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Abstract-- Demand response (DR) based on customer 

directrix load (CDL) is a new incentive-based DR scheme, typically 

invited by regional utility grid companies. In this context, a 

framework is proposed for a prosumer community to participate 

in CDL-based DR, comprising two key steps: power optimization 

to balance electricity costs and DR benefits for the overall 

prosumer community, and cost allocation for prosumers within 

the community through two hypothetical sub-steps, i.e., 

cooperation without and with DR. In the power optimization step, 

the Convex-Concave Procedure (CCP) algorithm is used to relax 

the non-convex parts of the optimization objective to be linear 

ones, gradually approximating the optimal solution by iteratively 

correcting the upper bound function. In the cost allocation step, 

the Owen value method is applied, which accounts for priority 

coalitions and eliminates the unrealistic coalition possibilities that 

are inherent in the calculation of Shapley value. Comprehensive 

simulations of a test case validate the rationality of the CDL-based 

DR framework and the effectiveness of the iterative method. 

Index Terms—Convex-Concave Procedure (CCP); Customer 

Directrix Load (CDL); Incentive-Based Demand Response; Owen 

Value Method; Prosumer Community. 

I.  INTRODUCTION 

In recent years, with the continuous advancement of global 

energy transition, distributed energy resources (DERs) have 

become increasingly prevalent in distribution networks [1]-[4]. 

These resources, including photovoltaics (PV), electric vehicles 

(EVs), and energy storages (ESs), etc., enhance the flexibility 

of power systems [5], [6]. However, they also bring significant 

changes to various aspects of power systems, posing substantial 

operational challenges [7]-[9]. 

Against this backdrop, the concepts of “prosumer” [10] 

and “prosumer community” [10], [11] have emerged. 

Prosumers are the owners of DERs who, by installing and 

operating these resources, not only meet their own energy needs 

but also feed excess power back into the utility grid. Prosumer 

communities, composed of multiple prosumers, form 

interconnected networks that share resources, thereby 

enhancing overall energy efficiency and economic benefits 

[12], [13]. These communities involve not only the physical 

exchange of energy but also information exchange and 

management mechanisms, aiming primarily at achieving local 

power and energy consumption and balance [10], [12]. 
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With the rapid growth of DERs and prosumer 

communities, demand side management (DSM) [14], [15] of 

power systems has become increasingly crucial. Demand 

response (DR), as a vital part of DSM, encourages consumers 

to reduce or shift their electricity usage during certain periods, 

thereby effectively enhancing the operational efficiency of 

power systems and improve energy utilization [16]. It is divided 

into two types: price-based demand response (PDR) and 

incentive-based demand response (IDR) [17]. For IDR, the 

response contribution is typically evaluated based on the 

customer baseline load (CBL) [18]. CBL represents the 

predicted load curve of consumers if they do not participate in 

DR. IDR mechanisms designed around CBL have been widely 

deployed across the world, for applications like peak shaving, 

valley filling, operating reserves, frequency response, etc.  

In recent years, another novel type of IDR has been 

proposed, named customer directrix load (CDL)-based DR [19]. 

In CDL-based DR, DR program operators issue response 

requirement as a CDL in advance for the DR service providers 

to follow. CDL can serve as a reference to guide adjustable 

loads in smoothing out fluctuations from non-dispatchable 

resources within the power system. For example, [20] proposed 

a method to create locational CDLs in transmission networks 

for releasing network congestion. CDL can be directly 

established according to the needs of the power system, 

eliminating the need to calculate each consumer's CBL, which 

is usually a difficult task due to various uncertainties and 

consumers’ potential strategic behaviors. 

There have been several studies conducted on CDL-based 

DR. Ref. [21] examines large-scale aggregated communication 

base stations, leveraging backup ES flexibility to reshape non-

adjustable communication loads, enabling the overall load to 

follow the CDL. In [22], a cluster of variable-frequency air 

conditioners was modeled, incorporating second-order 

equivalent thermal parameters and indoor/outdoor temperatures. 

A day-ahead rolling control method was then used to track the 

CDL.  

Some studies further considered the interaction between 

utility grid companies and electricity consumers via game 

theory. Ref. [23] explored the pricing of CDL-based DR 

between utility grid companies and clusters of water heaters 

using a leader-follower game model. A genetic algorithm was 
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used to solve the model. Ref. [24] proposed a CDL-DR pricing 

mechanism based on a cooperative game model between utility 

grid operators and aggregators managing heat pumps and EVs. 

The Nash bargaining was used to solve this model. In [25], a 

leader-follower game model was developed, optimizing the 

interests of both the upper-level operator and load aggregator 

through incentive pricing and load adjustments. 

Despite these studies exploring various aspects of CDL-

based DR, they mainly focus on resource aggregation by 

aggregators, emphasizing how aggregators enhance market 

flexibility and commercial gains. However, the role of local 

prosumer communities, particularly in the context of CDL-

based DR, has not been explored. 

In this context, this paper focuses on the mechanisms and 

strategies for prosumer communities to participate in the CDL-

based DR. Two key issues warrant in-depth investigation: first, 

the economic optimization model of a prosumer community 

considering CDL-based DR incentives; second, the cost 

allocation model for the prosumers cooperating in the prosumer 

community. 

For the first issue on economic optimization, a well-

designed “incentive function” is usually used to assess the 

quality of CDL-based DR provided by a service provider and 

calculate the corresponding service revenue, which is then 

combined with electricity costs to create an overall economic 

optimization objective. The commonly used incentive function 

for CDL-based DR is an exponential function [19]-[22] , due to 

its continuity and smoothness across the entire domain. This 

function maps the deviation between the normalized power 

curve of the service provider and the CDL to the interval [0,1], 

with smaller deviations resulting in higher incentives. However, 

in optimization problems, this function leads to a non-convex 

objective, making it unsolvable by commercial solvers.  

To overcome the challenges of non-convex optimization, 

some studies have replaced exponential functions with linear 

[23], [24] or quadratic functions [25]. While this approach 

improves the feasibility and efficiency, it introduces new 

complexities. These alternative functions often fail to naturally 

map all deviations to a finite range as exponential functions do, 

necessitating threshold-based segmentation to map extreme 

deviations to a fixed value (e.g., 0). This requires careful 

selection of breakpoints, and inappropriate choices can degrade 

model performance and complicate implementation and tuning. 

Despite these alternatives, non-convex objective functions 

remain an issue. Current methods, such as those in [21], [22], 

rely on heuristic algorithms to solve non-convex models, with 

significant limitations. These algorithms are computationally 

intensive, and may produce unstable results, with different runs 

potentially yielding different outcomes, which affects solution 

consistency and reliability.  

Therefore, it is crucial to develop effective methods for 

handling non-convex objectives, improving both solvability 

and computational efficiency for economic optimization in 

CDL-based DR. 

For the second issue on cost allocation, cooperation is 

essential in prosumer communities due to the complementary 

resources and shared interests among the community members, 

making it a natural choice for minimizing overall costs. 

Consequently, cooperative game theory emerges as a key 

approach. Cooperative game theory-based profit allocation 

methods include the equal allocation method [26], proportional 

share method[27], and Shapley value method [28]-[30]. 

However, the first two methods are only suitable for simple 

scenarios where the profit distribution is even or proportional 

to power output. In contrast, the Shapley value method can 

fairly distribute cooperative gains by considering the marginal 

contributions of each member to the coalition, widely applied 

in the benefit allocation of prosumer communities. Ref. [28] 

uses the Shapley value method to distribute allocations among 

wind power, PV, and load alliances participating in wholesale 

markets. Ref. [29] accounts for the responsiveness of flexible 

loads, such as EVs, air conditioning, and ES, using the Shapley 

value method to allocate the benefits of their participation in 

DR. Ref. [30] develops a DR model for an energy system with 

various electricity and gas users. The model shifts adjustable 

loads and converts gas loads based on price signals, using the 

Shapley method to allocate costs among the users. 

Although the Shapley value method is widely recognized 

and extensively used, it assumes that all coalitions are equally 

likely and independent, which does not always reflect the 

complex cooperative relationships in real-world prosumer 

communities. It calculates each participant's contribution by 

averaging their marginal contributions across all possible 

coalitions, ensuring a fair distribution of cooperative gains. A 

participant’s marginal contribution is determined by adding it 

to an existing coalition and measuring the incremental benefit. 

While mathematically rigorous, the method assumes that all 

coalitions, regardless of their feasibility or practicality, are 

equally likely to form. In practice, some prosumers may form 

internal priority coalitions due to factors like geography, 

resource characteristics, or existing partnerships, and these 

coalitions act as single entities when dealing with other 

prosumers. This means some coalitions considered by the 

Shapley value method may never actually form, leading to 

allocations that do not match real-world scenarios. Therefore, 

another allocation method is needed to ensure all participants 

fairly benefit from shared energy and power adjustments, 

promoting cooperation and resource optimization among 

prosumers.  

In summary, by deeper exploring the above two key issues, 

an innovative framework is proposed in this paper for a 

prosumer community to participate in CDL-based DR. The 

main contributions are: 

(1) A CDL-based DR mechanism is proposed, including 

two steps: power optimization to balance electricity costs and 

DR benefits for the overall prosumer community, and cost 

allocation for prosumers within the community through two 

hypothetical sub-steps, i.e., cooperation without and with DR. 

