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Summary 

This thesis uses data collected from the Respiratory Outcomes in Neonates (RHiNO) Study 

and aimed to identify the underlying mechanisms of prematurity-associated lung disease 

(PLD) and the effect of inhaler treatments on any implicated biological processes. Exhaled 

breath condensate (EBC) and urine samples were collected from preterm- and term-born 

school-aged children both at baseline and after twelve weeks of inhaled therapies. 

Untargeted proteomic and metabolomic analyses have been used to investigate the 

mechanisms underlying a range of phenotypes of PLD, based upon neonatal history of 

bronchopulmonary dysplasia (BPD) and current spirometry patterns, as well as post-

treatment effects on any alterations identified. 

The results demonstrated that preterm-born children with a history of BPD had detectable 

EBC proteome changes indicative of pulmonary structural alterations, including a reduced 

abundance of desmosome-constituent proteins. These changes were reversed with 

combined inhaler therapy (corticosteroid and long-acting β2 agonists), increasing these 

protein’s abundances to levels comparable to term-born subjects. The EBC metabolome 

suggested changes in pulmonary antioxidant mechanisms in those with a history of BPD, 

including significant reductions in metabolites associated with glutathione metabolism, 

although not revealing any associations with current lung function.  

Urinary analyses demonstrated proteomic and metabolomic alterations associated with 

current spirometry patterns. Prematurity-associated obstructive lung disease (POLD) was 

associated with proteomic changes linked with increases in neutrophil activity and tissue-

remodelling proteases, with metabolomic changes also suggestive of impairments in 

glutathione metabolism. The urinary proteome of those with prematurity-associated 

preserved ratio impaired spirometry (pPRISm) showed changes associated with inflammatory 



iii 
 

processes and altered T-lymphocyte biology, however minimal metabolomic changes were 

identified for this group. 

Overall, these results demonstrated differing biological mechanisms underlying different 

phenotypes of PLD, including both for those with a history of BPD and those with current 

impaired lung function results, with evidence that some of these mechanisms are potentially 

modifiable with inhaled therapies.  
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1 Introduction 

The survival of infants born prematurely (<37 week’s gestation) has improved significantly 

over the last thirty years in line with advances in modern antenatal care and neonatal 

intensive care. Despite continuing improvements in mortality, survivors still experience a 

considerable burden of long-term morbidity, with the respiratory system being one of the 

most affected, along with neurodevelopmental outcomes. These co-morbidities extend 

beyond infancy and will impact a proportion of survivors into childhood, adolescence, and 

later adult life. There is a growing need to understand the biological mechanisms underlying 

this pulmonary dysfunction to identify individuals at risk and to develop potentially targeted 

therapeutic agents. 

 

In this chapter, I will provide an overview of preterm birth, and the short- and long-term 

respiratory consequences associated with preterm birth. In addition, I will discuss two “-

omics” methods for analysing biological samples, namely proteomics and metabolomics. 

Both are gaining increasing interest for understanding mechanisms of respiratory diseases, 

identifying biomarkers for clinical phenotypes, and assessing response to treatments. Finally, 

I shall detail my hypotheses, and the specific research aims this thesis will address.  

 

1.1 Preterm birth 

1.1.1 Epidemiology of Preterm Birth 

Preterm birth is defined by the World Health Organisation as birth before 37 weeks of 

completed gestation, or less than 259 days since the first day of the mother’s last menstrual 

period (Howson et al., 2012). The degree of preterm birth is further subdivided into three 
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categories dependent on the gestational age at birth (World Health Organisation, 2019), as 

shown in Table 1-1. 

 

Gestation Definition 

<28 weeks Extremely preterm 

28 to <32 weeks Very preterm 

32 to <37 weeks Moderate to late preterm 

Table 1-1: WHO Classifications of preterm birth (Howson et al., 2012) 

Current estimates suggest that the worldwide average rate of preterm birth is 10%, with 

marked geographical variation. Of those infants born preterm, the majority (approximately 

85%) are in the moderate or late preterm group, with a minority (approximately 5%) in the 

extremely preterm group. The rate of preterm birth is increasing globally, especially in 

industrialised nations, where delivery at a preterm gestation may be recommended for 

maternal or fetal reasons, and where there are more healthcare resources to care for these 

vulnerable infants. In developed countries rates of preterm birth range from 5-8% in 

European nations to 12% in the USA (Blencowe et al., 2012, Ohuma et al., 2023). 

 

1.1.2 Causes of Preterm Birth 

The reasons for preterm birth are multifactorial in origin. Preterm birth can be broadly 

categorised into either spontaneous or following medical intervention, such as induction of 

labour or delivery by Caesarean section. Spontaneous preterm births following premature 

rupture of membranes (PROM) and onset of labour before 37 week’s completed gestation 

occurs in approximately 3% of all pregnancies (Medina and Hill, 2006). Spontaneous preterm 

labour accounts for approximately 70% of all preterm births, with the remaining 30% being 

medically indicated deliveries, for either maternal or fetal health reasons (Goldenberg et al., 

2008). The increase in preterm births in singleton pregnancies is largely driven by medical 
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intervention, whereas assisted reproductive technologies account for the increase in preterm 

births in multiple pregnancies (Goldenberg et al., 2008).  

 

Of those spontaneous preterm births, approximately 40% follow a prolonged PROM. 

Prelabour PROM is defined as a spontaneous rupture of the membranes at <37 weeks 

gestation and at least one hour prior to the onset of contractions (Goldenberg et al., 2008).  

The reasons for PROM in most cases are unknown, but asymptomatic intrauterine infection 

is thought to be a common cause. The majority of women with prelabour ROM begin labour 

within a few days, but some mother’s will not begin contractions for weeks or months 

following premature ROM, increasing the risk of ascending infection to the fetus, as the 

protective barrier for the fetus is no longer present (Romero et al., 1988). 

Figure 1-1: Pathological processes implicated in the onset of preterm labour  

(Romero et al., 2006). Image reproduced with permission of the rights holder. 

 

The mechanisms underlying the onset of preterm labour remain incompletely understood. 

Whilst the process of labour is the same for term and preterm deliveries, namely increased 
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uterine contractility, cervical ‘ripening’ (dilatation and effacement), and decidua/membrane 

activation, it is thought that whilst term labour results from physiological activation, preterm 

labour is a pathological process that results from activation of one or more parts of the labour 

process (Romero et al., 2006). Pathophysiological causes for the initiation of preterm labour 

are detailed in Figure 1-1. 

 

There are also several maternal risk factors which are associated with an increased risk of 

preterm birth. These include black ethnicity, low socioeconomic status, short time interval 

between pregnancies, previous preterm birth, multiple pregnancy, low body mass index 

(BMI), maternal nutritional deficiencies (vitamins and minerals such as zinc, folate and iron), 

and tobacco smoking (Goldenberg et al., 2008). Intrauterine infection is a frequent and 

important cause of preterm labour and birth, with an established causal link and clear, 

defined molecular mechanism. Infections can either be maternal (extrauterine) or 

intrauterine, which may be a subclinical infection or one that produces symptoms in the 

mother and fetus (chorioamnionitis), especially in the context of prolonged prelabour ROM 

(Romero et al., 2006, Romero et al., 1988). Potential routes for intrauterine infection are given 

in Figure 1-2.  

Attempts have been made to reduce the modifiable risk factors associated with preterm birth 

or prevent or delay the underlying mechanisms responsible for preterm labour. A review of 

evidence for interventions targeted towards reducing preterm labour found that smoking 

cessation (relative risk 0.84; 95% confidence interval 0.72 - 0.98) and progesterone in high-

risk women (0.65; 0.54 - 0.79) were the only effective interventions for reducing the risk of 

preterm birth (Barros et al., 2010). 
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Figure 1-2: Potential routes for introduction of intrauterine infection  

(Goldenberg et al., 2008). Image reproduced with permission of the rights holder. 
 

Tocolysis (administering medications to slow or prevent contractions in labour) is effective 

only in the context of delaying birth to allow successful administration of antenatal 

corticosteroids, which is a strongly evidenced intervention for improving survival (0.78; 0.70 

- 0.87) and immediate postpartum respiratory health (0.71; 0.65 - 0.78) of preterm infants 

(McGoldrick et al., 2020).  

 

1.2 Morbidity and Mortality associated with Preterm Birth 

1.2.1.1 Mortality associated with preterm birth. 

Preterm birth is the leading cause of death in the neonatal population (defined as the first 28 

days of life). In 2015, there were 2.7 million deaths globally in the neonatal period, with 

preterm birth accounting for approximately 943,000 (35%). Preterm birth remains the leading 

cause of childhood mortality up to the age of five years, with a cause specific mortality of 7.6 
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per 1000 live births (Liu et al., 2016). The limit of viability, the lowest gestational age at which 

it is possible for a fetus to born at and survive, has continued to reduce, especially over the 

last two decades. The British Association of Perinatal Medicine (BAPM) supports healthcare 

professionals in offering resuscitation to infants born at and above 22 weeks’ gestation in the 

United Kingdom (BAPM, 2019). The EPICure studies from 1995 and from 2006 examined the 

outcomes for babies born extremely preterm between 22- and 26-weeks’ gestation in the 

United Kingdom. EPICure found that even though there remained a high mortality for live-

born infants (47%), there was a significant improvement in survival of 13% for these infants 

with advances in neonatal intensive care, from 40% in 1995 to 53% in 2006. Those infants 

born at the most preterm gestations (22 weeks) had the lowest survival (2% of live births) 

rising rapidly with each week of gestation thereafter (77% survival of live births at 26 weeks 

gestation) (Costeloe et al., 2012). Santhakumaran et al. have published more recent data 

covering survival of infants born <32 weeks’ gestation who were admitted to English neonatal 

units between 2008 and 2014 (Figure 1-3). The authors found that overall survival to 

discharge continued to increase over this period from 88.0% to 91.3%. Overall, survival to 

discharge of 22-week gestation infants was 17.9% increasing up to 98.1% for 31-week 

gestation infants (Santhakumaran et al., 2018). Although these figures seem markedly higher 

than the EPICure data, it is worth noting that the data used by Santhakumaran et al. comes 

from the National Neonatal Research Database (NNRD) which collects data from all 

admissions to neonatal units in the UK but does not include stillbirths or delivery room 

deaths.  
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Figure 1-3: Survival rates to discharge in preterm born infants admitted to English neonatal 
units at different gestational ages between 2008 and 2015  

(Santhakumaran et al., 2018). Figure available under Creative Commons CC BY 4.0 license. 
 
 

1.2.1.2 Morbidity associated with preterm birth. 

Preterm infants are vulnerable to numerous pathologies affecting the respiratory (neonatal 

respiratory distress syndrome), cardiovascular (patent ductus arteriosus, haemodynamic 

instability), neurological (intraventricular haemorrhage, periventricular leukomalacia) and 

gastrointestinal (necrotizing enterocolitis) systems immediately following their birth and for 

the subsequent weeks until reaching term-corrected age. In addition, owing to an immature 

immune system, they are vulnerable to systemic infection from bacterial, viral and fungal 

pathogens. Even with advances in medical management over the last twenty years, there 

remains a significant disease burden in this population (Berrington et al., 2012, Edwards et 

al., 2024). As a preterm infant is born whilst their major body systems are at an immature 

stage, they are vulnerable to pathological insult from ex utero organ growth and 
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development, which can be compounded by iatrogenic injury resulting from medical 

interventions required to support their survival, such as mechanical ventilation and 

supplemental oxygen. 

 

In addition, for those preterm infants who survive to discharge home, preterm birth 

represents a significant cause of morbidity in later childhood. Preterm born children are at 

particular risk from longer term respiratory and neurological/neurodevelopmental 

pathologies, as well as issues with their vision, hearing, and psychosocial skills (Raju et al., 

2017). 

 

1.3 Lung Development 

Lung development begins early in embryonic life and spans a series of tightly regulated 

developmental stages as shown in Figure 1-4. As early as three weeks post-conception, the 

respiratory tract begins forming as an out-growth of the ventral wall of the primitive foregut 

endoderm. By around seven weeks of embryonic life, the epithelial cells of the foregut have 

invaded the mesenchyme of the forming trachea, and the first phases of airway branching 

have occurred, forming the left and right main bronchi, and the lobar and segmental bronchi.  

The pseudoglandular phase lasts until 17 weeks’ gestation, during which there is further 

branching of the respiratory tree and evolving pulmonary vasculature, with 70% of the total 

airway generated by 14 weeks’ gestation. There is further differentiation of cell types to begin 

forming the structures of the adult airway, such as cartilage, submucosal glands, bronchial 

smooth muscle, and epithelial cells. By 17 weeks, all the conducting airways and terminal 

bronchioles have formed (Joshi and Kotecha, 2007).  
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Figure 1-4: Diagram illustrating the stages of normal human lung development.  

(Chakraborty et al., 2010). Image reproduced with permission of the rights holder. 
 

 

The canalicular phase spans 17 weeks to 27 weeks’ gestation and is characterised by the 

formation of the acinar structures of the airways, namely the respiratory bronchioles, alveolar 

ducts, and the development of primitive alveoli. The acini form the functional gas exchange 

unit of the lung. The canalicular phase is marked by two crucial steps in the development of 

the lung.  

 

Firstly, type I and II pneumocytes begin to develop in the primitive alveolar structures 

(Kotecha, 2000). Type I pneumocytes form most of the flat epithelial lining of the alveolus 
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and provide a thin barrier between the air space and underlying capillary network. Type II 

pneumocytes are cubic structures that generally lie isolated amongst the type I pneumocytes. 

These cells are filled with lamellar bodies that release pulmonary surfactant into the alveolus 

(Konrad Morgenroth, 2008). Pulmonary surfactant is a complex mix of phospholipids, neutral 

lipids and apoproteins. Phosphatidylcholine is the major phospholipid component of 

mammalian surfactant and is the primary constituent responsible for lowering the surface 

tension within the alveolus at the air-liquid interface. This facilitates efficient respiratory 

mechanics and gas exchange (Chakraborty and Kotecha, 2013).  

 

Secondly, the alveolar capillary barrier forms as pulmonary capillary walls thin sufficiently to 

allow gas exchange between the blood and acinar air spaces. Once these two processes have 

occurred, the blood-gas barrier is sufficiently effective to maintain life in an extremely 

preterm infant (Hislop, 2002). The saccular stage follows and lasts between 28 – 36 weeks’ 

gestation. By this time, the branching of the airways is nearly complete, and lung growth is 

comprised of enlarging peripheral airways, with the airway walls continuing to thin, and 

further development of the acinar units, with dilatation of the acinar tubules to form 

saccules. This further increases the surface area for gas exchange. The alveolar lining 

continues to develop with type II pneumocytes increasing their lamellar body production. 

 

The alveolar stage of lung development is the last to occur in utero and lasts up to at least 

two years of postnatal life. This stage is defined by further septations of the terminal airways 

and the alveoli begin to form their classic cup-shaped appearance. There is further postnatal 

lung growth, with the number of alveoli increasing at least until the age of 2-3 years, and size 

and surface area of acinar units increasing until after adolescence. The number of alveoli at 
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birth ranges from 20 to 50 million, with this number increasing to 300 to 800 million in adults 

(Joshi and Kotecha, 2007).   

 

1.4 Respiratory Consequences of Preterm Birth 

Respiratory insufficiency is the principal pathology affecting the preterm infant immediately 

after birth. This manifests early as neonatal respiratory distress syndrome (RDS), which can 

either resolve or progress to bronchopulmonary dysplasia (BPD), also known as chronic lung 

disease of prematurity (CLD).  

 

1.4.1 Respiratory Distress Syndrome 

RDS is the commonest respiratory morbidity affecting infants born prematurely, with 

increasing frequency and severity being associated with lower gestational age of birth and 

lower birthweight (Wen et al., 2019). Additional risk factors for development of RDS include 

male sex, white ethnicity, maternal diabetes mellitus, perinatal hypoxia and ischaemia and 

delivery in the absence of active labour (Li et al., 2019, Reuter et al., 2014). The primary 

underlying pathophysiology of RDS is a deficiency of pulmonary surfactant, resulting in 

microatelectasis and low lung volumes. RDS usually presents within the first few hours of 

birth and improves over the first three to four days of life, following diuresis and reduction of 

pulmonary oedema, and as type II pneumocytes begin endogenous surfactant production. 

Some infants with milder disease can be managed with non-invasive respiratory support, such 

as Continuous Positive Airway Pressure (CPAP) or High Flow Nasal Cannulae (HFNC), whereas 

others will require exogenous pulmonary surfactant replacement, either by minimally 

invasive techniques or via an endotracheal tube. If respiratory failure is severe, then infants 

often require mechanical ventilation (Reuter et al., 2014, Course and Chakraborty, 2020). The 

introduction of routine administration of antenatal corticosteroids to mothers with 
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threatened preterm labour has markedly improved the severity of RDS in preterm born 

infants (McGoldrick et al., 2020). For some preterm-born infants with RDS who require a 

prolonged period of ventilatory support, there is a risk of developing chronic respiratory 

pathology, termed BPD (or CLD). However, not all infants who develop BPD have a history of 

RDS. 

 

1.4.2 Bronchopulmonary Dysplasia 

BPD was first described by Northway et al. in 1967 (Northway et al., 1967). Their paper 

described injury to the airways and lung parenchyma secondary to positive pressure 

ventilation and high fractions of inspired oxygen over the first few weeks of life. This cohort 

of infants had a high rate of mortality and an average gestational age of 34 weeks. The lung 

injury was heterogeneous and characterized by marked pulmonary fibrosis and epithelial 

damage, with areas of hyperinflation and atelectasis. In addition, there was hyperplasia of 

the airway smooth muscle and hypertensive changes to the pulmonary vasculature. Over the 

subsequent years, the management of preterm infants has evolved, with the introduction of 

neonatal ventilators, use of maternal antenatal corticosteroid administration and 

administration of exogenous pulmonary surfactant. The result of these interventions, 

amongst others, means that infants born at increasingly immature gestations, and therefore 

increasingly immature stages of lung development, are now surviving (Edwards et al., 2024). 

Consequently, the clinical and pathological presentation of BPD has changed. Rather than the 

injury to relatively well-developed lungs described by Northway et al. (Northway et al., 1967), 

contemporary BPD is a disease caused by alteration of normal lung development (Thebaud 

et al., 2019).  
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As described above, lung development in utero progresses through four distinct phases, 

embryonic (0-7 week’s gestation), pseudoglandular (7-17 week’s gestation), canalicular (17-

27 week’s gestation) and saccular/alveolar (28 week’s gestation to term) (Chakraborty et al., 

2010). It is during the canalicular phase that gas exchange within the lung becomes possible, 

and surfactant producing type II pneumocytes start to appear (Kotecha, 2000, Hislop, 2002). 

Preterm birth interrupts this normal lung development, and histological specimens from 

animal models and infants who have died from contemporary BPD demonstrate a more 

homogenous lung disease of alveolar simplification, whereby the alveoli appear larger, but 

fewer in number, with decreased septation, interstitial fibrosis and impaired growth of the 

pulmonary microvasculature (Jobe and Bancalari, 2001). Despite ongoing advances in 

neonatal medicine, the incidence of BPD is continuing to rise, unlike many other neonatal 

outcomes (Stoll et al., 2015, Bonadies et al., 2023), likely related to the improving survival of 

infants born at increasingly immature gestational ages (Edwards et al., 2024). 

 

1.4.2.1 Pathogenesis and risk factors for bronchopulmonary dysplasia 

Prematurity and low birth weight are the most important risk factors for the incidence of BPD, 

with the incidence being inversely proportional to both gestational age and weight at birth 

(Stoll et al., 2010). Whether there is a genetic predisposition to BPD is unclear. Although twin 

studies have demonstrated that genetic factors play an important role in the susceptibility to 

BPD, with an estimated heritability between 50-80% for moderate to severe BPD, study 

sample sizes have overall been small from single populations, and identifying candidate genes 

has been so far unsuccessful (Shaw and O'Brodovich, 2013). 

 

The pathogenesis of BPD is multifactorial, with pulmonary inflammation being a common 

mechanism by which the lung is injured, and the normal lung development trajectory altered. 
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Chorioamnionitis, inflammation of the chorion and amnion within the uterus during 

pregnancy, usually secondary to infection, is a common precursor to preterm birth. In clinical 

chorioamnionitis the mother becomes symptomatic with symptoms of fever, a tender uterus, 

and purulent amniotic fluid. Histological chorioamnionitis can be asymptomatic, more 

common and is likely under-reported as it requires routine examination of the placenta post-

partum (Papagianis et al., 2019). This intra-uterine infection and prenatal inflammation in the 

fetus can have both beneficial and harmful effects on the fetuses’ respiratory health. 

Chorioamnionitis is associated with a reduced rate of RDS in infants born at <30 week’s 

gestation (Lahra et al., 2009), but may be associated with a longer duration of mechanical 

ventilation and pulmonary hypertension (Yum et al., 2018). Whilst histological 

chorioamnionitis appears to increase the risk of developing BPD (Jain et al., 2024), this 

relationship is complicated by birthweight and postnatal events, such as prolonged 

mechanical ventilation and episodes of sepsis (Papagianis et al., 2019). 

 

Mechanical ventilation has been shown to induce lung inflammation in both animal and 

clinical studies. In a preterm lamb model, pulmonary inflammation is evident after two hours 

of mechanical ventilation with upregulation of Interleukin (IL)-1𝛽, IL-6 and IL-8, all pro-

inflammatory cytokines (Hillman et al., 2010, Brew et al., 2011). Neutrophil and macrophage 

infiltration of the lung parenchyma is evident after three-to-four weeks of mechanical 

ventilation with abnormal vascular development and heterogenous lung inflation (Albertine 

et al., 1999). Mechanical trauma to the lung from artificial ventilation has also been 

demonstrated in animal models, with evidence from a preterm lamb model of lung injury 

from artificial lung inflation with physiological inspiratory volumes in surfactant deficient 

lungs (Bjorklund et al., 1997). Evidence from a murine model demonstrated that prolonged 

mechanical ventilation (for 24 hours) reduced alveolar number by 50%, reduced alveolar 
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septation and resulted in a five-fold increase in cellular apoptosis within the lung (Mokres et 

al., 2010).  In human studies, preterm infants who develop BPD have also been shown to have 

persistently elevated proinflammatory cytokines in bronchioalveolar lavage fluid 

(Chakraborty et al., 2013) and blood (Paananen et al., 2009). The role of oxygen toxicity to 

the preterm lung has been long established since Northway’s original description of BPD 

(Northway et al., 1967) and has since been shown in both experimental models and clinical 

trials.  As the preterm lung tissue is not meant to be exposed to ambient room air 

concentrations of oxygen, or therapeutically elevated levels of inspired oxygen, it is thought 

that oxygen mediated injury is a combination of the production of reactive oxygen species, 

coupled with immature intracellular antioxidant mechanisms, leading to DNA damage, lipid 

peroxidation and protein oxidation. High inspired oxygen fractions in a preterm baboon 

model have shown the development of fewer and larger alveoli, whilst high inspired oxygen 

fractions in a murine model have shown increased neutrophil infiltration and prostaglandin 

synthesis in lung tissue after seven days (Buczynski et al., 2013). However, in clinical practice 

how much oxygen to administer to prevent tissue hypoxia whilst also preventing toxicity is 

less clear. A large meta-analysis demonstrated that whilst targeting a lower range of oxygen 

saturations (as defined by pulse oximetry measurement) reduced the risk of BPD diagnosis, 

it also increased the risk of death at 18-24 months of life, and increased the risk of other 

major neonatal morbidities such as necrotizing enterocolitis (Askie et al., 2018).   

 

Whilst postnatal systemic and pulmonary infections increase the risk for BPD (Beeton et al., 

2011), there is increasing evidence that pulmonary colonisation with Ureaplasma urealiticum 

is a significant risk factor for the development of BPD, with estimates from metanalysis 

showing an increased odds ratio of 2.2 (95% confidence interval 1.42-3.47) for those infants 

positive for Ureaplasma after birth, an effect which does not appear to be related to 
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gestational age (Lowe et al., 2014). Macrolide antibiotics appear to be effective at eliminating 

Ureaplasma species, and decolonizing the infant lung (Viscardi et al., 2020); however, 

whether this translates to reducing the risk of BPD is under investigation (Lowe et al., 2020) 

and the effect on longer-term respiratory and neurological outcomes is unclear (Viscardi et 

al., 2021, Kotecha et al., 2022a). The role of the pulmonary microbiome in the development 

of BPD is also of current interest. It appears that a dysbiotic environment, a microbiome with 

reduced bacterial diversity and individual species predominance, is associated with an 

increase in IL-6 and IL-8 inflammatory markers in respiratory tract samples, and an increased 

risk for the development of BPD (Gallacher et al., 2020). 

 

A patent ductus arteriosus (PDA) is a common finding in infants born prematurely, and 

following lung inflation and falling pulmonary arterial pressures, if the PDA remains large a 

significant amount of blood flow can shunt from the systemic to the pulmonary circulation. 

Increased pulmonary blood flow can compromise lung compliance and gas exchange and 

precipitate the development of pulmonary hypertension and right ventricular dysfunction (El-

Khuffash et al., 2023). Whilst a PDA has been inconsistently associated with an increased risk 

of BPD across multiple studies (Hamrick et al., 2020), trials examining both the effect of 

medical prophylactic closure (Mitra et al., 2022), early, late (Clyman et al., 2019) and targeted 

treatment of haemodynamically significant PDAs (Hundscheid et al., 2023, Mitra et al., 2020, 

Gupta et al., 2024) have all shown no effect on reducing the risk of developing BPD, with some 

suggestion of an increased risk of BPD in those actively treated. 

 

The pathogenesis of BPD is clearly multifactorial, and the underlying mechanisms remain 

incompletely understood. Although this makes preventing and treating such a condition 

clinically challenging, it also presents the opportunity for research to identify underlying 
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common pathways and mechanisms of injury, and the potential for multiple therapeutic 

targets. 

 

1.4.2.2 Diagnosis and assessing severity of bronchopulmonary dysplasia 

BPD is an unusual disease in that it is defined by its treatment, as opposed to a diagnostic test 

result or histopathological appearance. The diagnostic criteria for BPD have evolved as the 

disease process has changed with advances in neonatal intensive care (Ryan, 2006). BPD was 

first described by Northway et al. in 1967 as a form of prolonged neonatal respiratory distress 

syndrome in preterm infants (mean gestational age ~32 weeks, mean birthweight of ~1900g) 

with granularity and opacity on chest radiographs and development of hyaline membranes, 

alveolar atelectasis and emphysematous changes on histology (Northway et al., 1967). 

Bancalari et al. defined BPD clinically in 1979 focusing on the need for positive pressure 

ventilation for at least the first week of life and a persistent supplemental oxygen requirement 

at 28 days of age (Bancalari et al., 1979). In 1988, Shennan et al. showed that assessment of 

supplemental oxygen requirement at 36 week’s post menstrual age (PMA) was a better 

predictor of respiratory pathology at two year’s corrected age (Shennan et al., 1988).  

 

With the introduction of the routine use of maternal antenatal corticosteroid administration 

in cases of anticipated preterm labour or delivery, exogenous pulmonary surfactant 

replacement, titrated supplementary oxygen administration and modern neonatal 

ventilators, the pathophysiological features underlying BPD have evolved over the last thirty 

years, transitioning from a disease of more mature infants to largely those born at <30 weeks’ 

gestation and with a birth weight <1000g, markedly more immature infants from those 

reported by Northway et al. Thus, it became clear that improved diagnostic criteria were 

required.  
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Currently, the most widely accepted definition of BPD comes from a National Institute of Child 

Health and Human Development (NICHD) workshop, published in 2001, which defined BPD 

as requirement for supplemental oxygen for at least the first 28 days of life. This definition 

also focuses on defining severity when the preterm-born infant born at less than 32 weeks’ 

gestation reaches 36 weeks’ PMA. Those who were supplemental oxygen dependent at 28 

days of age but who no longer require respiratory support or supplementary oxygen are 

classed as having “mild BPD”; those who require <30% oxygen have “moderate BPD”; and 

infants who require ≥30% supplemental oxygen or require any form of positive pressure 

respiratory support (either invasive or non-invasive) are classed as having “severe BPD”. For 

infants born at or over 32 weeks’ gestation, this assessment is made at 56 days of life (Table 

1-2). This classification system acknowledges that some infants on supplemental oxygen 

therapy at 28 days of age but not at 36 weeks’ PMA may also have underlying residual lung 

pathology (Jobe and Bancalari, 2001). A validation study by Ehrenkranz et al. in 2005 

(Ehrenkranz et al., 2005) supported this classification system but recommended dividing the 

‘severe BPD’ category into those infants who continue to need either invasive or non-invasive 

respiratory support and those who do not. 

  

There have been further attempts to improve upon the 2001 NICHD criteria acknowledging 

the introduction of newer modalities of respiratory support, such as heated and humidified 

high-flow nasal cannula therapy (Higgins et al., 2018). This definition acknowledged both the 

degree of positive pressure support required and quantity of supplement oxygen received to 

grade moderate and severe BPD more precisely (Table 1-2). 

 

As the diagnosis of BPD is based upon supplemental oxygen requirement, and methods of 

assessing supplemental oxygen requirements are not standardised between neonatal units 
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and physicians (Ellsbury et al., 2002), the concept of the supplemental oxygen reduction test 

has been introduced in many units, and especially in clinical trials, to diagnose BPD more 

accurately. This a physiological test performed at 36 weeks’ PMA, in infants who require 

supplemental oxygen of <30% and are not receiving positive pressure support. A trial without 

supplemental oxygen is attempted to firmly confirm an absolute requirement for 

supplemental oxygen dependency with subsequent classification into mild or moderate BPD 

(Walsh et al., 2004). This standardisation approach is increasingly used to permit 

epidemiological comparison between centres and in randomised controlled trials (RCT) to 

objectively report diagnosis and severity of BPD. The optimal time to assess oxygen 

requirement to diagnose BPD has also been questioned. Data from the Canadian Neonatal 

Network suggest that assessing BPD severity at 40 week’s PMA, using both oxygen 

requirement and degree of positive pressure respiratory support required, possibly provides 

better predictive ability than at 36 week’s PMA, for future respiratory morbidity (including 

home oxygen and recurrent respiratory-related hospital admissions in the first 21 months of 

life, or having a tracheostomy) as well as later neurosensory impairments (Isayama et al., 

2017).  

Other proposed diagnostic criteria to diagnose BPD focus on the underlying 

pathophysiological phenotype. In 2020, Wu et al. proposed a set of subgroup criteria for 

infants with severe BPD, after extensive phenotyping including bronchoscopy/tracheoscopy, 

chest computed tomography with angiography (CTA) and echocardiography between 40- and 

50-week’s PMA. The infants were subsequently categorised according to the presence or 

absence of large airway disease (tracheomalacia/bronchomalacia), moderate-severe 

parenchymal lung disease (including hyper-expansion, air cysts, bullae and consolidation 

amongst others), and pulmonary arterial hypertension (Wu et al., 2020a). Although many 

phenotypes overlapped, the presence of pulmonary arterial hypertension and/or large 

airway disease was strongly associated with a need for tracheostomy or use of pulmonary 



Chapter One 

20 
 

vasodilators and with death, but such associations were not noted with parenchymal lung 

disease. The presence of pulmonary arterial hypertension in severe BPD was significantly 

associated with an increased risk of pre-discharge mortality. These in-depth phenotyping 

classifications highlight that BPD is not a disease limited to the lung parenchyma and may 

have benefit in prognosticating for those infants most severely affected.  

 

In summary, the definition of BPD has evolved with the NICHD definition still most commonly 

used. However, it is increasingly recognised that better definitions are required, especially as 

the current definitions are poor predictors of future lung disease, including lung function 

deficits in childhood and beyond. 
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 NICHD 2001 Workshop Definition 

Gestational Age <32 weeks ≥32 weeks 

Assessment 
timepoint 

36 weeks PMA or discharge home 
>28 days but <56 days postnatal age/at 

discharge home 

Treatment with supplementary oxygen for 28 days plus 

Mild BPD Breathing room air 

Moderate BPD Need for <30% supplementary oxygen 

Severe BPD Need for ≥ 30% oxygen and/or positive pressure respiratory support 

NICHD 2016 Workshop Revised Definition for Moderate/Severe BPD 

Treatment with supplementary oxygen for 28 days plus requiring respiratory support at 36 weeks 
PMA 

Grade I • nCPAP, NIPPV or HFNC ≥3 litres/min with FiO2 0.21 

• NC 1 - <3 litres/min, hood O2 with FiO2 0.22-0.29 

• NC <1 litres/min with FiO2 0.22-0.70 

Grade II • IPPV with FiO2 0.21 

• nCPAP, NIPPV or HFNC ≥3 litres/min with FiO2 0.22-0.29 

• NC 1 - <3 litres/min, hood O2 with FiO2 ≥0.30 

• NC <1 litres/min with FiO2 0.70 

Grade III • IPPV with FiO2 >0.21 

• nCPAP, NIPPV or HFNC ≥3 litres/min with FiO2 ≥0.30 

Grade IIIa Death between 14 days of postnatal age and 36 weeks owing to persistent 
parenchymal lung disease and respiratory failure that cannot be attributable to 
other neonatal morbidities 

Table 1-2: NICHD 2001 BPD Classification modified from (Jobe and Bancalari, 2001) NICHD 
2016 BPD Classification modified from (Higgins et al., 2018).   

