the organization or companies' financial, technical, and 
managerial capability.  
Kim et al. (2021) developed a SD based profit model as a foundation 
for a statistical model which can be used to simulate the income and 
cost of studio apartments. 
Shipbuilding market 
Wada et al. (2018) develops a forecasting model for Ship building 
market. Based on this paper, Wada et al. (2022) improve the 
shipbuilding capacity adjustment model by developing a ship price 
prediction model.  
Kim et al. (2021b) Develop a market forecasting model which is 
composed of two SD model, one aims at simulating the grassroots 
construction market, the other demonstrate operation, maintenance, 
and demolition market system. 

Supplier management  
Smets et al. (2013) simulate in the new 
product development (NPD) process, 
emphasized the importance of 
manufacturers' simultaneous control to 
correct NPD errors (non-conformance) 
and the necessity of providing training 
programs to the newly hired engineer. 
Supplier management.  
Bajomo et al. (2022) Present and 
analyse a construction material 
production system SD model, in 
Engineer procurement and Construction 
field. 
Luo et al. (2022) Analysed how 
additional cost of passive building is 
created, from a production system 
perspective. 
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Innovation Performance 
Investigating the effect of 
Borrowing, Joint venture, and 
Training policies on Innovation 
performance (Ogunlana et al. 
2003). 
 

Cash flow policies. 
Cui et al. (2010) investigate the 
Overbilling and underbilling, Trade 
credit, and subcontracting policies’ 
influence on project cash flow. 

House market 
Park et al. (2010) Investigate the 831 policy’s impact on Korean 
house market. 
Hwang et al. (2013) analyse the existing and suggested policies 
regarding the imbalance of demand, supply, and vacancy in the 
housing market. 
Capital good market 
Größler et al. (2008) demonstrates that decreasing the price or the 
product enhancement may lead to counter-intuitive effects on sales 
revenue. 

Prefabrication diffusion  
Park et al. (2011) provide an insight into 
policies regarding prefabrication 
construction diffusion to the private 
sector.  
Li et al. (2022) Predict the trend of 
prefabrication construction diffusion. 

7 

Sum 5 6 12 5 28 
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2.2.6 Review of the Pre-project Phase 

Topics in this group cover safety and health management, risk management, and training and 

learning management (See Table 2.10). Adoption of SD enables researchers to have a systemic 

view to study the problems in pre-project stage. However, two issues were identified. Most 

models in this group are case-orientated, there is a need for further generalization and 

categorisation. Second, the CLD technique demonstrates the causal relationship between 

variables, while some modelling examples in this topic did not clarify relations between 

variables as correlation or causal relationships, which may lead to misunderstanding for readers. 

Safety and health: Unsafe and unhealthy behaviours damage workers' productivity in the short 

term and have a long-term influence on their health. This may also lead to other adverse 

consequences to the project implementation by knock-on effects, such as, organizational 

productivity decreases, non-conformance rate increases and cost overrun (Mohamed and 

Chinda 2011). The introduction of SD modelling contributes to this topic by providing a 

systematic view of the safety and health management system, which overcomes the barrier 

created by the project's complex implementation environment.  

Training and learning: Training and learning are core activities in improving the team's 

performance, especially in the project preparation stage. A well-trained implementation team 

may benefit from the construction quality, overall project performance, and reduction of 

rework. In the meantime, a well-designed experience to knowledge transferring process 

contributes to the organization's long-term improvement. SD is utilised to investigate the 

causes for inefficient training and simulate the experience transfer process. 

Risk Management: Risks in the project are diverse and scattered, depending on the project's 

diverse properties. Besides, risks' impact may be aggravated due to the complex structure and 
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interactions in projects. SD is adopted to simulate how the risks affect the project and analyse 

the interactions among risks factors. SD also demonstrates its strength in determining knock-

on or unintended consequence effects by providing visibility of how the original problem yields 

adverse impacts to the whole system, and which variables finally respond to such outcomes. 

Others: Besides the above topics, there is also the miscellaneous relevance of information 

management, construction performance assessment, labour shortage problems and adoption, 

and Six-sigma.   
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Table 2.10 Pre-project category 

 Safety & health Training and learning Risk Management Others 
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Unsafety causes: Investigate how the production pressure affects the 
safety culture (Mohammadi and Tavakolan 2019)  
Han et al. (2014) explored the negative effect of schedule and 
productivity on safety performance (incident rate). 
Goh and Askar Ali (2016) applied SD-ABM-DES to simulate the 
safety performance system for an earthmoving project.   
Safety enablers and policies: Mohamed and Chinda (2011) 
investigate how safety enablers influence the safety culture.  
This paper investigates the core mechanism and the effect of how 
Behaviour-based safety programs improve safety (Guo et al. 2018).  
Woolley et al. (2020a) adopted Systems Theoretic and Accident 
Model and Processes (STAMP) to model safety management in 
construction.  
Worker's health: Lingard and Turner (2017) illustrated the 
determinants and their interactions of workers' health. 
Vitharana and Chinda (2021) adopted SD to investigate the causes of 
lower back pain and the interaction between key factors.  
Wu et al. (2016) simulate how the work-family conflict influence 
workers’ satisfactory. 
Mohammadi et al. (2018) develop four safety archetypes with due 
consideration of delay in design, a number of sub-contractors, project 
cost, and supervisors' impact on the safety performance.  
Huang et al. (2022) developed a simulation model for Construction 
workers unsafe behaviour evolution. 
Ni et al. (2022) Demonstrate how factors affect the unsafe behaviours, 
with special focus on new generation construction workers. 
Nordin et al. (2021) To analyse the safety management system and 
root causes of accident 

Training 
Bajracharya et al. (2000) 
investigate the causes and 
remedies for inefficient 
training activities in 
Nepal.  
Learning.  
This paper visualizes the 
concept of knowledge 
management capacity and 
simulates the evolution of 
such a process. (Chen and 
Fong 2013) 
Lê and Law (2009) 
simulate the experience 
transferring process in 
Architecture, 
Engineering, and 
Construction industry 
organizations.  

Risk management 
Mhatre et al. (2017) established 
SD with the interpretive ranking 
process, modelling the critical 
factors in construction; the result 
suggested that the risk dimension 
"construction management" has a 
high possibility to occur.  
Tavakolan and Etemadinia 2017) 
mixed Delphi, SD, and Fuzzy 
logic to analyse critical risk 
factors and their interactions. 
Finally, 63 crucial risk factors 
were identified.  
By developing a risk 
identification feedback chart and 
risk flow chart. Li et al. (2017) 
identified investment risks in 
prefabrication projects.  
Nasirzadeh et al. (2008) 
developed an integrated Fuzzy-
SD model to assist risk 
management.  
Purushothaman and Kumar 
(2022) SD is used to explore the 
relationship between Production 
system risk with the resilient 
capability. 

Information management:  
Middleton and Golay (2008) introduced Shannon entropy 
into the construction project uncertainty management.  
Tatari et al. (2008) studied the applicability of the 
Construction ERP system in PM and identified the critical 
variables for the system development. 
Construction Performance  
Soewin and Chinda (2020) reveal the critical factors for 
construction performance maturity and its interrelation in 
Thailand.  
Sahin et al. (2018) assessed the background of off-site 
manufacture by SD and identified key factors to the value 
creation.  
Soewin and Chinda (2020) utilise SD to develop a 
Construction Performance Index 
Park (2005) developed SD to study the construction 
performance dynamics; this paper also demonstrated the 
trade-off between lead time and the cost of resource 
coverage.  
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Safety archetypes:  Guo et al. (2015) simulated eight safety 
archetypes and assessed the side effect of various safety regulations, 
highlighting the importance of the connection between entities in the 
system.  Based on (Mohammadi et al. 2018), this paper place 
particular focus on workers, and illustrate how blaming, delay, 
incentives Programmed, and subcontractors' financial status affects 
the project safety (Mohammadi and Tavakolan 2020) 
Liang et al. (2018) assessed three safety management policies to deal 
with the trade-off between productivity and safety issues.  
Shin et al. (2014) assessed the effectiveness of incentives for safe 
behaviours and safety levels. 
Lean: Wu et al. (2019) established SD models to simulate the effect 
of 5 lean tools on construction safety performance.   

Learning 
Ecem Yildiz et al. (2020) 
combined SD with the 
balanced scorecard and 
strategy maps 
demonstrate how selected 
policies affect 
organization’s learning 
ability.  

 

Six Sigma: Ullah et al. (2017) investigated the 
implementation status of six sigma in Pakistan; based on 
an SD simulation of how six-sigma influenced project 
success. 
Information management 
Khan et al. (2016)  demonstrated vital drivers and their 
interrelations for absorbing cloud computing for small and 
medium enterprises. 
Labor shortage: Aiyetan and Dillip (2018) developed SD 
to model the effect and enablers of labour shortage; this 
paper also examines the influence of the interventions. 

10 

Sum 19 4 5 9 37 
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2.2.7 Review of the Project Execution Phase 

As the core activity in both the PM and the production system management fields, this stage 

attracts the most attention (See Table 2.11). A potential archetype has been identified from this 

stage. However, according to the ETO definition, the model should comprise of both design 

and production systems. While there is a paucity of references (Lee et al. 2005a; Park et al. 

2009) that combine design with the production system, further research could attempt to model 

the system by amalgamating design with production, thereby exploring the dynamic of ETO 

system.   

Design: Design and production are often regarded as separate activities. However, the ETO 

system should include design activities, as the engineering process is integral to such a system 

(Parvan et al. 2015). Thus, design is regarded as an essential client-specific value adding 

activity and classify design-relevant papers in this group. SD is therefore, utilised in 1) design 

process simulation, 2) design error research, and 3) design sharing analysis, which 

demonstrates the applicability of SD in design process modelling.  

Production: Production is the core activity of the project execution, which is also a 

determinator for schedule and cost performance. This research direction attracts quite a lot of 

attention from academia. SD is applied to 1) analyse the causes of poor productivity, 2) model 

the production process, 3) study the rework, 4) improve the schedule performance, and 5) 

simulate the prefabrication process. These models provide a quantified and systematic view of 

production control which deepens the understanding of PM. Besides, this group contains three 

papers that adopted CT. The introduction of optimal CT provides a set of mathematical, 

analytical tools in earthmoving processes, capital goods manufacturing, and ship panel 

manufacture schedule optimization. 
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Quality: One of the construction industry's primary trade-offs is between quality and cost. 

Shafiei et al. (2020) first adopted SD into the quality-cost trade-off analysis and proposed a 

model to analyse the effect of policies that are designed to decrease the cost of quality. 

Dynamic Planning Methodology: Dynamic Planning Methodology (DPM) is identified as a 

potential candidate for ETO system archetype, which is adopted in 5 papers. This model, which 

is developed based on SD, simulates the construction project process. This method has been 

utilised in production process research, rework simulation, and design errors analysis, thereby 

demonstrating its applicability in the PM field.  
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Table 2.11 Project execution category (DEMATE: Decision-making trial and evaluation laboratory)  

 Design Production Quality sum 
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Design process 

modelling: Chapman 
(1998) simulate the 

new staff's design 
process and learning 

curve and evaluate the 
risk of the change of 

key project personnel 
during the design 

stage.  
Design errors: The 

design non-
conformances dynamic 

impact was assessed in 
the Dynamic Planning 

Methodology (DPM) 
model (Han et al. 

2013).  
Design sharing: 

Minami et al. (2010) 
tested several SD-

based policies and 
concluded that design 

sharing could mitigate 
the cost overrun 

problem.  
 

Production system modelling: Handa et al. (1986) adopted optimal  CT  to optimize the earthmoving process. 
Peña-Mora and Li (2001) apply DPM in fast-tracking techniques research, and proposed methods can absorb the impact from changes. 

Han et al. (2012) upgraded DPM, enabling it can quantify and identify the non-value adding activities caused by non-conformance and 
changes. 

Alvanchi et al. (2011) developed a SD-DES model to combine the operational-level (physical activities like equipment capacity and a 
number of labours) with the context-level (non-physical activities, like labour skill level and organizational policies). This model is 

further upgraded by Alzraiee et al. (2015), with consideration of strategic-level management.  
Tomiyama (1985) developed a capital goods production system with a time lag and adopted optimal CT to calculate the optimality 

condition for this two-stage system.  
Productivity: Khanzadi et al. (2018) integrated ABM with SD to predict the value of labour productivity. 

Mawdesley and Al-Jibouri (2010) develop a series of equations to descript and evaluate how control, motivation, planning safety, and 
disruption affect productivity.  

Gerami Seresht and Fayek (2018a) developed a Fuzzy SD model, which can be used for predicting the productivity of the equipment-
intensive project.  

Palikhe et al. (2019) utilised SD and fuzzy logic to identify root causes for poor productivity in Nepal. 
Parchami Jalal and Shoar (2019) combined SD with a decision-making trial and evaluation laboratory method distinguished several 

factors that most influence and influence labour productivity. 
Rework: Lee et al. (2005) introduced an enhanced DPM that can control the system under uncertainty and protect the system from 

vicious negative iterative caused by non-conformance or change. 
Love et al. (1999) developed several SD models to provide an insight into the causal nature of rework.  

Love et al. (2002) simulate how change and rework of construction impact the project management system. 
Schedule: Jalal and Shoar (2017) investigate the factors relevant to project delay and identified the most influencing factors and the most 

influenced factors by delay through combining SD with the (DEMATEL) method.  
Jing et al. (2019) evaluated Iraq's local construction project's cost level and time performance by SD. 

Laursen et al. (1998) adopted CT, the multi-input and multi-output (MIMO) technique, into the ship panel production system, which 
could be rescheduled and optimize the production sequence in real-time. 

Prefabrication: Li et al. (2018) adopted SD-DES to simulate and evaluate the effect of risk factors on the prefabrication schedule 
performance. 

Nguyen and Ogunlana (2005) utilise stock and flow diagrams and simulate the infrastructure construction process. 

Shafiei et al. (2020) firstly, 

identified the factors affecting 
the cost for quality from 

literature and established an SD 
model to analyse the policies 

which are proposed to reduce 
the cost of quality 

Riaz et al. (2022) Demonstrated 
how key factors affected the 

TQM implementation in 
construction sector. 

Mohammadrezaytayebi et al. 
(2021) Introducing a system 

dynamic based model of quality 
estimation for construction 

industry subcontractors’ works 
Bajracharya et al. (2021) To 

investigate why there is a 
recurring failure in the 

construction industry. 
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Ko and Chung (2014) 

developed a lean 
design process that 

enables the process to 
be more pliable to the 

customers' needs and 
validate it on a SD 

model. 

Production system modelling 

Peña-Mora et al. (2001) introduce the Dynamic Planning methodology (DPM) to analyse the negative effect of fast-track techniques (a 
technique in project management where activities are performed in parallel) and modify control policies to minimize the adverse 

consequence of parallel execution.  
Javed et al. (2018a) proposed that productivity should be perceived as a latent entity underpinned by five parts. Management should seek 

solutions from a systemic perspective. 
Shafieezadeh et al. (2020) investigated the effectiveness and robustness of change management policies, which can model the rework 

cycle and analyse the ripple and knock-on effect in construction.  
Zhou et al. (2022) Present a model demonstrate the structure of ETO and assesses the stability of such a system. 

Ajayi and Chinda (2022) Demonstrated a workflow model, this model is used to assess the impact from project delay variables. SD-
DEMETAL is used to estimate the influence weight of each variable 

Ajayi and Chinda (2022b) Investigate delay-controlling parameters’ impact on project schedule. 
Rachmawati et al. (2022) Develop a model which can forecast Work rate, and optimize the time and cost performance of a project 

 8 

Sum 4 26 4 34 
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Table 2.12 Post-delivery category 
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Waste management: Yang et al. (2020)adopted SD to detect the root causes of waste behaviour. 

Suciati et al. (2018) investigate the relationship between material waste and workers' behaviours and attitudes.  
Hua et al. (2022) develop a model to investigate the subsidy and environment tax's impact on C&D waste recycling. This research also studies the proper 

range of tax and subsidy. 
Yuan et al. (2022) present a stock and flow diagram illustrate how prefabrication contribute to the waste reduction in the designing stage. 

Liu et al. (2021) first, develop compensation model of evolutionary game for Waste management and then authors adopt SD to analyse the equilibrium point 
of this game 

Hao et al. (2007) apply SD to simulate the demolition waste chain.  
Yuan et al., (2011) undertake cost-analysis in a construction demolition system simulation, deepening our understanding of the impact of landfill charges on 

demolition waste.  
Ye et al. (2012) developed an evaluation system to measure the performance of construction waste management. 

Li Hao et al. (2008) verified the effectiveness of the on-site sorting strategy by developing SD simulation.  
Liu et al. (2020) simulated the construction and demolition waste recycling chain. 

Li et al. (2014) developed a model to quantify the impact of the adoption of prefabrication to waste reduction in China. 
Yuan (2012) identified major variables affecting the social performance of construction waste management; this paper also depicts the interrelation 

underlying the system. 
Ding et al. (2016) combined SD with theory of planned behaviour and investigate the effect of different construction waste management measures on 

environmental performance.  
Cheng et al. (2022) analyse how incentives and punishment affect resources utilisation of construction and demolition waste in China. 

Carbon emission: Papachristos et al. (2020) Investigating the low carbon building performance indicators' interaction by combining operation management 
with the SD. Du et al. (2019) Investigated the CO2 emission of construction under different economic situations 

Kim et al. (2013) developed a model which able to calculate the CO2 emission under all stages. 
Wang et al. (2022) present a game-SD model, demonstrate the low carbon practice's effect, within the prefabrication production system context 

Remanufacture: Papachristos (2014) simulated the remanufacturing process in the capital goods production system and its difficulties in practice.  
Mostert et al. (2022) simulate the building material flow in the future, highlight the importance of concrete recycling. 

Sustainability: SD was also applied in developing KPI for sustainability measurement (Wang et al. 2014).  
Liu et al. (2022) SD was used to construct and analyse the sub system of comprehensive benefit analysis of prefabricated building. 

Ghufran et al. (2022) present how circular economy enablers affect the sustainable development. Highlight the policy support and organizational incentive 
schemes are two most effective enablers. 

Zhang et al. (2022) Combine SD with Game theory and simulate the interaction between government, contractors, on greenhouse application this paper took 
wemedia (WeChat, a social application like WhatsApp and Instagram), which reflect public opinion, into consideration. 

Value co-creation: Zhang et al. (2016) study the impact of environmental force on Value co-creation in an enterprise. 

Dispute 

Menassa and Peña Mora (2010) 
presented a model that simulates 

dispute resolve ladders (DRL, which is 
used to solve arising issues between 

participants), enabling participants to 
monitor the occurrence and resolutions 

of the claims and change orders.  
Ansari et al. (2022) use SD to predict 

the construction performance projects 
based on the reason for the claims. 

Maintenance: 

Prasertrungruang and Hadikusumo 

(2008) developed an SD model to 
capture the dynamic of machine 

downtime in the context of small or 
medium highway contractors. 

Prasertrungruang and Hadikusumo 
(2009) shifted their focus to the large 

contractors and highlighted the 
mitigation function of balancing cycles 

which is used to simulate the machine 
dealers' maintenance service. 
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Waste management: Yuan et al. (2012) evaluated three environmental improving management scenarios by SD and provided decision-makers with the 

management level's effect on the mitigation of construction waste caused by environmental impact. 
Yuan and Wang (2014) apply SD in parameter adjustment to assist managers in determining the appropriate waste disposal charging fee in construction.  

Noise reduction: Yao et al. (2011) evaluated the impact of policies, tested the noise level reduction policies under different pricing strategies, considering 
financial, waste, and safety levels.  

Tam et al. (2014) simulated different policies and their effectiveness on waste management. 
Marzouk and Fattouh (2022) testing investment policies’ effects on environment Indicators. 

Green Building 

Li et al. (2022b) study on Green Building Promotion Incentive Strategy Based on Evolutionary Game between Government and Construction Unit 

Dispute 

Ng et al. (2007) combined dispute 

avoidance and resolution technique 
(DART) with SD simulation to present 

a solution to manage disputes and 
conflicts, which provides an insight 

into the nature of these challenges. 
This model can also be used for 

conflicts or dispute forecasting and 
serves as a testing platform for 

different scenarios. 

7 

Sum 31 5 36 
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Figure 2.6 A conceptual SD model for project management (Lyneis and Ford 2007) 

The main structure of DPM is illustrated in Figure 2.6. This model has been utilised in 

1) cost of quality analysis (Lee et al. 2005b), 2) change management (Lee and Peña-

Mora 2007), 3) fast-track technique analysis (Peña-Mora and Li 2001), 4) design error 

investigation (Lee et al. 2006b), and 5) non-conformance analysis (Love et al. 1999). 

This research further upgrades this model by adding new variables and feedback loops. 

2.2.8 Review of the Post-Delivery Phase 

With the gaining importance of life-cycle PM, research has been conducted in the post-

delivery phase (See Table 2.12). Herein three main topics are identified: 1) 

Environmental performance analysis, 2) Maintenance repair and operation, and 3) 

Dispute solving. The post-delivery phase received more attention, not only because of 

the increasing demand for environmentally friendly production, but also because of the 

great potential for cost saving, e.g., via remanufacturing and recycling.   
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Environmental performance: large scale projects, such as in construction or 

shipbuilding, have the potential to have a negative impact on the environment if 

production systems do not take the following issues into consideration: construction 

waste management (Ye et al. 2012), demolition waste management (Yuan et al. 2011), 

carbon emission (Papachristos et al. 2020), and noise reduction (Yao et al. 2011). 

Papers aiming to analyse or improve the environmental performance of ETO projects 

are classified into this group, within which waste management attracts the most 

attention. 

Others: SD is also utilised in other post-delivery activities study besides 

environmentally relevant research. Maintenance is critical for ETO products, 

especially for cargo ships and capital goods, which often requires regular maintenance 

after delivery. In addition, when the products break down, the customer may need 

support from the original manufacturer. Thus, post-delivery management is also crucial 

for ETO products. SD is applied to simulate the adverse impact of the machine 

breakdown and highlights the importance of equipment maintenance. Dispute: One of 

the distinguishing features of the construction industry is the high cost of resolving 

disputes and conflicts. SD is also adopted in this research topic to simulate the process 

of dispute resolution.  
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2.2.9 Cross-phase Research 

This category includes papers that adopt SD in cross-phase research (See Table 2.13), 

which contribute the body of knowledge by providing aggregated, multi-level models, 

and demonstrating the ETO system’s cross-phase behaviours. 

 

Table 2.13 Cross-phase category 

 
Pre-project planning - Project execution  

Aggregate level planning – Pre-
project planning – Project execution 

Sum 
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Process modelling 

Lee et al. (2006b) proposed several hybrid models that can be used in 
whole life-cycle simulation. DPM was also applied to study the impact 
of information technology in the multi-layer system.  

Lee et al. (2006a) integrated DPM with several existing methods and 
implement this integrated method into a web-based system. 

Peña-Mora et al. (2008) bridges the gap between practice and theory by 
simulating the cross-level planning process in an earthmoving project.  

Motawa et al. (2007) adopted DPM in the change management field, and 
the authors developed a change prediction model which can combine with 
the original DPM model. 

Barbosa and Azevedo (2019) proposed several ETO/MTO performance 
determinants and developed a hybrid SD-DES-ABM model to assess the 
system's performance.  

Process modelling 

Lee et al. (2009) further developed the 
DPM model to simulate production 
covering AP-PP-PE phases by integrating 
SD with DES. In this paper, the authors 
firstly introduced the Pipeline installation 
model.  

  

6 

W
h

a
t 

in
te

rv
e
n

ti
o

n
 h

a
s 

b
ee

n
 

st
u

d
ie

d
 

Wan et al. (2013b) developed an SD model to analyse the inefficiencies 
of the construction process in subcontractors; in the meantime, the impact 
of various project settings was also investigated. 

Adaptable building 

Gosling et al. (2013) investigated drivers for building's adoptability and 
identified the enablers for adaptable building. SD was utilised to illustrate 
the building adaptation model and rationalize the concepts. 

Design-build 

Park et al. (2009) presented an SD model to analyse the Korean design-
build delivery system's characteristics and test previous suggestions and 
initiatives. 

Sustainability 

Hessami et al. (2020) designed a model 
which simulates the revolving-fund 
sustainability improvement program. The 
model indicates that if appropriate program 
management and prioritization strategies 
were adopted, revolving funding could 
leverage small initial investment into a 
significant benefit improvement. 

4 

Sum 8 2 10 

 

Pre-project planning - Project execution: Three research topics are identified, 1) 

Process modelling, 2) Adaptive building, and 3) Design-build delivery system, wherein 

process modelling occupies the most significant proportion. Papers in this group bridge 
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the gap between production and project preparation, depicting the connections and 

interactions between these two stages.  

Aggregate level planning – Pro-project planning – Project execution (AP-PP-PE) 

Two papers are classified into this group. Dynamic planning methodology (DPM) is 

combined with discrete event modelling technique and simulates the AP-PP-PE process, 

demonstrating this cross-phase system's dynamic. Another paper adopts SD to simulate 

the revolving-fund sustainability improvement program. Compared with the model 

only focusing on a single-phase, AP-PP-PE simulation provides a macro view of the 

SD, improving the model's fidelity.  

2.2.10 Summary of the section 2.2 

The review of SD applications in ETO systems in Section 2.2 provides valuable insights 

into how dynamic modelling techniques have been applied to understand and manage 

the complexities of ETO system. SD models have demonstrated a strong capability to 

capture the intricate feedback loops and time delays that characterize ETO systems, 

such as those arising from iterative design processes, production adjustments, and 

resource constraints. However, a recurring theme in the literature is the lack of 

comprehensive frameworks that fully integrate design and production stages, which are 

key to the functionality of ETO systems. 
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One significant finding from the review is that many existing studies focus on isolated 

aspects of ETO systems rather than addressing the system as a whole. For example, 

while some studies explore waste management (Yang et al. 2020), others emphasize 

quality issues (Shafiei et al. 2020) or ripple effect in the production system (Lyneis and 

Ford 2007), often without considering how these elements interact dynamically within 

the broader ETO system. This gap highlights the need for holistic models that can better 

represent the interconnected nature of ETO workflows. 

Additionally, Section 2.2 identifies a lack of attention to system behaviour under 

disruptions, an area that is critical for understanding and improving resilience in ETO 

systems. While SD models are well-suited for analysing complex SD, there is limited 

research on how these models can be used to evaluate system recovery and adaptability 

in response to external disturbances. 

These findings form the foundation for the objectives of this thesis. By addressing the 

identified gaps, this research aims to develop SD-based archetypes that integrate the 

design and production stages of ETO systems, providing a more comprehensive 

framework for modelling their unique dynamics. Furthermore, the thesis introduces 

resilience as a central focus, leveraging SD models to analyse how ETO systems 

respond to and recover from disturbances. This integrated approach not only advances 

theoretical understanding but also offers practical solution for improving the 

performance of ETO systems. 
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The insights from this review serve as a crucial transition, linking the existing body of 

knowledge to the research objectives outlined in Chapter 1. Moreover, these reviews 

also provide a foundation for the model development, the outcome will be presented in 

chapter 4.  

2.3  Production System Resilience 

Resilience can be defined as ‘the behaviour of the system when facing disruption events’ 

(Zarghami & Zwikael 2022). In the production system management field, resilience 

research has received increasing attention in recent years due to the COVID-19 

pandemic and the unstable political environment globally. The following paragraphs 

review papers which study 1) the meaning of resilience within an ETO system and 2) 

the measurement of resilience. 

2.3.1 The Meaning of Resilience within an ETO System 

The ETO resilience study aims at developing a method to measure the resilience of the 

ETO system and tunning the parameter settings of the system to achieve its best 

performance. Due to the nature of the definition of the ETO system, it has not been 

thoroughly studied; instead, the general production system’s resilience definition that 

is adopted for this research is ‘an unplanned and unanticipated event that disrupts the 

normal flow of goods and materials in a supply network in this study’ (Kim et al. 2015a).  
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With the outbreak of the COVID-19 pandemic, the global production system was 

heavily impacted, which resulted in wide production stoppages, transportation delays, 

and economic disruptions (Li et al. 2022c). Thus, an increasing number of companies 

and researchers realised the importance of resilience research, which possesses the 

potential to assist a production system from surviving disturbances and mitigating any 

negative influences of unexpected shocks(Christopher and Peck 2004)(Pires Ribeiro 

and Barbosa-Povoa 2018). 

Resilience in the production system field is often used to describe the system’s 

behaviour after the system is interrupted by a disturbance. The process often involves 

three stages, the readiness, responsiveness, and recovery (Spiegler et al. 2012). The 

detailed explanation for these three stages is explained below.  

⚫ Readiness refers to the stage before the disruption occurs. The production company 

usually uses extra inventory as a buffer to absorb the impact from the disturbance. 

Apart from the inventory, the production company also reserves a certain amount 

of capacity or lead time to compensate the capacity lost or the demand increase 

caused by the disturbance. The term redundancy usually appears along with 

readiness, which refers to the extra inventory or capacity of the system. 

Redundancy can improve the system’s anti-risk ability (Wang and Ip 2009) but, 

simultaneously, holding a high inventory level or having a high capacity will 

increase the cost and the idle time for machinery, which may become a source of 

company waste (Purvis et al. 2016). Thus, redundancy is not a cure for the 
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disturbance and the extra stock and capacity must be well-managed with necessary 

contingency measures in place (Pettit et al. 2019).  

⚫ Responsiveness describes how fast the system can react to the disturbance. From 

the inventory perspective, responsiveness refers to the time that the production 

system takes to bounce back from the disturbance events and hitting rock bottom. 

Such performance is often related to the lead time of the production or orders and 

the reaction speed of the system. A resilient production system possesses the ability 

to detect the disturbance swiftly and subsequently initiate the implementation of 

the predesigned risk mitigation plans. To improve the performance of the 

responsiveness stage, efforts need to be made by both the planning and the 

production departments. The planning department needs to make new plans to 

react to the events, while the production department needs to have a highly flexible 

manufacturing process to adopt to the changes in the production. However, an 

overtly swift reaction to the disturbance or the exogenous change is not always 

profitable. At times, reacting to the change too fast may cause other severe 

consequences, such as high fluctuations and frequency changes in capacity. These 

issues may lead to a higher operation cost, which brings forth its own challenges 

for the management.  

⚫ Recovery refers to a process in which the system begins bouncing back to the 

original level or new status (Wieland and Durach 2021). In this period, ordering 

policies or capacity management plays a critical role. The management needs to 
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make a decision regarding how much to reorder, how much capacity needs to be 

compensated for, how to minimise the overreaction after the disturbance, and how 

to prepare against the disturbance in the future (Pires Ribeiro and Barbosa-Povoa 

2018). Although there is an absence of quantitative models that can support 

managerial decision-making, all these questions can be answered retrospectively 

by utilising historical data and management’s experience. It is evident from the 

description above that the trade-off exists in each stage; apart from this, these there 

is another trade-off for the production system (Wikner et al. 2007). The first one is 

the trade-off between lead time and capacity. This trade-off implies that when 

designing the systems, the company has two options to improve the flexibility of 

the system: 1) Keep the lead time flexible, which means that a longer promised 

lead time will be given to the customer. In other words, the production company 

uses lead time as a buffer to absorb the negative influences of the disturbance. 

When the disturbance occurs, the company does not have extra capacity, but they 

can use the extra lead time to complete the production and still deliver the products 

to customers on time. 2.) Keep the capacity flexible, which implies that the 

company owns a production system wherein the capacity can be altered. In other 

words, the company reserves extra capacity for uncertainties and disturbances. 

When disturbances occur, the company can expedite the mobilisation of extra 

resources to do a timely delivery of products to the customers.  
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If the company decides to keep the delivery time flexible, which is option 1 as 

mentioned above, then the company may lose the competitiveness from the lead time 

perspective; however, the benefit would be the cost saved by maintaining a stable 

capacity. If the management aims to have a shorter lead time but with a flexible capacity, 

which is option 2, then the company has to invest more money in maintaining a high 

capacity and to reserve extra capacity, but the benefits would be that the capacity 

flexibility improves their competitiveness for delivering products within a shorter 

timeframe as opposed to companies that select option 1. 

 

Figure 2.7 The trade-off between lead time flexibility and volume flexibility, adapted 

from Wikner et al. (2007). 

In conclusion, improving resilience is not a single-target optimisation goal. Instead, it 

involves a multitarget decision-making process. The company must select an 

appropriate resilience improvement strategy that aligns with its vision and mission. 
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Furthermore, since the definition of resilience varies based on the production system’s 

positioning, industries, and products, companies that aim to enhance their resilience 

must have a clear understanding of their production system’s priorities and constraints. 

This will enable them to tailor their own resilience strategy and accordingly prepare the 

measures to deal with emergency events.  

2.3.2 Measurement of Resilience 

Resilience can be visualised by a simple curve, as depicted in Figure 2.8. The entire 

process is composed of three processes and each of these represents an angle of 

resilience: 1) Preparation stage, which refers to the period before the disruption occurs; 

it describes how well the system can prepare for uncertainties (Shen and Ying 2022). 

2) Response stage, which refers to the period between the initiation of the disturbance 

and the time the system reaches its bottom; this period indicates how fast the system 

reacts to a disruption (Wang et al. 2021 ; Hohenstein et al. 2015). 3) Recovery stage: 

Refers to the period from the bottommost point of the system to the time it settles down 

at a new normal status (Spiegler et al. 2012); this period relates to how fast the system 

recovers from a disruption and settles down at the new level. 
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Figure 2.8 An example of a resilience curve, illustrating the work rate dynamics across 

the preparation, response, and recovery stages of the system during a disturbance. 

The pursuit of enhancing production system resilience has become a complex 

undertaking with multiple objectives, primarily due to the existence of the 

abovementioned three distinct stages (Hohenstein et al. 2015). Previous research has 

uncovered several critical questions and trade-offs that must be considered (Ivanov et 

al. 2018). First, if a universal solution exists that can optimise the system’s resilience, 

which stage’s resilience should be prioritised (preparation stage, responding stage, or 

recovering stage)? Second, within the production system, there are numerous output 

variables that can be used to measure resilience. Which target should be prioritised—

work rate resilience or lead time resilience (Munoz and Dunbar 2015)? Under what 

circumstances should one take precedence over the other? Lastly, what is the cost of 

resilience, and what are the objectives of resilience (Ribeiro and Barbosa-Povoa 2018; 

Pettit et al. 2019)? If resilience comes at a higher cost than production delay or stoppage, 

how should management navigate this trade-off? Specifically, how should they balance 
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resilience with the high cost associated with fluctuating capacity? These questions 

highlight the reality that resilience may not have a single, definitive definition that is 

applicable to all situations and there is no one-size-fits-all solution. Therefore, this 

study takes a theoretically driven approach by using a whole-process resilience index 

to measure the system’s overall resilience. While this research is not yet ready for 

practical application, it can provide valuable numerical evidence to guide future 

development and refinement. Thus, this research seeks the answers for the above 

questions by exploring the best setting for the production system parameters for 

improvement in resilience under different priorities—work rate priority and lead time 

priority.  

To select the index to measure the resilience of the system, a review is conducted to 

summarise the existing resilience index, as presented in Table 2.14. Bearing in mind 

the need to measure the speed and accuracy of the production system to reach its new 

normality, it is important to focus on the index that not only quantitatively measures 

the entire process but does so with the desired efficiency. Therefore, for the purpose of 

this research, the ITAE was selected, which is a sufficient resilience measure for the 

modelling of production SD (Spiegler et al. 2012). As per equation (2.1), ITAE 

integrates the product of time and output error, and the neutral axis refers to the final 

steady state of the system.  
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Table 2.14 A summary of the resilience measurements (Han et al. 2020) 

Stage Index 

Preparing stage, Readiness Situation awareness (Rajesh 2016) 

Visibility (Ivanov et al. 2016) 

Redundance (Cabral et al. 2012) 

Response stage, 

Responsiveness 

Agility (Pettit et al. 2019) 

Flexibility (Rajesh 2016) 

Collaboration (Kim et al. 2015) 

Recovery stage, Recovery Contingency planning (Hosseini et al. 2019) 

Market position(Ivanov et al. 2018) 

Whole period  Integrated Time Absolutely Error (Spiegler et al. 

2012) 

𝐼𝑇𝐴𝐸 =  ∫𝑡 × |𝑜𝑢𝑡𝑝𝑢𝑡 − 𝑁𝑒𝑢𝑡𝑟𝑎𝑙 𝑎𝑥𝑖𝑠| ∙ 𝑑𝑡 .                  (2.1)

𝑡

0

 

ITAE has the following advantages: 1) Integrating time with the error increases the 

penalty for subsequent variations from the target. 2) Capturing the performance of the 

entire process; the other options, such as settling time or the rise time, can only measure 

a specific aspect of the system. 3) It is a quantitative index which can be used on the 

developed ETO archetypes. 
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2.4  Reduce the Impact of Rework: ‘Think Slow, Act Fast’ 

Flyvbjerg and Gardner (2023) developed a database of over 16000 records of different 

projects from over 20 fields across 136 countries. According to their findings, 91.5% 

of these projects exceeded both their budget and schedule, while 99.5% exceeded their 

budget or schedule without providing the expected benefits. Based on this, the authors 

propose that detailed planning and design is the key to successful project execution. 

They suggest that those associated with design activities should take the time to plan 

and identify errors before any production/construction begins. In other words, ‘Think 

Slow, Act Fast’ (Philbin 2023). 

By granting extra time to the design department, the management has to make two 

trade-offs. The first is the lead-time trade-off. Allocating extra time to design may assist 

in reducing lead-time by preventing errors from being passed on to the production 

system, thereby reducing delays for the whole system’s lead-time (Han et al. 2013, Li 

and Taylor 2014). However, adding extra time itself will increase the whole system’s 

lead-time. The second trade-off is related to capacity. The production department’s 

capacity requirements will decrease since less rework will be needed in the production 

system due to the decrease in undetected or post-production design changes. However, 

assigning extra time to the design system will reduce the time for the production system, 

which will make the production system maintain a higher level of capacity to speed up 

production. These two trade-offs highlight the significance of quantifying the ‘Think 



86 

Slow, Act Fast’ philosophy. This study addresses the lead-time trade-off through a 

comparison between two archetypes. 

2.5  Summary of Research Gaps 

This chapter reviewed the papers from both SD and Resilience perspectives, 

summarizing their research status within the ETO context. The literature review across 

Sections 2.1, 2.2, and 2.3 highlights several critical gaps in the study and application of 

ETO systems. These gaps stem from limitations in understanding the integration of 

design and production processes, the lack of comprehensive modelling approaches, and 

the underexplored role of resilience in such systems. 

Section 2.1 established the unique nature of ETO systems, where customer-specific 

requirements necessitate the inclusion of design activities within production workflows. 

While this integration distinguishes ETO systems, current studies fall short of providing 

structured frameworks to model and analyse this interdependence. The lack of 

methodologies that holistically represent both design and production phases leaves a 

void in addressing the operational complexities of ETO systems. 

Section 2.2 reviewed the use of SD in ETO systems, emphasizing its utility in capturing 

feedback loops, time delays, and system-wide interactions. However, most SD 

applications remain fragmented, focusing on isolated elements such as inventory 

control or production planning, without adequately representing the dynamic interplay 

between design and production. Moreover, there is limited research on how SD models 
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can incorporate iterative design processes—a key characteristic of ETO systems—to 

better reflect their operational realities. 

Section 2.3 expanded the focus to resilience in production systems. Resilience, while 

recognized as a critical factor in many production environments, has not been 

sufficiently explored in the context of ETO systems. Existing studies lack robust 

metrics and modelling techniques to evaluate system performance under disruptions 

and assess recovery capabilities. This is particularly significant given the high degree 

of variability and uncertainty inherent in ETO operations. 

Synthesizing these findings reveals three major gaps in the current literature: (1) the 

absence of holistic SD models that integrate design and production processes in ETO 

systems, (2) insufficient attention to ETO system’s dynamic performance, and (3) the 

lack of methodologies to evaluate and improve the resilience of ETO systems against 

disruptions. These gaps underscore the need for an integrated approach that leverages 

SD modeming to address the dynamic complexities and resilience challenges of ETO 

systems. This thesis seeks to fill these gaps by developing new archetypes and 

frameworks that advance both theoretical understanding and practical applications. 
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Chapter 3 Methodology  

Chapter 3 outlines the methodology of this research, covering the research philosophy 

and paradigm that underpin the design and methods used. This chapter lays the 

groundwork for the subsequent research and experiments, providing a detailed 

explanation of the research process.   

3.1  Research Philosophy and Paradigm  

A research paradigm is a framework that underpins the research and is developed from 

the authors’ belief and understanding of the theories and practice that are prevalent in 

the specific research field. A research paradigm consists of three key elements: 

ontological position, epistemology, and research methods. Ontology refers to the 

researcher’s belief on the nature of reality, which shapes the manner in which one 

observes and formulates research objectives (Saunders 2016). Epistemology deals with 

the assumptions of knowledge as well as what constitutes valid, acceptable, and 

legitimate knowledge and its communication (Burrell and Morgan 1979). The 

methodological position of a study is influenced by ontology and epistemology and it 

is the route for interpreting and developing new knowledge. The methodological 

position also dictates the selection of the methods, theory, and framework that 

researchers adopt in their research.  
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3.1.1 Research Philosophy and Paradigm in Production 

System Management 

Production system management, particularly the ETO system, is a multidisciplinary 

field wherein both quantitative and qualitative methods are frequently used. Therefore, 

to design a research paradigm, a review of the philosophy traditions within production 

system management is presented below. 

Researchers who employ positivism as their philosophy consider reality as objective 

and unaffected by the biases or subjective observations of the human mind. Therefore, 

the knowledge developed through positivistic inquiry can be generalised and adopted 

to a wide range of fields. Positivistic research is often quantitative and frequently 

employs mathematical modelling and/or system modelling, such as operations research 

and system dynamic modelling. A criticism for positivism is that it tends to ignore the 

subjective observational and nuanced differences among cases, with even less 

consideration for the impact of humanistic behaviour on the research objectives.  

Critical realism is a philosophy that distinguishes the real world from the observable 

world (Fox and Do 2013). It is believed that knowledge comprehension is affected by 

the social and cultural contexts, while asserting that there is an underlying reality which 

is independent from perception. The research in this area is often qualitative or mixed 

and typical methods include surveys and interviews. Critical realism emphasises the 
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understanding of the underlying mechanisms that define the phenomenon instead of 

merely describing superficial details.  

This thesis adopts a system approach and since it is theory-driven and the reality is 

considered as objective, the research philosophy followed is positivism. 

3.1.2 The Research Paradigm of this Thesis 

Positivism is adopted as the research paradigm for this thesis, warranted by the belief 

that knowledge development should be based on observation and data. The focus of 

this study is to develop the ETO archetype and explore how to improve the resilience 

performance of the developed system. Therefore, developing a quantitative and 

mathematical model is the essence of this thesis, which is validated through a 

positivistic stance for conducting research. This study also conducts a literature review 

to quantitatively synthesise and analyse previous research studies that are aligned with 

the paradigm of positivism. 

3.2  Research Methods and Tools  

Section 3.2 introduces the research methods and tools used in this study. Mathematical 

modelling is chosen as the primary approach to model the ETO system, while the SD 

method is used to simulate the system's dynamics. The following sections, 3.2.1 and 

3.2.2, provide detailed discussions on these two methods.  



91 

3.2.1 Mathematical Modelling  

Mathematical modelling, specifically the control engineer approach, is the core method 

of this study. The CT, which originated in the engineering field, was first introduced by 

Towill (1982) into the study of production system management behaviour. The aim of 

the introduction of the CT is to describe a system via differences or differential 

equations and analyse the system behaviour via a set of tools, such as transfer function 

analysis and initial and final value theorems. The main contribution of the CT is 

developing insight into the mechanism of the bullwhip effect, which unfolds the 

mathematical relationships among parameters and provides solutions for the mitigation 

of work rate and inventory oscillations in the production system.  

Mathematical formulations are the backbone of the system, which demonstrate the 

causal relationships and feedback mechanisms in a production system. The 

formulations could either be differential equations, which describe the system in the 

discrete time domain or the continuous time domain. To describe the system via 

mathematical formulations, the user needs to have a clear view of the causal 

relationships among variables; this could be achieved by logic derivation, observation, 

and literature-based studies. 

Block diagrams, which demonstrate the relationship among variables, is a critical tool 

in CT. The development of the block diagram is based on the mathematical 

formulations of the system. The benefit of using a block diagram is that it can 
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demonstrate the structure of the production system in a straightforward manner, which 

provides a holistic picture for users. 

Stability reflects the core performance of the system. If the system is unstable, a tiny 

change in the input may cause an imbalance in the system. Disney et al. (2006) studied 

the stability of a production system and proposed that for a linear system, there are two 

kinds of statuses. One is the stable status, which implies that the system can recover 

from any disturbance. The other is unstable, which implies that the system cannot revert 

back to the stable status when a disturbance occurs. There are several methods which 

can be used to test the stability of the system—Routh–Hurwitz and Eigen value are two 

frequently used methods in CT. Eigen value analysis refers to the method that 

distinguishes if all Eigen values’ absolute values are smaller than one. The Routh–

Hurwitz method refers to the method that a stable system should meet the criteria that 

the elements in the first array are all positive or all negative (Lin et al. 2020). 

3.2.2 Simulation: SD Approach 

Simulation is a core approach in the production system analysis and optimisation. 

Simulation refers to the method which uses a model to reproduce the behaviour of the 

system in a real-world scenario. The adoption of the simulation helps researchers obtain 

a better understanding of system performance; moreover, it also provides researchers 

with a platform to test interventions to the system. Compared to experiments conducted 

in the actual world, which may need time and labour force, the greatest benefit of the 
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simulation is that it costs less, as a personal computer can usually complete the job. In 

this research project, the adaptation of simulation is mainly through two perspectives: 

1) model verification and 2) a compensatory tool for the high-order system. 

Model verification is essential for the newly built model. Before conducting further 

testing on it, designers must ensure that the model is accurate. In such a scenario, 

simulation has another name—'triangulation’—which implies that the same simulation 

is conducted on three different platforms: 1) Excel spreadsheet, 2) MATLAB Simulink, 

and 3) behaviour reproduction. Based on the transfer function, the results generated by 

these three methods are compared. The model is believed to be valid only if the results 

are the same. 

Simulation also plays a compensatory role in high-order system analysis. For those 

systems whose characteristic model exceeds four, it is difficult and occasionally 

impossible to derive its root. This makes it tedious to conduct analysis which is 

dependent upon the roots, such as stability analysis and root locus analysis etc. In such 

circumstances, using simulation methods is essential. By using computers to simulate 

a system’s behaviour with different parameters, one can obtain the bigger picture of the 

system’s performance with diverse parameters values and combinations.  

3.3  Research Design  

This research contains three major portions: 1) The design of ETO archetypes. 2) 

Dynamic analysis of the ETO archetypes. 3) ETO resilience study. Considering the 
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unique feature of the ETO, this research begins with an overview of the ETO system’s 

definition and applications in the industry. By extracting the common features and 

processes, the ETO system structure is summarised to obtain a deep understanding of 

the foundational mechanism and logic of the system. The outcome of this study will be 

an ETO archetype family which captures the main character and models the generic 

ETO systems. Based on the developed archetype, its dynamic behaviour—including 

stability analysis and frequency domain analysis—is studied. Such analysis can reveal 

the models’ performance and enable the explanation underlying the workings of the 

phenomena observed in real practice from a CT perspective. The third step of this 

research is to measure the ETO system’s resilience and seek solutions for resilience 

improvement. The findings from this study can benefit the production system’s 

resilience improvement when facing disturbances or disaster. Finally, the results from 

all analyses were synthesised and examined from a holistic perspective to derive the 

‘good’ parameter settings for different rework ratios. Based on these findings, a 

sensitivity analysis was conducted and the developed model was used to test the ‘Think 

Slow, Act Fast’ philosophy. The detailed research process is demonstrated in Figure 

3.1. 
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 Figure 3.1 The research process for archetype development 

 

3.3.1 The Design of the ETO Archetype 

An archetype refers to a general or typical model that demonstrates the main structure 

of a real-world system. The benefit of studying an archetype is that it can capture the 

main structure of the target system while aiding researchers to analyse the system 

through quantitative tools. The outcome of the archetype study may enrich the 

knowledge for system operation and provide suggestions for the actual operational 

practices. The shortcoming of archetypes is that these are usually constrained by basic 

assumptions, which limits their fidelity. In certain circumstances the general knowledge 

and rules that ensue from archetypes might not be useful in real life, because the real 

systems are way more complex than an archetype and certain determinants for the 

system performance may inadvertently be ignored or hidden among assumptions. To 
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overcome this issue, a substantial amount of research has been conducted to improve 

the fidelity of the system and improve the resonance of archetypes by simulating real-

world systems.  

However, developing an archetype is still necessary to understand the fundamental 

mechanism of the system; its importance has been made evident in the role it plays in 

explaining the phenomena of real systems, such as the bullwhip and ripple effects 

(Porwal et al. 2020). In addition, a well-verified and constructed archetype could be 

used as an ideal platform to study the effect of newly developed strategies or policies 

through simulations, thereby significantly adding depth to the design of real-world 

strategies, such as information and rework management. Another reason for simulating 

the strategies effect on archetypes is cost efficacy. Testing interventions in a real-life 

scenario is costly and carries a high risk of unexpected consequences, whereas testing 

newly developed policies on the archetype is safer and faster, which makes archetype 

an indispensable tool for decision-making and strategy design.  

In this research, SD modelling methods were adopted, which have the following 

benefits: (1) SD modelling has been adopted in both PM and production system 

management fields which build a bridge for knowledge sharing between both sides. 

This feature is significant for ETO research due to its project-oriented nature. (2) SD 

models are compatible with a wide range of system analysis tools, such as transfer 

function analysis and stability analysis. These tools facilitate the development of insight 
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into the system’s behaviour; furthermore, it provides a foundation for system 

optimisation.  