(2) The Owen value method, accounting for priority 

coalitions, is introduced for cost allocation. Unlike the 

traditional Shapley method, the Owen method evaluates each 

prosumer's marginal contribution while reflecting actual 

coalition structures, excluding theoretical coalitions that do not 

exist in practice. 

(3) The convex-concave procedure (CCP) algorithm is 

used to deal with the non-convex issue. By constructing 

appropriate upper bound functions of the objective function and 

optimizing these upper bounds in each iteration, the original 

problem is decomposed into multiple iterative convex 

subproblems. 
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The rest of the paper is organized as follows. Section II 

outlines the architecture of a prosumer community and the 

formulation of the two-step framework. Section III presents the 

mathematical models. Section IV introduces the solution 

procedure. Section V shows the simulation results and analysis. 

Finally, Section VI concludes the paper. 

II.  PROBLEM FORMULATION 

A.  Architecture of a prosumer community 

As shown in Fig. 1, the types of prosumers include PV 

operators, residential users (RUs) with flexible loads, parking 

lot operators with charging stations (CS), and distributed ES 

operators.  

Assume there are J  prosumers in a distribution network 

area. The prosumer index is denoted as j, where  1,2,...,=J J , 

j J . Prosumers 1-4 in Fig. 1 represent four different types of 

prosumers, respectively. 

Prosumers form a community where they share energy 

internally. Only when there is an overall deficit or surplus will 

the community buy/sell electricity from/to the regional utility 

grid company. 

Some prosumers may join the community as a priority 

coalition. For example, some PV operators may prefer to reach 

contracts with the prosumers with geographic proximity or 

specific operational modes to prioritize local energy 

consumption. Prosumers 1 and 2 in Fig. 1 represent a priority 

coalition, shown by a black dashed box. 

In IDR, the prosumer community acts as a whole, 

adjusting its power according to the utility grid company's DR 

instructions. CDL-based DR is a considered in this paper. The 

CDL is a normalized power signal retaining only shape 

characteristics. It provides a power-shaping target for all DR 

participants. The utility grid calculates response performance 

based on the power curve shapes of the prosumer community 

and then remunerate the community based on the performance. 

B.  Formulation of the two-step operation strategy 

As shown in Fig. 1, the operation framework of the 

prosumer community consists of two steps.  

1) Step 1: Total cost minimization 

The total operation cost ComC  of the prosumer community 

is given by:  

 Com CDL EC R C= − +  (1) 

where CDLR  is the revenue from CDL-based DR, and EC  is the 

cost of electricity from the utility grid. 

 

Fig. 1  Overview of the proposed architecture of the prosumer community. 

When participating in CDL-based DR, the prosumer 

community needs to adjust its overall power curve to match the 

CDL as closely as possible to earn incentive revenue. 

Meanwhile, the community needs to balance the cost of 

electricity and the revenue from DR to minimize the total cost. 

2) Step 2: Cost allocation 

After the prosumer community finishes the total cost 

optimization, the total cost needs to be distributed among the 

prosumers in the community.  

The cost allocation consists of two hypothetical sub-steps. 

In the first sub-step, prosumers form a community, achieving 

local consumption and reducing electricity costs. In the second 

sub-step, the community participates in CDL-based DR, 

earning incentive compensation by sacrificing some electricity 

costs. Sub-step 1 allocates the total cost without cooperation, 

while sub-step 2 allocates the net profits from DR.  

In sub-step 2, the allocation requires calculating the 

marginal contributions of each prosumer. The commonly used 

Shapley value method calculates these based on the total cost 

of all possible subsets of prosumers. However, as noted earlier, 

some subsets do not exist. Therefore, the proposed method 

needs to consider actual possible coalitions and exclude non-

existent subsets from the coalition set. 

The above provides an overview of the operation 

framework for the prosumer community. CDLR and EC  will be 

modeled in the next section, followed by the total cost 

minimization model (Step 1) and the cost allocation model 

(Step 2). 

III.  MATHEMATICAL MODELING 

A.  Model of CDL-based DR  

Let a day be divided into T periods. The CDL curve issued 

by the regional utility grid company is denoted as CDL,
P for 

 1,t T , where CDL, CDL,

ttP   =  P represents the CDL at time 

period t. The given CDL value is a normalized power value, 

satisfying
,

1

CDL 1
T

t

tP
=

 = . It retains only the shape characteristics. 

The incentive compensation for the service provider can 

be calculated in three steps. 

Firstly, the service provider calculates the normalized 

power value Com,

tP   at time t using equation (2), forming a 

normalized power curve Com,*
P  when arranged in time sequence.  

 

Com Com
Com,

Com
Com

1

t t
t T

t

t

P P
P

P
P



=

= =


 (2) 

where Com

tP  is the power value of the service provider at time t, 
ComP  is the total power of the service provider declaring ahead 

day. 

Secondly, the similarity index ComS for assessing the DR 

performance is defined. The Manhattan distance is used to 

measure the difference between the normalized power vector 

and the CDL vector. In equation (3), it is first calculated by 

summing the absolute differences between these two vectors 

over the entire time period, and then averaged to obtain Comz .  

This metric Comz  reflects the aggregated deviation across 

all time periods, considering the difference between the 
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normalized power values and the CDL at each interval. It plays 

a crucial role in quantifying the overall DR performance. 

Then the similarity ComS  can be calculated. 

Conventionally, an exponential function can be used, as shown 

in equation (4), but it will be replaced by another originally 

proposed expression later in this paper. 

 
, CDL,

1

Com Com1T

t t

t

z P P
T

 

=

= −  (3) 

 
Com

m

1

Co =e
z

S 
−

 (4) 

This transformation (4) maps the aggregated deviation into 

a similarity index within the range [0,1], where smaller 

deviations lead to higher scores. As discussed in the 

introduction, the use of exponential functions in CDL-based DR 

ensures smoothness and continuity, making it suitable for both 

performance assessment and optimization tasks. 

Together, equations (3) and (4) systematically connect the 

performance evaluation of the service provider with incentive 

calculations. By quantifying deviations and translating them 

into similarity scores, these equations establish a reliable 

framework for assessing DR performance and determining 

economic rewards in CDL-based DR programs. 

Finally, the DR revenue CDLR  is calculated as shown in 

equation (5):  

 CDL CDL Com ComR P S=  (5) 

where CDL  is the unit incentive compensation paid by the 

utility grid company to the service provider. 

In equation (4),   is the deviation factor set by the utility 

grid company. It influences the similarity index ComS  and 

subsequently the calculation of DR revenue in equation (5). 

Adjusting   allows the utility grid to modulate the sensitivity 

of ComS  to deviations. A higher   value tends to lessen the 

impact of deviations, leading to a milder change in similarity. 

Conversely, a lower   value makes ComS  more sensitive to 

deviations, resulting in a more noticeable effect on similarity 

and DR revenue. This enables the utility grid to fine-tune the 

incentives to achieve the desired outcomes in CDL-based DR. 

B.  Model of the prosumer community 

Let  PV,CP,CS,ES=Id , Id  Id , where Id  represents the 

types of prosumers. The sets of indices for these prosumers are 

denoted as PVJ , CPJ , CSJ , ESJ , respectively. These sets satisfy: 

 
( )Id Id'

Id Id'

Id
Id





   = 



 = Id

J J

J J
 (6) 

The model of the prosumer community is given in 

equations (7) - (13): 

 ( )E TOU buy FIT sell

1

=
T

t t t t

t

C P P T 
=

+    (7) 

 TOU FIT

t t   (8) 

 mbuy sel Col

tt tP P P+ =
 (9) 

 buy sell 0t tP P =  (10) 

 buy,min buy buy,max0 t t tP P P    (11) 

 sell,min sell sell,max 0t t tP P P    (12) 

 

( )

( )

PV

CP

CS

ES

PV

,

Load

,

CS,ch CS,dis

, ,

ES,ch ES

m

,dis

o

,

C

,

j t

j J

j t

j J

j t j t

j J

j t j t

j J

tP

P

P

P P

P P









 
 
 
 
+ 

 
=  

 + −
 
 
 
+ − 

 









 (13) 

where TOU

t  and FIT

t  are the time-of-use (TOU) price and feed-

in tariff (FIT) of the utility grid at time t, respectively. buy

tP  and 
sell

tP  are the total power bought and sold by the prosumer 

community with the utility grid at time t. buy,min

tP  and buy,max

tP  are 

the minimum and maximum power that the prosumer 

community can buy from the utility grid at time t, respectively. 
sell,min

tP  and sell,max

tP  are the minimum and maximum power that 

the prosumer community can sell to the utility grid at time t, 

respectively. 
PV

,j tP , 
o d

,

L a

j tP , 
CS,ch

,j tP , 
CS,dis

,j tP , 
ES,ch

,j tP  and 
ES,dis

,j tP  are the 

PV feed-in power, residential load power, CS charging power, 

CS discharging power, ES charging power, and ES discharging 

power of prosumer j at time t, respectively.  