IPPV: Invasive positive pressure ventilation, nCPAP: nasal continuous positive airway 
pressure, NIPPV: non-invasive intermittent positive pressure ventilation, HFNC: High-flow 
nasal canulae, NC: Nasal cannula, FiO2: fraction of inspired oxygen 
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1.4.3 Respiratory consequences of preterm birth in infancy and childhood 

Historically, most research on the longer-term respiratory outcomes for preterm-born 

individuals has focused on those subjects with a neonatal diagnosis of BPD. As discussed 

above, the assessment of BPD severity at 36 week’s corrected gestational age was chosen as 

it provided the highest positive predictive value for respiratory morbidity over the first two 

years of life (Shennan et al., 1988).  Despite the advances in perinatal care and improvement 

in survival of infants born extremely preterm (especially those born at <28 weeks’ gestation), 

BPD rates remain largely unchanged or may even be increasing (Stoll et al., 2015). Although 

lung function tests in infants are challenging to perform, evidence suggests that over the first 

12 months of life infants with severe BPD can develop obstructive, restrictive or mixed lung 

function deficits (Shepherd et al., 2018), which is likely related to changes related to impaired 

alveolar growth, small airways disease and gas trapping (Broughton et al., 2007, Iles and 

Edmunds, 1997, Shepherd et al., 2018). In addition, infants with BPD are at heightened risk 

of sleep-disordered breathing and sleep hypoxaemia, which may be clinically silent (Moyer-

Mileur et al., 1996). Overnight polysomnography is useful for detecting these issues and 

titrating supplementary oxygen accordingly. Preventing hypoxic episodes improves airway  

resistance (Tay-Uyboco et al., 1989) and pulmonary arterial resistance (Balfour-Lynn et al., 

2009), reversing some of the components of pulmonary arterial hypertension. A small 

proportion of infants with severe BPD will require long-term positive pressure ventilation, 

either due to significant parenchymal disease and/or larger airway disease, including 

tracheobrochomalacia (Hysinger et al., 2017) or subglottic stenosis secondary to prolonged 

periods of endotracheal intubation and invasive mechanical ventilation.  In these cases, 

insertion of a tracheostomy can provide safe management of the airway and optimise 

ventilation (Wasserzug and DeRowe, 2016). 

 

Infants with BPD are at higher risk of severe respiratory infections, especially over the first 



Chapter One 

23 
 

two years of life. Commonly, these infections are viral in nature, with respiratory syncytial 

virus (RSV) and rhinovirus being common causative agents. Up to 50% of infants with BPD will 

require hospitalisation in the first two years of life for respiratory illness (Bhandari and 

Panitch, 2006), with BPD severity and duration of oxygen-dependency being associated with 

length of hospital stay. RSV infection during the first two years of life can be particularly severe 

in those who had BPD in the neonatal period, with increased need for intensive care unit 

admission and increased healthcare costs (Deshpande and Northern, 2003). Many centres 

routinely use the anti-RSV monoclonal antibody palivizumab especially targeting high-risk 

preterm infants, including those with BPD (Quinn et al., 2021). Given its half-life, palivizumab 

is administered monthly over the winter season. A newer monoclonal antibody, nirsevimab, 

has extended half-life, only requiring a single administration. It has been shown to be effective 

in reducing hospital admissions for RSV infection in both term and near-term infants 

(Hammitt et al., 2022) and in preterm-born infants (Domachowske et al., 2022). 

 

BPD is associated with the development of pulmonary vascular disease and secondary 

pulmonary arterial hypertension, caused by pulmonary vascular remodelling. This leads to 

increased pulmonary vascular resistance which can precipitate right sided heart failure. 

Pulmonary arterial hypertension in infants with BPD is associated with high mortality in the 

first two years of life (Farrow and Steinhorn, 2012). Maintaining oxygen saturations >95% for 

infants with pulmonary arterial hypertension can potentially prevent progression of the 

disease. Sildenafil (a phosphodiesterase-5 inhibitor, which induces vasodilation by acting on 

the nitric oxide pathway) is commonly used in the management of pulmonary arterial 

hypertension to reduce pulmonary blood pressure, however there is a lack of robust data on 

its long-term use in pulmonary arterial hypertension with BPD (Hansmann et al., 2021).  

Beyond infancy, preterm-born individuals have heightened risk of poor respiratory outcomes 
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in childhood and adolescence. Again, most published work to date focuses on individuals with 

a neonatal history of BPD. A recent large systematic review and meta-analysis of 86 studies 

demonstrated that across a wide range of ages (3 to 52 years old) preterm birth was 

associated with a 9.2% (95% confidence interval 8.0, 10.4%) reduction in forced expiratory 

volume in 1 second (FEV1), but this increased to a 15.2% (14.2, 17.6%) reduction for those 

with a history of mild or moderate/severe BPD (Kotecha et al., 2022b). The studies included 

in this analysis spanned a broad range of years, with subjects born between 1961 and 2017, 

with most subjects studied being in childhood or adolescence. A meta-regression analysis 

demonstrated that these spirometry deficits appeared to be improving with advances in 

neonatal care over the years, but only for those preterm-born individuals with a history of 

BPD. There also appeared to be geographical variation for these outcomes around the world, 

with Scandinavian countries having better outcomes than Western European countries and 

the United States of America. Whether these differences are due to genetic, environmental, 

or wider socio-economic factors requires further investigation. 

 

There is also evidence of increased risk of adverse respiratory outcomes for those born 

prematurely without a BPD diagnosis in childhood. Data from the UK-based Respiratory 

Health Outcomes in Neonates (RHiNO) study, which will be discussed in greater depth later 

in this chapter and throughout this thesis, examined lung function in over 500 preterm-born 

(<34 weeks’ gestation) school-aged children who had experienced a contemporary standard 

of neonatal care.  Within this cohort increasing gestational immaturity at birth and a history 

of intrauterine growth restriction (IUGR) were better predictors of childhood lung function 

than a history of BPD (Hart et al., 2022). Data from the large Avon Longitudinal Study of 

Parents and Children (ALSPAC) cohort demonstrated spirometry impairments were present 

at 8 – 9 years of age not only in those born extremely prematurely regardless of BPD status, 
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but also in those born in the moderate preterm category (33 – 34 weeks’ gestation), whereas 

those born late preterm (35 – 36 weeks’ gestation) had similar lung function values to those 

born at term. Those moderately preterm born individuals who had required mechanical 

ventilation in the neonatal period appeared to have greater spirometry impairments than 

those who did not. By 14 – 17 years of age, these spirometry deficits appeared to have 

generally improved, however the moderate preterm group still had significantly reduced 

values for mid-expiratory airflow measurements (FEF25-75) and the ratio between FEV1/Forced 

vital capacity (FVC) when compared to those born at term (Kotecha et al., 2012).  Given that 

with modern neonatal care BPD is a disease predominantly seen in those born <30 weeks’ 

gestation, this study suggests that later preterm birth and delivery at a saccular stage of lung 

development still impacts later lung function in childhood regardless of early neonatal 

outcomes. A large systematic review and metanalysis collating data on over 1,600 moderate-

late preterm born individuals, who were predominantly school-aged children and 

adolescents, showed modest, but persistent deficits for FEV1, FVC, FEV1/FVC and FEF25-75 

when compared to both term-born controls and internationally standardized reference 

values (Global Lung Initiative [GLI] references (Quanjer et al., 2012)), highlighting that 

individuals born moderate-late preterm are not catching up to population physiological levels 

and may fail to achieve optimal peak lung function in late adolescence/early adulthood (Du 

Berry et al., 2022).  

 

1.4.4 Respiratory consequences of preterm birth in adulthood 

With advances in neonatal care and improving survival over the last thirty years, more 

extremely preterm-born individuals are now reaching adulthood, and the respiratory 

consequences of prematurity in later life are becoming apparent. An individual participant 

data meta-analysis of spirometry data from eleven cohort studies, including over 900 
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preterm-born individuals (mean gestational age of 28 weeks, and 1054g birthweight) with a 

mean age of 21 years, showed significant impairments to expiratory flows (FEV1 z-score -0.78 

[95% confidence interval -0.96 to -0.61, p=<0.001] and FEF25-75 z-score -0.88 [-1.12 to -0.65, p 

<0.001]) and an increased likelihood of an obstructive spirometry pattern when compared to 

term-born controls (Doyle et al., 2019a). Most of these individuals were born prior to the 

routine use of antenatal corticosteroids and exogenous surfactant replacement therapy. 

Longitudinal studies of preterm-born individuals from childhood to adulthood (aged 25 years) 

born at <28 weeks in the post-surfactant era have demonstrated a larger and persistent deficit 

in FEV1 (mean z-score -0.97 [-1.23 to -0.71] p <0.001) and airway obstruction, which appear 

more pronounced in those with a neonatal history of BPD, when compared to term-born 

individuals (Doyle et al., 2019b). A large meta-analysis has also demonstrated that preterm-

born individuals with a history of BPD have an increasingly obstructive spirometry phenotype 

with age (Gibbons et al., 2023). These finding are supported by another recent meta-analysis 

of data from sixteen studies of lung function in adults born at <28 week’s gestation, finding a 

mean FEV1 deficit of 14% (or one z-score), and a mean FEV1/FVC near the lower limit of 

normal. These findings were more pronounced in those with neonatal history of BPD. 

Interestingly the authors also found no difference between those born before and after the 

introduction of pulmonary surfactant replacement (Lahn-Johannessen Lillebøe et al., 2024).   

However, these findings are not exclusive to extremely preterm born individuals, with a 

longitudinal study of moderate-to-late (32 to <37 week’s gestation) preterm-born young 

adults (aged 16 and 24 years at each respective assessment) demonstrating a smaller, but 

persistent deficit in FEV1 (mean z-score -0.28 [-0.56 to -0.01], p=0.05)  in males and an 

obstructive spirometry pattern in both sexes when compared to term-born controls, 

regardless of smoking status (Lundberg et al., 2024). 
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It is increasingly recognised that using BPD, a diagnosis that describes a troublesome clinical 

course in preterm infants, to label respiratory pathology many decades later is problematic 

and ignores many other risk factors (for example degree of prematurity, male sex, intrauterine 

growth restriction amongst others) and exposures through the rest of life (including lower 

respiratory tract infections, tobacco smoke exposure, air pollution exposure and socio-

economic deprivation) that may help to stratify the risk and degree of prematurity-associated 

lung disease (Simpson et al., 2023, Watkins et al., 2024). The concept of the ‘expiratory airflow 

trajectome’ can be used to understand the impact of preterm birth on later lung function ( 

Figure 1-5). FEV1 increases through childhood and adolescence, to reach a peak in the early-

to-mid-twenties, followed by a gradual physiological decline with increasing age (Jakeways et 

al., 2003, Agusti and Faner, 2019). Those with a history of preterm birth may have altered 

postnatal lung development and risk not achieving the same peak of lung function, with 

either an earlier or accelerated decline in lung function as they age, and are likely at 

heightened risk of early development of chronic obstructive pulmonary disease (COPD) as 

they enter adult life (Simpson et al., 2023).
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Figure 1-5: A series of potential expiratory airflow trajectories for individuals born prematurely compared with those born at term over the lifespan.  

Many survivors of preterm birth will have abnormal lung development, reduced peak lung function, and potentially an increased rate of lung function 
decline, each of which places them at increased risk of chronic respiratory disease. Trajectories can be crossed through the life course (arrows). COPD: 
chronic obstructive pulmonary disease. NICU: neonatal intensive care unit (Simpson et al., 2023). Image reproduced with permission of the rights 
holder.
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1.5 Proteomics and Metabolomics 

The development of human disease involves a highly dynamic and interactive system of 

biological processes, involving innate biological features (such as genetics, transcription 

products such as proteins and peptides, and metabolites) and influences by environmental 

factors. Advances in high-throughput analysis techniques, based primarily on mass 

spectrometry and nuclear resonance spectroscopy, have advanced rapidly over the last thirty 

years allowing analysis of the genome, transcriptome, proteome and metabolome on large 

cohorts of human subjects (Sun and Hu, 2016).  Genomics is a well-established methodology 

for examining the complete genetic complement of a tissue or biological samples and has 

proved useful in identifying the genetic loci associated with the development of human 

disease (Lonsdale et al., 2013). Following the advances in genome analysis, proteomics and 

metabolomics are two methods which have been developed to perform widespread analysis 

of biological processes occurring within a tissue or sample. 

  

The proteome includes the entire set of proteins expressed by the genome (Wilkins et al., 

1996), and most of the functional information of genes is characterised by the proteome 

(Aslam et al., 2017). Proteomic analysis can detect amino acid mutations, peptide isoforms 

and post-translational modifications to proteins that may all have an influence over protein 

function and cellular physiology (Nilsson et al., 2010).  The metabolome represents the total 

low molecular weight (<2000 Da) metabolite content that is produced by a cell during 

metabolism, including amino acids, sugars, fatty acids, lipids and steroids, providing a direct 

representation of cellular biochemistry and physiological status (Chen et al., 2022). The 

metabolome reflects the combined internal effects of the genome, transcriptome and 

proteome (Moitra et al., 2023), including pathological factors, as well as the external effects 

of lifestyle and environmental factors on cellular function (Sun and Hu, 2016). 
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Therefore, some of the advantages of proteomic and metabolomic techniques over genomics 

relate to a greater understanding of which genetic products are being used by a cell or tissue 

(Figure 1-6), which biological processes are being upregulated or supressed and how the 

environment that organism is experiencing is affecting the biological processes of the cell or 

tissue. This is especially true of proteomics, as many biological processes are transmitted 

through proteins and alterations of the proteome can give detailed insights into disease states 

(Sun and Hu, 2016). 

 

Figure 1-6: A graphic representation of the relationships between the "-omics" fields  

(Cong and Endo, 2022). Figure available under Creative Commons CC BY 4.0 license. 
 

Whilst the whole human genome has been mapped, and analysis of the whole genome has 

become accessible as part of clinical medicine with standardisation of analytical techniques 

and reducing costs, the whole human ‘proteome’ is as yet unknown, and there is as yet no 

single proteomics analysis technique which provides sufficient sensitivity and resolution to 

completely map the entire proteome of a particular sample type (Dupree et al., 2020). 

Similarly, the human ‘metabolome’ is a highly dynamic system which is in a state of near-
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constant change depending upon innate and environmental factors, in addition to the effect 

of disease processes if present. 

Despite these challenges proteomics and metabolomics both represent an attractive 

opportunity to identify biomarkers of disease, to aid in rapid and early diagnostics, for 

identifying mechanisms of disease and targeting therapeutic interventions. In addition, a 

‘multi-omic’ approach allows for a more comprehensive understanding of the biological 

processes occurring in a cell or tissue, especially in disease states, and how different ‘-omic 

layers’ interact with one another (Sun and Hu, 2016). 

 

1.5.1 Analytical methods in proteomics and metabolomics 

There are many similarities between proteomic and metabolomic analysis workflows, as 

described in Figure 1-7. Both techniques can be applied to a wide variety of sample types, 

including those obtained invasively such as tissue, whole cell, blood/serum, and 

broncheoalveolar lavage fluid, as well as those obtained non-invasively such as urine and 

respiratory samples such as exhaled breath. Mass spectrometry (MS)-based analysis 

platforms are used in both proteomic and metabolomic high-throughput workflows (Nilsson 

et al., 2010, Aslam et al., 2017), with nuclear magnetic resonance analysis platforms also 

being employed in some metabolomic workflows (Patti et al., 2012, Chen et al., 2022). The 

following description of proteomic and metabolomic workflows will focus on MS-based 

platforms as this is most relevant to my research topic and thesis. 

 

1.5.1.1 Proteomic Analysis Workflows 

Most proteomics research involves an untargeted, or “bottom-up” approach. This means that 

rather than specific, known proteins being “sought out” in a sample, the entire protein 
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content of a sample is analysed using a high-throughput technique, such as mass 

spectrometry, and then individual peptides and proteins identified.  

There are several different approaches taken towards proteomics analysis depending upon 

the research question being posed and the sample type for analysis, however a typical 

proteomics workflow consists of several major steps. Firstly, the protein content of the 

studied biological material needs to be isolated, and the total protein content quantified. 

Different sample types will require different degrees of preparation to be suitable for analysis, 

but the aim is to ensure all the available proteins are suspended in a stable medium ready for 

analysis (Norman et al., 2018). The protein content is fractionated, typically using liquid 

chromatography (LC). After fractionation, the proteins are proteolytically cleaved by enzymes 

into peptides. Trypsin is the most used proteolytic enzyme for digestion as it cleaves peptides 

with high specificity at the C terminal end of arginine and lysine residues generating 

predictable peptide fragments. Peptide fragments can then be further fractionated based on 

mass, charge, polarity or hydrophobicity (Pappireddi et al., 2019). Peptides are ionized and 

sent through the mass spectrometer. Ionized peptide signal intensities, in the form of mass-

to-charge ratio, are then used to search databases to identify proteins from predicted in silico 

peptide sequences (Dupree et al., 2020). 

 

While signal intensities from MS analysis can be used to identify peptides and thereby protein 

content of a sample, quantification of peptide content within samples and, more importantly 

between samples, is unreliable in simple MS. This is due to variable ionisation yields of 

different peptides, variability in proteolytic digestion, and variable MS detector response 

(Nilsson et al., 2010). Therefore, the number of ions present in the mass spectrometer is not 

a direct reflection of the protein content of the original sample (Pappireddi et al., 2019). 
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Additional techniques have developed to reliably quantify protein content to compare 

protein abundance between samples. This is particularly useful when comparing samples 

from different clinical groups or where an intervention has been made as part of a study and 

there is a need to determine whether there is a treatment effect detectable. There are several 

approaches to quantitative proteomics, and they can be divided into label-free and labelled 

methods, and into whether absolute (determining the absolute protein concentration in a 

sample) or relative (determining the relative ratio of protein concentration between two or 

more samples) protein quantification is being determined. Absolute protein quantification 

methods are usually an extension of relative protein abundance and utilise a known standard 

– a substance which is added to the MS run with a known absolute concentration with which 

peptide signal intensities can be compared. These standards tend to be costly, therefore 

limiting their application to smaller sample sets (Pappireddi et al., 2019). Label-free methods 

use the relative area-under-the-curve of signal intensities of detected peptides to compare 

protein abundances between MS runs. Whilst relatively cheaper, it is less accurate and 

reproducible than labelled methods and can have issues in quantifying relative protein 

abundances when peptides are not detected in every sample or every MS run. Therefore, 

labelled methods are generally preferred.  

 

Multiplexed proteomics with isobaric tag labelling aims to produce a high throughput, 

accurate and reproducible relative protein abundances for the full spectra and range of signal 

intensities of peptides detected in samples. After proteolytic digestion, isobaric tags are 

added to the sample which covalently bind to peptide fragments. These tags have a known 

and constant mass and attach to predictable peptide sequences. After the first MS run where 

peptide signal intensities are noted, the tags are counted after a second MS run and these 

tag counts are used to determine the relative abundance of proteins between samples and 
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MS runs (Pappireddi et al., 2019). This isobaric tag-labelling methodology allows highly 

accurate quantitation of individual protein abundances and allows robust comparison of 

protein abundances between samples in the same experiment, and potentially allows 

comparison of protein abundances between studies (Zecha et al., 2019). 

Following sample injection into the mass analyser, software is used to clean and normalize 

the raw data, using quality control (QC) samples from each MS run. Software is also used to 

identify peptides from the detected mass/charge (m/z) ratios and retention times from a 

reference library, and then proteins are identified in silico from the peptide sequences 

identified in the mass spectrum (Aslam et al., 2017, Orsburn, 2021). Given the large number 

of detected proteins typically identified in an untargeted proteomic workflow, there are 

several statistical techniques that can be employed in identifying significantly altered proteins 

between groups. These include traditional univariable and multivariable approaches that use 

mathematical approaches to identify proteins that have significantly different abundances 

between groups, such as t-tests, ANOVA and regression modelling (Lualdi and Fasano, 2019). 

These traditional statistical methods do not take into account biological relationships 

between different detected proteins (Reshetova et al., 2014), and setting appropriate levels 

for statistical significance are important when performing multiple comparisons, aiming to 

reduce the risk of false positives balanced against the risk of removing important, biologically 

relevant discoveries (Lualdi and Fasano, 2019). Unsupervised statistical methods, such as 

principle component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) 

aim to overcome some of the issues of more traditional statistical techniques by reducing the 

dimensionality of the dataset, looking for significant variations in the data and clustering of 

data points (Lualdi and Fasano, 2019). 
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Once the significantly altered proteins have been identified, the next step of data analysis 

aims to identify the functional relationships of these proteins, and the biological processes 

involved. The most commonly performed method in proteomics is over-representation 

analysis, the premise of which if that relevant pathways can be detected if the proportion of 

differentially expressed proteins belonging to a given pathways exceeds the proportion of 

proteins that would be expected to be seen by chance alone (Garcia-Campos et al., 2015, 

Norman et al., 2018). This approach can help to overcome the issue of false positive results 

from the initial statistical analysis, as if a proportion of proteins are biologically related and 

mapped to the same significantly altered biological pathway, those proteins that are not 

mapped to a pathway are more likely to be false positives (Lualdi and Fasano, 2019). 

 

1.5.1.2 Metabolomic Analysis Workflows 

As discussed above, both MS and nuclear magnetic resonance (NMR) platforms are utilised 

in metabolomic analysis workflows. The main advantages of MS-based workflows include 

high resolution analysis with reliable metabolite identification and the ability to perform 

selective qualitative and quantitative analysis. MS analysis is also relatively quick, with 

analysis time ranging from 5 to 140 minutes. Despite it being a more costly analysis platform, 

with expensive instruments and more extensive sample preparation prior to analysis, it 

remains the most commonly used workflow for metabolome analysis (Chen et al., 2022). 

Despite there being some advantages to NMR-based workflows, including sample 

preservation and reproducibility, overall, it has lower sensitivity than mass spectrometry 

meaning lower concentrations of potentially important compounds can be masked by higher 

concentration, and therefore larger, spectral peaks. 
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Figure 1-7 Graphical representation of typical mass spectrometry-based proteomic and metabolomic analysis workflows. 
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The stages to MS-based metabolomic workflows are similar to proteomics workflows in many 

respects. The first step is to isolate and separate the individual metabolites present within 

the sample, reducing sample complexity and allowing identification of different metabolites 

at the same time. Metabolomic workflows use either liquid or gas chromatography (GC) to 

achieve this, with each separation method having advantages over the other depending on 

sample type and biological question being investigated (Chen et al., 2022). LC is more suited 

for detection of moderately and high polarity molecules such as fatty acids, alcohols, phenols, 

vitamins, organic acids, polyamines, nucleotides, terpenes, flavonoids, and lipids (Theodoridis 

et al., 2011). Conversely, GC is suited to analysis of volatile metabolites, or compounds that 

can be derivatized into volatiles, including amino acids, organic acids, fatty acids, sugars, 

polyols, and amines, often termed volatile organic compounds (Lai and Fiehn, 2018, 

Theodoridis et al., 2011, Course et al., 2021). LC and GC methods have different resolution 

and sensitivity for detecting metabolites, and their selection is based upon the physical and 

chemical qualities of not only the sample type being analysed, but also the physical and 

chemical properties of the hypothesized target metabolites, as well as whether targeted or 

untargeted metabolomics analysis is required (Chen et al., 2022).  

 

During the next steps in the analysis workflow, the raw signal output from the MS is processed 

by specific software to allow quantitative analysis of compounds. Broadly, this step includes 

noise reduction, retention time correction, peak detection and integration and 

chromatographic alignment (Smith et al., 2006). Quality control samples are used to correct 

for variations between plate runs on the mass spectrometer, further correct for spectral noise 

and determine the variance of metabolite features (Mattoli et al., 2023) and the data is 

normalised to reduce systematic biases or technical variations and ensure accurate 

metabolite identification and quantification (Chen et al., 2022). Following these data cleaning 
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and normalisation steps, metabolite identification is performed, by comparing spectral peak 

data to authenticated reference data, typically using an in-house library. In the absence of an 

in-house library, international databases, such as the Human Metabolome Database (HMDB) 

(Wishart et al., 2018) can be used to identify metabolites from spectral data. 

 

A variety of statistical approaches are employed in the analysis of metabolomics and are 

similar to the approaches employed in proteomics. Univariable and multivariable 

comparisons between samples enable identification of metabolites that undergo abnormal 

changes (Sugimoto et al., 2012), however traditional statistical approaches based solely upon 

mathematical criteria do not consider biological connections between metabolites and is 

recognized as a limitation of these approaches (Reshetova et al., 2014). This can be overcome 

using multiple alternative statistical techniques. Considering this, determining an appropriate 

p-value threshold for determining significance is important as it can affect the ultimate 

biological interpretation of the analysis. Once the significantly altered metabolites have been 

identified, enrichment and pathways analysis software tools are used to identify impacted 

biological processes (Chen et al., 2022). 

 

1.5.2 Proteomics in respiratory disease 

Proteomics has been applied to the study of numerous respiratory diseases, predominantly 

lung cancer, but also including asthma, COPD and cystic fibrosis (CF), mainly in adult 

populations. Some studies have focused on paediatric and neonatal lung diseases, including 

the pathogenesis of BPD. A wide range of sample types have been employed that either 

assess the lung directly or assess systemic changes. These include invasively obtained samples 

such as whole tissue, blood/serum and broncheoalveolar lavage, and non-invasively obtained 

samples such as saliva, breath and urine (Norman et al., 2018). 
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Proteomic tissue and serum studies of adults with lung cancer have, for example, identified 

potential biomarkers for predicting premalignant stages (Rice et al., 2015) and tumors at high 

risk of relapse (Pernemalm et al., 2013). Urine proteomic studies have also been able to 

discriminate between a wide range of respiratory diseases, including acute viral infection, 

asthma and bronchiectasis (Martelo-Vidal et al., 2022), highlighting the different biological 

pathways involved with differing pathogenesis of disease. Whilst applied extensively to adult 

respiratory disease, proteomic technologies have been applied much less frequently to the 

study of paediatric respiratory disease, where most studies focus on the study of respiratory 

tract infection, cystic fibrosis and asthma, mainly focused on biomarker discovery and 

unravelling disease pathogenesis (Pereira-Fantini and Tingay, 2016). 

 

Proteomic technologies have recently now started to be applied to the neonatal population, 

and a proteomic analysis of urine from infants born at <28 weeks’ gestation, collected in the 

first three days of life, identified a distinct pattern of protein changes that predicted later BPD 

(Ahmed et al., 2022). Some of the proteins alterations observed, such as an increase in matrix 

metalloprotease 9 (MMP9) have been observed in invasively collected airway samples from 

other studies using more traditional analytical methods (Davies et al., 2010). A small 

proteomic study of bronchoalveolar lavage fluid from twelve preterm infants found 

alterations in calcium-signaling proteins in those who later develop BPD (Magagnotti et al., 

2013). Urine proteomics in neonates has also shown the ability to discriminate between 

infectious and non-infectious respiratory pathologies (Starodubtseva et al., 2016). 

 

As the technology for proteome analysis has developed rapidly over the past decade, it has 

increasingly been applied to a wide range of respiratory diseases and is delivering greater 
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information on respiratory disease pathogenesis, biomarker identification and risk 

stratification, although many of these findings come from studies including a small number 

of participants, use differing proteome analysis protocols, and the majority of findings are yet 

to come into routine clinical use (Norman et al., 2018).  

 

1.5.3 Metabolomics in respiratory disease 

Similarly to proteomics, metabolomics has also been extensively applied to the study of 

respiratory diseases, again focusing mainly on the adult population (Moitra et al., 2023), 

where asthma, COPD, lower respiratory tract infection and acute lung injury have been 

studied most extensively. These studies have demonstrated an ability to discriminate 

between asthma phenotypes, and evidence of medication altering the EBC metabolome in 

CF. 

 

A urine metabolomic study of paediatric asthma identified specific pathways (tyrosine and 

glutathione metabolism) associated with corticosteroid resistance (Park et al., 2017), with a 

paired urine and serum study finding multiple discriminating metabolic processes (including 

amino acid metabolism, citrate cycle and pyruvate metabolism) for identifying treatment 

effect from inhaled therapies during an acute asthma exacerbation  (Quan-Jun et al., 2017). 

 

Metabolomic techniques have been more frequently applied to the neonatal population than 

proteomic studies. In a predominantly term-born cohort, changes to the infant metabolome 

(analysed from umbilical cord blood) were associated with gestational age, delivery mode, 

infant sex, and maternal pregnancy complications such as gestational diabetes (Mansell et 

al., 2022). Within preterm neonates, a small metabolomic study of infants with RDS identified 
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25 metabolites which appeared over-represented following surfactant administration and 

mechanical ventilation (Fabiano et al., 2011). A study of amniotic fluid from 32 mothers taken 

between 21- and 28-week’s gestation found a specific metabolomic profile which could 

predict later preterm birth and later BPD with reasonable accuracy (Baraldi et al., 2016). 

Overall, urine metabolomic studies have implicated changes in oxidative stress, and cord 

blood studies have implicated alterations to lipid metabolism in the pathogenesis of BPD 

(Piersigilli et al., 2019). One MS-based metabolomic study of adolescent survivors of preterm 

birth with BPD also suggested alterations in lipids related to surfactant production, although 

could not show a link to current lung function (Carraro et al., 2015). 

 

As with proteomics, metabolomics offers the opportunity to study the pathogenesis of 

respiratory disease both from invasively and non-invasively obtained samples, assess 

treatment response, and predict risk of later disease development. Whilst there is an 

extensive proteomics and metabolomic literature in adult respiratory disease, there has been 

less focus on the paediatric population, especially those who are survivors of preterm birth. 

 

1.6 Respiratory Health Outcomes in Neonates (RHiNO) study 

The Respiratory Health Outcomes in Neonates (RHiNO) Study was funded by the Medical 

Research Council (MRC) to study a group of preterm-born (≤34 weeks’ gestation) school-aged 

children (aged 7-12 years) with the overall aim to establish the phenotypes and to study 

underlying mechanisms of prematurity-associated lung disease (PLD), and to establish 

whether these phenotypes do or do not respond to inhaled therapies. The RHiNO study 

utilised a cohort developed from a previous cross-sectional population-level questionnaire 

study called RANOPS (Respiratory and Neurological Outcomes of Children born Preterm 

study) (Edwards et al., 2015), which had responses from families for approximately 7000 
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(4200 preterm-born and 2800 term-born) children in Wales born between 2003 and 2011.  

To supplement this cohort, NHS Wales records for infants born ≤34 weeks’ gestation who had 

been cared for at one of four neonatal units in South Wales between 2004 and 2012 were 

accessed and families invited to participate. 

The inclusion criteria for participation in the RHiNO Study were: 

• Child aged 7-12 years old at the time of screening. 

• For preterm-born subjects, a gestational of ≤34 weeks’ post menstrual age (PMA) at 

birth; for term-born controls, delivery at a gestational age of ≥37 weeks’ PMA. 

• Resident within the south Wales area, and suitable for follow-up. 

• Fully informed proxy consent from parents/guardians and assent from child where 

possible. 

Exclusion criteria for participation included: 

• Respiratory tract infection within the last three weeks (but family/child would be 

asked to consider participation at a later date). 

• Congenital abnormalities. 

• Severe cardiopulmonary defects, neuromuscular disease or severe 

neurodevelopmental impairment which would preclude compliance with testing 

protocol. 

The primary objective of the RHiNO study was to assess whether 12-weeks of treatment with 

either a long-acting beta agonist bronchodilator (salmeterol) and inhaled corticosteroid 

(fluticasone), or inhaled corticosteroid alone modifies the underlying mechanisms and/or 

improves lung function when compared to placebo. Secondary objectives included in-depth 

characterisation of prematurity-associated lung disease phenotypes assessing the role of 

atopy, airway inflammation, bronchodilator responses, structural abnormalities, and 
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cardiorespiratory exercise responses. Samples and data used in my thesis were obtained 

during the course of this study. 

 

1.6.1 Structure of the RHiNO Study 

The RHiNO study was conducted in three parts, as described in Figure 1-8, and an overview 

is provided below. Initially, those families who returned their questionnaire were invited to 

participate in a home- or clinic-based screening visit conducted by two trained research 

nurses, termed part one of the study. During this visit, the child’s medical history was 

obtained, questionnaire responses confirmed, and a short physical examination as 

performed. Anthropometric measures, including weight measurement on bio-impedance 

floor scales and height measurement on stadiometer, were obtained. A cardiovascular 

assessment was performed, and urine and saliva samples obtained. Lung function was 

measured with a calibrated portable spirometer (Microloop, CareFusion®, Wokingham, UK) 

and raw values were corrected for age, sex and height as per Global Lung Initiative (GLI) 

reference ranges (Quanjer et al., 2012). 

All preterm-born children with a percentage predicted forced expiratory volume in 1 second 

(%FEV1) ≤85% identified from part one of the study were offered the opportunity to 

participate in part two of the study, along with a select number of preterm-born children with 

a %FEV1 >85% and term-born children with a %FEV1 >90% who served as control subjects. 

Part two of the study comprised of two visits to the Children’s Research Facility at the 

Children’s Hospital for Wales, Cardiff, conducted by a trained paediatrician and research 

nurse. 
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Figure 1-8: Flow diagram showing recruitment to Respiratory Health Outcomes in Neonates 
(RHiNO) Study.  