The adoption of SD in this study draws directly on the findings of Section 2.2, which 

highlights its efficacy in modelling feedback loops, time delays, and dynamic 

interactions in production systems. SD has proven particularly relevant to ETO systems 

because of its ability to integrate the design and production processes, which are 

inherently iterative and interdependent. Section 2.2 also underscores the underexplored 

potential of SD to analyse resilience, which aligns closely with the objectives of this 

chapter. By leveraging SD modelling techniques, this research builds on these 

foundational insights to develop archetypes that capture the unique dynamics of ETO 

systems. 

The first step of the model development is the literature-based study, which aims to 

excavate the structure, key variables, and distinguishing features of the ETO system. 

Chapter 2 provides a solid foundation for this step in terms of ETO applications, 

development, and definitions, while the detailed research outcome regarding key 

variables and CLDs are presented in Chapter 4’s modelling section to demonstrate the 

complete flow of how the model is developed. Thereafter, the CLD was transformed 

into a block diagram and a differential equation model was developed to crosscheck 

with the block diagram. The introduction of a block diagram and differential equations 

enable the quantification of the ETO system and provide a foundation for the further 

system dynamic analysis. In this thesis, the block diagram is developed in the z-domain 
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due to its capability to effectively model pure delays. This approach is particularly 

advantageous for capturing the inherent time lags within ETO systems, where work 

packages must be completed within predefined timeframes to ensure seamless 

transitions between design, production, and delivery stages. By accurately representing 

these delays, including the time required to complete entire work packages, the model 

achieves higher fidelity.  

To verify the accuracy of the model and to conduct an initial study on the system, 

simulation was performed to visualise the system’s transient response to see if it could 

reflect the ETO system’s behaviour. During the model development process, a key 

question is where and how embedded the order book controller needs to be to stabilise 

the targeted variable’s output at the desired level. To answer this question, simulations 

were conducted. To note here, this thesis does not use empirical data but relies on 

theoretical modelling and transient response simulations to analyse system’s 

performance.  

Four simulation experiments were designed to evaluate the performance of two 

different order book controller configurations in various rework scenarios: 1) A local 

order book controller, situated within the production subsystem and 2) a holistic order 

book controller, located at a broader system level. In each configuration, two 

simulations are performed: one to observe the transient responses of a rework-free 

system following a step input and another to observe the responses of a system that 

includes rework. An ideal model should maintain the system’s lead time at its pre-input 
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level. Additionally, the lead time for the ETO system should equal the sum of the lead 

times of the production and design subsystems. Prototypes that meet these criteria were 

selected to be included in the standard model. 

3.3.2 ETO Archetype Dynamic Analysis 

After the initial model development and simulation, the system was assessed using the 

tools from the CT, including transfer function analysis, initial and final value theorem 

(IVT and FVT), stability analysis, dynamic analysis, and sensitivity analysis. These 

approaches enable learning from the model that was developed in a quantitative manner, 

thereby providing an insight into system performance under diverse income and 

parameter settings. The findings and outcomes were used in the ETO system resilience 

study. 

Model verification and transfer function analysis 

The transient responses of the models due to a step-change in demand are illustrated for 

verification and analysis purposes.  

The unit step input is a well-established approach in SD analysis, widely adopted for 

illustrating a system's behaviour under sudden changes (Towill et al. 2007, Wikner et 

al. 2017). In this research, the step change is applied as a standard input to evaluate the 

dynamic response of the proposed ETO archetypes. This input serves several purposes. 

First, it enables the measurement of key performance indicators, such as settling time 

and overshoot, providing insights into how the system transitions from one state to 
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another. Second, it offers a consistent and replicable method for testing various 

configurations, ensuring comparability across scenarios. 

One of the advantages of using step change is its simplicity and versatility. It represents 

a fundamental disturbance that can mimic real-world changes, such as sudden increases 

in demand or production delays, in a controlled and measurable way (Spiegler et al. 

2012). This makes it an effective tool for identifying system characteristics and 

validating model logic (Nise 2015). Furthermore, by combining the step change with 

transfer function analysis, it is possible to cross-verify results and ensure that the 

modelled behaviour aligns with the expected theoretical outcomes. 

In summary, the application of step changes as input provides a standardized framework 

for analysing the transient dynamics of the ETO archetypes, enabling systematic 

exploration of their behaviour under various conditions, which corresponds with the 

objective of this research. 

The index variables selected for transient response analysis are work rate, lead time, 

and order book. Work rate reflects the work load of a system, which is one of the 

determinants of the production cost; lead time represents the time taken for all working 

units to be completed, which reflects the waiting time from the customer’s end; order 

book refers to the works that still need to be completed, which in the PM field is 

occasionally referred to as ‘work to do’ (Lee et al. 2005a). These indices are key 

competitive indicators for an ETO system and indicate whether the system can maintain 
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its service level to the customer at the expected level (Wikner et al. 2007). To verify 

that the developed archetypes are free from errors, the triangulation technique is 

adopted. The simulation results were crosschecked via three approaches. (1) A 

spreadsheet simulation was conducted via differential equations and the model was 

simulated with a step input. (2) A z-domain model in Simulink was developed for 

simulation. (3) The transfer function was derived based on the differential equations 

using a state space approach and a transient response was remade in MATLAB. Further 

research was begun only after all results were crosschecked to be the same. 

The adoption of transfer function analysis in a production system has a rich history, 

which covers MTS (Towill et al. 1992) and ATO (Lin et al. 2020) systems analysis; 

moreover, it has been recognised as an effective tool for system behaviour studies. It 

depicts how the system will react to an input and is utilised to demonstrate the transient 

response of the system. The denominator of the transfer function is called the 

characteristic equation, which is the determinator of system performance—the stability 

of the system—and is determined by the roots of that equation.  

Initial and final value theorems (IVT and FVT respectively) are used to derive the initial 

value or final value of the system. The final value is an important indicator to see if the 

system reaches equilibrium at the desired level, and initial value refers to the first value 

that the system achieves when an input is given. The reason for adopting these two 

approaches is the initial and final value indicate how system output changes with the 

given input. A well-developed model should be able to maintain the indicators at the 
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desired level, and IVT, FVT are two approaches that can derive the final or initial value 

of the output. This assists in developing an insight regarding the level at which the 

system settles down after the step input. 

Frequency domain analysis 

As ETO systems are production-oriented, their production costs are highly sensitive to 

fluctuations in production capacity. High capacity fluctuations can lead to increased 

operational costs (Spiegler et al. 2012, Barbosa & Azevedo, 2019). Simultaneously, the 

demand in the ETO market is dynamic and often results in cost overruns in ETO 

systems (Abotaleb & El-adaway 2018). Therefore, understanding the system’s dynamic 

performance under various demand patterns is imperative. This thesis adopts frequency 

domain analysis, a method that allows users to examine a system’s dynamics under 

varying frequency inputs, to obtain a better understanding of the performance of various 

ETO archetypes.  

The key variables examined in this thesis are work rate, lead time, and order book. 

Work rate refers to the work rate of the production subsystem, which is a core 

determinant of the system’s capability. In the ideal situation, the system’s capability 

should always be above the required work rate, and if the capability falls below the 

work rate, then an expected delay would occur. However, when the external 

environment is volatile and uncertain, the required work rate will manifest a fluctuating 

behaviour, and these fluctuations will likely increase the on-cost production. Thus, 
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work rate is selected as one of the target variables to understand how its dynamic 

behaviour is affected by the parameters. In this context, the cost specifically refers to 

the additional expenses caused by work rate fluctuations. Considering these costs aims 

to identify ways to enhance the system’s resilience while simultaneously minimizing 

the cost associated with fluctuations. 

Lead time refers to the time that the whole process requires to deliver the 

products/projects. The frequency analysis on lead time indicates how stable the lead 

time is, in a fluctuating environment. A fluctuating lead time may result in losing the 

customer’s patience and reduction in customer service. Thus, keeping a steady lead time 

is critical for the companies to keep their promises to the customers. 

The order book represents the volume of work awaiting completion or the length of the 

queue for production. It serves as a key determinant of lead time. When the system’s 

production capacity is fixed, a larger order book typically results in longer lead times. 

Thus, the level of the order book is a crucial indicator for the system’s efficiency. An 

Excessively high order book levels may compromise lead time guarantees, while 

excessively low levels may lead to the underutilisation of the system’s capacity and 

cause subsequent waste. 

Stability analysis 

Stability is a core dynamic performance metric once the model of a system is 

established. If a system is unstable, a tiny change in the input may cause imbalance in 
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the system and lead the system into endless fluctuations. In practice, it usually leads to 

cost and time overruns and, occasionally, chaos. The stability analysis in the discrete 

domain faces more difficulties than in the continuous time domain because of the nature 

of pure delay that is infinite dimensional (Riddalls & Bennett 2002). For a low-order 

system, typically lower than order four, analytical methods may be adopted. A classic 

analytical technique is the Routh–Hurwitz method and has been adopted in production 

planning and control system SD analysis by various authors, including Disney and 

Towill (2002), to derive the stability boundaries of a vendor-managed low-order 

inventory-based production control model in the z-domain. For high-order production 

system models with symbolic parameters, stability analysis has been limited to SD 

simulation modelling (Klug 2017).  

The rework rate and lags are assumed to be constant for each experimental run that 

defines the quality control, designing and producing products, as well as the associated 

time taken. Thus, the focus is placed on the decision parameters of the model, which 

form the decision rules of the system. In this research, the decision rule is realised via 

a proportional operator for the order book controller, which is called τOB. The smaller 

the τOB, the more sensitive the system is to order book changes. Although a small τOB 

can lead to a prompt reaction to the order book change, it may also amplify fluctuations 

in the systems and, in certain cases, it may result in an unstable system (Zhou et al. 

2022). To stabilise the system, τOB is useful, but the derivation of τOB is hindered by a 

high-order system.  
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In adopting the pure delay in the modelling, one of the difficulties is solving the high-

order character equation. Due to the infinite nature of the pure delay (Disney and Towill 

2002), a delay of one unit leads to the system’s order increasing by one. Hence, in multi-

echelon systems, modelling delays, as found in ETO archetypes, often exist in multiple 

stages, and the duration of the delay is usually greater than one. Therefore, it is critical 

to develop a universal stability analysis tool for the high-order systems which include 

symbolic parameters. The derivation of the stable condition for ETO system is 

organised into two parts: 1) Low-order system stability analysis and 2) high-order 

system stability analysis. However, it is important to note that the choice of using step 

responses as the primary disturbance type in this study was made to reflect sustained 

system changes, such as persistent demand fluctuations or resource constraints. While 

step responses provide insights into long-term adaptability, alternative approaches like 

impulse responses—which represent short-term disturbances—could complement this 

analysis to capture recovery dynamics. Future work could explore the combined use of 

step and impulse responses to present a more holistic perspective on resilience in ETO 

systems. 

The Routh–Hurwitz method was adopted to derive the critical stable condition for low-

order archetypes, the system’s order of which are lower than or equal to four. According 

to Lin et al. (2020), to achieve stability, the first array of the Routh matrix should be all 

positive or all negative, and this criterion was adopted in this research. After obtaining 

the stable condition, a two-dimensional figure was used to visualise alongside rework 
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as the independent variable and 1/τOB as the dependent variable to illustrate which 

parameter settings can stabilise the system and which dangerous settings may lead the 

system into unstable, fluctuating situations. 

To adopt the Routh–Hurwitz method for a high-order system, this method was 

combined with PSE (Dhanwada et al. 1999). The entire process can be divided into the 

following steps: 1) Derive the characteristic equation of a system. 2) Replace z with 

(w+1)/(w-1). 3) Extract the coefficient of w of the characteristic equation. 4) Create the 

Routh–Hurwitz matrix. 5) Extract the first array of the matrix. 6) Create the parameter 

space, with the rework ratio as the X-axis and 1/τOB as the Y-axis; for both axes, the 

range is from 0 to 1 and the step length is set to be 0.01. 7) Test each point on the 

parameter space in the first array of the Hurwitz matrix to see if the array meets the 

criteria for stability.  

Steps 6 and 7 are complimentary steps for PSE, which can reduce the difficulty in root 

derivation with reasonable accuracy. Although this result is not as accurate as the result 

of the mathematical analysis, it is sufficient for practical use. Users can reduce the step 

length to obtain a more accurate result if the research requires a higher accuracy. To 

crosscheck the result, a comparison is made between the PSE result with one delay and 

the analytical results. 
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3.3.3 The ETO Resilience Study 

The resilience research can be divided into four steps. 1) PSE. 2) Best τOB derivation. 

3) Transient response with best τOB setting analysis. 4) Result analysis. 

PSE refers to a simulation-based method that calculates the numerical result of all 

possible parameter combinations. In this research, there are two parameters: rework 

ratio and τOB. PSE can simulate the system’s transient responses with all types of 

parameter settings by adopting the ITAE index. This method enables the measurement 

of the resilience of ETO archetypes with all parameter settings. The numerical results 

can be used for further visualisation and analysis.  

The input for the system in the PSE simulation is a unit step change. The use of such 

input as the primary disturbance type in this study reflects its ability to simulate 

sustained system changes, such as prolonged demand increases. This study specifically 

uses positive step changes because they provide a unified and standardized input for 

generating the PSE map (Thiagarajan et al. 2018). A negative step change is not used 

because its transient response would be a mirror image of the positive step change, 

yielding identical results. 

By combining step change with ITAE, this study develops a systematic method for 

resilience measurement. Step changes act as a representative disturbance that enables a 

consistent assessment of how the system adapts to and stabilizes following a disruption. 

ITAE quantifies the overall performance by integrating two key dimensions: 
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⚫ Time: Captures how quickly the system settles into a new steady state. 

⚫ Error: Reflects the extent to which the system deviates from the desired state during 

recovery. 

The combination of these tools provides a structured approach to evaluating resilience, 

focusing on both dynamic response and long-term adaptability. This approach is 

particularly relevant for ETO systems, where disturbances often have prolonged effects 

and the ability to minimize both recovery time and error is critical. 

With the consideration that PSE is a simulation-based algorithm which may contain 

errors, a triangulation was also conducted via MATLAB, Simulink, and spreadsheet 

simulations. The primary PSE method was conducted via MATLAB. To verify the 

result, 10 parameter combinations were selected from the parameter space, which is a 

space with rework ratio on the x-axis and τOB on the y-axis. The transient responses 

were then reproduced to calculate the ITAE value to crosscheck it with the PSE result. 

After the verification, the result was presented via a contour map, thereby providing a 

visual representation of the changing trends in ITAE along with the change in the 

rework ratio and τOB. Based on this contour map, further research on parameter 

optimisation can be conducted.  

After obtaining the numerical result and contour map, the parameter setting which can 

make the system have the lowest ITAE value and which represents the highest 

resilience was explored. This step was undertaken to find the τOB setting that can make 
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the system have the lowest ITAE value for each rework ratio. The reason why this 

research focuses on τOB is that in practice, the rework ratio is usually determined by the 

craftsmanship and design or production difficulties, while τOB as a reflection of the 

sensitivity of the system to the order book change and can be easily adjusted through 

managerial intervention. This study recognizes that τOB adjustments offer a practical 

lever for managers to influence system resilience directly. By linking τOB to real-world 

managerial decisions, this analysis bridges theoretical modelling with capacity 

management, offering insights into how managers can balance demand response speed 

with capacity fluctuation. Thus, in that circumstance, this research aimed to identify the 

best τOB for each rework ratio to achieve the best system performance. 

The next step involves conducting a transient response study for the optimal τOB setting 

to understand how these two variables impact system performance. This step can also 

provide valuable insights into the balance between lead time and work rate resilience. 

As mentioned in the Background section, the trade-off between capacity and lead time 

is well-established in production planning and control. Therefore, it is crucial for 

management to maintain a stable capacity, which is represented by the work rate, while 

ensuring a promising lead time. In addition, the transient response analysis allowed for 

the examination of how τOB settings influence recovery behaviour under varying 

disturbance scenarios, highlighting the importance of adjusting operational sensitivity 

to improve system performance. This step also included the analysis of both recovery 

speed and the degree of oscillation, as these are critical metrics in resilience studies. 
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However, quantifying this trade-off is challenging, as different companies may assign 

varying weights to these targets and their strategies may also influence their decision. 

Therefore, this study focused on identifying the best τOB for achieving optimal lead time 

and work rates. 

The final step for the resilience measurements is the result analysis. Based on the 

changing trend of the τOB against the rework ratio, the phenomenon observed from the 

ITAE matrix was summarised and the best τOB was compared for lead time and work 

rate. The aim of the result analysis was to explain the changing trend and attempt to 

solve or optimise the trade-off between lead time with the work rate. Simulation and 

comparison were adopted to clarify the role of τOB in different stage and scenarios. 

Additionally, this analysis included a sensitivity test to explore the robustness of the 

recommended τOB settings under extreme conditions, such as significant reductions in 

system capacity or sudden demand fluctuations. This provided deeper insights into the 

adaptability of the proposed τOB recommendations across diverse operational contexts.  

The outcome of this analysis was three maps which demonstrate the recommended τOB 

setting for ETO systems with diverse rework ratio; simultaneously, the result was 

crosschecked with the findings from the previous empirical studies to fill the gap 

between theory and practical. 
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3.3.4 Syntheses of the Results  

Stability analysis, Bode plot analysis, and resilience analysis provide recommendations 

on archetype parameter settings from different perspectives. This introduces a new 

challenge: how to implement the order book concept in the ETO system. Therefore, the 

results from these different analyses are integrated and synthesised in Chapter 7. Based 

on this synthesis, a sensitivity analysis was conducted on the developed archetypes with 

the recommended parameter settings. 

Sensitivity analysis  

The focus of the sensitivity analysis was placed on rework rate and three delays— 

production delay, design delay, and rework scheduling delay. To comprehensively test 

the system’s sensitivity, the system was tested under two different inputs: deterministic 

demand via a step change input and stochastic pattern demand.  

For the determined pattern demand, the reaction of the lead time and work rate was 

tested against the change in delays and parameters. The change in delays and 

parameters was found to be 25% and 200%, respectively, and transient responses of the 

system were visualised to provide an insight into how peaks and transient processes 

look like. Thereafter, stochastic demand was used to simulate the system again and to 

quantify the influence of the changes.  

In addition, the bullwhip ratio was utilised as an indicator to assess system performance. 

The Bullwhip Ratio is a widely recognized metric in supply chain dynamics, 
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particularly in understanding how variability propagates through a system. In this study, 

it is used as a measure of how demand fluctuations at the customer end amplify as they 

move upstream in the ETO system. This amplification, commonly referred to as the 

bullwhip effect, is a critical factor in analysing the resilience of ETO systems under 

varying operational conditions. By quantifying this amplification, the bullwhip ratio 

provides insights into the system's ability to dampen fluctuations and maintain stability. 

The choice of the bullwhip ratio as an indicator is particularly relevant for this research 

because ETO systems are highly sensitive to variability in demand and capacity, which 

directly impacts lead times, resource utilization, and overall system stability. By 

incorporating this metric, the analysis highlights not only how the system responds to 

stochastic demand but also its capacity to recover from and adapt to changes, making 

the bullwhip ratio a suitable and effective measure of resilience. 

‘Think Slow, Act Fast’ in ETO 

Based on the findings from the sensitivity analysis, it was realised that the duration of 

the design delay and production delay has different impacts on the system. At the same 

time, a book called ‘How Big Things Get Done’ (Flyvbjerg & Gardner 2023) inspired 

the research in this subsection. In the book, the authors proposed that a prolonged 

design or planning time is a safe harbour for the inspection of changes and defects, and 

another proposition was that project managers should ‘Think Slow, Act Fast’. Although 

this philosophy is summarised from actual experience, there is little research that 
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explains the underlying mechanism. Thus, for this project, the following steps were 

developed to quantify and study the philosophy and its benefits for ETO company 

management. 

 

Figure 3.2 Two-dimensional experiment 

Adaptation of archetypes in ‘Think Slow, Act Fast’ consists of two sub-experiments, as 

shown above, which are determined by two assumptions for the scenarios.  

Experiment A: The first assumption is whether a one-period delay in the design system 

is worthwhile for the whole system, based on the percentage of errors detected during 

the design phase.  

Effectiveness ITAE 

Time, 

ITAE & 

Bullwhip  

If an extra period is necessary for inspection, 

how thorough should it be to benefit the whole 

system? 

 

What is the maximum number of periods that can 

be allowed for the design if all errors are detectable 

at the design stage? 
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Experiment B: The second assumption is whether introducing additional periods during 

the design phase can prevent undetected design errors from being sent to the production 

system and, if so, how many periods should be allocated for this.  

For both experiments, ITAE is utilised as the system performance indicator. The ITAE 

for lead time reflects how quickly and efficiently the system can respond to sudden 

changes, thereby demonstrating the system’s resilience and robustness to disturbances. 

The detailed experiment process is provided in Section 7.3. 

3.4  Summary  

This chapter demonstrated the methodology of this research. Section 3.1 discussed the 

research philosophy and paradigm of this research. Based on the main philosophy, 

positivism, this research adopts mathematical modelling and simulation as its main 

methods, which were explained in Section 3.2. Section 3.3 introduced the research 

design of this thesis, which includes five steps—archetype development, system 

dynamic analysis, and resilience research. The next chapter presents the developed ETO 

archetypes. 
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Chapter 4 ETO Archetype Design and 

Modelling  

4.1  ETO System Structure 

To extract the structure of the ETO system, the following definition is adopted: ETO 

systems are dynamic, complex systems wherein the order penetration point is located 

at the design stage (Wikner and Rudberg 2005, Gosling et al. 2017). At the same time, 

products or services in such a system are fully driven by customers’ orders (Gosling 

and Naim 2009), thereby contributing to one of the distinguishing features of ETO 

industries and necessitating the consideration for the simulation of the service flow 

within the PM field (Denicol et al. 2020).  

According to the definition above, it can be concluded that the ETO system comprises 

two key subsystems: design and production. Considering that both design and 

production systems hold no stock, the production system management-orientated 

structure of an order-book-based MTO system (Wikner et al. 2007) is used as a 

reference point. These are modelled systems in which production begins only after the 

order arrives. To combine the two systems, the idea of the integrated design and 

operations management (IDOM) is borrowed (Zhang et al. 2019), which is an enterprise 

information system that integrates the production and design subsystems. The 

synthesised archetype connects the two subsystems and models the working units at an 

aggregate level, thereby providing the archetype with project features. The adaptation 
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of working units rather than product quantity is to avoid potential issues caused by the 

one-of-a-kind feature unique to ETO. Because ETO products are usually unique, there 

is a tendency for the requirement of the workload being different from that for other 

systems. But the problem arises when bias is produced while using product quantity for 

modelling the system. Instead, modelling the working units flow can avoid this issue; 

all orders that are placed by customers will be broken down into working units so that 

the planning department can accordingly adjust the capacity of the design and 

production systems.  

Apart from the two fundamental subsystems, the system incorporates a control 

mechanism to adjust its operational pace in response to changes in demand. Instead, a 

subsystem, termed the order book controller, is integrated into the ETO archetype. This 

controller records the volume of pending tasks and calculates its value by determining 

the difference between the target and actual order books. The order book controller 

autonomously modifies the work rate of the system and, thus, ensures that production 

deadlines are met. Further, lead time estimation employs Little’s Law, thereby 

facilitating accurate projections of process completion (Little 1961a).  

In this archetype, all projects—whether single-project or multi-project—are 

represented uniformly in terms of the total number of working units required. Each 

project or set of projects is input into the model as a cumulative working unit value, 

which becomes the primary measure of workload and capacity. This approach ensures 

that the model remains scalable and consistent, regardless of the number of projects 
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being managed. The distinction between single and multi-project environments 

becomes irrelevant within the scope of the model, as the focus lies entirely on the 

volume of working units to be processed. Future work could extend the archetype by 

incorporating additional subsystems to simulate delivery and further refine the 

connection to practical applications, enabling more detailed analysis of project-specific 

dynamics. 

In addition, it is important to note that this archetype is a work rate decision engine and 

does not include the delivery process. Such decision engine concept has been adopted 

in the construction industry, where the SD model functions as a capacity adjustment 

engine integrated with other software tools (Lee et al. 2006a). And in terms of the 

delivery process, in practice, clients in ETO systems do not accept partial deliveries of 

work packages; they wait for the completion of all required packages before project 

delivery. Simulating this process would require introducing a subsystem to accumulate 

working units to the required level and then trigger delivery. However, such an 

approach would introduce non-linearity to the model, significantly increasing its 

complexity and making it difficult to analyse. For this stage of the research, the model 

is designed for specific use cases, focusing on foundational elements of ETO system 

behaviour. 

After designing the main frame of the ETO system, the key elements of the ETO system 

are summarised in Table 4.1 by reviewing relevant papers from both the PM and 

production system fields. Due to the overlapping concepts and ununified terminologies 



118 

in PM and production system fields, a few elements are reserved while others are 

deleted from the table; the main variables of the ETO systems are then summarised for 

further archetype development. 

4.2  Key Elements  

Table 4.1 Distinguishing elements of combined PM and SCM perspectives of an ETO 

system and synthesis results 

 

Elements Reference Explanation 

Consolid

ated 

ETO 

elements 

P
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o
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ct

 M
a

n
a
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e
m

e
n

t 

Rework 

 

Lyneis and Ford (2007) and 

Love et al. (2019) Explore the 

impact of rework on  project 

dynamics. 

Rework is a canonical feature in 

project management; such a problem 

is often inevitable in practice. 

√ 

Work-

To-Do 

 

Pena-Mora and Park (2001) 

and Park (2005) Study the 

project dynamic based on SD. 

Work-To-Do is another 
distinguishing variable in project 

modelling; this variable records the 

overall work that has entered the 

system but is yet to be completed. 

 

Working 

units 

 

Pena-Mora and Park (2001); 
Lee et al. (2006) Model the 

working unit in their 

simulation. 

Research in the project management 

field often models working units as 

opposed to product volume. 

√ 

Work 

rate 

 

Lee et al. (2005) Develop a 

SD model which includes 

work rate. 

Work rates directly reflect capacity. √ 
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o
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n
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y
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a
n

a
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t 

Order 

rate 

 

Towil (1982), Lin et al. 

(2017), and Wikner et al. 

(2017). Develop production 

system models, which include 

order rate. 

Order rate is an essential element in 

production planning and control, 

especially in order-driven systems, 

which determine the production 

speed of the production system. 

 

Lead 

time 

 

Wikner et al. (2007), Lin et al. 

(2020), and Spiegler et al. 

(2012) Study the lead time 

dynamic of the production 

system 

Lead time, a vital concept in SCM, 

directly affects both cost and 

revenue, which can be used as an 

indicator for system performance in 

order-based production systems. 

√ 

Order 

book 

 

Wikner et al. (2007) Explore 

the adoption of Order Book 

control in MTO system. 

One of the distinguishing variables 

in the MTO system is the order book, 

which represents the order waiting to 

be satisfied.  

√ 
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The key elements identified are presented in Table 4.1, with the last column presenting 

the variables that will be used in model development. The following are the reasons for 

consolidating this:  

1. Rework remains a distinguishing feature of project-based production, where 

approaches to operational excellence have not yet fully eliminated its occurrence, 

as is often achieved in manufacturing production lines. 

2. The work rate is retained because the model in this research emphasises working 

units. 

3. Lead time, as a crucial indicator of system performance and a significant factor in 

customer satisfaction, is included as an essential variable for use as a metric in 

dynamic assessments. 

The concept of work-to-do is merged with the order book, as both represent the work 

awaiting completion. The decision has been made to model the working units rather 

than the material flow within the system in order to circumvent potential issues arising 

from the diverse properties of products/projects. The use of "working units" in this 

research is central to capturing the dynamics of work rates, which are critical indicators 

for capacity management in ETO systems. This concept is closely aligned with the 

"work package" approach commonly employed in PM and ETO industries (Lee et al. 

2005b; Han et al. 2013). Working units provide a standardized representation of 

progress, enabling the model to simulate the behaviour of production flows and work 
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rates under various scenarios. Without this concept, it would be challenging to model 

the intricacies of ETO systems, particularly the dynamic interplay between design, 

production, and rework processes. In addition, the concept of an order book aligns with 

the 'negative inventory' and backlog in the MTS system, representing the quantity of 

products ordered by customers but not yet delivered (Wikner et al. 2007). 

Furthermore, the order book, work rate, and lead time are selected as the principal 

metrics to evaluate the system’s ability to adapt to rework or changes in demand while 

ensuring timely product delivery. With regard to rework, the following two critical 

questions must be addressed: Where does non-conformance—that is unqualified 

products, or tasks—occur? How does the system adjust to such rework? 

4.3  Rework Scenarios 

In practice, rework may be caused by non-conformance and design changes. Non-

conformance problems create high uncertainty, not only because they may occur at each 

of the design and production stages but also because the inspection of non-conformance 

is often not timely (Han et al. 2013). Consequently, non-conformance detected 

downstream may be attributed to upstream work (Love et al. 1999). Simultaneously, 

design changes also contribute towards a great proportion of the rework. Design 

changes are usually requested by clients and may occur after the production begins, 

which requires the company to redesign and remake the product via rework (Han et al. 

2013). Thus, depending on the place where the defects or changes are detected/occur 
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and the place where these tasks are rectified, all scenarios can be classified into the 

following three groups. 

1. Production rework (ETOAR#P): This refers to a scenario wherein the defect or 

error is created in the production stage and such defects are detected in a timely 

manner. The rectification of such rework requires extra working units in the 

production system.  

2. Design rework (ETOAR#D): This refers to a scenario wherein the design 

contains defects or errors but these are detected before the production 

commences. In this case, rectifying the defects or errors only requires extra 

working units in the design phase. 

3. Delayed design rework (ETOAR#PTD): This refers to a scenario wherein the 

design contains a defect, but it is detected during the production stage. To 

rectify such cases, extra working units are required for both the design and 

production stages. 

Based on the summarisation of rework scenarios, it was found that it is difficult to 

represent the rework scenarios using a single model; instead, ETO archetypes should 

be a suite of models which contain three basic archetypes. Table 4.2 demonstrates the 

definition and relevant research of these three basic models. It must be noted here that 

in actual practice, it is rare that rework only occurs at one stage; instead, the ETO 

projects often face a mixture of the basic scenarios. The reason why these scenarios are 
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sub-divided into three basic models here is to obtain a deeper understanding of each of 

them and to build a solid foundation for more complex research in this regard in the 

future. 

At the same time, design changes contribute significantly to rework. These changes, 

often requested by clients, may occur after production has commenced, thereby 

necessitating the redesign and remanufacture of the product through rework (Han et al. 

2013). Consequently, scenarios are categorised into three groups based on the location 

where the defects or changes are detected and where the rectification tasks are 

performed. 

Table 4.2 Definitions of the ETO archetypes  

Archetype 

Code 
Definition Reference 

ETOAR#P 

The scenario wherein the rework created by 

production defects and can be rectified in 

the production phase. 

(Lee et al. 2005; 

Barbosa and 

Azevedo 2018) 

ETOAR#D 

The scenario that reworks attribute to the 

design error or defects and these defects can 

be rectified inside the design phase. 

(Khan et al. 2016; 

Vaagen et al. 2017) 

ETOAR#PTD 

The scenario, that reworks attribute to the 

design error or defects, but detected in the 

production phase, to rectify these works 

requires extra works in both design and 

production stage. 

(Love and Smith 

2018; Ansari 2019) 

4.4  Conceptual Modelling 

The abbreviations for variables are summarised and explained in Table 4.3. It is 

important to note that the time unit used in this study is weeks, which is a commonly 
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used unit in the PM field. In following sections, the CLD and block diagram of the 

archetypes are provided, which correspond with the mathematical formulations. The 

main structure of archetypes is composed of three components—design system, 

production system, and the order book controller system—and these three systems can 

represent three working areas in the company, which are design area, production area, 

and planning area, respectively. These working areas may refer to the departments of a 

company; for companies that adopt foreman planning systems, each working area may 

include several working teams to complete the design or production for ETO products. 

The model that is developed in this project is an aggregate level model and the focus is 

on the process for each subsystem. 

The orders placed by customers will first be processed by the planning department and 

then sent to the design department. Afterwards, the design will be transformed to the 

production department, wherein the products will be manufactured according to the 

design. The planning department plays a role in adjust the capacity of the system. 

Without the planning department, the design and production subsystems’ work rate will 

be fully determined by the input of the system, which implies that the defects will not 

be rectified, and the target order book level cannot be maintained (Wikner et al. 2007). 

The order book controller has not been adopted in; It is worth noting that the model 

developed in this thesis can be regarded as a capacity decision engine for the system. 

To enable practical implementation, support from other sub-models is essential. This 

decision engine concept is also utilized in the Dynamic Planning Methodology (Lee et 
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al. 2006a), which has demonstrated that integrating an SD-based decision engine with 

other software can lead to better decision-making, effectively addressing challenges 

such as customer changes or quality issues (Lee et al. 2005b). 

Table 4.3 Nomenclature for the ETO archetype 

4.4.1 Model Assumptions 

A general archetype that is applicable for all scenarios does not exist and it is important 

to realise that the model is only accurate with appropriate assumptions. Hence, the 

following assumptions are made for the archetypes developed for this research. Since 

there are three basic archetypes, the following list represents a set of common 

Abbreviation Full name Explanation 

ETO system 

DEM Demand Demand for the ETO system 

OB Order book Order book for ETO system 

LT Lead time The lead time of the ETO system 

DELRATE Delivery rate 
Rate of qualified products, which meet the 

customers’ requirement 

Design Sub-system 

DES Design Abbreviation for design 

DEMDES Design Demand Demand for the design system. 

COMRATEDES Design Completion Rate Completion rate of the design system 

OBDES Design Order Book Order book of the design system 

LTDES Design lead time The lead time of the design system 

Production Sub-system 

PROD Production Abbreviation for Production 

DEMPROD Production Demand Demand for the production system. 

WRATEPROD Production work Rate Work rate for the production system 

COMRATEPROD Production Completion rate Completion rate of the production system 

OBPROD Production Order Book 
The sum of uncompleted works (including 

reworks) 

RWRATEPROD Rework rate The number of units needing rework 

LTPROD Production lead time The lead time of the production system 

Coefficients 

τD (week) Expected Design Delay 
Delay caused by designing or design 

adaptation  

τP (week) Expected production Delay Delay caused by production 

τOB 
Time for order book 

adjustment 

Time used for adjusting the production 

system’s order book 

RW Rework ratio The rework ratio of the production system 
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assumptions for all three models. For each basic model, specific assumptions will be 

added to limit the usage of these models. 

Assumptions: 

1. The transfer function model is linear and time-invariant. 

2. The rework ratio is constant.  

3. The workload for design and production can be measured by the number of 

working units.  

4. Rectifying non-conformances requires the same number of working units as the 

original work.  

5. Capacity is infinite. The system can respond immediately to demand changes.  

6. Apart from the fundamental assumptions above, each scenario also has its special 

assumptions in correspondence with the specificity of the application for each of the 

models. 

7. Little’s law is used to estimate the lead time of the system. 

Apart from the abovementioned common assumptions, each individual archetype has 

its own unique assumptions to distinguish each scenario from others. These unique 

assumptions are individually stated for each scenario. 

8. The design and production processes within the ETO system are fully integrated and 

managed by a single company. This assumes that the organization oversees both the 
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design phase, including iterative changes and rework, and the production phase, 

ensuring seamless coordination and alignment between the two (Hicks et al. 2000). 

9. The primary flow in the model is represented by 'working units,' where units are 

considered homogeneous if they require the same duration to be completed in both the 

design and production subsystems (Shin et al. 2014). A working unit refers to the 

amount of work that can be completed by a single worker or another unit, such as a 

group or team, within one hour. This assumption abstracts the flow of materials into 

working units, enabling a consistent framework to model the dependencies between the 

design and production phases.  

10. While the model uses working units as the flowing entity, there is a fundamental 

distinction between the roles of design and production. Working units in the design 

phase represent conceptual and iterative processes, often influenced by rework and 

decision-making. In contrast, working units in the production phase represent tangible 

fabrication or assembly tasks that are typically more predictable and standardized. This 

assumption is specifically tailored to capture the dynamic interactions and feedback 

loops between these two subsystems, a key characteristic of ETO systems. 

 

4.4.2 CLD Modelling 

Based on the discussion above, the CLD was initially developed to assess the logical 

correctness of the mode. At an aggregate level, the model focuses on high-level trends 
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and interactions rather than specific, detailed processes. This abstraction allows the 

model to capture the overall dynamics of the system while reducing complexity. 

Consequently, aggregate models tend to be more generic, making them applicable 

across a wider range of scenarios. In this research, the aggregate level approach ensures 

that the causal relationships and feedback loops in the SD model are logically consistent 

and broadly relevant to ETO systems, rather than being constrained to specific cases. 

Based on the literature review in of section 2.1 and 2.3, the system should have three 

main subsystem, design and production  construct the main structure of the ETO system 

(Olhager 2003, Gosling and Naim 2009, Haug 2013); and an order book control 

subsystem which can monitor and control the system’s work rate (Wikner et al. 2007, 

Barbosa and Azevedo 2019). Such structure also corresponds with the systemigram that 

adopted by the Alfnes et al. (2021) in a shipbuilding field. Considering the absence of 

inventory in both the design and production systems, the structure of the MTO system, 

as described by Wikner et al. (2007), was adopted to develop the initial model. Each 

subsystem is characterised by four basic variables: work rate, order book, completion 

rate, and lead time, with the flow of the system represented by working units.  . 

Compared to previous APIOBPCS models (Lin et al. 2017), the model developed in 

this thesis integrates the design process with the production system, incorporates 

rework—a distinctive characteristic of ETO systems—into its framework, and 

simulates the working units flow instead of number of products.  
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A key distinction of this model compared to others is the flow mechanism, which 

specifically simulates the working units of the system. A ‘working unit’ refers to a 

standardised work package that necessitates a certain amount of workload and time for 

completion. For example, to complete a work package, one skilled worker will need to 

work for a specific duration. The rationale underlying the adoption of the concepts of 

working units is to mitigate potential biases introduced by unique products. According 

to the definition of an ETO system, ETO products differ from each other, thereby 

implying that different products require varying amounts of working units. To 

circumvent this variability, it is assumed that all products can be broken down into 

working units, thereby enabling the ETO company to estimate the required working 

packages when an order is placed. This concept is widely used in the PM field; however, 

traditional PM models typically focus on modelling a single project, with the primary 

aim of ensuring progress reaches 100% completion (Lee et al. 2005a; Motawa et al. 

2007; Han et al. 2013). In these models, progress is treated as an accumulative process, 

where the output steadily increases until it reaches its maximum. In contrast, the ETO 

model developed in this thesis aims to ensure that all orders are completed within the 

required timeframe while balancing capacity and demand. The focus is not solely on 

individual project completion but on achieving an equilibrium where the system's 

capacity is optimally aligned with the overall demand. 

The working units concept introduces work rate to the system, which denotes the 

production speed of the subsystems and reflects how many working units can be 
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completed within a specific time unit. After a certain delay, represented by a double 

line on the curve arrow to denote the time needed to complete the input amount of work 

rate, the work rates evolve into completion rates. 

The order book in this model represents the backlog of work yet to be completed. This 

concept is also known as work to do in construction industry (Lyneis and Ford 2007). 

When a new order is received and confirmed, the estimated working units are added to 

the order book, thereby increasing its actual size. The target order book, established by 

the company manager, is determined based on the product of the promised lead time 

and the demand. By comparing the target order book with the actual order book, the 

system can automatically adjust the production speed—the work rate—to ensure that 

products are manufactured within the promised lead time. 

In this model, the lead time is conceptualised as the waiting time before the products 

can be delivered and is estimated using Little’s Law (Little 1961). There are three types 

of lead times considered: those of the design system, the production system, and the 

entire ETO system. This estimated lead time, which may differ from the promised lead 

time, helps the system adjust the work rate of the subsystems to ensure that the products 

are completed within the lead time over the long term. The reason why lead time is 

included in this archetype is that time is a key indicator of the production system, 

especially for an ETO system, which is a pure pull system. (Lin et al. 2020). Delivering 

the product within the lead time is one of the determinants of customer satisfaction. 

(Soewin and Chinda 2022, Dallasega et al. 2019).   
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In developing a CLD based on the above ideas, variables at the head of an arrow 

represent dependent variables, while those at the tail are causative variables. The 

diagrams use positive (+) and negative (–) signs to indicate how the causative variables 

influence the dependent variables. These causal relationships form loops which are 

categorised into reinforcing and balancing loops. Reinforcing loops, typically marked 

in red, can drive the system towards instability unless controlled by external 

interventions or balanced by other loops; in contrast, balancing loops, depicted in blue, 

help maintain system stability. 

Reflecting on the rework scenarios, three initial models were developed to depict 

different situations in which reworks occur as shown in the Table 4.2. The first scenario, 

labelled as the production rework scenario (ETOAR#P), addresses reworks originating 

from and rectified within the production subsystem, as illustrated in the block diagram 

below.  

CLD for ETOAR#P  

The CLD model for ETOAR#P is presented in Figure 4.1 This model addresses the 

scenario where rework occurs within the production subsystem. Rework in the 

production subsystem is prevalent within sectors such as construction, shipbuilding, 

infrastructure and capital goods manufacturing (Hessami et al. 2020; Ford et al. 2023). 

Despite longstanding recommendations to 'Do it right the first time.' Production rework 

may be necessitated by quality issues, poor craftsmanship, or other factors requiring 
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workers to redo or adjust their work. Ideally, defects should be rectified as soon as they 

are detected. However, because defect detection is not always timely, workers may need 

to dismantle subsequent work and redo tasks, which is both costly and time-consuming. 

The model depicted below simulates this scenario and consists of three subsystems: 

design, production, and order book controllers. This structure is based on the discussion 

in Section 4.1, which emphasizes that an ETO archetype should integrate the design 

and production processes (Olhager 2003). Additionally, a control subsystem is included 

to ensure that all tasks are completed on time (Wikner et al. 2007). 

The key elements are derived from Section 4.2, and their causal relationships are based 

on the SD models analysed in Section 2.2.7. The basic mechanism is as follows: 

demand influences the order book; the gap between the target order book and the actual 

order book drives changes in the work rate; the work rate impacts the completion rate, 

which in turn affects the order book. These causal relationships are also discussed in 

the following references (Love et al. 1999; Peña-Mora and Li 2001; Barbosa and 

Azevedo 2019).      

In ETOAR#P context, rework is situated within the production subsystem, production 

rework requires additional effort from the production team, creating feedback that 

connects rework with the work rate. This means that when the production team 

identifies a defect, they must allocate and schedule additional time to complete the 

rework (Park 2005; Lyneis and Ford 2007). The presence of rework creates a 
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reinforcing loop with the completion rate and work rate, thereby necessitating a 

balancing mechanism. The order book controller serves this purpose. The balanced loop, 

highlighted in blue, demonstrates how the system compensates for the impacts of 

rework.  

 

Figure 4.1 CLD for ETOAR#P 

CLD for ETOAR#D  

In this scenario, rework occurs within the design subsystem, which reflects changes or 

amendments in the design phase—a common occurrence in business due to the unique 

characteristics of ETO operations (Han et al. 2013). Customers and ETO companies 

often engage in multiple rounds of communication to refine and upgrade designs, which 

leads to rework within the design subsystem (Parvan et al. 2015). Consequently, 

feedback is drawn from the completion rate of the design system (completion rate des) 
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to rework, and another from rework to the design system’s work rate (work rate des). 

These arrows indicate that the design team identifies errors or receives requests for 

changes before transferring the design to the production system, thus necessitating 

additional work solely within the design subsystem. 

As depicted in Figure 4.2, the red arrows form a reinforcing loop, comprising three 

variables: the design system’s work rate, rework, and completion rate. This loop 

signifies that completed works containing defects require rework, and the working units 

designated for rework are added to the work plan for the subsequent period. However, 

poor workmanship in rework can generate additional rework, thereby leading to further 

waste in capacity and materials. 

To address this issue and mitigate the effects of the reinforcing loop, a balancing loop 

is necessary. The balancing loops are represented by a blue line in the system and 

include the order book, the design system’s work rate, the completion rate of the design 

system, the demand of the production system, the production system’s work rate, and 

the completion work rate. This balanced loop regulates the work rates of the subsystems 

and compensates for any work rate gaps created by rework. This design effectively 

balances the vicious cycle of rework when the rework ratio is below 1.  



134 

 

Figure 4.2 CLD for ETOAR#D 

CLD for ETOAR#PTD  

In addition to scenarios that solely involve design or production rework, another 

scenario involves production-to-design rework, as presented in Table 4.3. This scenario 

arises when design defects are identified or changes in design requirements are made 

after production has commenced (Love et al. 2002). Rectifying or adjusting for such 

defects necessitates collaborative rework from both the design and production 

departments. This type of rework is not uncommon in the ETO field and is frequently 

triggered by customers making late design requests or design defects (Shin et al. 2014). 

The cost and time required to rectify such errors or changes are typically higher and are 

significant contributors to cost and time overruns (Flyvbjerg and Gardner 2023). 

However, such issues have not been modelled using the SD approach, and their impact 

on dynamic performance remains unexplored. 
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Figure 4.3 demonstrate the CLD model of such scenario. Initially identified defects are 

sent to the design department, as illustrated by feedback from the production 

completion rate to rework and another feedback from rework to the design work rate.  

The main structure is the same as that of the other two models. 

 

Figure 4.3 CLD for ETOAR#PTD  

4.5  Mathematical Modelling 

4.5.1 ETOAR#P Order Book Controller 

The order book controller as a newly introduced subsystem to the ETO archetype, 

which brings new problems to the archetype. The concept of the order book controller 

was first introduced by Wikner et al. (2007) and adopts the feedback concept from 

inventory control to order book control. By using an order book controller, a company 

can adjust their work rate/capacity to maintain the desired order book level, thereby 
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guaranteeing the lead time in the long term (Lin et al. 2017). In contrast, different from 

the MTO system, the ETO system is a multi-echelon system, which implies the 

positioning of several potential places within the system, with several combinations of 

such controllers. Thus, to investigate which is the best place for the order book 

controller, a series of preliminary studies are conducted. 

ETOAR#P Experiment 1: Local order book controller 

Design system 

Figure 4.4 Experiment 1: A candidate ETO archetype with a local controller. 

The following formulations represent the model as given in Figure 4.4. This model 

adopts pure delays to represent the production and design lags. Equations 4.3, 4.5, and 

4.10, adopted from Wikner et al. (2007), pertain to the order book controller. 
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When demand, 𝐷𝐸𝑀(𝑡), arises, it will be sent to the design subsystem directly first, 

where the design activities take place. 

𝐷𝐸𝑀𝐷𝐸𝑆(𝑡) = 𝐷𝐸𝑀(𝑡). (4.1) 

After a certain delay, the design will be completed, and the completion rate is 

represented by 𝐶𝑂𝑀𝑅𝐴𝑇𝐸𝐷𝐸𝑆(𝑡): 

𝐶𝑂𝑀𝑅𝐴𝑇𝐸𝐷𝐸𝑆(𝑡) = 𝐷𝐸𝑀𝐷𝐸𝑆(𝑡 − 𝜏𝐷). (4.2) 

This model utilises the order book to represent orders that are received but are not yet 

completed and delivered to the customer. The order book controller is installed in the 

production subsystem. 

𝑂𝐵𝐷𝐸𝑆(𝑡) = 𝑂𝐵𝐷𝐸𝑆(𝑡 − 1) + 𝐷𝐸𝑀𝐷𝐸𝑆(𝑡) − 𝐶𝑂𝑀𝑅𝐴𝑇𝐸𝐷𝐸𝑆(𝑡) (4.3) 

Production system 

As per Assumption 4, the demand for the production system consists of demand from 

the upstream system and rework from the last period.  

𝐷𝐸𝑀𝑃𝑅𝑂𝐷(𝑡) = 𝐶𝑂𝑀𝑅𝐴𝑇𝐸𝐷𝐸𝑆(𝑡) +  𝑅𝑊𝑅𝐴𝑇𝐸𝑃𝑅𝑂𝐷  (𝑡 − 1). (4.4) 

Equation (4.5) represents the local order book controller mechanism. Parameter τOB is 

added and set to 20. This value was selected based on multiple simulation tests and to 

ensure an overdamped system, thereby eliminating undesirable oscillatory behaviour 

that will impact capacity (Wikner et al. 2007). 

𝑊𝑅𝐴𝑇𝐸𝑃𝑅𝑂𝐷(𝑡) = 𝐷𝐸𝑀𝑃𝑅𝑂𝐷(𝑡) +
𝑂𝐵𝑃𝑅𝑂𝐷(𝑡) − 𝐷𝐸𝑀𝑃𝑅𝑂𝐷(𝑡) ∙ 𝜏𝑃

𝜏𝑂𝐵
. (4.5) 

𝐶𝑂𝑀𝑅𝐴𝑇𝐸𝑃𝑅𝑂𝐷(𝑡) = 𝑊𝑅𝐴𝑇𝐸𝑃𝑅𝑂𝐷(𝑡 − 𝜏𝑃). (4.6) 

Equation (4.7) illustrates how OBPROD stores incomplete work units. The reason that 

COMRATEPROD is used instead of DELRATE is because 𝐷𝐸𝑀𝑃𝑅𝑂𝐷 (𝑡) includes non-
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conformance generated working units. Therefore, the actual incomplete working units 

is equal to the difference between 𝐷𝐸𝑀𝑃𝑅𝑂𝐷 (𝑡) + 𝑅𝑊𝑅𝐴𝑇𝐸𝑃𝑅𝑂𝐷  and 

𝐶𝑂𝑀𝑅𝐴𝑇𝐸𝑃𝑅𝑂𝐷(𝑡).  

𝑂𝐵𝑃𝑅𝑂𝐷(𝑡) = 𝑂𝐵𝑃𝑅𝑂𝐷(𝑡 − 1) + 𝐷𝐸𝑀𝑃𝑅𝑂𝐷 (𝑡) − 𝐶𝑂𝑀𝑅𝐴𝑇𝐸𝑃𝑅𝑂𝐷(𝑡) (4.7) 

RW represents the ratio of rework caused by non-conformance.  