Equation (7) represents the total electricity cost of the 

prosumer community. Equation (8) indicates that TOU

t  must be 

greater than FIT

t . Equation (9)  defines buy

tP  and sell

tP  as the 

positive and negative components of the community's total 

power Com

tP  at each time and equation (10) avoids the prosumer 

community to buy and sell electricity at the same time. In this 

optimization problem, due to the constraint in Equation (8), 
buy

tP  and sell

tP  are unlikely to both be zero simultaneously, 

allowing Equation (10) to be omitted [31]. Equations (11) and 

(12) establish the boundary constraints for buy

tP  and sell

tP . 

Equations (13) represents Com

tP as the sum of power from 

different types of prosumers at time period t: PV, RU, CS and 

ES. 

After establishing the model of the prosumer community, 

individual constraints for each type of prosumer need to be 

considered as well, detailed as below. 

1) Distributed PV operators. These operators install small 

solar PV systems on rooftops, the ground, or other suitable 

locations to supply electricity to the regional grid. The PV feed-

in power is constrained by: 

 
PV PV,max

, ,0 j t j tP P  (14) 

where 
PV,max

,j tP  are the maximum value of PV feed-in power of 

prosumer j at time t. 

2) RUs with flexible loads. In residential households, fixed 

loads 
Load,f

,j tP are not affected by electricity prices. Transferable 

flexible loads 
Load,move

,j tP  are sensitive to prices and can be shifted 

across different time periods. The model is given by: 

 
Load,move

,

1

Δ 0j t

T

t

P t
=

=  (15) 

 
Load,move Load,move Load,move

, ,min , , ,maxj t j t j tP P P   (16) 

 
Load Load,f Load,move

, , ,j t j t j tP P P= +  (17) 
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where 
Load,move

, ,minj tP and 
Load,move

, ,maxj tP  are the minimum and maximum 

flexible loads at time t. Equation (15) represents the balance 

constraint for transferable flexible loads, ensuring that the total 

flexible load remains unchanged within an adjustment cycle. 

Equation (16) specifies the upper and lower adjustment limits 

for transferable flexible loads. Equation (17) clarifies that total 

flexible loads consist of both transferable and fixed parts. 

3) Parking lot operators with CS. They provide charging 

facilities in parking lots to meet the needs of EV charging. They 

offer parking and charging services and aggregate EV 

resources. 

The arrival and departure information of EVs for the day-

ahead schedule is known. The overall modeling of the CS uses 

the outer approximation of the Minkowski sum method[32]. 

The CS decision variables are 
CS,ch

,j tP ,
CS,dis

,j tP  and 
CS

,j tE , 

representing the total charging power, total discharging power, 

and total battery energy at time t. The EV decision variables are
,

,

EV ch

,n tjP ,
EV,dis

, ,n tjP  and 
V

,

E

,j n tE , representing the charging power, 

discharging power, and battery energy of EV n connected to 

prosumer j's CS at time t. These decision variables satisfy the 

following constraints: 

 
CS,ch EV,ch

,

1

, ,j t j

n

N

n tP P
=

=   (18) 

 
CS,dis EV,di

1

s

,, ,

n

j

N

j t n tP P
=

=   (19) 

 ,

CS EV

, ,

1

j j

n

N

t n tE E
=

=   (20) 

Set the CS parameters
CS,ch,max

,j tP , 
CS,dis,max

,j tP , 
CS,min

,tjE , 
CS,max

,tjE  and 

CS

,j tE . These represent the maximum total charging power, 

maximum total discharging power, minimum total battery 

energy, maximum total battery energy, and the energy change 

due to EV connection status at time t for prosumer j. Set the EV 

parameters 
EV,ch,max

,njP ,
EV,dis,max

,njP ,
EV,min

,njE ,
EV,max

,njE ,
V

,a r

E

, rnjE ,
V

,d p

E

, enjE  and 

V

,,

E

j n t , where  EV

, , 0,1tj n = .These represent the maximum charging 

power, maximum discharging power, minimum battery energy, 

maximum battery energy, battery energy upon arrival, battery 

energy upon departure, and connection status of EV n at time t 

for prosumer j. These parameters satisfy the following 

constraints: 

 
xECS,ch,max E

,

V,ch,ma

,

V

,

1

,

N

n tj nj j

n

tP P
=

=   (21) 

 
xECS,dis,max E

,

V,dis,ma

,

V

1

, ,nj t n

n

j j

N

tP P
=

=   (22) 

 
nECS,min EV,mi

,, , ,

V

1

N

t n t nj j

n

jE E
=

=   (23) 

 
xECS,max EV,ma

,, , ,

V

1

N

t n t nj j

n

jE E
=

=   (24) 

 
( )

( )

EV

, , , ,CS

,
EV

EV EV EV

,arr , , , 1

EV EV EV
1

,dep , 1 , 1 ,, , , ,

N
n n t n t n t

t

n
n

j j j j

j

j j j jn t n t n t

E
E

E

  

  

−

=
− −

 −
  =
 − −
 

  (25) 

The EV-related charging and discharging model (e.g., the 

constraint ensuring EV users’ charging demands are satisfied 

before departure), as well as the Minkowski sum derivation 

process, are shown in the Appendix A. The final Minkowski 

sum formula is: 

 
CS,ch CS,ch,max

, ,0 j t j tP P   (26) 

 
CS,dis CS,dis,max

, ,0 j t j tP P   (27) 

 
CS,min CS CS,max

, , ,t tj j j tE E E   (28) 

 
E

C SCS CS CS

, , , , ,

V,d

S,ch C ,dis

1 EV h

i

,c

s

1
Δt t t t tj j j j jP P tE E E 


−

 
= +  − 

 
+

  (29) 

where EV,ch and EV,dis are the charging and discharging 

efficiencies of the EVs, respectively. 

4) Distributed ES operators. Distributed ES systems are 

devices deployed near power users or other distributed 

resources to store and release electrical energy. The model is 

given by: 

 
SES, xch E ,ch,ma

,0 j jtP P   (30) 

 
ES,dis ES,dis, x

,

ma0 j t jP P   (31) 

 
ES,ch ES s

,

,di

, 0j jt tP P =  (32) 

 ,min max

ES ES ES

, ,tj j jE E E   (33) 

 
,

ES,ch ES,dis

1 ES,ch

ES ES

, , , ,

ES dis

1
Δt t t tj j j jP P tE E 


−

 
= + −  

 
 (34) 

 
ES ES

, ,0j T jE E=  (35) 

where 
ES,ch

,tjP  and 
ES,dis

,j tP  are the charging and discharging power 

at time t, 
ES,ch,max

jP  and 
ES,dis,max

jP  are the maximum charging and 

discharging power at time t. 
ES

,j tE  is the stored energy, 
ES

,minjE  and 

ES

,maxjE  are the minimum and maximum stored energy. 
ES

,0jE  and 

ES

,j TE  are the initial and final stored energy, respectively. ES,ch  

and ES,dis  are the charging and discharging efficiencies. 

Ref. [31] proves that with efficiencies less than 100%, 

storage will not charge and discharge simultaneously, so 

constraint (32) is ignored. 

C.  Model of total cost minimization as the first step of the 

operation framework 

In summary, the prosumer community aims to minimize 

the overall cost while participating in CDL-based DR initiated 

by the utility grid company. The following optimization model 

is obtained:  

 
( )

DL

CDL DL

Com

buy buy sell sell

1

1

e
min

Δ
T

t t

z

t t

t

P
C

P P t



 

−

=

 
−  

=  
 +
  

+
 (36) 

s.t. (2)-(3), (11), (12), (13), (14)-(17), (26)-(35). 

This optimization model corresponds to step 1 in Fig. 1. 

Due to the non-convex nature of this model, further analysis of 

its handling will be conducted in Section IV. 

D.  Model of cost allocation using Owen Value Method as the 

second step of the operation framework 

This model of cost allocation corresponds to step 2 in Fig. 

1. Fig. 2 illustrates the cost allocation for the prosumer 

community, divided into two assumed sub-steps for calculation 

and analysis. The vertical axis lists cost types, while the 

horizontal axis shows cost values qualitatively.  

Mathematically, the total cost reduction arises from the 

balance between DR incentives and additional electricity costs 

incurred during DR. The total cost with DR Com,(2)C is calculated 

by equation (1). It is the cost to be allocated and is divided into 

two parts: total cost without DR Com,(1)C and net profits from DR 
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( )Com,(1) Com,(2)C C− .Sub-step 1 allocates the total cost without 

cooperation, while sub-step 2 allocates the net profits from DR. 

In the second sub-step, the community engages in CDL-based 

DR, earning incentive compensation while incurring relatively 

small additional electricity costs. This results in net profits, 

reducing the total cost from Com,(1)C  to Com,(2)C , despite the 

additional increase in electricity costs from E,(1)C  to E,(2)C . 

 

Fig. 2  Overview of the two sub-steps in cost allocation step. 