QC: Quality control. FEV1 percent predicted forced expiratory volume in 1 second. RCT: 
Randomised controlled trial. ICS: Inhaled corticosteroid. LABA: Long-acting beta agonist. 
MRI: Magnetic resonance imaging 
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During the first visit, consent and assent was reconfirmed, as well as reconfirming 

questionnaire responses. A physical examination and updated anthropometry measures were 

collected using the same techniques as the part one visit. Saliva and urine samples were also 

repeated, as well as a repeat cardiovascular examination and FENO measurement. Lung 

function was assessed with laboratory-based spirometers, including whole body 

plethysmography and inert gas washout techniques to give measures of lung volumes, all 

performed to ATS/ERS standards and corrected using GLI reference equations as before. 

Participants underwent skin-prick testing (to assess for atopy) and were subjected to an 

exercise test using a cycle ergometer to assess maximal exercise capacity. Additional 

biological samples were obtained including exhaled breath condensate (EBC) and induced 

sputum collection. 

 

Those preterm-born infants who were confirmed to have %FEV1≤85% after lab-based 

spirometry were offered the opportunity to enrol into a twelve-week randomised controlled 

trial (RCT) of inhaled corticosteroids (ICS) (fluticasone), ICS and long-acting β2 agonists (LABA) 

in combination(fluticasone/salmeterol) or placebo. Children were monitored during the RCT 

with daily peak expiratory flow measurements and telephone contact to monitor adherence 

and any adverse events. Following the twelve-week treatment protocol, children returned for 

their second visit to the children’s research facility, where all the visit one evaluations were 

repeated, except for skin-prick testing. To avoid ethical conflict, children receiving ICS prior to 

starting the trial were not randomised to the placebo arm. 

 

In part three of the study, a subset of the children who participated in the RCT, as well as 

preterm-born and term-born control children, were invited to attend the University of 

Sheffield to undergo a hyperpolarised xenon magnetic resonance imaging (MRI) scan of their 



Chapter One 

46 
 

chests to assess lung ventilation patterns. Findings from the RHiNO study have been 

extensively published, are refenced throughout this thesis where appropriate and give 

further methodological details.  

 

1.6.2 Lung function phenotypes from the RHiNO cohort 

As I have described above, the children who participated in the RHiNO study underwent 

extensive lung function testing, and this has allowed the identification of distinct respiratory 

phenotypes during childhood in the preterm-born population. I will reference these 

phenotypes throughout this thesis during the following results and discussion chapters, and 

I give an overview of how they have been defined below. 

 

1.6.2.1 Bronchopulmonary Dysplasia 

This classification distinguishes those preterm-born children who received a diagnosis in the 

neonatal period of BPD from those who did not, and represents one of the most commonly 

studied phenotypes in the long-term follow-up of lung function in preterm-born individuals 

(Simpson et al., 2018, Galderisi et al., 2019, Kotecha et al., 2022b, Um-Bergström et al., 2022).  

In the RHiNO study, BPD was defined according to NICHD 2001 criteria (Ehrenkranz et al., 

2005)  of oxygen requirement at 28 days of age, with an assessment of severity at 36 weeks 

of corrected gestation for those born at <32 weeks of gestation, and at 28 and 56 days of age 

for those born at ≥32 weeks gestation, as described above. Parent-reported history of BPD 

was supplemented and corroborated with medical notes. 
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1.6.2.2 Low lung function: Percent predicted FEV1 ≤85% 

Those preterm-born children entering the RCT phase of the RHiNO trial were selected based 

on a %FEV1 ≤85% and are termed the PTlow group. Using a cut off of 85% effectively 

discriminated between those preterm-born children with and without lung function 

impairment, as those preterm-born children with %FEV1 >85% (PTc) had comparable 

spirometry, bronchodilator response and FENO levels to term-born children (Hart et al., 2022). 

Therefore, this cut-off proved appropriate in identifying which children may benefit from 

treatment and therefore should enter the RCT stage of the RHiNO study. 

 

1.6.2.3 Global Lung Initiative: Lung Function below Lower Limit of Normal (LLN)  

The Global Lung Initiative (GLI) reference equations are used to correct raw spirometry values 

for age, sex, ethnicity, and height (Quanjer et al., 2012). The GLI references classify abnormal 

spirometry as those which fall below the lower limit of normal (LLN), defined as the fifth 

percentile. Therefore, another classification of low lung function in the preterm-born children 

in RHiNO is an %FEV1<LLN. This group has been further divided by using the FEV1/forced vital 

capacity (FVC) ratio. Those preterm-born children with an FEV1<LLN and an FEV1/FVC<LLN 

have an obstructive spirometry pattern and are termed prematurity-associated obstructive 

lung disease (POLD). Those with an FEV1<LLN and an FEV1/FVC≥LLN are termed prematurity-

associated preserved ratio impaired spirometry (pPRISm). Whilst obstructive lung function 

patterns have previously been described in preterm-born children (Doyle et al., 2019b, 

Gibbons et al., 2023), PRISm is a relatively new concept in adult pulmonology (Marott et al., 

2021, Wan et al., 2021), and the RHiNO study was the first to describe this pattern in preterm-

born children (Cousins et al., 2023).  

 



Chapter One 

48 
 

1.6.3 Findings from the RHiNO Study 

The RHiNO study enrolled one of the largest cohorts of preterm-born children who have 

experienced modern standards of neonatal care, with high maternal antenatal corticosteroid 

exposure and routine use of exogenous pulmonary surfactant administration. Owing to the 

large amount of data generated during the course of the study, there have thus far been 

multiple publications regarding the clinical characteristics and lung function phenotypes. 

These will be referenced throughout this thesis in context with my results, but I have also 

briefly summarised them below to provide some background to my research questions and 

aims. 

 

1.6.3.1 The role of early life factors in predicting later lung function in the RHiNO 

cohort 

As I have mentioned previously in this chapter (sections 1.4.3 and 1.4.4), much of the existing 

literature regarding later respiratory outcomes in preterm-born individuals focuses on those 

with a neonatal diagnosis of BPD. Analysis of the portable spirometry data from part one of 

the RHiNO study, using a mediation model, revealed that whilst gestational age may 

significantly predict the development of BPD, low lung function (PTlow) in later childhood was 

predicted by increasing gestational immaturity at birth and intra-uterine growth restriction 

(IUGR) but not BPD (Figure 1-9) (Hart et al., 2022).  

 

1.6.3.2 Prematurity-associated lung dysfunction phenotypes in childhood 

Further analysis of the spirometry data available from part one of the RHiNO study allowed 

the identification of specific lung function patterns and phenotypes using the GLI LLN cut-offs 

(Figure 1-10), as I have described above. This identified that 22.6% of preterm-born children 

had some form of lung dysfunction on spirometry, including both fixed- and reversible-POLD,  
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Figure 1-9: Mediation model demonstrating associations between early life factors and low 
lung function in childhood.  

(Hart et al., 2022). Figure available under Creative Commons BY 4.0 license 
 

 

pPRISm and prematurity-associated dysanapsis (pDysanapsis, FEV1 ≥ LLN, FEV1/FVC < LLN). 

These spirometry phenotypes had differential associations between early and current life 

factors.   

POLD, subdivided into reversible and fixed by the spirometry response to inhaled 

bronchodilators, was associated with a neonatal history of BPD, with the POLD-reversible 

group also have a significant association with raised FENO and IUGR. A minority of the 

pDysanapsis group also showed a bronchodilator response and increased FENO, and 

pDysanapsis was associated with postnatal weight gain. pPRISm showed no association with 

FENO, despite a subgroup of 13% responding to bronchodilators, and a near significant 

negative association with body mass index (β=−0.23, p=0.064) (Cousins et al., 2023). 

Laboratory-based spirometry performed in part two of the RHiNO study demonstrated that 

those with a pPRISm phenotype had increased functional residual capacity (FRC) and residual 

volume (RV) (Cousins et al., 2022). 
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1.6.3.3 Hyperpolarised 129Xenon Lung MRI 

Hyperpolarised 129Xe lung MRI revealed significant ventilation defects and ventilation 

heterogeneity in approximately half of those preterm-born children with a POLD phenotype, 

as described above. Whether this represents further phenotypic differences within the POLD 

group, where for some children there is a persistent ongoing disease process, such as 

inflammation, occurring requires further investigation. In addition, in those children with a 

history of BPD, alveolar size appeared increased. Importantly, those preterm-born children 

with a preserved FEV1 showed comparable MRI imaging to Term-born controls. Children with 

a pPRISm phenotype also showed comparable ventilation patterns to preterm- and term-

born controls, however only four children underwent MRI with this phenotype, and therefore 

this result should be interpreted with caution (Chan et al., 2023). 

 

1.6.3.4 RCT of Inhaler Therapies for Prematurity-associated lung disease 

Of the 53 preterm-born children with an FEV1≤85% enrolled to the RCT, 48 completed the 12-

week trial of inhaler therapies. Compared to placebo treatment, those children treated with 

combination inhaler therapy of ICS and LABA showed an increase in FEV1 of 14.1% (95% CI 

7.3 to 21.0, p=0.002), whilst those treated with ICS alone showed a smaller increase of 7.7% 

(-0.3 to 15.7, p=0.16) which did not reach statistical significance. Treatment with ICS, either 

as monotherapy or in combination with LABA, also significantly decreased FENO and improved 

postexercise bronchodilator response. 

 

1.7 Conclusions 

In this chapter, I have detailed the significant impact that preterm birth has on later health 

outcomes, particularly related to respiratory health and lung function. Whilst much of the 

existing literature has focussed on the longer-term outcomes of those with a neonatal 
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diagnosis of BPD, more recent work has highlighted that a significant proportion of preterm-

born subject without BPD are also at risk of lung function deficits. In addition, there are 

multiple phenotypes of prematurity-associated lung disease with differential associations 

with early- and current-life factors and clinical parameters, highlighting the complexity of this 

spectrum of pathologies, increasingly termed prematurity-associated lung disease (PLD) 

(Simpson et al., 2023). There is a subset of these children who may potentially benefit from 

inhaled therapies. Childhood represents an opportunity to intervene for preterm-born 

children with reduced lung function, aiming to maximise the lung function ‘peak’ in early 

adulthood, and reduce the risk of COPD. 

 

Advances in mass spectrometry technologies and the ‘-omics’ sciences, namely proteomics 

and metabolomics, has allowed a greater depth of understanding of the pathogenesis of a 

range of respiratory diseases in both adults and children. Whilst these techniques have been 

used to study into respiratory pathology in the neonatal period, there is a paucity of studies 

applying these methods to preterm-born subjects in later life. What is currently lacking from 

the literature is an understanding of the biological mechanisms and pathways that underlie 

these lung function phenotypes. Not only would this help to inform the pathogenesis of these 

phenotypes but may help to identify those that may respond to existing available treatments, 

or aid in the development of new treatments. 
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Figure 1-10: Classification of preterm and term groups based on their spirometry measures and bronchodilators responses. 

FEV1, forced expiratory volume in 1s; FVC, forced vital capacity; LLN, lower limit of normal.(Cousins et al., 2023). Figure available under Creative 
Commons BY 4.0 license 
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1.8 Research Questions and Aims 

As I have highlighted above, there is a need to understand the biological mechanisms 

underlying the prematurity-associated lung disease phenotypes that have recently been 

identified through the RHiNO study. Therefore, using the biological samples collected from 

preterm- and term-born subjects during parts one and two of the RHiNO study, namely the 

urine and exhaled breath condensate, which were collected on a large majority of children 

who attended the respective parts, I aim to address the following hypotheses and aims: 

1.8.1 Hypotheses: 

1. Preterm-born children with a neonatal history of BPD will have a specific pattern of 

changes in the EBC and urine proteome and metabolome compared to preterm-born 

and term-born controls. 

2. Preterm-born children with PLD will have a specific pattern of changes in the EBC and 

urine proteome and metabolome compared to preterm-born and term-born 

controls. 

3. For those children with PLD treated with inhaled therapies, there will be 

corresponding changes in the EBC and urine proteome and metabolome. 

1.8.2 Specific Aims: 

EBC and urine proteomics: 

• Is there evidence of an altered proteome in preterm-born children who develop the 

neonatal lung disease bronchopulmonary dysplasia (BPD) and/or have evidence of 

prematurity-associated lung disease and those who do not, and when compared to 

term-born children. 

• Can any profile of proteomic differences detected at baseline be modified by 

treatment with inhaled corticosteroids and/or a combination of inhaled 

corticosteroids and long-acting beta-agonist? 
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EBC and urine metabolomics: 

• Is there evidence of an altered metabolome in preterm-born children who develop 

the neonatal lung disease bronchopulmonary dysplasia (BPD) and/or have evidence 

of prematurity-associated lung disease and those who do not, and when compared 

to term-born children. 

• Can any profile of metabolomic differences detected at baseline be modified by 

treatment with inhaled corticosteroids and/or a combination of inhaled 

corticosteroids and long-acting beta-agonist? 
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2 Proteomic Analysis of Exhaled Breath Condensate 

 

2.1 Introduction  

As discussed in my Introduction (section 1.4), preterm-born children are at greater risk of 

respiratory morbidity (Saigal and Doyle, 2008, Kotecha et al., 2022b, Simpson et al., 2023), 

however the mechanisms underlying this longer-term respiratory pathology in those with 

BPD and/or PLD remain incompletely understood. Whilst many of these children are 

diagnosed as having asthma, it is increasingly becoming apparent that there are more 

complex respiratory phenotypes resulting after preterm birth (Hart et al., 2022, Goulden et 

al., 2021, Cousins et al., 2023); however, the underlying pathophysiology is poorly 

characterised (Course et al., 2019). It is important to understand the underlying mechanisms 

of respiratory pathology for these children to identify the underlying endotypes so 

appropriate therapeutic interventions can be developed. In this chapter, I began my 

exploration of the underlying mechanisms of PLD by examining the proteome of exhaled 

breath condensate (EBC) from participants in the RHiNO study. 

 

2.1.1 Exhaled Breath Condensate 

EBC provides a useful sample to study in children due to its ease in collection. EBC is 

composed of droplets of the epithelial lining fluid (ELF), evolved from the airway during 

turbulent airflow from all compartments of the lung as part of normal tidal breathing, and 

held in a matrix of condensed moisture from the breath. It is a complex mixture of DNA, RNA, 

proteins, metabolites and volatile organic compounds which reflect the biological processes 

occurring in the lung tissue (Davis et al., 2012). EBC is of interest for identifying and 

understanding respiratory pathology due to its simple, non-invasive and easily-repeatable 

method of collection (Horvath et al., 2005), and has been used to study mechanisms in lung 
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cancer (Campanella et al., 2019), COPD (Borrill et al., 2008), asthma (Cavaleiro Rufo et al., 

2019) and bronchiolitis (Demirkan et al., 2018). 

 

Identifying the proteome in EBC has been challenging, but recent developments aid 

identification and accurate quantification of a large array of proteins. Proteomics refers to the 

study of the entire protein complement of a biological sample, which represents a down-

stream product of the genotype and reflects an organism’s phenotype. Proteomic methods 

simultaneously analyse the entire protein content of a sample and have gained interest 

clinically as a potential tool for unravelling pathogenesis of various diseases and potentially 

to identify specific biomarker (Monti et al., 2019, Bloemen et al., 2011, Lopez-Sanchez et al., 

2017). 

 

2.1.2 Aims 

In this analysis, I aimed to identify differences in the EBC proteome of preterm-born school-

aged children, with and without BPD diagnosed in infancy, when compared with term-born 

controls. In addition, I aimed to identify whether there was modulation of the EBC proteome 

with inhaled therapies from preterm-born children with low lung function, who participated 

in the randomised control trial (RCT) stage of the RHiNO study (Goulden et al., 2021). 

 

2.2 Methods 

2.2.1 Study Participants 

This analysis was conducted on a cohort of children recruited to the Respiratory Health 

Outcomes in Neonates study (RHiNO, EudraCT: 2015-003712-20) which has been described 

previously in this thesis (section 1.6) and publications (Hart et al., 2022, Goulden et al., 2021). 

Briefly, children from the previous Respiratory and Neurological Outcomes in children born 
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Preterm (RANOPs) questionnaire study (Edwards et al., 2015, Edwards et al., 2016) were 

supplemented with additional preterm-born children, sourced via the NHS Wales Informatics 

Service (NWIS) and sent a respiratory and neurology questionnaire if they were born ≤34 or 

≥37 week’s gestation and were aged 7-12 years. BPD was defined as oxygen-dependency of 

28 days or greater for those born <32 weeks’ gestation and at 56 days of age for those born 

≥32 weeks’ gestation (Ehrenkranz et al., 2005). Neonatal history was corroborated with 

medical records. Intrauterine growth restriction (IUGR) was defined as birthweight <10th 

percentile adjusted for sex and gestation (LMS Growth version 2.77, Medical Research 

Council, UK). Children with congenital malformations, significant cardiopulmonary disorder 

or neuromuscular disease were excluded. Ethical approval was obtained from the South-West 

Bristol Research Ethics Committee (15/SW/0289). Parents gave informed written consent and 

children provided assent. 

 

2.2.2 Lung function assessment 

Responders underwent a home or hospital assessment by two research nurses. A subset 

attended the Children’s Hospital for Wales, Cardiff, UK for comprehensive respiratory testing 

conducted by a trained research nurse and paediatrician. Spirometry (MasterScreen Body 

and PFT systems, Vyaire Medical, Germany) was performed as per European Respiratory 

Society/American Thoracic Society guidelines (Miller et al., 2005) and normalised using 

Global Lung Initiative (GLI) reference equations. Those preterm-born children with low lung 

function (PTlow) defined as percent predicted forced expiratory volume in 1 second (%FEV1) of 

≤85%  were enrolled into the RCT (Goulden et al., 2021). Term-born children who had %FEV1 

>90% were included as term controls. 

 

PTlow participants were offered the opportunity to participate in a twelve-week randomised 

controlled trial (RCT), which has been described in detail previously in this thesis (section 
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1.6.3.4), and the results of which have been published (Goulden et al., 2021). In brief, children 

received either monotherapy with inhaled corticosteroids (ICS) (50μg fluticasone propionate, 

two actuations taken twice a day), combination therapy of ICS and long-acting beta-agonists 

(LABA) (50μg fluticasone propionate and 25μg salmeterol xinafoate, two actuations taken 

twice a day) or placebo for twelve weeks. All trial medications were administered via a spacer 

device (Volumatic®, Allen & Hanburys, UK). Active trial medications were produced by St 

Mary’s Pharmaceutical Unit, Cardiff, UK. Placebo inhalers were sourced from GlaxoSmithKline 

(GSK). All inhaler canisters were placed in identical plain-coloured actuators sourced from 

GSK to ensure adequate blinding to trial group. Participants who had previously been 

receiving inhaled steroid treatment prior to enrolment were weaned off steroid inhalers over 

a four-week washout period prior to starting the trial. All trial participants received training 

on good inhaler technique by the research team. To avoid ethical conflict, children receiving 

ICS prior to starting the trial were not randomised to the placebo arm, as described in section 

1.6.1. Following treatment, RCT participants underwent repeat EBC sampling. 

 

2.2.3 EBC sampling 

EBC was collected using a cooling tube (RTube®, Respiratory Research Inc. Texas, USA) over a 

period of 10 minutes of passive tidal breathing whilst the participant wore a nose clip, 

stopping briefly to swallow saliva if needed. The RTube® is a single-patient, single-use design, 

preventing cross contamination, and features a large ‘Tee’ section to separate saliva from 

exhaled breath, thereby ensuring collection of airway lining fluid and not secretions from the 

oropharynx. Environmental temperature and humidity remained stable during sampling. 

Once collected, samples were immediately separated into aliquots and stored at -80°C 

pending analysis. Samples were taken during the baseline assessment, and for those 

participating in the RCT, EBC sampling was repeated 12-weeks later after completing the 



  Chapter Two 

59 
 

treatment protocol. EBC samples were collected by a trained paediatrician (Dr Michael 

Cousins) and trained research nurse (Dr Kylie Hart) during the RHiNO trial. 

 

2.2.4 EBC Analysis: 

2.2.4.1 TMT Labelling 

EBC samples were analysed at the University of Bristol Proteomics Facility. An equal volume 

of each sample (ensuring that no sample contained more than 50µg of protein) was digested 

with trypsin (1.25µg trypsin; 37°C, overnight), labelled with Tandem Mass Tag (TMT) eleven 

plex reagents according to the manufacturer’s protocol (Thermo Fisher Scientific, 

Loughborough, UK) and the labelled samples pooled.  The pooled sample was desalted using 

a SepPak cartridge according to the manufacturer’s instructions (Waters, Milford, 

Massachusetts, USA). Eluate from the SepPak cartridge was evaporated to dryness and 

resuspended in 1% formic acid prior to analysis by nano-LC MSMS using an Orbitrap Fusion 

Lumos mass spectrometer (Thermo Scientific). 

 

2.2.4.2 Nano-LC Mass Spectrometry 

The TMT-labelled pool was fractionated using an Ultimate 3000 nano-LC system in line with 

an Orbitrap Fusion Lumos mass spectrometer (Thermo Scientific) (Figure 2-1).  In brief, 

peptides in 1% (vol/vol) formic acid were injected onto an Acclaim PepMap C18 nano-trap 

column (Thermo Scientific). After washing with 0.5% (vol/vol) acetonitrile 0.1% (vol/vol) 

formic acid peptides were resolved on a 250 mm × 75 μm Acclaim PepMap C18 reverse phase 

analytical column (Thermo Scientific) over a 150 min organic gradient, using 7  gradient 

segments (1-6% solvent B over 1min., 6-15% B over 58min., 15-32% B over 58min., 32-40% B 

over 5min., 40-90% B over 1min., held at 90% B for 6min and then reduced to 1% B over 

1min.) with a flow rate of 300 nl min−1.  Solvent A was 0.1% formic acid, and Solvent B was 
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aqueous 80% acetonitrile in 0.1% formic acid. Peptides were ionized by nano-electrospray 

ionization at 2.0kV using a stainless-steel emitter with an internal diameter of 30 μm (Thermo 

Scientific) and a capillary temperature of 300°C.  

 

All spectra were acquired using an Orbitrap Fusion Lumos mass spectrometer controlled by 

Xcalibur 3.0 software (Thermo Scientific) and operated in data-dependent acquisition mode 

using an SPS-MS3 workflow (Figure 2-2).  FTMS1 spectra were collected at a resolution of 

120,000 with an automatic gain control (AGC) target of 200,000 and a max injection time of 

50ms. Precursors were filtered with an intensity threshold of 5,000, according to charge state 

(to include charge states 2-7) and with monoisotopic peak determination set to Peptide. 

Previously interrogated precursors were excluded using a dynamic window (60s +/-10ppm). 

The MS2 precursors were isolated with a quadrupole isolation window of 0.7m/z. ITMS2 

spectra were collected with an AGC target of 10,000, max injection time of 70ms and CID 

collision energy of 35%. 

 

For FTMS3 analysis, the Orbitrap was operated at 50,000 resolution with an AGC target of 

50,000 and a max injection time of 105ms.  Precursors were fragmented by high energy 

collision dissociation (HCD) at a normalised collision energy of 60% to ensure maximal TMT 

reporter ion yield. Synchronous Precursor Selection (SPS) was enabled to include up to 5 MS2 

fragment ions in the FTMS3 scan. 
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Figure 2-1: Photograph of High-Performance Liquid Chromatography (HPLC) Fractionation 
Column (Ultimate 3000 nano-LC system) used for the proteomic analyses in this thesis. 

 

 

Figure 2-2 Photograph of Nano-LC system (left) and Orbitrap Fusion Mass Spectrometer 
(right) used for the proteomic analyses in this thesis.
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2.2.4.3 Raw Proteomic Data Processing 

The raw data files were processed and quantified using Proteome Discoverer software v2.1 

(Thermo Scientific) and searched against the UniProt Human database (downloaded October 

2019: 150786 entries) using the SEQUEST HT algorithm by the University of Bristol Proteomics 

Facility. Peptide precursor mass tolerance was set at 10ppm, and MS/MS tolerance was set 

at 0.6Da. Search criteria included oxidation of methionine (+15.995Da), acetylation of the 

protein N-terminus (+42.011Da) and Methionine loss plus acetylation of the protein N-

terminus (-89.03Da) as variable modifications and carbamidomethylation of cysteine 

(+57.021Da) and the addition of the TMT mass tag (+229.163Da) to peptide N-termini and 

lysine as fixed modifications. Searches were performed with full tryptic digestion and a 

maximum of 2 missed cleavages were allowed. The reverse database search option was 

enabled, and all data was filtered to satisfy false discovery rate (FDR) of 5%. 

 

2.2.5 Statistical Analysis 

Baseline population and RCT group characteristics were compared using Chi-squared, t-test 

or one-way ANOVA with Bonferroni correction as appropriate. Replicate numbers (number of 

samples in which a particular protein was detected) were calculated. Relative protein 

abundances, determined from the quantity of TMT-tag counts at each detected peptides 

spectral peak, were log2-transformed and fold changes (log2FC) between groups were 

compared, and the data inspected for normality. Welch’s t-test/ANOVA with post-hoc 

correction was used for baseline samples as appropriate, and paired samples t-test for 

pre/post-RCT samples. p<0.05 was considered statistically significant. I performed all 

statistical analyses using R v4.0.4 (R Core Team, 2021) utilising the R packages “stringr”, 

“dplyr”, “ggplot2”, “ggpubr” and “ellipsis”. Dr P Lewis (Bioinformatician at University of Bristol 

Proteomics Facility) supported my learning of the R coding language and of commonly used 

statistical approaches to analysing TMT-based proteomics datasets. Gene name is used 
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synonymously with protein name. Gene names were unavailable for four proteins. I used 

WebGestalt to perform functional enrichment analysis (Liao et al., 2019), which maps 

functional and biological processes to over-represented proteins/genes. Ingenuity Pathways 

Analysis (IPA, Qiagen®, Germany) identified relationships between significantly different 

proteins using network maps, which were reproduced in Cytoscape v3.9 (Shannon et al., 

2003) for this thesis. Linear models were created to identify relationships between proteins 

of interest and participant characteristics.  

 

2.3  Results  

2.3.1 Participants 

From a total of 1,426 returned questionnaires, 768 children participated in the home 

screening visit. 241 attended for baseline assessment, and 53 children entered the RCT. EBC 

was successfully collected and analysed from 218 (91%) children at baseline. 48 of the 53 RCT 

participants completed treatment and 46/48 (96%) post-treatment EBC samples were 

successfully collected and analysed. Participant demographics for children at baseline and for 

those participating in the RCT who provided EBC are given in Table 2-1. As expected, the 

preterm-born group were delivered at a significantly more immature gestational age (mean 

30.9±2.8 weeks vs 40.2±1.1 weeks, p=<0.001) and with a significantly lower birthweight 

(mean 1,613±587g vs 3,521±518g, p<0.001). At baseline, no significant differences were 

noted in current characteristics between the preterm-born and term-born children apart 

from age at testing (mean 11.01±1.24 years vs 10.43±1.09, p=0.001) and asthma diagnosis 

(34 (23%) vs 5 (7%), p=0.007). Thirty-seven (25%) of the preterm-born children had a neonatal 

diagnosis of BPD and 53 (36%) were classed PTlow, all of whom joined the RCT. There were no 

differences for asthma diagnosis (10 (27%) vs 24 (21%); p=0.67) or IUGR (8 (22%) vs 19 (17%); 

p=0.70) between the preterm BPD and No BPD groups, nor for between the PTlow and PTc 
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groups (asthma: 16 (30%) vs 18 (19%); p=0.19; IUGR: 12 (23%) vs 15 (16%); p=0.35 

respectively). Marginally more EBC was collected from term-born children compared to 

preterm-born (1.13ml vs 1.28ml, p=0.001), but no significant differences were noted between 

the preterm groups (BPD or PTlow vs preterm controls, p=1.0]) or between the three RCT 

groups. Demographics were similar for the three RCT groups. However, the placebo group 

produced more EBC after treatment (p=0.02), but not for ICS or ICS/LABA (p>0.1). 

 

2.3.2 Proteins Detected in EBC 

A total of 210 different proteins were identified with details given in the Appendix in Table 

8-1 together with the number of samples in which the proteins were detected. The 

distribution of detected proteins across all samples is given in a heatmap in Figure 2-3. Figure 

2-4 gives results of functional enrichment analysis, which was possible for 192 of the detected 

proteins. 28 proteins were identified with a significant difference between one or more of the 

group comparisons and functional enrichment analysis was possible for 27 of these. Most 

proteins with significantly differing abundances were functionally related to protein/ion 

binding and cell structure. 

   

2.3.3 Comparison of EBC proteome in baseline samples 

Nineteen proteins were detected in all 218 baseline EBC samples (Table 2-2). Cytokeratins 

were the most detected protein class. Only increased abundance of two keratins, type II 

cytoskeletal 5 (KRT5) (0.12, p=0.03) and 6A (KRT6A) (0.14, p=0.02) was observed when the all 

preterm-born and term-born groups were compared.  

 

Exploratory analyses of proteins not detected in every sample but with a significant 

abundance difference between the groups are shown in Table 2-3, ordered by decreasing 

replicate number. Eleven proteins were detected with significant differences between 
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preterm- and term-born children, nine between BPD and No BPD, and seven between PTlow 

and PTc groups. Figure 2-5 shows all significantly different protein abundances between the 

BPD and No BPD groups; and PTlow and PTc groups. 

  

 

 

Table 2-1 EBC Proteomics participant demographics.  

Preterm born vs Term born: *p<0.05, **p<0.01 ***p<0.001. Treatment groups: *p<0.05, 
**p<0.01 ***p<0.001 

 

Baseline 

Variable Preterm born (≤34/40) 
n = 149 

Term born (≥37/40) 
n= 69 

Sex (male), n(%) 71 (48) 36 (52) 

Ethnicity (white), n(%) 140 (94) 68 (99) 

Gestational age (weeks), mean (SD) 30.9 (2.8) 40.2 (1.1)*** 

Birthweight (g), mean (SD) 1613 (587) 3521 (518)*** 

Bronchopulmonary dysplasia, n(%) 37 (25) 0 (0)*** 

Age at testing (years), mean (SD) 11.0 (1.2) 10.4 (1.1)** 

Weight (kg), mean (SD) 39.1 (10.7) 37.9 (10.5) 

Body Mass Index (kg/m2), mean (SD) 18.2 (3.5) 18.0 (3.2) 

Asthma diagnosis, n(%) 34 (23) 5 (7)** 

Low lung function (FEV1≤85%pred), n(%) 53 (36) 0 (0) 

Post RCT Samples 

Variable Preterm born (≤34/40) with low lung function (FEV1 
≤85%)  n = 46 

Placebo n = 12 ICS n = 17 ICS/LABA n = 17 

Sex (male), n(%) 5 (39) 6 (35) 8 (47) 

Ethnicity (white), n(%) 13 (100) 14 (82) 17 (100) 

Gestational age (weeks), mean (SD) 29.6 (3.3) 29.4 (3.0) 30.9 (2.8) 

Birthweight (g), mean (SD) 1394 (612) 1282 (545) 1470 (570) 

Bronchopulmonary dysplasia, n(%) 7 (54) 7 (41) 6 (35) 

Age at testing (years), mean (SD) 11.0 (1.2) 10.7 (1.4) 10.7 (1.2) 

Weight (kg), mean (SD) 38.9 (11.3) 36.7 (12.4) 36.5 (9.7) 

Body Mass Index (kg/m2), mean (SD) 18.0 (3.6) 17.9 (3.9) 17.4 (2.3) 

Asthma diagnosis, n(%) 2 (17) 8 (47) 4 (24) 
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Figure 2-3: Heatmap displaying Protein Content of Baseline EBC Samples.  

Individual samples represented in each column. Coloured areas represent relative protein abundance. Grey areas represent proteins not detected 
within that sample 
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Figure 2-4: Functional enrichment analysis of proteins with and without significant abundance difference between any clinical groups in EBC samples. 



  Chapter Two 

68 
 

2.3.3.1 BPD vs No BPD: 

For proteins detected in every sample, significantly decreased abundance of the desmosome 

proteins desmoglein-1 (DSG1) (Log2FC -0.26, p=0.02), desmocollin-1 (DSC1) (-0.27, p=0.02) 

and junctional plakoglobin (JUP) (-0.23, p=0.04), and increased abundance of KRT6A (0.68, 

p=0.01) was observed when the BPD and No BPD groups were compared (Figure 2-5). No 

significant differences were noted for DSG1, DSC1 and JUP between the No BPD and Term 

groups (Figure 2-6). 

 

Protein network maps highlighting significant protein pathways (including proteins detected 

in all or only some samples) comparing BPD and No BPD groups are shown in Figure 2-7. For 

proteins detected in a proportion of samples, dermcidin (DCD) was detected in n=146 (98%) 

samples and was less abundant in the BPD group (Log2FC -0.43, p=0.03), and was related to 

DSG1 and DSC1 in the network map. As with KRT6A, KRT6B was detected in 133 (89%) 

samples being more abundant in the BPD group (0.76, p=0.03) when compared to the No 

BPD group. Small proline-rich protein 2E (SPRR2E), secretory leukocyte peptidase inhibitor 

(SLPI) and gamma-glutamyl hydrolase (GGH) were all significantly less abundant in the BPD 

group (-0.92, p=0.04; -2.08, p=0.04; -0.79, p=0.03 respectively); however, these were 

detected in <25% of the samples. 