𝑅𝑊𝑅𝐴𝑇𝐸𝑃𝑅𝑂𝐷(𝑡) = 𝐶𝑂𝑀𝑅𝐴𝑇𝐸𝑃𝑅𝑂𝐷(𝑡) ∙ 𝑅𝑊. (4.8) 

𝐷𝐸𝐿𝑅𝐴𝑇𝐸(𝑡) =  𝐶𝑂𝑀𝑅𝐴𝑇𝐸𝑃𝑅𝑂𝐷(𝑡) ∙ (1 − 𝑅𝑊). (4.9) 

 𝑂𝐵(𝑡) = 𝑂𝐵(𝑡 − 1) + 𝐷𝐸𝑀(𝑡) − 𝐷𝐸𝐿𝑅𝐴𝑇𝐸(𝑡). (4.10) 

Little’s Law is utilized to calculate delivery time, and its integration with a SD 

model has been adopted by (Wikner 2003; Lin et al. 2020). 

 𝐿𝑇𝐷𝐸𝑆 = 
𝑂𝐵𝐷𝐸𝑆  (𝑡)

𝐶𝑂𝑀𝑅𝐴𝑇𝐸𝐷𝐸𝑆(𝑡)
 . (4.11) 

𝐿𝑇𝑃𝑅𝑂𝐷 = 
𝑂𝐵𝑃𝑅𝑂𝐷  (𝑡)

𝐶𝑂𝑀𝑅𝐴𝑇𝐸𝑃𝑅𝑂𝐷(𝑡)
. (4.12) 

𝐿𝑇𝐸𝑇𝑂 =  
𝑂𝐵 (𝑡)

𝐷𝐸𝐿𝑅𝐴𝑇𝐸(𝑡)
. (4.13) 

Simulations are presented in the following paragraphs: the initial values and 

parameters settings are presented in the Table 4.4.  
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Table 4.4 Initial value and co-efficient value for experiment 1, with local order book 

controller 

Initial values 

COMRATEDES OBDES RWRATEPROD COMRATEPROD OBPROD OB 

100 100 25 125 125 250 

Co-efficient values 

𝜏𝑂𝐵  𝜏𝐷 𝜏𝑃 𝑅𝑊 

20 1 1 0.2 

 

 

Experiment 1 Simulation—local controller: Scenario 1, rework ratio = 0  

Given the initial and coefficient values of Table 4.4, the transient responses of the order 

book are depicted in Figure 4.5. It is evident that all order books are doubled. Figure 

4.6 illustrates the transient performance of the system. The lead time of the design and 

production system, after an initial transient response, achieves the desired final steady-

state value of 1 time unit each, with an overall ETO lead time of 2. Moreover, the peak 

ETOAR#P experiment 1: Local order book controller, scenario 1 

Initial values 

COMRATEDES OBDES RWRATEPROD COMRATEPROD OBPROD OB 

100 100 0 100 100 200 

Co-efficient values 

𝜏𝑂𝐵  𝜏𝐷 𝜏𝑃 𝑅𝑊 

20 1 1 0.0 

ETOAR#P experiment 1: Local order book controller, scenario 2 
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value for the order book reaches 405 in period 7 and the peak value of lead time reaches 

4 in period 6. 

 

Figure 4.5 ETOAR#P experiment 1, scenario 1: Order Book transient state outputs, with 

local order book controller and rework ratio = 0 

 

Figure 4.6 ETOAR#P experiment 1, scenario 1: Lead time transient state outputs, with 

local order book controller and rework ratio = 0 
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Experiment 1 simulation—local controller: Scenario 2, rework ratio = 0.2 

To investigate the performance of the model with rework, scenario 2 was implemented. 

Herein, the initial values and co-efficient values are presented in Table 4.4. The initial 

values were adjusted to guarantee that the system is stable and balanced at an initial 

steady state. The initial order book is calculated as  

𝑂𝐵 𝑃𝑅𝑂𝐷 = 𝜏𝑃  ∙  
𝐷𝐸𝑀𝑃𝑅𝑂𝐷

(1 − 𝑅𝑊)
.  (4.14) 

 

 

 

Figure 4.7 ETOAR#P experiment 1, scenario 2: Order book transient state outputs, with 

local order book controller and rework ratio = 0.2 
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Figure 4.8 ETOAR#P experiment 1, scenario 2: Lead time transient state outputs, with 

local order book controller and rework ratio = 0.2 

In Figure 4.7, the order book of the ETO system and production system stabilises at 

500, which is 2.5 times that of new demand. The production system order book is also 

doubled, as calculated by equation (4.14). In the meantime, as demonstrated in Figure 

4.8, the lead time of the overall system is longer than τD + τP. This problem is due to 

gradually increased rework until the condition for balancing the rework loop is fulfilled 

when WRATEPROD reaches DEMPROD / (1-RW) = 125. Such a phenomenon was also 

observed in Lyneis and Ford's (2007) SD model. Moreover, in this scenario, the peak 

value of lead time increased by 0.5 compared to that in scenario 1, and order book peak 

value increased to 504, which is 100 units greater than that in scenario 1. It can be seen, 

the whole system’s lead time is not the sum of subsystem’s lead time. Which is because 

rework will first impact the overall system’s order book before affecting the order book 

of the design subsystem. This time difference causes the overall system's order book to 
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exceed the sum of the subsystems’ order books. Consequently, this discrepancy results 

in the total lead time being longer than the sum of the individual subsystems' lead 

According to the simulation above, the model developed in Experiment 1 does not 

automatically control the system to deliver products/projects on time and requires 

excess capacity to cope with a larger order book. Hence, this model was further 

developed and synthesised as an order book controller at the aggregate level, as given 

in Experiment 2. 

ETOAR#P Experiment 2 holistic order book controller 

Figure 4.9 demonstrates the model structure for Experiment 2. The structure in the 

shaded box aims at keeping the overall OB at the desired level by adding new working 

units to the ETO system. This model automatically calculates the difference between 

the target and actual order books and adds this value to the input demand, DEM.  

The demand for the design system comprises the sum of the input demand and a fraction 

of the order-book adjustment value. 
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Figure 4.9 Experiment 2: A candidate ETO archetype with a holistic controller 

Design system: 

In order to establish the holistic order book controller, the equation (4.1) is replaced by 

4.15 the rest of equations remain the same. Parameter 𝜏𝑂𝐵  is a proportional controller 

that adjusts the system response time, playing a similar role as the 𝜏𝑂𝐵  in Experiment 

1, but at a whole-systems level. 

 

𝐷𝐸𝑀𝐷𝐸𝑆(𝑡) = 𝐷𝐸𝑀(𝑡) +
𝑂𝐵(𝑡) − 𝐷𝐸𝑀(𝑡) ∙ (𝜏𝐷+𝜏𝑃)

𝜏𝑂𝐵
. (4.15) 

Production system 

In this system, the actual and target order book difference is fed back to the design 

system; thus, for the production system, the work rate is equal to the sum of new 

demand and rework. The equation (4.5) is replaced by (4.16). 

𝑊𝑅𝐴𝑇𝐸𝑃𝑅𝑂𝐷(𝑡) = 𝐷𝐸𝑀𝑃𝑅𝑂𝐷(𝑡). (4.16) 
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Experiment 2 simulation—holistic controller: scenario 1, rework ratio = 0 

Table 4.5 Initial value and co-efficient value for experiment 2, scenario 1, with whole-

system order book controller and rework ratio = 0 

ETOAR#P experiment 2: Holistic order book controller, scenario 1 

Initial values 

COMRATEDES OBDES RWRATEPROD COMRATEPROD OBPROD OB 

100 100 0 100 100 200 

Co-efficient value 

𝜏𝑂𝐵  𝜏𝐷 𝜏𝑃 𝑅𝑊 

20 1 1 0.0 

ETOAR#P experiment 2: Holistic order book controller, scenario 2 

Initial values 

COMRATEDES OBDES RWRATEPROD COMRATEPROD OBPROD OB 

100 100 25 125 100 200 

Co-efficient values 

𝜏𝑂𝐵  𝜏𝐷 𝜏𝑃 𝑅𝑊 

20 1 1 0.2 

 

Figure 4.10 ETOAR#P experiment 2, scenario 1: Lead time transient state outputs, with 

whole-system order book controller and rework ratio = 0 
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Figure 4.11 ETOAR#P experiment 2 scenario 1: Transient state outputs, with whole-

system order book controller and rework ratio = 0 

Scenario 1 aims to investigate the system performance without rework. Table 4.5 

demonstrates the initial condition of the system. According to Figure 4.11, the lead time 

stabilises at 2, which refers to the on-time delivery being guaranteed in the long-term. 

The peak value of the order book trace slightly increased by 10 units compared to that 

in Figure 4.12. 
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Experiment 2 simulation—holistic controller: scenario 2, rework ratio = 0.2 

Figure 4.12 ETOAR#P experiment 2, scenario 2: Order book transient state outputs, 

with whole-system order book controller and rework ratio = 0.2 

 

Figure 4.13 ETOAR#P experiment 2, scenario 2: Lead time transient state outputs, with 

whole-system order book controller and rework ratio = 0.2 

Based on scenario 1, the rework ratio is adjusted to 0.2 in Table 4.6, and the simulation 

results obtained are depicted in Figure 4.12 and Figure 4.13.  
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As depicted in Figure 4.13, the lead time of the overall system begins at and returns to 

2-time units, which is equal to the sum of production and design lead time, with the 

order book of the ETO system returning to 400, which is equal to (τP + τD)·DEM = 2 x 

200 = 400. Although the drawback of this model is its longer settling time, the benefits 

greatly outweigh the disadvantages owing to conformance to the enhanced customer 

due date and reduced order book capacity requirements. 

Summary 

In summary, the model developed for experiment 2 is capable of maintaining lead time 

and order book at the desired levels in the long term. Thus, the holistic level order book 

controller is selected for the further development of the production rework archetype. 

The following paragraph demonstrates the dynamic behaviour of the work rate of the 

production rework ETO model.  

In Figure 4.14 The dotted line demonstrates the design system’s work rate; this rate 

refers to the design speed of the system. It is evident that the dotted line begins from 

125 and jumps to 203 and then stabilises at 200. This transience demonstrates how the 

model adjusts the design capacity to complete the design within the required lead time. 

The work rate of the design subsystem is not affected by the rework while the 

production work rate is increased to absorb the impact of rework.  

The dotted line represents the production subsystem’s work rate; this rate directly 

determines how much workforce and resources the production requires, which 
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comprises the main portion of the costs of the ETO products. The red dotted line jumped 

from 125 to 250, wherein the incremental is 125 and the extra 100 units are increased 

to face the demand change from 100 to 200, while the 25 units are prepared to deal with 

the rework. According to the simulation table, the rework ratio is 0.2, and the initial 

demand is 100. Intuitively, the rework should be 100 multiplied by 0.2, which equals 

20; however, this calculation ignores the rework created by rework. The correct method 

to calculate the work rate for production should be 100/(1–0.2) = 125, demand/(1–

rework ratio). 

The delivery rate refers to the completed defects-free works that can be delivered in 

each period, consisting of the effective working package for an ETO project. It must be 

noted here that although the delivery rate is the output of the system, it is not the output 

of the ETO system. The output of the ETO system is a certain number of working 

packages. Thus, the lead time of the whole system is also an estimated value and is an 

index of the aggregated ETO system.  
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Figure 4.14 The work rate transient response of the ETOAR#P 

4.5.2 ETOAR#D Order Book Controller 

In this scenario, the rework may represent the design defects, which refers to the error 

or inappropriate design, and design change, which refers to the clients’ or the 

manufacturers’ desire to change the design to meet the production standard or 

customers’ demand. In the ETO scenario, design rework is a frequent problem, since 

whilst creating the design, the clients may constantly communicate with the company 

to ensure that the unique design satisfies their demands, invariably resulting in several 

rounds of design modification. 

ETOAR#D Experiment 1: Local order book controller 

The following assumption was added for this model.  
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1. In this scenario, the defects are created and detected in the design phase, and these 

can be rectified within the design stage. All the defects, errors, or changes will be 

detected and created before the design is sent to the production systems. 

 2. There are no defects or errors in the production rework. For the design rework 

scenario, a model was firstly developed with a local order book controller. It can be 

seen an order book controller is in the design subsystem from Figure 4.15. The 

mechanism of the order book controller is to compensate for the design work rate by 

adding a certain portion of the variance between actual order book with the target order 

book. The order books for this model are local order books. Equation (4.17), (4.18) and 

(4.23) and (4.25) are adopted from Wikner et al. (2007) 

 

Figure 4.15 Experiment 1—a candidate ETO archetype with a local controller and 

design rework.  
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𝑊𝑅𝐴𝑇𝐸𝐷𝐸𝑆(𝑡) = 𝐷𝐸𝑀(𝑡) +
𝑂𝐵𝐷𝐸𝑆(𝑡) − 𝜏𝐷 · 𝐷𝐸𝑀𝐷𝐸𝑆(𝑡)

𝜏𝑂𝐵
+ 𝑅𝑊𝑅𝐴𝑇𝐸𝐷𝐸𝑆(𝑡 − 1).  (4.17) 

𝑂𝐵𝐷𝐸𝑆(𝑡) = 𝑂𝐵𝐷𝐸𝑆(𝑡 − 1) + 𝐷𝐸𝑀𝐷𝐸𝑆(𝑡) − 𝐶𝑂𝑀𝑅𝐴𝑇𝐸𝐷𝐸𝑆(𝑡). (4.18) 

𝐶𝑂𝑀𝑅𝐴𝑇𝐸𝐷𝐸𝑆(𝑡) = 𝑊𝑅𝐴𝑇𝐸𝐷𝐸𝑆(𝑡 − 𝜏𝐷), (4.19) 

Where 𝜏𝐷 represents the delay of the design subsystem.  

RWRATEDES refers to the rework rate of the design system:  

𝑅𝑊𝑅𝐴𝑇𝐸𝐷𝐸𝑆(𝑡) = 𝐶𝑂𝑀𝑅𝐴𝑇𝐸𝐷𝐸𝑆(𝑡) · 𝑅𝑊. (4.20) 

Production system 

The production system’s input is the completed, error-free, and change-free designs.  

𝑊𝑅𝐴𝑇𝐸𝑃𝑅𝑂𝐷(𝑡) = 𝐶𝑂𝑀𝑅𝐴𝑇𝐸𝐷𝐸𝑆(𝑡) · (1 − 𝑅𝑊). (4.21) 

𝐶𝑂𝑀𝑅𝐴𝑇𝐸𝑃𝑅𝑂𝐷(𝑡) = 𝑊𝑅𝐴𝑇𝐸𝑃𝑅𝑂𝐷(𝑡 − 𝜏𝑃). (4.22) 

𝑂𝐵𝑃𝑅𝑂𝐷(𝑡) = 𝑂𝐵𝑃𝑅𝑂𝐷(𝑡 − 1) + 𝑊𝑅𝐴𝑇𝐸𝑃𝑅𝑂𝐷(𝑡) − 𝐶𝑂𝑀𝑅𝐴𝑇𝐸𝑃𝑅𝑂𝐷(𝑡) (4.23) 

The assumption of this scenario is that there is no rework in a production subsystem; 

thus, the 𝐶𝑂𝑀𝑅𝐴𝑇𝐸𝑃𝑅𝑂𝐷(𝑡) equals the delivery rate.  

𝐷𝑅𝐴𝑇𝐸(𝑡) =  𝐶𝑂𝑀𝑅𝐴𝑇𝐸𝑃𝑅𝑂𝐷(𝑡). (4.24) 

𝑂𝐵(𝑡) = 𝑂𝐵(𝑡 − 1) + 𝐷𝐸𝑀(𝑡) − 𝐷𝑅𝐴𝑇𝐸(𝑡). (4.25) 

Little’s Law is utilised to calculate the delivery time, as shown in previous sections.  
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To verify if the model can satisfy the performance demand, the following simulations 

were conducted. The simulation contains two parts: the first part is an ideal situation in 

which there is no rework; and the second part assumes that the rework ratio is 0.2. If 

the system can maintain the lead time at 2, then it is a valid model. 

Simulations are presented in the following paragraphs and initial values and parameters 

are presented in Table 4.7. 

Table 4.6 Initial value and co-efficient value for experiment 1, scenario 1, with whole-

system order book controller and rework ratio = 0  

ETOAR#D experiment 1: Local order book controller, scenario 1 

Initial values 

COMRATEDES OBDES RWRATEPROD COMRATEPROD OBPROD OB 

125 100 0 100 100 200 

Co-efficient values 

𝜏𝑂𝐵  𝜏𝐷 𝜏𝑃 𝑅𝑊 

20 1 1 0 

ETOAR#D experiment 1: Local order book controller, scenario 2  

Initial values 

COMRATEDES 
COMRA

TEDES 
COMRATEDES COMRATEDES 

COMRAT

EDES 

COMR

ATEDE

S 

125 125 125 125 125 125 

Co-efficient values 

𝜏𝑂𝐵  𝜏𝑂𝐵  𝜏𝑂𝐵  𝜏𝑂𝐵  

20 20 20 20 
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Experiment 1 simulation—local controller: scenario 1, rework ratio = 0  

Table 4.6 presents the initial values for each variable; these values are selected to keep 

the initial state stable. The input of the system is a step change, and the demand changes 

from 100 to 200 at period 4.  

 

Figure 4.16 ETOAR#D experiment 1, scenario 1: Order book transient state outputs, 

with local order book controller and rework ratio = 0 
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Figure 4.17 ETOAR#D experiment 1, scenario 1: Lead time transient state outputs, with 

local order book controller and rework ratio = 0 

The simulation result is illustrated in Figures 4.16 and 4.17. The order book of an ETO 

system finally is finally stabilised at 400, with a slight overshoot at stage 6, and the 

subsystem’s order book level is stabilised at 200. From the lead time perspective, the 

lead time of the whole ETO system stabilises at 2, which is the sum of the production 

and design lead time. Further, the subsystem’s lead time is stabilised at 1, after an 

overshoot at periods 6 and 7. 

According to the simulation above, the system can maintain the order book and lead 

time at the expected level when rework = 0; the following simulation will test how the 

system would perform if the rework is not 0. 
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Experiment 1 simulation—local controller: Scenario 2, rework ratio = 0.2 

Given the initial values and parameters values tabulated above, the following 

simulations were conducted. In this simulation, the rework ratio was set to 0.2, which 

is an average rework ratio in the PM field (Love et al. 1999).  

Figure 4.18 depicts the transient response of the order books of the subsystems and 

ETO systems. The dotted line demonstrates the whole system’s order book change; the 

order book begins from 250 and settles down at 500. The design system’s order book 

begins from 125 and stabilises at 250. The production subsystem’s order book starts 

from 100 and stabilises at 200. 

According to the observations above, it is concluded that the local order book controller 

cannot maintain the whole system and design subsystem’s order book at the desired 

levels—400 and 200, respectively—which implies that the whole system’s order book 

cannot be maintained by adopting a local order book controller at the system where 

rework occurs. To validate this conclusion, the transient response of the lead time is 

also checked.  
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Figure 4.18 ETOAR#D experiment 1, scenario 2: Order book transient state outputs, 

with local order book controller and rework ratio = 0.2 

Figure 4.19 depicts the transient response of the lead time of the whole system and its 

subsystems. Although the lead time of subsystems are finally stabilised at 1, the whole 

system’s lead time does not revert to 2, which is the desired lead time. To solve the 

rework impact on the whole system’s lead time, the subsystems must prepare extra 

buffer for the rework, and the buffer could be in the form of additional capacity or 

shorter lead time. Based on the above observation, it is contended that the local order 

book controller is unable to maintain the system’s performance at the desired level; 

therefore, experiment 2 is conducted, which deals with the ETO archetype with the 

holistic-level order book controller.  
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Figure 4.19 ETOAR#D experiment 1, scenario 2: Lead time transient state outputs, with 

local system order book controller and rework ratio = 0.2 

ETOAR#D experiment 2: Holistic order book controller 

Experiment 2 is designed to test if the holistic order book controller can maintain the 

order book and lead time at the desired levels. The block diagram of the model is 

illustrated in Figure 4.20. It is evident that the order book controller is moved from the 

design subsystem to the whole system level. Instead of using the difference between 

the design system’s actual and target order books, the holistic order book controller 

uses the difference between the whole system’s actual and target order book to 

determine the compensate work rate.  
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Figure 4.20 Experiment 2: A candidate ETO archetype with holistic order book 

controller, with design rework. 

The differential equations are presented in the section below: 

Design system 

According to equation (4.26), the work rate of the design subsystem 𝑊𝑅𝐴𝑇𝐸𝐷𝐸𝑆(𝑡) is 

determined by three components, wherein the middle expression demonstrates how the 

models utilise the difference between the actual and target order book of the whole 

system to compensate for the work rate. Equation (4.17) is replaced by (4.26), to realize 

holistic order book controller’s function.  

𝑊𝑅𝐴𝑇𝐸𝐷𝐸𝑆(𝑡) = 𝐷𝐸𝑀(𝑡) +
𝑂𝐵𝐷𝐸𝑆(𝑡) − (𝜏𝑃 + 𝜏𝐷) ∗ 𝐷𝐸𝑀𝐷(𝑡)

𝜏𝑂𝐵
+ 𝑅𝑊𝑅𝐴𝑇𝐸𝐷𝐸𝑆(𝑡 − 1). (4.26) 

RWRATEDES refers to the rework rate of the design system  

𝑅𝑊𝑅𝐴𝑇𝐸𝐷𝐸𝑆(𝑡) = 𝐶𝑂𝑀𝑅𝐴𝑇𝐸𝐷𝐸𝑆(𝑡) ∗ 𝑅𝑊 (4.27) 
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Production system 

The equations for the production system are the same as those for ETOAR#D 

experiment 1. To test the model, the following simulations are conducted, initial value 

and parameters settings are illustrated in the Table 4.8 

Table 4.7 Initial Value and co-efficient value for experiment 1 scenario 2, with whole 

system level order book controller and rework ratio =0 

ETOAR#D experiment 2: Holistic order book controller, scenario 1 

Initial values 

COMRATEDES OBDES RWRATEPROD COMRATEPROD OBPROD OB 

100 100 0 100 100 200 

Co-efficient values 

𝜏𝑂𝐵  𝜏𝐷 𝜏𝑃 𝑅𝑊 

20 1 1 0 

ETOAR#D experiment 2: Holistic order book controller, scenario 2 

Initial values 

COMRATEDES OBDES RWRATEDES COMRATEPROD OBPROD OB 

125 125 25 100 100 200 

Co-efficient values 

𝜏𝐸𝑇𝑂𝑂𝐵  𝜏𝐷 𝜏𝑃 𝑅𝑊 

20 1 1 0.2 

 

Experiment 2 Simulation—holistic controller, scenario 1: rework ratio = 0 

Given the initial and parameters value, as presented in Table 4.8, the experiment was 

conducted in MATLAB. The dotted line in Figure 4.21 demonstrates the order book of 
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the whole system; it begins from 200, and finally stabilises at 400, with an overshoot at 

period 6. The order book of the design and production begins from 100 and stabilises 

at 200. The final level is two times of the initial level, which is the desired performance 

of the order book. To further assess the performance of the system, a transient response 

to the lead time was created. 

 

Figure 4.21 ETOAR#D experiment 2, scenario 1: Order book transient state outputs, 

with whole-system order book controller and rework ratio = 0 

Figure 4.22 depicts the lead time transient response of subsystems and the whole system. 

The red dashed line indicates the lead time of the whole system. The lead time begins 

from 2 and stabilises at 2 after the step input, with a peak value of 4. The design 

system’s and production system’s lead time begin from 1 and stabilises at 1. The 

difference between design and production systems is the design subsystem’s lead time 

reaction to the step change one period faster.  
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These two simulations are conducted under the assumption that there is no rework, and 

the results reveal that the holistic order book controller can make the system maintain 

the order book and lead time level at the desired level with the step change input. To 

test the model’s performance with rework, the following simulations were conducted.  

 

Figure 4.22 ETOAR#D experiment 2, scenario 1: Lead time transient state outputs, with 

whole-system order book controller and rework ratio = 0 

Experiment 2 simulation—holistic controller, scenario 2: rework ratio = 0.2 

Table 4.11 demonstrates the initial value setting and parameter setting for the design 

rework scenario. The initial values of COMRATEDES, OBDES, and COMRATEPROD are 

adjusted to stabilise the system. 

Figure 4.23 demonstrates the order book change of systems; the whole system’s order 

book finally stabilises at the 400 level with a big overshoot at period 10. The design 
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system’ order book stabilises at 250 and the incremental is caused by the extra working 

units for the rework. The production system’s order book stabilises at 200. 

It is evident that the whole system’s order book stabilises at 400, which is the desired 

level; in contrast, the design subsystems order book stabilises at 250, which implies that 

the rework in the design system prolongs the queue in the design subsystem. 

 

Figure 4.23 ETOAR#D experiment 2 scenario 2: Order book transient state outputs, 

with whole-system order book controller and rework ratio = 0.2 

From the lead time of the system demonstrated in Figure 4.24, it is evident that the 

black straight line stabilises at 2, after a peak occurs at 6; this implies that from the 

whole system’s perspective, the lead time performance can meet the requirement. 

Further, the design and production subsystem’s lead time transient responses stabilise 

at 1, which implies that these two subsystems can maintain the lead time at one, with 

the existence of the rework. However, according to Figure 4.23, the order book of the 
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design subsystem is 50 units higher than the order book level without the rework, which 

implies that the design system work rate must be higher than the rework-free scenarios. 

Thus, the transient responses of work rates were visualised to see how rework affects 

work rate/capacity of the systems. 

 

Figure 4.24 ETOAR#D experiment 2, scenario 2: Lead time transient state outputs, with 

whole-system order book controller and rework ratio = 0.2 

The work rate of the system reflects the capacity of the system, and according to Figure 

4.25, the order book controller changes the delivery rate to 200, which is the same as 

the new demand after the step change. This value implies that the system’s output can 

adapt to the demand change. The production system’s work rate is also 200, while the 

design system’s level stabilised at 250. The increment 50 is the extra capacity that the 

design system reserves for the rework; this value can be calculated as 200/0.8-200 = 50. 
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This change represents that the holistic order book controller reserves an extra portion 

capacity for the design subsystem to cover the extra work caused by rework.  

 

Figure 4.25 ETOAR#D experiment 2, scenario 2: work rate transient state outputs, with 

whole-system order book controller and rework ratio = 0.2 

Summary  

This subsection focuses on developing an archetype to model the ETO system with 

design rework. Two prototypes are developed, one with local order book controller and 

the other with the holistic level order book controller.  

According to the simulations, both controllers can maintain the system’s lead time at 

the desired level after a step change in demand. However, when rework exists in the 

design subsystem, only holistic order book controller can maintain the system’s lead 

time at the desired level. The mechanism underlying this is that the holistic order book 
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controller reserves extra capacity for the design system, so that the extra work caused 

by rework can be covered and the lead time can be guaranteed. Thus, the selected model 

includes the holistic order book controller as the ETO archetype for the design rework 

scenario and is called ETOAR#D. 

 

Figure 4.26 The work rate transient response of the ETOAR#D 

Figure 4.26 demonstrates the work rates of design, production subsystems, and the 

delivery rate of the whole ETOAR#D system. The parameter settings and initial values 

are presented in Table 4.11  

4.5.3 ETOAR#PTD Order Book Controller 

In this scenario, the design defects/changes are detected or occur after the production 

begins, thereby requiring rework in the design first and then in production. For example, 

in certain cases, during the design stage, engineers may find that because of the 
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mechanical techniques, the design cannot be realised or that, occasionally, the 

completed products include design defects which do not meet the clients’ requirements. 

This kind of scenario often requires design change or redesign, and the consequences 

are often severer than those in other scenarios, with demolishing and redoing the work 

being required in certain extreme cases. Thus, it is essential to analyse the system 

performance in such scenarios.  

To develop the production to design rework archetype, two prototypes were created: 

one is the system that contains the order book controller, wherein the controller is 

located at the level of the subsystem. The other prototype is the holistic order book 

controller, where the controller is located at the whole-system level. The following 

figure depicts the mathematical representation of the system. 
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ETOAR#PTD experiment 2: Dual local order book controller 

 

Figure 4.27 Experiment 1, a candidate ETO archetype with dual local controller and 

production to design rework. 

𝐷𝐸𝑀𝐷𝐸𝑆  also includes RWRATEPROD, while this RWRATEPROD comes from the 

production system; this represents the defects detected in the production stage and those 

that require design change or redesign.  

𝐷𝐸𝑀𝐷𝐸𝑆(𝑡) = 𝐷𝐸𝑀(𝑡) +  𝑅𝑊𝑅𝐴𝑇𝐸𝑃𝑅𝑂𝐷 (𝑡 − 1). (4.28) 

Equation (4.29) depicts the design subsystem using the difference between the 

subsystem’s actual order book with the target order book to compensate for the work 

rate and cover the extra work required for redesigning. The target is set to the product 

of demand of the subsystem, with a delay in the subsystem. The dual order book 

Equation (4.29), (4.31) (4.33) and (4.35) is inspired by Wikner et al. (2007),  
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 𝑊𝑅𝐴𝑇𝐸𝐷𝐸𝑆  =  𝐷𝐸𝑀𝐷𝐸𝑆(𝑡) + 
𝑂𝐵𝐷𝐸𝑆(𝑡) − 𝐷𝐸𝑀𝐷𝐸𝑆(𝑡) ∙ 𝜏𝐷

𝜏𝑂𝐵
. (4.29) 

 

 

 

𝐶𝑂𝑀𝑅𝐴𝑇𝐸𝐷𝐸𝑆(𝑡) = 𝑊𝑅𝐴𝑇𝐸𝐷𝐸𝑆(𝑡 − 𝜏𝐷). (4.30) 

𝑂𝐵𝐷𝐸𝑆 represents the order book of the design subsystem, and this variable (𝑂𝐵𝐷𝐸𝑆) 

represents the actual order book of the design system.  

𝑂𝐵𝐷𝐸𝑆(𝑡) = 𝑂𝐵𝐷𝐸𝑆(𝑡 − 1) + 𝐷𝐸𝑀𝐷𝐸𝑆(𝑡) − 𝐶𝑂𝑀𝑅𝐴𝑇𝐸𝐷𝐸𝑆(𝑡). (4.31) 

Production system 

As per Assumption 4, the demand for production system consists of demand from the 

upstream system. Due to the rework caused by the design subsystem, all rework will be 

directly sent back to the design system.  

𝐷𝐸𝑀𝑃𝑅𝑂𝐷(𝑡) = 𝐶𝑂𝑀𝑅𝐴𝑇𝐸𝐷𝐸𝑆(𝑡). (4.32) 

Equation (4.57) represents the production subsystem’s local order book controller 

mechanism. Parameter τOB is added and set to 20. This value was selected based on 

multiple simulation tests and selected to ensure an overdamped system, thereby 

eliminating undesirable oscillatory behaviour that will likely impact capacity (Wikner 

et al. 2007). 

𝑊𝑅𝐴𝑇𝐸𝑃𝑅𝑂𝐷(𝑡) = 𝐷𝐸𝑀𝑃𝑅𝑂𝐷(𝑡) +
𝑂𝐵𝑃𝑅𝑂𝐷(𝑡) − 𝐷𝐸𝑀𝑃𝑅𝑂𝐷(𝑡) ∙ 𝜏𝑃

𝜏𝑂𝐵
. (4.33) 

𝐶𝑂𝑀𝑅𝐴𝑇𝐸𝑃𝑅𝑂𝐷(𝑡) = 𝑊𝑅𝐴𝑇𝐸𝑃𝑅𝑂𝐷(𝑡 − 𝜏𝑃). (4.34) 

Equation (4.59) illustrates how OBPROD stores incomplete work units. COMRATEPROD 

is used instead of DELRATE because 𝐷𝐸𝑀𝑃𝑅𝑂𝐷 (𝑡)  includes non-conformance 
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generated working units. Therefore, the actual incomplete working units is equal to the 

difference between 𝐷𝐸𝑀𝑃𝑅𝑂𝐷 (𝑡) + 𝑅𝑊𝑅𝐴𝑇𝐸𝑃𝑅𝑂𝐷  and 𝐶𝑂𝑀𝑅𝐴𝑇𝐸𝑃𝑅𝑂𝐷(𝑡).  

𝑂𝐵𝑃𝑅𝑂𝐷(𝑡) = 𝑂𝐵𝑃𝑅𝑂𝐷(𝑡 − 1) + 𝐷𝐸𝑀𝑃𝑅𝑂𝐷 (𝑡) − 𝐶𝑂𝑀𝑅𝐴𝑇𝐸𝑃𝑅𝑂𝐷(𝑡) (4.35) 

RW represents the ratio of rework caused by design error, or design changes.  

𝑅𝑊𝑅𝐴𝑇𝐸𝑃𝑅𝑂𝐷(𝑡) = 𝐶𝑂𝑀𝑅𝐴𝑇𝐸𝑃𝑅𝑂𝐷(𝑡) ∙ 𝑅𝑊. (4.36) 

1-RW represents qualified works.  

 

𝐷𝐸𝐿𝑅𝐴𝑇𝐸(𝑡) =  𝐶𝑂𝑀𝑅𝐴𝑇𝐸𝑃𝑅𝑂𝐷(𝑡) ∙ (1 − 𝑅𝑊). (4.37) 

 𝑂𝐵(𝑡) = 𝑂𝐵(𝑡 − 1) + 𝐷𝐸𝑀(𝑡) − 𝐷𝐸𝐿𝑅𝐴𝑇𝐸(𝑡). (4.38) 

Little’s Law is utilised to calculate the delivery time, as shown in previous sections.  

The initial and parameter values are presented in Table 4.9  

Table 4.8 Initial value and co-efficient value for experiment 1, scenario 1, with whole-

system order book controller and rework ratio =0 

ETOAR#PTD experiment 1: Local order book controller, scenario 1 

Initial values 

COMRATEDES OBDES RWRATEDES COMRATEPROD OBPROD OB 

100 100 0 100 100 200 

Co-efficient values 

𝜏𝐸𝑇𝑂𝑂𝐵  𝜏𝐷 𝜏𝑃 𝑅𝑊 

20 1 1 0 

ETOAR#PTD experiment 1: Local order book controller, scenario 2 

Initial values 

COMRATEDES OBDES RWRATEDES COMRATEPROD OBPROD OB 

125 125 25 125 125 275 

Co-efficient values 

𝜏𝑂𝐵  𝜏𝐷 𝜏𝑃 𝑅𝑊 

20 1 1 25 
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Experiment 1 simulation—local controller scenario 1: Rework ratio = 0  

Figure 4.28 demonstrates the transient responses of order books, with the demand step 

change input; the rework ratio for this simulation is 0. Parameter settings are presented 

in Table 4.9. The dot line represents the whole system’s order book, which ranges from 

200 to 400. The order book of subsystems ranges from 100 to 200. This change in the 

order books is as expected. 

 

 

Figure 4.28 ETOAR#PTD experiment 1, scenario 1: Order book transient state outputs, 

with dual local order book controllers and rework ratio = 0 

Figure 4.29 demonstrates the lead time performance of prototype 1. When rework = 0, 

the lead time of the whole system begins from 2 and stabilises at 2, with a peak at period 

7. The subsystem’s lead times are also stabilised at the desired level, which is 1. The 
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design system’s peak occurs at 6 and the production system’s lead time peak occurs at 

7.  

 

Figure 4.29 ETOAR#PTD experiment 1, scenario 1: Lead time transient state outputs, 

with dual local order book controllers and rework ratio = 0 

The simulation above indicates that prototype 1 can automatically adjust the system 

capacity to absorb the impact of the demand change when there is no rework. The 

following subsection assesses the performance of the system when rework exists. 

Experiment 1 simulation—local controller scenario 2: Rework ratio = 0.2 

Given the initial and parameter values in Table 4.9, the following simulations were 

conducted. Figure 4.30 demonstrates the order book transient responses of the whole 

system. The curve begins from 275 and jumps to 550. The subsystem’s order books 

begin from 125 and are finally stabilised at 250. According to these numbers, it is 

evident that the whole system and subsystems maintain a high order book level because 
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of the existence of the rework, which also implies that the completion of the production 

on time requires the system to maintain a higher capacity.  

 

 

Figure 4.30 ETOAR#PTD experiment 1, scenario 2—order book transient state outputs, 

with dual local order book controllers and rework ratio = 0.2 

Figure 4.31 illustrates the lead time performance of the dual local order book controller 

prototype. The dot line represents the whole system’s estimated lead time, which begins 

from 2.75 and stabilises at 2.75. The required lead time is 2, which implies that the 

system cannot maintain the lead time at the desired level. The subsystems’ lead time 

level stabilises at 1, which implies that the design and production subsystem complete 

their work on time. It is evident that the sum of the subsystem’s lead time does not equal 

to the whole system’s lead time, the reason is explained in the section 4.4.2 Experiment 
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1 scenario 2. While subsystems can complete their work on time, the entire ETO system 

requires both subsystems to work faster to compensate the delay created by the rework. 

 

 

Figure 4.31 ETOAR#PTD experiment 1, scenario 2: Lead time transient state outputs, 

with dual local order book controller and rework ratio = 0.2 

ETOAR#PTD experiment 2: The ETO model with a holistic order 

book controller 

In this subsection, the model for prototype 2 was upgraded to the holistic-level order 

book controller prototype. The main difference is that the order book controller is 

installed at the holistic system level, and the whole system’s order book is used to 

calculate how much capacity should be added to the system. Figure 4.32 demonstrates 

the block diagram of this prototype. 
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Figure 4.32 Experiment 2, a candidate ETO archetype with holistic order book 

controller and production to design rework. 

The local order book controllers were removed, and a holistic order book controller was 

added to the system.  

Design system 

It is observed that the rework goes back to the system, which is represented by RWRATE. 

Equation (4.39) demonstrates how the order book controller increases the work rate of 

the system. 𝑂𝐵(𝑡)  represents the actual order book and 𝐷𝐸𝑀(𝑡) · (𝜏𝑃 + 𝜏𝐷) 

represents the target order book of the whole system. The difference between these two 

values is divided by 𝜏𝑂𝐵—the proportional controller—and the division is added to the 

work rate for the design system 𝑊𝑅𝐴𝑇𝐸𝐷𝐸𝑆(𝑡). When the target order book is higher, 

it implies that the system can reduce the capacity to save the cost for production; if the 
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actual order book is higher, then it indicates that the system needs to boost the 

production speed. Equation (4.39), (4.41) (4.44) and (4.49) are adopted from (Wikner 

et al, 2007) 

𝑊𝑅𝐴𝑇𝐸𝐷𝐸𝑆(𝑡) = 𝐷𝐸𝑀(𝑡) + 
𝑂𝐵(𝑡) − 𝐷𝐸𝑀(𝑡) ∗ (𝜏𝑃 + 𝜏𝐷)

𝜏𝑂𝐵
+ 𝑅𝑊𝑅𝐴𝑇𝐸 (𝑡 − 1). (4.39) 

𝐶𝑂𝑀𝑅𝐴𝑇𝐸𝐷𝐸𝑆(𝑡) = 𝑊𝑅𝐴𝑇𝐸𝐷𝐸𝑆(𝑡 − 𝜏𝐷). (4.40) 

𝑂𝐵𝐷𝐸𝑆(𝑡) = 𝑂𝐵𝐷𝐸𝑆(𝑡 − 1) + 𝐷𝐸𝑀𝐷𝐸𝑆(𝑡) − 𝐶𝑂𝑀𝑅𝐴𝑇𝐸𝐷𝐸𝑆(𝑡). (4.41) 

Production system 

It is evident that the RWRATE is a portion of the COMRATE, which indicates that a 

certain proportion of the completed work is not fulfilled by the criteria and the task 

requires rework to rectify. 

𝑊𝑅𝐴𝑇𝐸𝑃𝑅𝑂𝐷(𝑡) = 𝐶𝑂𝑀𝑅𝐴𝑇𝐸𝐷𝐸𝑆(𝑡). (4.42) 

𝐶𝑂𝑀𝑅𝐴𝑇𝐸𝑃𝑅𝑂𝐷(𝑡) = 𝑊𝑅𝐴𝑇𝐸𝑃𝑅𝑂𝐷(𝑡 − 𝜏𝑃). (4.43) 

𝑂𝐵𝑃𝑅𝑂𝐷(𝑡) = 𝑂𝐵𝑃𝑅𝑂𝐷(𝑡 − 1) + 𝐷𝐸𝑀𝑃𝑅𝑂𝐷 (𝑡) − 𝐶𝑂𝑀𝑅𝐴𝑇𝐸𝑃𝑅𝑂𝐷(𝑡). (4.44) 

RWRATE refers the production to design rework.  

𝑅𝑊𝑅𝐴𝑇𝐸𝑃𝑅𝑂𝐷(𝑡) = 𝐶𝑂𝑀𝑅𝐴𝑇𝐸𝑃𝑅𝑂𝐷(𝑡) ∗ 𝑅𝑊. (4.45) 

DRATE refers to the conformant works that can be delivered to the clients. 

𝐷𝑅𝐴𝑇𝐸(𝑡) =  𝐶𝑂𝑀𝑅𝐴𝑇𝐸𝑃𝑅𝑂𝐷(𝑡) ∗ (1 − 𝑅𝑊). (4.46) 

 𝑂𝐵(𝑡) = 𝑂𝐵(𝑡 − 1) + 𝐷𝐸𝑀(𝑡) − 𝐷𝐸𝐿𝑅𝐴𝑇𝐸(𝑡). (4.47) 
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Little’s Law is utilised to calculate the delivery time, as shown in previous sections.  

To test the performance of the system, following simulations are conducted. Initial 

value and parameters settings are demonstration in Table 4.10. 

Table 4.9 Initial value and co-efficient value for experiment 2, scenario 1, with whole-

system order book controller and rework ratio = 0 

ETOAR#PTD experiment 2: Holistic order book controller, scenario 1 

Initial values 

COMRATEDES OBDES RWRATEDES COMRATEPROD OBPROD OB 

100 125 0 100 100 200 

Co-efficient values 

𝜏𝑂𝐵  𝜏𝐷 𝜏𝑃 𝑅𝑊 

20 1 1 0 

ETOAR#PTD experiment 2: Holistic order book controller, scenario 2 

Initial values 

COMRATEDES OBDES RWRATEPROD COMRATEPROD OBPROD OB 

100 125 25 125 125 200 

Co-efficient values 

𝜏𝑂𝐵  𝜏𝐷 𝜏𝑃 𝑅𝑊 

20 1 1 0.2 

 

Experiment 2 Simulation-holistic controller—Scenario 1: Rework ratio = 0 

Table 4.10 demonstrates the parameter and initial value settings. The first simulation is 

conducted with the assumption that there is no rework in the system to see if the system 

can maintain the system’s order book at the desired level, as shown in Figure 4.33. The 



178 

red line presents the entire system’s order book. It is evident that the transient response 

began from 200 and stabilised at 400, with the peak value at 415. The subsystem’s order 

book began from 100 and stabilised at 200. The result reveals that, with the given input, 

the system is able to maintain the system’s order book at the desired level and maintain 

the stability of the system.  

 

Figure 4.33 ETOAR#PTD experiment 2, scenario1: Order book transient state outputs, 

with whole-system order book controller and rework ratio = 0 

The simulation result of the lead time performance is presented in Figure 4.34. It is 

evident that the lead time of the whole system begins from 2, and after an overshoot at 

period 7, it finally stabilises at 2; this is the promised lead time to the customer. The 

subsystem’s lead time begins from 1 and finally stabilises at 1 after an overshoot at 

periods 6 and 7. From the lead time perspective, prototype 2 satisfied the demand for 
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the archetype when there was no rework in the system. To further verify the model, a 

simulation with existing rework was conducted. 

 

Figure 4.34 ETOAR#PTD experiment 2, scenario1 Lead time transient state outputs, 

with whole-system order book controller and rework ratio = 0 

Experiment 2 Simulation-local controller—Scenario 2: Rework ratio = 0.2 

This simulation is designed to verify the system’s performance when rework exists in 

the system. A value of 0.2 is assigned to the rework ratio to align with the previous 

simulations. Table 4.10 demonstrates the parameter and initial value setting for the 

simulation.  

Given the initial and parameter values above, the following simulations were conducted.  

Figure 4.35 demonstrates the order books’ transient responses. The whole-system order 

book stabilises at 400 but consumes more time. The production and design system’s 
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order book stabilises at a new level of 250, which can be attributed to the delayed design 

rework led by the extra working units in both design and production. From this figure, 

it is evident that the system maintains the whole-system order book at 400. But the 

subsystems’ order book is stabilised at 250 after the demand step change. The increment 

of the order book indicates that the subsystem has a longer queue, which implies that 

to complete these works on time, the subsystems must reserve a higher capacity.  

 

Figure 4.35 ETOAR#PTD experiment 2, scenario 2: Order book transient state outputs, 

with whole-system order book controller and rework ratio = 0.2 

Figure 4.36 illustrates the lead time performance of the whole system; the black straight 

line represents the lead time of the whole system. After the demand step change, the 

lead time increased to 4 and gradually stabilised at 2 again; hence, 2 is the desired lead 

time of this simulation. While during the stabilising process, there were a few 
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fluctuations, the subsystem’s lead time began from 1 and finally stabilised at 1, with 

the peak lead time being 1.75. 

 

Figure 4.36 ETOAR#PTD experiment 2, scenario 2: Lead time transient state outputs, 

with whole-system order book controller and rework ratio = 0.2 

According to the simulation above, it was concluded that the holistic order book 

controller can maintain the system’s order book and lead time at the promised level. 

This implies that the holistic order book controller should be used as the controller for 

the production to design rework scenario; thus, prototype 2 was selected as the 

archetype and called ETOAR#PTD. 

To develop an insight into the system’s work rate, the transient response of the work 

rates is presented in Figure 4.37. It is evident that the delivery rate of the system 

stabilised at the 200 level, while both the production and design system’s work rates 

stabilised at 250, after the demand step change. This change implies that the holistic 



182 

order book controller increases the work rate of design and production subsystems to 

accelerate the speed of the entire process. This also explains why the order book of 

subsystems is prolonged, while lead times can still be maintained at 1. Simultaneously, 

compared to the other rework scenarios, ETOAR#PTD (archetype with holistic 

controller) takes more time to stabilise and there is fluctuation between period 10 and 

20. This indicates that the production-to-design rework, or the delayed detected design 

defect/changes, are more severe than their other rework types. This is because to 

rectify/make these defects/change requires rework in both the design and production 

systems.  

 

Figure 4.37 The work rate transient response of ETOAR#PTD 

Summary  

Two prototypes were created in this subsection—dual local order book controller and 

holistic order book controller. These two prototypes differ from each other with regard 
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to the location of the order book controller. According to the simulation that was 

conducted, the prototype with holistic order book controller can maintain the system 

lead time at the promised level and the order book of the whole system can be 

maintained at twice the demand, irrespective of whether rework exists.  

Thus, the prototype with holistic order book controller is selected as the archetype and 

named ETOAR#PTD. 

4.5.4 Modelling Summary  

Section 4.4 aims to model the ETO systems via a CLD and block diagram in the z-

domain. The development of the models is done while keeping the following questions 

in mind: 1) How can different types of reworks be modelled in the ETO system? 2) 

Where can the order book controller be installed to maintain the system’s lead time and 

order book at the desired level?  

For the first question, one may realise that it is difficult to develop a single archetype 

that covers all types of reworks. Therefore, rework can be categorised into three types 

and determined to create one archetype for each rework scenario. Three archetypes 

form an archetype family, which represent three basic scenarios of an ETO system. 

For the second question, a set of experiments is designed to test where and how to adopt 

the order book controller to the system. In practice, this controller represents the 

decision rules for capacity management, which is a key structure of the system. To 

achieve this aim, two experiments were designed for each scenario and each experiment 
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contains two sets of simulations. Only the model which can maintain the lead time and 

order book level at the desired level can be selected as the archetype. The results of the 

experiments are summarised in Table 4.16. In summary, for all three models, only 

holistic order book controller can maintain lead time at the promised level, and local 

controllers can only main the subsystem’s lead time at its promised level. Therefore, 

prototypes were selected with the holistic order book controller as the archetypes and 

from the ETO archetype family. This archetype family extends the application of the 

order book controller developed by Wikner et al. (2007) to the ETO context. It is 

designed to automatically adjust the system's work rate while considering rework. 

Table 4.10 A summary of the developed archetypes 

 
Local order book 

controller in 

design system 

Local order book 

controller in 

Production system 

Dual local order 

book controllers 

Holistic order 

book controller 

Scenario 1 

Production 

rework 

Can not maintain 

lead time at 

desired level 

when rework 

exists 

  
Yes ETOAR#P 

 

Scenario 2 

Design 

rework 

 

Can not maintain 

lead time at desired 

level when rework 

exists 

 
Yes ETOAR#D 

 

Scenario 3 

Production 

to design 

rework 

  

Can not maintain 

lead time at 

desired level 

when rework 

exists 

Yes 

ETOAR#PTD 

 

 

The following subsections aim to linearise the non-linearity of this model in order to 

derive the transfer function of the lead time, which will be helpful in the prospective 

dynamic analysis sections.  
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4.6  Lead Time Linearisation  

The main structure of the archetype is developed in Section 4.4 and provides a 

foundation for the mathematical analysis. However, there is a non-linearity in the model 

which obstructs the adoption of the transfer function, which is lead time. 

In this research, lead time is calculated using Little’s law (Little 1961), as given in 

equation (4.48). Herein, it is evident that the order book and delivery rate together 

determines the lead time. The division of the expression creates the only non-linearity 

to this model, and the expression for the lead time can be written as 

𝐿𝑒𝑎𝑑 𝑡𝑖𝑚𝑒, 𝐿𝑇 =  
𝑂𝐵(𝑡)

𝐷𝑅𝐴𝑇𝐸(𝑡) 
. (4.48) 

Taylor series expansion is selected to linearise the lead time (Lin et al. 2020), which 

can be written as 

𝐿𝑇∗ − (𝜏𝐷 + 𝜏𝑃) =
𝜕𝐿𝑇

𝜕𝑂𝐵
(𝑂𝐵∗ −𝑂𝐵)+  

𝜕𝐿𝑇

𝜕𝐷𝑅𝐴𝑇𝐸
(𝐷𝑅𝐴𝑇𝐸∗ − 𝐷𝑅𝐴𝑇𝐸). (4.49) 

Considering that the final value for the DRATE(t) is DEM and the final value for OB 

is (𝜏𝐷 + 𝜏𝑃) ∙ 𝐷𝐸𝑀, then the partial derivation at the resting point can be derived.  