 

Fig. 2 provides the illustration, with the length of 

rectangles along the horizontal axis representing the 

magnitudes of cost components. The length of the "electricity 

cost (cooperation without DR)" rectangle equals to that of the 

"total cost (cooperation without DR)" rectangle, forming the 

baseline cost. With DR implemented, the longer "electricity 

cost (cooperation with DR)" rectangle reflects increased 

electricity expenses, while the shorter "total cost (cooperation 

with DR)" rectangle shows the overall reduced cost after 

accounting for DR incentives. The net cost reduction is visually 

depicted by the difference in lengths between the "total cost 

(cooperation without DR)" and "total cost (cooperation with 

DR)" rectangles. 

1) First sub-step: Prosumers form a community through 

cooperation, sharing energy locally to lower electricity costs by 

reducing dependence on the utility grid. Participation in CDL-

based DR is not considered at this stage. 

During energy sharing, some prosumers may trade 

preferentially with specific others, forming priority coalitions. 

Each such priority coalition then trades as a whole with other 

independent prosumers.  The Shapley value method considers 

all 2
J

 possible coalitions (including the empty set), assuming 

equal likelihood for each coalition to form. While 

mathematically rigorous, this approach often includes 

unrealistic coalitions that are unlikely to form in practice. To 

ensure fair cost allocation, the Owen value method is used[33]. 

This method extends the Shapley value method by considering 

contributions within and between priority coalitions, reflecting 

real-world scenarios by including only possible coalitions and 

excluding non-existent ones. Furthermore, the Owen value 

method allocates costs based on prosumers’ marginal 

contributions, ensuring incentive compatibility in cost 

allocation. This approach ensures fair benefits for all 

participants in energy sharing and power adjustment. The Owen 

value method formula is as follows, aligning individual 

incentives with the collective goals of the prosumer community. 

Let J be the set of prosumer indices. Suppose the 

prosumers are divided into m disjoint priority coalitions, then 

1 2{ , , , , },...k m= J J J J J , k J J , where kJ  refers to the kth priority 

coalition. 

Allocation of costs among priority coalitions: Each 

priority coalition is treated as a single entity trading with others, 

and the Shapley value formula is used to calculate the cost (the 

negative value means benefit) distribution 
k

 J among the 

priority coalitions: 

 
( ) ( )

( )  ( )( )
1 ! !

!k kv v


− −
=  − −J

H J

H J H
H H J

J
 (37) 

where H is a coalition containing priority coalition kJ . H

represents the number of priority coalitions and individual 

prosumers in coalition H . J represents the number of 

prosumers in set J . ( )v H represents the total cost of coalition 

H . 

Allocation of cost within priority coalitions: The 

calculated cost k
 J  for each priority coalition replaces the value 

of ( )kv J . Within each priority coalition kJ , the Shapley value 

formula is used to allocate the Owen value k

j J
 among 

participants, resulting in the final cost allocation 
(1)

jC  for 

prosumer j.  

 ( )
kkv = JJ  (38) 

 
( ) ( )

( )  ( )( )
1 ! !

!
k

k

k

k

j v v j


− −
=  − −

J

S J

S J S
S S

J
 (39) 

 
(1) k

j jC = J
 (40) 

where S  is any coalition within kJ  that includes prosumer j. 

S  represents the number of prosumers in coalition S . kJ

represents the number of prosumers in priority coalition kJ .

( )v S represents the cost (when positive) / benefit (negative) of 

coalition S . 

2) Second Sub-Step: In this sub-step, the prosumer 

community is considered to participate in the CDL-based DR. 

While individual prosumers may have DR potential, only 

the entire prosumer community's participation is considered to 

maximize the overall benefits and ensure stability to prioritize 

local consumption. Prosumers may incur more electricity costs 

but will receive greater CDL-based DR revenue, thus having a 

lower total cost than that in the first sub-step one, as shown in 

Fig. 2. Since the DR is designed for the whole community, the 

marginal costs of individual prosumers are indistinguishable. 

Therefore, net profits of DR are allocated based on each 

prosumer's power adjustment compared to that in the first sub-

step, i.e., using the first sub-step results as a baseline. 

Net profit allocation result of cooperation with DR: As 

shown in equation (41), prosumer j's contribution is defined as 

the proportion 
(2)

jI of their power adjustment to the total power 

adjustments of all prosumers. Equation (42) multiplies this 

contribution by the community's net profit with DR to 

determine prosumer j's contribution, allocating
(2)

jR to the 

prosumer j.  
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Id,(2) Id,(1)

, ,
(2) 1

Id,(2) Id,(1)

, ,

1

T

j t j t

t
j T

j t j t

j t

I

P P

P P

=

 =

−

=

−




J

 (41) 

 ( )(2) Com,(1) Com,(2)(2)

j jR CI C= −  (42) 

The difference between the first and second sub-step 

costs/net profits gives the total cost jC  for each prosumer j in 

equation (43). 

 
(1) (2)

j j jC C R= −  (43) 

IV.  REFORMULATION FOR SOLVING THE OPERATION 

FRAMEWORK 

This section focuses on addressing the non-convex parts 

of the model of step 1 of the framework. Firstly, the absolute 

value equation (3) is relaxed to inequality constraints. 

Secondly, for the non-convex term 
o , CDC Lm ,

1

1 1

e

T

t t

t

P P
T

 

=

− −  in the 

objective function (36), the CCP method is used to construct the 

upper bound function. This approach transforms the non-

convex problem into multiple iterative convex 

subproblems[34]. Finally, a schematic diagram of the improved 

two-step framework is presented. 

A.  Relaxation method of absolute value in step 1 

Combining equations (2) and (3), let:  

 
Com

CDL,

Com

t
ttx

P
P

P

−=  (44) 

Combining equations (13) and (44), tx  is defined as:  

 

( )

( )

PV

CP

CS

ES

PV

,

Load

,

CS,ch CS,dis

, ,

ES,ch ES,di

CDL,

Com

s

, ,

1

j t

j J

j t

j J

t

j t j t

j J

j t j

J

t

t

j

P

P

x

P

P

P

P

P

P











 
 
 
 
+ 

 
 
 + −
 
 
 
+ − 

 

= −









 (45) 

The auxiliary decision variable tz  is defined as： 

 t tz x=  (46) 

This can be relaxed into a linear inequality constraint:  

 
t t

t t

z x

z x

 


 −
 (47) 

Substituting equation (46) into equation (3) gives:  

 
1

Com 1T

t

t

z z
T=

=   (48) 

In fact, the equality constraint in equation (46) is 

equivalent to the following linear inequality constraints (49), 

composed of the infimum constraints (a) and (b) and the 

supremum constraints (c) and (d). M is a large positive constant. 

 

( )

( )

( ) ( )

( )

 , 0,1
1

t t

t t

t

t t t

t t t

z x a

z x b
u

z x u M c

z x u M d

 


 −


 + −


 − +

 (49) 

In the objective function in equation (36), 1

1 1

e

T

t

t

x
T

=

−   is 

monotonically increasing with respect to tx . During 

minimization, the goal is to keep tx  as small as possible. 

Constraints (a) and (b) in equation (49) ensure t tz x , and then 

the optimization algorithm will naturally choose t tz x= . 

Therefore, the supremum constraints (c) and (d) in equation (49) 

are redundant. The equality constraint in equation (46) can be 

relaxed to the inequality constraint in equation (47) , including 

only the infimum inequality constraints (a) and (b) from (49). 

B.  Convex-concave procedure (CCP) method used in step 1 

Let: 

 buy sell TCom[ , , ]t tz P P=θ  (50) 

Then:  

 ( ) ( ) ( )E E buy sell TOU buy FIT sell

1

Δ,
T

t t t t t t

t

C C P P P P t 
=

== +θ  (51) 

 ( ) ( )
Com

CDL CDL C o

1

CDom C mL e
z

R PR z 
−

= =θ  (52) 

 ( ) ( ) ( )Com CDL EC R C= − +θ θ θ  (53) 

Both ( )CDLR θ and ( )EC θ  are convex functions, with the 

proof referring to [35] (the definitions of “convex” and 

“concave” also follow the conventions outlined in [35]). By 

contrast, the objective function ( )ComC θ , being a convex ( )EC θ  

minus another convex function ( )CDLR θ , forms a "convex minus 

convex" structure. This structure is generally non-convex, 

according to the verification method described in [35], by 

analyzing the Hessian matrix of ( )ComC θ . Consequently, the 

optimization problem with ( )ComminC θ  as the objective function 

is a non-convex one, which cannot be solved using commercial 

solvers. 

For non-convex objective functions, the Majorization-

Minimization (MM) algorithm is often used for approximation. 

Given that ( )ComC θ  can be decomposed into a convex function 

( )EC θ  and a concave function ( )CDLR− θ , the non-convex part 

( )CDLR− θ  can be linearized via a first-order Taylor expansion. 

This method, known as the Convex-Concave Procedure 

algorithm [34], is a specific case of the MM algorithm. This 

linearization simplifies the optimization problem by replacing 

the non-convex objective with a convex approximation, 

aligning with MM’s core idea of constructing iteration 

objective functions. Further insights into the relationship 

between CCP and MM can be found in [36]. 