 

Univariable linear regression models using BPD as a binary outcome variable for DSG1, DSC1 

and JUP identified that a history of BPD had a significant association with each of these three 

proteins (β-0.23, p=0.014; β-0.27, p=0.019; β-0.23, p=0.008 respectively; Table 2-4). Using 

BPD history and current lung function status as interaction terms in the model identified that 

the reduced abundance of DSG1, DSC1 and JUP was statistically significant/near significant in 

those with both BPD and PTlow (β-0.35, p=0.012; β-0.30, p=0.06, β-0.30, p=0.01 respectively) 

but not for those with BPD and current normal lung function (Table 2-4). 
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Table 2-2: Proteins detected in every EBC sample.  

BPD: Preterm-born with history of bronchopulmonary dysplasia; PTc: Preterm-born control; PTlow: Preterm born with low lung function; Log2FC: 
Log2 fold-change between groups. *Denotes p-vale <0.05 
  

Accession 
Number 

Gene 
Name 

Protein Name Protein Function 

Preterm vs Term 
n= 149 vs 69 

BPD vs No BPD 
n = 37 vs 112 

PTlow vs PTc 
n = 53 vs 97 

Log2FC Ratio p Log2FC Ratio p Log2FC Ratio p 

Q08554 DSC1 Desmocollin-1 Cell-cell junction 0.02 1.01 0.84 -0.27 0.83 0.02* -0.08 0.95 0.43 

Q02413 DSG1 Desmoglein-1 Cell-cell junction -0.17 0.89 0.03* -0.26 0.84 0.02* -0.16 0.90 0.10 

P15924 DSP Desmoplakin Cell-cell junction, Cytoskeleton -0.005 0.997 0.94 -0.08 0.95 0.35 0.11 1.08 0.13 

P14923 JUP Junction plakoglobin 
Plasma membrane protein 

complex 
-0.08 0.95 0.30 -0.23 0.85 0.04* -0.10 0.93 0.27 

H6VRG2 KRT1 Cytokeratin-1 Cytoskeleton 0.06 1.04 0.45 -0.15 0.90 0.13 -0.04 0.97 0.62 

H6VRG3 KRT1 Cytokeratin-1 Cytoskeleton 0.13 1.09 0.24 -0.06 0.96 0.68 -0.01 0.99 0.94 

P35908 KRT2 
Keratin, type II cytoskeletal 2 

epidermal 
Cytoskeleton -0.18 0.88 0.06 0.11 1.08 0.45 0.06 1.04 0.64 

P13647 KRT5 Keratin, type II cytoskeletal 5 Cytoskeleton 0.12 1.09 0.03* 0.13 1.09 0.14 0.05 1.04 0.52 

P02538 KRT6A Keratin, type II cytoskeletal 6A Cytoskeleton 0.41 1.33 0.02* 0.68 1.60 0.01* 0.14 1.10 0.55 

P35527 KRT9 Keratin, type I cytoskeletal 9 Cytoskeleton 0.19 1.14 0.06 -0.20 0.87 0.08 -0.09 0.94 0.38 

P13645 KRT10 Keratin, type I cytoskeletal 10 
Structural protein extracellular 

space 
-0.08 0.95 0.39 0.07 1.05 0.49 0.04 1.03 0.64 

P02533 KRT14 Keratin, type I cytoskeletal 14 Cytoskeleton -0.006 0.996 0.91 0.14 1.10 0.14 0.06 1.04 0.45 

P08779 KRT16 Keratin, type I cytoskeletal 16 Cytoskeleton 0.31 1.24 0.10 0.40 1.32 0.17 0.28 1.21 0.25 

Q04695 KRT17 Keratin, type I cytoskeletal 17 
Intermediate filament 

cytoskeleton 
-0.04 0.97 0.79 0.36 1.28 0.09 0.10 1.07 0.58 

Q8N1N4 KRT78 Keratin, type II cytoskeletal 78 Cytoskeleton 0.03 1.02 0.73 0.07 1.05 0.44 -0.02 0.99 0.86 

P31944 CASP14 Caspase-14 Protease 0.13 1.09 0.4 0.01 1.01 0.95 0.11 1.08 0.62 

P01040 CSTA Cystatin-A Protease inhibitor 0.13 1.09 0.27 -0.19 0.88 0.22 0.05 1.04 0.72 

P62979 RPS27A 
Ubiquitin-40S ribosomal 

protein S27a 
Structural component of 

ribosome 
0.09 1.06 0.41 -0.31 0.81 0.06 0.30 1.23 0.05 

P25311 AZGP1 Zinc-alpha-2-glycoprotein 
Major histocompatibility complex 

protein 
-0.02 0.99 0.86 -0.27 0.83 0.11 0.18 1.13 0.27 
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Accession 
Number 

Gene 
Name 

Protein Name 
Protein 

Function 

Preterm vs Term 
n = 149 v 69 

BPD vs No BPD 
n = 37 v 112 

PTlow vs PTc 
n = 53 v 97 

n Log2FC Ratio p n Log2FC Ratio p n Log2FC Ratio p 

P81605 DCD Dermcidin                        
Peptidase 

Antimicrobial 
activity 

146 
v 64 

-0.03 0.98 0.83 
37 v 
109 

-0.42 0.75 0.03* 
52 v 
94 

0.23 1.17 0.16 

P04259 KRT6B 
Keratin, type II 
cytoskeletal 6B 

Cytoskeleton 
133 
v 60 

0.54 1.45 0.03* 
33 v 
100 

0.76 1.69 0.03* 
46 v 
87 

0.34 1.27 0.25 

Q01469 FABP5 
Fatty acid-binding 

protein 5 
Lipid 

transporter 
122 
v 68 

-0.19 0.88 0.27 27 v 95 0.06 1.04 0.77 
38 v 
84 

-0.39 0.76 0.04* 

P62736 ACTA2 
Actin, aortic smooth 

muscle 
Muscle protein 

115 
v 50 

0.54 1.45 0.01* 31 v 84 -0.43 0.74 0.10 
46 v 
69 

-0.07 0.95 0.77 

P05089 ARG1 Arginase-1 
Hydrolase 

Antimicrobial 
activity 

104 
v 48 

-0.03 0.98 0.86 29 v 75 -0.25 0.84 0.17 
37 v 
67 

-0.39 0.76 0.03* 

Q6UWP8 SBSN Suprabasin Unknown 
99 v 
54 

-0.33 0.80 0.02* 25 v 74 -0.34 0.79 0.049* 
36 v 
63 

-0.12 0.92 0.43 

Q6KB66 KRT80 
Keratin, type II 
cytoskeletal 80 

Cytoskeleton 
72 v 
50 

-0.27 0.83 0.01* 18 v 54 0.09 1.06 0.52 
24 v 
48 

0.02 1.01 0.89 

P04083 ANXA1 Annexin A1 

Protease 
inhibitor 

Anti-
inflammatory 

activity 

50 v 
31 

-0.09 0.94 0.75 14 v 36 0.19 1.14 0.57 
15 v 
35 

-0.77 0.59 0.02* 

P23490 LORICRIN Loricrin Cytoskeleton 
42 v 
19 

-0.42 0.75 0.03* 10 v 32 -0.08 0.95 0.67 
14 v 
28 

-0.23 0.85 0.20 

P29508 SERPINB3 Serpin B3 
Protease 
inhibitor 

37 v 
21 

0.59 1.51 0.19 12 v 25 0.23 1.17 0.62 
12 v 
25 

-0.86 0.55 0.01* 

P22531 SPRR2E 
Small proline-rich 

protein 2E 
Peptide cross-

linking 
36 v 

7 
0.07 1.05 0.88 12 v 24 -0.92 0.53 0.04* 

16 v 
20 

-0.40 0.76 0.33 

P06733 ENO1 Alpha-enolase 
Transcription 

regulation 
29 v 
10 

-0.64 0.64 0.01* 6 v 23 0.52 1.43 0.19 
7 v 
22 

0.36 1.28 0.36 

Q9HCM4 EPB41L5 Band 4.1-like protein 5 Cytoskeleton 
22 v 
11 

-0.38 0.77 0.35 4 v 18 0.68 1.60 0.04* 
7 v 
15 

0.61 1.53 0.21 

Q9C075 KRT23 
Keratin, type I 
cytoskeletal 23 

Cytoskeleton 
22 v 

8 
-1.19 0.44 0.01* 6 v 16 -0.05 0.97 0.91 

7 v 
15 

0.51 1.42 0.35 

P22735 TGM1 
Protein-glutamine 

gamma-
glutamyltransferase K 

Acyltransferase 
Peptide cross-

linking 

15 v 
9 

-0.62 0.65 0.047* 4 v 11 -0.56 0.68 0.36 
5 v 
10 

0.32 1.25 0.55 
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P63104 YWHAZ 
14-3-3 protein 

zeta/delta 
Signalling 
regulator 

11 v 
9 

-0.70 0.62 0.04* 3 v 8 0.05 1.04 0.88 2 v 9 -0.87 0.55 0.47 

P01036 CST4 Cystatin-S 
Protease 
inhibitor 

13 v 
5 

-0.23 0.85 0.79 5 v 8 -1.23 0.43 0.004* 6 v 7 -0.29 0.82 0.58 

P03973 SLPI 
Secretory leukocyte 

antipeptidase inhibitor 

Protease 
inhibitor 

Antimicrobial 
activity 

11 v 
7 

0.99 1.99 0.18 2 v 9 -2.08 0.24 0.04* 2 v 9 -2.32 0.20 0.03* 

Q96QA5 GSDMA Gasdermin-A 
Pore-forming 

protein 
11 v 

7 
1.03 2.04 0.02* 4 v 7 -0.06 0.96 0.93 6 v 5 -0.92 0.53 0.13 

Q6ZUA9 MROH5 
Maestro heat-like 

repeat family member 
5 

Unknown 
6 v 
11 

0.01 1.01 0.99 2 v 4 0.18 1.13 0.82 3 v 3 -1.48 0.36 0.01* 

Q92820 GGH 
Gamma-glutamyl 

hydrolase 
Peptidase 

12 v 
3 

-0.66 0.63 0.30 2 v 10 -0.79 0.58 0.03* 
2 v 
10 

0.08 1.06 0.81 

Q9BZE2 PUS3 
tRNA 

pseudouridine(38/39) 
synthase 

Isomerase 7 v 2 -1.66 0.32 0.004* 2 v 5 1.66 3.16 0.004* 2 v 5 0.03 1.02 0.98 

P60900 PSMA6 
Proteasome subunit 

alpha type-6 
Peptidase 7 v 0 NA NA NA 2 v 5 -0.35 0.78 0.37 2 v 5 1.05 2.07 0.02* 

Table 2-3: Detected proteins not present in all EBC samples but with a significant abundance difference between clinical groups.  

BPD: Preterm-born with history of bronchopulmonary dysplasia; PTc: Preterm-born control; PTlow: Preterm born with low lung function; Log2FC: Log2 
fold-change between groupings. *Denotes p-vale <0.05 
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Figure 2-5: Volcano Plots demonstrating baseline protein abundance in EBC by BPD and Lung Function Status for Preterm-born children.  

BPD: Bronchopulmonary dysplasia; PTlow: Preterm-born with low lung function; PTc: Preterm-born control; Log2FC: Log2 fold-change between 
groups Vertical line represents a Log2FC of 0. Horizontal line is equivalent to p-value 0.05. Size of point is relative to replicate number. Gene name 
associated with protein given if p<0.05  
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Figure 2-6: Violin plots: Desmosome/Cell Adhesion Baseline Protein Abundances in Children with history of BPD. 

Term: Term-born control; No BPD: Preterm-born without BPD; BPD: Bronchopulmonary dysplasia; Dot and bars represent mean and standard error 
(SEM); Comparison bars between violin plots give p-values by ANOVA with post hoc Tukey’s correction for multiple comparisons. Coloured areas 
represent distribution of sample values.  
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Figure 2-7: Protein network map of significant protein differences in EBC between BPD and No BPD preterm-born children.  
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Figure 2-8: Protein network map of significant protein differences in EBC between PTlow and PTc groups.  
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Table 2-4: Linear regression analyses for relationships between desmosome proteins detected in EBC and early- and current-life factors in preterm-
born children. 

*p<0.05, italic = p<0.1. BPD: Bronchopulmonary dysplasia, PTlow: Preterm-born low lung function, PTc: Preterm-born controls.

Univariable Analysis 

Variable Beta p-value 

Desmoglein-1 (DSG1) 

Sex (Ref = Male) -0.10 0.26 

Age -0.04 0.34 

BPD (Ref = No BPD) -0.23 0.014* 

Low Lung Function (Ref = PTc) -0.16 0.10 

Asthma (Ref  = No) -0.05 0.66 

Desmocollin-1 (DSC1) 

Sex (Ref = Male) 0.07 0.52 

Age -0.03 0.45 

BPD (Ref = No BPD) -0.27 0.019* 

Low Lung Function (Ref = PTc) -0.09 0.43 

Asthma (Ref  = No) -0.09 0.49 

Junctional Plakoglobin (JUP) 

Sex (Ref = Male) -0.02 0.77 

Age -0.06 0.06 

BPD (Ref = No BPD) -0.23 0.008* 

Low Lung Function (Ref = PTc) -0.10 0.21 

Asthma (Ref  = No) -0.15 0.09 

Interaction Modelling 

 
DSG1 DSC1 JUP 

Beta p-value Beta p-value Beta p-value 

No BPD * PTc Ref Ref Ref Ref Ref Ref 

No BPD * PTlow -0.12 0.30 -0.04 0.73 -0.04 0.66 

BPD * PTc -0.23 0.11 -0.27 0.09 -0.18 0.12 

BPD * PTlow -0.35 0.012* -0.30 0.06 -0.30 0.01* 



  Chapter Two 

77 
 

2.3.3.2 Preterm-born children with low lung function (FEV1≤85%) vs Preterm-born 

controls: 

For proteins detected in all samples, no significant differences were noted between the PTlow 

group and PTc groups at baseline. A protein network map including all detected proteins with 

significant differences between PTlow and PTc groups is given in Figure 2-8. Three 

antiproteases (Annexin A1 [ANXA1], Serpin B3 [SERPINB3], SLPI) were less abundant in the 

PTlow group (-0.77, p=0.02; -0.86, p=0.01; -2.32, p=0.03 respectively), with reduced 

abundance of fatty acid-binding protein 5 (FABP5)  (-0.39, p=0.04) when compared to the PTc 

group. The network map (Figure 8) did not demonstrate any direct links between these 

proteins. 

 

2.3.4 Comparison of EBC proteome before and after inhaled therapies: 

Figure 2-9, which includes proteins detected in all or some samples, shows significant 

differences before and after the three inhaler treatments. Table 2-5 shows the changes 

observed in the RCT treatment groups for proteins detected in all samples. Significant 

increases in abundance of DSG1 (0.58, p=0.003), DSC1 (0.47, p=0.048), JUP (0.52, p=0.002), 

KRT2 (0.32, p=0.047) and KRT10 (0.27, p=0.04) occurred after ICS/LABA treatment. For 

proteins not detected in every sample, increases in Protein-glutamine gamma-

glutamyltransferase-E (TGM3) (log2 fold change 1.82, p=0.005), Filaggrin-2 (FLG2) (0.76, 

p=0.007) and Rab5 GDP/GTP exchange factor (RABGEF1) (0.76, p=0.02), and a decrease in 

Heat shock protein beta-1 (HSPB1) (-3.09, p=0.04) abundances were noted after ICS/LABA 

treatment. A protein network map demonstrating the relationships between these altered 

proteins for ICS/LABA treatment is shown in Figure 2-10. 

 

Following ICS treatment, significant increase in abundance of cytokeratin-1 (KRT1) (0.34, 

p=0.03) and decreased abundances of cystatin-A (CSTA) (-0.66, p=0.01) and Zinc-alpha-2-
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glycoprotein (AZGP1) (-0.70, p=0.03) was seen. Protein network map is shown in Figure 2-11. 

No differences were observed for proteins detected in every sample after placebo treatment, 

but immunoglobulin kappa constant (IGKC) (-2.02, p=0.04), Lipocalin-1 (LCN1) (-1.35, p=0.03), 

Plakophilin-1 (PKP1) (-0.80, p=0.03) and Catalase (CAT) (-0.33, p=0.04) decreased but were 

only noted in some samples. 

 

Figure 2-12 shows significant increases in DSG1, DSC1 and JUP after ICS/LABA treatment 

which were not noted after ICS intervention. The PTlow group who had BPD in infancy had 

significant increases in abundance of all three proteins after ICS/LABA treatment, whereas 

PTlow without BPD only had significantly increased JUP abundance. Following ICS/LABA 

treatment in the PTlow with BPD group, levels of DSG1, DSC1 and JUP were comparable to the 

term control group at baseline (p = 0.56, 0.12, 0.06 respectively). Figure 2-10 demonstrates 

the biological links between these proteins and the changes observed for TGM3, FLG2, 

HSPB1, KRT2 and KRT10 as described above. 
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Figure 2-9: Volcano Plots demonstrating protein abundances in EBC pre- and post-RCT treatment.  

Log2FC: Log2 fold-change between groups. Vertical line represents a Log2FC of 0. Horizontal line is equivalent to p-value 0.05.  Size of point is relative 
to number of samples in which protein was detected. Gene name associated with protein given if p<0.05 
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Table 2-5: Treatment effect on proteins detected in every EBC sample. 

ICS: Inhaled corticosteroids; ICS/LABA: Inhaled corticosteroids/long-acting beta agonists; Log2FC: Log2 fold-change between groups. *Denotes p-
vale <0.05 

Accession 
Number 

Gene 
Name 

Protein Name Protein Function 

Placebo n=12 
Pre vs Post 

ICS n=17 
Pre vs Post 

ICS/LABA n=17 
Pre vs Post 

Log2FC Ratio p Log2FC Ratio p Log2FC Ratio p 

Q08554 DSC1 Desmocollin-1 Cell-cell junction 0.24 1.18 0.12 0.04 1.03 0.83 -0.47 0.72 0.048* 

Q02413 DSG1 Desmoglein-1 Cell-cell junction -0.20 0.87 0.34 -0.47 0.72 0.08 -0.58 0.67 0.003* 

P15924 DSP Desmoplakin Cell-cell junction, Cytoskeleton 0.07 1.05 0.77 -0.18 0.88 0.19 -0.21 0.86 0.26 

P14923 JUP Junction plakoglobin 
Plasma membrane protein 

complex 
-0.12 0.92 0.59 -0.41 0.75 0.10 -0.52 0.70 0.002* 

H6VRG2 KRT1 Cytokeratin-1 Cytoskeleton -0.18 0.88 0.28 -0.34 0.79 0.03* -0.17 0.89 0.32 

H6VRG3 KRT1 Cytokeratin-1 Cytoskeleton -0.34 0.79 0.27 -0.58 1.49 0.11 -0.33 0.80 0.19 

P35908 KRT2 
Keratin, type II cytoskeletal 2 

epidermal 
Cytoskeleton 0.10 1.07 0.68 -0.16 0.90 0.55 -0.32 0.80 0.047* 

P13647 KRT5 Keratin, type II cytoskeletal 5 Cytoskeleton -0.03 0.98 0.89 0.02 1.01 0.92 0.02 1.01 0.88 

P02538 KRT6A Keratin, type II cytoskeletal 6A Cytoskeleton 0.19 1.14 0.73 0.24 1.18 0.59 0.60 1.52 0.25 

P35527 KRT9 Keratin, type I cytoskeletal 9 Cytoskeleton -0.28 0.82 0.28 -0.30 0.81 0.09 0.11 1.08 0.59 

P13645 KRT10 Keratin, type I cytoskeletal 10 
Structural protein extracellular 

space 
0.09 1.06 0.64 -0.14 0.91 0.45 -0.27 0.83 0.04* 

P02533 KRT14 Keratin, type I cytoskeletal 14 Cytoskeleton 0.03 1.02 0.82 -0.22 1.16 0.26 0.22 1.16 0.18 

P08779 KRT16 Keratin, type I cytoskeletal 16 Cytoskeleton -0.11 0.93 0.83 0.07 1.05 0.90 0.55 1.46 0.28 

Q04695 KRT17 Keratin, type I cytoskeletal 17 
Intermediate filament 

cytoskeleton 
-0.01 0.99 0.98 0.24 1.18 0.57 0.76 1.69 0.10 

Q8N1N4 KRT78 Keratin, type II cytoskeletal 78 Cytoskeleton 0.24 1.18 0.22 -0.27 0.83 0.18 -0.17 0.89 0.37 

P31944 CASP14 Caspase-14 Protease 0.85 1.80 0.09 0.52 1.43 0.24 -0.44 0.74 0.30 

P01040 CSTA Cystatin-A Protease inhibitor -0.07 0.95 0.85 0.66 1.58 0.01* -0.25 0.84 0.41 

P62979 RPS27A 
Ubiquitin-40S ribosomal protein 

S27a 
Structural component of ribosome -0.02 0.99 0.95 0.44 1.36 0.05 -0.18 0.88 0.52 

P25311 AZGP1 Zinc-alpha-2-glycoprotein 
Major histocompatibility complex 

protein 
0.46 1.38 0.15 0.70 1.62 0.03* -0.10 0.93 0.75 
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Figure 2-10: Protein network map of significant protein differences in EBC before and after ICS/LABA treatment. 
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Figure 2-11 Protein network map of significant protein differences in EBC before and after ICS treatment.
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Figure 2-12: Violin plots of Desmosome Proteins before and after treatment with Placebo, ICS 
or ICS/LABA by BPD status.  

BPD: Bronchopulmonary dysplasia; Coloured areas represent distribution of sample values. 
Dot and bars represent mean and standard error (SEM); Comparison bars between violin 
plots give p-values by paired samples t-test.
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2.4 Discussion 

This chapter has examined the changes in the detectable proteome in exhaled breath 

condensate using LC/MS with TMT in preterm-born children both before and after inhaled 

therapies. I have described the effect of preterm-birth and its major respiratory complication, 

BPD, on the EBC proteome of school-aged children. I have shown that those individuals born 

preterm with a history of BPD continue to have detectable significant differences in protein 

abundances for key structural proteins involved in desmosome and cytoskeleton formation, 

several years after the initial pulmonary insult. I have also demonstrated that the reduced 

abundance of desmosome proteins, namely DSG1, DSC1 and JUP, seen in preterm-born 

school-aged children with low lung function (FEV1 ≤85%) can be reversed with 12-weeks of 

combination ICS/LABA inhaler therapy. This effect was predominantly noted in those children 

in the PTlow group with a history of BPD, with linear modelling confirming that those in both 

BPD and PTlow groups have a significantly reduced abundance of these three proteins at 

baseline. Previously published data from the RHiNO trial has demonstrated that combination 

inhaler therapy is also the most effective treatment for preterm-born children with low lung 

function, increasing FEV1 by over 14% on average (Goulden et al., 2021). 

 

The mechanism by which some preterm-born children continue to experience lung function 

deficits remains incompletely understood, and there is evidence of developmental structural 

changes to the lung parenchyma and chronic active inflammatory processes (Thebaud et al., 

2019). Desmosomes have historically been thought to provide inert structural support to 

tissues through their strong cell-to-cell adhesion properties, however more recent evidence 

has shown that they have an active role in cell signalling, proliferation, migration, and 

apoptosis (Holthofer et al., 2007, Green et al., 2010). Despite minimal published evidence 

taking a proteomics approach, a reduction in desmosome proteins has been implicated in 

respiratory pathologies. In a murine asthma model, analysis of bronchial wall tissue found 
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reduced expression of DSG1 following asthma exacerbation and reduced epithelial barrier 

integrity, potentially predisposing to further exacerbation (Bao et al., 2019). Desmosome size 

and number have also been seen to be reduced in bronchial biopsies taken from asthmatic 

adults (Shahana et al., 2005), and two studies examining cultured human bronchial 

epithelium reported that pro-inflammatory cytokines (TNF-α and INF-γ) reduced expression 

of desmosomes and JUP, an effect which could be reversed by the administration of 

corticosteroids (Andersson et al., 2010, Carayol et al., 2002). The reasons why I observed 

changes in DSG1, DSC1 and JUP in the ICS/LABA therapy group but not in the ICS group is 

unclear, however the underlying pathology of BPD is different to that of asthma, with infant 

post-mortem evidence of smooth muscle extension into the peripheral airways (Bush et al., 

1990), and airway biopsies demonstrating peri-bronchial fibrosis, neoangiogenesis, and a 

predominantly CD8+ T lymphocyte epithelial infiltrate in adolescent survivors of BPD 

(Galderisi et al., 2019). 

 

I also noted an increase in abundance in the cytokeratins KRT6A and KRT6B in those children 

with a history of BPD. Cytokeratins comprise the intracytoplasmic cytoskeleton of epithelial 

tissues and form an important component of intermediate filaments, which connect to 

desmosomes, helping cells and tissues resist mechanical stress (Herrmann et al., 2007). 

Whilst detection of these proteins can represent epidermis sample contamination, 

cytokeratins have previously been shown as the most abundant protein type in EBC (Kurova 

et al., 2009), and both KRT6A and KRT6B have been identified in EBC proteomic and gene 

expression analyses as potential biomarkers for lung carcinomas (Lopez-Sanchez et al., 2017, 

Xiao et al., 2017). In addition, studies examining EBC in mechanically ventilated adults and 

smokers have identified an increased total cytokeratin abundance as a marker of airway stress 

and damage to the lung parenchyma (Gessner et al., 2008, Gianazza et al., 2004). Additionally, 

neonatal studies have demonstrated an increased abundance of cytokeratin-19 fragments in 
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the serum of preterm infants who required mechanical ventilation and in those who later 

developed BPD or died (Panahabadi et al., 2021). In conjunction with the changes in DSG1, 

DSC1 and JUP, the increased abundance of KRT6A and KRT6B in the BPD group suggest that 

these children have persistent parenchymal structural changes secondary to airway 

inflammation and tissue stress.  

 

I have focused the majority my analysis on proteins detected in every sample to capitalise on 

our large sample size and ensure robust findings. Overall, the protein content of EBC was low, 

as previously reported (Bloemen et al., 2011, Kurova et al., 2009, Gianazza et al., 2004), and 

close to the limits of detection. As a result, I performed exploratory analyses of proteins 

detected only in a proportion of samples, as the TMT methodology allowed robust 

quantification of these proteins in multiple replicates, most of which exceed sample sizes of 

many other published proteomic studies. DCD was detected in a very high proportion of our 

samples (98%) noting significantly decreased abundance in the BPD group. DCD, a peptidase 

with antimicrobial activity, has been described in EBC samples previously (Kurova et al., 2009), 

and increased detection was weakly associated with asthma in a small paediatric proteomic 

study (Bloemen et al., 2011). In addition, I observed reduced abundance of several protease 

inhibitors in the BPD or PTlow groups, including ANXA1, SERPINB3, CSTA and SLPI, with reduced 

abundance of SLPI being noted in both the BPD and PTlow groups compared to controls. Our 

group have previously demonstrated an imbalance between protease and antiprotease 

activity, and subsequent tissue remodelling, may been implicated early in the pathogenesis 

of BPD (Davies et al., 2010) but this has not been reported in later life. Animal models of BPD 

pathogenesis/oxidative stress have shown significant increase in SLPI over the first 10 days of 

life (Wagenaar et al., 2004); however, tracheobronchial aspirates from ventilated preterm 

neonates showed a relative deficit of SLPI with elevated protease activity observed over the 

first few weeks of life (Watterberg et al., 1994, Sveger et al., 2002). This result should be 
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interpreted with caution as SLPI was detected in a minority of samples. ANXA1, a protease 

inhibitor also known to have innate immune properties, which was decreased in the PTlow 

group but not in the BPD group, has been implicated in early lung injury in neonatal mouse 

models (Raffay et al., 2013). This decrease in anti-proteases suggest that there may be an 

imbalance in protease/antiprotease activity, but additional work will be required to estimate 

both proteases and anti-proteases in more appropriate samples (e.g. bronchoalveolar lavage 

or induced sputum) which are more invasive and ethically more challenging to obtain in this 

cohort. 

 

It is well established that survivors of preterm birth, both with and without BPD, are at risk of 

lung function deficits in later life (Kotecha et al., 2022b), and there is increasing evidence that 

BPD is a poor predictor of lung function in later life (Hart et al., 2022, Corwin et al., 2018). In 

this cohort, I saw fewer differences in biologically related proteins at baseline when 

comparing PTlow and PTc groups in comparison to those with and without BPD, and less than 

half of the children in the RCT had BPD. It is most likely that the decrease observed in DSG1, 

DSC1 and JUP seen in the BPD group, which is reversed by combination inhaler therapy, is 

due to cellular injury secondary to continuing airway inflammation (Teig et al., 2012, Filippone 

et al., 2012), although further work is needed to clarify this relationship. Overall, those 

children treated with ICS/LABA had significantly decreased HSPB1 following treatment. 

HSPB1 is a member of the small heat-shock protein family, which are molecular chaperones 

controlling protein folding and preventing aggregation. HSPB1 has been shown to have an 

important role in the cellular response to oxidative stress, preventing apoptosis and 

regulating inflammation (Acunzo et al., 2012), adding further to the suggestion of chronic 

airway inflammation contributing to low lung function. Previous studies have also 

demonstrated evidence of persistent airway inflammation in children several years after very 

preterm birth (<32 weeks’ gestation), with raised neutrophil and IL-8 values in induced 
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sputum (Teig et al., 2012); however, the link between this chronic inflammation and lung 

function parameters was not clear. This EBC proteomic data was unable to show as clear a 

pattern for differences in proteins for preterm-born children who had low lung function but 

did not have BPD in infancy. In addition, I did also observe a change in protein abundances 

after placebo treatment which is challenging to fully explain. This is the first time to my 

knowledge that proteomics has been performed on EBC before and after a trial containing a 

placebo arm. 

 

2.4.1 Strengths and Limitations 

This study represents one of the largest proteomic analyses of EBC, and the first time, to my 

knowledge, that preterm-born children have been studied. By using EBC, there has been 

direct sampling of ELF, representative of the biochemistry of the airways, in a simple, well-

tolerated and non-invasive manner. I and the team at University of Bristol Proteomics Facility 

have demonstrated that not only is it technically possible to perform a quantitative proteomic 

analysis of EBC using Tandem Mass Tagging on a large sample size, but also to identify 

meaningful changes within our clinical groups. By restricting the primary analysis to proteins 

detected in every sample, I have achieved robust findings, strengthened further by the 

modulation of these proteins of interest after inhaler treatment in the RCT. By using an 

untargeted approach and performing exploratory analysis of less frequently detected 

proteins, I have also implicated potentially important protein relationships, including 

protease/antiprotease dynamics, that future work should explore. Limitations of this analysis 

include the overall low protein content of EBC, as discussed above, and the relatively low 

number of proteins detected in every sample, which limited the statistical analysis 

approaches I could undertake such as Principal Component Analysis. There may have been 

very low levels of some proteins in the samples which did not reach the limit of detection for 

the TMT methodology utilised. In addition, it is not possible to normalise the EBC samples as 
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there is currently no universally agreed internal or external control value to adjust for differing 

EBC volumes between subjects (Horvath et al., 2017), however this is unlikely to have affected 

the results, as EBC volumes did not appear to demonstrate a significant association with my 

findings in linear regression modelling.  

 

2.5  Conclusions 

In conclusion, the proteomic analysis of EBC from preterm-born school-aged children has 

revealed a significantly reduced abundance of three key desmosome proteins, DSG1, DSC1 

and JUP, in those with a history of BPD, in addition to an increase in cytokeratins. In linear 

modelling, using BPD and PTlow as interaction terms, DSG1 and JUP were significantly 

reduced in those children in the BPD group with current low lung functions. These reduced 

protein abundances were reversed for those children with reduced lung function who 

entered a 12-week clinical trial and received ICS/LABA inhaler therapy. I can hypothesise that 

the changes seen in these desmosome constituents, as well as the increased abundance of 

cytokeratins, are related to an ongoing inflammatory process within the airways of those 

individuals with BPD altering parenchymal structure, and potentially reducing lung function, 

especially as there is also a suggestion that there is a protease/anti-protease imbalance.  
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3 Metabolomic Analysis of Exhaled Breath 

Condensate 

3.1 Introduction: 

As discussed in my Introduction, BPD (also known as CLD) is the one of the commonest 

respiratory consequences of preterm birth and, despite advances in neonatal care over the 

last twenty years, rates of BPD are continuing to rise (Stoll et al., 2015, Jensen et al., 2021), 

likely related to improving survival from increasingly immature gestational ages at birth 

(Edwards et al., 2024). The pathogenesis of BPD is multifactorial, but pulmonary injury 

secondary to oxygen free radical production and inflammation form an important common 

pathway leading to altered lung development (Buczynski et al., 2013, Chakraborty et al., 

2010).  As I have discussed previously (sections 1.4.3 and 1.4.4)  history of preterm birth, both 

with and without a history of BPD, has been consistently associated with poorer lung function 

in later life (Kotecha et al., 2022b), and there is growing evidence that those with a history of 

BPD risk the development of chronic obstructive pulmonary disease (COPD) in early 

adulthood (Gibbons et al., 2023, Doyle et al., 2019b), as well as being diagnosed with asthma 

(Pulakka et al., 2023), although there is increasing recognition that prematurity-associated 

lung disease (PLD) has different underlying mechanism to asthma (Cousins et al., 2023).  