𝜕𝐿𝑇

𝜕𝑂𝐵
=  

1

𝐷𝑅𝐴𝑇𝐸
=  

1

𝐷𝐸𝑀
 . (4.50) 

𝜕𝐿𝑇

𝜕𝐷𝑅𝐴𝑇𝐸
= −

𝑂𝐵

𝐷𝑅𝐴𝑇𝐸2
= −

(𝜏𝐷 + 𝜏𝑃) ∙ 𝐷𝐸𝑀

𝐷𝐸𝑀2
. (4.51) 

If (4.50) and (4.51) are taken into (4.49), after reorganisation, (4.52) can be obtained: 

𝐿𝑇  =
𝑂𝐵− (𝜏𝐷 + 𝜏𝑃) ∙ 𝐷𝑅𝐴𝑇𝐸

𝐷𝐸𝑀
+  (𝜏𝐷 + 𝜏𝑃). (4.52) 
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It is evident from equation (4.52) that DEM at the resting point will be a constant, 

thereby making LT a linear expression. As presented in Section 4.5, the ETO archetype 

family includes three archetypes, while the algorithms for lead time estimation are the 

same and the final state for the lead times and order books are all the same. Thus 

equation (4.52) is the expression for lead time for all ETO archetypes. 

To verify the accuracy of the linearised lead time, the following comparison simulations 

were conducted. These simulations aim to test the accuracy of the linearised lead time. 

There will be two simulations for each model. One is a simulation with step change 

input, the other one is a simulation with the cyclical fluctuations. The latter one is much 

closer to the reality because the demand pattern in the market usually manifests 

fluctuations.  

The following sections present a comparison of Littles’ law lead time with the linearised 

lead time under step change demand and cyclical demand pattern. The aim of these 

simulations is to test how accurate the linearisation is and what the limitations of this 

method are.  

4.6.1 ETOAR#P Result Comparison  

This section presents the comparison of linearised lead time with the estimated lead 

time for the ETOAR#P archetype. The initial value and parameter settings are presented 

in Table 4.11. To maintain the consistency, the settings are the same as the settings in 

the modelling section. 
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Table 4.11 Simulation configuration  

Initial values 

COMRATEDES OBDES RWRATEPROD COMRATEPROD OBPROD OB 

100 125 25 125 125 200 

Co-efficient values 

𝜏𝑂𝐵  𝜏𝐷 𝜏𝑃 𝑅𝑊 

20 1 1 0.2 

 

Step input rework = 0 

Figure 4.38 depicts the lead time and linearised lead time’s transient response with the 

step change input. The demand changed from 100 to 200. For the first six periods, the 

linearised lead time are same with the estimated lead time, while from period 7 onward, 

the errors appear. Finally, both lead times become stable at 2, which is the desired level 

for lead time. One of the limitations of adopting the Taylor expansion linearisation is 

that it is only accurate around the resting point and that the accuracy will decrease with 

the increase in the distance between the linearised and resting points. 

According to Figure 4.38, when rework = 0, the linearised lead time can capture the 

changing trend of the estimated lead time and the accuracy is acceptable. 
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Figure 4.38 A comparison between linearised lead time with the estimated lead time 

(week), when rework = 0, step input, ETOAR#P 

Step input rework = 0.2 

However, if the rework exists, the accuracy of the linearised lead time would decrease, 

as depicted in Figure 4.39. The simulation below demonstrates the lead time transient 

responses when rework = 0.2. It is evident that the linearised lead time has a higher 

value than the estimated lead time start from period 7, which implies that when rework 

exists, the linearised lead time is only accurate within the first three periods (the first 

four periods represent the initial stage, thus 7 – 4 = 3 periods).  
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Figure 4.39 A comparison between linearised lead time with the estimated lead time 

(week), when rework = 0.2, step input, ETOAR#P 

Frequency response 

Figure 4.40 demonstrates the linearised lead time’s performance under the cyclical 

demand pattern. Note here the cyclical demand pattern is a sine wave with 10 as the 

amplitude and 52 weeks as the cycle time. The cycle time is assumed to be a year, and 

the time unit of the system is a week. The level is set to be 100. The equation (4.53) 

demonstrates the input expression.  

𝐷𝑒𝑚𝑎𝑛𝑑(𝑡) = 10 ∗ 𝑆𝑖𝑛𝑒 (
2𝜋

52
∗ 𝑡) + 100. (4.53) 

According to Figure 4.40, the linearised lead time almost overlaps with the estimated 

lead time, although there is a slight difference at the top and bottom of the curves. This 

observation means that the linearised lead time can represent the lead time when the 

input is cyclical demand.  

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Le
ad

 t
im

e

Time period 

LT Linearized LT



190 

 

Figure 4.40 A comparison between the linearised lead time with the estimated lead time 

(week) under cyclical demand, when rework = 0, frequent input, ETOAR#P. 

Figure 4.41 below demonstrates the linearised lead time and estimated lead times’ 

transient responses when rework = 0.2. It can be observed that the error at the top and 

bottom of the curve becomes larger, but the accuracy remains acceptable. 

 

Figure 4.41 A comparison between linearised lead time with the estimated lead time 

(week) under cyclical demand, when rework = 0.2, frequent input, ETOAR#P. 
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4.6.2 ETPAR#D Result Comparison 

The co-efficient values and initial values for the simulation are demonstrated in the 

Table 4.13. 

Table 4.12 Simulation configuration 

Initial values 

COMRATEDES OBDES RWRATEDES COMRATEPROD OBPROD OB 

125 125 25 100 100 200 

Co-efficient values 

𝜏𝑂𝐵  𝜏𝐷 𝜏𝑃 𝑅𝑊 

20 1 1 0.2 

 

Step input 

The transient response of the linearised lead time and estimated lead time are illustrated 

in Figure 4.42. It is evident in first six stages that the linearised lead time is the same as 

the estimated lead time, while from period 7 onward, the variance appears until both 

curves are stabilised at 2, which is the desired lead time level. It is evident from the 

figure that for the ETO model with demand step change input, the linearisation can 

represent the lead time, particularly within the first seven periods. Thereafter, the 

accuracy of the linearisation decreases. 
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Figure 4.42 A comparison between linearised lead time with the estimated lead time 

(week), when rework = 0, step input, ETOAR#D. 

Figure 4.43 demonstrates the transient responses of both linearised lead time and 

estimated lead time when rework = 0.2. It is evident that the variance between the two 

lead times is increased, and the linearised lead time exhibits a higher value than the 

estimated lead time starting from period 7. This implies that when rework exists in the 

system, the linearised lead time can only be used in calculating the initial periods’ lead 

time. 
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Figure 4.43 A comparison between linearised lead time with the estimated lead time 

(week) under cyclical demand, when rework = 0.2, step input, ETOAR#D. 

Frequency response  

The transient responses of estimated lead time and linearised lead time under cyclical 

demand are demonstrated in Figures 4.44 and 4.45. The demand is the same with the 

demand in previous section, as presented in the equation above. It is evident that these 

two lead times overlap with each other, with slight differences at the top and the bottom 

of the curve. This indicates that, when the input to the system is the cyclical demand 

and the amplitude is 10, the linearisation lead time can represent the lead time. 
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Figure 4.44 A comparison between linearised lead time with the estimated lead time 

(week) under cyclical demand, when rework = 0, frequent input, ETOAR#D. 

When rework = 0.2, the simulation with cyclical demand input did not demonstrate a 

significant variance between two lead times. 

 

Figure 4.45 A comparison between linearised lead time with the estimated lead time 

(week) under cyclical demand, when rework = 0.2, frequent input, ETOAR#D. 
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4.6.3 ETOAR#PTD Result Comparison 

The following simulation is conducted to test the linearisation lead time of the 

ETOAR#PTD model. Given the initial and parameter setting in Table 4.13, two 

simulations were conducted.  

Table 4.13 Simulation configuration 

Initial values 

COMRATEDES OBDES RWRATEPROD COMRATEPROD OBPROD OB 

100 125 25 125 125 200 

Co-efficient values 

𝜏𝐸𝑇𝑂𝑂𝐵  𝜏𝐷 𝜏𝑃 𝑅𝑊 

20 1 1 0 

 

Step input 

The first simulation is conducted with a step change input; specifically, the demand 

begins from 100 and jumps to 200 within one period. Such a demand represents an 

extreme market environment wherein the demand changes dramatically, which is an 

ideal tool to test the system’s performance under stochastic changes in demand. 

Figure 4.46 presents the lead time transient responses of both the linearised and 

estimated lead times. In the initial stages when demand change occurs, the linearised 
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lead time overlaps with the lead time; beginning from stage 7, the errors are detected 

until period 7, where the errors become trivial. This figure indicates that the linearised 

lead time is able to represent ETOAR#PTD’s lead time, particularly for the lead time 

in the initial stages. While with time, the accuracy of the lead time will decrease, but 

the final value is the same with estimated lead time.  

 

Figure 4.46 A comparison between linearised lead time with the estimated lead time 

(week), when rework = 0, step input, ETOAR#PTD. 

However, when rework exists in the ETOAR#PTD archetype, the result is different. 

Figure 4.47 demonstrates the simulation result for both lead times when rework = 0.2. 

It is evident that there is a significant error between estimated lead time with the 

linearised lead time after period 7. Figure 4.47 depicts that for the ETOAR#PTD 

scenario, the linearised lead time can only represent the lead time for the first three 

periods. 
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Figure 4.47 A comparison between linearised lead time with the estimated lead time 

(week) under cyclical demand, when rework = 0.2, step input, ETOAR#PTD. 

Frequent input 

Figure 4.48 illustrates the linearised lead time’s transient response against the estimated 

lead time. The cyclical demand is the same as the demand in the previous section, as 

shown in equation above. According to Figure 4.48, the linearised lead time overlaps 

with the estimated lead time, except at the top and bottom values, where the errors at 

the top and bottom are relatively small. This observation implies that the linearised lead 

time expression can represent the estimated lead time when the demand pattern is 

cyclical. However, when upon creating the demand sequence, it was assumed that the 

amplitude is 10, which is rather small. The question that then arises is whether the result 

would stay the same if the amplitude became bigger. To answer this question, the 

following simulations were generated. 
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Figure 4.48 A comparison between linearised lead time with the estimated lead time 

(week) under cyclical demand, when rework = 0, frequent input, ETOAR#PTD. 

As depicted in Figure 4.49, the rework has an insignificant influence on linearised lead 

time accuracy for the ETOAR#PTD archetype under cyclical demand pattern. 

 

Figure 4.49 A comparison between linearised lead time with the estimated lead time 

(week) under cyclical demand, when rework = 0.2, frequent input, ETOAR#PTD. 
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High amplitude input 

In this subsection, two simulations were conducted with two different amplitudes. The 

first simulation was conducted with a demand sequence that has an amplitude of 50. It 

is evident from Figure 4.50 that the difference between the linearised lead time with 

estimated lead time is greater—there is a significant difference between the top and 

bottom values.  

 

Figure 4.50 A comparison between linearised lead time with the estimated lead time 

(week), under cyclical demand, when rework = 0.2 and amplitude = 50, high amplitude 

input. 

To further verify this finding, the amplitude was increased from 50 to 100, and the 

simulation was conducted as presented in Figure 4.51. It was found that the difference 

between the top and bottom values became even greater, and the linearised lead time 

can barely account for the estimated lead time.  
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Figure 4.51 A comparison between linearised lead time with the estimated lead time 

(week), under cyclical demand, when rework = 0.2 and amplitude = 100, high 

amplitude input. 

4.6.4 Lead Time Linearisation Summary 

At the same time, it is found that the linearised lead time’s accuracy is affected by the 

rework ratio and amplitude of the demand. For the step change input when there is no 

rework in the system, the linearised lead time accuracy is satisfactory, while when 

rework increases, the error of the linearised lead time will increase. The usage of 

linearised lead time to represent the lead time would depend upon the requirement for 

the accuracy. For the cyclical input, the linearised lead time’s accuracy is sensitive to 

the amplitude of the demand pattern; specifically, when the amplitude is high, the 

accuracy of the linearised lead time is low. Moreover, the error will increase along with 

increases in the amplitude. When it comes to the model simulation, when the demand’s 

fluctuation is severe, the accuracy of the linearised lead time will deteriorate, which 
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implies that for the simulations with a high fluctuating demand pattern, the linearised 

lead time should not be utilised in lead time analysis.  

4.7  Summary 

This chapter outlined the development process of the ETO archetype, beginning with a 

literature-based exploration of the key variables, structures, and features of the ETO 

system, followed by the design of the archetype itself. To better evaluate the newly 

introduced order book controllers’ mechanism, a preliminary study was conducted to 

determine the optimal placement of the controller, thereby ensuring that the system can 

stabilise the lead time and output rate (delivery rate) at the designated level. 

Subsequently, three archetypes are presented, each depicted through both block 

diagrams and mathematical formulations. Simulation methods were employed to assess 

performance. Additionally, lead time linearisation was performed to prepare the model 

for subsequent chapters. 

In the following chapter, the system is analysed using a suite of dynamic analysis tools 

derived from CT. Such analysis not only deepens the understanding of the developed 

model but also identifies the unstable regions within the system.
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Chapter 5 Dynamic Analysis of the ETO 

Archetype Family 

This chapter places the focus on the dynamic analysis of the ETO archetypes which 

were developed in Chapter 4. Section 5.1 illustrates the findings from transfer function 

analysis, which includes the transfer function for all archetypes, and FVT and IVT 

analysis. Section 5.2 presents the findings from the frequency analysis. Section 5.3 

demonstrates the critical stability for all archetypes.  

5.1 Transfer Function  

ETOAR#P production rework scenario 

The transfer functions of the ETO archetype with production rework (ETOAR#P) are 

demonstrated below. 

The delivery rate transfer function is given below:  

𝐷𝑅(𝑧)

𝐷𝑒𝑚(𝑧)
=  

(𝑧2(𝑡𝐷 − RW𝑡𝐷 − 𝑡OB + RW𝑡OB + 𝑡𝑃 − RW𝑡𝑃) +

𝑧(−1 + RW − 𝑡𝐷 + RW𝑡𝐷 + 𝑡OB − RW𝑡OB − 𝑡𝑃 + RW𝑡𝑃))

−𝑧 + RW𝑧 − RW𝑧𝑡𝐷𝑡OB + RW𝑧1+𝑡𝐷𝑡OB + 𝑧1+𝑡𝐷+𝑡𝑃𝑡OB − 𝑧2+𝑡𝐷+𝑡𝑃𝑡OB
 (5.1)

 

The work rate transfer function is given below: 

𝑊𝑅(𝑧)

𝐷𝑒𝑚(𝑧)
=  
𝑧 + 𝑧𝑡𝐷 − 𝑧

2𝑡𝐷 − 𝑧𝑡OB + 𝑧
2𝑡OB + 𝑧𝑡𝑃 − 𝑧

2𝑡𝑃
𝑧 − RW𝑧 + RW𝑧𝑡𝐷𝑡OB − RW𝑧1+𝑡𝐷𝑡OB

−𝑧1+𝑡𝐷+𝑡𝑃𝑡OB + 𝑧2+𝑡𝐷+𝑡𝑃𝑡OB

. (5.2)
 

The order book transfer function is given below: 
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𝑂𝐵(𝑧)

𝐷𝑒𝑚(𝑧)
=  

(𝑧2𝑡𝐷 − RW𝑧
2𝑡𝐷 − 𝑧

2𝑡OB + RW𝑧
2𝑡OB

−RW𝑧1+𝑡𝐷𝑡OB + 𝑧
2+𝑡𝐷+𝑡𝑃𝑡OB + 𝑧

2𝑡𝑃 − RW𝑧
2𝑡𝑃)

𝑧 − RW𝑧 + RW𝑧𝑡𝐷𝑡OB − RW𝑧1+𝑡𝐷𝑡OB −

𝑧1+𝑡𝐷+𝑡𝑃𝑡OB + 𝑧2+𝑡𝐷+𝑡𝑃𝑡OB

. (5.3) 

The lead time transfer function is derived based on the linearised lead time, and the 

derivation process has been presented in Section 4. According to the findings from 

Section 4, the accuracy of the linearised lead time decreases along with the increases in 

rework; thus, this transfer function can only be used when the rework ratio is small. For 

the model with a high rework ratio, Little’s Law lead time is recommended. 

𝐿𝑇(𝑧)

𝐷𝑒𝑚(𝑧)
= −

𝑧((−1 + RW)(−1 + 𝑧)𝑡𝐷
2 − (−1 + RW)(−1 + 𝑧)𝑡𝐷(−1 + 𝑡OB − 2𝑡𝑃) +

(−1 + RW)(−1 + 𝑧)𝑡𝑃(1 + 𝑡𝑃) + 𝑡OB(𝑧 − RW𝑧 + RW𝑧
𝑡𝐷 − 𝑧1+𝑡𝐷+𝑡𝑃 +

(−1 + RW+ 𝑧 − RW𝑧)𝑡𝑃))

𝑧 − RW𝑧 + RW𝑧𝑡𝐷𝑡OB − RW𝑧
1+𝑡𝐷𝑡OB − 𝑧

1+𝑡𝐷+𝑡𝑃𝑡OB + 𝑧
2+𝑡𝐷+𝑡𝑃𝑡OB

. (5.4)

 

 

Initial value and final value theorem 

To crosscheck the accuracy of the transfer function, the initial and final value theorems 

(IVT and FVT) were implemented. The definitions of the IVT and FVT are presented 

as follows (Nise 2015): 

⚫ IVT: The Initial Value Theorem states that the initial value of a discrete-time signal 

can be determined directly from its Z-transform. It provides the value of the signal 

at the first-time step, reflecting the system's response at the start without needing 

to compute the entire time-domain signal. 
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⚫ FVT: The Final Value Theorem states that the steady-state or long-term behaviour 

of a discrete-time signal can be determined directly from its Z-transform. It 

describes the value that the signal approaches as time progresses to infinity, 

provided the system reaches a steady state and certain stability conditions are met. 

 In this test, the design and production delay were assumed to be 1; thus the total delay 

of the ETO process is 2, and the rework ratio is 0.2. According to Truxal (1958), FVT 

and IVT can be calculated in the following manner. To note here, the input signal for 

initial/final value derivation is DEM(z) = 
𝑧

𝑧−1
  , which represents a unit step. For this 

input signal, DEM (0)=1.  

DR refers to the deliver rate; the first formula represents the initial value of the deliver 

rate, which is the first value of system output after the step input. Given the input signal  

𝐷EM(z) = 
z

z−1
, which represents a unit step and has a value of 1 at stage 0 (DEM(0) = 

1). The application of the Initial Value Theorem (IVT) to 
𝐷𝑅(𝑧)

𝐷𝑒𝑚(𝑧)
  results in an initial 

value of 1. This means that when a unit step input is applied, the delivery rate starts at 

a value of 1. The second formula is the final value of the system; 1 represents that at 

the final stage, the deliver rate equals to the demand rate.  

            lim
𝑧→∞

(
𝐷𝑅(𝑧)

𝐷𝑒𝑚(𝑧)
∙
𝑧

𝑧 − 1
∙
𝑧 − 1

𝑧
) =   1       lim

      𝑧→1
(
𝐷𝑅(𝑧)

𝐷𝑒𝑚(𝑧)
∙
𝑧

𝑧 − 1
∙
𝑧 − 1

𝑧
) = 1  (5.5) 

WR refers to the working rate, which is different from the delivery rate, which 

represents the output of the whole system, whereas WR represents the output of the 
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production subsystem. At the same time, it is also a crucial variable which is linked to 

system capacity.  

            lim
𝑧→∞

(
𝑊𝑅(𝑧)

𝐷𝑒𝑚(𝑧)
∙
𝑧

𝑧 − 1
∙
𝑧 − 1

𝑧
) =   1       lim

      𝑧→1
(
𝑊𝑅(𝑧)

𝐷𝑒𝑚(𝑧)
∙
𝑧

𝑧 − 1
∙
𝑧 − 1

𝑧
) = 1.  (5.6) 

OB refers to the order book and this variable represents the number of working units 

that are remaining in the queue. The initial value is one, which implies that when the 

step input is given, the system’s order book remains at 1. FVT is 2, which implies that 

the system’s order book will finally reach 2 after the demand shock. 

            lim
𝑧→∞

(
𝑂𝐵(𝑧)

𝐷𝑒𝑚(𝑧)
·
𝑧

𝑧 − 1
·
𝑧 − 1

𝑧
) =   1       lim

      𝑧→1
(
𝑂𝐵(𝑧)

𝐷𝑒𝑚(𝑧)
·
𝑧

𝑧 − 1
·
𝑧 − 1

𝑧
) =   2.  (5.7) 

LT refers to the lead time of the system. It is important to note that the transfer function 

for LT is derived based on the linearized lead time expression and does not include(𝑡𝐷 +

𝑡𝑃), As a result, both the Initial Value Theorem (IVT) and Final Value Theorem (FVT) 

yield 0, indicating that when an input signal is applied to the system, the lead time does 

not change immediately and remains at (𝑡𝐷 + 𝑡𝑃).  

            lim
𝑧→∞

(
𝐿𝑇(𝑧)

𝐷𝑒𝑚(𝑧)
∙
𝑧

𝑧 − 1
∙
𝑧 − 1

𝑧
) =   0       lim

      𝑧→1
(
𝐿𝑇(𝑧)

𝐷𝑒𝑚(𝑧)
∙
𝑧

𝑧 − 1
∙
𝑧 − 1

𝑧
) = 0. (5.8) 

 

ETOAR#D design rework scenario. 

The order book transfer function is given below: 

𝑂𝐵(𝑧)

𝐷𝑒𝑚(𝑧)
=

𝑧2𝑡𝐷 − RW𝑧
2𝑡𝐷 − 𝑧

2𝑡OB + RW𝑧
2𝑡OB − RW𝑧

1+𝑡𝑃𝑡OB
+𝑧2+𝑡𝐷+𝑡𝑃𝑡OB + 𝑧

2𝑡𝑃 − RW𝑧
2𝑡𝑃

𝑧 − RW𝑧 + RW𝑧𝑡𝑃𝑡OB − RW𝑧
1+𝑡𝑃𝑡OB − 𝑧

1+𝑡𝐷+𝑡𝑃𝑡OB + 𝑧
2+𝑡𝐷+𝑡𝑃𝑡OB

(5.9)
 

The work rate transfer function is given below: 
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𝑊𝑅(𝑧)

𝐷𝑒𝑚(𝑧)
= 

−𝑧 + RW𝑧 − 𝑧𝑡𝐷 + RW𝑧𝑡𝐷 + 𝑧
2𝑡𝐷 − RW𝑧

2𝑡𝐷 + 𝑧𝑡OB − RW𝑧𝑡OB − 𝑧
2𝑡OB +

RW𝑧2𝑡OB − 𝑧𝑡𝑃 + RW𝑧𝑡𝑃 + 𝑧
2𝑡𝑃 − RW𝑧

2𝑡𝑃
−𝑧 + RW𝑧 − RW𝑧𝑡𝑃𝑡OB + RW𝑧1+𝑡𝑃𝑡OB + 𝑧1+𝑡𝐷+𝑡𝑃𝑡OB − 𝑧2+𝑡𝐷+𝑡𝑃𝑡OB

. (5.10)
 

The lead time transfer function is given below: 

𝐿𝑇(𝑧)

𝐷𝐸𝑀(𝑧)
=

−((𝑧((−1 + RW)(−1 + 𝑧)𝑡𝐷
2 − (−1 + RW)(−1 + 𝑧)𝑡𝐷(−1+ 𝑡OB − 2𝑡𝑃) +

(−1+ RW)(−1+ 𝑧)𝑡𝑃(1 + 𝑡𝑃) + 𝑡OB(𝑧 − RW𝑧 + RW𝑧
𝑡𝑃 − 𝑧1+𝑡𝐷+𝑡𝑃 +

(−1 + RW + 𝑧 − RW𝑧)𝑡𝑃)))

𝑧 − RW𝑧 + RW𝑧𝑡𝑃𝑡OB − RW𝑧1+𝑡𝑃𝑡OB − 𝑧1+𝑡𝐷+𝑡𝑃𝑡OB + 𝑧2+𝑡𝐷+𝑡𝑃𝑡OB
. (5.11)

 

The delivery rate transfer function is given below: 

𝐷𝑅(𝑧)

𝐷𝐸𝑀(𝑧)
= −

(−1 + RW)𝑧(−1 + (−1 + 𝑧)𝑡𝐷 − (−1 + 𝑧)𝑡OB − 𝑡𝑃 + 𝑧𝑡𝑃)

(−1 + RW)𝑧 + (−1 + 𝑧)𝑧𝑡𝑃(RW − 𝑧1+𝑡𝐷)𝑡OB
. (5.12) 

The calculation for initial and final value theorem is as per Truxal (1958). According 

to equations (5.9), (5.10), (5.11), and (5.12), following a unit step input of the form 

(
𝑧

𝑧−1
), equations (5.13), (5.14), and (5.15) can be obtained.  

DR refers to delivery rate. 

            lim
𝑧→∞

(
𝐷𝑅(𝑧)

𝐷𝐸𝑀(𝑧)
∙
𝑧

𝑧 − 1
∙
𝑧 − 1

𝑧
) =   1       lim

      𝑧→1
(
𝐷𝑅(𝑧)

𝐷𝐸𝑀(𝑧)
∙
𝑧

𝑧 − 1
∙
𝑧 − 1

𝑧
) = 1.  (5.13) 

It is evident that the final value of the work rate is 
1

(1−𝑅𝑊)
, which implies that the 

production subsystem’s work rate stabilises at 
1

(1−𝑅𝑊)
. The extra working capacity is 

prepared to offset the impact of rework.  

            𝑙𝑖𝑚
𝑧→∞

(
𝑊𝑅(𝑧)

𝐷𝑒𝑚(𝑧)
·
𝑧

𝑧 − 1
·
𝑧 − 1

𝑧
) =   1       𝑙𝑖𝑚

      𝑧→1
(
𝑊𝑅(𝑧)

𝐷𝑒𝑚(𝑧)
·
𝑧

𝑧 − 1
·
𝑧 − 1

𝑧
) = 

1

1 − 𝑅𝑊
.  (5.14) 

It is evident that the final value increases to 2, which implies that the step change in the 

demand doubled the order book level of the system.  
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            lim
𝑧→∞

(
𝑂𝐵(𝑧)

𝐷𝑒𝑚(𝑧)
·
𝑧

𝑧 − 1
·
𝑧 − 1

𝑧
) =   1       lim

      𝑧→1
(
𝑂𝐵(𝑧)

𝐷𝑒𝑚(𝑧)
·
𝑧

𝑧 − 1
·
𝑧 − 1

𝑧
) =  2.  (5.15) 

For DR, WR, and OB, the system’s initial value is 1, which indicates that the first 

increment of delivery is one time that of demand. The final value for (5.14) is dependent 

on RW, which means that if RW is greater than 0, it will lead to an offset of the desired 

level. The final value of (5.15) is 2, which implies that the output is equal to the sum of 

designing delay and production delay. This result corresponds with the simulation result 

in Chapter 4, Figure 4.17, wherein the sum of 𝜏𝐷 and 𝜏𝑃  is 2. Taking scaling into 

account, it is evident from Figure 4.16 that the first change in output value is +100 and 

the final value steady state change in output is +200.  

            lim
𝑧→∞

(
𝐿𝑇(𝑧)
𝐷𝑒𝑚(𝑧)

∙
𝑧

𝑧 − 1
∙
𝑧 − 1

𝑧
) =   0       lim

      𝑧→1
(
𝐿𝑇(𝑧)
𝐷𝑒𝑚(𝑧)

∙
𝑧

𝑧 − 1
∙
𝑧 − 1

𝑧
) = 0.  (5.16) 

Equation (5.16) demonstrates the IVT and FVT of the lead time of archetype 2. 

ETOAR#PTD Delayed Design Rework Scenario 

The order book transfer function is given below: 

𝑂𝐵(𝑧)

𝐷𝑒𝑚(𝑧)
=  

𝑧2𝑡𝐷 − RW𝑧
2𝑡𝐷 − RW𝑧𝑡OB − 𝑧

2𝑡OB
+RW𝑧2𝑡OB + 𝑧

2+𝑡𝐷+𝑡𝑃𝑡OB + 𝑧
2𝑡𝑃 − RW𝑧

2𝑡𝑃
𝑧 − RW𝑧 + RW𝑡OB − RW𝑧𝑡OB − 𝑧1+𝑡𝐷+𝑡𝑃𝑡OB + 𝑧2+𝑡𝐷+𝑡𝑃𝑡OB

. (5.17)
 

 

The deliver rate transfer function is given below: 

𝐷𝑅(𝑧)

𝐷𝑒𝑚(𝑧)
= 
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𝑧2𝑡𝐷 − RW𝑧
2𝑡𝐷 − RW𝑧𝑡OB − 𝑧

2𝑡OB
+RW𝑧2𝑡OB + 𝑧

2+𝑡𝐷+𝑡𝑃𝑡OB + 𝑧
2𝑡𝑃 − RW𝑧

2𝑡𝑃
𝑧 − RW𝑧 + RW𝑡OB − RW𝑧𝑡OB − 𝑧1+𝑡𝐷+𝑡𝑃𝑡OB + 𝑧2+𝑡𝐷+𝑡𝑃𝑡OB

. (5.18)
 

The lead time transfer function is given below: 

𝐿𝑇(𝑧)

𝐷𝑒𝑚(𝑧)
= 

−((𝑧((−1 + RW)(−1 + 𝑧)𝑡𝐷
2 − (−1 + RW)(−1 + 𝑧)𝑡𝐷(−1 + 𝑡OB − 2𝑡𝑃) +

(−1 + RW)(−1 + 𝑧)𝑡𝑃(1 + 𝑡𝑃) + 𝑡OB(RW+ 𝑧 − RW𝑧 − 𝑧1+𝑡𝐷+𝑡𝑃 +

(−1 + RW + 𝑧 − RW𝑧)𝑡𝑃)))

𝑧 − RW𝑧 + RW𝑡OB − RW𝑧𝑡OB − 𝑧1+𝑡𝐷+𝑡𝑃𝑡OB + 𝑧2+𝑡𝐷+𝑡𝑃𝑡OB
. (5.19)

 

 

The work rate transfer function is given below: 

𝑊𝑅(𝑧)

𝐷𝑒𝑚(𝑧)
= 

 
𝑧 + 𝑧𝑡𝐷 − 𝑧

2𝑡𝐷 − 𝑧𝑡OB + 𝑧
2𝑡OB + 𝑧𝑡𝑃 − 𝑧

2𝑡𝑃
𝑧 − RW𝑧 + RW𝑡OB − RW𝑧𝑡OB − 𝑧1+𝑡𝐷+𝑡𝑃𝑡OB + 𝑧2+𝑡𝐷+𝑡𝑃𝑡OB

. (5.20) 

Initial value and final value theorem 

Deliver rate IVT and FVT 

            lim
𝑧→∞

(
𝐷𝑅(𝑧)

𝐷𝑒𝑚(𝑧)
∙
𝑧

𝑧 − 1
∙
𝑧 − 1

𝑧
) =   1       lim

      𝑧→1
(
𝐷𝑅(𝑧)

𝐷𝑒𝑚(𝑧)
∙
𝑧

𝑧 − 1
∙
𝑧 − 1

𝑧
) = 1  (5.21) 

Equation (5.21) demonstrated the work rate’s IVT and FVT. Note here that the final 

value of the work rate is determined by the rework because the system needs to increase 

the work rate to cover the extra working units created by the rework. 

            lim
𝑧→∞

(
𝑊𝑅(𝑧)

𝐷𝑒𝑚(𝑧)
∙
𝑧

𝑧 − 1
∙
𝑧 − 1

𝑧
) =   1       lim

      𝑧→1
(
𝑊𝑅(𝑧)

𝐷𝑒𝑚(𝑧)
∙
𝑧

𝑧 − 1
∙
𝑧 − 1

𝑧
) = 

1

1 − 𝑅𝑊
.  (5.22) 

OB refers to the order book. This variable represents the number of working units that 

are left in the queue. The initial value is one, which implies that when the step input is 
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given, the system’s order book remains at 1. FVT is 2, which implies that the system’s 

order book will finally reach 2 after the demand shock. 

            lim
𝑧→∞

(
𝑂𝐵(𝑧)

𝐷𝑒𝑚(𝑧)
·
𝑧

𝑧 − 1
·
𝑧 − 1

𝑧
) =   1       lim

      𝑧→1
(
𝑂𝐵(𝑧)

𝐷𝑒𝑚(𝑧)
·
𝑧

𝑧 − 1
·
𝑧 − 1

𝑧
) =   2. (5.23) 

LT refers to the lead time of the system. Note here that the transfer function for LT is 

derived based on the linearised lead time expression and does not include the content 

part (𝑡𝐷 + 𝑡𝑃); thus, both IVT and FVT values are 0, which implies that the system is 

able to maintain the lead time in the long-term. 

            lim
𝑧→∞

(
𝐿𝑇(𝑧)

𝐷𝑒𝑚(𝑧)
∙
𝑧

𝑧 − 1
∙
𝑧 − 1

𝑧
) =   0       lim

      𝑧→1
(
𝐿𝑇(𝑧)

𝐷𝑒𝑚(𝑧)
∙
𝑧

𝑧 − 1
∙
𝑧 − 1

𝑧
) = 0. (5.24) 

Triangulation:  

The accuracy of the transfer function is ensured through triangulation. This process 

involves comparing the results of the spreadsheet model, the Simulink model, and the 

model reproduced using the transfer function. The transfer function is only validated if 

all three models yield identical results. Furthermore, the initial and final values derived 

from these comparisons are crosschecked with the results presented in Chapter 4. 

In Chapter 4, it is evident that the total system lead time for all archetypes begins at 2 

and returns to 2, equivalent to τD + τP, as illustrated in Figures 4.13, 4.24, and 4.36. 

Following the demand step change, the order book doubles, as depicted in Figures 4.12, 

4.23, and 4.35. The initial and final values of the work rate remain consistent, as shown 

in Figures 4.14, 4.26, and 4.37. For ETOAR#P and ETOAR#PTD, the production 
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system’s work rate is  
1

1−𝑅𝑊
,  while for the design system, the work rate of production 

system is 1.  

5.2 Frequency Domain Analysis  

The ETO model developed in the chapter 4 has two parameters, τOB and RW. τOB needs 

to be set based on the management decision. This parameter represents the sensitivity 

of the company to the order book change and determines the changing speed or 

slowness of the work rate. In the meantime, RW represents the rework ratio of the 

production or design, which also reflects the conformance rate of the ETO production. 

Such the ratio barely changes, it is usually determined by craftsmanship, the complexity, 

and level of difficulty in the production of the ETO products.  

To have an insight into how the τOB and RW affect the system’s dynamic performance, 

two experiments are designed for each scenario: one experiment aims to determine how 

τOB affects the system’s reaction to different frequencies; the other one aims to study 

how RW ratio affects the system’s behaviour. The common coefficients value is set as 

presented in Table 5.1:  

Table 5.1 Initial value for the Bode plot analysis 

To control the variable, when the τOB is focused on, the RW is set as 0.5, and when 

focus is given to the RW, τOB will be set as 20. These two values are selected based on 

Co-efficient values 

Experiment one τOB oriented Experiment two RW oriented 

𝜏𝑂𝐵  RW 𝜏𝑂𝐵  RW 

0, 2,20,40,80,160,200 0.5 20 0,0.2,0.5,0.8 
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the experience from previous experiments in Chapter 4. A system with such settings 

undergoes milder fluctuations. 

In addition, according to previous literature, the demand fluctuation cycle in the ETO 

industries has a strong correlation with the global economy cycle (Wigren & 

Wilhelmsson 2007, Wada et al. 2018). Based on this, the research estimates the demand 

frequency of the ETO industry as 7 years or 364 weeks (Wang and Xiao 2023). Since 

this estimation is roughly calculated based on the global economy cycle, and the 

demand cycle for different ETO products may vary, this section visualises and 

summarises the ETO system’s performance across all demand frequencies. The red box 

highlights the most possible demand frequency of the ETO system (demand cycle: 7 

years, 364 Weeks, 0.01725 rad/week, log10(0.01725) = -1.7632; thus, the red box 

highlights the frequency from 0.01 to 0.02 rad/week). 

Due to the similarity of the Bode plots across the three scenarios, this section presents 

only the Bode plots of ETOAR#P to illustrate the research procedure. The remaining 

plots are provided in the Appendix. 

5.2.1 ETOAR#P Production Rework 

Work rate  

The Bode plot in Figure 5.1 demonstrates the frequency response of the ETOAR#P: the 

production rework scenario, wherein the rework happens and can be rectified in the 

production stage. The magnitude chart illustrates how the output of the system reacts 
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to the diverse demand cycle frequencies. When the demand frequency is below 0.02 

rad/weeks (314 weeks), the magnitude is approximately 6 dB and, according to the 

transformation formula (5.39), it can be calculated that the output’s amplitude is 

approximately two times of the input. Between 0.02 and 0.04 rad/week (314 to 157 

weeks), the curve increases along with the increase in the frequency. When demand 

frequency is higher than 0.1 rad/week (62.8 weeks) but lower than 0.5 rad/week (12.56 

weeks), all magnitude curves begin to fall, and the system with the smallest stable τOB 

value has the lowest magnitude.  

When τOB = 2, the system is unstable, as per the analysis of Section 5.3, and the 

magnitude curve is much higher than the others when demand frequency is higher than 

0.02 rad/week (314 weeks).  

The chart below the magnitude chart is the phase chart, which illustrates the phase 

change between the input and output signal. It can be observed that, in the red box, the 

magnitude curves of all τOB settings are located at 6dB. This indicates that for 

ETOAR#P, the value of τOB has a minor influence on the fluctuation of production 

capacity. 

𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 = 20 ∗ 𝐿𝑜𝑔10 (
𝑂𝑢𝑡𝑝𝑢𝑡

𝐼𝑛𝑝𝑢𝑡
) . (5.39) 
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Figure 5.1 Bode plot for the ETOAR#P τOB orientated for RW = 0.5  

The Bode plot in Figure 5.2 demonstrates how the system’s dynamic performance 

changed along with the change of the rework ratio (RW). The red box in the diagram 

displays the magnitude curves corresponding to the ETO demand frequencies. As 

shown within the red box, the higher the rework ratio, the higher the magnitude curves. 

This indicates that rework negatively influences the system’s fluctuation. 

Apart from the observations from the red box, the following changes were observed: in 

the low frequency area where the frequency is lower than 0.1 rad/week (62.8 weeks), 

with the increases in the rework ratio, the system was increasingly fluctuating; when 

RW increased, the system fluctuated even more. In the moderate frequency area, where 

the frequency is between 0.1 and 1 rad/week, a greater RW ratio may play a role to 
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smooth the output. It is evident that RW = 0.8 falls to the bottom of the plot, which 

implies that in that circumstance, the output’s fluctuation is smaller than the input and 

the fluctuation ratio between the output with input is also smaller than the situation 

when RW is smaller than 0.8.  

Moreover, it is observed that peaks appear in the magnitude curves when demand 

frequency is between 0.04 and 0.07 rad/week (apart from the unstable parameter when 

τOB = 2). This suggests that the ETO company should avoid such demand patterns, 

because such frequency will cause fluctuation in the work rate.  

RW has a small influence on the system’s performance from the phase’s perspective. 

The trend for the phase plot is decreasing, which implies that the delay of the output 

and input waveform is enlarged by the frequency increase. 
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Figure 5.2 Bode plot for the ETOAR#P rework orientated for τOB = 20. 

Order book 

Figure 5.3 demonstrates the Bode plot of the ETOAR#P’s order book. In the red box, 

it is evident that with the increase in the rework ratio, the order book’s amplitude 

increases slightly, which indicates that the increase in the rework ratio has a negative 

effect on the fluctuation of the order book of ETOAR#P. Moreover, there is a gap 

around 1.6 rad/week (4 weeks). This gap implies that this system is a Notch filter, which 

can reject one specific frequency. In practice, this implies that when the demand 

fluctuation frequency is 1.6 rad/ week, the order book fluctuation will be approaching 

0. To validate this finding, an experiment is conducted, as depicted in Figure 5.4 
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Figure 5.3 Bode plot for the ETOAR#P rework orientated for τOB = 20 

According to Figure 5.3, when demand frequency is 1.6 rad/week, the order book level 

will become a straight line, which indicates that, under such frequency, the systems 

order book would not fluctuate along with the change of the demand.  

 

Figure 5.4 Amplitude of the order book with cyclical input; demand frequency = 1.6 

rad/week; one cycle is four-time units.  
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Figure 5.5 demonstrates how τOB affects the frequency responses of the order book of 

the ETOAR#P system. In the red box, the influence of the τOB to the magnitude curve 

is trivial. When τOB = 2, the amplitude of the orderbook is higher than the others. This 

indicates that τOB = 2 exaggerates the fluctuation of the system. From the phases plot, 

it is evident that when τOB = 2, the phases shift is larger than the other configuration. 

When the frequency is 1.6 rad/week, the phases curve of τOB = 2 and τOB = 200 

demonstrate larger shifts.  

 

Figure 5.5 Bode plot for ETOAR#P rework orientated for τOB = 0.5 

Lead time 

Figures 5.6 and 5.7 demonstrate how rework and τOB affect the lead time’s performance 

under a cyclical demand input. According to Figure 5.6, in the red box, the magnitude 

curves increase as the frequency increases, and the higher the rework ratio, the higher 
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the magnitude. This can be interpretated as that the rework ratio has a negative impact 

on the fluctuation of the lead time.  

Apart from the observation from the red box, the following observations are made: 

When the demand frequency is low, the magnitude of the lead time increases with the 

increase in the rework ratio. In the high frequency area, the magnitude curve begins to 

fluctuate and the fluctuation increases with the increases in the rework ratio.  

According to the phase plot, the increase in rework ratio from 0 to 0.5 does not affect 

the phase shift too much, and the phase shift decreases with increasing input frequency. 

However, when rework = 0.8, the systems’ phase curve begins at a lower level and 

decreases with increasing frequency.  
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Figure 5.6 Lead time Bode plot of the ETOAR#P rework orientated for τOB = 20  

Figure 5.7 demonstrates the influence of τOB to the system’s lead time performance. 

When the frequency is below 0.03 rad/week, which covers the frequency highlighted 

by the red box, the magnitude curve shifts up with the increase in τOB, which indicates 

that a smaller τOB can smoothen the fluctuation of the system’s output when the input 

frequency is below 0.03 rad/week. When the frequency is above 0.1 rad/week, 

fluctuation appears and the curves with smaller τOB have a smaller magnitude. In 

practice, this implies that when the demand frequency is low, the system should select 

a smaller τOB to reduce the fluctuation. When demand frequency is high, the system 

should select a larger τOB, thereby reducing the fluctuation of the output. 



220 

According to the phase plot, the phase value remains at 90 degrees, thereby suggesting 

that the output phase is 90 degrees ahead of the input signal. As the demand frequency 

increases, the phase gradually decreases. Based on the phase differences, the delayed 

or advanced time can be calculated using equation (5.40) from Nise (2015). When the 

phase difference is 90 degrees and the frequency is 0.02 rad/week, the time difference 

is 78.5 weeks. This implies that the peak of the lead time will occur 78.5 weeks ahead 

of the input signal’s peak.  

𝛥𝑡 =
𝑃ℎ𝑎𝑠𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 (𝑑𝑒𝑔𝑟𝑒𝑒)

360° · 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (𝐻𝑧)
. (5.40) 

 

Figure 5.7 Lead time Bode plot of the ETOAR#P rework orientated for τOB = 0.5 
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5.2.2 Result Analysis 

In this subsection, the effect of rework and τOB to different ETO archetypes are analysed. 

Tables 5.2–5.13 demonstrate the findings from the Bode plot across different frequency 

zones. The red box frequency zone covers the ETO demand frequencies to illustrate the 

changing trend of the magnitude across the various frequencies. To narrow down the 

scope, a detailed analysis of the ETO system under all the possible demand frequencies 

(0.01–0.02 rad/week) is provided in Tables 5.5, 5.9, and 5.13. Based on this, the 

minimal reasonable capacity (MRC) and the maximum reasonable lead time (MRL) for 

the ETO systems under different rework scenarios are derived to link the frequency 

domain analysis with actual practice  

⚫ Minimal Reasonable Capacity (MRC) is the smallest level of capacity a system 

needs to operate effectively while covering peak demand and accounting for 

dynamic variability. It ensures the system meets performance requirements without 

excessive waste, balancing efficiency with resilience to fluctuations (Lin et al. 

2020).  

⚫ Maximum Reasonable Lead Time (MRL) refers to the maximum allowable lead 

time, determined by estimating and accounting for the amplification of lead time 

fluctuations within a system. By calculating the theoretical maximum lead time, 

MRL ensures that project delivery stays within acceptable limits, preventing delays 

that could disappoint customers and aligning with SD predictions (Lin et al. 2020) . 
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ETOAR#P 

Table 5.2 ETOAR#P work rate magnitude summary 

Frequency Zone Low (rad/ week) Medium (rad /week) High (rad / week) 

Frequency Lower than 10-2 10-2 to 100 Higher than 1 

Cycle  628 weeks 
Between 628 weeks to 6.28 
weeks 

Less than 6.28 week 

Trend 
Start from 8dB and 
maintain at 8dB 

The magnitude increases at first 
and then decreases. 

The curve fluctuated. 

τOB effect Insignificant 

Before 10-1: The system with a 

larger τOB has a higher 
magnitude. 
After the 10-1: The system with 
larger the τOB has a lower 
magnitude. 

The system with larger τOB 
has a lower magnitude. 

RW effect 

For various rework 
ratios, the starting 

level of the 
magnitude are 
various. The more the 
rework, the higher the 
level will be, which 
means the magnitude 
of the work rate will 
be exaggerated by the 
rework. 

The systems with higher rework 
ratio increase faster, and the 
peaks are higher.  While after 
10-1 rad/s all magnitude curves 
start to decrease, and the 

systems with higher rework 
ratio, has a lower-level 
magnitude. 

The higher the rework ratio, 
the higher the fluctuations of 
magnitude curve are. 

Table 5.3 ETOAR#P order book magnitude summary 

Frequency Zone Low Medium High 

Frequency Lower than 10-2 10-2 to 100 Higher than 1 

Cycle 628 weeks 

Between 628 weeks to 6.28 

weeks 
Less than 6.28 week 

Trend 
Start from 18dB, and 
maintain this level until 10-

2  

From 10-2, the magnitude 
curve decreases slightly, 
and the curve reach 0dB 

when frequency is 100 

In the high frequency area, a 
sharp valley appears at 100.1, 
which means at that 
frequency this system can 
filter the frequency. When 

frequency keep increasing, 
the magnitude goes back to 
the 0 dB. 

τOB effect 
Insignificant 

The higher the τOB, the 
higher the magnitude curve 
is. 

The higher the τOB, the 
higher the magnitude curve 
is. 

RW effect 

The higher the rework ratio 
is, the higher the magnitude 
curve is. Which means, the 
rework can increase the 
magnitude of the order 
book 

When frequency is lower 

than 10-1, the higher the 
rework ratio, the higher the 
magnitude curve is. When 
frequency is above 10-1 the 
magnitude curves overlap 
each other, which indicate 
that the rework ratio has 
insignificant influence on 

the magnitude.  

insignificant 
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Table 5.4 ETOAR#P lead time magnitude summary 

Frequency Zone Low Medium High 

Frequency 10-4 to 10-2 10-2 to 10-1 >10-1 

Trend 
The magnitude curve 
increases from the starting 
point.  

The magnitude curve keeps 
increasing until they reach 
the peaks and start to 
decrease. 

Fluctuation appears in the 
high frequency domain. 

τOB effect 

The higher the τOB is, the 
higher the magnitude curve 
is. However, the unstable 

parameter setting has a 
smaller magnitude.  

The systems with lower τOB 
increase faster. When τOB = 
20 or 40, a peak appears on 
their magnitude curves.  

Fluctuations, while the 
systems with small τOB 
value have a smaller 
magnitude. 

RW effect 
The higher the rework 
ratios, the higher the 
magnitude. 

Magnitude curves reach its’ 
peak, afterwards, curves 
start to decreases, 

The higher the rework is the 

smaller the magnitudes are. 

For ETOAR#P, the rework ratio significantly impacts both the work rate and the 

magnitude of lead time, while it has a minor effect on the magnitude of the order book. 

Additionally, all these influences are negative; higher rework ratios lead to greater 

magnitudes in these metrics.  

Based in the above analysis, the influence of rework on the system’s influence is 

summarised in the Table 5.5. This table contains three main columns—work rate, lead 

time under 0.01 rad/week frequency, and lead time under 0.02 rad/week frequency. 

Under each major column, there are two sub-columns, one presents the magnitude and 

the other presents the ratio between lead time/work rate amplification with demand 

amplification. The ratio is derived from equation (5.39). The MRC and MRL of the 

ETOAR#P can be derived from Table 5.5. MRC represents the MRC the system should 

maintain to cover the fluctuation of the work rate. This value corresponds to the peak 

of the work rate in the frequency response, thereby indicating the minimal capacity 

required for the production system. Maintaining production capacity at this level 

ensures that demand peaks are covered while avoiding the waste associated with 



224 

maintaining an excessively high capacity. MRL represents the peak lead time value 

when demand fluctuates. In practice, it can serve as a reference when proposing lead 

times for ETO products, thereby ensuring that the proposed lead time is achievable and 

prevents lead time overruns (Lin et al. 2020).  