In this study, the CCP algorithm is applied to solve the 

problem. Choose an initial point ( )( )0

CDL

0 , Rθ θ  as the first-order 

Taylor expansion point, construct the upper bound function 

( )L

0

CDR̂ θ , and obtain the CCP objective function

( ) ( ) ( )D

0 0

Com C L Eˆ ; ˆ ;C R C− +=θ θ θ θ θ . Solve the convex optimization 

subproblem ( )0

Comˆin ;m C θ θ  to obtain the solution 1θ . Then, 

compute the original objective function value ( )1

ComC θ . If 

( ) ( )o

0

om

1

C C mC C − θ θ , convergence has not been achieved, and 

the iteration should proceed.  

In the k+1 iteration, the first-order Taylor expansion of the 
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function ( )CDLR θ  at ( )( )CDL,k kRθ θ  is:  

 

( ) ( )( )
( )( ) ( )( ) ( )( )

( )

( )

( )( )
,

Com

Com

,

C

D

omCDL CDL Com

Com C

C

om ComCDL CDL Com

Com

ComCom C

,

T
, , ,

1

L

1

,C omDL

ˆ ; ;

e

1

ˆ

e

k

k

k

k

k k k

z

z
k

t

z z

z z z

z

R

R z

P

R

P

R

z












−

−

=

−

 
  

=  
 − −
 

= +

 

θ θ

 (54) 

Thus, in the k+1 iteration:  

 ( ) ( ) ( )C ECom DLˆ ˆ; ;k kR CC = − +θ θ θ θ θ  (55) 

The k+1 sub-problem becomes: 

 

( )

( )( )

( )

Com

,Com1

CDL

1

,Com CDL

,

TOU buy FIT s

o

m

e

Co

ComCo

l

C m

l

1

m

e

1ˆmin e

Δ

k

k

k

t t

z

z
k

t k k
z x

T

t t t t

t

P

C P z z

P P t










 

−

−

=

 
 −
 
 

= + − 
 
 

+ + 
 



 (56) 

Solve the linearized convex optimization problem to 

obtain 1k+θ , ( )1

E

kC +θ , ( )CDL

1
ˆ ; kkR +θ θ , ( )Com

1
ˆ ; kkC +θ θ  and compute 

( )1

CDL

kR +θ , ( )1

Com

kC +θ . Use ( )( )1

CD

1

L,k kR+ +θ θ  as the next iteration 

point. When the following formula is satisfied, convergence is 

considered to be achieved: 

 ( )Com Com

10 ( )k kC C + − θ θ  (57) 

where   is the given convergence gap. 

To sum up, the entire solving process is shown in 

Algorithm 1.  
Algorithm 1: Concave-convex procedure (CCP) Algorithm 

1: Input: an initial feasible point 0θ  

2: Repeat      1k k= + : 

3:  The upper bound function is obtained based on (54). 
4:  Solve the optimization subproblem based on (56). 

5:  Update 
T

Com buy sell

1 , ,t tz P P+
 =  k

θ  based on (56). 

6: Until (57). 

7: Output: 1+kθ . 

8: End 

 

The basis for Equation (57) lies in the fact that during the 

optimization of the subproblem ( )Comˆmin ; kC θ θ , the original 

objective function value ( )ComC θ  is non-increasing [34]. This is 

a key advantage of the CCP algorithm, ensuring that the original 

objective function value does not oscillate during iteration and 

guaranteeing convergence to the optimal value.  

The convergence proof of the CCP algorithm is as follows. 

In the k-th iteration, let the optimal solution of 

( )1

Comm ;ˆin kC −θ θ  be kθ .  

For the objective function ( )Com CDL Eˆ ˆ ( ; ) ( ); k kC R C− +=θ θ θ θθ  in 

the (k+1)-th iteration, we have: 

 Com Comˆ( ) ( ; )k k kC C=θ θ θ  (58) 

Also for ( )Comm ;ˆin kC θ θ  in the k+1-th iteration, the optimal 

solution is 1k+θ . This solution satisfies:  

 ( )Com CDL E

1 1 1
ˆ ˆ ( ; ) ( ); kk k k kC R C+ + +− +=θ θ θ θθ  (59) 

 ( ) ( )Com CDL E

1 1 1( )k k kC R C+ + += − +θ θ θ  (60) 

Given the properties of the convex function,  

 ( ) ( )CDL CDL

1 1;
ˆ

k kkR R+ +θ θ θ  (61) 

Thus, the original objective function value ( )Com

1kC +θ  satisfies:  

 ( ) ( )Com Com

1 1;
ˆ

k kkC C+ +θ θ θ  (62) 

Since ( )( )Com

1 1, ;ˆ
kk kC+ +θ θθ  is the optimal point for the 

objective function ( )Comˆ ; kC θ θ in the k+1-th iteration, it must 

satisfy: 

 ( ) ( )Com Com

1
ˆ ; ;ˆ

k kk kC C+  θθ θθ  (63) 

From equations (58)-(63):  

 ( ) ( )Com Com Com Com

1 1
ˆ ˆ( ) ( ; ) ;k k k kk kC C C C+ +=  θ θθ θ θ θ  (64) 

Thus: 

 ( )Com Com

1( )k kC C +θ θ  (65) 

Hence, the iterative sequence  
0

Com ( )
kkC

=
θ

∞

 is a non-

increasing convergent sequence.  

C.  Updated two-step framework with the improvements 

In summary, the entire process of the two-step framework 

is as follows. 

  

Fig. 3  Overview of the proposed two-step operation framework. 

 

V.  CASE STUDY 

A.  Parameter settings 

Taking a prosumer community as an example, this 

community includes one PV operator, one RU with flexible 

loads, one parking lot operator with CS and one distributed ES 

operator. The PV operator and the RU sign a consumption 

contract, forming a priority coalition. Relevant parameters and 

values are shown in Appendix A. 

Four typical scenarios are studied, as shown in Table I. 

The detailed results are provided and discussed in the following 

sub-sections, as shown in Table II. 

TABLE I  FOUR SCENARIOS STUDIED. 

Factors 
Scenario 

1 2 3 4 

CDL-based DR √ × √ × 

Energy sharing 

transactions in community 
√ √ × × 

 √/×: Consider the factor or not. 

 

TABLE II  THE ANALYSIS DONE WITH THE RELEVANT SCENARIOS. 

Analysis Subsection 
Scenario 

1 2 3 4 
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CCP iteration B √ × × × 

Benefits of 

participating in 

CDL-based DR 

C √ √ √ √ 

Individual 

prosumer’s power 

curves 

D √ √ √ √ 

Prosumers’ cost 
allocation 

E √ √ √ √ 

Sensitivity of 
incentive price 

𝜋CDLand deviation 

coefficient 𝛾  

F 
√(multiple 
examples) 

× × × 

Absolute value 

relaxation results 
Appendix B 

√(multiple 

examples) 
× × × 

√: scenario included; ×: scenario not included; 

Unless otherwise specified, √ indicates a case constructed with default parameter values. 

 

 

Fig. 4  Optimization objective iteration values based on CCP method in scenario 

1: (a) the iteration curves of CCP and original objective, respectively; (b) the 

combined iteration curve of CCP and original objective. 
 

 

Fig. 5  Distribution of optimization objective iteration differences values 
based on CCP method in scenario 1 

 

B.  Analysis of CCP iteration results  

This subsection uses Scenario 1 with default values 

$0.02/kWh and 0.04 for the incentive price CDLR  and deviation 

coefficient  . 

As outlined in Section IV, the non-increasing convergence 

of the original objective function is critical when applying the 

CCP method, as it guarantees convergence to the optimal value. 

Thus, analyzing the iteration results is necessary to confirm this 

convergence. 

Before analyzing the CCP iteration results, Appendix B 

examines the validity of the absolute value relaxation method 

used in Section IV. Linear fitting and visualization demonstrate 

that the optimization results of the relaxed inequality (47) 

satisfy the original equation (46). 

The following is the analysis of the CCP iteration results. 

Fig. 4 shows the iteration results for scenario 1. In both 

figures, the black dots represent the iterative values of CCP 

objective ( )1

Comˆ ; kkC −θ θ , and the red dots represent the iterative 

values of original objective ( )Com

kC θ . 

 

Fig. 6  Results of CDL-based DR: (a) Scenarios 1 and 2; (b) Scenarios 3 and 4. 
 

In Fig. 4(a), both iteration values of ( )1

Comˆ ; kkC −θ θ  and 

( )Com

kC θ  decrease with the number of iterations and meet the 

convergence criteria by the 5th iteration, respectively. The 6th 

iteration is included to illustrate that the objective values 

stabilize, as the values in the 5th and 6th iterations are identical, 

further confirming the convergence of the CCP algorithm. 

In Fig. 4 (b), these value dots are connected in the order 
Com ( )kC θ → ( )Com

1
ˆ ; kkC +θ θ → ( )Com

1kC +θ  by a blue solid line. They 

also decrease with such order as the line shows. This line 

represents the iterative process associated with equation (64). 

The differences in connection styles between Fig. 4 (a) and 

Fig. 4 (b) are intentional. Fig. 4 (a) focuses on highlighting the 

independent convergence behavior of the two objective 

functions, while Fig. 4 (b) provides a clearer visualization of the 

iterative trajectory as outlined in equation (64). This distinction 

helps convey different aspects of the CCP iteration process. 