Lung function continues to develop throughout childhood and adolescence, with increasing 

number of alveoli, airway size and lung volume (Stocks et al., 2013), before declining after 

early adulthood (Agusti and Faner, 2019). Preterm-born individuals have been shown to have 

significantly lower forced expiratory volume in 1 second (FEV1) than those born at term 

(Bardsen et al., 2022), therefore providing a potential therapeutic window of opportunity for 

optimizing peak lung function, and highlights the importance of understanding the underlying 

mechanisms of PLD during childhood.  
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As I discussed in Chapter 2, Exhaled breath condensate (EBC) is a useful sample type to study 

in children as it is easily and non-invasively collected (Section 2.1.1). EBC is composed of 

droplets of epithelial lining fluid (ELF), evolved from all compartments of the lung during tidal 

breathing. ELF is a complex matrix of compounds, which includes metabolites, and reflects 

lung tissue biology (Davis et al., 2012). As discussed in section 1.5, metabolomic methods 

simultaneously analyse the entire low-molecular weight (<2000Da) metabolite content of 

biological samples and have been applied extensively to EBC in the study of both adult and 

paediatric respiratory diseases such as COPD, asthma and CF (Maniscalco et al., 2019), 

showing the ability to discriminate between asthma phenotypes, and evidence of medication 

altering the EBC metabolome in CF. It is clear metabolomics offers a tool to unravel 

mechanisms of disease pathogenesis and progression and identify potential groups of 

biomarkers in respiratory pathologies. Metabolomic techniques have previously been used 

on tracheal aspirates obtained during the neonatal period to study the pathogenesis of BPD 

(Piersigilli et al., 2019), finding an increase in metabolites related to hypoxic stress and nitric 

oxide synthesis.  

 

3.1.1 Aims 

After finding significant associations between the EBC proteome and BPD and PLD (Chapter 

2), I hypothesized that the EBC of preterm-born school-aged children who had a history of 

BPD in infancy would show altered metabolite profiles  when compared to preterm-born and 

term-born control children. Therefore, in this exploratory analysis, I aimed to characterise the 

metabolome of preterm-born school-aged children with a history of BPD compared to 

preterm-born children without a history of BPD and term-born controls.  
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3.2 Methods: 

3.2.1 Participants: 

This analysis was conducted on a cohort of children recruited to the Respiratory Health 

Outcomes in Neonates study (RHiNO, EudraCT: 2015-003712-20) which has been described 

extensively previously in the literature (Goulden et al., 2021, Hart et al., 2022, Course et al., 

2023a) and in this thesis (section 1.6 and 2.2.1). In brief, children from a previous study 

(Edwards et al., 2015) were supplemented with additional preterm-born children identified 

by the NHS Wales Informatics Service and sent a respiratory and neurodevelopmental 

questionnaire if they were born ≤34 or ≥37 weeks’ gestation and were aged 7-12 years. 

Children with significant congenital malformations, cardiopulmonary or neuromuscular 

disease were excluded. Ethical approval was obtained from the South-West Bristol Research 

Ethics Committee (15/SW/0289). Parents gave informed written consent and children 

provided assent.  

 

As I described in section 2.2.2, following a home assessment, a subset of responders attended 

the hospital-based children’s research facility for comprehensive clinical examination and 

respiratory testing including collection of EBC, conducted by a trained nurse and paediatrician 

between January 2017 and November 2019. Spirometry (MasterScreen Body and PFT 

systems, Vyaire Medical, Germany) was performed to ATS/ERS guidelines (Miller et al., 2005) 

and normalised using GLI references (Quanjer et al., 2012). Any respiratory medications were 

withheld prior to their assessment (short- and long-acting β2-agonists for 8- and 48-hours 

respectively; inhaled corticosteroids for 24 hours; and leukotriene receptor antagonists for 

48 hours) and children were free of respiratory infections for at least three weeks prior to 

testing. Term-born children who had %FEV1 >90% were included as term controls. BPD was 

defined as oxygen-dependency of 28 days or greater for those born <32 weeks’ gestation and 

at 56 days of age for those born ≥32 weeks’ gestation (Ehrenkranz et al., 2005). Intrauterine 
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growth restriction (IUGR) was defined as birthweight <10th percentile adjusted for sex and 

gestation (LMS Growth version 2.77, Medical Research Council, UK). Doctor-diagnosed 

asthma was self-reported by parents. Neonatal history was corroborated with medical 

records. Socioeconomic status was assessed using the Welsh Index of Multiple Deprivation 

(StatsWales, 2019) scores from 2019, the most contemporaneous available for this cohort. 

 

3.2.2 EBC Sampling:  

As I described in section 2.2.3, EBC was collected during the research unit visit in the RHiNO 

trial, using a cooling tube (RTube®, Respiratory Research Inc., Texas, USA), that was pre-cooled 

to −20 °C for at least two hours prior to use, during 10 minutes of passive tidal breathing, with 

the participant wearing a nose clip, stopping briefly to swallow saliva if needed. EBC was 

collected immediately prior to spirometry and once collected, samples were immediately 

separated into aliquots and stored at -80°C pending analysis. 

 

3.2.3 Metabolome analysis: 

EBC samples were analysed using Gas Chromatography Time-of-Flight Mass Spectrometry 

(GCTOF-MS) by the West Coast Metabolomics Centre (University of California, Davis), who 

have previously published their analytical method (Fiehn et al., 2008). 50μL of each sample 

was fractionated using an Agilent 6890 gas chromatograph (Agilent, Santa Clara, CA, USA), 

controlled using Leco ChromaTOF software v2.32 (LECO, St. Joseph, MI, USA), in a Rtx-5Sil MS 

(Restek, Bellafonte, PA, USA) column (30m length x 0.25mm internal diameter with 0.25μm 

film made of 95% dimethyl/5%diphenylpolysiloxane). Column temperature was maintained 

between 50-330°C, with a helium mobile phase. Injection volumes of 0.5μL were used, with 

injection temperatures starting at 50°C, ramped up to a maximum temperature of 250°C by 

12°Cs-1.  Oven temperature program was set to 50°C for 1 min, then ramped at 20°C min-1 to 
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330°C, and held constant for 5 min. The analytical GC column was protected by a 10m long 

empty guard column which was cut by 20cm intervals whenever the reference mixture QC 

samples indicated problems caused by column contamination. This sequence of column cuts 

has previously been validated, with no detrimental effects being detected with respect to 

peak shapes, absolute or relative metabolite retention times or reproducibility of 

quantifications. This chromatography method yields excellent retention and separation of 

primary metabolite classes (amino acids, hydroxyl acids, carbohydrates, sugar acids, sterols, 

aromatics, nucleosides, amines and miscellaneous compounds) with narrow peak widths of 

2–3s and very good within-series retention time reproducibility of better than 0.2s absolute 

deviation of retention times. Automatic liner exchanges after each set of 10 injections were 

used, which reduces sample carryover for highly lipophilic compounds. 

 

All spectra were acquired using a Leco Pegasus IV (LECO, St. Joseph, MI, USA) time of flight 

mass spectrometer, with unit mass resolution at 17 spectra s-1 from 80-500Da at -70eV 

ionization energy and 1800V detector voltage with a 230°C transfer line and a 250°C ion 

source. Raw data files were normalised to QC/pool samples using the systematic error 

removal by random forest (SERRF) method(Fan et al., 2019). Raw data files were processed 

and metabolites identified with the BinBase metabolomics database (Lai et al., 2018) by West 

Coast Metabolomics Centre, using an in-house algorithm based on the following: validity of 

chromatogram (<10 peaks with intensity>107 counts s-1), unbiased retention index marker 

detection (MS similarity >800, validity of intensity range for high m/z marker ions), retention 

index calculation by 5th order polynomial regression. Spectra were cut to 5% base peak 

abundance and matched to database entries from most to least abundant spectra using the 

following matching filters: retention index window ±2,000 units (equivalent to about ±2s 

retention time), validation of unique ions and apex masses (unique ion must be included in 
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apexing masses and present at >3% of base peak abundance), mass spectrum similarity fitted 

criteria dependent on peak purity and signal/noise ratios and a final isomer filter. 

Quantification of metabolites were reported as spectral peak height of the unique ion 

detected (m/z value) at the specific retention index. Peak heights are more precise for low 

abundant metabolites than peak areas, due to the larger influence of baseline determinations 

on areas compared to peak heights.  

 

3.2.4 Statistical analysis: 

Sample demographics were compared using chi-squared or one-way ANOVA with Bonferroni 

correction tests as appropriate. Metabolite quantities were log10 transformed and visually 

inspected for normality. Metabolites with mean and median peak intensities below the mass 

spectrometer’s limit of detection were removed from further analysis to ensure robust 

statistical comparisons between clinical groups. Fold changes between groups were 

calculated and log2 transformed (log2FC) for visualization. Independent t-test/ANOVA with 

post-hoc Bonferroni correction was used to compare metabolite quantities between groups. 

Metabolite Set Enrichment Analysis (MSEA; identifying biological processes linked to over-

represented metabolites) was performed on all metabolites identified with a significantly 

different quantity between groups using the Small Molecule Pathways Database (SMPDB) 

(Jewison et al., 2014), which is based on the Human Metabolome Database (HMDB). 

Univariable and multivariable linear regression models were used to identify associations 

between participant characteristics and metabolites of interest identified by MSEA. p<0.05 

was considered statistically significant. I performed all statistical analyses using R v4.0.4 (R 

Foundation for Statistical Computing, Austria) and R packages “dplyr”, “ggplot2”, “ggpubr”, 

and MetaboAnalyst v5.0 (www.metaboanalyst.ca) (Pang et al., 2022). 

 

http://www.metaboanalyst.ca/
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3.3 Results: 

As described in section 1.6 total of 241 children underwent detailed assessment at the 

research facility, performed by Dr Michael Cousins and Dr Kylie Hart. EBC was successfully 

collected and analysed from 214 (89%) children with adequate spirometry. Sample 

demographics are shown in Table 3-1. 34 preterm-born children had a diagnosis of BPD (13 

mild BPD, 21 moderate/severe BPD) (Ehrenkranz et al., 2005). Preterm-born children with a 

history of BPD (BPD) were born at a significantly lower gestational age compared to those 

without BPD (No BPD) (mean±SD 27.1±2.1 weeks vs 31.8±1.9, p=<0.001), with a significantly 

lower birthweight (1029±415g vs 1817±493, p=<0.001). No BPD group was significantly older 

than the Term group at assessment (10.3±1.1 years vs 9.7±1.1, p=0.002) but there was no 

significant age difference between the BPD and the No BPD and Term groups. There were no 

differences in socioeconomic deprivation score between the three groups. Percent predicted 

forced expiratory volume in 1sec (%FEV1) was significantly lower in the BPD group compared 

to both the No BPD (86.9±15.9 vs 93.2±14.1, p=0.036) and Term groups (86.9±15.9 vs 

104.3±7.1, p=<0.001). FEV1/FVC ratio was also significantly lower in the BPD group compared 

to the No BPD (0.77±0.10 vs 0.82±0.09, p=0.002) and Term groups (0.77±0.10 vs 0.85±0.06, 

p=<0.001). Percent predicted mid-expiratory flows (%FEF25-75) were also significantly lower in 

the BPD group compared to No BPD (64.0±25.8 vs 79.3±24.6, p=0.003) and Term groups 

(64.0±25.8 vs 94.7±19.1, p=<0.001). 
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 Variable Preterm BPD 

n = 34 

Preterm No BPD 

n = 110 

Term 

n= 70 

Sex (male), n(%) 15 (44.1) 54 (49.1) 37 (52.9) 

Ethnicity (white), n(%) 32 (94.1) 103 (93.6) 69 (98.6) 

Gestational age (weeks), mean 

(SD) 

27.1 (2.1)***††† 31.8 (1.9)††† 40.0 (1.1) 

Birthweight (g), mean (SD) 1029 (415)***††† 1817 (493)††† 3528 (518) 

Birthweight (z-score), mean 

(SD) 

-0.06 (1.29) 0.17 (1.38) 0.08 (0.97) 

Antenatal Steroids, n(%) 28 (84.8)†††§ 94 (88.7)†††§ 0 (0) 

Intrauterine growth restriction, 

n(%) 

8 (23.5)†† 18 (16.4)† 4 (5.7) 

Age at testing (years), mean 

(SD) 

9.9 (1.4) 10.3 (1.1)†† 9.7 (1.1) 

Weight (kg), mean (SD) 36.3 (13.1) 37.7 (9.0) 36.6 (10.5) 

Weight (z-score), mean (SD) 0.08 (1.54) 0.31 (1.02) 0.46 (1.02) 

Body Mass Index (kg/m2), 

mean (SD) 

18.1 (4.1) 18.0 (3.1) 17.9 (3.2) 

Body Mass Index (z-score), 

mean (SD) 

0.14 (1.52) 0.14 (1.24) 0.30 (1.08) 

Asthma diagnosis, n(%) 9 (36.0) 22 (20.0) 5 (7.1)** 

WIMD 2019 Rank, mean (SD) 1019 (507) 1052 (545) 1178 (520) 

FEV1 (%predicted), mean (SD) 86.9 (15.9)*††† 93.2 (14.1)††† 104.3 (7.1) 

FVC (%predicted), mean (SD) 99.2 (10.7)†† 99.1 (11.6)††† 107.6 (8.8) 

FEV1/FVC, mean (SD) 0.77 (0.10)**††† 0.82 (0.09) 0.85 (0.06) 

FEF25-75% (%predicted), mean 

(SD) 

64.0 (25.8)**††† 79.3 (24.6)††† 94.7 (19.1) 

Total volume of EBC collected 

(ml), mean (SD) 

1.1 (0.3)† 1.1 (0.4) 1.3 (0.3) 

Table 3-1: Participant demographics for samples used in EBC metabolomics analysis 

Comparisons by ANOVA with Bonferroni correction/Chi-squared test as appropriate at 
baseline.  
*p<0.05, **p<0.01, ***p<0.001 compared to Preterm No BPD 
†p<0.05, ††p<0.01, †††p<0.001 compared to Term-born 
§AN Steroids data missing for 5 cases (4 Preterm-born No BPD, 1 Preterm-born BPD) 
WIMD: Welsh Index of Multiple Deprivation 2019 Rank Scores 
BPD: Bronchopulmonary Dysplasia; FEV1: Forced Expiratory Volume in 1 second; FVC: 
Forced Vital Capacity 
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3.3.1 Detected metabolites: 

For the analysis I used a total of 235 fully annotated metabolites related to primary 

metabolism (carbohydrates and sugar phosphates, amino acids, hydroxyl acids, free fatty 

acids, purines, pyrimidines, aromatics, and exposome-derived chemicals) that had been 

successfully detected and identified from the BinBase database by West Coast Metabolomics 

Centre. 128 (54.5%) of these metabolites had a mean and median peak intensity greater than 

the limit of detection, and 38 (16.2%) metabolites were detected above the limit of detection 

in every sample analysed. Details of all detected metabolites and the number of samples in 

which they were present are given in the Appendix in Table 8-2. Overall, the metabolite 

content of EBC was relatively low, with several metabolites close to the limit of detection in 

multiple samples.  

 

3.3.2 Metabolomic differences between BPD and No BPD groups: 

Significant log2FC differences were noted between BPD and No BPD groups for ten 

metabolites (Figure 3-1,  

Table 3-2). Alanine was reduced in the BPD group (log2FC -1.71, p=0.025) and octadecanol 

increased (0.17, 0.026), with both metabolites detected in every sample. Urea (-2.52, 0.012), 

pyroglutamic acid (-1.78, 0.012), valine (-1.98, 0.014), ornithine (-2.69, 0.033) and serine (-

2.62, 0.035) were all detected in >98% of samples, all with a significantly lower quantity in 

the BPD group. MSEA (Table 3-3) linked alanine, ornithine and urea with a significant 

alteration of urea cycle metabolism (p=<0.001) and alanine and pyroglutamic acid with an 

alteration of glutathione metabolism (p=0.008) (Figure 3-2). Ornithine and urea were also 

significantly linked with an alteration of arginine and proline metabolism (p=0.047). 
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Univariable, unadjusted, linear regression models of the preterm-born cohort studying 

demographic and lung function characteristics identified that alanine (beta -0.18, p=0.025) 

and urea (-0.29, 0.013) were only significantly associated with a history of BPD (Table 3-4). In 

univariable linear regression models for pyroglutamic acid and ornithine, female sex and 

history of BPD were both significantly related to a reduced quantity of these metabolites. 

When combined into a multivariable linear regression model, BPD remained significantly 

associated with a reduced quantity of pyroglutamic acid (beta -0.24, p=0.016) and ornithine 

(-0.24, 0.039) (Table 3-4). No significant associations were noted between these metabolites 

and current lung function in univariable linear regression models with these metabolites of 

interest. There were minimal significantly altered metabolites when comparing the mild and 

moderate/severe BPD groups (Figure 3-3). 

 

3.3.3 Metabolomic differences between BPD and Term groups: 

Significant log2FC were observed between BPD and Term groups for 14 metabolites (Figure 
3-1,  

Table 3-2). As in the preterm-born cohort, significantly reduced quantities of valine (log2FC -

1.33, p=0.006), alanine (-0.94, 0.017), serine (-1.2, 0.039), pyroglutamic acid (-0.93, 0.039) 

and urea (-4.43, 0.043) were seen in the BPD group when compared to term-born children. 

Glycine was detected in every sample, again with a significantly decreased quantity in the 

BPD group (-0.45, 0.031). Oleamide was detected in >90% of samples, with a significantly 

reduced quantity in the BPD group (-0.2, 0.034). MSEA (Table 3-3) linked alanine, glycine and 

pyroglutamic acid with a significant alteration of glutathione metabolism (p=<0.001), and 

alanine, glutamic acid and urea with a significant alteration of urea cycle metabolism 

(p=0.002) (Figure 3-2). There was also a significant alteration of Glucose-Alanine cycle 

(p=<0.001) and Alanine metabolism (p=<0.001); however, glutamic acid was implicated in 

both processes and was detected in <20% of samples.  
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Figure 3-1 Volcano plots demonstrating significantly altered EBC metabolites between 
preterm-born infants with BPD and control groups 

(A) BPD vs No BPD (B) BPD vs Term. Vertical line represents a Log2FC of 0. Horizontal line is 
equivalent to p-value 0.05. Size of point is relative to number of samples in which 
metabolite was detected. Metabolite name given if p<0.05. BPD: Bronchopulmonary 
dysplasia; Log2FC: Log2 fold-change between groups. 
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Table 3-2: Significantly different metabolites detected in EBC between infants with BPD and control groups 

BPD: Bronchopulmonary dysplasia. m/z: mass-to-charge ratio. Log2FC: Log2 fold change. p values represent between group comparisons using t-
test.  

Metabolite Retention Index m/z PubChem ID % of samples Fold Change log2FC p value 

BPD vs No BPD 

Urea 323728 189 1176 99.3 0.17 -2.52 0.012 

Pyroglutamic acid 485935 156 7405 99.3 0.29 -1.78 0.012 

Valine 313502 144 6287 99.3 0.25 -1.98 0.014 

Triethanolamine 531892 262 7618 73.6 0.47 -1.08 0.017 

Histidine 663790 154 6274 49.3 0.29 -1.78 0.017 

Alanine 244189 116 5950 100 0.31 -1.71 0.025 

Maleimide 245118 154 10935 89.9 1.30 0.37 0.025 

Octadecanol 755409 327 8221 100 1.13 0.17 0.026 

Ornithine 619196 142 88747248 99.3 0.15 -2.69 0.033 

Serine 395020 204 5951 98.6 0.16 -2.62 0.035 

BPD vs Term 

UDP-glucuronic acid 585473 217 17473 60.6 0.31 -1.68 0.0009 

Valine 313502 144 6287 99.0 0.40 -1.33 0.006 

Alanine 244189 116 5950 100 0.52 -0.94 0.017 

Histidine 663790 154 6274 48.1 0.40 -1.31 0.022 

Myoinositol 730022 305 892 42.3 0.22 -2.17 0.023 

Glycine 368707 248 750 100 0.73 -0.45 0.031 

Oleamide 849710 144 5283387 92.3 0.87 -0.20 0.034 

N-acetylputrescine 595523 174 122356 16.3 0.003 -8.33 0.035 

Heptadecanoic acid 751309 117 10465 100 1.04 0.06 0.036 

Serine 395020 204 5951 99.0 0.43 -1.20 0.039 

Pyroglutamic acid 485935 156 7405 99.0 0.52 -0.93 0.039 

Urea 323728 189 1176 99.0 0.05 -4.43 0.043 

Glucose 659798 319 64689 59.6 0.25 -1.98 0.045 

Glutamic acid 529100 246 33032 19.2 0.12 -3.01 0.049 
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Table 3-3 Metabolite Set Enrichment Analysis demonstrating altered biological processes implicated by significantly altered EBC metabolite quantities 
in the BPD group.  

Process Enriched Metabolites Enrichment Ratio p value FDR 

BPD vs No BPD 

Urea Cycle Alanine, Ornithine, Urea 15.2 0.0006 0.065 

Glutathione Metabolism Alanine, Pyroglutamic acid 13.9 0.008 0.39 

Methylhistidine Metabolism Histidine 36.6 0.027 0.89 

Arginine and Proline Metabolism Ornithine, Urea 5.5 0.047 1.0 

BPD vs Term 

Glutathione Metabolism Alanine, Glutamic Acid, Glycine, Pyroglutamic acid 19.5 0.00003 0.003 

Glucose-Alanine Cycle Alanine, Glucose, Glutamic acid 23.6 0.0002 0.009 

Alanine Metabolism Alanine, Glycine, Glutamic acid 18.1 0.0004 0.014 

Urea Cycle Alanine, Glutamic acid, Urea 10.6 0.002 0.05 

Ammonia Recycling Glycine, Glutamic acid, Histidine 9.6 0.003 0.06 

Glutamate Metabolism Alanine, Glycine, Glutamic acid 6.3 0.010 0.16 

Arginine and Proline Metabolism Glycine, Urea 5.8 0.012 0.17 

Glycine and Serine Metabolism Glycine, Glutamic acid, Urea 5.2 0.016 0.20 

Methylhistidine Metabolism Histidine 25.6 0.038 0.40 

Beta-alanine Metabolism Glutamic acid, Histidine 6.0 0.041 0.40 
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Univariable Models 

Variable 
Pyroglutamic acid Ornithine Alanine Urea 

Beta SE p-value Beta SE p-value Beta SE p-value Beta SE p-value 

Sex (ref=Male) -0.20 0.09 0.020* -0.22 0.10 0.031* -0.11 0.07 0.11 -0.14 0.10 0.16 

Birthweight (z-score) 0.001 0.03 0.96 -0.0001 0.04 0.99 -0.03 0.03 0.26 -0.01 0.04 0.76 

IUGR (Ref = No IUGR) -0.09 0.11 0.45 -0.05 0.13 0.68 0.001 0.09 0.99 -0.03 0.13 0.81 

BPD (ref=No BPD) -0.25 0.10 0.013* -0.25 0.12 0.033* -0.18 0.08 0.025* -0.29 0.11 0.013* 

Age (years) -0.03 0.04 0.48 -0.04 0.04 0.40 -0.03 0.03 0.29 -0.02 0.04 0.71 

Weight (z-score) 0.05 0.04 0.17 0.04 0.04 0.40 0.02 0.03 0.53 0.03 0.04 0.42 

BMI (z-score) 0.02 0.03 0.64 0.004 0.04 0.92 -0.001 0.03 0.96 0.01 0.04 0.75 

Asthma (Ref = No Asthma) -0.10 0.11 0.34 -0.12 0.12 0.34 0.03 0.08 0.70 0.01 0.12 0.93 

FEV1 (% predicted) <0.001 0.003 0.89 <0.001 0.003 0.99 -0.001 0.002 0.85 0.001 0.003 0.81 

FVC (% predicted) <0.001 0.004 0.92 -0.001 0.004 0.73 -0.001 0.003 0.84 -0.002 0.004 0.53 

FEV1/FVC -0.13 0.47 0.78 -0.08 0.55 0.89 -0.16 0.37 0.66 0.35 0.54 0.52 

FEF25-75% (%predicted) 0.001 0.002 0.42 0.001 0.002 0.75 <0.001 0.001 0.92 0.002 0.002 0.34 

EBC volume collected (ml) 0.02 0.11 0.88 0.04 0.14 0.77 -0.03 0.10 0.80 0.12 0.13 0.36 

Multivariable Models 

Sex (ref=Male) -0.20 0.08 0.021* -0.21 0.10 0.038*  

BPD (ref=No BPD) -0.24 0.10 0.016* -0.24 0.12 0.039* 

Table 3-4: Linear regression models demonstrating associations between EBC metabolites of interest and early- and current-life factors 

Univariable regression models where p<0.1 included in multivariable model. Multivariable models not created where only one variable has a p<0.1 
in univariable models. 
IUGR: Intrauterine growth restriction, BPD: Bronchopulmonary Dysplasia, BMI: Body Mass Index, FEV1: Forced Expiratory Volume in 1 second, FVC: 
Forced Vital Capacity, EBC: Exhaled Breath Condensate 
*denotes p<0.05 
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Figure 3-2: Graphic representation of glutathione metabolism and the urea cycle, highlighting 
metabolites detected in this analysis and those with a significantly reduced concentration in 
the BPD group.  

LOOH: Lipid hydroperoxide; LOH: Lipid hydroxide; ROS: Reactive oxygen species; NADP: 
Nicotinamide adenine dinucleotide phosphate; NADPH: nicotinamide adenine dinucleotide 
phosphate hydrogen; NADH: nicotinamide adenine dinucleotide + hydrogen. 
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Figure 3-3: Volcano plot showing significantly altered metabolites between the mild and 
moderate/severe BPD groups. 

Vertical line represents a Log2FC of 0. Horizontal line is equivalent to p-value 0.05. Size of 
point is relative to number of samples in which metabolite was detected. Metabolite name 
given if p<0.05. BPD: Bronchopulmonary dysplasia; Log2FC: Log2 fold-change between 
groups.  
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Figure 3-4: Violin Plots of Significantly Altered Metabolites of interest detected in the EBC. 

Black dot and bars give mean and standard error of the mean (SEM). Bars give p-values from 

ANOVA with post-hoc Bonferroni correction for between group comparisons 
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Figure 3-4 shows results for ANVOA with post-hoc Bonferroni comparisons between BPD, No 

BPD and Term groups for alanine, pyroglutamic acid, ornithine and urea. All four metabolites 

showed a consistent trend of the lowest quantities being present in the BPD group, with both 

alanine and ornithine having a significantly lower quantity in the BPD group when compared 

to both the No BPD (p=<0.001, p=0.016 respectively) and Term (0.0013, 0.034 respectively) 

groups. Pyroglutamic acid and urea had a significantly lower quantity in the BPD group 

compared to No BPD (0.031, 0.0031 respectively), with a near-significant difference when 

compared to the Term group (0.087, 0.062 respectively). 

 

3.3.4 Comparison of EBC metabolome before and after inhaled therapies 

Paired pre- and post-treatment EBC samples were available for 40 RCT participants, 14 in both 

the ICS and ICS/LABA groups and 12 in the placebo group. Significantly altered metabolites 

within each treatment group are detailed in Figure 3-5 and Table 3-5. Four metabolites were 

significantly altered by ICS treatment, three of which (3-hydroxypropionic acid, caprylic acid 

and caprylic acid) were detected in every sample analysed, and all three were significantly 

higher quantity in the pre-treatment samples.  

Six metabolites were significantly altered by ICS/LABA treatment, five of which (butane-2,3-

diol, 1-monostearin, tyrosine, hydroxycarbamate and 2-hydroxypyrazinyl-2-propenoic 

acidethylester) were detected in every sample analysed. Butane-2,3-diol, 1-monostearin and 

tyrosine were all significantly higher quantity in the pre-treatment samples, with 

hydroxycarbamate and 2-hydroxypyrazinyl-2-propenoic acidethylester having a significantly 

lower quantity pre-treatment. Four metabolites were significantly altered in the placebo 

group, with only one metabolite, 2-ketoisocaproic acid, being detected in every sample 

analysed and having a significantly lower quantity pre-treatment. MSEA did not reveal any 

significantly enriched metabolic processes in any of the three treatment groups.  
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Figure 3-5: Volcano plots comparing EBC metabolome before to after treatment in the three RCT inhaler groups. 

Vertical line represents a Log2FC of 0. Horizontal line is equivalent to p-value 0.05. Size of point is relative to number of samples in which metabolite was 
detected. Metabolite name given if p<0.05. ICS: Inhaled corticosteroid. LABA: Long-acting β2 agonist; Log2FC: Log2 fold-change between groups 
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Table 3-5: Significantly altered EBC metabolites in the three RCT treatment groups.  

m/z: mass-to-charge ratio. Log2FC: Log2 fold change. p values represent between group comparisons using a paired samples t-test.

Metabolite Retention Index m/z PubChem ID % of participants Fold Change log2FC p value 

Inhaled Corticosteroid (n=14) 

3-hydroxypropionic acid 269265 177 68152 100 1.13 0.17 0.006 

ribitol 575497 217 827 57.1 0.32 -1.65 0.027 

caprylic acid 343457 201 379 100 1.07 0.10 0.032 

digitoxose 521798 117 94168 100 1.29 0.37 0.046 

Inhaled Corticosteroid/Long-Acting β2-agonist (n=14) 

butane-2,3-diol 205778 117 262 100 1.83 0.87 0.003 

1-monostearin 959214 203 24699 100 1.25 0.32 0.005 

tyrosine 671252 218 6057 100 1.58 0.66 0.012 

hydroxycarbamate 325318 278 16639161 100 0.82 -0.28 0.035 

cholesterol 1078536 129 5997 64.3 1.41 0.49 0.038 

2-hydroxypyrazinyl-2-propenoic acidethylester 493127 121 5371086 100 0.83 -0.26 0.041 

Placebo (n=12) 

2-ketoisocaproic acid 290473 89 70 100 0.49 -1.04 0.014 

ribitol 575497 217 827 58.3 0.19 -2.41 0.018 

UDP-glucuronic acid 585473 217 17473 58.3 0.37 -1.42 0.026 

azelaic acid 610551 317 19347555 91.7 1.66 0.73 0.029 
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3.4 Discussion: 

In this exploratory analysis of the EBC metabolome of preterm-born school-aged children, I 

have demonstrated significant differences in several metabolites from those with a history of 

BPD. On comparison to both preterm-born and term-born controls, levels of alanine, 

pyroglutamic acid, serine, urea, and valine were all significantly lower in the BPD group. These 

five metabolites were detected in >98% of samples. Alanine and pyroglutamic acid were 

significantly associated with an alteration of glutathione metabolism. Alanine and urea were 

significantly associated with an alteration in the urea cycle (with ornithine also being 

associated when compared to preterm-born controls). Linear regression analyses 

demonstrated that alanine, pyroglutamic acid, ornithine and urea remained significantly 

associated with BPD in the preterm-born group when other participant characteristics were 

also considered. However, linear regression analyses did not show a significant association 

between any of these metabolites and current lung function parameters. Whilst there were 

changes in metabolite levels in the three RCT treatment groups, with the ICS/LABA group 

showing the largest number of altered metabolites, these did not map to any significantly 

altered metabolic processes.  

 

Pyroglutamic acid, also known as 5-oxoproline, is an intermediary in glutathione synthesis 

and recycling. Glutathione is a potent antioxidant, and under conditions of oxidative stress, 

where glutathione is consumed, pyroglutamic acid levels also become low (Kumar and 

Bachhawat, 2012). Alanine concentration also appears to be reduced in metabolomic studies 

of murine models of pulmonary inflammation, along with pyroglutamic acid (Ambruso et al., 

2021). Alanine is a non-essential amino acid that is a constituent of nearly all proteins. Whilst 

it is not a direct precursor to glutathione, alanine can be converted to pyruvate, a key 

intermediate of glucose metabolism (Brosnan, 2003). 
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Glucose metabolism is an important source of reducing substances, such as NADPH, which 

are essential in glutathione synthesis (Wu et al., 2004, Meister and Anderson, 1983). Alanine 

can also be converted to other amino acids, such as serine, which is a precursor to glycine 

(Meister and Anderson, 1983). Glycine is a key, rate-limiting amino acid for glutathione 

synthesis. Glutathione consumption increases metabolism of glycine, as well as inflammatory 

conditions reducing glycine availability (Wu et al., 2004, Meister and Anderson, 1983). I noted 

a significant decrease in serine in our BPD group when compared with the No BPD group, as 

well as a significant reduction in glycine when compared to the Term group. Taken together, 

the metabolomic differences observed in the BPD group suggest decreased glutathione 

levels, and thereby suggesting persistent oxidative stress, in the airways of preterm-born 

children with a history of BPD. 

 

Glutathione has previously been shown to provide first-line defense against pulmonary 

oxidative injury. Adult studies have shown that glutathione concentrations in the airway’s ELF 

are many times greater than that seen in plasma (Cantin et al., 1987), and animal models 

have shown that pulmonary glutathione depletion enhances oxidant toxicity (Deneke et al., 

1985). In the paediatric population, alterations of glutathione metabolism have been linked 

with respiratory pathology. A study of ELF in children with severe asthma reported 

significantly decreased concentration of glutathione, with evidence of glutathione 

consumption by oxidative stress, further supported by increased levels of hydrogen peroxide 

(H2O2), a potent oxidant. However, there was no significant association between markers of 

impaired glutathione metabolism and FEV1 (Fitzpatrick et al., 2009). Impaired glutathione 

metabolism has also been associated with impaired macrophage function in the airways of 

children with severe asthma, with glutathione supplementation restoring macrophage 
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function (Fitzpatrick et al., 2011). Reduced concentration of glutathione secondary to 

oxidative stress has also been described in bronchoalveolar lavage fluid (BAL) obtained from 

children with CF, with those experiencing an infective exacerbation having a further 

decreased concentration (Kettle et al., 2014).  