Table 5.5 The MRC and MRL of ETOAR#P, derived from the Bode plot. Assumption: 

demand level = 100 working units per week; amplification = 10 working units per week  

 Work rate 0.01-0.02 rad/week Lead time 0.01 rad/week Lead time 0.02 rad/week 

RW 
Magnitude 

(dB) 

𝑊𝑜𝑟𝑘 𝑅𝑎𝑡𝑒

𝐷𝑒𝑚𝑎𝑛𝑑
 MRC 

Magnitude 

(dB) 

𝐿𝑒𝑎𝑑 𝑡𝑖𝑚𝑒 

𝐷𝑒𝑚𝑎𝑛𝑑
 MRL 

Magnitude 

(dB) 

𝐿𝑒𝑎𝑑 𝑡𝑖𝑚𝑒 

𝐷𝑒𝑚𝑎𝑛𝑑
 MRL 

0 0 1.0 200 -3.0 0.7 8.7 3.2 1.4 9.4 

0.2 2 1.3 230 0.0 1.0 9 5.8 2.0 10 

0.5 6 2.0 300 5.0 1.8 9.8 11.0 3.5 11.5 

0.8 14 5.0 600 14.0 5.0 13 21.0 11.2 19.2 

From the τOB perspective, when the demand frequency is between 0.01 and 0.02 

rad/week (ETO demand frequency), it has insignificant influence on the work rate and 

the order book. For the lead time, the smaller the τOB, the smaller the magnitude.  

ETOAR#D 

For the ETOAR#D system, the rework ratio has insignificant influence on the work rate, 

moderate influence on the order book magnitude, and significant influence on the lead 

time magnitude. Moreover, for both order book and lead time magnitude, the larger the 

rework ratio, the higher the magnitude, as presented in Table 5.9.  
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Table 5.6 ETOAR#D Work rate magnitude summary 

Frequency Zone Low Medium High 

Frequency Lower than 10-2 10-2 to 100 Higher than 1 

Week 628 weeks Between 628 weeks to 6.28 weeks Less than 6.28 week 

Trend 
Start from 0dB 
and maintain at 
0dB 

The magnitude increases at first and 
then decreases. 

The curve fluctuated. 

τOB effect 
Insignificant 

Before 10-0.9: The system with larger 

the τOB has a higher magnitude. 
After the 10-1: The system with larger 
the τOB has a lower magnitude. 

The system with larger τOB 

has a lower magnitude. 

RW effect 
All curves start 
from 0 dB, and 
maintain at 0dB 

The magnitude curves with higher 
rework ratio increase faster, and the 
peaks are higher.  While after 10-1 
rad/s all magnitude curves start to 
decrease, and the systems with higher 

rework ratio, has a lower-level 
magnitude. 

The higher the rework ratio, 
the higher the fluctuations of 
magnitude curve are. 

Table 5.7 ETOAR#D Order book magnitude summary 

Frequency 

Zone 
Low Medium High 

Frequency Lower than 10-2 10-2 to 100 Higher than 1 

Cycle 628 weeks Between 628 weeks to 6.28 weeks Less than 6.28 week 

Trend 

Start from 18dB, and 
maintain this level until 

10-3 ，  afterwards, all 

curves start to increase. 

From 10-2, the magnitude curve 
keeps increasing. When frequency 
increases to 10-1, all  

In the high frequency area, a 
sharp valley appears at 100.1, 
which means at that 

frequency this system can 
filter the frequency. When 
frequency keep increasing, 
the magnitude goes back to 
the 0 dB. 

τOB effect The curves with higher 

τOB increases faster 
The higher the τOB, the higher the 

magnitude curve is. 
insignificant 

RW effect 

The higher the rework 
ratio is, the higher the 
magnitude curve is. 
Which means, the 
rework can increase the 

magnitude of the order 
book 

When frequency is lower than 10-1.6, 
the higher the rework ratio, the 
higher the magnitude curve is. 
When frequency is above 10-1.3 and 
lower than 10-0.6 The higher the 

rework ratio is, the smaller the 
magnitude is.  

Fluctuation 
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Table 5.8 ETOAR#D lead time magnitude summary 

Frequency Zone Low Medium High 

Frequency Lower than 10-2 10-2 to 100 Higher than 1 

Cycle 628 weeks 
Between 628 weeks to 6.28 

weeks 
Less than 6.28 week 

Trend 
The magnitude curve 
increases from the 
starting point.  

The magnitude curve keeps 
increasing until they reach the 
peaks and start to decrease. 

Fluctuation appears in the 
high frequency domain. 

τOB effect 

The higher the τOB is, 
the higher the 
magnitude curve is. 
However, the unstable 
parameter setting has a 
smaller magnitude.  

The systems with lower τOB has 
a lower magnitude. When τOB 
=2, 20 or 40, a peak appears on 
their magnitude curves.  

Fluctuations, while the 
systems with small τOB 
value have a smaller 
magnitude. 

RW effect 
The higher the rework 
ratios, the higher the 
magnitude. 

Magnitude curves reach its’ 

peak, afterwards, curves start to 
decreases. When frequency is 
above 100.9, the larger the 
rework ratios are the smaller the 
magnitude is  

The higher the rework is the 
smaller the magnitudes are. 

Table 5.9 The MRC and MRL of ETOAR#D, derived from the Bode plot. Assumption: 

demand level = 100 working units per week; amplification = 10 working units per week 

 Work rate 0.01-0.02 rad/week Lead time 0.01 rad/week Lead time 0.02 rad/week 

RW 
Magnitude 

(dB) 

𝑊𝑜𝑟𝑘 𝑅𝑎𝑡𝑒

𝐷𝑒𝑚𝑎𝑛𝑑
 MRC RW 

Magnitud

e 

(dB) 

𝑊𝑜𝑟𝑘 𝑅𝑎𝑡𝑒

𝐷𝑒𝑚𝑎𝑛𝑑
 MRC RW 

Mag

nitud

e 

(dB) 

0 0 1.0 200 0 0 1.0 200 0 0 

0.2 0.1 1.0 200 0.2 0.1 1.0 200 0.2 0.1 

0.5 0.2 1.0 200 0.5 0.2 1.0 200 0.5 0.2 

0.8 0.7 1.1 210 0.8 0.7 1.1 210 0.8 0.7 

From the τOB perspective, it has insignificant influence on the work rate magnitude and 

moderate influence on the order book and lead time. For both variables, the smaller the 

τOB, the smaller the magnitude, the smaller the fluctuation. 

ETOAR#PTD 

For the ETOAR#PTD model, the rework ratio influences all targeted variables, and the 

larger the rework ratio, the greater the magnitude the greater the fluctuation. It is evident 

the rework has a negative influence on the ETOAR#PTD model. Table 5.13 
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summarises the observation from the Bode plot and yields the MRL and MRC of the 

system under various rework ratios.  

Table 5.10 ETOAR#PTD work rate magnitude summary. 

Frequency Zone Low Medium High 

Frequency Lower than 10-2 10-2 to 100 Higher than 1 

Cycle 628 weeks 
Between 628 weeks to 6.28 

weeks 
Less than 6.28 week 

Trend Start from 8dB and 
maintain at 8dB 

The magnitude increases at 
first and then decreases. 

The curve fluctuated. 

τOB effect 
Insignificant 

Before 10-0.9: The system with 
larger the τOB has a smaller 
magnitude. 
After the 10-0.9: The system 
with larger the τOB has a 
higher magnitude. 

The system with larger τOB 
has a higher magnitude. 

RW effect 
The higher the rework 
ratios, the higher the 
starting point. 

The magnitude curves with 
higher rework ratio increase 

faster, and the peaks are 
higher.  While after 10-1 rad/s 
all magnitude curves start to 
decrease, and the systems 
with higher rework ratio, has 
a lower-level magnitude. 

The higher the rework ratio, 
the higher the fluctuations of 
magnitude curve are. 

Table 5.11 ETOAR#PTD order book magnitude summary 

Frequency Zone Low Medium High 

Frequency Lower than 10-2 10-2 to 100 Higher than 1 

Cycle 628 weeks 
Between 628 weeks to 6.28 

weeks 
Less than 6.28 week 

Trend 

Start from 18dB, and 

maintain this level until 
10-3 ，  afterwards, all 

curves start to increase. 

From 10-2, the magnitude 
curve keeps increasing. 
When frequency increases to 
10-1, all curves start to 
decrease. 

All curves start to fluctuate 

τOB effect The curves with higher 

τOB increases faster 

The higher the τOB, the higher 

the magnitude curve is. 
insignificant 

RW effect 
Curves with higher 
rework ratio increases 
faster 

When frequency is lower 
than 10-1, the higher the 
rework ratio, the higher the 
magnitude curve is. When 
frequency is above 10-1 and 
lower than 10-0.4 The higher 
the rework ratio is, the 

smaller the magnitude is.  

Fluctuation 
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Table 5.12 ETOAR#PTD lead time magnitude summary 

Frequency Zone Low Medium High 

Frequency 10-4 to 10-2 10-2 to 100 >100 

Trend The higher the τOB is, the 
higher the magnitude is. 

The magnitude curve 
decreasing until 100.6 

Fluctuation appears in the 
high frequency domain. 

τOB effect 

The higher the τOB, the 
higher the magnitude curve 
is. And the unstable 
parameter setting has a 
smaller magnitude.  

The systems with lower τOB 
have a lower magnitude 
until10-0.9, afterwards, the 
smaller the τOB, the smaller 
the magnitude 

Fluctuations, while the 
systems with small τOB 
value have a smaller 
magnitude. 

RW effect 
The higher the rework 
ratios, the higher the 
magnitude. 

Magnitude curves reach its’ 
peak, afterwards, curves 
start to decreases. When 
frequency is above 10-1.1, 
the larger the rework ratios 
are the smaller the 
magnitude is  

The higher the rework is the 
smaller the magnitudes are, 

but the magnitude curve 
have more fluctuation 

 

Table 5.13 MRC and MRL of ETOAR#PTD, derived from the Bode plot. Assumption: 

demand level = 100 working units per week; amplification = 10 working units per week 

 Work rate 0.01-0.02 rad/week Lead time 0.01 rad/week Lead time 0.02 rad/week 

RW 
Magnitude 

(dB) 

𝑊𝑜𝑟𝑘 𝑅𝑎𝑡𝑒

𝐷𝑒𝑚𝑎𝑛𝑑
 MRC RW 

Magnitud

e 

(dB) 

𝑊𝑜𝑟𝑘 𝑅𝑎𝑡𝑒

𝐷𝑒𝑚𝑎𝑛𝑑
 MRC RW 

Magnit

ude 

(dB) 

0 0 1.0 200 0 0 1.0 200 0 0 

0.2 2 1.3 230 0.2 2 1.3 230 0.2 2 

0.5 6.2 2.0 300 0.5 6.2 2.0 300 0.5 6.2 

0.8 14.6 5.4 640 0.8 14.6 5.4 640 0.8 14.6 

From the τOB perspective, it has insignificant influence on work rate magnitude in the 

ETO demand frequency zone. However, for the order book and lead time, the smaller 

the τOB, the smaller the magnitude.  

5.2.3 Summary of Section 5.2 

Section 5.2 analyses the system’s performance under various frequencies and 

summarises how different parameter settings affect performance across different 
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systems under varying demand frequencies. Special focus is given to the rework ratio 

and the τOB ratio, which are the only two parameters in the ETO archetypes. 

In the ETO demand frequency zone, rework provides no benefits and exacerbates 

fluctuations in all target variables across the three archetypes. The influence of τOB is 

summarised in Table 5.2-5.13. Additionally, based on the Bode plots, the MRC and 

MRL for all archetypes are derived and summarised in Tables 5.9 and 5.13. In the next 

section, the stability of the system is analysed. Moreover, to reduce the fluctuation in 

the system, the magnitude curve should be avoided. Based on the result above, it is 

found that 0.04–0.07 rad/week (89.7–157 weeks) is the domain where the major portion 

of the magnitude peak appears. This suggests that this demand frequency zone should 

be avoided in the production system.  

From the phase plot perspective, for ETOAR#P and ETOAR#D, apart from the lead 

time responses, which begin to decrease from 90 degrees, the phase curves of the other 

variables all begin from 0 degrees and decrease with increasing frequency. For the 

ETOAR#PTD archetype, the lead time phase plot begins from 180 degrees and starts 

decreasing with increasing frequency. The phase chart illustrates the ability of the 

production system to catch up with the external demand pattern. According to the result 

above, it can be concluded that, with the increase in the frequency, the system’s output 

requires more time to catch up to market change.  
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5.3  Stability Analysis  

This subsection focuses on conducting a stability analysis of the ETO archetype. 

Specifically, terms such as "system," "archetype," and "model" mentioned in this 

subsection all refer to the archetype developed in this thesis.  

A stability analysis aims to test the stability of the developed model. A stability analysis 

for the ETO archetype can yield the critical stable condition of the system, which 

indicates what kind of parameter settings may set models in a dangerous position. The 

consequence of the unstable parameter settings is that a tiny change in the input will 

lead to a non-convergent output of the model and the archetype system is not able to 

maintain the output at the designated level. For example, for a production system, when 

the system is unstable, a small change on the demand side will lead to an exacerbated 

fluctuation in the inventory. The consequence of such behaviour will be reflected in a 

huge increase on the inventory cost and a decrease in the customer service level.  

The definition for stability adopted in this research is bounded input bounded output 

(BIBO). This implies that for each bounded input, there will be a bounded output. Based 

on this definition, the Routh–Hurwitz method is selected to be the main method for 

stability analysis. 

The stability of the system is determined by the characteristic equation (Disney & 

Towill 2002). On the other hand, when the order of this equation becomes too high 

(exceeds 4), it is difficult to derive the roots manually, which becomes a barrier for the 
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analytical result derivation, particularly for the systems containing symbolic parameters 

(Disney et al. 2006). The systems which contain symbolic parameters enable 

researchers to study the effect of one specific parameter on the entire system. Although 

deriving the expression for the roots of characteristic equations of orders exceeding four 

is often complex and time-consuming, even with the aid of computer software, this 

section divides the analysis into two distinct parts: 1) Low-order system stability 

analysis, and 2) high-order system stability analysis. 

For the low-order system, original Routh–Hurwitz method is adopted. The Routh–

Hurwitz method provides a stable condition for the system, which is that the first array 

of Routh Matrix must be all positive or all negative (Lin et al. 2020). This criterion can 

provide an analytical result for the stability analysis. The derived expression of the 

characteristic roots can be visualised on a map, with RW and 𝜏OB as the X and Y axes, 

respectively, that enable the stability condition to be visualised in the plot. To guarantee 

the accuracy of the result, the Eigen value is used to verify the numerical result of the 

critical stable condition. 

For the high-order system, a hybrid method which combines PSE and Routh–Hurwitz 

is designed, to derive the critical stable condition of the system. The introduction of 

PSE enables this research to analyse the critical stable condition of high-order system 

with symbolic parameters.  
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Considering the fact that PSE is a simulation-based method, a verification is necessary. 

After the stable condition is derived, transient responses of both stable and unstable 

parameter settings will be visualised to cross-check the result.  

5.3.1 Low-order System Stability Analysis  

In this section, the delay of the design and production are assumed as 1, which makes 

the system’s order below 4. All three models in the archetype family are analysed. 

ETOAR#P Production Rework Transfer Function 

Equation 5.25 demonstrates the transfer function of the ETOAR#P; the rework ratio 

and proportional controller values are represented by RW and 𝜏𝑂𝐵, respectively.  

𝑂𝐵(𝑧)

𝐷𝐸𝑀(𝑧)
=

2𝑧 − 2𝑅𝑊𝑧 − 𝜏𝑂𝐵𝑧 + 𝜏𝑂𝐵𝑧
3

1 − 𝑅𝑊 + 𝑅𝑊𝑡𝑂𝐵 −𝑅𝑊𝑡𝑂𝐵𝑧 − 𝑡𝑂𝐵𝑧2 + 𝑡𝑂𝐵𝑧3
. (5.25) 

The matrix below demonstrates the Routh–Hurwitz matrix of the ETOAR#P, as 

presented below. 

𝑤3

𝑤2

𝑤1

𝑤0
|

|

  1 − 𝑅𝑊 3(1 − 𝑅𝑊) + 4𝜏𝑂𝐵 + 4𝑅𝑊𝜏𝑂𝐵
−3(1 − 𝑅𝑊)+ 2𝜏𝑂𝐵 − 2𝑅𝑊𝜏𝑂𝐵) 𝑅𝑊 − 1 + 2𝜏𝑂𝐵(1 − 𝑅𝑊)

8((𝑅𝑊 − 1) − (1 − 2𝑅𝑊)𝜏𝑂𝐵 + (1 + 𝑅𝑊)𝜏𝑂𝐵
2)

2𝜏𝑂𝐵 − 3
                   0                

( 1 − 𝑅𝑊)(2𝜏𝑂𝐵 − 1)                                          

|

|
. (5.26) 

The first element of the first array is 1-RW and considering RW is less than 1, 1-RW is 

a positive value. Thus, according to the Routh criteria, to maintain the stability of the 

system, the other elements of the first array must be positive as well. Thus, equation 

(5.27) is obtained after reorganisation. 
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{

−3(1 − 𝑅𝑊) + 2𝜏𝑂𝐵 − 2𝑅𝑊𝜏𝑂𝐵) > 0
𝑎𝑛𝑑

8((𝑅𝑊 − 1) − (1 − 2𝑅𝑊)𝜏𝑂𝐵 + (1 + 𝑅𝑊)𝜏𝑂𝐵
2)

2𝜏𝑂𝐵 − 3
> 0.

(5.27) 

After simplification, 

{
 

 
𝜏𝑂𝐵  >  1.5

𝑎𝑛𝑑

𝜏𝑂𝐵 >
(1 − 2𝑅𝑊)+ √5+ 4𝑅𝑊)

2(1 + 𝑅𝑊)

. (5.28) 

Surprisingly, when RW = 0, the value for 𝜏𝑂𝐵  should be greater than 1.618, which is 

the golden ratio. This result is also found in Disney et al. (2006). 

ETOAR#D internal design rework transfer function 

The transfer function of the ETOAR#D is derived by using the state-space 

representation. It is evident that the formula is that same as equation (5.29). 

𝑂𝐵(𝑧)

𝐷𝐸𝑀(𝑧)
=

2 z − 2 RW z −   𝜏𝑂𝐵z+𝑧
3 𝜏𝑂𝐵

1 − 𝑅𝑊 +𝑅𝑊𝜏𝑂𝐵 −𝑅𝑊𝜏𝑂𝐵𝑧 − 𝜏𝑂𝐵𝑧2 + 𝜏𝑂𝐵𝑧3
(5.29) 

Equation (5.30) demonstrates the Routh–Hurwitz matrix of the ETOAR#D, as shown 

below: 

𝑊3

𝑊2

 

𝑊1

 
𝑊0

|

|

  𝑅𝑊 − 1 3(−1 + 𝑅𝑊) − 4(1 + 𝑅𝑊)𝜏𝑂𝐵
(−1 + 𝑅𝑊)(−3 + 2𝜏𝑂𝐵) (−1 + 𝑅𝑊)(−1 + 2𝜏𝑂𝐵)

−
8(−1 + 𝑅𝑊 − (1 + 2𝑅𝑊)𝜏𝑂𝐵 + (1 + 𝑅𝑊)𝜏𝑂𝐵

2 )

−3 + 2𝜏𝑂𝐵
                   0                

(−1 + 𝑅𝑊)(−1 + 2𝜏𝑂𝐵)                                  

|

|
. (5.30) 

The RW-1 element in the first array determines that all elements should be negative, 

because an assumption is made that the rework ratio cannot be larger than 1. Thus, after 

reorganizing, the first array is obtained in the following manner: 
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{
 

 
(−1 + 𝑅𝑊)(−3 + 2𝜏𝑂𝐵) < 0

𝑎𝑛𝑑

−
8(−1 + 𝑅𝑊 − (1 + 2𝑅𝑊)𝜏𝑂𝐵 + (1 + 𝑅𝑊)𝜏𝑂𝐵

2 )

−3 + 2𝜏𝑂𝐵
< 0

. (5.31) 

After reorganizing,  

{
 

 
𝜏𝑂𝐵  >  1.5

𝑎𝑛𝑑

𝜏𝑂𝐵 >
(1 − 2𝑅𝑊) + √5 + 4𝑅𝑊)

2(1 + 𝑅𝑊)

. (5.32) 

ETOAR#PTD External design rework transfer function 

The transfer function of ETOAR#PTD can be written in the following manner: 

𝑂𝐵(𝑧)

𝐷𝐸𝑀(𝑧)
=
−RW𝜏OB z+2 z2 − 2 RW z2 − 𝜏OBz

2 +RW𝜏OB z2+ 𝜏OBz
4

RW𝜏OB+z − RW z − RW𝜏OB z − 𝜏OBz2+𝜏OBz4
. (5.33) 

Based on the characteristic equation, the Routh–Hurwitz matrix (5.34) can be derived, 

as shown below. 

𝑊4

𝑊3

 𝑊2 

 
 
𝑊1

  
𝑊0

 |

|

|

|

  1 − RW 6(1 + RW)𝜏OB −2(−1 + RW)(1 + 3𝜏OB)

−2(−1 + RW)(−1 + 𝜏OB) −2(−1 + RW)(1 + 3𝜏OB) 0

−1 + RW − 3(3 + RW)𝜏OB +

6(1 + RW)𝜏OB
2

−1 + 𝜏OB
−2(−1 + RW)(−1 + 𝜏OB) 0

−

2(1 + 3𝜏OB) (

(−1 + RW)2

−3(−3 + 2RW + RW2)𝜏OB
+6(−1 + RW2)𝜏OB

2

)

−1+ 𝜏OB
0 0

−2(−1 + RW)(−1 + 𝜏OB) 0 0
   

 

                        

|

|

|

|

. (5.34) 

The first element of the first array, 1-RW, is greater than 0; hence, according to the 

Routh stable condition, the value of RW and τOB must lead to the other elements in the 

array to become positive. Therefore, the formulations group in equation (5.35) can be 

obtained. It is evident that the order of the ETOAR#PTD’s characteristic equations are 

one order higher than ETOAR#P and ETOAR#D, and it results in a much more 
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complex formula expression for 𝜏𝑂𝐵 . The derivation process is also much more difficult 

because of the existence of the fourth-order formula.  

{
 
 
 

 
 
 

𝜏𝑂𝐵  >  1
𝑎𝑛𝑑

𝜏𝑂𝐵 >
9 + 3RW+ √3√35 + 18RW− 5RW2

12(1 + RW)

𝑎𝑛𝑑

𝜏𝑂𝐵 >
−9 + 6RW+ 3RW2 − √3√35 − 52𝑅𝑊 − 6𝑅𝑊2 + 28𝑅𝑊3 − 5𝑅𝑊4

12(−1 + RW2)
.

(5.35) 

Summary for all three archetypes 

Figure 5.8 demonstrates the stability boundary of all three scenarios. Each point 

represents a pair of parameters settings; the X axis represents the rework ratio and the 

Y-axis represents the1/ 𝜏𝑂𝐵  value. There are two lines in the figure; the straight line 

represents the ETOAR#PTD archetype; the other dotted line refers to the critical 

boundary of ETOAR#D and ETOAR#P. 

The area above the line is the non-stable parameter configurations and the space below 

is the stable settings. Because ETOAR#P and ETOAR#D share the same characteristic 

equation, these two scenarios have the same stability boundary represented by the 

dotted line in Figure 5.8, while the stability boundary of ETOAR#PTD is illustrated by 

the solid line. For all three scenarios, the 1/τOB value increases with an increase in RW 

to ensure system stability. Another important finding is through the area of the stable 

region (within which the system is stable). The stable area of ETOAR#PTD is more 

reduced than the area of ETOAR#P and ETOAR#D, thereby suggesting higher 

difficulty in maintaining stable operations when design–production rework is common. 
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To verify the accuracy of the model, five points are selected to visualise the transient 

responses of the system with corresponding parameter settings, out of which three are 

for the ETOAR#PTD. 

 

Figure 5.8 Stability boundary of production rework, design rework, and delayed design 

rework scenarios. 

5.3.2 High-order System Stability Analysis 

For the high-order system (above 8th order) stability analysis, the hybrid Routh–Hurwitz 

and PSE method is adopted. This helps to investigate the high-order system’s stability 

boundary to derive the critical stable condition. Note here that in order to simplify the 

formula of the transfer function, 1/τOB is represented by a. The experiments follow in 

the steps given below:  



237 

Assign different values to τD and τP and reorganise the transfer function. Then, the 

Routh-Hurwitz matrix is derived, and the first array of the matrix is tested via a 

simulation to determine if the elements are all positive or all negative under different 

RW and τOB combinations. Finally, the result is visualised in a figure, with rework on 

the X-axis and 1/τOB on the Y-axis. To guarantee the accuracy of the result, the low 

order system’s stability is also examined using this method. Further, to improve the 

reliability of the hybrid methods, the result will also be crosschecked using the results 

derived from the analytical method in 5.2.1.  

ETOAR#P production rework 

𝑂𝐵(𝑧)

𝐷𝐸𝑀(𝑧)
=

(−1 + 𝑎 + 𝑎𝜏𝐷 + 𝑎𝜏𝑃)𝑧 + (1 − 𝑎𝜏𝐷 − 𝑎𝜏𝑃)𝑧
2

𝑧2+𝜏𝐷+𝜏𝑃 − 𝑧1+𝜏𝐷+𝜏𝑃 − RW𝑧1+𝜏𝐷 + RW𝑧𝜏𝐷 − 𝑎(𝑅𝑊 − 1)𝑧
. (5.36) 

Figure 5.9 demonstrates the stability boundary of the ETOAR#P, with the delay of 

various subsystem ranging from 1 to 4. The upper areas are the unstable region and the 

white area is the stable region. Y-axis refers to the Tob value and X-axis represents the 

rework ratio.  

In this figure, each point represents a combination of rework ratio and 1/τOB value. It is 

evident that, when the delay is equal to one, with an increase in the rework ratio, the 

1/τOB needs to be increased to stabilise the system. For systems with other delay times, 

the 1/τOB value needs to be decreased to maintain the stability of the system. 
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Figure 5.9 Stability of the ETOAR#P using the PSE method 

ETOAR#D Internal Design Rework 

𝑂𝐵(𝑧)

𝐷𝐸𝑀(𝑧)
=
−9 + 9RW+ 𝑡OB − RW𝑡OB + 𝑧(8 − 8RW− 𝑡OB + RW𝑡OB)

−1 + RW− RW𝑧3𝑡OB + RW𝑧4𝑡OB + 𝑧8𝑡OB − 𝑧9𝑡OB
. (5.37) 

Equation (5.37) is the transfer function of the ETOAR#D. The denominator is the same 

as that in equation (5.36), which can be interpreted as that the main characteristics of 

ETOAR#D and P are the same. The experiment result presented in Figure 5.10 also 

proves this finding. 
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Figure 5.10 Stability of the ETOAR#D using the PSE method 

ETOAR#PTD external design rework 

𝑂𝐵(𝑧)

𝐷𝐸𝑀(𝑧)
=
𝑧(−9 + 9RW+ 𝑡OB − RW𝑡OB) + 𝑧

2(8 − 8RW− 𝑡OB + RW𝑡OB)

−RW𝑡OB + 𝑧9𝑡OB − 𝑧10𝑡OB + (−1 + RW+ RW𝑡OB)𝑧
. (5.38) 

Figure 5.11 demonstrates the stability boundary of the ETOAR#PTD. The changing 

trend of τOB in the ETOAR#PTD is different from that of the former two archetypes. 

This implies that with the increase in the rework ratio, τOB should be increased to 

stabilise the system. 
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Figure 5.11 Stability of the ETOAR#PTD using the PSE method. 

5.3.3 A Summary of the Stability Analysis  

This subsection investigates the stability region for ETO archetypes with various 

rework types and various parameter settings.  

For the ETOAR#P and ETOAR#D archetypes, the stable region shrinks with the 

increase in production or delay in the design subsystem, which indicates that the 

duration of the delay in the subsystem has a negative effect on the system’s stability 

control. Moreover, an interesting observation is that when the delay in the subsystem 

equals 1, the critical τOB for stability increases with the increase in the rework ratio. 

When the delays are above 1, the critical τOB value decreases with the increase in the 

rework ratio. For the ETOAR#PTD archetype, the delay in the subsystem has a negative 
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effect on the system’s stability and the critical τOB value decreases with the increase in 

the delay.  

Combining these two observations, the following conclusion can be made: the effect of 

the rework ratio on the stability analysis depends on the subsystem’s delay and also on 

the type of rework. Further, the duration of the delay in the subsystems has a negative 

effect on the system’s stability. 

5.4  Summary  

Section 5 presents the findings from the frequency domain analysis and stability 

analysis. The frequency analysis examines the work rate, order book, and lead time of 

all three ETO archetypes. The Bode plots are illustrated, with special focus on the 0.01 

rad/week to 0.02 rad/week range, which corresponds to the frequency range of ETO 

product demand. Based on this, MRC and MRL are provided, which can serve as 

references for capacity planning and project lead time estimation. 

The stability analysis offers an in-depth investigation into how τOB, rework, and lead 

time affect the system’s stability. The findings suggest that the influences of rework 

and τOB differ among the ETO archetypes, with the critical conditions for all three 

archetypes are highlighted in Figures 5.9, 5.10, and 5.11. 

This section provides a comprehensive examination of the developed ETO system 

archetypes, thereby providing a fundamental understanding of their performance. In the 
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next section, the focus shifts to resilience performance, exploring how to improve 

system resilience by tuning system parameters.  
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Chapter 6 ETO Resilience  

This chapter focuses on analysing the resilience of the ETO system, from a quantitative 

perspective. The first step taken is to provide an overview of the general meaning of 

resilience and discuss its specific significance in the ETO context. Subsequently, 

suitable resilience measurements are explored for the ETO system, developed via the 

CT, which forms the core of this chapter. Further discussion and analysis are built upon 

this foundation. Finally, the theoretical outcome is linked with practical application, 

and managerial suggestions are provided to improve ETO operations.  

6.1  PSE Contour Map 

This section presents visual representations of the ITAE contour map for three distinct 

archetypes are provided. These maps illustrate how work rate and lead time resilience 

are affected by different parameter settings. For each archetype, there are two contour 

maps, which represent lead time resilience and work rate resilience separately. ITAE 

was adopted for both work rate and lead time resilience measurement. Figures 6.2–6.7 

demonstrate the work rate ITAE value under different rework ratios and τOB values. 

Every point represents one ITAE value, which represents the system’s performance 

under a pair of RW and τOB.  



244 

6.1.1 Contour Map 

In this section, contour maps of the ITAE values under various parameter settings are 

presented. According to equation 6.1, the neutral axis needs to be pre-decided for the 

ITAE. For the lead time resilience, the neutral axis will always be the sum of design 

and production delay because the ETO archetype is expected to maintain the lead time 

at that level. For the work rate contour map, the neutral axis will be different due to the 

rework existing in different phases of the ETO system. Thus, the neutral axis will be 

explained for every scenario. The following sections present the contour maps for all 

scenarios, and a summary of findings is provided at the end of this subsection. To assess 

the system's resilience, a positive demand step change is used as a standardized 

disturbance, which aligns with the previous resilience study on SD model (Spiegler et 

al. 2012). This approach focuses on the system's ability to recover under challenging 

conditions, such as increased demand, which strain capacity and rework mechanisms. 

Negative step changes will create a mirror image as the positive one, therefore the result 

will be identical. Additionally, a standardized positive step change ensures consistency 

and comparability across scenarios, aligning with the research aim. Future research 

could explore negative demand shocks to further enrich the understanding of ETO 

system resilience. 

𝐼𝑇𝐴𝐸 =  ∫𝑡 × |𝑜𝑢𝑡𝑝𝑢𝑡 − 𝑁𝑒𝑢𝑡𝑟𝑎𝑙 𝑎𝑥𝑖𝑠| ∙ 𝑑𝑡 .                  (6.1)

𝑡

0
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ETOAR#P production rework  

For ETOAR#P, this research uses the 
𝐷𝑒𝑚𝑎𝑛𝑑 𝑟𝑎𝑡𝑒

1−𝑅𝑊
 as the neutral axis, which is because 

the rework occurs in the production subsystem, and the production subsystem needs to 

reserve extra capacity to off-balance the impact of the rework. Thus, the work rate is 

expected to reach that level.  

Figure 6.1 demonstrates the ITAE contour map of the ETOAR#P. It is evident that 

when τOB is fixed, the increase in the rework ratio will lead to an increase in the ITAE, 

which is accelerating. The density of the contour line in the white area can prove this 

point. When the rework ratio is fixed, the ITAE value first decreases and then increases, 

which implies that there is a smallest ITAE value for each rework rate.  

 

Figure 6.1 The contour map of ETOAR#P work rate 
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Figure 6.2 illustrates the lead time ITAE of the ETOAR#P; the increase in the rework 

will lead to the increase in the ITAE, but the acceleration is not obvious. For each 

rework ratio, there is a τOB value that can make the system reach its lowest ITAE. 

 

Figure 6.2 The contour map of ETOAR#P lead time 

ETOAR#D design rework  

For the ETOAR#D, the neutral axis is set to the demand rate, which is because the 

rework occurring in the design system would not affect the work rate of the production 

subsystem, and work rate is expected to settle at the level which is the same as the 

demand rate. 

In Figure 6.3, a contour map indicates the work rate resilience of the ETOAR#D. As 

rework increases, the ITAE value also increases, thereby indicating a decline in the 
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system’s resilience. On the other hand, when rework is fixed, the ITAE experienced 

initially decreases and then increases as the τOB increases. This shows that there exists 

a τOB for every rework ratio that can help the system achieve its highest resilience. The 

same phenomena are observed in Figure 6.4, which represents the lead time.  

 

Figure 6.3 The contour map of the ETOAR#D work rate 
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Figure 6.4 The contour map of the ETOAR#D lead time 

ETOAR#PTD delayed design rework  

The neutral axis for the ITAE of ETOAR#PTD is set to 
𝐷𝑒𝑚𝑎𝑛𝑑 𝑟𝑎𝑡𝑒

1−𝑅𝑊
 because the 

production system’s work rate is expected to reach a higher level to cover the loss that 

may occur during rework. Figure 6.5 illustrates the changing trend of work rate 

resilience of the ETOAR#PTD archetype, and Figure 6.6 represents the changing trend 

of lead time resilience. The same pattern was observed in the other two archetypes. 
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Figure 6.5 The contour map of ETOAR#PTD work rate 

 

Figure 6.6 The contour map of ETOAR#PTD lead time. 

Below is a summary of the findings based on Figures 6.1–6.6. 
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6.1.2 Exploration of the Transient Responses 

The figures for all archetypes, for both work rate and lead time, are 2D versions of the 

ITAE surface. In contrast, if the figure is created in a 3D dimension, the ITAE values 

form a paraboloid surface. This finding provides a general understanding of how rework 

ratio and τOB affect the resilience performance of the system. In general, the ITAE will 

decrease with the increase in τOB at the initial stage, and then begin going up with further 

increases in τOB. From this observation, it may be evident that there are at least two 

driving forces for the ITAE, and it is the process of one force taking over the other that 

leads to such a phenomenon. To further investigate this aspect, this research visualised 

the transient responses with various parameter settings under a demand shock. 

According to the contour maps above, these three archetypes’ contour maps 

demonstrated similar patterns, thereby indicating that τOB and the effect of the rework 

ratio on the different archetypes are similar. Therefore, the transient response of work 

rate and lead time on ETOAR#D were visualised, which are representative of ETO 

archetype families. The findings from transient responses are discussed below:  

Lead time transient responses 

Figure 6.7 demonstrates the transient responses of the ETOAR#D, with different τOB 

values and a rework ratio that is fixed at 0.6. The black arrow demonstrates the τOB 

value changing trend. When τOB is small, which implies that the system is sensitive to 

the order book changes, the lead time transient responses react to the demand shock 
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quickly but with dramatic fluctuations. When τOB becomes larger, the fluctuations 

become milder until they disappear; however, it takes a longer time for the lead time to 

settle down at the desired level. 

 

Figure 6.7 The lead time transient response of the ETOAR#D; rework ratio = 0.6; τOB 

ranges from 5 to 200.  

Figure 6.8 visualises the transient responses of the lead time; the τOB value is fixed at 

20, and the rework ratio ranges from 0 to 0.99. According to this figure, it can be 

concluded that the rework increases will exaggerate the lead time fluctuation.  
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Figure 6.8 The lead time transient response of the ETOAR#D; τOB = 20; the rework 

ratio ranges from 0 to 0.99.  

Figure 6.9 presents the work rate transient response of the ETOAR#D. The rework ratio 

is set to 0.6 and the τOB values range from 5 to 100. This figure indicates that when τOB 

is small, the system reacts strongly to the demand shock but with huge fluctuations. 

With an increase in the τOB value, the fluctuations become smoother, while it takes 

longer for the transient response to settle down at the desired level.  

Work rate transient responses  
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Figure 6.9 The work transient response of the ETOAR#D, rework ratio = 0.6, τOB ranges 

from 5 to 200. 

Figure 6.10 demonstrates how the rework ratio affects the transient response behaviour. 

According to this figure, the increasing rework ratio exaggerates the fluctuation of the 

work rate transient responses.  

 

Figure 6.10 The work rate transient response of the ETOAR#D; τOB = 20; the rework 

ratio ranges from 0 to 0.99. 
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6.1.3 Summary of Findings  

1. The white area at the bottom of the figure  

Upon examining the lower portion of the contour maps, one makes an interesting 

observation. A white region was spotted beneath the black area, with tightly spaced 

contour lines indicating a rapid increase. This white area reflects the ITAE value for 

small τOB values and as the amount of rework increases, the white region expands. The 

parameter settings of this white area are in alignment with the stability analysis in 

Section 5.1. In the contour map, the white area represents the system with ITAE value 

higher than 10000, thereby indicating a system with a dramatic fluctuated output. Upon 

closer inspection of the numerical data for this region, it was discovered that the values 

were significantly elevated to 10^41. However, it is worth noting that the peak value of 

10^41 is not the actual ITAE value, as this is limited by the simulation period. If there 

were no such limitations, the ITAE value would be infinite.  

Figures 6.1–6.6 indicate that there is a slow and then fast horizontal changing trend of 

the ITAE due to the distribution of the contour showing sparseness and then density. 

This suggests that an increase in rework will lead to an increase in ITAE when τOB is 

fixed, which corresponds with the finding from the transient responses, as depicted in 

Figures 6.7–6.10. 

2. The role of τOB and rework 
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After analysing the transient responses, it can be concluded that the τOB (the 

proportional controller parameter) and rework ratio play a significant role. The findings 

indicate that when τOB is small, both lead time and work rate transient responses tend 

to fluctuate more. However, as τOB increases, these responses become milder. On the 

other hand, when τOB is large, settling down takes a longer time. In extreme cases, when 

τOB becomes too large, the system becomes insensitive to the order book’s deviation 

and results in excessive time being spent on settling down. Therefore, it can be deduced 

that the optimal τOB exists for each rework ratio. 

Similarly, the rework ratio also affects the lead time and work rate transient response. 

As the rework ratio increases, the system tends to fluctuate more, which can be 

considered to have a negative effect on the rework ratio.  

However, there are limitations to the experiment in this section. It provides only limited 

information regarding how each pair of rework ratio and τOB determines the transient 

response. Additionally, it does not provide exact information about which pairing can 

provide the company the best-performing system. Furthermore, after comparing 

different archetypes’ contour maps, it was found that it is difficult to summarise and 

gain insight from the graph. Therefore, after presenting the ITAE contour maps of all 

the archetypes, the research delves into the examination of the effect of τOB value on 

performance resilience and how to translate the theoretical results into practical 

guidance. 



256 

6.2  Proportional Controller’s Role in Resilience 

Improvement 

After analysing the findings from the previous section, further studies were conducted 

to investigate the impact of τOB on the system’s performance. The goal of this section 

is to determine the resilient setting for the system and identify the ‘good’ τOB for each 

rework ratio. In this section, the analysis is conducted from two scopes: a wider scope 

that focuses on the changing trend of the 'good' τOB, and a narrow-down scope that 

examines how τOB affects the system’s behaviour 

6.2.1 A Wider Scope  

For each archetype, two comparison figures are provided: one illustrating the transient 

responses of lead time and the other showing the transient responses of work rate. Each 

figure contains two curves—one representing the best τOB value for lead time resilience, 

and the other for work rate resilience. This side-by-side comparison highlights the 

differences between the optimal τOB values for these two objectives, providing insights 

into the inherent trade-offs between lead time and work rate resilience. 

The determination of the 'best τOB ' values depends on the specific resilience objective—

whether prioritizing lead time or work rate. These values are not universally optimal 

but are tailored to the dynamic characteristics of the modelled ETO archetypes under 

the given conditions. The selection process focuses on the archetype’s ability to 
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minimize disruptions and stabilize system performance, ensuring that the chosen 

parameters align with the operational focus. 

For lead time resilience, the best τOB minimizes fluctuations in delivery timelines, 

thereby enhancing reliability and customer satisfaction. On the other hand, the best τOB 

for work rate resilience emphasizes maintaining a steady resource flow and efficient 

workload distribution. This comparison underscores the trade-offs inherent in ETO 

systems, where improving one objective may have implications for the other. While the 

recommended τOB values are specific to the modelled scenarios, they establish a 

framework that can be adapted and refined for different real-world ETO environments, 

enhancing their relevance and practical utility. 

ETOAR#D production rework  

One observes the distinct work rate transient responses in Figure 6.12 corresponding to 

the optimal work rate τOB value setting and the optimal lead time τOB value setting. 

Conversely, Figure 6.12 showcases the lead time transient responses for both best work 

rate and lead time resilience setting. It is crucial to clarify that the work rate mentioned 

pertains to the production system's capacity. To prevent any ambiguity between work 

rate transient response and the best τOB for work rate, one may refer to the best τOB for 

work rate as the best τOB for capacity. 

In Figure 6.11, the grey line demonstrates the value for the best τOB for the work rate, 

which is a bathtub curve; this implies that when the rework ratio is extremely small and 



258 

extremely big, the best τOB are comparatively higher. The black line represents the best 

τOB for the lead time and the whole line is below the grey line, which implies that lead 

time resilience requires a smaller τOB to achieve its best resilience. To further 

investigate this finding, both capacity and lead transient response were generated with 

both best work rate and lead time configuration.  

From figure 6.12, the lead time transient responses were compared for the optimal τOB 

for capacity resilience and lead time resilience. Horizontally speaking, with the increase 

in rework, the transient responses became increasingly fluctuating, which implies that 

the rework ratio exaggerated the fluctuation of the lead time transient responses. This 

phenomenon is observed in both Figures 6.11 and 6.12. Vertically speaking, to achieve 

a better capacity resilience, systems always require a greater τOB to stabilise the capacity 

fluctuation, particularly for the initial and final periods. This indicates that to achieve 

capacity resilience, the system should be adjusted to be less sensitive to the change in 

the order book.  

To deepen understanding of the above observations, several experiments were 

conducted to investigate what causes the bathtub curve, and why work rate requires a 

higher τOB. Generally, it is because the capacity requires a slower speed to adjust to the 

required level. For the detailed study, the entire process was separated into three periods 

to analyse how the bathtub curve is formed. 
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As already mentioned in Chapter 4, the work rate is composed of two parts: 1) Demand 

input; 2) the order book controller compensation; this is shown below:  

𝑊𝑅𝐴𝑇𝐸𝐷𝐸𝑆  =  𝐷𝐸𝑀𝐷𝐸𝑆(𝑡) + 
𝑂𝐵𝐷𝐸𝑆(𝑡) − 𝐷𝐸𝑀𝐷𝐸𝑆(𝑡) ∙ 𝜏𝐷

𝜏𝑂𝐵
. (6.2) 

When rework does not exist or is very minor (between 0 and 0.2), the ideal situation 

would be that after the demand change, the work rate changes to the new demand rate 

immediately, thereby ensuring that the ITAE value would be zero. For this period, the 

main contributor to the ITAE error is the error created in the initial stage of the transient 

responses. Specifically, it is because the existence of the order book controller slows 

down the reaction of the work rate, which leads to increases in ITAE errors. 

In the moderate rework area, as the rework ratio increases, the system must quickly 

adjust its work rate to manage the additional rework generated by rising demand. 

However, the inherent delays caused by rework itself also slow down the system’s 

response to changes in demand. Therefore, it becomes necessary to enhance the 

system’s capacity more rapidly. This implies setting a smaller τOB for the proportional 

controller to allow swift changes in the work rate. Consequently, in systems with a 

moderate rework ratio (0.2–0.7), the primary contributor to the ITAE is the slow settling 

time. 

In the high rework ratio area (0.2–0.99), research experience from the horizontal study 

indicates that increased rework amplifies system fluctuations. Therefore, in this region, 
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τOB should be adjusted to be smoother to help stabilise the system’s fluctuations. The 

transient response analysis supports this adjustment.
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Figure 6.11 The ‘good’ τOB value for different rework ratios for each variable of interest, with work rate transient response, ETOAR#P. Note: The 

small figures illustrate the transient response of the system under varying RW and TOB values. For the transient response figures, the Y-axis 

represents the work rate, while the X-axis represents the time period. 
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Figure 6.12 The ‘good’ τOB value for different rework ratios for each variable of interest, with lead time transient response, ETOAR#P. Note: The 

small figures illustrate the transient response of the system under varying RW and TOB values. For the transient response figures, the Y-axis 

represents the lead time, while the X-axis represents the time period.
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The transient responses of lead times illustrate how the system adapts to increases in 

rework. From a horizontal perspective, as the rework ratio rises, fluctuations are 

exaggerated. Consequently, it is observed that the black line—which represents the 

optimal τOB—moves upwards slightly. This suggests that τOB plays a more significant 

role in smoothing out fluctuations. 

Vertically speaking, it is evident that the optimal τOB for the work rate is greater than 

the τOB for achieving the best lead time resilience. The transient responses indicate that 

the system using τOB optimised for capacity resilience reacts more slowly to demand 

shocks. In practical terms, this slower response implies that lead times become unstable 

and fail to meet promised targets for longer periods. Such issues could lead to a decline 

in customer service levels. 

ETOAR#D design rework  

Figures 6.13 and 6.14 demonstrate the work rate with τOB settings optimised for both 

work rate resilience and lead time resilience. Although the waveform of the curve 

resembles that in ETOAR#P, the fundamental difference between ETOAR#D and 

ETOAR#P lies in the neutral axis. In ETOAR#P, rework occurs during the design stage, 

requiring additional work units in the design subsystem. Consequently, the final value 

for the work rate of the production subsystem is set at 1, instead of 1/(1-RW). However, 

for ETOAR#D, the rework occurs in the design stage and the work rate of the 

production subsystem is not affected; thus, the neutral axis of ETOAR#D is set at 1.



264 

 

Figure 6.13 The ‘good’ τOB value for different rework ratios for each variable of interest, with work rate transient response, ETOAR#D. Note: The 

small figures illustrate the transient response of the system under varying RW and TOB values. For the transient response figures, the Y-axis 

represents the work rate, while the X-axis represents the time period.
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Figure 6.14 The ‘good’ τOB value for different rework ratios for each variable of interest, with work rate transient response, ETOAR#D. Note: The 

small figures illustrate the transient response of the system under varying RW and TOB values. For the transient response figures, the Y-axis 

represents the lead time, while the X-axis represents the time period. 
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It can be observed that the figures for ETOAR#D and ETOAR#P are similar. After 

multiple checks, the possibility of bias and error was eliminated and what was 

discovered was that the root cause of the similarity between both systems is sharing the 

same characteristic equation, which results in almost identical system performances. 

Moreover, from the perspective of the whole system, regardless of whether rework 

occurs in the design or production subsystem, as long as it is detected promptly, the 

negative impacts are the same. This observation naturally piques one’s curiosity about 

the performance of ETOAR#PTD, where rework occurs in the design system but is 

detected in the production system. 

ETOAR#PTD delayed design rework  

According to Figure 6.15, the optimal τOB value and the rework ratio exhibit a convex 

relationship. Specifically, when the rework ratio ranges between 0-0.1 and 0.7-1, the 

best τOB spans from 40 to 200. Conversely, when the rework ratio is between 0.1 and 

0.7, the τOB value should be less than 40. Additionally, the best τOB for work rate is 

consistently above the best τOB for lead time. This suggests that, compared to lead time, 

maintaining the work rate requires a slower system response to demand changes. In 

particular, when the rework ratio is below 0.1 or above 0.7, a slow response is necessary 

to maintain work rate resilience. 

From the lead time perspective, the best τOB is depicted by the black line. Compared to 

ETOAR#P and ETOAR#D, the black line for ETOAR#PTD shows a minor decreasing 

trend. Although the decrease is slight, it contrasts with the increasing trend observed in 
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the other two ETOAR archetypes. This indicates that the presence of rework leads to 

exaggerated fluctuations and, thus, necessitates a smaller τOB to accelerate the system’s 

reaction speed. Such findings suggest that for delayed design rework, a rapid reaction 

is crucial, particularly when the design may have a high rework ratio.
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Figure 6.15 The ‘good’ τOB value for different rework ratios for each variable of interest, with work rate transient response, ETOAR#PTD. Note: 

The small figures illustrate the transient response of the system under varying RW and TOB values. For the transient response figures, the Y-axis 

represents the work rate, while the X-axis represents the time period. 
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Figure 6.16 The ‘good’ τOB value for different rework ratios for each variable of interest, with lead time transient response, ETOAR#PTD. Note: 

The small figures illustrate the transient response of the system under varying RW and TOB values. For the transient response figures, the Y-axis 

represents the lead time, while the X-axis represents the time period. 
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6.2.2 A Narrowed-Down Scope 

While Figures 6.11–6.16 cover a scope that is rather broad, which hinders the extraction 

of information, this subsection places a special focus on ETOAR#D, which can 

represent the ETOAR family because of the similarity it shares with the other 

archetypes. The following analysis were segmented based on the value of the rework 

ratio into three groups: minor rework ratio (0–0.2), moderate rework ratio (0.2–0.7), 

and major rework ratio (0.7–0.99). Concurrently, it was observed that the trend in 

capacity resilience τOB could be divided into two periods: a τOB decreasing period (RW 

0–0.2) and a τOB increasing period (RW 0.2–0.99). The subsequent analysis is based on 

this categorisation. 