The differences between iterations provide a clearer view 

of CCP algorithm's results. As shown in Fig. 5, the differences 

between consecutive discrete points along each curve of Fig. 4 

are non-negative, indicating that the CCP algorithm's objective 

functions is decreasing with the number of iterations. This 

analysis focuses on the differences between each iteration, 

calculated as the objective value of the current iteration minus 

that of the next iteration, starting from the 1st iteration. The zero 

difference between the 5th and 6th iterations demonstrates that 

the objective value has stabilized, further confirming the 

convergence of the CCP algorithm. 

This analysis aligns with the proof process in equations 

(62), (64) and (65), demonstrating that the CCP method is 

effectively applied in this study. 
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C.  Analysis of the prosumer community’s CDL-Based DR 

results 

This subsection uses Scenario 1-4 with default values 

$0.02/kWh and 0.04 for the incentive price CDLR  and deviation 

coefficient  . 

Fig. 6 shows the normalized power value Com,

tP  of the 

prosumer community for Scenarios 1 and 2 in (a) and 3 and 4 

in (b), both along with the given CDL value CDL,

tP  , the given 

electricity prices TOU

t  and FIT

t .  

In Scenario 1, the normalized power curve of the prosumer 

community closely follows the CDL curve, deviating only at 

hours 16, 17, 21, 22, and 23. This indicates strong tracking 

ability. At hour 17, the overall power of the prosumer 

community is zero. This is likely due to the high TOU 

electricity price at that time, leading the prosumer community 

to avoid purchasing electricity. In Scenario 2, the prosumer 

community does not participate in CDL-based DR. The 

normalized power curve follows the price fluctuations. During 

hours 1-6, when TOU price is low, the prosumer community 

chooses to purchase electricity. During hours 11-18, when TOU 

price is high, the overall power of the prosumer community 

drops to zero. 

In Scenario 3, the normalized power curve of the prosumer 

community overlaps with the CDL curve only during hours 1, 

2, and 5-11. At other times, it either lies between the normalized 

power curve of Scenario 4 and the CDL curve, or coincides with 

the normalized power curve of Scenario 4. The lower response 

activity in Scenario 3 is due to the inability of prosumers to 

share energy. This makes the cost of changing power for CDL-

based DR higher than in Scenario 1. 

D.  Analysis of each prosumer’s power curves 

This subsection uses Scenario 1-4 with default values 

$0.02/kwh and 0.04 for the incentive price CDLR  and deviation 

coefficient  . 

Fig. 7 shows the power each prosumer in Scenarios 1 to 4. 

Comparing Scenarios 2 and 4, the prosumer community’s 

power curves are smoother with internal energy sharing. 

Storage can fully absorb PV generation power and discharge it 

when needed. This ensures the full utilization of internal 

energy. 

In Scenarios 1 and 2, the positive and negative energy of 

each prosumer at the same time are considered as internally 

shared energy. Only the net value is settled externally. This 

reduces overall costs since the offset energy does not incur 

external transaction costs. In Scenario 4, without energy 

sharing, prosumers exhibit different power curves to minimize 

individual costs. Storage systems may engage in price arbitrage 

based on varying electricity prices, causing larger fluctuations 

in power curves. 

Comparing Scenarios 1 and 2, with current CDL-based DR 

incentives, prosumers adjust power values during certain 

periods to align with the CDL. Despite increasing external 

energy purchase costs, the incentives provided by the grid cover 

these additional costs, encouraging prosumers to adjust the 

overall power curve. This conclusion is also supported by the 

data analysis presented in Table III. Compared to Scenario 2, 

the total cost in Scenario 1 decreases from $145.87 to $92.72, 

despite the increase in electricity costs from $145.87 to 

$178.48. 

 

Fig. 7  Bar/line charts of power for each prosumer: (a) Scenario 1; (b) Scenario 

2; (c): Scenario 3; (d) Scenario 4. 

 

TABLE III  COSTS OF THE PROSUMER COMMUNITY IN DIFFERENT SCENARIOS. 

Costs of 

prosumer 

community ($) 

Scenarios 

1 2 3 4 

CDL based 
DR revenue 

-85.76 0 -59.73 0 

Utility 
electricity cost 

178.48 145.87 253.86 238.26 

Total cost 92.72 145.87 194.13 238.26 
Positive values indicate costs; negative values indicate revenue or profit. 

 

TABLE IV  EACH PROSUMER’S COST. 

Prosume

r 

Costs (non-
cooperation

) ($) 

Costs 
(cooperation 

without DR) ($) 

Net profits 
(cooperation 

with DR) ($) 

Costs 
(cooperation 

with DR) ($) 

PV -50.17 -94.53 0 -94.53 

RU 273.94 229.57 -24.60 204.97 

CS 14.49 13.81 -7.74 6.07 

ES 0 -2.98 -20.81 -23.79 

Sum 
238.26 

(scenario 4) 

145.87 

(scenario 2) 
-53.15 

92.72 

(scenario 1) 
Positive values indicate costs; negative values indicate revenue or profit. 

 

E.  Analysis of prosumers’ cost allocation 

This section allocates costs for Scenario 1 using data from 

Scenarios 1, 2, and 4, with default values $0.02/kwh and 0.04 

for the incentive price CDLR  and deviation coefficient  . 

Table III presents the CDL-based DR revenue, utility 

electricity costs, and total costs for the prosumer community 

across four scenarios. The total costs for Scenarios 1, 2, and 4 

decrease sequentially, indicating that directrix-based demand 

response and internal sharing transactions help reduce overall 

costs, especially the latter. 

Comparing Scenarios 1 and 2, while Scenario 1 deviates 

from the optimal purchasing strategy of Scenario 2, increasing 

electricity costs from $145.87 to $178.48, the total cost 

significantly drops from $145.87 to $92.72 due to an $85.76 DR 
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revenue. Similarly, the total cost in Scenario 3 decreases from 

$238.26 to $194.13 when compared to Scenario 4. This is 

consistent with the illustration in Fig. 2. 

Overall, participating in CDL-based DR slightly increases 

the electricity cost of the prosumer community, but the 

incentive revenue from DR significantly lowers the total cost, 

motivating the community to adjust the overall power shape. 

Additionally, without energy sharing within the prosumer 

community, a comparison between Scenarios 3 and 1 shows an 

increase in total electricity purchase cost from $178.48 to 

$253.86, while the CDL-based DR revenue decreases from 

$85.76 to $59.73. The absence of internal energy sharing raises 

the cost of adjusting unit power in Scenario 3, reducing the 

community's willingness to align the overall power curve with 

CDL. 

Table IV shows the cost allocation data for each sub-step 

and the final cost distribution among prosumers in Scenario 1. 

Costs (non-cooperation) shows the costs for each 

prosumer in a non-cooperative state, summing up to the total 

cost of Scenario 4. Costs (cooperation without DR) corresponds 

to the first sub-step, with the total cost equating to Scenario 2. 

The total cost after cooperation is significantly lower due to 

effective local consumption of PV rather than purchasing from 

the utility grid. In the first sub-step, the Owen value method is 

applied. A more detailed explanation of the Owen value method 

results is provided in Appendix C. 

Net profits (cooperation with DR) correspond to the 

second sub-step, with the net profit for each prosumer being the 

difference between Scenarios 1 and 2. As shown in Table III, 

Scenario 1 has CDL-based DR revenue but higher electricity 

costs, whereas Scenario 2 has lower electricity costs but no DR 

revenue, resulting in a negative profit difference. 

In the second sub-step, the net profit is allocated based on 

the sum of the absolute value of power changes for each 

prosumer, referring to the first sub-step. In Appendix C, Fig. C1 

illustrates the absolute values of power adjustments, and Fig. 

C2 presents the adjustment proportion of each prosumer 
(2)

jI  

calculated from Equation (41). The analysis below combines 

insights from Fig. C1, C2, and Table IV. Since PV has no power 

change, its revenue allocation is zero; RU, CS, and ES have 

revenue of -$24.60, -$7.74, and -$20.81, respectively, with a 

total revenue of -$53.15. RU and ES, with the largest 

adjustments, bear more net profits, followed by CS, while PV, 

having no adjustments, receives no allocation. This method 

ensures fair allocation based on actual contributions.  

F.  Sensitivity analysis of incentive price and deviation 

coefficient 

This subsection analyzes the impact of DR incentive price 
CDL  and deviation coefficient   on the optimization results of 

the prosumer community in Scenario 1. The utility grid 

company increases the incentive price from $0.01/kwh to 

$0.08/kwh and the deviation coefficient from 0.01 to 0.08. 

Fig. 8 shows the total deviation Comz  and the electricity 

cost EC . Fig. 9 shows the sensitivity analysis of the similarity 

value ComS  and the incentive revenue CDLR . Fig. 10 shows the 

sensitivity analysis of the total cost of the prosumer community. 

In Fig. 8, the black line demarcates the boundary between 

cases where Comz  and EC  remain constant despite changes in 

the deviation coefficient   and incentive price CDL , and cases 

where these variables become sensitive to such changes. Above 

the solid line, Comz  stays at its minimum value of 0.0071, and 
EC  stays at its maximum value of $178.48, indicating that the 

optimization results are not influenced by varying   or CDL  in 

these regions. The line is drawn to highlight this insensitivity 

threshold based on these consistent values across the varying 

parameters. 