 

Previous mechanistic studies of BPD in later childhood and adulthood have implicated 

cytotoxic CD8+ T-lymphocytes (Um-Bergström et al., 2022), elevated neutrophils and pro-

inflammatory cytokines (Teig et al., 2012), and thickened basement membranes and airway 

remodeling (Galderisi et al., 2019). However, to my knowledge, this is the first time the EBC 

metabolome of preterm-born children with a history of BPD has been studied. Previous 

studies in preterm infants in the neonatal period have linked increases in pulmonary oxidative 

stress and glutathione metabolism to the development of BPD. In a small study of BAL from 

preterm infants born at <34 week’s gestation, lower glutathione levels on the first day of life 

were associated with increased development of BPD at 36 weeks’ gestation (Grigg et al., 

1993). This study was performed before the routine use of surfactant replacement therapy. 

A further study in the post-surfactant era of infants born at <32 weeks’ gestation reported 

lower BAL glutathione levels in the first 24 hours of life in those who later developed BPD, 

lower glutathione levels in those who had delayed surfactant administration, and higher 

concentrations of malondialdehyde, suggestive of oxidative damage, in the BPD group 

(Collard et al., 2004). Animal models have further supported the role of glutathione in lung 

injury, with glutathione deficient mice having impaired tolerance of oxidative stress, and 

abnormal early lung development (Robbins et al., 2021). Whilst glutathione metabolism has 

been implicated in our study by MSEA, we did not detect glutathione in either its reduced or 

oxidized form. However, glutathione has a short half-life of approximately ten minutes, which 

can make it’s detection challenging (Hong et al., 2005). One previous study has examined 
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oxidative stress in the airways of preterm-born adolescents, measuring 8-isoprostane (a 

product of lipid peroxidation in the presence of oxygen free radicals) in EBC, both with and 

without BPD. These individuals, born during the peri-surfactant era, demonstrated evidence 

of persistent airway oxidative stress, with increased 8-isoprostane when compared to term-

born controls (Filippone et al., 2012). However, in this study no significant difference was 

observed for 8-isoprostane between BPD and No BPD groups, and no correlation was seen 

between 8-isoprostane levels and spirometry values.  

 

Previous metabolomic studies of BPD, with similar analytical techniques to our study, have 

focused on preterm-born infants in the neonatal period. A study of tracheal aspirates taken 

from infants born <30 weeks’ gestation using metabolomic techniques reported that 19 

metabolites discriminated infants who subsequently did or did not develop BPD (Piersigilli et 

al., 2019), including alterations in amino acids (citrulline and symmetric dimehtlyarginine) 

involved in nitric oxide metabolism, as well as an increase in serine. The authors also observed 

increased acylcarnitines which are released after β-oxidation of fatty acids during oxidative 

stress. In contrast, another metabolomic study of tracheal aspirates from infants ≤28 weeks’ 

gestation noted that early decreases in fatty-acid metabolism, particularly the fatty acid β-

oxidation pathway, may predispose infants to developing BPD (Lal et al., 2018). A nuclear 

magnetic resonance metabolomics study of urine from 18 infants born <28 weeks’ gestation 

showed decreased glycine levels in those who subsequently developed BPD, similarly to this 

analysis, also suggesting impaired glutathione metabolism. The authors also found increased 

alanine in the BPD group, which they attributed to increased cellular metabolism demands, 

due to an inflammatory process (Pintus et al., 2018). These authors studied infants in the first 

week of life, where the pathophysiology is respiratory distress syndrome and pulmonary 
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surfactant deficiency, as opposed to the chronic inflammation seen in BPD, potentially 

explaining the different alanine levels I observed in this analysis. 

 

I observed significant decreases in alanine, ornithine, and urea in the BPD group, with MSEA 

linking these changes to a significant decrease in urea cycle metabolism. The urea cycle 

removes ammonia, produced during protein catabolism, preventing cellular toxicity. Animal 

models have demonstrated increased ammonia levels lead to intracellular production of 

reactive oxygen species, induction of cellular apoptosis in bovine epithelial cells, increased 

inflammatory cytokines and repression of DNA repair-related genes in porcine Type II alveolar 

epithelial cells (Li et al., 2023, Wang et al., 2018). I also observed a significant reduction in 

histidine in our BPD group when compared to both the No BPD and Term groups. Histidine, 

an essential amino acid, is metabolised to histamine and can affect the contractility of 

bronchial smooth muscle and cause airway oedema (Yamauchi and Ogasawara, 2019). 

Histidine itself has also been reported to have antioxidant properties, being a scavenger of 

free hydroxyl and singlet oxygen radicals and inhibiting fatty-acid oxidation during in vitro 

studies (Wade and Tucker, 1998). Lower quantities of urea and ornithine in the BPD group 

were also significantly linked to arginine and proline metabolism. Arginine is metabolised into 

either nitric oxide by nitric oxide synthetase (NOS) or into urea and ornithine by arginase. 

Increased arginase activity is thought to play a role in childhood asthma pathogenesis, with a 

consequent increase in proline production leading to collagen deposition(Salam et al., 2009). 

Whilst elevated FENO is used clinically as a biomarker of asthma  (Menzies-Gow et al., 2020), 

methylated products of arginine can inhibit NOS activity and contribute to airway oxidative 

stress in specific phenotypes of asthma associated with obesity (Holguin, 2013). The reduced 

quantities of metabolites linked to protection from reactive oxidant species in those with BPD 

implied by my results suggest a persistent deficit since the neonatal period, especially for 
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glutathione, however, this is speculative. I did not observe any associations between 

metabolic processes involved with oxidative stress and current lung function. This may be due 

to other processes such as functional and structural abnormalities also significantly 

contributing to the development of PLD as I have published previously and discussed 

elsewhere in this thesis (Course et al., 2023b, Course et al., 2023c) (Chapters 2 and 4). I also 

did not observe a consistent pattern of metabolite differences in the three RCT treatment 

groups of preterm-born children with low lung function. Despite the ICS/LABA group showing 

the largest number of altered metabolites, as well as this group having a significant 

improvement in lung function following treatment (as described in section 1.6.3.4), MSEA 

was unable to implicate a biological process. Butane-2,3-diol levels were elevated pre-

treatment in the ICS/LABA group, and this metabolite has been associated with accentuated 

pulmonary inflammation in a small study of a rodent model of CF with pseudomonas 

colonization (Nguyen et al., 2016). How this metabolite relates to PLD pathogenesis and 

treatment requires further evaluation. One previous study using superoxide dismutase did 

not decrease rates of BPD in the neonatal period but was associated with decreased 

respiratory symptoms at one year of age (Suresh et al., 2001). Whether such treatments are 

beneficial for PLD will require further study. In addition, longitudinal metabolome analysis 

beginning in the neonatal period or infancy may reveal emerging mechanisms related to lung 

function decline. 

 

3.4.1 Strengths and Limitations 

This analysis represents one of the largest metabolomic studies of a clinical cohort. The 

significantly altered metabolites of interest in the BPD group were detected in all or nearly all 

samples analyzed, ensuring robust results. Using an untargeted metabolomics approach, I 

have been able to identify patterns of changes in multiple metabolites which I have been able 
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to link with biological processes. I have studied a cohort of children who had experienced 

contemporary standards of neonatal care, and by using EBC, I have been able to directly 

sample ELF, which is representative of airway biochemistry in a simple and well-tolerated 

manner. Although EBC volumes collected varied between the study groups, linear regression 

analyses did not reveal a significant association between metabolite quantities and EBC 

volume. As the overall metabolite content of EBC was low, as has been previously reported 

(Aksenov et al., 2017), there may have been metabolites present that were below the limit of 

detection for the mass spectrometry method used. I combined the mild and moderate/severe 

BPD groups as few differences were noted for metabolites between these two groups thus it 

was reasonable to combine these two groups to improve statistical power to detect 

biologically relevant differences. Dietary intake has recently been shown to modulate the 

breath metabolome (Neyrinck et al., 2022), however, I had insufficient nutritional data to 

adjust for this potential confounder. Similarly, whilst data was initially collected on antenatal 

and household smoking, overall rates in the preterm-born cohort were low suggesting high 

recall bias, and therefore were not included in my analyses. Whilst a reference metabolite 

would be useful to normalize metabolite concentrations, as in urine metabolomics (Li et al., 

2022), this is currently not possible with EBC samples (Horvath et al., 2017). Ideally, these 

findings should be replicated using a validation cohort, however this is limited by the number 

of large contemporaneous cohorts available to study. 

 

3.5 Conclusions 

In conclusion, in this chapter, I have presented results from the exploratory mass 

spectrometry-based analysis of the EBC metabolome, revealing significant reductions in 

metabolites related to antioxidant pathways in the airways of preterm-born school-aged 

children with a history of BPD, many years after the initial pulmonary insult. However, these 
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changes did not appear to be associated with current lung function, nor show any alteration 

following inhaled therapies. 
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4 Proteomic Analysis of Urine 

4.1 Introduction: 

Historically, efforts to understand the mechanisms underlying PLD focussed on those with 

BPD, with evidence of smooth muscle extension into the distal airways in post-mortem 

samples from infants (Bush et al., 1990), and peri-bronchial fibrosis and CD8+ T-lymphocyte 

epithelial infiltrate in adolescent (Galderisi et al., 2019) and adult (Um-Bergström et al., 2022) 

survivors of BPD. However, as previously discussed in sections 1.4.3 and 1.4.4, it is increasingly 

recognised that many preterm-born survivors with BPD do not develop later lung disease, 

and infants born at later gestations (33-34 weeks), who are at low-risk for BPD, still develop 

PLD (Hart et al., 2022). Work by other authors on the RHiNO cohort (as described in section 

1.6.3) has demonstrated a range of PLD phenotypes, with  obstructive (both fixed and 

reversible), preserved ratio-impaired spirometry (PRISm) and dysanaptic low lung function 

patterns (Cousins et al., 2023). There is evidence that those individuals with BPD risk 

developing an obstructive PLD phenotype in childhood (Cousins et al., 2023), and there is also 

increasing evidence that PLD is likely to progress to an earlier onset of chronic obstructive 

pulmonary disease (COPD) in adulthood (Bolton et al., 2015, Gibbons et al., 2023). PRISm 

phenotypes have been associated with an increased risk of developing COPD, cardiovascular 

disease, and all-cause mortality in middle- and old-aged adult populations (Wan et al., 2021, 

Higbee et al., 2022), but little is known about this phenotype in paediatric populations. 

 

As discussed in section 1.6.3.4, a proportion of those with PLD will respond to inhaled 

therapies (Goulden et al., 2021), however, a clearer understanding of the biological pathways 

underlying these PLD-associated phenotypes will aid their identification and the ability to 

target therapeutic interventions. 
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4.1.1 Urine Proteomics in Respiratory Disease 

Urine proteomics is emerging as a tool for understanding respiratory diseases and identifying 

biomarkers (Martelo-Vidal et al., 2022) with the advantage that it can be sampled easily and 

non-invasively. A study of the urinary proteome in 42 neonates born extremely preterm (<29 

week’s gestation) identified 94 proteins significantly altered in those who developed BPD, 

with biological process mapping implicating a reduction in myeloid leukocyte activation and 

neutrophil degranulation (Ahmed et al., 2022). A label-free proteomic study found distinct 

urinary proteome compositions for preterm infants with infectious (congenital pneumonia) 

and non-infectious (respiratory distress syndrome, transient tachypnoea of the newborn) 

respiratory pathologies (Starodubtseva et al., 2016), with a majority of these proteins being 

linked to inflammatory processes.   

Urine lacks the same homeostatic mechanisms as blood, meaning that systemic changes can 

accumulate and the urinary proteome may show alterations prior to clinical manifestations, 

serum proteome changes or histopathological changes to the lung tissue, reflecting an earlier 

stage of disease (Wu and Gao, 2015). This makes urine analysis particularly attractive when 

studying the RHiNO cohort, as these children are likely at a pre-symptomatic stage of 

impaired lung function. 

 

4.1.2 Aims 

I, therefore, performed an exploratory analysis of the urinary proteome from the RHiNO 

cohort of preterm-born, school-aged children, with term-born matched controls, to elucidate 

the biological mechanisms underlying PLD phenotypes.  
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4.2 Methods: 

4.2.1 Participants 

This study was conducted on a cohort of children recruited to the Respiratory Health 

Outcomes in Neonates study (RHiNO, EudraCT: 2015-003712-20) which has been described 

previously in this thesis (section 1.6) and in the published literature (Hart et al., 2022, Goulden 

et al., 2021, Cousins et al., 2022, Cousins et al., 2023). Briefly, children from a previous study 

(Edwards et al., 2016) were supplemented with additional preterm-born children sourced 

from NHS Wales healthcare records and sent a respiratory and neurodevelopmental 

questionnaire if they were born ≤34 or ≥37 weeks’ gestation and were aged 7-12 years. 

Children with significant congenital malformations, cardiopulmonary or neuromuscular 

disease were excluded. Ethical approval was obtained from the South-West Bristol Research 

Ethics Committee (15/SW/0289). Parents gave informed written consent and children 

provided assent. Recruitment took place prospectively between November 2016 and 

September 2019. 

 

4.2.2 Lung function assessment 

Responders underwent spirometry (Microloop, Care Fusion, UK), performed to ATS/ERS 

guidelines (Miller et al., 2005) and normalised using GLI references (Quanjer et al., 2012) by 

trained research nurses. Any respiratory medications were withheld prior to their assessment 

(short- and long-acting β2-agonists for 8- and 48-hours respectively; inhaled corticosteroids 

for 24 hours; and leukotriene receptor antagonists for 48 hours) and children were free of 

respiratory infections for at least three weeks prior to testing. Low lung function in preterm-

born children (PLD) was defined as FEV1 less than the lower limit of normal (LLN) as per GLI 

references (Quanjer et al., 2012). Those with PLD were further categorised according to the 

pattern of their respiratory impairment (as previously described in the RHiNO cohort in 

section 1.6.2.3 (Cousins et al., 2023)); Prematurity-associated Preserved Ratio of Impaired 
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Spirometry (pPRISm) defined as FEV1<LLN and FEV1/FVC≥LLN, and Prematurity-associated 

Obstructive Lung Disease (POLD) defined as an FEV1<LLN with an FEV1/FVC<LLN. Preterm-

born control (PTc) and term-born children had FEV1≥LLN.  

 

BPD was defined as oxygen-dependency of 28-days or greater for those born <32 weeks’ 

gestation and at 56 days of age for those born ≥32 weeks’ gestation (Ehrenkranz et al., 2005). 

Intrauterine growth restriction (IUGR) defined as birthweight <10th percentile adjusted for sex 

and gestation (LMSgrowth v2.77, Medical Research Council, UK). Neonatal history was 

corroborated with medical records.  

 

4.2.3 Urine sample collection and analysis 

Urine samples were obtained at the time of spirometry by trained research nurses (Gill Willets 

and Louise Yendell, members of the RHiNO study team) during the home visit, and by Dr 

Michael Cousins and Dr Kylie Hart during the clinical research facility visit. Samples were 

immediately placed on ice, and aliquoted and stored at -80°C as soon as possible on the day 

of collection until analysis.  

 

4.2.3.1 TMT Labelling 

I arranged for analysis of the urine samples at the University of Bristol Proteomics Facility. 

190μl of urine was digested with trypsin (1.25µg trypsin; 37°C, overnight), labelled with 

Tandem Mass Tag (TMT) eleven plex reagents according to the manufacturer’s protocol 

(Thermo Fisher Scientific, Loughborough, UK) and the labelled samples pooled.  The pooled 

sample was desalted using a SepPak cartridge according to the manufacturer’s instructions 

(Waters, Milford, Massachusetts, USA). Eluate from the SepPak cartridge was evaporated to 

dryness and resuspended in 1% formic acid prior to analysis by nano-LC MSMS using an 

Orbitrap Fusion Lumos mass spectrometer (Thermo Scientific). 
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4.2.3.2 Nano-LC Mass Spectrometry 

The TMT-labelled pool was fractionated using an Ultimate 3000 nano-LC system in line with 

an Orbitrap Fusion Lumos mass spectrometer (Thermo Scientific).  In brief, peptides in 1% 

(vol/vol) formic acid were injected onto an Acclaim PepMap C18 nano-trap column (Thermo 

Scientific). After washing with 0.5% (vol/vol) acetonitrile 0.1% (vol/vol) formic acid peptides 

were resolved on a 250 mm × 75 μm Acclaim PepMap C18 reverse phase analytical column 

(Thermo Scientific) over a 150 min organic gradient, using 7  gradient segments (1-6% solvent 

B over 1min, 6-15% B over 58min, 15-32% B over 58min, 32-40% B over 5min, 40-90% B over 

1min, held at 90% B for 6min and then reduced to 1% B over 1min) with a flow rate of 300 nl 

min−1.  The TMT-labelled pool underwent a further fractionation to try and maximise peptide 

yield. The second fractionation used the above methodology again with a different gradient 

protocol: 6 gradient segments (1-6% solvent B over 1min, 6-25% B over 118min, 25-40%B 

over 3min, 40-90%B over 1min, held at 90%B for 6min and then reduced to 1%B over 1min.) 

again with a flow rate of 300 nl min−1.  Solvent A was 0.1% formic acid, and Solvent B was 

aqueous 80% acetonitrile in 0.1% formic acid for both fractionation processes. Peptides were 

ionized by nano-electrospray ionization at 2.0kV using a stainless-steel emitter with an 

internal diameter of 30μm (Thermo Scientific) and a capillary temperature of 300°C.  

 

All spectra were acquired using an Orbitrap Fusion Lumos mass spectrometer controlled by 

Xcalibur 3.0 software (Thermo Scientific) and operated in data-dependent acquisition mode 

using an SPS-MS3 workflow.  FTMS1 spectra were collected at a resolution of 120,000, with 

an automatic gain control (AGC) target of 200,000 and a maximum injection time of 50ms. 

Precursors were filtered with an intensity threshold of 5,000, according to charge state (to 

include charge states 2-7) and with monoisotopic peak determination set to Peptide. 
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Previously interrogated precursors were excluded using a dynamic window (60s±10ppm). The 

MS2 precursors were isolated with a quadrupole isolation window of 0.7m/z. ITMS2 spectra 

were collected with an AGC target of 10,000, maximum injection time of 70ms and CID 

collision energy of 35%. 

 

For FTMS3 analysis, the Orbitrap was operated at 50,000 resolution with an AGC target of 

50,000 and a maximum injection time of 105ms.  Precursors were fragmented by high energy 

collision dissociation (HCD) at a normalised collision energy of 60% to ensure maximal TMT 

reporter ion yield. Synchronous Precursor Selection (SPS) was enabled to include up to 5 MS2 

fragment ions in the FTMS3 scan. All mass spectrometry runs were performed consecutively 

on the mass spectrometer with blank runs in between to prevent carry over from one 

experiment to the next. 

 

4.2.3.3 Data Analysis 

The raw data files were processed and proteins quantified using Proteome Discoverer 

software v2.1 (Thermo Scientific) and searched against the UniProt Human database 

(downloaded October 2019: 150786 entries) using the SEQUEST HT algorithm by the 

University of Bristol Proteomics Facility. Peptide precursor mass tolerance was set at 10ppm, 

and MS/MS tolerance was set at 0.6Da. Search criteria included oxidation of methionine 

(+15.995Da), acetylation of the protein N-terminus (+42.011Da) and Methionine loss plus 

acetylation of the protein N-terminus (-89.03Da) as variable modifications and 

carbamidomethylation of cysteine (+57.021Da) and the addition of the TMT mass tag 

(+229.163Da) to peptide N-termini and lysine as fixed modifications. Searches were 

performed with full tryptic digestion and a maximum of 2 missed cleavages were allowed. 
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The reverse database search option was enabled, and all data was filtered to satisfy false 

discovery rate (FDR) of 5%. 

 

4.2.4 Data Normalisation: 

An equal volume of urine (190µl) was analysed from each subject. I investigated whether 

there was variation in detected total protein abundance by the mass spectrometer within the 

samples. I used the summed total protein abundance detected for each sample, after scaling 

to pool samples from each mass spectrometer run, firstly by examining the range of total 

abundances detected in every sample (Figure 4-1) and then as to whether there were 

differences in total protein abundances detected based on any of the key clinical groups being 

studied (Figure 4-2). As can be seen Figure 4-1 panel A, there was a wide variation in total 

median protein abundance between samples with an 8.36 log2 fold change between the 

sample with lowest compared to the sample with the highest detected median protein 

abundance (range -0.15, 8.21). There was a statistically significant lower abundance of 

proteins as detected by the mass spectrometer in the preterm-born group compared to the 

term-born group, but not within the major preterm phenotypes (Figure 4-2). Additionally, a 

test analysis of the initial proteomic dataset also showed a strong skewing of log2-fold changes 

between relative individual protein abundances towards the term-born group (Figure 4-3 

panel A). This may be potentially due to an intrinsic difference in kidney function between 

preterm- and term-born children, however, previous studies of preterm-born school-aged 

children and adults have not found any consistent significant difference in urine protein 

excretion when compared to term-born individuals (Rakow et al., 2008, Kistner et al., 2000). 

 

As this finding is also plausibly related to a dilutional effect on the urine from differing 

hydration status of each participant at the time of sampling, I investigated potential methods 
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to normalise the urine sample data to correct for any dilutional effect and differing protein 

load analysed by the mass spectrometer. This is a key consideration, as the TMT-labelled 

proteomic analysis performed is based upon relative abundance of individual proteins 

detected between samples, therefore, any dilutional effect resulting in differing total sample 

protein quantities being loaded into the mass spectrometer between samples would 

potentially lead to false positive/negative results. 

 

4.2.4.1 Extrinsic Factor Normalisation Methods: 

Urine samples from RHiNO trial participants had also undergone biochemistry analysis at the 

University Hospital of Wales (UHW) clinical biochemistry laboratories. I investigated whether 

total urine protein (g/L) or urine creatinine (mmol/L) could be used as a normalisation factor 

for the urine proteomics dataset. The method used to determine total protein content 

(turbidimetric method using benzethonium chloride (Iwata and Nishikaze, 1979)) returned 

results which were too imprecise to use as a normalisation factor. As overall protein quantities 

were relatively low, and no subjects had gross proteinuria, the total urine protein results 

returned in g/L became almost a categorical variable (Figure 4-4 panel A) which would be 

unsuitable for use as a normalisation factor in the urine proteomics dataset, which had been 

analysed using mass spectrometry, a far more sensitive method. Next, I investigated whether 

urinary creatinine could be used as a normalization factor.  

 

Urinary creatinine is commonly used clinically in renal pathology to quantify severity of 

disease and create corrected values for total protein and electrolyte excretion. Therefore, 

urinary creatinine appeared the most sensible correction factor to normalise the dataset. 

However, there was a wide range of urine creatinine results (0.44 - 24.0 mmol/L), and in 

addition there were significant (p<0.05) or near-significant (p<0.1) differences between the 
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major clinical groups (Figure 4-5). When applied as a normalization factor, it increased the 

range of median log2 abundances observed between samples (Log2FC 11.78, range -2.91, 

8.87) (Figure 4-1 panel B), markedly reduced the number of significant protein differences 

between groups (Figure 4-3 panel B), and, therefore, was an unsuitable extrinsic 

normalisation factor. 

 

After discussions with the proteomics facility at University of Bristol, I was informed that they 

use a Bradford protein assay (Bradford, 1976) to quantify the total protein content of their 

samples. The Bradford assay is more sensitive than the turbidimetric method used by the 

hospital clinical biochemistry laboratory, reporting results for protein content in μg/μL. I 

therefore arranged for all 304 urine samples to have their total protein content analysed by 

Bradford assay at the proteomics facility at University of Bristol. The Bradford assay results 

gave a greater degree of discrimination between samples (Figure 4-4 panel B), which 

demonstrated neither a strong nor significant correlation with the clinical biochemistry lab 

total protein measurements (Figure 4-4 panel C). The Bradford assay total urine protein did 

not appear to be significantly different between the major clinical groupings (Figure 4-6). 

However, when the Bradford total protein assay results were used as a normalisation factor, 

there remained a large variation in observed protein abundances between the samples 

(Figure 4-1 panel C), with all relative abundances markedly elevated with a greater range 

(Log2FC 10.12, range 4.17, 14.29), and a persistent skewing of relative individual protein 

abundances (Figure 4-3 panel C). 
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Figure 4-1: Boxplot of all Log2 protein abundances for each urine sample analysed with 
various normalisation methods applied.  

Samples ordered by median protein abundance. (A) No normalisation. (B) Normalised to 
urine creatinine. (C) Normalised to total protein (Bradford assay). 
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Figure 4-2: Violin plots demonstrating log2 total protein abundance as detected by mass spectrometer between major clinical groupings.  

Bar's give p-values by Welch's t-test between group comparisons. 
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Figure 4-3: Test Volcano Plots comparing Preterm and Term groups by different normalisation methods.  

(A) Log2; (B) Normalised to urine creatinine; (C) Normalised to total protein by Bradford assay;. Protiens with a significant (p<0.05) log2 fold change 
(Log2FC) between groups highlighted in red. Size of point represents replicate number (number of samples in which the protein was detected). 
Vertical line represents a Log2FC of 0. Horizontal line represents p<0.05
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Figure 4-4: Scatterplots showing (A) Total urine protein content by clinical biochemistry assay, 
(B) Total urine protein content by Bradford Assay and (C) Relationship between two 
measurement methods. 

 Blue line represents a linear model regression line, with grey shaded area representing 95% 
confidence interval. R2 and p-value for regression line given. 
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Figure 4-5: Violin plots demonstrating differences in urine creatinine between major clinical 
groupings. 

Bar's give p-values by Welch's t-test between group comparisons.  

  

Figure 4-6: Violin plots demonstrating total urine protein content as analysed by Bradford 
assay between major clinical groupings. 

Bar's give p-values by Welch's t-test between group comparisons.
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4.2.4.2 Intrinsic Factor Normalization Methods 

Owing to the persistent difficulties in using an extrinsic factor to normalise the dataset, I 

searched the published literature for methods utilised in other experiments for overcoming 

dilution/protein load differences in mass spectrometry-based proteomic studies. An 

untargeted, unlabeled proteomic experiment examining the urine of preterm-born infants at 

risk of BPD had utilised a similar methodology to my experiment, whereby an equal volume 

of urine, with an unknown protein content was loaded into the mass spectrometer (Ahmed 

et al., 2022). The authors of this study had performed a normalisation process of their data 

to account for differing protein loads using a central tendency method, normalising to the 

median of the total protein abundance of all of their samples, as described by Callister et al. 

(Callister et al., 2006). 

 

This technique appeared promising and after further discussions with Dr Phil Lewis, 

Bioinformatician at the Proteomics Facility at University of Bristol, I spoke with Dr Michaela 

Scigelova, who is an LC/MS application specialist and works with the Proteome Discoverer 

software at Thermo Fischer Scientific, seeking her advice regarding normalisation of a labelled 

proteomics dataset. She agreed that a median scale normalisation was an appropriate 

approach to use, however, rather than using the median of the whole dataset, to use the 

median of each sample’s respective mass spectrometer (MS) run, as this would better 

account for inter-run technical variations. Samples could then be scaled to each run’s pooled 

sample to allow comparison of samples between mass spectrometry runs. This is the same 

method that the internal normalisation method in Proteome Discoverer software uses for 

smaller differences in protein load between samples/runs. Dr Scieglova advised that accurate 

protein quantitation with Proteome Discoverer v2.1 software became less reliable if there 

were large differences in total protein abundance between samples, and within her team at 
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Thermo Fischer Scientific, they would have reservations interpreting results where there was 

a three-to-four-fold difference in abundance between them. I, therefore, calculated the 

median protein abundances for each MS run, and then normalised the detected protein 

abundance in each sample to the median protein abundance of the sample’s respective MS 

run. I then excluded samples where the total protein abundance was either two-fold higher 

or lower than the median MS run protein abundance. Of the 304 samples analysed, 75 were 

excluded as outliers using this process (Figure 4-7). Following this, all samples were scaled by 

their respective MS runs pool samples. The results of this normalisation process are shown 

in Figure 4-8 and Figure 4-9. This process markedly improved the range of median protein 

abundances between samples (Log2FC 6.67, Range -1.14, 13.6). A test analysis comparing 

preterm and term groups demonstrated a more even distribution of significant protein 

differences (Figure 4-10). 

 

4.2.5 Statistical analysis 

Baseline population characteristics were compared using Chi-squared or t-test or as 

appropriate. Replicate numbers (number of samples in which a particular protein was 

detected) were calculated. Scaled protein abundances were log2-transformed and fold 

changes (log2FC) between groups were compared using Welch’s t-test. I performed all 

analyses were performed using R v4.0.4(R Core Team, 2021), using R packages “stringr”, 

“dplyr”, “ggplot2”, “ggpubr”, “pROC” and “reportROC”. Gene name is used synonymously 

with protein name throughout. Functional enrichment analysis (identifying changes in classes 

of proteins present) was performed with Webgestalt (Liao et al., 2019). Ingenuity Pathways 

Analysis (IPA, Qiagen®, Germany) software was used to identify functional relationships 

between significantly different protein abundances between groups, highlighting altered 

biological processes. I generated Receiver Operator Characteristic (ROC) curves for 
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biologically related proteins, with high replicate numbers, between study groups (identified 

by IPA) in R using the “pROC” and “reportROC” packages. By doing this I aimed to assess 

potential biomarker performance (assessed by area under the curve (AUC)), using two linear 

models, one based on the whole cohort and one using a leave-one-out cross validation 

(LOOCV) method. I also analysed these proteins of interest using univariable linear regression 

models to ascertain associations between these proteins and other early and current life 

factors. Associations with a p-value < 0.1 were combined into a multivariable model to 

examine the overall combined influence of each association. As in Chapters 2 and 3, owing to 

the exploratory nature of the analysis, a p-value of <0.05 was considered significant. 

 

4.3 Results: 

4.3.1 Participants 

Urine samples were analysed from 271 RHiNO study participants with valid spirometry. 64 

(23.6%) samples were excluded as outliers, as described above in section 4.2.4.2. 

Demographic details for those participants included in the analysis (n=207) are given in Table 

4-1. Preterm-born children were significantly older than the term-born children (mean 

10.4±1.4 years vs 9.9±1.1, p=0.02) and had higher rates of asthma (39 (24.2%) vs 2 (4.3%), 

p=<0.001). 47 (29.2%) of the preterm-born subjects had received a neonatal diagnosis of 

mild/moderate/severe BPD, and 50 (31.1%) had an FEV1<LLN. Of those, 27 (54%) were 

classified as pPRISm and 23 (46%) as POLD. Between included and excluded subjects, POLD 

had significantly higher rates of asthma and lower rates of BPD in those included in the 

analysis compared to those excluded (Table 4-2), otherwise there were no significant 

differences between those included and excluded from the analysis. 
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Figure 4-7: Log2 total protein abundance of each sample separated by mass spectrometry (MS) run (given in number above each graph). 

Solid red line represents median of total protein abundance of each MS run, with dashed lines representing ±2-fold difference of MS run median total 
protein abundance. Samples with a total protein abundance >±2-fold difference from median of total protein abundance of the MS run highlighted 
in red as outliers and excluded from further analysis. 
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Figure 4-8: Log2 normalized and scaled protein abundances for each sample given by boxplot by MS run. Preterm-born subjects in navy blue, term-
born subjects in green. 
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Figure 4-9: Log2 normalised and scaled protein abundances 

PT: Preterm-born participants. Term: Term-born participants
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Figure 4-10: Test volcano plot showing protein differences between preterm- and term-born 
children following median scale normalisation and scaling of dataset. 

Protiens with a significant (p<0.05) log2 fold change (Log2FC) between groups highlighted in 
red. Size of point represents replicate number (number of samples in which the protein was 
detected). Vertical line represents a Log2FC of 0. Horizontal line represents p<0.05 
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4.3.2 Detected proteins 

A total of 785 proteins were detected, 735 (93.6%) of which were mapped to official gene 

symbols (gene names). The remaining 50 proteins could not be mapped to known genes. 129 

proteins were present in all samples analysed. Functional enrichment analysis (Liao et al., 

2019) was possible for 681 (86.8%) of the detected proteins (Figure 4-11). 288 proteins were 

significantly different between any of the phenotype comparisons, and functional enrichment 

analysis was possible for 255 (88.5%). Overall, an enrichment of proteins related to metabolic 

processes, hydrolase activity and extracellular space/cell membrane activities was observed 

in the preterm-born groups. 

 

4.3.3 Comparison between the pPRISm group with preterm- and term-born 

control groups 

There were no significant differences in demographics between the pPRISm and PTc groups 

(Table 4-1). 37 (5.3%) proteins had significantly different abundance when compared to PTc 

(Figure 4-12; Table 4-3), and 62 (8.9%) when compared to the term-born group (Figure 

4-12;Table 4-4). 14 proteins were common between the two comparisons. IPA linked 16 

significantly altered proteins in pPRISm compared to PTc to six biological processes (Table 4-5; 

Figure 4-13):  

• Inflammation of body cavity (PGLYRP1, DNASE1, MYH9, SERPINA3, CTSV, AGT, ANXA1, 

CLEC4G, SCGB1A1, B2M, CD14) (p=0.042).  

• Apoptosis of myeloid cells (SERPINA3, ANXA1, ANPEP, CD14) (p=0.038).  

• Quantity of leucocytes (GLA, CLEC11A, PGLYRP1, DNASE1, CTSV, AGT, ANXA1, CLEC4G, 

SCGB1A1, B2M, ANPEP) (p=0.038).  