In scenarios where the rework ratio is minor, the τOB value for capacity resilience 

decreases. An analysis of the transient response revealed that the peak τOB value in the 

minor rework area is attributed to the presence of the order book controller. In this 

domain, when a demand shock occurs, the work rate is immediately raised to meet the 

demand level. However, the order book controller serves to smooth the work rate, as 

detailed in Equations 4.15, 4.26, and 4.44, thus slowing down the system’s adjustment 

to the work rate. This observation is supported by Figure 6.17 below, where a 

comparison of three transient responses with the same rework ratio but different τOB 

values reveals that a smaller τOB significantly slows down the response of the work rate. 
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Conversely, when τOB is set at 200—indicating minimal connection of the order book 

controller with the system—the transient response escalates rapidly. 

From these findings, it can be concluded that when the rework ratio is relatively small, 

the ITAE error is primarily contributed by the initial error. However, as the rework ratio 

increases, the dominant source of error transitions from the initial error to the settling 

error, particularly for the ITAE index, which penalises slow responses with time. 

Therefore, the best τOB for work rate decreases until it reaches 0.2, a reduction that can 

be interpreted as a necessary shift in focus from initial error to settling error as the 

rework ratio increases. In addition, τOB acts as an accelerator for the system to minimise 

the error caused by slow settling. 

 

Figure 6.17 Transient responses for the τOB comparison in the low rework domain. Note: 

The small figures illustrate the transient response of the system under varying RW and 

TOB values. For the transient response figures, the Y-axis represents the work rate, 

while the X-axis represents the time period. 
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In the moderate rework ratio area, the transient responses, as demonstrated in the figure 

below, indicate that τOB values begin to increase. This trend is primarily driven by the 

further increases in the rework rate, which prolong the system’s settling time, thereby 

necessitating a smaller τOB to accelerate the system’s response. Simultaneously, the 

fluctuation in the work rate is exacerbated by both the increased rework ratio and the 

rapid response to demand changes. These dual factors—settling time and fluctuation—

require τOB adjustments in opposite directions; this results in τOB values in the range 

of 0.2–0.7 remaining at a lower level without dramatic increases or decreases. 

According to the transient responses depicted in the figure, it is evident that if τOB is too 

large, the system’s transient response becomes smoother but takes a longer time to settle. 

Conversely, with a relatively small τOB (set to achieve resilient lead time), the peak of 

the transient response is rather pronounced. When τOB is set at the grey line, the transient 

response exhibits a lower peak than that for lead time resilience; however, this settles 

faster than when τOB is set at 120. In this context, τOB serves to balance the ITAE error 

from settling time with the error due to fluctuation. 
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Figure 6.18 Transient responses for the τOB comparison in a moderate rework domain. 

Note: The small figures illustrate the transient response of the system under varying 

RW and TOB values. For the transient response figures, the Y-axis represents the work 

rate, while the X-axis represents the time period. 

In the high rework domain, the optimal τOB value for the work rate soars to the upper 

limits of the figure. This increase is primarily caused by fluctuations becoming the 

predominant contributor to the ITAE error, overtaking the settling time. As the rework 

ratio further increases, the fluctuation of the transient responses becomes more 

pronounced. Although the settling time error also escalates with the increase in rework 

ratio, its progression is slower than that of the fluctuations. Thus, the impact of the 

rework ratio not only intensifies the magnitude of the fluctuations but also prolongs 

their duration. Such effects severely impair the system’s performance from a resilience 

perspective and necessitate a different role for τOB compared to other scenarios. In this 

domain, τOB must act as a smoother to mitigate the system’s dramatic fluctuations, albeit 

at the cost of a slow initial reaction and prolonged settling time. Compared to other 



274 

types of errors, fluctuations exert a long-term and high-intensity impact on the system; 

if not adequately addressed, this may lead to severe cost overruns. As illustrated in 

Figure 6.19, on the right-hand side, τOB is set at 200, which represents the upper 

boundary of the figure, and the transient response demonstrates that τOB effectively 

smooths the fluctuations. 

 

 

Figure 6.19 Transient responses for the τOB comparison in a high rework domain. Note: 

The small figures illustrate the transient response of the system under varying RW and 

TOB values. For the transient response figures, the Y-axis represents the work rate, 

while the X-axis represents the time period. 

In addition to work rate resilience, this analysis also seeks to highlight how τOB for 

optimal lead time resilience changes in response to variations in the rework ratio. Cross-

comparing these three scenarios reveals that the best τOB value for lead time resilience 

remains relatively consistent across all scenarios, typically maintaining around 20–22, 

irrespective of changes in the rework ratio. The primary distinction in the delayed 
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design rework scenario compared to the other two scenarios is that the best τOB for lead 

time slightly decreases as the rework ratio increases, whereas in the other two scenarios, 

τOB increases with increasing rework ratios. 

For ETOAR#P, the increase in τOB is attributed to the augmentation in fluctuation 

caused by increased rework ratios, thereby necessitating a less sensitive response to 

demand shocks. Conversely, for ETOAR#PTD, as the rework ratio increases, the lead 

time’s settling time is prolonged. Although fluctuations are also present, their impact is 

less significant compared to the errors introduced by the extended settling time. 

6.3  Analysis of Results  

Based on the result obtained from the previous sections, the findings are summarised 

in Table 6.1. 

In the minor rework domain (0–0.2 rework ratio), τOB should be set close to the optimal 

setting for lead time resilience. This is because when the rework is relatively minor, the 

primary error contributing to the ITAE is the initial error of the work rate, with 

fluctuation errors being even smaller. Therefore, in this stage, the best τOB value should 

be set close to that for lead time resilience, albeit with a slight compromise on work 

rate fluctuation. This setting enables the management to keep the system as responsive 

as possible, thereby enabling a relatively rapid response to demand shocks. 

In the moderate rework ratio domain, the τOB setting should be closer to the work rate 

in line to minimise fluctuation as much as possible. Notably, numerical results indicate 
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that, in this scenario, the optimal τOB for work rate resilience and lead time resilience 

are relatively close. Consequently, management can select a τOB value that strikes a 

balance between lead time and work rate resilience. 

Table 6.1 A summarisation for the phenomena observed from the experiment. 

RW Minor 0 - 0.2 Moderate 0.2-0.6 High 0.6-0.99 

Trend Decrease Increase 

Error Initial error -> Settling error Settling error -> Fluctuation 

τOB Role 

Accelerate the system’s 

reaction speed, to reduce the 

settling error, with the cost of 

the fluctuation and negative 

compensation. 

Slow down the system’s reaction to the change, due 

to the rework increase the system’s fluctuation 

exaggerated. τOB need to be increased to smoothen 

the system, thereby reduce the fluctuation, but with 

cost of settling time be prolonged. 

Suggestion 

τOB should be set to close to 

best Lead time resilience 

performance, quick response 
can make the lead time 

quickly settle down, and the 

initial error of work rate is 

minor. 

τOB should be set in the grey 

area, between best lead time 

and work rate. Management 
needs to choose between lead 

time resilience with work rate 

resilience 

τOB should be set to 

achieve best work 
rate resilience, to 

eliminate the great 

fluctuations. 

For systems with a rework ratio above 0.6, sacrifices must be made in terms of lead 

time. In such cases, the presence of high rework results in a fluctuating work rate 

transient response, which implies high costs associated with demand shock responses. 

This situation is particularly costly for companies, as more time, resources, and money 

must be expended on capacity changes; moreover, lead times are also extended due to 
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increased rework ratios. Therefore, it is recommended that management set τOB close 

to the work rate resilience line. Although this setting may prolong the system’s settling 

time and the promised lead time, it can help stabilise the system. Additionally, given 

that a high rework ratio typically signifies greater complexity and difficulty, companies 

should offer a more conservative lead time estimate (maximal reasonable lead time) to 

customers, advising them that the project or ETO product may require more time than 

initially expected. 

One common feature across all three archetypes is the differing values of best τOB for 

lead time and work rate resilience. To illustrate this, Table 6.2 summarises the 

advantages and disadvantages of prioritizing the resilience of different variables. 

The primary choice involves prioritising work rate and focusing on maximising 

capacity resilience. The advantages of this approach include the ability of the capacity 

to reach the desired state quickly and accurately with minimal cost incurred by 

fluctuations. This enables the company to adapt to demand shocks swiftly and 

accurately. Additionally, by employing the concept of MRC, which should cover the 

peak of the work rate, it is ensured that all planned working units can be completed 

within the allotted time. Prioritising work rate implies that the MRC value can be 

smaller, thereby allowing the system to save costs associated with maintaining high-

level capacity. Moreover, compared to prioritising lead time resilience, focusing on 

work rate can also reduce the fluctuation of the transient response, benefiting on-cost 

savings in production. This is particularly crucial for high-rework ETO systems, where 
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fluctuations are significant and this necessitated system smoothing to reduce the costs 

associated with these fluctuations. However, the disadvantages are also clear; by setting 

τOB to a larger value, the system becomes less sensitive to demand changes and 

responses become slower. This slow response can extend lead times beyond the 

designed level, often resulting in time overruns, which diminishes customer trust and 

service levels. 

Conversely, prioritising lead time resilience offers significant benefits: First, the 

system’s lead time can reach and stabilise at the desired level more quickly, thereby 

minimising the negative impact of time overruns. Furthermore, the maximal reasonable 

lead time will be less than that under a work rate prioritising strategy, thereby allowing 

the company to promise shorter lead times to customers and, thus, gaining a competitive 

edge in the market. 

Table 6.2 Pros and cons of prioritising work rate and lead time resilience 

‘Good’ τOB Pros Cons 

Prioritising 

work rate 

resilience 

• Work rate of production 

system has some 

overshoot but has a 
quicker settling time. 

• Minimum Reasonable 

Capacity is lower. 

• Less fluctuation for 

production system’s work 
rate 

• Minimises production on-

costs 

• Lead time takes longer to 

recover to the promised level. 

Prioritising 

lead time 

resilience 

• Lead time recovers faster. 

• Maximum Reasonable 
Lead time smaller than τOB 

for best work rate 

• High production system work 

rate variability leads to higher 
production on-cost. 

• Peak value of the work rate 

higher than best work rate τOB 

the Minimum Reasonable 
Capacity is higher 
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6.4  How to Select ‘Good’ τOB for Resilience Enhancement 

This subsection aims to connect theoretical outcomes with practical implementation. 

Within ETO systems, no single parameter setting can simultaneously maximise lead 

time resilience and delivery rate resilience. Lead time resilience enables the system to 

settle at the target lead time swiftly and accurately, which in practical terms implies 

maintaining promised lead times at their maximum during demand shocks. Conversely, 

capacity rate resilience ensures that the system’s work rate can smoothly and swiftly 

transition to a new stage; this typically prioritises production capacity, aiming to ensure 

that capacity transitions smoothly from the original level to the new level without 

significant changes or oscillations. While demand shocks can be either positive or 

negative, a negative demand shock is not explicitly addressed here because its transient 

response would be a mirror image of a positive shock, leading to similar system 

behaviour and conclusions. 

These two types of resilience represent distinct strategies. The former embodies an agile 

strategy that prioritises customer service level with less consideration for capacity 

fluctuation. This system reacts quickly to changes but at the cost of frequent 

adjustments. The latter strategy is more conventional, featuring a milder reaction to 

market changes. The choice between these strategies should be guided by the market 

position, the long-term strategy of the company, and the rework rate. 

The strategies are summarised and explained in Figures 6.20, 6.21, and 6.22. 
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Figure 6.20 Matching theoretical results with management strategies in ETOAR#D. 

 

 

Figure 6.21 Matching theoretical results with management strategies in ETOAR#P. 
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Figure 6.22 Matching theoretical results with management strategies ETOAR#PTD. 

Figures 6.21, 6.22, and 6.23 illustrate the effects of rework on the resilience strategy 

adjustments across the three ETO archetypes, respectively. It is observed that the main 

trends in τOB changes are similar across all scenarios, thereby indicating that the impact 

of the rework ratio is consistent regardless of the location of the rework. This suggests 

that ETO systems are sensitive to the rework ratio but relatively insensitive to the 

specific site of rework. Based on these observations, and informed by the data in Table 

6.3, the following recommendations are proposed: 

Low rework ETO products/projects: Companies should prioritise lead time because 

the cost associated with capacity fluctuation is minor and justifiable in exchange for 

higher lead time resilience. This implies that companies should remain responsive to 

market changes and adjust production capacities accordingly. 
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Moderate rework area: The requirements for lead time resilience and work rate 

resilience are closely matched, thereby suggesting that strategies could favour either 

lead time resilience or delivery rate resilience. In this scenario, the τOB value should be 

approximately 20. 

High rework rate products or projects: Priority should be given to delivery rate 

resilience, even at the expense of lead time. In such cases, capacity adjustments should 

not directly follow market changes. The high rework ratio leads to significant capacity 

fluctuations, potentially causing cost overruns; thus, τOB should be minimised to smooth 

these fluctuations. 

6.5 Summary 

This chapter focuses on improving resilience within ETO systems. The discussion 

began by defining resilience in the context of the ETO system as ‘the behaviour of the 

system when facing disruption events’. Following the establishment of this definition, 

a literature review was conducted to examine existing resilience indices, summarising 

their advantages and disadvantages. A notable limitation identified in these indices was 

their focus on single-period performance, which may not fully capture the system’s 

resilience over time. 

To address this issue, this study adopts the ITAE as the primary index for measuring 

resilience, based on recommendations from prior literature (Spiegler et al. 2012). 

Utilising the PSE technique, this chapter visualises the changing trends of ITAE in 
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relation to variations in the rework ratio and τOB. Additionally, the optimal τOB values 

for different rework ratios are identified and visualised. The choice of focusing on τOB 

is motivated by its nature as a manageable parameter, unlike the rework ratio, which is 

typically fixed. 

The subsequent sections of this chapter present these findings through several tables 

that compare the optimal τOB values across different scenarios. The final subsection will 

analyse these results and link the theoretical findings to practical managerial 

implementations. This approach not only provides a comprehensive understanding of 

how resilience can be measured and enhanced in ETO systems but also bridges the gap 

between theoretical research and practical applications.  
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Chapter 7 Implications and Sensitivity 

Analysis 

This chapter aims to synthesise the research outcomes regarding τOB  and explore the 

practical implications of the order book controller. In Sections 5.2 and 5.3, frequency 

domain analysis was conducted and critical stable conditions were derived, thereby 

providing insights into how τOB affects system performance. In Chapter 6, the resilience 

of the ETO archetype was studied, with the recommended τOB values illustrated in 

Section 6.4. However, the recommended τOB values from different analyses vary. For 

example, stability analysis suggests that τOB should be above 6.25 (
1

τOB
 should be greater 

than 0.16), while the Bode plot analysis suggests that the larger the τOB, the smaller the 

magnitude of work rate. In addition, the research in the resilience analysis suggests that 

the τOB need to be adjusted according to the rework ratio of the system. To correlate this 

finding with a practical application, effort needs to be made to synthesise the result with 

consideration of the reality of an ETO system. Therefore, this chapter aims to conduct 

a comprehensive study on τOB. Section 7.1 synthesises the result related to τOB and 

explores the usage τOB into the capacity management field. Section 7.2 conducts a 

sensitivity analysis to investigate the sensitivity of the system with recommended τOB 

to parameter changes, which push the model closer to reality. Section 7.3 implicates the 

developed model in validating the ‘Think Slow Act Fast’ principle in the ETO field, 

which is followed by a summary of the chapter in Section 7.4. 
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7.1  Value Determination for τOB 

Chapters 5 and 6 examine the effect of τOB values from different perspectives and offer 

various recommendations for setting these values. This subsection aims to synthesise 

the findings from Chapters 5 and 6 and provide theoretical guidance on determining a 

‘good’ τOB value. Given that the lead times of the subsystems in ETO archetypes can 

influence critical stable conditions and resilience performance, the lead times of 

subsystems are assumed to be four time units. 

7.1.1 Result Synthesis 

Figure 7.1 demonstrates the suggested τOB from different perspectives. The dotted and 

black lines represent the recommended τOB from the resilience research; the grey dotted 

line refers to the stability boundary for the τOB; the red dotted and blue dotted lines 

represent the suggested τOB from the Bode plot analysis.  

It is evident that the suggested τOB from resilience analysis is within the stability 

boundary, while the suggested τOB from the Bode plot analysis is located in the unstable 

zone. Simultaneously, it is observed that, in the Bode plot analysis, lead time and work 

rate have very different requirements that the τOB value, which made the selection of 

τOB more difficult. Therefore, a synthesis analysis is conducted in this chapter; the 

following paragraphs summarise the τOB relevant findings in this thesis and provide a 

synthesised result on τOB value determination. Note here that, the red and blue dots are 



286 

derived based on Bode plots whose rework ratio corresponds with the value of its x-

axis. 

 

Figure 7.1 ‘Good’ τOB summarisation from different perspectives.  

Based on the synthesised results presented in Figure 7.1, the τOB value should meet the 

following criteria: 

1. Stability analysis: τOB should be greater than 6.25. Although the findings from the 

Bode plot suggest that τOB should be as small as possible when the frequency is 

between 0.01 and 0.02 rad/week (lead time perspective and represented by the blue 

dot in Figure 7.1), the system’s stability must always be maintained to avoid non-

convergent fluctuation. This implies τOB should always be greater than 6.25 to 

ensure system stability. Otherwise the excessive fluctuation will dramatically 

increase the operational cost of the production system (Spiegler et al. 2012) and 

result in a fluctuated product lead time, which may decrease the customer service 
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quality.  

2. Resilience analysis: The τOB value should be selected from the area between the 

black dotted line and the straight line. The τOB values in this area enable the system to 

achieve its highest resilience. For low or moderate rework ratio production systems, τOB 

should be set close to the straight line. For high rework ratio production systems, τOB 

should be set close to the dotted line to eliminate fluctuations caused by rework. A more 

detailed discussion can be found in Section 6.4. 

3. Bode plot analysis: When the demand pattern has an explicit cycle and fluctuation, 

the Bode plot analysis suggests that, in the typical ETO demand frequency domain, the 

τOB value needs to be as small as possible to achieve lead time resilience. For work rate 

resilience, although when τOB = 200, the magnitude is the smallest, the influence of the 

τOB value is insignificant, as stated in Section 5.2.2. Therefore, from the Bode plot 

perspective, the smaller the τOB, the smaller the lead time fluctuation, and the better the 

system performance.  

In addition, with respect to the demand frequency, according to the study in Chapter 

5.2, the frequency 0.04–0.07 rad/week (89.7–157 weeks) should always be avoided. 

The reason for this is that work rate’s magnitude plot demonstrates a peak in this 

frequency domain. The consequence would be a highly fluctuating capacity. 

4. Result synthesis: The stability of a production system is essential, thereby 

necessitating that τOB always exceeds 6.25. Resilience analysis provides varied 

recommendations compared to Bode plot analysis. Resilience analysis suggests 
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adjustments in the τOB value indicated by three arrows across different rework zones. 

Conversely, Bode plot analysis indicates minimising τOB for typical ETO demand 

frequencies. The discrepancy between these analyses arises from their distinct system 

inputs: deterministic step input for resilience analysis and frequency input for Bode plot 

analysis. Consequently, it is concluded that for demand exhibiting a strong cyclical 

pattern within the ETO frequency range, Bode plot recommendations should prevail. 

Here, τOB should be minimised while remaining above the stability of the system. 

Conversely, if demand lacks a cyclical pattern, resilience analysis recommends setting 

τOB to 20 for rework below 0.6, thereby increasing proportionally with higher rework 

ratios, as depicted in Figure 7.1. 

7.1.2 The Implication of τOB: Aggregate Planning and 

MRL/MRC 

The order book controller represents the capacity decision rules of the ETO company. 

Its control is implemented by adjusting the system’s work rate based on a proportion 

(denoted by τOB) of the difference between the target and actual order book levels. This 

method determines the capacity level without relying on historical data. 

The ETO system faces two main issues: fluctuations that may increase production costs 

and inadequate consideration of the ripple effects of rework, such as additional 

fluctuations and rework-generated rework. The introduction of the holistic-level order 

book controller provides a decision rule for adjusting work rates, with a comprehensive 
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consideration of rework and the system’s dynamics. Additionally, by incorporating the 

MRL and MRC into the system analysis, the capacity requirements of the production 

system can be better estimated at an aggregated level.  

Aggregate planning for the ETO system remains an underexplored area in academia. 

By using the ‘good’ τOB value derived from the archetype, both the MRL and MRC can 

be determined. MRL indicates the time that an ETO company takes to complete a 

project or product, which can be used as a reference during customer negotiations. MRC 

refers to the minimum reasonable capacity that the ETO company should maintain. The 

production capacity must always cover the peak work rate to ensure that lead times are 

met. However, maintaining an excessively high capacity can be costly for the company. 

To balance this, the capacity should be set to the MRC level, which can just cover the 

peak work rate and reduce capacity waste (Lin et al. 2020). 

In practice, the rework type is often unknown before manufacturing/constructing begins, 

but the rework ratio can be estimated based on the experience and complexity of the 

products/projects. Thus, capacity planning should consider all possible rework 

scenarios, thereby ensuring that the project is completed within the MRL, even under 

the most challenging conditions. Table 7.1 summarises the MRC and MRL for all 

archetypes and suggests capacity and lead times for the overall ETO system. 
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Table 7.1 MRC and MRL of the ETO system with rework ratio = 0.2, and ‘good’ τOB 

 ETOAR#P ETOAR#D ETOAR#PTD 

MRC 230 230 230 

Minimum 

Capacity 
230 

MRL 9.0 9.0 31.7 

Maximum 

Lead Time 

31.7 

 

7.2  Sensitivity Analysis 

Section 7.1 synthesises the findings regarding the ‘good’ τOB and provides suggestions 

on capacity management and lead time estimation. However, in practice, the system’s 

parameters or subsystem delays are often not precise, which raises concerns regarding 

the reliability of the decision rules and system performance. Therefore, in section 7.2, 

sensitivity analysis is adopted to study the influence of factors on the output or the 

performance index of the developed model, under a ‘good’ τOB. This can help to 

effectively investigate how sensitive the output is to the changes in parameters or 

variables. The adoption of sensitivity analysis can also help users to detect how 

uncertainty may affect the output or the performance of the system; the analysis result 

can be beneficial to the system robustness, improvement, and upgradation. For 
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practitioners, this method can support detection of the weak point of the whole system, 

thereby improving the resilience and robustness of the production system. 

Returning to the ETO archetype, there are vital assumptions which form the foundation 

of the model, which are (a) the lead time for the design and production is a known 

constant; (b) rework scheduling time is 1, and (c) τOB is determined by the management. 

It should be noted that in practice, the first two assumptions may not be known or 

achievable. Therefore, in this section, a sensitivity analysis is conducted to investigate 

how system output and performance will be influenced by the change in the lead time 

and changes in the rework inspection times; the τOB is set to 20, which is recommended 

in Section 7.1. 

The process for the analysis is described below: 

1. Sensitivity analysis on the lead time change. 

The lead time for the design and production subsystem is a determined value in the 

archetype. While in the operation, particularly in the environment that includes high 

uncertainties such as ETO, the lead time may be influenced by various factors. In 

particular, design lead time, unlike production, is even more uncertain because the 

customer may request for design changes at any time. Thus, in such circumstances, 

sensitivity analysis is conducted on both design and production lead time for all three 

archetypes. The analysis comprises two parts—the first part is determined input, which 
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is a step change; the second part is stochastic input, which is a vector containing a 

random demand. 

2. Sensitivity analysis on the rework scheduling time change. 

Rework scheduling time refers to the time used to detect the rework and schedule the 

extra working units for reworking. Thus, to test how sensitive the system is to such 

delay, an analysis is conducted on this. Unlike the sensitivity analysis on the lead time, 

which has been the study of several papers, sensitivity analysis on rework scheduling 

time remains unexplored. This analysis includes two parts, stochastic demand and 

determined demand, thereby having a comprehensive understanding of the system’s 

performance. 

The research outcomes for ETOAR#D and ETOAR#PTD are presented in the appendix, 

and this section only presents the research outcome of ETOAR#P. The findings are 

summarised in Section 7.2.4. 
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7.2.1 Sensitivity Analysis on the Subsystems’ Lead Time 

Change 

ETOAR#P Production Rework 

Table 7.2 is the configuration of the system’s initial status and parameter setting. To 

investigate the influence of the single lead time on the system’s output, one variable for 

each time is controlled. Two experiments are included in this section: (a) determined 

demand scenarios, wherein the input is a step input from 0 to 1.2, and (b) stochastic 

demand scenarios, wherein the input is a vector formed by random numbers. These two 

experiments test the sensitivity of the system under different environments, such as 25% 

baseline and 200% baseline. Such a design can estimate how the system would perform 

when the subsystem’s lead time is mis-estimated. 

Table 7.2 The initial value and parameter setting for the ETOAR#P lead time sensitivity 

analysis. 

Initial values 

COMRATEDES OBDES RWRATEPROD COMRATEPRO

D 
OBPROD OB 

100 400 25 125 500 800 

Co-efficient values 

𝜏𝑂𝐵  𝜏𝐷 𝜏𝑃 𝑅𝑊 RW scheduling 

time 

20 1(25%) 

4(Baseline) 

8(200%) 

1(25%) 

4(Baseline) 

8(200%) 

0.2 1 

Deterministic demand analysis 
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The Figure 7.2 depicts the sensitivity of the system to the step input. In general, the 

greater the lead time, the longer the system takes to settle down and the higher the peak 

of the delivery rate. The blue line—which indicates that the design lead time is shorter 

than the expectation—reacts faster to the demand change and the form of the wave is 

smooth. The yellow line demonstrates that the lead time is longer than the expectation, 

takes a longer time to reach the demand level, and also has an overshoot. It can be 

concluded that the longer the lead time, the more fluctuating the curve will be and the 

order-book controller can stabilise the system, even if the lead time estimation occurs. 

Compared with design and production lead time misestimation, the latter situation 

creates a longer time for the system to reach its peak. This phenomenon can be 

interpreted as, if the misestimate occurs at the lower echelon of the ETO production, it 

may create a longer time for the system to absorb the negative effect. 

 

Figure 7.2 Sensitivity analysis of ETOAR#P’s deliver rate to the design lead time, with 

a determined demand. 
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Figure 7.3 Sensitivity analysis of ETOAR#P’s deliver rate to the production Lead time, 

with a determined demand. 

 

Stochastic demand analysis 

In order to test the system sensitivity to the design and production lead time, the 

experiment is conducted under stochastic demand. To control the variable of 

experiments, the same demand vector is used to separately test the design and 

production systems. There are two phenomena witnessed in both plots: (a) The bullwhip 

changing trend in lead time is affected by the τOB, and (b) the reaction of the output rate 

is delayed by the prolonged lead time. This aspect is easy to understand, because the 

prolonged lead time leads to a prolonged whole-system lead time. Therefore, to further 

investigate the first observation, the bullwhip effect is calculated. These simulations are 

depicted in Figures 7.4 and 7.5  
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According to (Towill et al. 2007), the bullwhip can be calculated in the following 

manner: 

𝐵𝑢𝑙𝑙𝑤ℎ𝑖𝑝 =
𝑂𝑢𝑡𝑝𝑢𝑡 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒

𝐷𝑒𝑚𝑎𝑛𝑑 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒
. (7.1) 

The bullwhip ratios for all three scenarios are summarised in Table 7.3: 

Table 7.3 Bullwhip ratio for each scenario 

Experiment Bullwhip 

Design lead time sensitivity analysis 

-50% design delay: (total lead time: 5) 0.2596271 

Baseline design delay:(total lead time: 

8) 

0.2587154 

+50% design delay:(total lead time: 12) 0.2645415 

Production lead time sensitivity analysis 

-50% production delay 0.2572314 

Baseline production delay 0.2587154 

+50% production delay 0.2551646 
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Figure 7.4 Sensitivity analysis of ETOAR#P’s deliver rate to the design Lead time, with 

stochastic demand 

 

Figure 7.5 Sensitivity analysis of ETOAR#P’s deliver rate to the production Lead time, 

with stochastic demand 

To further analyse this result, more experiments are conducted for a detailed 

investigation into how ETOAR#P reacts to the changes in design lead time. In this 

experiment, the design delay is set as 1, 2, 4, 6, 8, 10,12, 14, 16, thereby providing an 
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overview on how the bullwhip ratio is affected by the changes in lead time. It is 

worthwhile to note here that although the design lead time changes, the total expected 

lead time for the entire system is assumed to be 8 and this setting is for the control 

variable consideration. Moreover, the result for when the rework is assigned as 0.2 is 

depicted in Figure 7.6. 

 

Figure 7.6 Sensitivity analysis of the ETOAR#P on the bullwhip effect.  

It is evident that with the increase in the design lead time, the bullwhip ratio for the 

ETOAR#P has an increasing trend but with several fluctuations. The fluctuations occur 

when design delay equals 4, 14, and 16 weeks.  
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Figure 7.7 Sensitivity analysis of the ETOAR#P bullwhip effect.  

According to the Figure 7.7, the increase of the production subsystem led to increase 

and fluctuation of the bullwhip ratio.  

7.2.2 Sensitivity Analysis on the Rework Scheduling Time 

Apart from the sensitivity analysis to the design and production lead time, analysis on 

the scheduling time for the rework is also conducted. In the practical situation, this 

variable represents how long it takes to schedule the extra working units for rework to 

the workers. In the origin model, it is assumed that it only takes one period to detect 

and schedule the extra working units for the worker team. The following paragraph 

demonstrates the findings from the ETOAR#P. The simulation’s initial value and 

parameter value are presented in Table 7.4. The simulation results are depicted in 

Figures 7.8 and 7.9. 
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Table 7.4 The initial value and parameter setting for the ETOAR#P rework scheduling 

time sensitivity analysis 

Initial values 

COMRATE

DES 

OBDES RWRATEP

ROD 

COMRAT

EPROD 

OBPRO

D 

OB 

100 400 25 125 500 800 

Co-efficient values 

𝜏𝑂𝐵  𝜏𝐷 𝜏𝑃 𝑅𝑊 RW scheduling 

time 

20 4 4 0.2 1(Baseline) 

2 (200%) 

4 (400%) 

8 (800%) 

ETOAR#P Production rework 

 

Figure 7.8 ETOAR#P delivery rate transient response with determined demand  
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Figure 7.9 ETOAR#P delivery rate transient response with stochastic demand 

7.2.3 Sensitivity Analysis of Different Rework Types 

This subsection focuses on comparing how different types of reworks affect the 

system’s work rate. In this section, several simulations are conducted to investigate how 

work rate of each scenario changes along with the rework. The simulation result is 

summarised in Table 7.5. 

For the ETOAR#P scenario, with the increase in the rework ratio, the workload of the 

production subsystem increases, while the design subsystem’s workload is maintained 

at the original level. For the ETOAE#D scenario, the design subsystem’s workload 

increases with the rework ratio, while for the production subsystem, the workload is 

maintained at 100%. For the ETOAR#PTD, it is evident that the workload of both the 

design and production subsystems’ increases. According to the table below, a 
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conclusion can be made that ETOAR#PTD is much more harmful than the other 

scenario, because both design and production systems need to do more work to cover 

the impact caused by the rework. 

Table 7.5 The workload of subsystems for each archetype, τOB = 20. 

Rework 

ratio 

 

ETOAR#P ETOAR#D ETOAR#PTD 

Design 

Sub-

system 

Work 

rate 

Production 

Sub-

system 

Work rate 

Design 

Sub-

system 

Work rate 

Production 

Sub-

system 

Work rate 

Design 

Sub-

system 

Work rate 

Production 

Sub-

system 

Work rate 

0 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 

0.1 100.00% 111.11% 111.36% 100.00% 111.36% 111.11% 

0.2 100.00% 125.28% 125.28% 100.00% 125.28% 111.11% 

0.3 100.00% 142.86% 143.17% 100.00% 143.17% 142.86% 

0.4 100.00% 166.67% 167.04% 100.00% 167.04% 166.67% 

0.5 100.00% 200.00% 200.44% 100.00% 200.44% 200.00% 

0.6 100.00% 250.00% 250.56% 100.00% 250.56% 250.00% 

0.7 100.00% 333.33% 334.07% 100.00% 334.07% 333.33% 

0.8 100.00% 500.00% 501.11% 100.00% 501.11% 500.00% 

0.9 100.00% 999.78% 1001.97% 100.00% 1001.97% 999.78% 

7.2.4 Summary for Section 7.2  

Sensitivity to the subsystem’s lead time change.  

The findings from Section 7.2.1 can be concluded in the following manner: for all three 

rework scenarios, the work rate of the system is sensitive to the lead times of both 

design and production subsystems. The longer the subsystems’ lead time, the higher the 

peak value of work rate, and the longer the settling time of the work rate transient 

responses. This finding suggests that a prolonged lead time for a subsystem has a 

negative impact on the work rate of the system, which requires the system to maintain 

a higher capacity.  
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The experiments with stochastic demand input suggest that all three types of the 

bullwhip effect of all three archetypes are sensitive to the changes in the subsystem’s 

lead time, while the changing trend of the bullwhip effect with subsystems’ lead time 

fluctuate. The following paragraph demonstrates the sensitive analysis process of the 

ETOAR#P archetype; the research findings of the other two archetypes are 

demonstrated in Appendix. 

Sensitivity to the rework inspection time  

According to the experiments for all three archetypes, it was found that rework 

scheduling time may affect settling time for the transient responses; however, it has an 

insignificant effect from other perspectives, such as peak value or fluctuation. All 

curves have the same peak value and begin responding simultaneously. In terms of the 

stochastic demand experiments, all four curves overlap with the others; the difference 

between them is so small that it can be ignored. 

However, comparing this result with that of the previous literature reveals an 

contrasting result (Han et al. 2014). This reason can be attributed to the model 

development assumptions. There is an assumption that the flow in the model is working 

units. The reason for this assumption is to avoid the potential problem which may rise 

due to the different design and configuration for the products and, hence, all projects 

will be broken down into homogeneous working units. Thus, the findings in this context 
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can be summarised in the following manner: the rework scheduling time only affects 

the systems’ settling time and has no effect on the performance of other variables.  

Sensitivity to the rework type 

According to Table 7.5, the work rates of the production and design subsystems are 

significantly affected by the rework type and rework ratio. The work rate of the design 

subsystem for ETOAR#D and ETOAR#PTD increases with the rework ratio. However, 

for ETOAR#P, there is no design rework; thus, the design subsystem’s work rate does 

not increase. From the production subsystem perspective, the work rates for ETOAR#P 

and ETOAR#PTD increase with the rework ratio. Notably, ETOAR#PTD is the most 

detrimental rework scenario, requiring additional work units in both the design and 

production subsystems. This finding is supported by Section 5.2.2, which indicates that 

when demand fluctuates, ETOAR#PTD’s MLR time is significantly longer than that of 

other scenarios. 

In reality, production rework is often more costly than design rework due to material 

usage and labour force engagement (Lyneis and Ford 2007). Additionally, once 

production begins, the project faces more uncertainties, thereby increasing the risks 

(Han et al. 2014). Therefore, minimizing rework in production is crucial, particularly 

in preventing ETOAR#PTD type rework. One solution to prevent ETOAR#PTD and 

reduce production rework is the ‘Think Slow, Act Fast’ approach proposed by 
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Flyvbjerg and Gardner (2023). In the next section (7.3), the adaptation of this 

philosophy in the ETO field is discussed.  

7.3  Think Slow, Act Fast 

Understanding the severe impact of ETOAR#PTD type of rework, a philosophy of 

‘Think Slow, Act Fast’ has been proposed. The philosophy emphasises the importance 

of spending more time on design and detailed planning prior to the initiation of action. 

By doing so, the likelihood of going over budget or exceeding the timeline can be 

reduced (Flyvbjerg and Gardner 2023). Although this philosophy is embedded within 

practice, there is little research that explains the underlying mechanisms from an SD 

perspective. The given research utilises the SD method to investigate this philosophy 

from a quantitative perspective. 

Section 7.3 discusses how different types of design rework affect the lead-time of an 

ETO system, and how a strategy based on the ‘Think Slow, Act Fast’ philosophy 

improves the system’s performance. The research outcome is presented in two 

subsections. Section 7.3.1 explains the experiment process, followed by Section 7.3.2, 

which presents the newly developed models: one simulates the scenario in which extra 

time is given to the design process, and the other one simulates the scenario in which 

ETOAR#D and ETOAR#PTD types of reworks exist simultaneously. Section 7.3.3 

presents the influence of the adaptation of ‘Think Slow, Act Fast’ principle for the 

dynamic process of the ETO system. 
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7.3.1 Experiment Process 

Experiment A assumed that dedicating more time to the design subsystem could 

decrease the number of undetected reworks by a certain percentage. In this study, the 

aim is to determine the optimal level of inspection required to enhance the system’s 

performance in terms of lead time. Specifically, for ETOAR#PTD, 100% of design 

errors go undetected in the design stage, while for ETOAR#U, the RW-U percentage is 

detected in the design stage. The question for which an answer is sought is what 

proportion of the design error the inspection should discover in the design stage to 

improve the system’s lead time performance. For this, a matrix is used to illustrate the 

required effectiveness of the inspection.  

Figure 7.10 portrays the experiment’s process. The first step is to calculate the ITAE 

value for each RW ratio and each U for ETOAR#D+1. Concurrently, the ITAE value 

vectors for all RW ratios are calculated. The second step is to determine the ratio of 

ITAE between ETOAR#D+1 and ETOAR#PTD. ETOAR#D+1 is a matrix where, for 

each column, each element is divided by the ITAE value of ETOAR#PTD with the 

same rework ratio. After obtaining the matrix, the values that are smaller than 100% are 

marked, and the minimum effectiveness required for inspection is demonstrated. 

Experiment A involves testing a new model that includes a ratio that indicates the 

number of defective working units sent to the production department. By introducing 

an additional inspection period, the number of errors sent to the production system can 

decrease, but a few may still make their way downstream.  
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Figure 7.10 Research process for experiment A  

The goal of experiment B is to determine if introducing an inspection in the design 

system can identify all design errors and ensure all necessary changes are made, then 

how many extra times period can be used for inspection?  

The process for experiment B is depicted in Figure 7.11. The first step involves 

calculating the ITAE value for ETOAR#D+X with various RW as well as calculating 

the ITAE value for ETOAR#PTD under different RW ratios. The second step involves 

comparing the ETOAR#D+X ITAE value with ETOAR#PTD. Starting with X = 1, 

increase X by one unit each time until ETOAR#D+X’s lead time ITAE value is smaller 
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than that of ETOAR#PTD. Record this value of X. If the value is not smaller, record 

X-1 and start over with a different RW ratio. This approach will help identify the 

maximum amount of extra time that can be allocated to the design subsystem from a 

time perspective. 

 

Figure 7.11 Research process for Experiment B 
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7.3.2 Archetype Development of ETOAR#D+X and 

ETOAR#U  

ETOAR#D+X 

The archetypes are developed in the z-domain to align with previous studies (Zhou et 

al. 2022). Both models will be presented in both block diagram and mathematical forms. 

Figures 7.10 and 7.11 demonstrate the block diagram of the ETOAR#D+X and 

ETOAR#PTD, respectively, which are composed of three subsystems and one rework 

loop.  

Figure 7.10 demonstrates the block diagram of the ETOAR#D+X archetype, which 

contains three subsystems: Design subsystem, production subsystem, and order book 

controller. 𝐷𝐸𝑀𝐷𝐸𝑆 for the design system is composed of three parts: external demand, 

compensation value from order book controller, and rework. Equation 7.2, adopted 

from Wikner et al. (2007), is used to calculate the compensation value for the work rate. 

𝑊𝑅𝐴𝑇𝐸𝐷𝐸𝑆(𝑡) =

𝐷𝐸𝑀(𝑡) +
𝑂𝐵 (𝑡) − 𝐷𝐸𝑀 (𝑡) · (𝜏𝑃 + 𝜏𝐷)

𝜏𝑂𝐵
+ 𝑅𝑊𝑅𝐴𝑇𝐸𝐷𝐸𝑆(𝑡 − 1). (7.2)

 

A pure delay τD is used to represent the design time, while X refers to the extra time 

window given to the design error inspection, detection, and changes. 

𝐶𝑂𝑀𝑅𝐴𝑇𝐸𝐷𝐸𝑆(𝑡) = 𝑊𝑅𝐴𝑇𝐸𝐷𝐸𝑆(𝑡 − 𝜏𝐷 − 𝑋). (7.3) 
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Figure 7.12 The block diagram of ETOAR#D+X 

The order book is a record of all orders that have been placed but are yet to be completed. 

The meaning of the order book differs across various industries. In this research, it is 

defined as the total number of working units that are required to complete all orders in 

the queue. In the PM field, this variable is also known as ‘work to do’ (Lee et al. 2005a). 

Equation 7.4, 7.8 and 7.10 is adopted from (Wikner et al. 2007) to calculate the order 

book, for period t.  

𝑂𝐵𝐷𝐸𝑆(𝑡) = 𝑂𝐵𝐷𝐸𝑆(𝑡 − 1) + 𝐷𝐸𝑀𝐷𝐸𝑆(𝑡) − 𝐶𝑂𝑀𝑅𝐴𝑇𝐸𝐷𝐸𝑆(𝑡) (7.4) 

It is assumed that rework is a proportion of 𝐶𝑂𝑀𝑅𝐴𝑇𝐸𝐷𝐸𝑆(𝑡) and can be represented 

by Equation (7.5). In practice, the rework ratio, RW, can be calculated through statistical 

analysis. 

𝑅𝑊𝑅𝐴𝑇𝐸𝐷𝐸𝑆(𝑡) = 𝐶𝑂𝑀𝑅𝐴𝑇𝐸𝐷𝐸𝑆(𝑡)·𝑅𝑊. (7.5) 

A design is sent to the production department after the inspection and design change 

waiting window. 𝑊𝑅𝐴𝑇𝐸𝑃𝑅𝑂𝐷(𝑡)  refers to the work that needs to be done by the 

production subsystem, which is a proportion of the 𝐶𝑂𝑀𝑅𝐴𝑇𝐸𝐷𝐸𝑆(𝑡). 
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𝑊𝑅𝐴𝑇𝐸𝑃𝑅𝑂𝐷(𝑡) = 𝐶𝑂𝑀𝑅𝐴𝑇𝐸𝐷𝐸𝑆(𝑡) · (1 − 𝑅𝑊) (7.6) 

𝜏𝑃 is a pure delay, which represents the production time.  

𝐶𝑂𝑀𝑅𝐴𝑇𝐸𝑃𝑅𝑂𝐷(𝑡) = 𝑊𝑅𝐴𝑇𝐸𝑃𝑅𝑂𝐷(𝑡 − 𝜏𝑃). (7.7) 

𝑂𝐵𝑃𝑅𝑂𝐷(𝑡) = 𝑂𝐵𝑃𝑅𝑂𝐷(𝑡 − 1) + 𝑊𝑅𝐴𝑇𝐸𝑃𝑅𝑂𝐷(𝑡) − 𝐶𝑂𝑀𝑅𝐴𝑇𝐸𝑃𝑅𝑂𝐷(𝑡) (7.8) 

or the ETOAR#D system, it is assumed that there are no production defects, thus 

formulating equation 7.9. 

𝐷𝐸𝐿𝑅𝐴𝑇𝐸(𝑡) =  𝐶𝑂𝑀𝑅𝐴𝑇𝐸𝑃𝑅𝑂𝐷(𝑡). (7.9) 

Equation 7.10 presents the order book of the whole system over time. 

𝑂𝐵 (𝑡) = 𝑂𝐵 (𝑡 − 1) +  𝐷𝐸𝑀(𝑡) − 𝐷𝐸𝐿𝑅𝐴𝑇𝐸(𝑡). (7.10) 

Little’s Law (Little 1961) is adopted to calculate the lead-time of whole system, as 

shown in 4.11, 4.12 and 4.13. 

The order book controller is responsible for making decisions based on the target order 

book, which represents the production target set by the company. This model assumes 

that the target is based on the company’s promised lead-time, 𝜏𝐷 + 𝜏𝑃 , to customers and 

the demand for each period. The target order book is the product of 𝜏𝐷 + 𝜏𝑃  and 

demand. To ensure that orders can be fulfilled on time, the company needs to adjust its 

production speed, which is reflected by the work rates, 𝑊𝑅𝐴𝑇𝐸𝑃𝑅𝑂𝐷 , in the model. This 

order book controller is realised by equations (7.2) and (7.10). This structure enables 

the establishment of the capacity decision rule for the model. 
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ETOAR#U 

 

Figure 7.13 The block-diagram for ETOAR#U 

In reality, projects are a mixture of ETOAR#PTD and ETOAR#D. Therefore, these two 

models were combined to create a consistent model in the z-domain, which will be 

presented in the form of both a block diagram and mathematical expressions. This 

amalgamation will provide a foundation for further investigation into the ‘Think Slow, 

Act Fast’ philosophy. Hence, another parameter, U, was introduced, which represents 

the number of undetected design errors or changes that are remaining and sent to the 

production system in the ETOAR#D design rework scenario. Figure 7.11 demonstrates 

the block diagram of the newly developed model, which is composed of three 

subsystems and one rework loop. 

Design system 

𝐷𝐸𝑀𝐷𝐸𝑆  for design system comprises three parts—external demand, compensation 

value from order book controller, and rework. Equation (7.12), (7.16), (7.20) and (7.22), 
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adopted from Wikner et al. (2007), demonstrates the mechanism of the order book 

controller. 

𝐷𝐸𝑀𝐷𝐸𝑆(𝑡) = 𝐷𝐸𝑀(𝑡) +
𝑂𝐵(𝑡) − 𝐷𝐸𝑀(𝑡) ∙ (𝜏𝐷+𝜏𝑃)

𝜏𝑂𝐵
+ 𝑅𝑊𝑅𝐴𝑇𝐸 (𝑡) (7.12) 

The summation of pure design rework and ‘production to design’ rework is 

𝑅𝑊𝑅𝐴𝑇𝐸 (𝑡), which indicates the total number of working units required for errors and 

changes. 

 

𝑅𝑊𝑅𝐴𝑇𝐸 (𝑡) = 𝑅𝑊𝑅𝐴𝑇𝐸𝐷𝐸𝑆(𝑡) + 𝑅𝑊𝑅𝐴𝑇𝐸𝑃𝑇𝐷(𝑡). (7.13) 

 

The finished works in this system are divided into two parts—designs that are ready for 

production and those that go into rework. The rework represents the detected design 

errors and changes that occur before the production stage. The RW-U parameter is the 

proportion of detected rework in the design system. RW represents the total rework 

caused by errors or changes, and U refers to the undetected errors or changes.  

 

𝑅𝑊𝑅𝐴𝑇𝐸𝐷𝐸𝑆(𝑡) = 𝐶𝑂𝑀𝑅𝐴𝑇𝐸𝐷𝐸𝑆(𝑡) ∗ (𝑅𝑊 − 𝑈). (7.14) 

 

𝐶𝑂𝑀𝑅𝐴𝑇𝐸𝐷𝐸𝑆(𝑡) = 𝐷𝐸𝑀𝐷𝐸𝑆(𝑡 − 𝜏𝐷). (7.15) 

 

𝑂𝐵𝐷𝐸𝑆(𝑡) = 𝑂𝐵𝐷𝐸𝑆(𝑡 − 1) + 𝐷𝐸𝑀𝐷𝐸𝑆(𝑡) − 𝐶𝑂𝑀𝑅𝐴𝑇𝐸𝐷𝐸𝑆(𝑡). (7.16)  

Production system 
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Production begins after the design is completed, and 𝜏𝑃 represents the production lead 

time. Parameter (1 − (𝑅𝑊 − 𝑈)) indicates the designs that are sent to the production 

system and still contain undetected errors or defects. 

 

𝐷𝐸𝑀𝑃𝑅𝑂𝐷(𝑡) = 𝐶𝑂𝑀𝑅𝐴𝑇𝐸𝐷𝐸𝑆(𝑡) ∗ (1 − (𝑅𝑊 −𝑈)). (7.17) 

 

𝐶𝑂𝑀𝑅𝐴𝑇𝐸𝑃𝑅𝑂𝐷(𝑡) = 𝐷𝐸𝑀𝑃𝑅𝑂𝐷(𝑡 − 𝜏𝑃). (7.18) 

 

𝑅𝑊𝑅𝐴𝑇𝐸𝑃𝑇𝐷(𝑡) = 𝐶𝑂𝑀𝑅𝐴𝑇𝐸𝑃𝑅𝑂𝐷(𝑡) · 𝐵. (7.19) 

B represents the portion of design error that is spotted in the production stage. The value 

of B will be derived in the following paragraphs:  

 

𝑂𝐵𝑃𝑅𝑂𝐷(𝑡) = 𝑂𝐵𝑃𝑅𝑂𝐷(𝑡 − 1) + 𝐷𝐸𝑀𝑃𝑅𝑂𝐷 (𝑡) − 𝐶𝑂𝑀𝑅𝐴𝑇𝐸𝑃𝑅𝑂𝐷(𝑡). (7.20)

A represents the qualified working package, and the expression of A is presented in the 

following paragraphs.  

 

𝐷𝐸𝐿𝑅𝐴𝑇𝐸(𝑡) =  𝐶𝑂𝑀𝑅𝐴𝑇𝐸𝑃𝑅𝑂𝐷(𝑡) · 𝐴 (7.21) 

 

𝑂𝐵(𝑡) = 𝑂𝐵(𝑡 − 1) + 𝐷𝐸𝑀(𝑡) − 𝐷𝐸𝐿𝑅𝐴𝑇𝐸(𝑡) (7.22) 

Little’s Law was adopted to estimate the lead time of the whole system, as shown in 

4.11, 4.12 and 4.13. 
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In the context of production systems, the simulation of production lead time as a pure 

delay 
1

𝑍𝜏𝑃
 is a widely adopted practice. The input for such systems is often represented 

by 𝐷𝐸𝑀𝑃𝑅𝑂𝐷(𝑡), which in turn is a function of 𝐶𝑂𝑀𝑅𝐴𝑇𝐸𝐷𝐸𝑆(𝑡). However, it is worth 

noting that 𝐷𝐸𝑀𝑃𝑅𝑂𝐷(𝑡) may still contain design defects and changes. Therefore, the 

production system plays a critical role in detecting such defects and changes through 

rework. Block A in the production system of Figure 7.12 illustrates the process of 

qualifying the working packages, while block B represents the rework caused by design 

errors or changes that occur after production begins. By making the assumption that all 

design errors and changes will be detected in the production system, it is possible to 

derive the expression for blocks A and B. 