The minimum value of Comz  reflects the limit of the 

prosumer community 's ability to adjust its power in response 

to the CDL. At this point, the prosumer community has reached 

its flexibility limit and cannot further reduce Comz  to obtain 

more incentive revenue. 

 

Fig. 8  Sensitivity analysis of (a) weighted average difference and (b) 

electricity cost (Scenario 1) of the prosumer community. 
 

 

Fig. 9  Sensitivity analysis of (a) similarity value and (b) DR revenue (Scenario 
1) of the prosumer community. 

 

 

Fig. 10  Sensitivity analysis of total cost (Scenario 1) of the prosumer 

community. 

 
EC  is related to ( )buy sell

t tP P+ , and ( )buy sell

t tP P+  satisfies 

equality constraints (2), (3) and (13) with Comz . Therefore, when 
Comz  is constant, EC  also remains constant. This indicates that 

in cases above the solid line, the DR revenue covers the cost of 

power adjustment, so the prosumer community prioritizes 

adjusting the power curve to participate in DR, even if it 

increases EC , until the limit of power is reached. 

According to equations (4) and (5), there is a quantitative 

relationship between ComS  and Comz , as well as between CDLR  
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and Comz . Combined with equation (1), a quantitative 

relationship exists between ComC  and Comz , EC . Therefore, the 

sensitivity characteristics of DLz  and EC  to two parameters in 

Fig. 8 is also reflected in DLS , CDLR , and ComC .  

Considering the sensitivity characteristics of Comz  and EC , 

black solid lines marking the boundaries, as shown in Fig. 8, 

have also been added to the corresponding positions in Fig. 9 

and Fig. 10 to aid in the sensitivity analysis. 

From Fig. 9(a), in cases above the solid line, ComS  is 

sensitive only to the deviation coefficient, not the incentive 

price. In these cases, Comz  remains unchanged, so changes in the 

incentive price and deviation coefficient do not affect the 

optimal solution θ  of the model. According to equation (4), 

when Comz  is constant, ComS  is related only to the deviation 

coefficient. Treating Comz  as a constant and the deviation 

coefficient as a variable, the relationship between ComS  and the 

deviation coefficient can be quantitatively analyzed using 

equation (4). 

From Fig. 9(b), in cases above the solid line, CDLR  is 

sensitive to both the incentive price and the deviation 

coefficient. In these cases, Comz  remains unchanged, so changes 

in the incentive price and deviation coefficient is not 

significantly affecting the optimal solution θ  of model. 

According to equations (4) and (3), CDLR  is related to both the 

incentive price and the deviation coefficient. Treating Comz  as a 

constant and the incentive price and deviation coefficient as 

variables, the relationships between CDLR  and these parameters 

can be quantitatively analyzed using equations (4) and (3). 

The above analysis shows that in these cases, the optimal 

solution θ  is not sensitive to changes in the incentive price and 

deviation coefficient. As a result, in these cases, even when 

these two parameters vary, the optimal values of Comz  and EC  

remain constant. ComS  and CDLR  show clear sensitivity to these 

parameters and can be analyzed quantitatively. 

However, in cases below the solid line, the prosumer 

community balances the benefits between CDLR  and EC . Thus, 

the optimal solution θ  changes with the incentive price and 

deviation coefficient significantly. In these cases, the optimal 

values of Comz  and EC  depend on the parameter values.  

Despite this, Fig. 10 shows the qualitative relationship 

between the total cost ComC  and the parameters. When the 

deviation coefficient is constant, increasing the incentive price 

reduces ComC . When the incentive price is constant, increasing 

the deviation coefficient reduces ComC . Thus, ComC  is positively 

correlated to the deviation coefficient and negatively correlated 

to the incentive price. 

Based on this analysis, setting appropriate parameter 

values in scenario analysis can effectively encourage 

prosumers' participation in CDL-based DR while balancing the 

utility grid company's interest, aligning with realistic 

application more closely. 

VI.  CONCLUSION 

This study explores the issues of power optimization and 

cost allocation in a prosumer community participating in CDL-

based DR. The proposed framework first optimizes power 

usage to balance electricity cost and DR revenue, followed by 

a detailed cost allocation process. During cost allocation, the 

Owen value method is applied, accounting for priority 

coalitions and excluding coalition scenarios that do not exist in 

practice, as can occur in traditional Shapley value calculation. 

To manage the non-convex CDL-based DR objective, the 

framework employs an iterative CCP algorithm, transforming 

the problem into solvable convex subproblems. Finally, a case 

study is conducted with a prosumer community comprising four 

different types of participants, including a PV operator, a RU 

with flexible loads, a parking lot operator with CS, and a 

distributed ES operator. Four scenarios are analyzed to assess 

CDL-based DR framework. Scenario 1 includes both CDL-

based DR and energy sharing transactions, Scenario 2 includes 

only energy sharing, Scenario 3 focuses solely on CDL-based 

DR, and Scenario 4 excludes both. 

The main findings of the study are summarized as follows:  

1) The CCP algorithm ensures convergence by iteratively 

reducing the objective function approximation, achieving 

convergence within five iterations in this case study. This 

confirms the algorithm's ability to efficiently handle the non-

convex optimization problem, with a final objective value of 

$92.72 in Scenario 1. 

2) The prosumer community effectively tracks the CDL 

curve, indicating strong alignment with the target load profile. 

In Scenario 1, the similarity value ComS  is 0.8371, showing the 

community's ability to respond to price signals and optimize 

power usage. 

3) Within the prosumer community, internal energy 

sharing smoothens the power curves of individual prosumers, 

fully utilizing storage capabilities and reducing external 

transaction costs. Scenarios that incorporated internal sharing 

exhibited lower overall costs due to effective local consumption 

and reduced reliance on external electricity purchases, e.g., 

$92.72 in Scenario 1 versus $194.13 in Scenario 3, and $145.87 

in Scenario 2 versus $238.26 in Scenario 4. 

4) The Owen value method considers priority coalitions 

and excluding non-existent coalitions, leading to more 

reasonable cost allocations. In Scenario 2, considering the 

priority coalition between PV and RU, the Owen value method 

evaluated only 10 combinations, excluding 6 unrealistic 

combinations where PV or RU independently form coalitions 

with other prosumers. Compared to the Shapley value method, 

which considers all 16 combinations, the alliance cost for PV 

and RU decreased from $137.58 to $135.04. This approach 

resulted in lower costs for PV and RU, reflecting realistic 

cooperation state within the community. 

5) Participation in CDL-based DR slightly increases 

electricity costs but significantly lowers total costs due to DR 

incentives, motivating prosumers to adjust power curves. For 

example, in Scenario 1, electricity costs increase from $145.87 

to $178.48, but the total cost drops to $92.72 due to $85.76 in 

DR revenue. The incentives provided by the grid cover 
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additional costs, encouraging active participation and 

optimization of power usage. 

6) The community's optimal response to CDL is sensitive 

to changes in the deviation coefficient and incentive price, 

influencing total costs and DR revenue. Scenarios 1-4 

demonstrate that setting the incentive price at $0.02/kWh and 

the deviation coefficient at 0.04 is effective. Proper setting of 

these parameters can effectively balance prosumers' 

participation and the utility grid company's interests. 

In our current work, the regional utility grid company's 

CDL-based DR price for the prosumer community is fixed. This 

limits the flexibility of the utility grid company's decisions. 

Future work will explore strategies for setting dynamic 

incentive prices for the regional utility grid company. 
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APPENDIX A：PARAMETERS FOR CASE STUDY 

1. Basic Parameters 

 

Fig. A1  TOU, FIT and CDL-based DR incentive price. 

 

 

Fig. A2  CDL given by utility grid. 

 

TABLE A1  BASIC PARAMETERS. 

Parameter setting Value Parameter setting Value 

T  24h T  1h 

  0.04   

 

2. Parameters of RU and PV 

 

Fig. A3  Fixed Load of RU and maximum PV feed-in Power. 

 

TABLE A2  PARAMETERS OF RU. 

Parameter setting Value Parameter setting Value 

Load,move

, ,minj tP  -100kw 
Load,move

, ,maxj tP  100kw 

 

3. CS Parameters 

TABLE A3  PARAMETERS OF CS. 

Parameter setting Value Parameter setting Value 

EVN  25 EV,ch  0.85 

EVCap  32kwh EV,dis  0.85 

SOC  0.5 
EV,ch,max

nP  13kW 

SOC  0.1 
EV,dis,max

nP  13kW 

arr  8.92h 
min

arrt  5h 

arr  3.24h 
max

arrt  11h 

dep  17.47h 
min

dept  15h 

dep  3.41h 
max

dept  20h 

n

EV

miSOC  0.3 
EV

expSOC  1 

EV

maxSOC  1   

 

There are total of EVN  EVs in the community. Each EV 

has a battery capacity of EVCap , with a charging/discharging 

efficiency of EV,ch / EV,dis . The state of charge (SOC) upon 

arrival, as well as arrival and departure times, follow Gaussian 

distributions described by equations (A1) - (A3). CS parameter 

settings are shown in Table A3. 

 in 2 min in max

SOC SOC SOC SOC SOC SOC~ ( , ) withS S S S     (A1) 

 arr 2 min arr max

arr arr arr arr~ ( , ) witht t t t     (A2) 

 
dep 2 min dep max

dep dep dep dep~ ( , ) witht t t t     (A3) 

 

6. Models of EV 

These constraints set the allowable ranges for charging and 

discharging power and capture the dynamic changes in battery 

energy. 