• Quantity of T-lymphocytes (PGLYRP1, DNASE1, CTSV, AGT, ANXA1, CLEC4G, B2M, 

ANPEP) (p=0.015).  
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IPA-calculated activation z-scores suggested upregulation of these processes (Figure 4-13). 

There was also a significant link between these proteins and the quantities of CD4+ (p=0.008) 

and CD8+ (p=0.005) T-lymphocytes, with a suggestion of a downregulation of CD4+ T-

lymphocytes (activation z-score -0.73). IPA analysis of significantly different protein 

abundances in pPRISm group compared to the Term-born group linked six proteins (AGT, 

CD14, CSF1, FABP5, HBB, ANXA1) with Synthesis of prostaglandin (p=0.038, activation z-score 

1.23)). Five proteins (PRG2, MGAM, CD14, LGALS3BP, ANXA1) were significantly linked with 

neutrophil activation (p=0.038, z-score -0.64).  

 

ROC analysis (Table 4-6; Figure 4-14) demonstrated that DNASE1, PGLYRP1, B2M and 

SERPINA3 in combination had the highest predictive ability for identifying pPRISm from within 

the preterm group (AUC: 0.73 (95% confidence interval 0.61, 0.84), sensitivity 0.80 (0.64, 

0.96), specificity 0.73 (0.64, 0.82), p=<0.001). Using the LOOCV model, the predictive ability 

of this protein panel was AUC 0.65 (0.52, 0.78), p=0.01 (Table 4-7; Figure 4-15).  Results from 

univariable and multivariable linear regression modelling for these proteins are shown in 

Table 4-8. DNASE1, PGLYRP1, B2M remained significantly associated with pPRISm in 

multivariable modelling (p-values 0.008, 0.011, 0.018 respectively) with B2M also being 

significantly associated with a history of BPD in the multivariable model (p=0.003). No other 

life factors were significantly associated with SERPINA3 on univariable models, with pPRISm 

being highly significant (p=0.005). 
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Variable Term born (≥37/40) 
n = 46 

Preterm born (≤34/40) 
n = 160 

Preterm born Controls 
n = 112 

pPRISm 
n = 27 

POLD 
n = 23 

Sex (male), n(%) 23 (50.0) 76 (47.5) 52 (46.4) 17 (63) 7 (33.3) 

Ethnicity (white), n(%) 45 (97.8) 152 (95) 105 (93.8) 27 (100) 20 (95.2) 

Age at testing (years), mean (SD) 9.9 (1.1) 10.4 (1.4)* 10.4 (1.3) 10.6 (1.6)  10.1 (1.7) 

Weight (kg), mean (SD) 36.3 (10.3) 35.9 (9.7) 36.4 (9.5) 35.5 (9.1) 33.9 (11.8) 

Body Mass Index (kg/m2), mean (SD) 18.1 (3.2) 17.5 (3.1) 17.7 (3.0) 17.0 (2.9) 17.0 (3.9) 

Wheeze-ever, n(%) 12 (26.1) 97 (56.9)*** 64 (57.1) 15 (55.6) 18 (85.7)†₴ 

Doctor-diagnosed asthma, n(%) 2 (4.3) 39 (24.4)** 21 (18.8) 7 (25.9) 11 (52.4)†† 

Neonatal Characteristics 

Gestational age (weeks), mean (SD) 40.1 (1.2) 30.5 (2.8)*** 30.4 (2.9) 30.9 (2.9) 30.2 (2.5) 

Birthweight (g), mean (SD) 3499 (576) 1549 (594)*** 1577 (607) 1587 (543) 1352 (572) 

Birthweight (z-score), mean (SD) 0.1 (0.99) 0.11 (1.37) 0.3 (1.42) -0.12 (0.9) -0.45 (1.46) 

Intrauterine growth restriction, n(%) 3 (6.5) 25 (15.6) 15 (13.4) 2 (7.4) 8 (38.1)††₴₴ 

Antenatal Steroids, n(%) 0 (0) 137 (85.6)*** 99 (88.4) 22 (81.5) 16 (76.2) 

Mechanical ventilation, n(%) 0 (0) 70 (43.8)*** 53 (47.3) 7 (25.9) 10 (47.6) 

Bronchopulmonary Dysplasia (BPD), n(%) 0 (0) 47 (29.2)*** 34 (30.4) 7 (25.9) 6 (28.6) 

Antenatal smoking, n(%) 3 (6.5) 22 (13.8) 16 (14.3) 4 (14.8) 2 (9.5) 

Table 4-1: Urine Proteomics Sample Demographics. 

Preterm vs Term: *p<0.05, **p<0.01, ***p<0.001. pPRISm/POLD vs Preterm born control: †p<0.05, ††p<0.01, †††p<0.001. pPRISm vs POLD: 
₴p<0.05, ₴₴p<0.01, ₴₴₴p<0.001 
pPRISm: Prematurity-related preserved ratio with impaired spirometry. POLD: Prematurity-related obstructive lung disease. BPD: 
Bronchopulmonary dysplasia. 
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Variable Term born (≥37/40) Preterm born 

(≤34/40) 
Preterm born Controls POLD pPRISm 

Included Excluded Included Excluded Included Excluded Included Excluded Included Excluded 

n = 46 n = 20 n = 160 n = 44 n = 112 n = 28 n = 23 n = 6 n = 27 n = 10 

Sex (male), n(%) 23 (50.0) 11 (55) 76 (47.5) 22 (50) 52 (46.4) 14 (50) 7 (33.3) 3 (50) 17 (63) 5 (50) 

Ethnicity (white), n(%) 45 (97.8) 20 (100) 152 (95) 42 (95.5) 105 (93.8) 26 (92.9) 20 (95.2) 6 (100) 27 (100) 10 (100) 

Age at testing (years), mean 
(SD) 

9.9 (1.1) 10.3 (1.0) 10.4 (1.4) 10.4 (1.3) 10.4 (1.3) 10.0 (1.3)  10.1 (1.7) 10.9 (1.2) 10.6 (1.6) 11.3 (1.0) 

Weight (kg), mean (SD) 36.3 
(10.3) 

36.1 
(10.4) 

35.9 (9.7) 37.2 
(10.9) 

36.4 (9.5) 36.7 
(11.7) 

33.9 
(11.8) 

36.0 (9.0) 35.5 (9.1) 39.2 
(10.6) 

Body Mass Index (kg/m2), 
mean (SD) 

18.1 (3.2) 17.3 (3.0) 17.5 (3.1) 18.4 (3.6) 17.7 (3.0) 18.6 (3.8) 17.0 (3.9) 17.7 (2.8) 17.0 (2.9) 18.2 (3.7) 

Wheeze-ever, n(%) 12 (26.1) 5 (25) 97 (56.9) 22 (50) 64 (57.1) 16 (57.1) 18 (85.7) 3 (50) 15 (55.6) 3 (30) 

Doctor-diagnosed asthma, 
n(%) 

2 (4.3) 1 (5) 39 (24.4) 5 (11.4) 21 (18.8) 3 (10.7) 11 (52.4) 0 (0)* 7 (25.9) 2 (20) 

Neonatal Characteristics 

Gestational age (weeks), 
mean (SD) 

40.1 (1.2) 40.4 (1.1) 30.5 (2.8) 30.5 (3.0) 30.4 (2.9) 30.8 (3.1) 30.2 (2.5) 28.6 (2.7) 30.9 (2.9) 31.0 (2.5) 

Birthweight (g), mean (SD) 3499 
(576) 

3650 
(627) 

1549 
(594) 

1575 
(650) 

1577 
(607) 

1642 
(672) 

1352 
(572) 

1050 (428) 1587 
(543) 

1702 
(590) 

Birthweight (z-score), mean 
(SD) 

0.1 (0.99) 0.2 (1.2) 0.11 
(1.37) 

0.15 
(1.52) 

0.3 (1.42) 0.3 (1.6) -0.45 
(1.46) 

-0.82 
(1.20) 

-0.12 
(0.9) 

0.3 (1.4) 

Intrauterine growth 
restriction, n(%) 

3 (6.5) 2 (10) 25 (15.6) 7 (15.9) 15 (13.4) 3 (10.7) 8 (38.1) 3 (50) 2 (7.4) 1 (10) 

Antenatal Steroids, n(%) 0 (0) 0 (0) 137 (85.6) 39 (88.6) 99 (88.4) 24 (85.7) 16 (76.2) 6 (100) 22 (81.5) 9 (90) 

Mechanical ventilation, n(%) 0 (0) 0 (0) 70 (43.8) 18 (40.9) 53 (47.3) 11 (39.3) 10 (47.6) 5 (83.3) 7 (25.9) 2 (20) 

BPD, n(%) 0 (0) 0 (0) 47 (29.2) 14 (31.8) 34 (30.4) 7 (25) 6 (28.6) 5 (83.3)* 7 (25.9) 2 (20) 

Antenatal smoking, n(%) 3 (6.5) 0 (0) 22 (13.8) 5 (1.4) 16 (14.3) 4 (14.3) 2 (9.5) 0 (0) 4 (14.8) 1 (10) 

Table 4-2: Comparing included and excluded samples from urine proteomics analysis. 

Independent samples T-test/Chi-squared test; Included vs Excluded: *p<0.05, **p<0.01, ***p<0.001 
POLD: Prematurity-related obstructive lung disease. pPRISm: Prematurity-related preserved ratio with impaired spirometry. BPD: 
Bronchopulmonary dysplasia. 
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Figure 4-11: Functional enrichment analysis of detected urine proteome. 

Black bar on each column represents the expected background enrichment level.
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Figure 4-12: Volcano Plots showing significant urine proteome differences for pPRISm and 
POLD phenotypes compared to PTc and Term groups. 

Vertical line represents log2 fold change of 0. Horizontal line equivalent to a p-value of 0.05. 
Proteins with a significant difference between groups highlighted and labelled with 
respective gene name. Size of circle relative to replicate number. POLD: Prematurity-related 
obstructive lung disease. pPRISm: Prematurity-related preserved ratio with impaired 
spirometry. PTc: Preterm-born controls 
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UniProt 
Accession 

Gene 
 Name 

Protein Name Protein Function 

pPRISm vs PTc  
n = 27 v 111 

Replicates Log2FC p 

P06280 GLA Alpha-galactosidase A Lipid metabolism 2 v 6 -1.06 0.0001 

Q9Y240 CLEC11A C-type lectin domain family 11 member A Osteogenesis 3 v 15 -1.39 0.001 

A0A2U8J8Y8 IgH Ig heavy chain variable region Immune response 2 v 6 -1.86 0.002 

O96009 
NAPSA Napsin-A 

May be involved in processing of pneumocyte 
surfactant precursors. 

3 v 17 1.01 0.003 

Q16378 PRR4 Proline-rich protein 4 Extracellular space/Visual perception 2 v 15 0.83 0.005 

Q9H497 TOR3A Torsin-3A Nucleotide binding 5 v 17 -1.28 0.006 

Q96NL6 SCLT1 Sodium channel and clathrin linker 1 Anchors basal body to plasma membrane 3 v 11 -1.34 0.009 

P54802 NAGLU Alpha-N-acetylglucosaminidase Glycosidase/hydrolase 25 v 107 -0.34 0.011 

O75594 PGLYRP1 Peptidoglycan recognition protein 1 Innate immunity 27 v 111 -0.40 0.012 

P24855 DNASE1 Deoxyribonuclease-1 Serum endonuclease 27 v 111 -0.53 0.013 

P35579 MYH9 Myosin-9 Cell adhesion/cell shape 4 v 8 0.49 0.014 

P01011 SERPINA3 Alpha-1-antichymotrypsin Serine protease inhibitor 25 v 100 -0.36 0.014 

O60911 CTSV Cathepsin L2 Thiol protease 16 v 73 -0.33 0.015 

Q99674 
CGREF1 

Cell growth regulator with EF hand domain 
protein 1 

Cell adhesion, cell cycle 7 v 22 0.51 0.016 

Q96ED9 HOOK2 Protein Hook homolog 2 Protein transport 6 v 24 -0.74 0.017 

P01019 AGT Angiotensinogen (Serpin A8) Regulation of blood pressure 4 v 28 0.81 0.019 

Q6PIJ6 FBXO38 F-box only protein 38 Adaptive immune response 2 v 11 1.70 0.020 

P13727 PRG2 Bone marrow proteoglycan Immune response, antimicrobial 22 v 91 -0.41 0.020 

Q6SPF0 
SAMD1 

Sterile alpha motif domain-containing 
protein 1 

Chromatin regulator 13 v 63 -0.60 0.021 

Q9NZP8 
C1RL 

Complement C1r subcomponent-like 
protein 

Serine protease, complement pathway 25 v 105 -0.45 0.021 

Q01459 CTBS Di-N-acetylchitobiase Glycosidase 19 v 87 -0.34 0.022 

Q96TA2 
YME1L1 

ATP-dependent zinc metalloprotease 
YME1L1 

Metalloprotease 21 v 80 0.43 0.022 

Q9ULI3 HEG1 Protein HEG homolog 1 Developmental protein, heart and vessel formation 27 v 111 0.25 0.025 

P04083 ANXA1 Annexin A1 Inflammatory/immune response 7 v 29 1.46 0.026 

Q6UXB4 CLEC4G C-type lectin domain family 4 member G Substrate binder, cell receptor for virus entry 27 v 106 -0.36 0.028 

P19835 CEL Bile salt-activated lipase Serine esterase, lipid degradation 12 v 64 -0.38 0.031 

B1AHL2 FBLN1 Fibulin-1 Cell adhesion/migration 4 v 24 0.49 0.031 
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P11684 SCGB1A1 Uteroglobin Phospholipase A2 inhibitor 5 v 33 -1.04 0.032 

P58400 NRXN1 Neurexin-1-beta Cell adhesion 26 v 107 0.24 0.032 

P62979 RPS27A Ubiquitin-40S ribosomal protein S27a Ribonucleoprotein 27 v 111 0.51 0.035 

A0A0J9YVZ3 MGAM Maltase-glucoamylase, intestinal Carbohydrate metabolism 27 v 111 -0.35 0.038 

P43121 MCAM Cell surface glycoprotein MUC18 Cell adhesion 21 v 87 -0.45 0.039 

P21815 IBSP Bone sialoprotein 2 Biomineralization, cell adhesion 26 v 101 0.33 0.040 

P61769 B2M Beta-2-microglobulin Class I major histocompatibility complex 27 v 111 -0.60 0.040 

P15144 ANPEP Aminopeptidase N Aminopeptidase 23 v 103 -0.37 0.040 

O95967 EFEMP2 
EGF-containing fibulin-like extracellular 

matrix protein 2 
Elastic fibre formation 25 v 101 0.30 0.043 

P08571 CD14 Monocyte differentiation antigen CD14 Immune and inflammatory response 27 v 111 -0.39 0.045 

Table 4-3: Significantly altered urine protein abundances between pPRISm vs PTc. 
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UniProt 
Accession 

Gene 
Name 

Protein Name Protein Function 

pPRISm vs Term  
n = 27 v 46 

Replicates Log2FC p 

Q08380 LGALS3BP Galectin-3-binding protein Cell adhesion 27 v 46 -0.57 0.0001 

P17936 IGFBP3 Insulin-like growth factor-binding protein 3 Growth regulation 18 v 31 1.44 0.0001 

P43652 AFM Afamin Protein transport 27 v 46 0.39 0.001 

A0A2U8J953 IgH Ig heavy chain variable region (Fragment) Immune response 9 v 7 -2.45 0.001 

O15240 VGF Neurosecretory protein VGF Neurogenesis/neuroplasticity 27 v 46 -0.67 0.001 

P21802 FGFR2 Fibroblast growth factor receptor 2 Cell proliferation regulator 8 v 8 -0.93 0.002 

Q16378 PRR4 Proline-rich protein 4 
Extracellular space/Visual 

perception 
2 v 7 1.48 0.003 

P58400 NRXN1 Neurexin-1-beta Cell adhesion 26 v 46 0.44 0.003 

Q9UL78 Unknown Myosin-reactive immunoglobulin light chain variable region (Fragment) Unknown 22 v 46 -0.44 0.003 

P25311 AZGP1 Zinc-alpha-2-glycoprotein Lipid degradation 27 v 46 -0.50 0.003 

P05062 ALDOB Fructose-bisphosphate aldolase B Glycolysis 23 v 46 -0.57 0.003 

P13727 PRG2 Proteoglycan 2 Immune response, antimicrobial 22 v 38 -0.57 0.004 

Q9Y240 CLEC11A C-type lectin domain family 11 member Osteogenesis 3 v 9 -1.73 0.005 

P01019 AGT Angiotensinogen (Serpin A8) Regulation of blood pressure 4 v 8 1.28 0.005 

P08571 CD14 Monocyte differentiation antigen CD14 
Immune and inflammatory 

response 
27 v 46 -0.62 0.005 

P02656 APOC3 Apolipoprotein C Lipid metabolism 16 v 26 -1.67 0.006 

Q96ED9 HOOK2 Protein Hook homolog 2 Protein transport 6 v 16 -0.87 0.007 

O60911 CTSV Cathepsin L2 Thiol protease 16 v 39 -0.36 0.008 

Q96GW7 BCAN Brevican core protein Nervous system development 26 v 34 -0.73 0.008 

Q8TE24 MGAM Maltase-glucoamylase Carbohydrate metabolism 5 v 7 -1.31 0.008 

Q6SPF0 SAMD1 Sterile alpha motif domain-containing protein 1 Chromatin regulator 13 v 28 -0.72 0.009 

Q99985 SEMA3C Semaphorin-3C Developmental protein 6 v 14 2.72 0.010 

Q16610 ECM1 Extracellular matrix protein 1 Multifunctional, protease binding 6 v 15 -0.94 0.011 

Q9NQ76 MEPE Matrix extracellular phosphoglycoprotein 
Post-translational protein 

phosphorylation 
10 v 5 1.29 0.011 

Q92820 GGH Gamma-glutamyl hydrolase Hydrolase 27 v 46 -0.50 0.011 

Q4TZM4 HBB Haemoglobin beta chain Oxygen transport 5 v 7 1.47 0.013 

P02750 LRG1 Leucine-rich alpha-2-glycoprotein Extracellular protein 25 v 46 -0.51 0.014 

Q8NEJ1 Unknown Uncharacterized protein Unknown 4 v 7 -0.87 0.016 

P09668 CTSH Pro-cathepsin H Lysosomal protein degradation 11 v 15 -0.80 0.016 

Q02818 NUCB1 Nucleobindin-1 Calcium/G-protein binding 16 v 39 -0.54 0.017 

Q9NZP8 C1RL Complement C1r subcomponent-like protein 
Serine protease, complement 

pathway 
25 v 45 -0.50 0.017 
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P51170 SCNN1G Amiloride-sensitive sodium channel subunit gamma Ion channel 2 v 9 0.91 0.018 

Q9H497 TOR3A Torsin-3A Nucleotide binding 5 v 6 -2.00 0.018 

A0A0X9UWL5 Unknown GCT-A5 light chain variable region (Fragment) Unknown 22 v 46 -0.41 0.019 

P09603 CSF1 Macrophage colony-stimulating factor 1 Cytokine 26 v 39 0.45 0.019 

Q9H665 IGFLR1 IGF-like family receptor 1 Cell membrane receptor IGF 24 v 34 -0.36 0.019 

O00560 SDCBP Syntenin-1 Multifunctional protein trafficker 2 v 24 0.49 0.020 

Q01469 FABP5 Fatty acid-binding protein 5 Lipid metabolism 5 v 20 -0.75 0.024 

P02766 TTR Transthyretin Thyroid hormone-binding protein 26 v 41 0.53 0.026 

P69905 HBA1; HBA2 Haemoglobin subunit alpha Oxygen transport 10 v 37 0.78 0.026 

Q9UQV4 LAMP3 Lysosome-associated membrane glycoprotein 3 Adaptive immunity 16 v 34 -0.51 0.027 

P08185 SERPINA6 Corticosteroid-binding globulin 
Glucocorticoid/progestin 

transport 
19 v 34 -0.55 0.028 

P13598 ICAM2 Intercellular adhesion molecule 2 Leukocyte adhesion 8 v 18 0.75 0.028 

P52848 NDST1 Bifunctional heparan sulphate N-deacetylase/N-sulfotransferase 1 
Multifunctional enzyme/immune 

response 
26 v 44 -0.76 0.029 

Q99674 CGREF1 Cell growth regulator with EF hand domain protein 1 Cell adhesion, cell cycle 7 v 11 0.83 0.031 

O15370 SOX12 Transcription factor SOX-12 Transcription factor 4 v 7 -1.72 0.034 

Q01459 CTBS Di-N-acetylchitobiase Glycosidase 19 v 45 -0.34 0.035 

Q9UL85 Unknown Myosin-reactive immunoglobulin kappa chain variable region (Fragment) Unknown 13 v 33 -1.01 0.035 

P42785 PRCP Lysosomal Pro-X carboxypeptidase Carboxypeptidase 6 v 28 -0.86 0.036 

Q9Y646 CPQ Carboxypeptidase Q Carboxypeptidase 5 v 7 -1.34 0.036 

P60022 DEFB1 Beta-defensin 1 Bactericidal activity 11 v 20 -0.76 0.036 

P14384 CPM Carboxypeptidase M Carboxypeptidase 20 v 30 -0.38 0.038 

P07998 RNASE1 Ribonuclease pancreatic Endonuclease 27 v 46 0.42 0.038 

P31025 LCN1 Lipocalin-1 Transport protein 19 v 16 -0.61 0.039 

Q96RR4 CAMKK2 Calcium/calmodulin-dependent protein kinase 2 Serine/threonine-protein kinase 10 v 15 -1.32 0.044 

P24821 TNC Tenascin Cell adhesion 27 v 46 0.23 0.044 

P12111 COL6A3 Collagen alpha-3(VI) chain Cell adhesion 27 v 46 -0.41 0.045 

Q7Z3B1 NEGR1 Neuronal growth regulator 1 Cell adhesion 13 v 25 -0.47 0.047 

Q5T1S8 NCMAP Noncompact myelin-associated protein Myelin formation 27 v 46 -0.28 0.047 

P04083 ANXA1 Annexin A1 Inflammatory/immune response 7 v 20 1.31 0.047 

Q96PX8 SLITRK1 SLIT and NTRK-like protein 1 Synaptogenesis 3 v 13 -0.85 0.049 

S6BGE0 Unknown IgG H chain Immune response 8 v 20 0.44 0.049 

Table 4-4: Significantly altered urine protein abundances between pPRISm vs Term-born children 
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pPRISm vs PTc (n=27 vs 112) 

GLA Alpha-galactosidase A Lipid metabolism 2 v 6 
-

1.06 
0.0001   ●     

CLEC11A 
C-type lectin domain 
family 11 member A 

Osteogenesis 3 v 15 
-

1.39 
0.001   ●     

NAGLU 
Alpha-N-

acetylglucosaminidase 
Glycosidase/ 

hydrolase 
25 v 107 

-
0.34 

0.011 ●       

PGLYRP1 
Peptidoglycan 

recognition protein 1 
Innate immunity 27 v 111 

-
0.40 

0.012 ●  ● ● ●   

DNASE1 Deoxyribonuclease-1 Serum endonuclease 27 v 111 
-

0.53 
0.013 ●  ● ● ● ●  

MYH9 Myosin-9 Cell adhesion/shape 4 v 8 0.49 0.014 ●       

SERPINA3 
Alpha-1-

antichymotrypsin 
Serine protease 

inhibitor 
25 v 100 

-
0.36 

0.014 ● ●      

CTSV Cathepsin L2 Thiol protease 16 v 73 
-

0.33 
0.015 ●  ● ● ●   

AGT 
Angiotensinogen  

(Serpin A8) 
Regulation of blood 

pressure 
4 v 28 0.81 0.019 ●  ● ●  ●  

ANXA1 Annexin A1 
Inflammatory/immune 

response 
7 v 29 1.46 0.026 ● ● ● ● ● ●  

CLEC4G 
C-type lectin domain 
family 4 member G 

Substrate binder 27 v 106 
-

0.36 
0.028 ●  ● ● ● ●  

SCGB1A1 Uteroglobin 
Phospholipase A2 

inhibitor 
5 v 33 

-
1.04 

0.032 ●  ●     

MGAM Maltase-glucoamylase 
Carbohydrate 
metabolism 

27 v 111 
-

0.35 
0.038 ●       

B2M Beta-2-microglobulin 
Class I major 

histocompatibility 
complex 

27 v 111 
-

0.60 
0.040 ●  ● ●  ●  

ANPEP Aminopeptidase N Aminopeptidase 23 v 103 
-

0.37 
0.040  ● ● ● ●   

CD14 
Monocyte 

differentiation antigen 
CD14 

Inflammatory/immune 
response 

27 v 111 
-

0.39 
0.045 

 
● ●      
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POLD vs PTc (n=21 vs 112) 

MMP9 
Matrix 

metalloproteinase-9 
Collagen degradation, 
leukocyte migration 

21 v 105 0.30 0.018       ● 

AGT 
Angiotensinogen  

(Serpin A8) 
Regulation of blood 

pressure 
5 v 28 0.55 0.030       ● 

S100A8 Protein S100-A8 
Inflammatory/immune 

response 
21 v 107 0.69 0.034       ● 

CTSC 
Dipeptidyl peptidase 1 

(Cathepsin C) 
Thiol protease 19 v 77 0.31 0.038       ● 

Table 4-5: Significantly altered biological processes in pPRISM & POLD vs PTc identified by IPA software. 
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Figure 4-13: Urine proteins linked with significantly altered biological processes by IPA software within lung function phenotypes (pPRISm and POLD 
compared to PTc). 

POLD: Prematurity-related obstructive lung disease. pPRISm: Prematurity-related preserved ratio with impaired spirometry. PTc: Preterm-born 
controls 
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Protein(s) included in model Replicates 
AUC  

(95% CI) 
p-value 

Sensitivity  
(95% CI) 

Specificity  
(95% CI) 

PPV  
(95% CI) 

NPV  
(95% CI) 

pPRISm vs PTc  (n=27 v 112) 

DNASE1 27 v 112 
0.66  

(0.55, 0.78) 
0.004 

0.56  
(0.37, 0.74) 

0.72  
(0.64, 0.80) 

0.33  
(0.19, 0.46) 

0.87  
(0.80, 0.94) 

PGLYRP1 27 v 112 
0.64  

(0.53, 0.75) 
0.012 

0.93  
(0.83, 1.00) 

0.32  
(0.23, 0.40) 

0.25  
(0.16, 0.33) 

0.95  
(0.87, 1.02) 

B2M 27 v 112 
0.63  

(0.51, 0.75) 
0.020 

0.59  
(0.41, 0.78) 

0.66  
(0.60, 0.75) 

0.30  
(0.18, 0.42) 

0.87  
(0.80, 0.94) 

SERPINA3 25 v 100 
0.66  

(0.53, 0.79) 
0.007 

0.48  
(0.28, 0.68) 

0.82  
(0.75, 0.90) 

0.40  
(0.23, 0.58) 

0.86 
 (0.79, 0.93) 

DNASE1 + PGLYRP1 + B2M + 
SERPINA3 

25 v 100 
0.73  

(0.61, 0.84) 
<0.001 

0.80  
(0.64, 0.96) 

0.73  
(0.64, 0.82) 

0.43  
(0.28, 0.57) 

0.94 
 (0.88, 0.99) 

POLD vs PTc   (n=21 v 112) 

S100A8 21 v 107 
0.64  

(0.52, 0.76) 
0.021 

0.82  
(0.66, 0.98) 

0.50  
(0.40, 0.59) 

0.25 
 (0.15, 0.35) 

0.93  
(0.86, 1.00) 

MMP9 21 v 105 
0.64  

(0.51, 0.77) 
0.023 

0.48  
(0.26, 0.69) 

0.76  
(0.68, 0.84) 

0.29  
(0.14, 0.44) 

0.88  
(0.81, 0.95) 

CTSC 19 v 77 
0.66  

(0.53, 0.79) 
0.015 

0.68  
(0.48, 0.89) 

0.65  
(0.54, 0.76) 

0.33 
 (0.18, 0.47) 

0.89 
 (0.81, 0.97) 

S100A8 + MMP9 + CTSC 19 v 77 
0.76  

(0.63, 0.90) 
<0.001 

0.84  
(0.68, 1.00) 

0.61  
(0.50, 0.72) 

0.35  
(0.21, 0.49) 

0.94 
 (0.87, 1.00) 

Table 4-6: ROC Analysis of high replicate urine proteins implicated in related biological functions by IPA software. 

POLD: Prematurity-related obstructive lung disease. pPRISm: Prematurity-related preserved ratio with impaired spirometry. PTc: Preterm-born 
controls. AUC: Area Under the Curve. PPV: Positive Predictive Value. NPV: Negative Predictive Value.
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Protein(s) included in model Replicates 
AUC 

(95% CI) 
p-value 

Sensitivity  
(95% CI) 

Specificity 
(95% CI) 

PPV 
(95% CI) 

NPV 
(95% CI) 

pPRISm vs PTc (n=27 v 112) 

DNASE1 27 v 112 
0.62 

(0.51, 0.74) 
0.024 

0.56 
(0.37, 0.74) 

0.69  
(0.61, 0.78) 

0.31 
(0.18, 0.44) 

0.87 
(0.79, 0.94) 

PGLYRP1 27 v 112 
0.61 

(0.53, 0.70) 
0.005 

0.54 
(0.40, 0.67) 

0.67 
(0.61, 0.73) 

0.28 
(0.20, 0.37) 

0.86 
(0.80, 0.91) 

B2M 27 v 112 
0.58 

(0.46, 0.71) 
0.91 

0.59 
(0.41, 0.78) 

0.64 
(0.55, 0.73) 

0.29 
(0.17, 0.40) 

0.87 
(0.79, 0.94) 

SERPINA3 25 v 100 
0.63 

(0.49, 0.76) 
0.97 

0.48 
(0.28, 0.68) 

0.80 
(0.72, 0.88) 

0.38 
(0.21, 0.54) 

0.86 
(0.79, 0.93) 

DNASE1 + PGLYRP1 + B2M + SERPINA3 25 v 100 
0.65 

(0.52, 0.78) 
0.010 

0.76 
(0.59, 0.93) 

0.66 
(0.57, 0.75) 

0.36 
(0.23, 0.49) 

0.92 
(0.85, 0.98) 

POLD vs PTc (n=21 v 112) 

S100A8 21 v 107 
0.59 

(0.47, 0.72) 
0.92 

0.82 
(0.66, 0.98) 

0.45 
(0.35, 0.54) 

0.23 
(0.14, 0.33) 

0.92 
(0.85, 0.99) 

MMP9 21 v 105 
0.59 

(0.45, 0.73) 
0.90 

0.38 
(0.17, 0.59) 

0.84 
(0.77, 0.91) 

0.32 
(0.14, 0.50) 

0.87 
(0.81, 0.94) 

CTSC 19 v 77 
0.59 

(0.46, 0.73) 
0.90 

0.58 
(0.36, 0.80) 

0.66 
(0.56, 0.77) 

0.30 
(0.15, 0.45) 

0.86 
(0.78, 0.95) 

S100A8 + MMP9 + CTSC 19 v 77 
0.72 

(0.57, 0.86) 
0.002 

0.47 
(0.25, 0.70) 

0.91 
(0.85, 0.97) 

0.56 
(0.32, 0.81) 

0.88 
(0.80, 0.95) 

Table 4-7: ROC Analysis (using Leave-One-Out Cross Validation model) of high replicate urine proteins implicated in related biological functions by 
IPA software. 

POLD: Prematurity-related obstructive lung disease. pPRISm: Prematurity-related preserved ratio with impaired spirometry. PTc: Preterm-born 
controls. AUC: Area Under the Curve. PPV: Positive Predictive Value. NPV: Negative Predictive Value. 
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Figure 4-14: Significantly altered urine protein abundances in pPRISm vs PTc comparisons, showing violin plots for (A) DNASE1, (B) PGLYRP1, (C) B2M, 
and (D) SERPINA3, including comparisons with pPRISm and Term groups. (E) ROC Curve analysis for DNASE1, PGLYRP1, B2M and SERPINA3 in 
combination for pPRISm vs PTc. 

For violin plots, black dot represents mean, bars standard error of the mean. p-values given for between group comparisons. POLD: Prematurity-
related obstructive lung disease. pPRISm: Prematurity-related preserved ratio with impaired spirometry. PTc: Preterm-born controls. AUC: Area 
under the curve. 
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Figure 4-15: ROC Curves (using Leave-One-Out Cross Validation model) of protein groups with highest AUC values (A) pPRISm vs PTc including DNASE1 
and PGLYRP1, (B) POLD vs PTc including S100A8, MMP9 and CTSC. 