Given that 

𝑅𝑊 = (𝑅𝑊 − 𝑈) + (1 − (𝑅𝑊 − 𝑢)) · 𝐵, (7.24) 

 

then  

𝐵 =
𝑈

1 − (𝑅𝑊 − 𝑢)
(7.25) 

 

For block A, the delivery rate must equal Demand*(1-RW); thus,  

(1 − (𝑅𝑊 −𝑈)) ∗ 𝐴 = 1 − 𝑅𝑊. (7.26) 

Then,  

𝐴 =
1 − 𝑅𝑊

1 − (𝑅𝑊 − 𝑈)
. (7.27) 
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Order book controller 

The order book controller is responsible for making decisions based on the target order 

book, which represents the production target set by the company. This model assumes 

that the target is based on the company’s promised lead time (𝜏𝐷 + 𝜏𝑃) to customers 

and the demand for each period. The target order book is determined by multiplying 

(𝜏𝐷 + 𝜏𝑃) with demand. The actual order book, which is also known as work to do in 

PM, represents the amount of work that remains to be completed. Due to capacity 

constraints, order books take a certain amount of time to complete. To ensure that orders 

can be fulfilled on time, the company needs to adjust its production speed, which is 

reflected by work rates. This structure enables the establishment of the capacity 

decision rule for the model. Lead time, which is a crucial indicator of a company’s 

performance, is estimated using Little’s Law, as presented in equation (7.23). 

7.3.3 Model Simulation 

The lead time of the model is linearised via Taylor expansion, as presented in Section 

5. The transfer function is derived as presented in equation (7.28). 

𝑇𝐹(𝐿𝑇) =
𝐿𝑇(𝑧)

𝐷𝐸𝑀(𝑧)
=

𝑧11 + (U − RW)𝑧5 + (−72𝑎RW+ 72𝑎 + 9RW− 9)𝑧2 +
(72𝑎RW− 72𝑎 − U − 8RW+ 8)𝑧



𝑧11 − 𝑧10 + (U − RW)𝑧5 + (RW− U) 𝑧4 +

(𝑎 − 𝑎RW− U)𝑧 + U

. (7.28) 

Note: 𝑎 = 1/τOB 

To verify and comprehend the newly developed models, a simulation is performed on 

lead-time, 𝐿𝑇𝐸𝑇𝑂 , for both models. The simulations in this section enable us to visualise 
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the systems’ dynamic behaviours. The parameter setting of this research, which is 

presented in Tables 7.6, are determined based on previous research (Zhou et al. 2022). 

The initial values for simulations for the two models differ to ensure steady-state initial 

conditions.  

Table 7.6 Simulation parameter settings for both ETOAR#D+X and ETOAR#PTD 

In Figure 7.12, the lead-time transient response of both models to a step change input 

can be seen. This aids in observing the system’s performance after a demand shock, as 

recommended by Towill et al. (2007). Both systems’ lead times eventually stabilise at 

eight-time units, which is the desired lead-time for the archetypes. This indicates that 

the model can maintain the lead-time at the desired level in the long term although only 

after an increase during the transient period. After comparing the transient response of 

the two systems, it can be observed that even though ETOAR#D+1 has a higher peak 

value in its lead time than ETOAR#PTD, it settles down faster from 65 to 120 periods, 

ETOAR#PTD has a lower lead time due to its greater variance. These two findings 

reveal that providing extra time to the design system, represented by X = 1, can help 

speed up the settling time for the lead time and reduce the variance of lead time, but it 

ETOAR#D+X 

Initial values 

COMRATEDES OBDES RWRATEDES OBPROD OB 

250 1000 150 400 800 

Parameter setting 

1/𝜏𝑂𝐵 𝜏𝐷 𝜏𝑃 RW X 

1/26 4 4 0.6 1 

ETOAR#PTD 

Initial values 

COMRATEDES OBDES RWRATEPTD OBPROD OB 

250 1000 150 1000 800 

Parameter setting 

1/𝜏𝑂𝐵 𝜏𝐷 𝜏𝑃 RW 

1/26 4 4 0.6 
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may result in a higher peak value. This supports the idea of a trade off in the lead time 

that was mentioned in Chapter 2. Based on this finding, an experiment was conducted 

in Section 4 to see how much extra time, X, is beneficial for the inspection of design 

defects and consequent changes.  

 

Figure 7.14 The transient response for both models 

7.3.4 Findings from Experiment A 

The limitation of experiment A is that it assumes that the handover of the rework is all 

or zero. This assumption limited the adoption of the model and has limited the 

adaptation of this finding. Thus, model ETOAR#U was developed, which is a model 

that combines ETOAR#D with ETOAR#PTD, with one extra delay in the design 

subsystem which represents the extra time given to the inspection or design freezing 

time; U represents undetected rework, and RW represents the actual amount of rework.  
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Table 7.7 ITAE percentage for Experiment A 

RW  
U  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0 120.3% 98.7% 84.4% 73.9% 66.5% 60.2% 52.2% 49.8% 51.6% 

 24 24 25 26 25 25 26 26 26 

0.1 100.0% 121.4% 102.9% 89.3% 79.1% 70.6% 61.0% 57.7% 59.0% 

 24 24 26 25 26 24 26 26 26 

0.2  100.0% 123.0% 105.7% 92.9% 82.3% 70.7% 66.2% 66.8% 

  24 25 25 26 26 26 26 26 

0.3   100.0% 123.6% 108.0% 95.0% 80.9% 75.4% 74.9% 

   24 25 25 26 26 26 26 

0.4    100.0% 123.9% 108.6% 92.0% 85.3% 83.4% 

    23 25 24 26 26 26 

0.5     100.0% 123.1% 103.8% 95.9% 92.3% 

     23 25 24 26 26 

0.6      100.0% 116.5% 107.1% 101.4% 

      24 25 25 25 

0.7       100.0% 118.9% 110.7% 

       25 24 24 

0.8        100.0% 120.2% 

        24 22 

0.9         100.0% 

         18 

Table 7.7 is the result from experiment A, which displays the ITAE ratio between 

ETOAR#U and ETOAR#PTD as a percentage. The cells highlighted in grey indicate 

the values that are less than 100%, thereby indicating that ETOAR#U outperforms 

ETOAR#PTD with the given parameters. A bold line is included in the table to signify 

the minimum effectiveness of the inspection. If the inspection cannot lower U to the 

boundary level, then additional time should not be allocated to the design stage. For 

example, if the system’s RW is 0.5, the undetected errors must be reduced to 0.2 with 

the extra time allotted to the design stage. If not, no additional time should be given. 

The second row for each rework ratio represents the best τOB value, which guarantees 

that both models are compared with its best performance.  

7.3.5 Findings from Experiment B 

The purpose of this section is to present the experiments and the findings regarding how 
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the maximum permitted time for ‘Thinking Slow’ at the design stage was derived to 

include inspection and change. The basic assumption of the experiment is that 

dedicating more time to the design process for inspection and design change can 

eliminate any undetected design defects before reaching the production stage.  

The findings suggest that the system does not require additional time for the design 

subsystem when RW = 0.1. However, for RW ranging from 0.2 to 0.5, allocating one 

extra time unit for the design stage is recommended. When RW ranges from 0.6 to 0.9, 

one or two extra time units can be allocated; the exact amount of extra time that should 

be given to the design stage would depend on the effectiveness of inspection and 

requirement of the bullwhip ratio. The highlighted value suggests that allocating extra 

time for design inspection or waiting for design change is unnecessary. Otherwise, the 

lead-time ITAE for adding X time units to design will be higher than the lead-time ITAE 

of ETOAR#PTD; thus, the maximal allowed inspection/waiting time is the second 

largest value for X.  

It is evident from Table 7.8 that the bullwhip value decreases with an increase in the 

RW ratio for the ETOAR#D+X scenarios, while for the ETOAR#PTD, the increase in 

RW ratio leads to an increase in the bullwhip effect. At the same time, all bullwhip 

values of ETOAR#D+X are smaller than ETOAR#PTD, which suggests that the 

ETOAR#D+X model’s production department faces a smaller oscillation. However, the 

influence of X on the bullwhip is indeterminate. For example, when RW = 0.7, the 

increasing X values create the following bullwhip ratio: 0.092, 0.097, 0.077, 0.081. As 
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the value of X increases, the change in the bullwhip effect is not a straightforward 

progression from increase to decrease but rather exhibits a fluctuating pattern (Gaalman 

et al. 2022). 

Table 7.8 Result summary of Experiment B from the simulation. 

RW ratio X: Extra time 
Lead-time ITAE (Step input) Production Bullwhip (Stochastic) 

ETOAR#D+X ETOAR#PTD ETOAR#D+X ETOAR#PTD 

0.1 
0 1164 

1406 
0.373 

0.463 
1 1692 0.371 

0.2 

0 1496 

2380 

0.312 

0.497 1 2348 0.311 

2 3547 0.294 

0.3 

0 2175 

4076 

0.267 

0.532 1 3442 0.266 

2 5206 0.244 

0.4 

0 3339 

7200 

0.224 

0.590 1 5324 0.224 

2 8066 0.199 

0.5 

0 5473 

13380 

0.181 

0.680 1 8899 0.184 

2 13642 0.157 

0.6 

0 10034 

27307 

0.132 

0.782 
1 16431 0.136 

2 25027 0.112 

3 36652 0.113 

0.7 

0 21573 

67765 

0.092 

0.838 
1 35616 0.097 

2 54405 0.077 

3 79837 0.081 

0.8 

0 62395 

206231 

0.054 

1.195 
1 103515 0.060 

2 160094 0.047 

3 232589 0.053 

0.9 

0 365768 

1161779 

0.026 

2.972 
1 611410 0.033 

2 927740 0.027 

3 1269755 0.028 

Design workload is the integration of work rates of all simulation periods, and 

production workload is the integration of work rates of all simulation periods. These 

two values represent how much work the entire ETO system completes within the 

simulation time. Each cell of the table represents the total amount of work that was 

done, with the given rework ratio and the extra time X. Based on this, the 

ETOAR#D+X’s design workload and ETOAR#PTD’s design workload within the 

rework free system is compared. The rework free system refers to the archetype without 



322 

rework, which is a special scenario for both ETOAR#D+X and ETOAR#PTD. The 

workload for subsystems is demonstrated in the ‘workload’ column and the ratio is the 

division between values in each cell over the benchmark 179800, which is the workload 

for the rework free model. The grey rows represent the scenario where no extra time is 

given to the ETOAR#D+X, which is an ideal situation that all design rework can be 

detected in the design subsystem. The reason for including it in the table is to provide 

a comparison to see how X, the extra time, affects the workload of ETOAR#D+X. At 

the same time, this table also demonstrates how this experiment is conducted; X is 

tested from 0 to the value that the lead time ITAE value of ETOAR#D+X is greater 

than ETOAR#PTD, which is demonstrated in Table 7.9. 

From the workload perspective, there are two findings that can be derived from Table 

7.9—how rework affects the total design workload and how extra time affects the 

production workload.  

The first finding is the production workload of ETOAR#PTD that keeps increasing with 

the value of rework ratio, while the ETOAR#D+X can maintain the production 

workload at the same level as the benchmark. Another finding is that the extra workload 

given to the design subsystem has a negative impact as it can indirectly increase the 

benchmark of the design subsystem. For example, when the rework ratio = 0.3, the ratio 

between ETOAR#D+X’s design workload with the benchmark increases with 

prolonged X. This observation implies that the prolonged lead time may increase the 

schedule pressure of the design subsystem. However, the incremental of the design 
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workload is relatively small compared to the extra workload to the production system. 

Thus, it is wise to spend more time and make more efforts on the design subsystem to 

prevent any defect of the production subsystem. 

Table 7.9 Results from experiment B and a workload orientated summary from the 

simulation. 

RW 

ratio 

X: 

Extra 

time 

Workload Percentage 

ETOAR#D + X  ETOAR#PTD  ETOAR#D + X  ETOAR#PTD  

Design  

workload 

Production 

workload 

Design  

workload 

Production 

workload 

Design  

workload 

Production 

workload 

Design  

workload 

Production 

workload 

0 0 179800 179800 179800 179800 100% 100.00% 100% 100% 

0.1 0 200222.2 179800 200222.2 199777.8 111.36% 100.00% 111.36% 111.11% 

1 200333.3 179800 200222.2 199777.8 111.42% 100.00% 111.36% 111.11% 

0.2 0 225250 179800 225250 224750 125.28% 100.00% 125.28% 111.11% 

1 225375 179800 225250 224750 125.35% 100.00% 125.28% 125.00% 

2 225500 179800 225250 224750 125.42% 100.00% 125.28% 125.00% 

0.3 0 257428.6 179800 257428.6 256857.1 143.17% 100.00% 143.17% 142.86% 

1 257571.4 179800 257428.6 256857.1 143.25% 100.00% 143.17% 142.86% 

2 257714.3 179800 257428.6 256857.1 143.33% 100.00% 143.17% 142.86% 

0.4 0 300333.3 179800 300333.3 299666.7 167.04% 100.00% 167.04% 166.67% 

1 300500 179800 300333.3 299666.7 167.13% 100.00% 167.04% 166.67% 

2 300666.7 179800 300333.3 299666.7 167.22% 100.00% 167.04% 166.67% 

0.5 0 360400 179800 360400 359600 200.44% 100.00% 200.44% 200.00% 

1 360600 179800 360400 359600 200.56% 100.00% 200.44% 200.00% 

2 360800 179800 360400 359600 200.67% 100.00% 200.44% 200.00% 

0.6 0 450500 179800 450500 449500 250.56% 100.00% 250.56% 250.00% 

1 450750 179800 450500 449500 250.70% 100.00% 250.56% 250.00% 

2 451000 179800 450500 449500 250.83% 100.00% 250.56% 250.00% 

3 450930.8 179800 450500 449500 250.80% 100.00% 250.56% 250.00% 

0.7 0 600666.7 179800 600666.7 599333.3 334.07% 100.00% 334.07% 333.33% 

1 601000 179800 600666.7 599333.3 334.26% 100.00% 334.07% 333.33% 

2 601333.3 179800 600666.7 599333.3 334.45% 100.00% 334.07% 333.33% 

3 601666.7 179800 600666.7 599333.3 334.63% 100.00% 334.07% 333.33% 

0.8 0 901000 179800 901003.5 899003.2 501.11% 100.00% 501.11% 500.00% 

1 901499.9 179800 901003.5 899003.2 501.39% 100.00% 501.11% 500.00% 

2 902000.6 179800 901003.5 899003.2 501.67% 100.00% 501.11% 500.00% 

3 902498.9 179800 901003.5 899003.2 501.95% 100.00% 501.11% 500.00% 

0.9 0 1802017 179800 1801534 1797608 1002.23% 100.00% 1001.97% 999.78% 

1 1802119 179800 1801534 1797608 1002.29% 100.00% 1001.97% 999.78% 

2 1804169 179800 1801534 1797608 1003.43% 100.00% 1001.97% 999.78% 

3 1804441 179800 1801534 1797608 1003.58% 100.00% 1001.97% 999.78% 

7.3.6 Summary for Section 7.3 

This section investigates the ‘Think Slow, Act Fast’ theory from a system dynamic 

perspective. Two experiments were conducted—one studied how many extra times 

should be assigned to the design subsystem, the other one studied how effective the 
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inspection should be to guarantee that the lead time performance is better than 

ETOAR#PTD. These two experiments take two differing assumptions; the first one is 

to assume that extra time can prevent all design rework from being handed over to the 

production, while the other one investigates how effective the inspection should be to 

save more time for the entire ETO project. The finding of the experiment can be used 

as a qualitative sensemaking tool for the ‘Think Slow, Act Fast’ theory. At this stage, 

the experiments are conducted using a theoretical framework and simulated scenarios 

rather than real-world data. The parameters and assumptions used in the models are 

derived from established literature and SD principles to explore the behaviour of the 

'Think Slow, Act Fast' theory. While the findings provide valuable qualitative insights, 

the integration of empirical data to calibrate and validate these models remains a future 

step. Incorporating real-world data, such as design and production timelines or 

inspection efficiency metrics from actual ETO projects, would enhance the 

applicability and precision of these findings in practical contexts. 

7.4  Summary  

This chapter aims to explore the implications of τOB by synthesising the research 

outcomes from Chapters 4, 5, and 6 in Section 7.1. The findings suggest a theoretical 

τOB for the ETO system, representing a ‘good’ value that combines system stability, 

frequency performance, and resilience. Based on these synthesised findings, Section 

7.2 conducts a sensitivity analysis, considering the lead time uncertainties of 
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subsystems and the uncertainty of rework inspection time. This analysis examines the 

ETO system’s performance with the suggested τOB value in an uncertain environment. 

Section 7.3 investigates the adaptation of the 'Think Slow, Act Fast' philosophy within 

the ETO system, highlighting the benefits and limitations of allocating more time to the 

design stage. In the next chapter, the system's performance from a resilience perspective 

will be studied. 
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Chapter 8 Discussion 

This chapter summarises the insights and knowledge gained from this research. In 

general, Chapter 2 reviews the existing literature studies on ETO systems, summarizing 

the general production system, CODP concept, and existing SD-ETO models found in 

the literature. Finally, it provides a review of the research on the resilience of relevant 

production systems. Chapter 4 developed the ETO archetype, with CT and SD 

modelling being the main methods employed. To investigate the dynamic performance 

and stability of the system, a series of studies were conducted. In Chapter 6, the 

resilience of the system was assessed by the ITAE index, and guidance on resilience 

improvement were provided. Chapter 7 synthesised the result regarding the τOB from 

previous sections and conducted a sensitivity analysis which analyses the model from 

a more practical perspective.  

In this chapter, the findings from previous chapters are summarised under each 

objective, and a discussion is presented based on the summarised findings. Section 8.1 

illustrates the insights from Objective 1: Build ETO archetypes to provide a CT 

model which can be used as a quantitative platform for further study. Section 8.2 

presents the insights from Objective 2: Assess the dynamic performance of the ETO 

archetypes. Section 8.3 demonstrates the insights from Objective 3: Measure and 

improve the ETO archetype’s resilience from an SD perspective. Section 8.4 

discusses the implications of the research outcomes. Figure 8.1 provides an overview 
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of the outcomes from each research objective; the figure also includes the conclusion 

and future research agenda to illustrate the complete picture of the research outcome, 

but these two sections will be presented in the next chapter. 
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Figure 8.1 Summary of research insights and contribution of this thesis. [Blue 

represents objective one, yellow represents objective two, and green represents 

objective three.] 
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8.1  Insights from the Development of the ETO Archetype  

This section summarises the insights gained from the development of the ETO 

archetype. Findings are presented, followed by a discussion based on these results. 

8.1.1 Summary of Findings  

ETO archetype  

In Chapter 4, three ETO archetypes were developed and each represented one rework 

scenario. The key elements and the main structure of the archetype were collected and 

developed based on previous literature(Lee et al. 2005b; Gosling and Naim 2009). The 

archetype developed in this research can represent the integrated design and production 

process of the general ETO system with the consideration of the rework. These fill the 

gap in the ETO aggregated level planning research by providing three ETO archetypes 

which represent three basic rework scenarios of an ETO system.  

Production-to-design rework is most harmful  

Among the developed archetypes, production-to-design rework (ETOAR#PTD) is 

identified as the most detrimental scenario for an ETO system. ETOAR#PTD occurs 

when design defects or changes are identified or made during the production stage, 

thereby necessitating additional effort from both the design and production teams. This 

scenario has two major effects. 
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First, it requires additional work from both subsystems, as depicted in Table 7.10. 

Moreover, in actual practice, to complete these rectifications, extra materials and labour 

are needed, inevitably leading to increased budget and time requirements. 

Second, ETOAR#PTD rework can significantly extend the lead time for the ETO 

system, as illustrated in Table 5.13, and this results in an increase in the MRL. This 

issue not only impacts the lead time performance of ETO projects but also complicates 

the estimation of lead times during the planning stage.  

The position of the order book controller  

During the model development period, one of the difficulties is to determine the 

position of the order-book controller of the ETO archetype. The order book controller 

represents the capacity decision rules of the ETO company; in turn, different positions 

of the order book controller impacts where decisions are made and who makes them. 

In this section, a set of simulations are conducted to examine what type of order book 

can maintain the system’s desired performance even when rework exists.  

After the investigation, it was found that irrespective of the type of rework scenario, as 

long as rework exists, the order book must be placed at the holistic system level to 

maintain the performance of the system. In other words, irrespective of which level the 

rework occurs at, its effect should be taken into consideration by the whole-process 

manager (production system perspective) or whole-project manager (project 

perspective). This is because the effect of the rework will not only affect the subsystem 
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where it happens but will also create an indirect effect on the other subsystems and the 

entire ETO process. It is inadequate to absorb the effect of the rework by only adjusting 

one subsystem’s production; the plan for each subsection needs to be adjusted 

accordingly. 

Thus, based on this finding, three prototypes with holistic order book controller were 

selected as the ETO archetypes. These three archetypes form an ETO archetype family, 

which contains three typical rework scenarios in the ETO environment. 

8.1.2 Discussion  

Aggregate-level ETO system archetype  

Compared with the other kinds of production systems (e.g., MTS (Towill 1982), MTO 

(Wikner et al. 2007), and ATO (Lin et al. 2020), the ETO community has not yet 

developed a recognised SD archetype to model and benchmark against. At the same 

time, IOBPCS concepts have been adopted in the other type of supply 

chains/production systems, which contributes to the understanding of the bullwhip 

effect and the estimation of capacity (Lin et al. 2017). This thesis focuses on the 

development of the ETO system archetype and enhances the IOBPCS family by 

providing an order-based control system in an ETO environment, as presented in Table 

1.1. Additionally, research in aggregated level planning for the ETO system is still in 

its early stages. Most models developed within the ETO environment focus on single 

project modelling (Jiang & Xi 2019, Barbosa & Azevedo 2019). The archetype 
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developed in this research constructs a model from the aggregated level, thereby 

providing a new scope for ETO system research. 

However, archetype research also has limitations: 1) An archetype only represents the 

general scenario of a system. Hence, for a specific industry or project, researchers still 

need to modify and adjust the model to correspond to real-world scenarios (Shafiei et 

al. 2020). 2) SD as a top-down simulation technique is weak in capturing disaggregate 

detail (Ding et al. 2016a).  

Even though SD archetypes have a few weaknesses, given its advantages, there is still 

value in developing a general model; the disaggregate modelling weaknesses may be 

addressed by hybrid modelling, such as agent-based SD and discrete-event SD 

modelling. In terms of the disadvantages being too general, it is recommended that the 

development of any kind of model include both practice and theory. The adoption of 

the ETO archetype in practice must benefit the verification of the archetype and provide 

an opportunity for the archetype/practice benchmarking. 

Modelling the interface between production and design subsystems  

During the model development stage, one of the challenges is modelling the interface 

between the design and production subsystems (Shin et al. 2014). The outputs of these 

two subsystems differ: the design subsystem produces engineering drawings, while the 

production subsystem produces the final product or project. This thesis used working 

units flow to simulate the archetype, thus maintaining system linearity and unified flows. 
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This approach treats the entire ETO system as an integrated system and enables 

researchers to understand the system’s behaviour from an aggregate perspective. 

However, the archetypes based on the flow of working units overlook the coordination 

between the design and production subsystems, thereby reducing the fidelity of the 

developed model. To improve model fidelity, it is crucial to find a better way to 

simulate the interface between subsystems. This simulation should represent the 

process of handing over blueprints to the production subsystem and how the production 

system transforms the design into a production plan and initiates production. Improving 

this aspect would enhance the model’s realism by considering the unique activities at 

the interface between the production and design systems. It would also enable the model 

to simulate more realistic scenarios, such as stoppages caused by design changes or 

contract cancellations due to unsatisfactory designs. 

The dilemma between model generalisation and fidelity 

The archetypes developed in this thesis model a general ETO system, capturing the 

main features of such systems. The development of these archetypes references 

previous models developed for construction and shipbuilding (Lee et al. 2006a; Mello 

et al. 2017). Compared to earlier models, this newly developed model is more 

generalised based on the definition of the ETO system. However, it lacks the specificity 

of models developed for particular industries, thereby raising a dilemma: how to 
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balance generalisation with specificity in an ETO system that can be adopted across 

different industries and produce various products? 

To address this dilemma, the aim of the model development must be carefully reviewed 

and considered. In this thesis, the primary aim is to develop ETO archetypes that 

provide a foundation for studying the dynamic behaviour of the ETO system. Therefore, 

the model must be a general one to accurately represent and analyse the dynamic 

performance of the general ETO system. However, if the aim is to study the system 

behaviour of a specific industry or to adopt a model for a particular production process, 

the model must be tailored to the real system to effectively support understanding and 

provide optimisation. 

The model developed in this thesis can serve as a fundamental model for studying ETO 

systems and can be directly used for general ETO system behaviour studies. For 

specific system studies, this model can serve as a theoretical benchmark and provide 

users with general knowledge regarding the ETO system. With the ongoing research in 

the specific system, the knowledge of this model can provide feedback to ETO 

archetype studies (Gosling et al. 2015).  

The implications of the ETO archetype in real practice  

The ETO archetype developed in this research can be used as a tool to link the 

theoretical outcomes to the practical guidance design; its usage can be summarised from 

the following perspectives: 1) Providing suggestions on aggregated level capacity 
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management and assisting management with the estimation of the extra capacity to 

offset the impact of rework (Section 7.1.3) (Zhou et al., 2022). 2) Providing a platform 

for researchers and practitioners to design and test managerial interventions via 

simulation (Pena-Mora and Park 2001). 3) Estimating the aggregated level lead 

time/delivery time based on Little’s Law (Wikner et al. 2007) (Section 7.1.3). 4) 

Building a bridge to promote knowledge exchange between PM and SCM. 5) Providing 

a solid quantitative foundation for further dynamic studies to gain deeper insight into 

production dynamic behaviour (Spiegler et al. 2012), which can be referenced in the 

designing of management policies. 

8.2  Insights from the Dynamic Performance Assessment 

This section summarises the insights gained from the dynamic performance assessment. 

Findings are presented, followed by a discussion based on these results. 

8.2.1 Summary of Findings  

The stability boundary of the system 

In section 5.3, the stability boundary for all three archetypes is visualised, noting that 

the boundary refers to the value selection of τOB. The observation revealed that for the 

design and production rework archetypes, with an increase in the rework ratio, a smaller 

τOB value increases stability. In contrast, for the delayed design rework scenario, a 

smaller τOB value decreases stability. Paying attention to this phenomenon by further 
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comparison and investigation, it was found that the delayed design rework loop 

smoothens the production system. After the analytical results, for the higher-order 

system, the PSE method was adopted to determine the stability boundary of the 

archetypes. Taking the tenth order system as an example, the system’s boundary was 

derived via both Routh–Hurwitz and PSE. The visualisation methods adopted in this 

analysis and the trend change were found to be the same as the analytical methods used 

for the low-order system. 

This leads to the insight that the stability analysis provides a critical stable condition 

for all the models and illustrates the changing trend of the stability condition along with 

rework changes. Considering the τOB for the sensitivity and order-book adjustment 

speed, the research outcome provides guidance on how fast the system should react to 

a demand change to adjust capacity for the design or the production. Simultaneously, 

for a resilient system, stability is a basic requirement, as an unstable system cannot 

maintain the system at the required level.  

Frequency domain analysis 

The exploitation of frequency response analysis provided insights into how the 

magnitude and phase of the system’s output change with demand frequency. It was 

found that the order book controller’s parameter τOB, rework type, and rework ratio can 

significantly influence the magnitude of the ETO system’s output. Specifically, ETO 

products’ demand cycle is deeply affected by the economic cycle. The cycle lasts 
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approximately 5–10 years (Wigren and Wilhelmsson 2007, Wada et al. 2018), and it’s 

frequency is between 0.01rad/week to 0.02rad/week (628–314 weeks ). In this 

frequency domain, a smaller τOB results in a smaller lead time magnitude, while a higher 

rework ratio leads to a higher lead time magnitude.  

From the perspective of rework type, ETOAR#PTD is identified as the most unwanted 

scenario, which is because it not only requires extra work in both design and production 

systems but it also exaggerate the fluctuations of the work rate of the system, which 

lead to consequences of ETOAR#PTD that are consistently more severe than those of 

other rework types.  

8.2.2 Discussion  

Importance of SD analysis to the ETO system  

The dynamic analysis of ETO systems is rather rare in the field of system analysis, 

which can be attributed to the lack of a unified ETO archetype and the disregard for 

dynamic performance in the ETO industries. Dynamic analysis of production systems 

has been widely used in other types of industries, such as ATO and MTO systems 

(Wikner et al. 2007, Lin et al. 2020). This not only provides a significant understanding 

of system behaviours, such as the bullwhip and ripple effects, but also enables users to 

adjust systems to improve their performance and resilience when disturbances occur. 

Based on previous experience, the adoption of dynamic analysis in the ETO sector is 

necessary for two main reasons: cost and time. From a cost perspective, a fluctuating 
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production plan requires frequent changes in system capacity to meet demand, thereby 

resulting in additional costs for hiring and firing staff and buying or selling machinery. 

If a company chooses to maintain high capacity to cover fluctuations, it will face 

wastage from idle machinery. Therefore, a smooth and stable production plan is 

essential, and these requirements can be met through a dynamic analysis. 

From a time perspective, schedule overruns are a common issue in PM. These overruns 

can be attributed to rework, disturbances, and inadequate productivity. ETO companies 

face an additional challenge of fluctuating demand. To overcome these challenges and 

mitigate the effects of rework or disturbances, production companies need a dynamic 

analysis to understand the mechanisms of their production systems and adjust the 

promised lead time to customers and decision rules related to capacity. This approach 

allows for proposing realistic lead times during the planning stage and reduces the 

likelihood of time overruns. 

In this research, two methods are adopted: stability analysis and frequency domain 

analysis. These analyses investigate the system’s dynamic performance from a 

quantitative perspective. The discussions derived from these analyses are presented 

below. 

Stability analysis—critically stable condition 

The outcome of the stability analysis is the identification of the critical stable condition 

for all archetypes under various rework ratios. This stable condition indicates the 
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smallest τOB value that ETO archetypes can adopt. If the τOB value is smaller than this 

critical condition, the system’s output may exhibit non-convergent behaviour. 

τOB represents how the system compensates for the work rate of the whole system, 

which is related to the production planning decision rules. When τOB is small, the 

system’s work rate changes rapidly with demand, thereby implying that the system’s 

capacity also changes frequently to keep up with fluctuations in demand and the order 

book. Conversely, when τOB is large, the system’s capacity does not change as quickly 

with demand, sacrificing lead time but providing a smoother trend for the system and 

maintaining the bullwhip effect at a lower level. Having a τOB value that ensures system 

stability can prevent dramatic fluctuations in capacity or lead time. 

However, there is evidence that when demand is cyclical, the τOB value can be set to a 

smaller value to align with market demand changes without causing dramatic 

fluctuation. This phenomenon occurs because fluctuations in demand offset 

fluctuations in the outcome, thereby preventing variables from reaching infinite values. 

Therefore, even when demand patterns exhibit cyclical features, the τOB value should 

always be set to meet the stable criteria.  

Stability analysis—the PSE method  

The methods presented in Chapter 5 can be applied to stability analysis of other discrete 

high-order systems. The developed archetype is a two-echelon discrete-time model, 

which implies that the system’s order increases with the extent of the pure delay. The 
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initial configuration set the delay for both the design and production systems at 1, 

thereby yielding in a total system order of 4. However, when analysing system stability, 

the order of the system dictates the complexity of deriving stability boundaries. When 

the system’s order exceeds 4, the derivation process becomes more challenging and 

time-consuming. For a system like the ETO archetype, which contains symbolic 

elements, solving the characteristic equation becomes exceedingly difficult. 

To enhance efficiency, two distinct methods were utilised for analysing low and high 

order systems. For low-order systems, the Routh-Hurwitz criterion was employed, 

which involves the derivation of the first row of the Routh matrix and calculating 

conditions that ensure all elements are either all positive or all negative. For high-order 

systems, methods based on PSE and Routh–Hurwitz simulations were used to cross-

verify experimental results, which specified the stable boundaries of the ETO system. 

The advantage of adopting the PSE-Routh Hurwitz method is that it avoids solving 

high-order symbolic characteristic equations and provides visual results that can 

directly inform system parameter adjustments. However, the accuracy of this method 

heavily relies on the step length used in the simulation; if the step length is too large, 

the precision of the results can be significantly compromised. 

ETOAR#PTD has a wider selection range for τOB value. 

One surprising finding from the research is that Figure 5.8-5.11 highlights that 

ETOAR#PTD maintains system stability with a smaller 𝜏𝑂𝐵 compared to other 
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scenarios, suggesting that it can achieve faster response times to demand changes while 

still preserving stability. This observation contrasts with previous research (Flyvbjerg 

& Gardner, 2023), which indicates that ETOAR#PTD generally introduces more 

significant challenges than the other rework types. This discrepancy invites a closer 

look at why ETOAR#PTD appears more advantageous from a dynamic stability 

perspective. 

The explanation lies in the feedback loop that connects the production and design 

subsystems. This feedback serves as a damping mechanism, slowing down the system’s 

response and thus enhancing stability (Nise, 2015). While ETOAR#PTD may typically 

be more challenging, the feedback structure between production and design shows that 

adding feedback loops with proper parameter settings can contribute positively to 

system stability, and this finding align with the previous research (Naim et al. 2017, 

Wikner et al. 2007).  

In practice, such feedback loops might represent structured communication channels, 

iterative review processes, or quality checkpoints, which can act as stabilizing forces. 

Examples include regular cross-functional meetings, real-time data-sharing platforms, 

or integrated metrics that provide timely insights between production and design teams. 

This research suggests, these practical feedback mechanisms not only improve 

efficiency and project performance, but also help mitigate fluctuations (Shen and Ying 

2022 ,Lee et al. 2006). Such finding echoes strategies used to reduce the bullwhip effect 

in supply chains (J. D. Sterman & Dogan, 2015). By implementing feedback channels 
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that facilitate early and effective communication between subsystems, designers can 

create a more responsive and stable system overall. 

The performance of the ETO system under different demand frequencies  

The research outcome presented in Chapter 5.2 presents Bode plot figures that 

demonstrate the system’s magnitude under different frequencies. Magnitude is crucial 

for the ETO system because higher magnitudes indicate greater system fluctuations, 

which are typically undesirable for production-oriented companies. When the 

magnitude is high, the company needs to dramatically adjust system capacity by hiring 

or laying off labour as well as by purchasing or selling machinery. According to the 

concept of MRC, companies may maintain higher capacity to manage these fluctuations; 

however, this often results in underutilised machinery for a major proportion of the time. 

From the MRL perspective, such systems tend to have more fluctuating lead times and 

a higher likelihood of exceeding planned delivery times. Therefore, this section 

provides a discussion on the effects of τOB and rework ratio on the ETO system.  

The effect of the parameter settings on the ETO SD—τOB 

In Section 5.2, the effect of τOB is investigated using Bode plots. In the 0.01–0.02 

rad/week frequency domain, the influence of τOB on different variables of various ETO 

archetypes is summarised in Table 8.2. It is evident from this table that, from a work 

rate perspective, τOB does not have a strong influence on all three archetypes. From the 

order book perspective, except for the ETOAR#P archetype, a smaller τOB results in 
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smaller fluctuations. For lead time, a smaller τOB leads to milder fluctuations across all 

archetypes.  

Table 8.1 τOB influence on the variables of various ETO archetypes (0.01 to 0.02 

rad/week 628314 weeks). 

 ETOAR#P ETOAR#D ETOAR#PTD 

Work Rate Insignificant Insignificant Insignificant 

Order book  Insignificant The smaller the 

better  

The smaller the 

better  

Lead time  The smaller the 

better  

The smaller the 

better  

The smaller the 

better  

From the frequency domain analysis perspective, τOB should be always set to a smaller 

value. This adjustment helps ensure that the production system minimises the peak 

magnitude. While this conclusion conflicts with the result from the stability analysis, 

such conflicts are attributed to the different demand pattern; the detailed discussion will 

be presented in Section 8.4. 

The effect of parameter settings on the ETO SD—rework ratio 

According to the rework Bode plot, the rework ratio has a significant impact on the 

magnitude ratio of all outputs in all scenarios. It can be concluded that rework has no 

positive impact on the ETO system, thereby suggesting that previous research has 

underestimated its effects. Previous research only considers the direct working units 

and the ripple effect, such as schedule delays, overtime, and worker fatigue (Lyneis and 

Ford 2007). The outcome from the Bode plot suggests that the system’s dynamics must 

also be considered when mitigating the effects of rework. This implies that, in addition 
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to addressing the immediate consequences of rework, managers should account for how 

these changes impact the overall system behaviour over time. Moreover, rework can 

introduce dynamic behaviour into the system; therefore, managers need to consider 

these dynamics when planning capacity and estimating lead times. To calculate the 

necessary capacity and possible lead time, MRL and MRC can be adopted. As depicted 

in Tables 5.5, 5.9, and 5.13, MRC capacity can cover the direct working units created 

by non-conformance as well as the indirect effects caused by the system’s dynamics. 

8.3  Insight from the ETO Resilience Measurement  

This section summarises the insights gained from the ETO resilience measurement. 

Findings are presented, followed by a discussion based on these results. 

 

8.3.1 Summary of Findings  

‘Good’ τOB for different rework ratio, bathtub curve 

One of findings from resilience research is the bathtub curve of the work rate resilient 

τOB value-changing trend. According to Figures 6.17, 6.18, 6.19, for all three scenarios, 

the changing trend of the τOB along with the rework ratio displays a bathtub curve. In 

other words, in the low rework ratio area, the τOB value is comparatively high, and when 

the rework ratio is moderate, the τOB value is low and flat; in contrast when the rework 

ratio becomes higher, the τOB increases and reaches the upper boundary. To develop a 
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better understanding of this, the transient response of the system was investigated to 

reveal three driving forces that determine the ITAE value. With the increases in the 

rework ratio, the contributors to the dominant error change. These driving forces are 1) 

Initial error, 2) settling error, and 3) fluctuation error. This finding is summarised and 

explained in Tables 6.1 and 6.2. 

Lead time and work rate dilemma 

A trade-off between work rate and lead time resilience is discovered in this research, 

and such a trade-off was also found for the MTO system (Wikner et al. 2007). In this 

study, it was proposed that in a fluctuating market, if the company wants to complete a 

project within the promised lead time, then the work rate must be as flexible as possible. 

From another perspective, if the company wants to have a stable, or non-fluctuated 

work rate to reduce the production cost, then the lead time should be more flexible, 

which implies that the delivery of the product/project might be delayed. To achieve 

different resilience goals, there is a different requirement for τOB.  

8.3.2 Discussion  

Implication of the theoretical findings in practice 

Based on the findings and analysis above, a general analysis was conducted to link the 

theoretical contribution to the real practice, as presented in Table 6.23. The table 

summarises how the different period errors affect the ITAE value, and managerial 

suggestions were proposed for prioritising the variable based on different rework zones. 
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Further, the research provides suggestions for various rework ratio levels to improve 

resilience performance with consideration of the trade-off between lead time and work 

rate. The findings depicted in Figure 6.23 can assist in adjusting the capacity 

management strategies for products in different stages of the lifecycle. To be specific, 

the rework will reduce because of the increase in the workers’ familiarity with 

production process (Love et al. 1999) and the production system’s increased maturity 

(Aitken et al. 2003). Thus, management needs to adjust the ‘sensitivity’ to the changes 

in the order book to achieve the highest resilience performance of the production system 

at different stages of the product lifecycle. In addition, products/projects in different 

industries have different rework ratios because of diverse complexities and operational 

uncertainties. The findings can be used to improve ETO system resilience, for varying 

levels of rework, by selecting the ‘good’ τOB value (Love et al. 2019) without a change 

in the structure of the production system.  

The archetype’s role in the improvement of ETO system resilience  

The ETO model developed in this research can provide quantitative suggestions on 

parameter tuning and help make sense of the dynamic behaviour of the ETO system. 

However, to comprehensively improve the resilience of the ETO system, a systematic 

approach involving strategy design, structural adjustment, and crisis management is 

required (Sáenz & Revilla 2014). It is true that an archetype’s insights alone are not 

sufficient for enhancing the overall system’s resilience. Nonetheless, a well-developed 

archetype can provide a valuable platform for sensemaking and simulation. 
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From a sensemaking perspective, an archetype offers a clear illustration of the 

production system structure, thereby enabling management to gain a systematic 

understanding of the system’s fundamental mechanisms. For simulation purposes, the 

archetype can be used to test newly designed resilience strategies, providing an 

overview of their impact and identifying potential risks or unexpected negative effects. 

In summary, while an archetype alone is not sufficient to improve system resilience, its 

value is significant. To maximise the utility of the archetype, continuous upgrading and 

case-by-case adjustments are necessary, which requires effort from both modellers and 

practitioners. 

8.4  Implications  

The determination of the τOB value and its implications 

Section 7.1 synthesises the experimental results from previous chapters and illustrates 

them in Figure 7.1, followed by a recommendation on the τOB value setting. The 

recommended τOB value varies according to the rework ratio and demand frequency, 

but it should always be greater than 6.25 to maintain system stability. The τOB value 

represents the system’s compensation to the work rate in each period, which is based 

on the difference between the actual and the real order book. It reflects how the 

production plan is formulated for each period and determines the required capacity, 

represented by MRC. Additionally, based on the τOB value, the MRL can also be derived 
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and should be referred to when deciding on the promised lead time for a product or 

project. 

Sensitivity analysis  

A simulation approach is used for the sensitivity analysis in Section 7.2. By employing 

this approach, the system’s sensitivity-to-design lead time, production lead time, 

rework ratio, and rework rescheduling time was tested. The insights from the sensitivity 

analysis can be summarised in the following manner: 

1. Regardless of the accuracy of the design or production lead time estimates, the 

final state for output, delivery rate, and lead time will always stabilise at the 

designed level. 

2. Changes in the subsystem’s lead time affect the settling time and peak value of the 

work rate, thereby implying that variations in subsystem lead times can lead to 

increases in both the production subsystem’s capacity and the overall system’s lead 

time. 

3. An increase in the rework ratio provides no benefits to the system and results in a 

more dynamic and unstable system. 

4. The ETOAR#PTD type of rework is the most destructive, as it increases the 

workload for both the design and production subsystems. 
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The sensitivity analysis reveals that subsystem lead time negatively influences both the 

overall system’s lead time and capacity. Therefore, maintaining subsystem lead times 

at the designed level is crucial. Another important insight is that ETOAR#PTD should 

always be avoided. One strategy to mitigate this is to adopt a ‘Think Slow, Act Fast’ 

approach in production. Consequently, Section 7.3 conducts several experiments on 

this strategy and the discussion is presented below. 

Think Slow, Act Fast  

The 'Think Slow, Act Fast' philosophy provides a structured lens to examine the 

relationship between the design and production phases in complex systems. This study 

revealed nuanced impacts of allocating additional design time, showing that design 

changes or errors detected during the production stage are far more detrimental than 

allocating additional time for design inspections or waiting for customers to finalize the 

design. These findings challenge the intuitive simplicity often associated with this 

concept, emphasizing the critical importance of thorough preparation in the design 

phase. 

Section 7.3 delves into the ‘Think Slow, Act Fast’ philosophy, applying it within a SD 

framework to the ETO system. Through the development and analysis of two distinct 

SD models, ETOAR#D+X and ETOAR#PTD, the impact of additional design time 

(denoted as '+X') was examined on the ETO system's lead time. The findings reveal a 

direct correlation between the rework ratio and the feasibility of allocating extra design 
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time. Notably, the ETOAR#D+X model demonstrates a decrease in the bullwhip effect 

within the system, contrasting with the ETOAR#PTD scenario in which rework 

amplifies this effect. This distinction is critical, as it emphasises the benefit of 

addressing design issues before production initiation.  

Aligning with the principles outlined in the book entitled ‘How Big Things Get Done’ 

(Flyvbjerg and Gardner 2023), the study echoes the segmentation of PM into the 

‘Planning’ and ‘Delivery’ phases. This segmentation resonates with the ‘Design System’ 

and ‘Production System’ in an ETO context, thereby reinforcing the concept that 

thorough planning (or design for production) is crucial for efficient delivery (or 

production). The given research supports the book’s advocacy for comprehensive 

planning, emphasising the importance of cross-departmental collaboration and early-

stage prototyping and modelling. 

Practically, the findings advocate for the implementation of a design inspection and a 

‘design freeze’ window, which has been proved effective in reducing the uncertainty in 

the production system in previous research (Ford and Sobek 2005). This approach not 

only aids in minimising the transfer of defects to the production phase but also 

contributes to reducing fluctuations in the production system’s work rate and capacity 

requirements. By comparing the ETOAR#D+X and ETOAR#PTD models across 

various rework ratios (RW) and extra time allocations (X), it is consistently observed 

that the former yield more favourable outcomes in terms of the system’s lead time. 

Additionally, allocating enhanced resources to the design department and empowering 
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the inspection and design team leaders with greater decision-making authority can 

further mitigate risks associated with design defects. 

8.5  Summary  

In summary, this research developed a ETO archetype family by referencing the 

IOBPCS archetype (Towill 1982) and the order book-based control policy from the 

MTO archetype (which is also known as the variable order book based production 

control system (VOBBPCS)) (Wikner et al. 2007). The ETO archetype family 

developed in this research completes the production system archetype family, as shown 

in the Table 1.1, which indicates that dynamic analysis can be applied in ETO field. 

Chapter 5 illustrates the dynamic analysis result of the ETO archetype family, which 

includes stability boundary and Bode plot of the archetype. The result is further used to 

derive the ETO system’s MRL and MRC (Lin et al. 2020). Thereafter, the archetype 

family is used for the system’s resilience measure and improvement, and the results 

leads to the derivation of the ‘good’ τOB for different rework ratio. This method has 

been adapted from the resilience analysis reference the method developed by Spiegler 

et al. (2012) and extends the original method into the high-order discrete system field. 

In Chapter 7, a synthesised analysis on the order book controller’s parameter is 

conducted, which provides suggestions on the τOB value setting in a real scenario. 

Finally, the ETO archetype family is adopted in validating the ‘Think Slow, Act Fast’ 
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philosophy (Flyvbjerg and Gardner 2023); this archetype also contributes to deriving 

the best ‘Thinking’ time for the ETO system.  

In the next chapter, the contribution of each research objective is discussed. Moreover, 

based on the discussion and insights from this chapter, the future research agenda is 

presented. 

  



353 

Chapter 9 Conclusion and Future Research 

Agenda 

This chapter retrospectively relates the research with the initial objectives. It concludes 

by detailing the theoretical and practical contributions of the research. The theoretical 

contributions are outlined for all three main objectives. For each main objective, there 

are several sub-objectives, and an explanation is provided for how each sub-objective 

contributes to the main objectives and overall contributions. From a practical 

perspective, the main contributions are identified for each objective. Additionally, this 

chapter outlines the limitations encountered during the study and proposes a future 

research agenda. The main contribution points and future research agenda are depicted 

in Figure 8.1.  

9.1 Theoretical Contributions 

This research provides three main contributions that align with the overarching aim of 

enhancing the understanding and management of ETO dynamics and resilience. First, 

it introduces an archetype framework that captures the key characteristics and feedback 

loops in ETO systems, offering a foundational tool for system analysis (9.1.1). Second, 

the research presents a dynamic analysis of interactions within these systems, revealing 

critical trade-offs between lead time and work rate resilience (9.1.2). Finally, it focuses 

on resilience, providing solutions for resilience improvement through better parameter 

settings (9.1.3). Together, these contributions advance both the theoretical 
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understanding of ETO systems and practical approaches for improving operational 

performance. The theoretical contributions from each research objective are presented 

in Section 9.1. 

9.1.1 The Contribution from Addressing Research Objective 

1 

Objective 1: Build ETO archetypes to provide a CT model which can be used as a 

quantitative platform for further research. 

The main contribution can be summarised into two aspects: (1) Contribution 1—expand 

the application of IOBPCS into the ETO field. (2) Contribution 2—highlight the 

importance of aggregate-level planning for an ETO system. In the following paragraphs, 

the details of the contributions are provided.  

Contribution 1: Expanding the application of IOBPCS into ETO field. 

The IOBPCS archetype has been widely adopted in MTS, ATO, and MTO systems. Its 

order book and feedback loops simulate decision-making processes within production 

systems, thereby enabling users to reproduce the dynamic behaviour of these systems 

at an aggregate level. This approach explains the mechanisms underlying the bullwhip 

effect from a systemic and quantitative perspective and providing dynamic control 

solutions for management (Ponte et al. 2017, Disney et al. 2004). However, the 

IOBPCS has not yet been applied to ETO systems, where dynamic behaviour is seldom 
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investigated. Thus, this research aimed to build ETO archetypes to provide a CT model 

which can be used as a quantitative platform for further research. 

In this research, an ETO archetype family is developed which encompasses three 

archetypes that represent different rework scenarios within an ETO system. The 

primary structure of these archetypes includes two subsystems: design and production. 

These correspond to the major activities in the ETO system—design activities tailored 

to customer requirements and production activities that actualise these designs into 

products or projects. An order book controller at the holistic level of the archetype 

ensures system performance stabilises at the desired level, even with rework. 

The newly developed archetype references the modelling techniques and control loops 

of the IOBPCS archetype, thereby providing a quantitative platform for a dynamic 

analysis of ETO systems. Unlike the IOBPCS archetype, the ETO archetype family 

incorporates rework, thereby offering insights into how this unique activity affects 

dynamic of the system. Additionally, the new archetype family simulates working units 

as a flow rather than as a quantity of products, thereby making the model applicable to 

production-oriented systems, such as ETO or MTO. 

Furthermore, due to similarities in modelling techniques, the analytical methods used 

for the IOBPCS archetype, such as stability and frequency domain analysis, can be 

easily applied to the ETO archetype family. This expands the application areas for these 

analytical methods. 
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In summary, this research extends the application of the IOBPCS archetype to the ETO 

field, thereby completing the IOBPCS family by introducing an ETO archetype family. 

This enables a quantitative analysis of ETO systems. The introduction of elements like 

rework and working units presents new questions for system analysis, but also allows 

methods and knowledge developed for the IOBPCS model to be applied to new topics. 