 
CS,ch EV,ch

,

1

, ,j t j

n

N

n tP P
=

=   (A4) 

 
CS,dis EV,dis

, , ,

1

j j

n

N

t n tP P
=

=   (A5) 

 
CS,ch CS,ch

, x, a, mj t j tP P  (A6) 

 
CS,dis CS,d s

,

i

, x, maj jt tP P  (A7) 

 
EV,ch EV EV,ch,max

, , ,, ,0 j n t nj njtP P   (A8) 

 ,

EV,dis EV,dis,max

,, ,

EV

,0 nj j jn t t nP P   (A9) 

 
EV,ch EV,di

,,

s

, , 0j jn t n tP P =  (A10) 

 
V

min ,

EV E

max

V E

,n tjE E E   (A11) 

 0

EV

, , 0=njE  (A12) 

 arr

EV EV

, r, ,ar,
=

n
njj n t

E E  (A13) 

 dep

EV EV

, p, ,de,
=

n
njj n t

E E  (A14) 

 
i

EV,ch EV,dis

, , 1 EV c

EV E

,

V

, ,

V

, h , ,

E

,

,d s

1
Δn t n t n t n tj j j jP P tE E 


−

 
= + −  

 
 (A15) 

Equations (A4) and (A5) represent total charging and 

discharging power of all the EVs in the CS. Equations (A6) and 

(A7) limit CS's maximum charging and discharging power, 

while (A8) and (A9) ensure each EV’s charging and 

discharging power does not exceed maximum values. Equation 

(A10) prevents simultaneous charging and discharging. 

Equation (A11) keeps battery energy within a set range, with 

(A12) initializing battery energy to zero. Equations (A13) and 
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(A14) set battery energy at arrival and target departure levels. 

Finally, equation (A15) describes the temporal evolution of 

battery energy. These equations form a concise mathematical 

framework for modeling EV charging and discharging. 

Additionally, literature [31] proves that electric vehicles 

do not simultaneously charge and discharge when their 

efficiency is not 100%. Since the charging and discharging 

efficiency in this paper is 0.85, constraint (A10) is therefore 

omitted. 

 

5. ES Parameters 

TABLE A4  PARAMETERS OF ES. 

Parameter setting Value Parameter setting Value 

ESCap  4000kwh ES,ch  0.85 

n

EV

miSOC  0.3 ES,dis  0.85 

EV

maxSOC  1 
ES,ch,maxP  500kw 

ES

0SOC  0.7 
ES,dis,maxP  500kw 

 

 

APPENDIX B：ANALYSIS OF ABSOLUTE VALUE RELAXATION 

RESULTS 

This section is based on Scenario 1 of the Case Study in 

Section V. The baseline incentive price is increased from 

$0.01/kwh to $0.08/kwh in increments of 0.01, and similarly, 

the deviation coefficient is varied from 0.01 to 0.08, resulting 

in 64 cases for comprehensive assessment. 

Table B1 shows the effectiveness of relaxing the absolute 

value equation (46) into inequation (47) in Scenario 1.  

The relationship between tz and tx is defined as 

, 0

0

t t t

t t t

z x x

z x x

 = 


= −  ，
. For verifying this relationship, we fit the 

simulation results by a linear function. As shown in Table B1, 

it is seen that for both 0tx   and 0tx  , the intercepts are nearly 

zero, and the coefficients are exactly 1 and -1, respectively, 

indicating that the relaxation accurately captures the original 

equation. The evaluation metrics (MSE, RMSE, and R²) 

confirm this conclusion: MSE (Mean Squared Error) measures 

the average squared difference between predicted and actual 

values, providing an overall sense of prediction error 

magnitude. RMSE (Root Mean Squared Error), as the square 

root of MSE, expresses this error in the same units as the 

original data, making it more interpretable. R² (Coefficient of 

Determination) measures how well the predicted values align 

with the actual data. In Table B1, the extremely low MSE and 

RMSE values suggest minimal error, and the R² values of 

1.0000 indicate a perfect fit. These results demonstrate that the 

relaxation approach is highly effective for the absolute value 

function. 

Fig. B1 shows more intuitive fitting results. In the 

coordinate system ( )axis axis axis, ,t x z , a purple plane 

axis

axis

axis

t

t

z x

x x

t t

 =



=


=

 is 

added and the red dots representing ( ), ,t tt x z  lie on this plane. 

The green dots ( ),x z  are the projections of the red dots onto the 

x-z plane. By fitting the green dots, it is evident that they lie on 

the function z x=  as shown by the dashed green line. 

Therefore, the results in Table B1 and Fig. B1 show that 

the absolute value relaxation constraint satisfies the original 

absolute value constraint (46). Using the infimum inequality in  

(47) in place of the original equation yields accurate relaxation 

results. 

TABLE B1  ANALYSIS OF FITTING RESULTS. 

Result  ( )0t t tz x x=     ( )0t t tz x x= −   

Intercept -2.2078e-09  -8.7640e-18 

Coefficient 1.0000  -1.0000 

MSE 2.3673e-17  3.7471e-19 

RMSE 4.8655e-09  6.1214e-10 

R2 1.0000  1.0000 

 

 

Fig.B1  Visualization of absolute value relaxation results. 

 

 

APPENDIX C：ADDITIONAL NOTES ON PROSUMERS' COST 

ALLOCATION ANALYSIS 

1. Comparison between Owen and Shapley value methods 

(with and without priority coalitions) 

In the first sub-step of cost allocation, the Owen value 

method is applied to allocate costs among prosumers within the 

community. Table C1 compares the results of the Owen and 

Shapley value methods. When the PV-RU priority coalition is 

considered, PV’s energy is prioritized for RU, resulting in 

higher costs for CS and ES, while overall costs for PV and RU 

decrease under the Owen method compared to the Shapley 

method. 

TABLE C1  COST ALLOCATION RESULTS COMPARISON BETWEEN THE OWEN 

AND SHAPLEY VALUE METHODS IN SCENARIO 2. 

Prosumer 
Costs (cooperation without DR) ($) 

Shapley value method Owen value method 

PV -91.30 -94.53 

RU 228.88 229.57 

CS 12.71 13.81 

ES -4.42 -2.98 

{PV,RU} 137.58 135.04 

Sum 145.87 
Positive values indicate costs; negative values indicate revenue or profit. 

 

Although the results from both methods are similar in 
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Table C1, the Shapley method considers more coalition 

combinations, including scenarios unlikely to occur in practice. 

Thus, the Owen value method offers a more realistic approach. 

Table C2 lists all prosumer coalition combinations 

considered by both the Owen and Shapley value methods, 

totaling 16, including the empty set. The Shapley value method 

evaluates costs across all 16 combinations, deriving the cost 

allocation accordingly. In contrast, the Owen value method 

accounts for the priority coalition between PV and RU, 

excluding 6 coalition combinations where PV and RU combine 

with other prosumers individually, as these are deemed 

unrealistic. 

TABLE C2  COMPARISON OF PROSUMER COALITION COMBINATIONS 

CONSIDERED BY THE SHAPLEY AND OWEN VALUE METHODS. 

Coalition 

combinations 

Shapley 
value 

method 

Owen 
value 

method 

Coalition 

combinations 

Shapley 
value 

method 

Owen 
value 

method 

{} √ √ {ES} √ √ 

{PV} √ √ {PV, ES} √ × 

{RU} √ √ {RU, ES} √ × 

{PV, RU} √ √ {PV, RU, ES} √ √ 

{CS} √ √ {CS, ES} √ √ 

{PV, CS} √ × {PV, CS, ES} √ × 

{RU, CS} √ × {RU, CS, ES} √ × 

{PV, RU, CS} √ √ {PV, RU, CS, ES} √ √ 

√/×: Consider the coalition combinations or not. 

 

2. Additional notes on the second sub-step of cost allocation 

In Appendix C, Fig. C1 illustrates the absolute values of 

power adjustments over a T-hour period for different prosumers, 

including PV, RU, CS, and ES. The graph highlights that RU 

and ES have more significant variations in power adjustments 

compared to PV and CS, indicating their more active roles in 

responding to CDL. 

Fig. C2 presents the adjustment proportion of each 

prosumer 
(2)

jI  calculated from Equation (41). The chart reveals 

that RU has the highest adjustment proportion at 0.4628, 

followed by ES at 0.3916, CS at 0.1456, and PV at 0.0000. This 

distribution indicates the relative contribution of each prosumer 

to the overall power adjustment process, with RU and ES 

playing the most significant roles. 

 

Fig.C1  Absolute values of power adjustments of prosumers. 

 

Fig.C2  Proportion of each prosumer’s power adjustment to the total 

adjustments. 

 