Contribution 2: Highlight the importance of aggregate-level planning for an ETO 

system. 

According to the previous literature (Cannas and Gosling 2021, Zhou et al. 2023), there 

are not many quantitative studies in the ETO field , with even fewer focus on the model-

based aggregated level planning. In the PM field, there are a few studies that focus on 

model development for project execution (Lee et al. 2006c, Han et al. 2013). The 

models developed in this research are single project/product focused and neglect 

aggregated level planning. For an ETO system, an aggregated level planning system is 

necessary because an ETO system usually needs to be able to handle scenarios wherein 

several ETO products are being produced simultaneously. This implies that when 

management makes decisions regarding capacity planning or lead time estimation, they 

need to take all ongoing projects/productions into consideration. Therefore, an 

aggregate level planning system is necessary for the ETO system.  

The archetype family developed in this thesis models an ETO system on an aggregated 

level with the consideration of rework creating extra working load. The input of the 
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system is the total amount of working units in a certain timeframe, which is weak in the 

model. All the unfinished works will be ‘stored’ in the order book, and the order book 

controller will adjust the working rate of the whole system to guarantee that production 

can be finished on time. Simultaneously, rework is also considered in this model; the 

rework loop simulates the rework’s effect on the system. The effect of the rework not 

only includes the direct working units created by the rework but also the extra work 

caused by the errors made during the reworking.  

In summary, the archetype family developed in this research simulate an ETO system 

on an aggregated level, with consideration of rework and its side effects, which can 

reflect the production system’s behaviours. Combining this with the MRL/MRC 

concept makes this family suitable for use in capacity management. By considering the 

dynamic behaviour of the system, the capacity estimation can be more accurate and the 

waste can be reduced.  

How sub-objectives contribute to the main objective: 

The initial modelling step aims to: Sub-objective 1 a)—develop a CLD of a general 

ETO system. The contribution of this to answering research objective 1a (OBJ 1a) is 

significant, as it distils crucial elements and structures for general ETO systems, and 

the models developed depict three fundamental scenarios for an ETO system. However, 

since the CLD provides limited quantitative evidence and insight, the position of the 

order book controller cannot be definitively determined at this stage of research. Sub-
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objective 1 b)—Transform the CLD into a block diagram using discrete time, z-domain 

notation. The sub-objective aims to transform the model into a block-diagram model, 

thereby allowing for the application of more quantitative tools to the developed model. 

Based on the developed CLD, the model was transformed into a block-diagram format, 

and several simulations were conducted to determine where the order book controller 

should be placed. It was found that for production-oriented systems, the order book 

controller is necessary to regulate the system’s output and only a holistic controller can 

maintain the system at the desired performance level in the presence of rework. Local 

order book controllers fail to sustain overall system output or lead time in the long-term. 

Furthermore, given the challenges associated with non-linearity calculations, Little’s 

Law for lead time was linearised. This adaptation contributed to the model by enabling 

the derivation of a linear transfer function for lead time, thereby enabling control 

engineering tools to be effectively applied to the ETO system. The outcome subjective 

1 b) is an ETO archetype family based on the linearised CT, which enables the 

subsequent dynamic analysis to be utilised for an ETO system.  

9.1.2  The Contribution from Addressing Research Objective 

2 

Objective 2: Assess the dynamic performance of the ETO archetypes. 

Contribution 1: Assess the ETO system’s dynamic performance from a quantitative 

perspective.  
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Due to the absence of the ETO archetype family, the dynamic behaviour of the ETO 

system remains unrevealed. The importance of the dynamic behaviour study has not 

been well recognised in the ETO field, but its manifestation has been observed. In a 

typical ETO field, such as construction and shipbuilding industries, time and budget 

overruns are a common problem. According to Lyneis and Ford (2007), apart from 

external factors, the ripple effect and knock-on effect caused by rework may lead to 

cost and time overruns. Simultaneously, this aspect is also supported by Flyvbjerg and 

Gardner (2023), who indicated that for a complex system, a tiny change—such as a 

defect in design—can trigger a chain effect which finally leads to a huge time or cost 

overrun. The chain effect, ripple effect, and knock-on effect depicts how the system 

reacts to the change, and the process of reaction constitutes the dynamic behaviour of 

the system. Therefore, in order to understand and improve the dynamic performance of 

the system as well as to reduce the time and budget overruns, the system’s dynamic 

performance analysis is necessary. 

Chapter 5 provides a holistic analysis of stability analysis and frequency domain 

analysis. The stability analysis reveals a dangerous parameter setting, which may lead 

to an unstable system. For the ETO archetypes, an unstable parameter setting may lead 

to a non-convergent fluctuation, and the fluctuation will result in a fluctuated 

production capacity. This issue will finally lead to increases in cost due to the frequent 

buying and selling of machines or hiring and firing in the labour force.  
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The frequency domain analysis investigates the system’s performance under a variety 

of demand frequencies. This research focuses on magnitude of the output and the phase 

difference between output with input. The research outcome given in section 5.2 sheds 

light on how the parameters affect the system’s behaviour and provides 

recommendations on parameter settings.  

In conclusion, in Chapter 5, several dynamic performance investigations were 

conducted based on the transfer function derived in Section 5.1. These analyses 

provided a profound understanding of the archetype’s properties and enhanced 

knowledge of how various parameters impact the system’s performance. In the 

following sections, the contribution of each sub-objectives is presented. 

How sub-objectives contribute to the main objective. 

Sub-Objective 2 a) is the verification and transfer function analysis serving as a critical 

step for ensuring the reliability of the archetype. An incorrect archetype or one that 

contains even trivial errors could lead to misleading experimental results, which is 

particularly problematic for a model intended for further investigation and research. In 

Chapter 5, the verification involved simulations on different software platforms and 

simulation on transfer functions. Only if the results are all the same, further analysis 

can be conducted.  

After the verification, the research focuses on sub-objective 2 b)—determine how the 

ETO archetypes perform under different frequency inputs. For the frequency domain 
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analysis, Bode plots were utilised to examine the system’s magnitude and phase delay 

under varying demand frequencies. These plots provide insights into how rework and 

τOB affect the system’s magnitude and phase delay under various demand frequencies. 

The contribution of this sub-objective is that it provides recommendations on parameter 

settings from a frequency domain analysis perspective and helps in the derivation of 

the MRC/MRL for the ETO system.  

Sub-objective 2 c) aims to define the critical stability boundary of the ETO archetypes. 

The contributions of this sub-research question are significant and can be summarised 

in the following points: 

Hybrid method for stability analysis: The hybrid Routh-Hurwitz-PSE method provides 

a robust approach for the stability analysis of discrete high-order time systems with 

symbolic elements. Given that the order of a discrete-time system is influenced by delay, 

systems often exceed the fourth order, which complicates solving the characteristic 

equations with symbols. The hybrid method combines the benefits of analytical 

methods with simulation techniques. A key advantage of this method is the adjustable 

accuracy, which can be fine-tuned by setting the length of the simulation step. 

Critical stability boundary: The derived critical stability boundary illustrates how the 

rework ratio impacts the system’s stability. The findings also indicate that the duration 

of delay within the system negatively affects stability, thereby highlighting areas that 

require attention for improving system design and operation.  
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These insights contribute to a deeper understanding of the dynamic behaviour of higher-

order systems and provide practical guidelines for managing the inherent complexities 

associated with delays and rework processes. 

9.1.3 The Contribution from Addressing Research Objective 

3 

Objective 3: Measure and improve the ETO archetype’s resilience from a SD 

perspective. 

Contribution 1: Application of a quantitative resilience measure on an ETO system 

The resilience of the ETO system remains in its initial stages of study and is particularly 

evident after the increased interest in the resilience of production systems post-COVID-

19. Despite this growing interest, the unique combination of production system and PM 

aspects within ETO systems has not been extensively explored before. Resilience is 

particularly vital for an ETO system due to its complex network and structure, coupled 

with higher levels of uncertainty compared to other production system types. Therefore, 

the third objective aims to measure and improve the ETO archetype’s resilience from 

an SD perspective. 

In this research, resilience measurements from both the production system and PM 

fields were reviewed. A quantitative measurement applicable to the ETO archetypes 

developed in this thesis was selected. Multiple experiments were conducted to visualise 

changes in resilience in response to parameter changes within the system. Based on the 
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visualised figures, the ‘good’ τOB is picked up for each rework ratio, and the dilemma 

between capacity and lead time resilience is observed and analysed. The finding and 

recommendations are presented in section 6.3. The work rate’s ‘good’ τOB demonstrates 

a ‘bathtub’-like curve along with the increase in rework, while the lead time’s ‘good’ 

τOB is maintained at a level between 20 and 25. To overcome this different requirement 

for τOB, this research investigates the transient responses of both lead time and work 

rate, with its own ‘good’ τOB value. The main ITAE error contributors are identified and 

summarised, based on which the recommended τOB value is derived and illustrated in 

Figure 6.20. 

However, according to the research outcome of objective 2, the stability analysis and 

Bode plot analysis also have their own requirements for a ‘good’ τOB. Therefore, a 

synthesised analysis is conducted. To select the most appropriate τOB which can 

maintain the system’s stability, it is important to improve the system’s performance 

under different demand patterns and create a system with high resilience. The 

synthesised analysis provides a comprehensive recommendation on τOB from three 

perspectives, which integrated all the findings from this thesis. 

In summary, this objective contributes to the body of knowledge by adapting ITAE to 

the ETO archetype family and summarising the ‘good’ τOB for each rework ratio, which 

can improve the system’s performance in general. 
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Contribution 2: Validate the ‘Think Slow, Act Fast’ philosophy from a quantitative 

perspective. 

‘Think Slow, Act Fast’ is a philosophy that is widely accepted in the PM field. ‘Think 

Slow’ refers to the scenario wherein management spend more time and effort in making 

a good and detailed design/plan for project and occasionally it also implies that the PM 

reserves a longer window for the customer to freeze their design. ‘Act Fast’ can be 

understood from two perspectives: one is that the production or the construction should 

be finished as soon as possible to prevent any uncertainty; the other is that ‘Think Slow’ 

can result in a shorter overall project time. This philosophy demonstrates its adaptability 

in the ETO field of improving the overall performance of the system, including 

resilience. Therefore, this research attempts to validate this philosophy from a 

quantitative perspective and to adopt it in an ETO system.  

The ‘Think Slow, Act Fast’ philosophy is investigated based on the developed 

archetype and the measurements adopted in the resilience research, and the findings 

suggest that such a philosophy can be used in an ETO environment, and the maximum 

time that can be allocated to the ‘thinking’ is derived. 

The contribution of this study is that it quantifies the benefit of ‘Think Slow’, and 

manifests how ‘Fast’ the ‘Act’ can be. In turn, this proves the accuracy of this 

philosophy from an SD perspective and validates the effectiveness of this philosophy 

in the ETO field. 
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 How sub-objectives contribute to the main objective. 

The following paragraphs illustrate how sub-objectives contribute to the main objective. 

To measure the resilience of the system, a quantitative measurement is necessary; 

therefore, sub-objective 3 a) aimed to select a suitable resilience index for the ETO 

archetype. Table 6.1 summarises the result from a literature review, which categorises 

resilience measurements into three groups, with each group representing a phase of the 

resilience process. The ITAE was selected as the primary resilience index for this 

research because it can measure the system’s resilience from a whole-process 

perspective.  

Based on the selected index, sub-objective 3 b) focuses on selecting decision rule 

parameter settings to achieve the ETO archetype’s best resilience. This study utilised 

simulation to assess the ITAE values across various combinations of rework ratios and 

τOB (order book time constant), thereby selecting the combination that yielded the 

lowest ITAE. For each archetype, two sets of parameter settings were identified to 

achieve the highest system resilience—one set for delivery rate resilience and another 

for lead time resilience. A comparison of these sets revealed differing requirements for 

each type of resilience, thereby highlighting a trade-off between them. 

To address the identified trade-off, an in-depth analysis of the system's transient 

responses was conducted, culminating in the development of Figure 6.20. This figure 

provides recommended strategies for managing systems with different rework ratios, 
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offering a practical approach to navigating the complexities associated with balancing 

resilience factors. 

However, from a resilience perspective, the ‘good’ τOB is derived according to the 

stability and frequency domain analyses, both of which also have a requirement for 

τOB. Therefore, sub-objective 3 c)—result synthesis on ‘good’ τOB research—is 

designed to synthesise all result relevant to τOB. Chapter 7.1 synthesises the results of 

the stability analysis, Bode plot analysis, and resilience analysis in Figure 7.1. Based 

on this figure, three guidelines are provided for selecting the value of τOB. The 

synthesised results summarise the findings from previous analyses organically and 

provide insights into determining capacity at an aggregated level while considering 

rework and demand fluctuations. The contribution of this objective is its attempt to 

relate theoretical results with practical recommendations, considering all previous 

findings. It provides an overview of how to comprehensively enhance the dynamic 

performance of the production system. 

Finally, sub-objective 3 d) is designed to assess the ETO archetype’s sensitivity to 

parameter uncertainty. The sensitivity analysis conducted in Chapter 7.2 and 

investigates how sensitive the systems are to changes in parameters and delays. The 

contributions of this analysis can be summarised in the following manner: 

Impact of prolonged delay in subsystems: An increase in the delay within subsystems 

leads to higher peaks in the transient responses and a longer time required for the system 



367 

to stabilise at a new normal state. This finding enhances the understanding of how 

delays in subsystems influence the overall system’s output. By identifying the effects 

of delay, strategies can be developed to mitigate these impacts, potentially improving 

system stability and responsiveness. 

Sensitivity of the bullwhip ratio to delay: The bullwhip ratio is highly sensitive to the 

delay changes within the subsystems. The trend observed is either an increase or a 

fluctuating increase in the bullwhip ratio, thereby indicating that longer delays correlate 

with higher bullwhip ratios. This insight is significant as it contributes to the 

understanding of how subsystem delays affect the system’s bullwhip ratio. It addresses 

a gap in the research on the bullwhip effect within the ETO system field and provides 

a foundation for future strategies to reduce inefficiencies caused by delay-induced 

variability. 

9.1.4 Summary of Theoretical Contribution  

This research contributes to the existing body of knowledge, first, by providing an ETO 

archetype family which is composed of three basic rework scenarios that compensate 

the application of SD in the production systems family. Second, by adopting dynamic 

analysis techniques for the developed archetypes, it provides readers with a better 

understanding to the ETO system. Finally, the research regarding the ETO system 

resilience fills the blank in this field and provides a quantitative method to improve the 

system’s performance from the resilience perspective. 
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9.2  Contribution to Practice  

The practical contributions from each research objective are presented in Section 9.2. 

The practical implications and recommendations presented in this research are 

grounded in the theoretical model developed to explore the dynamics of ETO systems. 

While the model has not been validated through real-world cases or interviews, it is 

built on well-established principles of SD and supported by insights from the existing 

literature. This provides a solid foundation for identifying key system behaviours, such 

as rework impact, capacity fluctuations, and lead time resilience. 

These recommendations serve as a conceptual framework to guide industry 

practitioners in better understanding and addressing operational challenges. It is 

acknowledged that the absence of empirical validation represents a limitation. Future 

research could involve validating the model through real-world data, case studies, or 

industry collaborations to further enhance its applicability and refine the 

recommendations. Despite this limitation, the theoretical contributions of this research 

provide valuable tools for sensemaking and system study in the context of ETO systems.  

 

9.2.1 Practical Implications from Addressing Research 

Objective 1  

For industry practitioners, this research offers three ETO archetypes that can facilitate 

a better understanding of the system and enable benchmarking with actual practices. 
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Enable benchmarking’ refers to providing industry practitioners with a framework to 

compare their existing practices against the modelled ETO archetypes. By using these 

archetypes, practitioners can identify gaps in their current systems, evaluate 

performance metrics such as lead time and work rate resilience, and assess how closely 

their operations align with the theoretical benchmarks provided by the archetypes (Lin 

et al. 2020). This comparison allows them to pinpoint areas for improvement to enhance 

their operational efficiency and resilience. The detailed contributions of this research 

are detailed below: 

Sensemaking of an ETO system: 

The models developed in this research serve as tools for sensemaking and 

understanding the dynamics of ETO systems. They abstract ETO activities and simplify 

them using carefully defined assumptions to focus on key interactions and behaviours. 

These assumptions, such as idealized lead times, rework mechanisms, and capacity 

constraints, make the models computationally feasible and conceptually clear. This 

simplification enables the framework to effectively explain phenomena observed in 

practice, such as capacity fluctuations, bullwhip effects, and cost or time overruns. 

Despite the abstraction, the models provide valuable insights into SD and serve as a 

solid foundation for further development and integration with real-world complexities. 

Highlight the importance of a holistic order book controller: 
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The findings from Chapter 4 suggest that the order book controller is crucial in 

maintaining system performance, even in the presence of rework. This research 

indicates that the effects of rework in the production system should be considered at a 

holistic system level, thus requiring adjustments in both upstream and downstream 

processes to fully mitigate the impacts of rework.  

Provide a simulation platform: 

In practical scenarios, experimenting with policies or strategies for real projects is often 

unfeasible due to the high demands on labour and capital as well as the risks associated 

with potential failures. However, strategy design and testing are essential for managers 

to ensure the effectiveness of their approaches. In this context, the archetype can 

function as a strategic experiment platform. Testing strategies through simulation is 

typically swift and cost-effective and allows managers to gain a comprehensive 

understanding of the production system without the high risks associated with direct 

implementation. 

These contributions emphasise the practical utility of the ETO archetypes developed in 

this research, providing industry practitioners with valuable tools to enhance decision-

making and strategic planning for ETO systems. 

A Decision-Making Framework for Capacity and Production Planning 

The SD based archetype developed in this research provides a foundation for a decision-

making framework that supports capacity and production planning in ETO systems. 
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SD-based engines have been successfully deployed in production planning by 

connecting SD models with other tools and software to improve decision-making (e.g., 

(Lee et al. 2005a; Lee et al. 2006a; Han et al. 2013)). These engines facilitate resource 

allocation and scheduling by integrating real-time data and predictions, demonstrating 

the practicality of SD models in complex environments. Similarly, the SD model 

presented here has the potential to serve as a decision-making engine for ETO systems, 

enabling organizations to incorporate dynamic insights into their production planning 

processes. 

This archetype's ability to estimate work rates and working packages can enhance Sales 

and operations planning (S&OP) processes by providing a clear understanding of 

capacity bottlenecks and dynamic trade-offs (Furlan de Assis et al. 2023). Additionally, 

its outputs can feed into Integrated-Material Requirements Planning systems (Velasco 

Acosta et al. 2020), enabling more precise material procurement and inventory planning. 

By bridging aggregate-level planning with operational decision-making. 

The archetypes can support: 1. Dynamic adjustment of system capacity and associated 

resources, accounting for fluctuations and variability within the system. 2. Enhanced 

integration between the design and production phases, minimizing lead time 

uncertainty. The success of SD-based engines in construction underscores the 

feasibility of integrating this model with other tools and software to create a 

comprehensive planning system. By adapting such approaches to ETO environments, 

this research lays the groundwork for practical applications in production planning, 
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advancing both the theoretical understanding and operational efficiency of ETO 

systems. 

9.2.2 Practical Implications from Addressing Research 

Objective 2 

The response RQ 2 focuses on the dynamic performance of the ETO archetypes. The 

contributions of this research are significant and can be summarised into the following 

points: 

Mark up the unstable zone for the ETO system 

The stability analysis offers practical insights by providing managers with a ‘stability 

map’. This map indicates potentially hazardous parameter settings across various 

systems characterised by different delays and rework ratios. Such a tool is invaluable 

for managers, as it helps in avoiding unstable zones that could lead to operational 

inefficiencies and increased costs due to fluctuations. This proactive approach to 

managing system parameters ensures smoother operations and can significantly reduce 

financial losses attributed to system instability. 

Derive the MRL and MRC for the ETO system 

Insights from the Bode plot are instrumental in determining the MRC required for a 

production system. Given that demand patterns are often cyclical, managers can use a 

Bode plot to accurately estimate this capacity threshold, thereby preventing potential 
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capacity shortages. Additionally, when the frequency of demand changes is known, 

managers can fine-tune the system’s responsiveness by adjusting the τOB (order book 

time constant). This adjustment helps in reducing the magnitude of fluctuations, which 

in turn minimises the costs associated with frequent capacity adjustments. 

9.2.3 Practical Implications from Addressing Research 

Objective 3 

The answer to RQ 3 significantly enhances practical applications by focusing on 

resilience improvement in an ETO system. The contributions can be outlined as below: 

Provide a quantitative method for resilience measurement and improvement: 

In Chapter 6, the ITAE is adopted to measure the resilience of the ETO system. This 

index allows managers to assess the system’s resilience quantitatively and provides a 

straightforward method to investigate the influence of system parameters on resilience 

performance. Additionally, a resilience optimisation method using the PSE simulation 

is introduced. This approach illustrates how selected parameters affect the system’s 

resilience performance, aiding managers in selecting optimal parameter settings. One 

of the key advantages of this method is its simplicity—it does not require complex 

calculations and this makes it suitable for higher-order systems typically encountered 

in real-world applications. 

Highlight the importance of preventing production to design rework from 

happening: 
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The research conducted in Chapter 7.3 provides quantitative backing for the strategy 

termed ‘Think Slow, Act Fast’. This strategy allows decision-makers to evaluate the 

optimal ‘thinking’ time required to maximise lead time reductions from a holistic 

system perspective. By quantifying the effects of decision-making speed on system 

performance, managers can more effectively balance deliberation and action, thereby 

leading to more efficient and responsive operations. 

Overall, the outcome from research objective 2 enriches the existing body of knowledge 

by illustrating how dynamic performance metrics—such as stability boundaries, Bode 

plots, and strategic response times—can be practically applied to enhance the 

management and operation of ETO systems. These insights not only improve 

theoretical understanding but also offer tangible, actionable strategies that can be 

implemented in real-world ETO environments to optimise performance and reduce 

risks. 

 

9.3  Limitations and Future Research Agenda of Model 

Development  

The limitations of the ETO archetype developed in this thesis are summarized in 

Section 9.3.1, and the future research agenda is provided in Section 9.3.2. 



375 

9.3.1 Limitations  

The developed archetype has notable limitations. The first limitation stems from the 

assumption that the system is linear. To maintain this assumption, the model sacrifices 

some fidelity by standardising the flow into working units and assuming that all 

demands can be quantified using these units. While this approach enables working units 

to represent working packages in practice, it overlooks unique working packages that 

may require specialised technicians. 

The second limitation of this archetype is that it describes the process of a traditional 

linear supply chain. It fails to accurately represent modern ETO companies that base 

their production planning on frontline foremen, known as the foreman planning system. 

In such systems, foremen are tasked with planning the work for their teams, which are 

typically composed of multi-certified workers with diverse skills. 

The third limitation is that the archetype focuses solely on working units and neglects 

the coordination between working units and materials. This oversight occurs because 

the scope of this research is confined to studying single flow systems. Including 

material flows would complicate the investigation of working flow behaviours in the 

ETO supply chain, potentially detracting from the primary focus of this study. 

9.3.2 Future Research Agenda  

Based on the limitations discussed in Chapter 4, further research could focus on 

following key areas: 
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Hybrid modelling  

To further improve the applicability and fidelity of the system, future research could 

integrate multiple techniques to model the system across different layers. A hybrid 

model can better capture the features of the production system and provide a more 

holistic platform for decision-making. The SD model developed in this research can 

serve as the core engine for aggregate-level planning. Other methods, such as discrete-

event modelling or agent-based modelling, can be used for lower-level modelling. This 

hybrid modelling concept has already been adopted in the construction field and was 

found to significantly enhance the effectiveness of ETO systems (Lee et al. 2006a).  

Verify the model through actual case studies  

The archetype developed in this research has not been verified by actual case studies, 

which raises concerns regarding model fidelity. Future research could apply the 

developed archetype in real-world scenarios to verify its accuracy. Additionally, 

adopting archetypes provides an opportunity to compare theoretical models with actual 

production systems, thereby offering a vital opportunity for model enhancement and 

validation. 

MIMO simulation platform 

Future research could enhance model fidelity by incorporating material flow into the 

system, thereby improving realism by integrating the coordination between work and 

material flows. While this upgrade enhances the model’s accuracy, it also increases the 
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difficulty and complexity of system analysis. Adopting a multi-input multi output 

(MIMO) concept would be essential for effectively studying such systems. The 

outcomes of this research could significantly benefit inventory and production 

management in an ETO environment. 

Demand smoother  

Another future research agenda could incorporate a demand smoother function into the 

developed archetypes. In this thesis, the archetypes assume that ‘demand’ directly 

becomes the ‘order book’. However, in reality, when customers place orders, their 

demand is broken down into a production plan, which corresponds to the demand 

smoothing process. Future research should integrate the demand smoother into the 

model archetype to enhance understanding of its influence on the planning process of 

an ETO system.  

9.4  Limitation and Future Research Agendas for Dynamic 

Analysis  

The limitations of the dynamic analysis of ETO archetype in this thesis are summarized 

in Section 9.4.1, and the future research agenda is provided in Section 9.4.2. 
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9.4.1 Limitations 

The limitations of the dynamic analysis can be summarised into two main aspects: the 

applicability of the dynamic analysis tools, and the challenge of linking theoretical 

outcomes from dynamic analysis to real-world practice. 

First, the methods developed and used in this thesis are specifically designed for SD 

based models. However, dynamic analysis tools are lacking for other types of models, 

particularly for hybrid production system models. 

Second, the research outcomes of this thesis are theoretically driven, thereby creating a 

gap between these results and their practical application. Bridging this gap requires 

further study to adapt and validate the theoretical findings in real-world settings. 

9.4.2 Future research agendas  

Based on these limitations, two future research agendas are proposed: 

Adopting SD analysis for hybrid models 

Further research could focus on developing more efficient analytical methods for hybrid 

models, providing system modellers with vital tools for system analysis. This includes 

stability analysis tools for hybrid, high-order systems to derive stable conditions for 

hybrid models. Additionally, frequency domain analysis should be able to assess the 

dynamic performance of complex hybrid models under various demand frequencies. 

These analyses are critical for fully utilising the developed model. At the current stage, 
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most hybrid models primarily serve as simulation tools and their dynamic performance 

has not been fully investigated. 

Determine the real-world parameter  

The dynamic analysis in this thesis focuses on the rework ratio and τOB value. The 

rework ratio corresponds to the proportion of non-conforming working units among the 

total working units. However, the τOB value has different meanings in various 

production systems, thereby leading to the issue that the research outcomes regarding 

τOB are difficult to apply in real-world cases. In future research, to utilise the findings 

from the dynamic analysis effectively, more work needs to be done to link the τOB 

concept with the planning decisions made in production systems. 

9.5  Limitations and Future Research Agenda for Resilience  

The limitations of the resilience study in this thesis are summarized in Section 9.5.1, 

and the future research agenda is provided in Section 9.5.2. 

9.5.1 Limitations 

Resilience improvement in practice 

To test the production system’s resilience, this research assumes when disturbances 

happen, the management allow the system to recover independently without any 

external intervention. However, in real practice, when a crisis occurs, the company 

initiates emergency actions to address the disturbance. However, in this research, it is 
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assumed that no intervention occurs, and recovery depends solely on the system’s order 

book controller. Therefore, adapting theoretical outcomes to practical scenarios is 

challenging. Although Figure 6.20 attempts to link theoretical results with practical 

strategies, it is still in its initial stage and lacks practical benchmarks. 

To improve the resilience of a real production system, a systematically designed 

reaction plan is needed, which contains different strategies for specific disturbances. 

However, such a plan is not investigated in this research. The resilience improvement 

strategies proposed in this research are based on the τOB concept, a core parameter in 

this archetype. In actual practice, improving the resilience of the production system 

requires a systematic procedure or mechanism. This research does not investigate such 

a mechanism and, thus, the adoption of τOB remains underexplored. 

Considering disturbances other than those on the supply side  

The ETO system operates within a complex and uncertain environment. To explore the 

resilience of the ETO system, it is crucial to assess how various types of disturbances 

impact overall performance. However, testing step change input offers limited insight 

into system resilience. The impact of process disturbances remains unexplored. 

Additionally, during a crisis, the production system may be simultaneously affected by 

multiple disturbances. The coupling effect of these disturbances on the production 

system is also yet to be discovered.  
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9.5.2 Future Research Agenda 

Consider other types of disturbances  

Further research could focus on simulating other types of disturbances, such as 

production time changes, productivity losses, and order book losses. Simulating these 

disturbances can provide a better understanding of how the system reacts and can be 

beneficial for resilience improvements. To achieve this, and to conduct the simulation 

via the SD method, the MIMO concept could be introduced in production system 

modelling. 

In this approach, disturbances to the production system can be simulated as additional 

inputs while outputs could include metrics such as delivery rate and lead time. The 

benefit of utilising this concept is that it not only provides a method to simulate process 

disturbances but also offers a platform for analysing disturbance coupling. This enables 

the model to investigate system behaviour when multiple disturbances occur 

simultaneously. This research direction offers a methodology to examine the resilience 

performance of the production system and will likely significantly improve the fidelity 

of resilience simulations. 

How to improve the resilience of real-world ETO systems? 

The outcomes of this research shed light on how to improve resilience based on the 

developed archetypes. However, in reality, resilience improvement is a complex target 

that needs to be considered from a systematic perspective. Future research could focus 
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on applying the findings from this research to real-world systems, developing resilience 

improvement strategies, and creating reaction plans for different types of disturbances 

at various stages. 

The newly designed crisis strategy plans could be tested on the archetypes developed 

in this thesis. Such tests could provide quantitative and systematic perspectives of how 

these strategies affect the overall system’s resilience performance. 
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Appendix  

A.1 Bode Plots  

ETOAR#D Internal Design Rework 

Work Rate 

The Figure A.1 demonstrates the system’s dynamic performance under various 

frequency. It can be found that, In the area where the frequency is below 0.02 rad/week 

(including the red box area), the magnitude value is 0 dB, which means that the output 

curves’ fluctuation (difference between peak and bottom) is 1 time of the fluctuation of 

the input magnitude (the expression is shown in (5.39)). And the influence of the τOB 

value to the magnitude curve is trivial. The magnitude curves keep increasing until 0.06 

rad/week, and then start to decrease. In the high frequency area, between 0.1 rad/week 
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to 1 rad/week, the magnitude curves decrease first and then increase. From the τOB, 

perspective, the smaller the τOB the smaller the magnitude. However, there is one 

exceptional situation, when τOB = 2, which is an unstable setting, the magnitude curve 

is higher than all other curves, especially when frequency is above 0.08 rad/week.   

The magnitude curve in Figure A.1 is the phase chart which describes the phase 

difference between output and input. It also represents the lag between two signal’s 

waveforms. The unit of the phase chart is degree. According to the phase chart, the line 

on top is when τOB = 2. It implies that such systems react to the change faster and the 

lag of the waveform is shorter than the others. Although, the system’s output is not 

convergent, it is very dangerous to use 2 as the value for τOB. 

From practical perspective, the Figure A.1 indicate that, for ETOAR#D system whose 

demand frequency range from 0.01 to 0.02 rad/week, the value of τOB has minor 

influence on the work rate magnitude. 
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Figure A.1  Bode plot for the ETOAR#2 τOB orientated RW = 0.5 

The Figure A.2 demonstrates how RW ratio affects the frequency response of the 

system. The τOB is set to 20. It can see that, in the red box, the rate of the rework has a 

negative influence on the magnitude of the system. And for the low frequency area 

(Below 0.01 rad/week), the magnitude is 0 dB and the output’s waveform is 1 times of 

the input. Between 0.01 and 1 rad/week, all curves go down and then go up.  

From practical perspective, for ETOAR#D system with demand frequency range from 

0.01 to 0.02 rad/week, the rework has a negative influence on the fluctuation.  
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Figure A.2 Bode plot for the ETOAR#2 rework orientated τOB = 20 

Order Book 

Figure A.3 and Figure A.4 illustrate the bode plots for the order book. From Figure A.3, 

the order book magnitude is decreasing along with the increase in the frequency, when 

frequency is below 0.04 rad/week, including the red box area. In the red box area, the 

smaller the τOB the higher the magnitude. According to the phases plot, when τOB = 2, 

the order book’s phases lag is smaller than the systems with other τOB value. The system 

with other τOB value, the phases shift is around 0, with some trivial fluctuation. 
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Figure A.3  Order book bode plot of the ETOAR#D, τOB orientated. RW = 0.5 

Figure A.4 investigates the rework ratio’s effect on the system’s frequency responses. 

According to the magnitude curve, it can be seen that when frequency is lower than 

0.04 rad/week (including the red box area), all curves increase with the increase in 

frequency. At the same time, it is also observed that the higher the rework ratio is, the 

higher the fluctuation will be for the order book. When frequency is higher than 0.1 

rad/week, the magnitude curve starts to decrease, which means that the order book’s 

fluctuation becomes milder if the frequency of the input increases. 

According to the phases plot, it can be seen that all curves experience an increase at the 

beginning and a decrease when the frequency is below 0.03 rad/week. This means when 

the frequency is low, the system’s phases lag increases with the frequency, but after 

0.03 rad/week the system’s phases shift decreases when the frequency increases.  
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Figure A.4  Order book bode plot of the ETOAR#D, rework ratio orientated τOB = 20 

Lead Time  

According to Figure A.5, it can be seen that when frequency is lower than 0.03 rad/week, 

an increase in τOB increases the magnitude of the lead time. At the same time, when 

frequency is lower than 0.03 rad/week (including the red box area), the smaller the τOB, 

the smaller the magnitude. When τOB = 2, the system has the lowest magnitude, but 

only when the demand frequency is below 0.06 rad/week. The phases plots in Figure 

A.5 maintain at 90 degrees at the beginning (when frequency is lower than 0.01 

rad/week) and when frequency is higher than 0.01 rad/s, the phase lag start to decreases. 

The value of τOB does not have a significant influence on the phases shift.  
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Figure A. 5  Lead time bode plot of the ETOAR#D, τOB orientated. RW = 0.5 

 Figure A.6 demonstrates the lead time performance of ETOAR#D. From the 

magnitude plot, it can be seen that in the low frequency zone (when frequency is lower 

than 0.02 rad/week), the magnitude curves increase with the frequency, and larger the 

rework ratio is, higher the magnitude is. When frequency is higher than 0.02 rad/week, 

the curves start to decrease and rework ratio’s effect starts to change. Especially when 

frequency is above 0.2 rad/week, the higher the rework ratio, the lower the magnitude 

is for lead time. 

According to the phases plot, it can be seen that with increase in the frequency, the 

phases maintain at 90 degrees (when frequency is lower than 0.1 rad/week) while after 

that, the phases start to decrease. 
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Figure A. 6  Lead time bode plot of the ETOAR#D, rework orientated τOB = 20 

ETOAR#PTD External Design Rework 

Work Rate 

The bode plot below demonstrates the frequency response of the ETOAR#PTD, 

wherein, the rework happens in the design stage but it was found in the production stage 

that the rectification requires extra working units from both design and production 

system. 

From the magnitude chart, it can be seen that when frequency is lower than 0.02 

rad/week (Including the red box area), the magnitude of τOB is around 6 dB, which 

means that the magnitude of the output is 2 times that of the input. Between 0.02 with 

0.1 rad/s, the curve of τOB = 2,20,40,80,160 and 200, reaches a peak and then goes down.  
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The phase chart in Figure A.7 shows the phases for all τOB (except at τOB = 2) wherein 

all the configurations go down. This means with the increase in the frequency, the 

waveform delay between output with input is prolonged.  

 

Figure A. 7  Bode plot for the ETOAR#PTD τOB orientated RW = 0.5 

The bode plot that focuses on the rework ratio, is visualized in Figure A.8. It can be 

seen that when frequency is below 0.07 rad/week, including the red box area, the 

magnitude curve increases with the increase of the frequency, and the higher the rework, 

the higher the magnitude. when frequency is between 0.2 to 0.5 rad/week, the increase 

of the frequency leads the decrease of the magnitude curve, and the bigger the rework 

ratio, the smaller the magnitude.  
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The phase chart below illustrates the fact that the rework ratio’s change has limited 

influence on the performance from the phase’s perspective.  

 

Figure A. 8  Bode plot for the ETOAR#PTD rework orientated τOB = 20 

Order Book 

Figure A.9 illustrates the bode plot of the order book of ETOAR#PTD, with various 

τOB values. From the magnitude plot, it can be seen that all curves increase when 

frequency is lower than 0.02 rad/week In the red box area, the higher the τOB the higher 

the magnitude. When frequency is above 0.07 rad/week, all curves start to decrease 

with the increase of the frequency. When τOB = 2, which is an unstable system setting, 

the curve manifests dramatic fluctuations in the high frequency zone. According to the 

phases plot, all curves start to mildly fluctuate when frequency is above 0.1 rad/week 
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while, when τOB = 2, the curve significantly decreases when frequency is higher than 

0.1 rad/week. 

 

Figure A. 9 Order book bode plot of the ETOAR#PTD, τOB orientated. RW = 0.5 

Figure A.10 demonstrates the bode plot of the order book of ETOAR#PTD, with 

various rework ratios. It can be seen that for the magnitude plot. When frequency is 

lower than 0.01 rad/week the rework ratio has little influence of lead time’s magnitude. 

In the red box area, where the frequency ranges from 0.01 to 0.02 rad/week. The 

magnitude curve starts to increase, and the higher the rework ratio is the higher the 

magnitude. While with the frequency increasing from 0.02 to 0.1 rad/week, all the 

magnitude curves experienced an increase and then a decrease. And in this stage, the 

rework ratio has an impact on the magnitude of the curve; the higher the rework ratio 

is, the higher the magnitude is. When frequency is higher than 0.1 rad/week, the 
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magnitude curves start to decrease, and higher the rework ratios are, the higher the 

magnitude is.  

Form the phase plot, it can be seen that with the increase in the frequency, the phases 

lag increases until the frequency increases to 0.02 rad/week, and afterwards, the phases 

curves start to decrease. When frequency is below 0.02 rad/week, the rework ratio 

increases the phases shift, while after that, the rework ratio decreases the phase shift. 

 

Figure A. 10 Order book bode plot of the ETOAR#PTD, rework orientated τOB = 20 

Lead Time  

Figures A.11 and A.12 demonstrate the bode plot of the lead time of the ETOAR#PTD 

system. The Figure 5.18 places the focus on the effect of the τOB value, and 5.19 focuses 

on the rework ratio’s effect.  
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According to Figure A.11, it can be seen that when τOB = 2 (which is an unstable 

parameter setting), the magnitude curve starts from 13 dB and increases with the 

increase in the frequency and ends up with some fluctuation. The other τOB values can 

keep the system in stable, while the increases of the τOB leads to an increase in the 

magnitude in the low frequency zone (0.0004 to 0.002 rad/week, in including the red 

box area). When frequency increases to 0.1 rad/week, the curve starts to decrease and 

ends up with fluctuations in the high frequency zone. The phases plot indicates that 

with the increase in the input frequency, the phase lad of the system will keep 

decreasing.  

 

Figure A. 11  Lead time bode plot of the ETOAR#PTD, τOB orientated.RW = 0.5 

Figure A.12 demonstrates the effect of the rework ratio. From the magnitude curve, it 

can be seen that with the increase in the rework ratio, the lead time magnitude increases 
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in the low frequency zone (when frequency is lower than 0.02 rad/week, including the 

red box area). When frequency is higher than 0.03 rad/week, all curves start to decrease 

and end up with some fluctuation in the high frequency zone. The phase chart illustrates 

that with the increase of the input frequency, the phases shift keeps decreasing and the 

rework ratio has little impact on lead time’s performance. 

 

Figure A. 12 Lead time bode plot of the ETOAR#PTD, rework orientated τOB = 20 

A.2 Verification  

This sub-section aims to verify the model, by cross checking the simulation results of 

the models. The following figures are created in the spreadsheet, by using the 

differential equations modelling technique. These figures act as a comparison with the 
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transient responses presented in the section 4.4, thereby guaranteeing the correctness of 

the model that was developed.  

The figure A.13 demonstrates the spreadsheet simulation result of order books, and the 

simulation result from the Simulink. It can be seen that the transient responses from 

both software are the same. Besides, the numerical results of both outputs were also 

directly compared leading to the same conclusion. 

 

Figure A. 13 Order book transient responses produced by spreadsheet. 
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Figure A. 14 Order book transient responses produced by Simulink. 

The Figures A.15 and A.16 demonstrate the lead time simulation from both software. 

The transient responses are the same. 

 

Figure A. 15 Lead time transient responses produced by spreadsheet. 

 

Figure A. 16 Lead time transient responses produced by spreadsheet. 
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The Figure A.17 illustrates the order book transient responses of the ETOAR#D 

archetype from Spreadsheet simulation. By comparing it with the Simulink simulation 

result, the correctness of the model is guaranteed.  

 

Figure A. 17 Order book transient responses produced by spreadsheet. 

 

Figure A. 18 Order book transient responses produced by spreadsheet. 
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Figure A.19 demonstrates the lead time transient responses of the ETOAR#D archetype, 

and the result from the spreadsheet simulation are the same with the Simulink 

simulation in Figure A.20. 

 

Figure A. 19 Lead time transient responses produced by spreadsheet. 

 

 

Figure A. 20 Lead time transient responses produced by Simulink. 



449 

The Figure A.21 demonstrates the spreadsheet simulation result of the order book 

transient responses of ETOAR#PTD. The responses are the same with the simulation 

from Simulink as shown in A.22.  

 

Figure A. 21 Order book transient responses produced by spreadsheet. 

 

Figure A. 22 Order book transient responses produced by Simulink. 
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The lead time transient responses from spreadsheet are also the same with the Simulink 

simulation result, as shown in A.23 and A.24.  

Figure A. 23 Lead time transient responses produced by Spreadsheet. 

 

Figure A. 24 Lead time transient responses produced by Simulink. 
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A.3 Sensitive Analysis  

Sensitivity Analysis on the Lead Time Change. 

ETOAR#D Design Rework 

Table A.1  The initial value and parameter setting for the ETOAR#D lead time 

sensitivity analysis. 

Initial values 

COMRATEDES OBDES RWRATEPROD COMRATEPROD OBPROD OB 

125 500 25 100 400 800 

Co-efficient values 

𝜏𝑂𝐵  𝜏𝐷 𝜏𝑃 𝑅𝑊 RW scheduling time 

20 1(25%) 

4(Baseline) 

8(200%) 

1(25%) 

4(Baseline) 

8(200%) 

0.2 1 

The parameter setting is as follows is shown in Table A.1. To control the variable the 

τP (Lead Time for production) is fixed, and the system’s transient responses when τD = 

1, 4, 8 are visualized.   

Determined demand analysis. 

Figure A.25 demonstrates how the deliver rate of the system changes when design Lead 

Time changes. At the beginning of the transient response, the input response is first 

indicated by the blue curve, the red curve responses the second, and the yellow curve 

the third. Such phenomenon is caused by the design lead time’s change. According to 

the Table A.1, the lead time for design is 1,4,8, which means the total lead time of the 

ETO process are 5, 8 and 12. The difference of the total lead time leads to the different 
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response times. Another observation is that longer the design lead time is, the higher 

the peak is, which can be interpreted as, longer lead time triggers higher overshoot. This 

finding has been discussed in following sections. In general, no matter how design lead 

time changes, the system can always stabilize at 1. This demonstrates the advantages 

of order book controller, although different lead time may affect the system dynamic 

behaviour, while order book controller maintains the system steady output in the long-

term run. The other graph demonstrates how sensitive the system is to the production 

lead time change; the yellow and red line in the Figure 7.2 are similar to the line in 

Figure A.25, which can be explained as for the design rework scenario that design and 

production lead time change has a similar effect on the system. 

 

Figure A.25 Sensitivity analysis of ETOAR#D’s deliver rate to the design Lead time, 

with determined demand. 
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Figure A. 26 Sensitivity analysis of ETOAR#D’s deliver rate to the production Lead 

time, with determined demand. 

Stochastic demand analysis. 

To further analyse the sensitivity of the system to the design and production lead time 

change, another experiment is conducted with stochastic demand input; the demand is 

assumed under normal distribution, mean value is 1 and standard deviation is 0.1. It can 

be seen that yellow line’s behaviour has a clear lag to the red line, and the red line has 

a lag to the blue line. The longer the design lead time, the slower the system reacts to 

the demand change.  

To control the variables, the same set of the demand pattern is used to test the sensitivity 

of the system to the production lead time change. The form of the curve is like the 

design lead time figure and same finding is observed from the figure.  

The bullwhip ratios are demonstrated in Table A.2: 
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Table A.2 Bullwhip ratio for each experiment 

Experiment  Bullwhip 

Design lead time sensitivity analysis 

25% design delay: (total lead time: 5) 0.259387 

Baseline design delay:(total lead time: 8) 0.259387146 

200% design delay:(total lead time: 13) 0.261222172 

Production lead time sensitivity analysis 

25% production delay:(total lead time: 5) 0.256144 

Baseline production delay:(total lead 

time: 8) 

0.267258 

200% production delay:(total lead time: 

13) 

0.267258 

 

Figure A. 27 Sensitivity analysis of ETOAR#D’s deliver rate to the design Lead time, 

with stochastic demand. 
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Figure A. 28 Sensitivity analysis of ETOAR#D’s deliver rate to the production Lead 

time, with stochastic demand. 

To further investigate the system’s sensitivity to the sub-system’s lead time change, the 

sub-systems’ lead times are set to 1,2,4,6,8,10,12,14 and 16. The bullwhip ratios 

changing trend are demonstrated in Figure A.29 and A.30. And it is found that the 

bullwhip ratios fluctuating with the increase of the sub-system’s lead time.  
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Figure A. 29 Sensitivity analysis of the ETOAR#D on the bullwhip effect. 

 

Figure A. 30 Sensitivity analysis of the ETOAR#D on the bullwhip effect. 

ETOAR#PTD Delayed design rework 

The initial value and parameter settings for simulation are demonstrated in Table A.3. 

Table A.3 The initial value and parameter setting for the ETOAR#PTD lead time 
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sensitivity analysis. 

Initial values 

COMRATEDE

S 

OBDES RWRATEPRO

D 

COMRATEPR

OD 

OBPROD OB 

125 500 25 100 400 800 

Co-efficient values 

𝜏𝑂𝐵  𝜏𝐷 𝜏𝑃 𝑅𝑊 RW scheduling 

time 

20 1(25%) 

4(Baseline) 

8(200%) 

1(25%) 

4(Baseline) 

8(200%) 

0.2 1 

Determined demand analysis. 

For the delayed design rework scenario, the Figures A.31 and A.32 demonstrate the 

experiment results. When the delay happens to the design system, the transient 

responses demonstrate a delay between three curves. And such delay is caused by the 

prolonged total lead time of ETO system. At the same time, higher delay has a higher 

peak; the existence of the peak represents the system might exaggerate the fluctuation 

of the input. 
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Figure A. 31  Sensitivity analysis of ETOAR#PTD’s deliver rate to the design Lead 

time, with determined demand. 

 

Figure A. 32  Sensitivity analysis of ETOAR#PTD’s deliver rate to the production Lead 

time, with determined demand. 

Stochastic demand analysis. 

Other than the experiment under determined demand, the experiment under the 

stochastic demand is also conducted. According to the figure below, a lag between 
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peaks is observed; such delay is caused by the prolonged total lead time. In the 

meantime, it is also noticed that the peaks value for all these three curves are decreasing 

with the increase with the design and production lead time. To verify this observation, 

the bullwhip ratio for each curve is calculated, and summarized in Table A.4. 

Table A.4 Bullwhip ratio for each experiment 

Experiment Bullwhip 

Design lead time sensitivity analysis 

25% design delay: (total lead time: 5) 0.384984161 

Baseline design delay:(total lead time: 

8) 

0.249019706 

200% design delay:(total lead time: 12) 0.124778521 

Production lead time sensitivity analysis 

25% production delay:(total lead time: 

5) 

0.384984161 

Baseline production delay:(total lead 

time: 8) 

0.249019707 

200% production delay:(total lead time: 

12) 

0.124778521 
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The numerical result support the observation that with the increase of either design or 

production lead time, the system’s bullwhip effect would be decreased. In the meantime, 

the place where the delay happens (design or production) has no significant impact on 

the bullwhip effect for the system. 

 

Figure A. 33 Sensitivity analysis of ETOAR#PTD’s deliver rate to the design Lead time, 

with stochastic demand 

 

Figure A. 34 Sensitivity analysis of ETOAR#PTD’s deliver rate to the production Lead 
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time, with stochastic demand 

 

To further investigate the system’s sensitivity to the sub-system’s lead time change, the 

sub-systems’ lead times are set to 1,2,4,6,8,10,12,14 and 16. The bullwhip ratios 

changing trend are demonstrated in Figure A.35 and A.36. And it is found that the 

bullwhip ratios fluctuating with the increase of the sub-system’s lead time.  

 

 

Figure A. 35 Sensitivity analysis of the ETOAR#PTD on the bullwhip effect. 

 



462 

 

Figure A. 36 Sensitivity analysis of the ETOAR#PTD on the bullwhip effect. 

 

Sensitivity Analysis on the Rework Scheduling Time. 

The simulation parameters and initial value settings are demonstrated in Table A.5 

Table A.5 The initial value and parameter setting for the ETOAR#D rework scheduling 

time sensitivity analysis 

Initial values 

COMRATEDE

S 

OBDES RWRATEPRO

D 

COMRATEPR

OD 

OBPROD OB 

100 400 25 125 500 800 

Co-efficient values 

𝜏𝑂𝐵  𝜏𝐷 𝜏𝑃 𝑅𝑊 RW scheduling 

time 

20 4 4 0.2 1(Baseline) 

2 (200%) 

4 (400%) 

8 (800%) 
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ETOAR#D Design rework 

 

Figure A. 37 ETOAR#D delivery rate transient response with determined demand 

 

Figure A. 38 ETOAR#D delivery rate response with stochastic demand 
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ETOAR#PTD Delayed design rework 

 

Figure A. 39 ETOAR#PTD delivery rate transient response with determined demand 

 

Figure A. 40 ETOAR#PTD delivery rate response with stochastic demand 
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