POLD: Prematurity-related obstructive lung disease. pPRISm: Prematurity-related preserved ratio with impaired spirometry. PTc: Preterm-born 
controls 
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Table 4-8: Univariable and multivariable linear regression analysis of early and current life factors and proteins of interest in pPRISm compared to 
PTc 

SE: Standard error; IUGR: Intrauterine growth restriction; BPD: Bronchopulmonary dysplasia, pPRISm: prematurity-associated preserved ratio-
impaired spirometry, PTc: preterm-born controls 
Bold*: p value <0.05 Italic: p value <0.1. Dashes indicate variables that had p ≥0.1 on univariable analysis and therefore not included in 
multivariable model. Multivariable models only created where ≥2 univariable models had a p-value <0.1 

 

Univariable Models 

Variable 
DNASE1 PGLYRP1 B2M SERPINA3 

Beta SE p-value Beta SE p-value Beta SE p-value Beta SE p-value 

Sex, ref=Male 0.14 0.17 0.39 0.21 0.13 0.11 0.14 0.22 0.52 0.13 0.10 0.22 

Age at testing, years -0.07 0.06 0.23 0.05 0.05 0.32 -0.08 0.08 0.30 0.03 0.04 0.44 

IUGR ref=No IUGR -0.11 0.26 0.68 -0.34 0.21 0.09 -0.28 0.34 0.41 0.15 0.17 0.40 

BPD ref=No BPD -0.32 0.18 0.08 -0.24 0.14 0.10 -0.67 0.23 0.005* 0.07 0.12 0.54 

pPRISm ref=PTc -0.53 0.21 0.011* -0.40 0.16 0.016* -0.60 0.27 0.027* -0.37 0.13 0.005* 

Multivariable Models 

IUGR ref=No IUGR - - - -0.38 0.20 0.06 - - - 
Not taken forward for 
 multivariable model 

BPD ref=No BPD -0.33 0.18 0.06 - - - -0.69 0.23 0.003* 

pPRISm ref=PTc -0.55 0.20 0.008* -0.42 0.16 0.011* -0.63 0.26 0.018* 
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4.3.4 Comparison between the POLD group with preterm- and term-born 

control groups 

The POLD group had several significant differences on comparison to PTc (Table 4-1) including; 

wheeze-ever (85.7% vs 57.1%, p=0.027), asthma (52.4% vs 18.8%, p=0.001), IUGR (38.1% vs 

13.4%, p=0.006), positive BDR (57.1% vs 4.8%, p=<0.001) and highest FENO measurement 

(30.7 vs 17.2ppb, p=0.008), with a significantly higher proportion of POLD having a 

FENO>35ppb (33.3% vs 10.9%, p=0.012). When compared to pPRISm (Table 4-1), POLD had 

significantly higher rates of wheeze-ever (85.7% vs 55.6%, p=0.025) and IUGR (38.1% vs 7.4%, 

p=0.009). 

 

44 (6.4%) proteins had a significantly different abundance when compared to PTc (Figure 

4-12; Table 4-9), and 70 (10.1%) had a significantly different abundance when compared to 

term-born subjects (Figure 4-12, Table 4-10). 18 proteins were common between the two 

comparisons. IPA linked four significantly altered proteins in POLD compared to PTc to 

Accumulation of neutrophils (p=0.028); AGT, CTSC, MMP9, S100A8 (Table 5; Figure 13). IPA 

linked eight significantly altered proteins in POLD compared to Term-born with Cellular 

infiltration by macrophages (p=0.011); AGT, PLAU, C3, MMP9, CSF1, PROCR, IL6ST, PRCP. 

 

ROC analysis (Table 4-6; Figure 4-16) demonstrated that S100A8, MMP9 and CTSC in 

combination had the highest predictive ability for identifying POLD from PTc (AUC 0.76 (0.63 

– 0.90), sensitivity 0.84 (0.68, 1.00), specificity 0.61 (0.50, 0.72), p=<0.001). Using the LOOCV 

model, S100A8, MMP9 and CTSC in combination performed similarly (AUC 0.72 (0.57 – 0.86), 

p=0.002) (Table 4-7; Figure 4-15). Results from univariable and multivariable linear regression 

modelling for these proteins are given in Table 4-11: Univariable and multivariable linear 

regression analysis of early and current life factors and urinary proteins of interest in POLD 

compared to PTc. No other early or current life factors were significantly associated with 
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S100A8 and CTSC abundance in univariable models. A history of BPD was significantly 

associated with MMP9 abundance in univariable modelling (p=0.017) and remained 

significant in the multivariable model BPD (p=0.017), along with POLD (p=0.024). 
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UniProt  
Accession 

Gene  
Name 

Protein Name Protein Function 

POLD vs PTc 
n = 23 v 111 

Replicates Log2FC p 

B2R582 Unknown cDNA, FLJ92374, highly similar to CLEC3B, mRNA Unknown 2 v 12 -1.59 0.000003 

Q9UHF0 TAC3 Tachykinin-3 Neuropeptide 3 v 22 0.64 0.0001 

Q96IU4 ABHD14B Protein ABHD14B Acyltransferase 2 v 11 -1.01 0.0003 

C9IYI1 DMKN Dermokine Cornified envelope assembly 10 v 39 1.06 0.002 

P01709 IGLV2-8 Immunoglobulin lambda variable 2-8 Antigen recognition 23 v 105 0.35 0.002 

P42785 PRCP Lysosomal Pro-X carboxypeptidase Carboxypeptidase 7 v 25 0.67 0.002 

P31151 S100A7 Protein S100-A7 (Psoriasin) Inflammatory/immune response 23 v 106 0.97 0.003 

A0A494C0G5 AGRN Agrin Developmental protein 8 v 60 0.75 0.004 

Q8WZ75 ROBO4 Roundabout homolog 4 Developmental protein, angiogenesis 23 v 111 0.43 0.004 

P13473 LAMP2 Lysosome-associated membrane glycoprotein 2 Autophagy 20 v 98 0.51 0.006 

Q58FF6 HSP90AB4P Putative heat shock protein HSP 90-beta 4 Molecular chaperone, stress response 15 v 63 1.04 0.009 

Q8NDA2 HMCN2 Hemicentin-2 Extracellular matrix 2 v 22 -0.68 0.009 

Q92692 NECTIN2 Nectin-2 Modulator of T-cell signalling 15 v 64 0.38 0.012 

Q99497 PARK7 Parkinson disease protein 7 Cell protection from oxidative stress 5 v 15 0.66 0.017 

P08779 KRT16 Keratin, type I cytoskeletal 16 Cytokeratin 11 v 81 0.50 0.017 

Q9UMS6 SYNPO2 Synaptopodin-2 Actin binding, cell migration 22 v 107 -0.49 0.017 

P61970 NUTF2 Nuclear transport factor 2 mRNA transport 16 v 87 0.37 0.017 

Q15274 QPRT Nicotinate-nucleotide pyrophosphorylase Pyridine nucleotide biosynthesis 3 v 11 1.40 0.018 

P14780 MMP9 Matrix metalloproteinase-9 Collagen degradation, leukocyte migration 21 v 105 0.30 0.018 

Q96RR4 CAMKK2 Calcium/calmodulin-dependent protein kinase 2 Serine/threonine-protein kinase 8 v 42 1.37 0.020 

P41181 AQP2 Aquaporin-2 Fluid balance 14 v 70 0.63 0.021 

P15289 ARSA Arylsulfatase A Lipid metabolism 19 v 76 0.60 0.021 

P05543 SERPINA7 Thyroxine-binding globulin Thyroid hormone transport protein 19 v 96 0.55 0.023 

O95865 
DDAH2 

N(G),N(G)-dimethylarginine 
dimethylaminohydrolase 2 

Regulation of nitric oxide production 2 v 7 0.44 0.023 

P31944 CASP14 Caspase-14 Epidermal differentiation  18 v 87 0.46 0.024 

Q969E1 LEAP2 Liver-expressed antimicrobial peptide 2 Antimicrobial 18 v 99 1.14 0.024 

P29966 MARCKS Myristoylated alanine-rich C-kinase substrate Actin/Calmodulin-binding 2 v 8 -0.45 0.025 

P25815 S100P Protein S100-P Calcium signalling 15 v 85 0.42 0.027 

P05091 ALDH2 Aldehyde dehydrogenase, mitochondrial Oxidoreductase 4 v 26 0.43 0.029 

P01019 AGT Angiotensinogen Regulation of blood pressure 5 v 28 0.55 0.030 

P07998 RNASE1 Ribonuclease pancreatic Endonuclease 23 v 111 0.32 0.030 

Q96HD1 CRELD1 Protein disulfide isomerase Isomerase 2 v 16 0.55 0.031 
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P05109 S100A8 Protein S100-A8  Inflammatory/immune response 22 v 107 0.69 0.034 

P00738 HP Haptoglobin Haemoglobin recycling 23 v 111 0.55 0.035 

P39059 COL15A1 Collagen alpha-1(XV) chain Stabilizes microvessels/muscle cells 14 v 74 0.39 0.035 

Q03154 ACY1 Aminoacylase-1 Hydrolase 4 v 18 0.65 0.035 

P53634 CTSC Dipeptidyl peptidase 1 (Cathepsin C) Thiol protease 19 v 77 0.31 0.038 

Q9Y4C0 NRXN3 Neurexin-3 Neuronal cell adhesion/recognition 16 v 50 0.46 0.038 

Q96K68 Unknown cDNA FLJ14473 fis, SNC73 mRNA Unknown 23 v 111 0.28 0.042 

O75882 ATRN Attractin Inflammatory response 23 v 97 0.30 0.043 

Q9NZH0 
GPRC5B 

G-protein coupled receptor family C group 5 
member B 

Unknown 16 v 86 0.37 0.045 

P43652 AFM Afamin Protein transport 23 v 111 -0.27 0.047 

P68032 ACTC1 Actin, alpha cardiac muscle 1 Cytoskeleton 22 v 107 0.24 0.048 

P51654 GPC3 Glypican-3 Protease inhibitor 9 v 49 -0.54 0.049 

Table 4-9: Significantly altered urine protein abundances between POLD vs PTc 
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UniProt 
Accession 

Gene 
Name 

Protein Name Protein Function 

POLD vs Term 
n = 23 v 46 

Replicates Log2FC p 

Q9HCU0 CD248 Endosialin 
Calcium binding/extra-cellular 

matrix 
23 v 46 0.33 0.0003 

O15370 SOX12 Transcription factor SOX-12 Transcription factor 5 v 7 -2.05 0.0003 

Q16610 ECM1 Extracellular matrix protein 1 Multifunctional, protease binding 6 v 15 -1.49 0.0004 

P69905 HBA1; HBA2 Haemoglobin subunit alpha Oxygen transport 11 v 37 1.31 0.0004 

C9IYI1 DMKN Dermokine Cornified envelope assembly 10 v 15 1.21 0.001 

Q08380 LGALS3BP Galectin-3-binding protein Cell adhesion 23 v 46 -0.58 0.001 

Q8WZ75 ROBO4 Roundabout homolog 4 
Developmental protein, 

angiogenesis 
23 v 46 0.60 0.001 

Q14050 COL9A3 Collagen alpha-3(IX) chain Extracellular matrix 8 v 7 0.70 0.001 

A0A0S2Z4G4 TPM3 Tropomyosin 3 isoform 1 (Fragment) Actin-binding 2 v 12 0.64 0.002 

Q9UNN8 PROCR Endothelial protein C receptor Blood coagulation 23 v 46 0.49 0.003 

O75594 PGLYRP1 Peptidoglycan recognition protein 1 Innate immunity 23 v 45 0.60 0.003 

P98160 HSPG2 
Basement membrane-specific heparan sulphate 

proteoglycan core protein 
Basement 

membrane/angiogenesis 
23 v 46 0.28 0.003 

P15151 PVR Poliovirus receptor 
Natural killer cell 

adhesion/activation 
14 v 22 0.93 0.004 

P40189 IL6ST Interleukin-6 receptor subunit beta Cytokine binding 2 v 2 1.30 0.004 

P61970 NUTF2 Nuclear transport factor 2 mRNA transport 16 v 41 0.64 0.004 

P17936 IGFBP3 Insulin-like growth factor-binding protein 3 Growth regulation 16 v 31 1.39 0.005 

U6FVB0 CD74-Ntrk1 fusion gene Tyrosine-protein kinase receptor Tyrosine-protein kinase 19 v 39 -0.51 0.005 

Q16270 IGFBP7 Insulin-like growth factor-binding protein 7 Growth regulation 23 v 46 -0.80 0.006 

P07998 RNASE1 Ribonuclease pancreatic Endonuclease 23 v 46 0.45 0.008 

D3DNU8 KNG1 Kininogen 1, isoform CRA_a Vasodilation 23 v 46 -0.50 0.008 

P09603 CSF1 Macrophage colony-stimulating factor 1 Cytokine 20 v 39 0.46 0.009 

P19827 ITIH1 Inter-alpha-trypsin inhibitor heavy chain H1 Serine protease inhibitor 7 v 24 0.78 0.009 

P05154 SERPINA5 Plasma serine protease inhibitor Serine protease inhibitor 19 v 46 -0.52 0.010 

P61916 NPC2 NPC intracellular cholesterol transporter 2 Cholesterol metabolism 9 v 23 0.52 0.011 

P00738 HP Haptoglobin Haemoglobin recycling 23 v 46 0.72 0.011 

P07900 HSP90AA1 Heat shock protein HSP 90-alpha Molecular chaperone 2 v 12 0.71 0.012 

P01024 C3 Complement C3 Innate immunity 19 v 46 -0.35 0.012 

Q9UQV4 LAMP3 Lysosome-associated membrane glycoprotein 3 Adaptive immunity 15 v 34 -0.49 0.013 
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Q4TZM4 HBB Haemoglobin beta chain (Fragment) Oxygen transport 4 v 7 2.21 0.013 

P51654 GPC3 Glypican-3 Protease inhibitor 9 v 24 -0.77 0.013 

Q8NDA2 HMCN2 Hemicentin-2 Extracellular matrix 2 v 9 -0.65 0.013 

Q96S96 PEBP4 Phosphatidylethanolamine-binding protein 4 Extracellular exosome 12 v 18 0.74 0.013 

A0A494C0G5 AGRN Agrin Developmental protein 8 v 5 0.62 0.013 

Q14982 OPCML Opioid-binding protein/cell adhesion molecule Cell adhesion/opioid binding 15 v 45 -0.35 0.014 

P01019 AGT Angiotensinogen Regulation of blood pressure 5 v 8 1.02 0.014 

Q99985 SEMA3C Semaphorin-3C Developmental protein 8 v 14 2.13 0.015 

P13473 LAMP2 Lysosome-associated membrane glycoprotein 2 Autophagy 20 v 46 0.50 0.015 

P19652 ORM2 Alpha-1-acid glycoprotein 2 Transport protein 23 v 46 -0.46 0.016 

P08779 KRT16 Keratin, type I cytoskeletal 16 Cytokeratin 11 v 38 0.52 0.017 

P19835 CEL Bile salt-activated lipase Serine esterase, lipid degradation 15 v 22 0.57 0.018 

O43866 CD5L 
CD5 antigen-like (Apoptosis inhibitor expressed by 

macrophages) 
Inflammatory response regulation 8 v 25 -0.79 0.018 

P42785 PRCP Lysosomal Pro-X carboxypeptidase Carboxypeptidase 7 v 28 0.46 0.019 

P41181 AQP2 Aquaporin-2 Fluid balance 14 v 46 0.69 0.020 

P39059 COL15A1 Collagen alpha-1(XV) chain 
Stabilizes microvessels/muscle 

cells 
14 v 24 0.46 0.020 

P0DOX7 Unknown Immunoglobulin kappa light chain Immune response 7 v 17 0.55 0.020 

P52848 NDST1 
Bifunctional heparan sulphate N-deacetylase/N-

sulfotransferase 1 
Multifunctional enzyme/immune 

response 
23 v 44 -0.92 0.021 

O15240 VGF Neurosecretory protein VGF Neurogenesis/neuroplasticity 22 v 46 -0.49 0.021 

Q96K68 Unknown cDNA FLJ14473 fis Cell membrane 23 v 46 0.33 0.021 

P00749 PLAU Urokinase-type plasminogen activator Plasminogen activator 13 v 31 -0.53 0.022 

A0A193CHQ9 Unknown 10E8 heavy chain variable region (Fragment) Unknown 19 v 43 0.53 0.023 

Q9UMX5 NENF Neudesin Neurotrophic factor 14 v 21 0.48 0.025 

A8TX70 COL6A5 Collagen alpha-5(VI) chain Cell-binding protein 16 v 28 -0.52 0.025 

P15144 ANPEP Aminopeptidase N Aminopeptidase 20 v 38 0.39 0.025 

A0A140T9A1 COL11A2 Collagen alpha-2(XI) chain Extracellular matrix 20 v 36 -0.55 0.029 

Q6UVK1 CSPG4 Chondroitin sulphate proteoglycan 4 Cell proliferation/migration 23 v 46 0.58 0.031 

P78380 OLR1 Oxidized low-density lipoprotein receptor 1 Inflammatory response 4 v 18 -0.44 0.033 

P29508 SERPINB3 Serpin B3 Serine protease inhibitor 11 v 25 0.61 0.036 

P98095 FBLN2 Fibulin-2 Binds to fibronectin 21 v 46 0.31 0.039 

Q9NZH0 GPRC5B G-protein coupled receptor family C group 5 member B Unknown 16 v 34 0.43 0.039 
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Q9NRX4 PHPT1 14 kDa phosphohistidine phosphatase Protein phosphatase 7 v 11 0.89 0.039 

A0A2U8J953 IgH Ig heavy chain variable region (Fragment) Immune response 6 v 7 -1.25 0.041 

P43121 MCAM Cell surface glycoprotein MUC18 Cell adhesion 21 v 46 0.45 0.044 

P02774 GC Vitamin D-binding protein Vitamin D transport/storage 8 v 14 -1.17 0.045 

P01133 EGF Pro-epidermal growth factor Growth factor 23 v 46 -0.42 0.045 

P01709 IGLV2-8 Immunoglobulin lambda variable 2-8 Antigen recognition 23 v 46 0.30 0.045 

P33908 MAN1A1 Mannosyl-oligosaccharide 1,2-alpha-mannosidase IA Glycosidase/hydrolase 18 v 35 -0.39 0.045 

P02766 TTR Transthyretin Thyroid hormone-binding protein 23 v 41 0.50 0.046 

P14780 MMP9 Matrix metalloproteinase-9 
Collagen degradation, leukocyte 

migration 
21 v 46 0.26 0.046 

Q12860 CNTN1 Contactin-1 Cell adhesion/signalling 17 v 45 -0.36 0.048 

Q8NEJ1 Unknown Immunoglobulin lambda-1 light chain-like Cell membrane 3 v 7 -1.05 0.048 

Table 4-10: Significantly altered protein abundances between POLD vs Term-born children.
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Table 4-11: Univariable and multivariable linear regression analysis of early and current life factors and urinary proteins of interest in POLD compared 
to PTc 

SE: Standard error; IUGR: Intrauterine growth restriction; BPD: Bronchopulmonary dysplasia, POLD: prematurity-associated obstructive lung 
disease, PTc: preterm-born controls. Multivariable models only created where ≥2 univariable models had a p-vale <0.1 
Bold*: p value <0.05 Italic: p value <0.1 

Univariable Models 

Variable 
MMP9 S100A8 CTSC 

Beta SE p-value Beta SE p-value Beta SE p-value 

Sex, ref=Male 0.15 0.10 0.15 -0.42 0.26 0.11 -0.02 0.13 0.88 

Age at testing, years -0.01 0.04 0.72 -0.04 0.09 0.65 0.01 0.05 0.78 

IUGR ref=No IUGR -0.02 0.13 0.90 0.32 0.34 0.36 -0.10 0.17 0.55 

BPD ref=No BPD -0.26 0.11 0.017* 0.38 0.28 0.17 -0.03 0.15 0.85 

POLD ref=PTc -0.30 0.13 0.025* -0.69 0.34 0.043* -0.31 0.16 0.058 

Multivariable Models 

BPD ref=No BPD -0.26 0.11 0.017* Not taken forward  
for multivariable model 

Not taken forward  
for multivariable model POLD ref=PTc -0.30 0.13 0.024* 
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Figure 4-16: Significantly altered protein abundances in POLD vs PTc comparisons, showing 
violin plots for (A) S100A8, (B) MMP9 and (C) CTSC, including comparisons with pPRISm and 
Term groups. (D) ROC Curve analysis for S100A8, MMP9 and CTSC in combination for POLD 
vs PTc. 

For violin plots, black dot represents mean, bars standard error of the mean. p-values given 
for between group comparisons. POLD: Prematurity-related obstructive lung disease. 
pPRISm: Prematurity-related preserved ratio with impaired spirometry. PTc: Preterm-born 
controls. AUC: Area under the curve 
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4.3.5 Comparison of urinary proteome before and after inhaled therapies. 

Seven paired urine samples were available for those in the placebo treatment group, eleven 

from the ICS group and fourteen from the ICS/LABA group. Following the normalisation 

process which I had applied to the urinary proteome dataset, there were pre- and post RCT 

treatment samples available from five (71.4%) children in the placebo group, seven (63.6%) 

children in the ICS group and eight (57.1%) children in the ICS/LABA group.  An exploratory 

analysis of the changes in the urinary proteome before after treatment revealed significant 

differences in eight proteins in the ICS group, ten in the ICS/LABA group and the majority of 

the altered proteins were seen in the placebo group, with nineteen significantly altered 

proteins (Table 4-12; Figure 4-17). There were no common significantly altered proteins 

between the ICS and ICS/LABA groups. Lipocalin-1 was detected in a minority of both the 

placebo and ICS/LABA groups samples; however, compared to post-treatment samples, 

lipocalin-1 was significantly elevated in pre-treatment samples in the placebo group, but 

significantly decreased in the pre-treatment samples in the ICS/LABA group. There were no 

other commonly detected significantly altered protein abundances between the placebo and 

ICS or ICS/LABA groups, nor were there any significantly altered proteins within the treatment 

groups that were common to the significantly altered proteins of interest in the POLD or 

pPRISm groups at baseline. Owing to the lack of a consistent pattern of significantly altered 

proteins between the treatment groups, with the majority of changes seen in the placebo 

group, and lack of correlation to proteins of interest identified in the POLD and pPRISm, I 

determined that enrichment analyses of these proteins would not be appropriate and may 

lead to unreliable results. 
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UniProt 
Accession 

Gene 
Name 

Protein Name Replicates Log2FC p-value 

Placebo (n=5) 

Q96NY8 NECTIN4 Nectin-4 2 v 2 -0.51 <0.001 

P05090 APOD Apolipoprotein D 5 v 5 -0.67 0.001 

Q16769 QPCT Glutaminyl-peptide cyclotransferase 5 v 5 -0.60 0.002 

Q92820 GGH Gamma-glutamyl hydrolase 5 v 5 -0.61 0.008 

P54802 NAGLU Alpha-N-acetylglucosaminidase 5 v 5 0.48 0.009 

Q16270 IGFBP7 Insulin-like growth factor-binding protein 7 5 v 5 -0.71 0.010 

Q4G0X9 CCDC40 Coiled-coil domain-containing protein 40 3 v 3 0.83 0.012 

P02656 APOC3 Apolipoprotein C-III 3 v 3 1.44 0.012 

Q9BRK3 MXRA8 Matrix remodelling-associated protein 8 5 v 5 0.61 0.017 

P05109 S100A8 Protein S100-A8 5 v 5 1.51 0.022 

Q9UBC9 SPRR3 Small proline-rich protein 3 5 v 5 2.11 0.023 

Q99715 COL12A1 Collagen alpha-1(XII) chain 5 v 5 -0.10 0.023 

Q96DR8 MUCL1 Mucin-like protein 1 5 v 5 -0.70 0.031 

P10451 SPP1 Osteopontin 5 v 5 -0.74 0.032 

P05451 REG1A Lithostathine-1-alpha 4 v 4 0.64 0.033 

P01011 SERPINA3 Alpha-1-antichymotrypsin 4 v 4 -0.76 0.034 

P31025 LCN1 Lipocalin-1 2 v 2 -0.16 0.035 

Q9BRT3 MIEN1 Migration and invasion enhancer 1 4 v 4 1.24 0.035 

Q9UMX5 NENF Neudesin 2 v 2 0.55 0.035 

P80188 LCN2 Neutrophil gelatinase-associated lipocalin 5 v 5 -0.44 0.037 

P15586 GNS N-acetylglucosamine-6-sulfatase 4 v 4 -0.48 0.049 

ICS (n=7) 

Q8IUL8 CILP2 Cartilage intermediate layer protein 2 7 v 7 -0.39 0.007 

P01034 CST3 Cystatin-C 7 v 7 -0.40 0.011 

O60279 SUSD5 Sushi domain-containing protein 5 4 v 4 -1.43 0.015 

P15328 FOLR1 Folate receptor alpha 7 v 7 -0.53 0.019 

Q9NQ36 SCUBE2 Signal peptide, CUB and EGF-like domain-containing protein 2 2 v 2 -0.47 0.022 

P0DJD8 PGA3 Pepsin A-3 3 v 3 0.92 0.028 

Q8N114 SHISA5 Protein shisa-5 7 v 7 -0.43 0.044 
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P01344 IGF2 Insulin-like growth factor II 2 v 2 -0.76 0.047 

ICS/LABA (n=8) 

P80188 LCN2 Neutrophil gelatinase-associated lipocalin 5 v 5 -0.73 0.004 

P58400 NRXN1 Neurexin-1-beta 6 v 6 0.43 0.004 

Q07654 TFF3 Trefoil factor 3 5 v 5 0.68 0.007 

P78423 CX3CL1 Fractalkine 4 v 4 0.44 0.010 

P00441 SOD1 Superoxide dismutase 8 v 8 0.47 0.012 

P16284 PECAM1 Platelet endothelial cell adhesion molecule 2 v 2 1.59 0.025 

P13521 SCG2 Secretogranin-2 7 v 7 -0.73 0.039 

P19827 ITIH1 Inter-alpha-trypsin inhibitor heavy chain H1 4 v 4 0.52 0.040 

P17936 IGFBP3 Insulin-like growth factor-binding protein 3 4 v 4 -0.41 0.042 

P31025 LCN1 Lipocalin-1 2 v 2 0.51 0.045 

Table 4-12: Proteins significantly altered by treatment in the three RCT groups. 
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Figure 4-17: Volcano Plots demonstrating urine proteins which were significantly altered during the RCT treatments. 

Vertical line represents Log2 fold change of 0. Horizontal line equivalent to a p-value of 0.05. Proteins with a significant difference between groups 
highlighted and labelled with respective gene name. Size of circle relative to replicate number. ICS: Inhaled corticosteroids. ICS/LABA: Inhaled corticosteroids 
in combination with long-acting β2 agonists.
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4.4 Discussion 

In this novel exploratory study, I have characterised the urinary proteome of two major 

phenotypes of PLD, pPRISm and POLD, in one of the largest cohorts of preterm-born children 

studied to date. I have demonstrated persistent changes in the abundance of proteins related 

to inflammatory processes and immune-system function in preterm-born children with low 

lung function, several years after the initial pulmonary insult occurred in the neonatal period. 

In those with a pPRISm phenotype, there was evidence of multiple affected biological 

processes, with an ongoing, systemic inflammatory process, with a possible alteration in T-

lymphocyte biology. Conversely, in those with a POLD phenotype, fewer related altered 

biological processes were identified, with a focus on myeloid cell lines including neutrophil 

and macrophage activity.  

 

Historically, there has been a focus on highlighting the lung function deficits, and underlying 

mechanisms, in those preterm-born survivors with a history of BPD (Galderisi et al., 2019, 

Um-Bergström et al., 2022). As has been demonstrated previously in the RHiNO cohort 

(Cousins et al., 2023) and discussed in section 1.6.2, there is a high prevalence of lung function 

deficits within the preterm-born paediatric population (22.6% vs 9.2% of term-born children), 

a majority of whom do not have BPD. Whilst BPD in isolation is increasingly recognised as a 

poor predictor of future lung function (Hart et al., 2022, Corwin et al., 2018), it is clear that 

early lung injury does impact lung development (Um-Bergström et al., 2022, Simpson et al., 

2018). 

 

It is apparent there is greater complexity to PLD phenotypes, and a need to understand the 

biological mechanisms underlying current spirometry patterns in order to understand their 

pathogenesis, aid their identification and guide potential therapeutic interventions. For this 

reason, I have focussed these analyses by using current lung function phenotypes rather than 
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historical diagnoses. PRISm has recently been described in the adult population (Wan et al., 

2021), and whilst there is a paucity of studies focussing on the paediatric age group, PRISm 

has been associated with increased respiratory symptoms, cardiovascular disease and 

increased all-cause mortality (Higbee et al., 2022, Wan et al., 2021). Within the RHiNO cohort, 

the pPRISm group have previously been demonstrated to have different association to 

bronchodilator response, fraction exhaled nitric oxide (FENO) and early/current life factors 

compared to POLD and PTc groups (Cousins et al., 2023). Yet there is little data available on 

underlying mechanisms.  

 

This urinary proteomic data suggests multiple associations with systemic alterations in 

inflammatory and immune processes are present in the pPRISm group, with a likely increase 

in inflammation, quantities of leucocytes overall and T-lymphocytes in particular. Recent work 

has shown a relative decrease of CD4+ T-cells and increased CD8+ T-cells in brocheoalveolar 

lavage (BAL) fluid from young adults with former BPD, a similar finding to those with COPD. 

CD8+ T-cells were also negatively correlated with both FEV1 and FEV1/FVC (Um-Bergström et 

al., 2022). Adolescent survivors of severe BPD have also been noted to have an increase in 

bronchial wall CD8+ lymphocytes (Galderisi et al., 2019). A recent urine metabolomic study 

has linked early increases in proteins associated with leukocyte mediated immunity to the 

later development of BPD in infants born <29 weeks’ gestation (Ahmed et al., 2022). There is 

a suggestion from my data that the quantity of CD4+ lymphocytes may be downregulated in 

the pPRISm group, of whom only 25.9% had a previous history of BPD. A relative increase in 

CD8+ T-cells number and function has also been associated with severity of COPD (Williams 

et al., 2021), and adult subjects with PRISm are known to be at heightened risk of developing 

COPD over time (Marott et al., 2021).  
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Four proteins (DNASE1, PGLYRP1, B2M and SERPINA3) showed good predictive ability for 

identifying pPRISm from PTc in the ROC analysis. Deoxyribonuclease-1 (DNASE1) is a 

ubiquitous endonuclease which degrades the majority of circulating free DNA released from 

apoptosis and necrotic cell death, with DNASE1 deficiency being previously reported to be 

associated with autoimmune disease in animal models and humans (Keyel, 2017). 

Peptidoglycan recognition protein 1 (PGLYRP1), an innate proinflammatory and antibacterial 

protein, has been linked with asthma in animal models, with PGLYRP1-deficient mice 

exhibiting a decreased Th2/CD4+ response, with a less severe phenotype (Yao et al., 2013). 

Increased serum beta-2-microglobulin (B2M), the light chain of the class I major 

histocompatibility complex, has been linked with COPD disease progression, namely 

development of pulmonary fibrosis, alveolar wall thickening and decreased gas exchange 

capacity (Wu et al., 2020b). The anti-protease alpha-1-antichymotrypsin (SERPINA3) 

manipulates the immune and inflammatory response through inhibition of chymotrypsin and 

cathepsin G. Previous studies have identified increased SERPINA3 in serum from COPD 

subtypes associated with metabolic syndrome (Zhang et al., 2023), with genetic mutations 

resulting in SERPINA3 deficiency resulting in milder disease in patients with COPD (Sandford 

et al., 1998) and cystic fibrosis (CF) (Mahadeva et al., 2001). The reduced abundances I 

observed, of these four proteins in pPRISm were all significantly linked with a possible 

upregulation of inflammatory processes, with DNASE1, PGLYRP1 and B2M also being 

significantly linked with T-cell biology. 

 

Significantly increased abundance of four proteins (MMP9, AGT, S100A8, CTSC) within the 

POLD group (when compared to PTc) were linked with an increase in neutrophil accumulation, 

which is a reasonable hypothesis given the association of neutrophilic inflammation with 

wheezing in asthma (Ray and Kolls, 2017). Whether this is a specific phenotype of PLD or has 

similarities with neutrophilic asthma will need further investigation. Matrix 
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metalloproteinase-9 (MMP9) is a gelatinase protease, stored in neutrophils, involved in 

degradation of the extracellular matrix, enhancing inflammatory cell migration, activating 

proinflammatory cytokines and remodels the lung parenchyma (Davey et al., 2011). An 

increased abundance of MMP9 in respiratory samples has been linked with various lung 

diseases, including preterm neonates who develop BPD (Sweet et al., 2004), and in intubated 

paediatric patients with Acute Lung Injury (Kong et al., 2009). A recent urine metabolomic 

study demonstrated an early increase in MMP9 had a high predictive ability for development 

of BPD in extremely preterm infants (Ahmed et al., 2022).  MMP9 had a significant association 

with BPD in the preterm-born cohort in univariable modelling, which remained in the 

multivariable regression model, along with a significant association with POLD. Studies from 

the RHiNO cohort have previously shown a significant association between BPD and the 

development of a POLD phenotype (Cousins et al., 2023). In older subjects, elevated serum 

MMP9 has been linked with COPD exacerbations (Wells et al., 2018) and FEV1 decline in CF 

(Devereux et al., 2014). 

 

Cathepsin C (CTSC) is a serine protease released by neutrophils that can result in increased 

tissue-degradation, being implicated in the pathophysiology of pneumonia and acute 

respiratory distress syndrome in mechanically ventilated adults (Seren et al., 2021). S100A8 

is also associated with acute lung injury, being secreted by degranulating neutrophils and 

bronchial epithelium during infection/inflammation (Kotsiou et al., 2021). It has been shown 

to be increased in lung diseases resulting in tissue remodelling, including in bronchiolitis 

obliterans in children (Jerkic et al., 2020), and in adults with CF and COPD (Lorenz et al., 2008). 

These three proteins all have a role in tissue remodelling; recent publications from the RHiNO 

cohort using on hyperpolarised 129Xe ventilation and diffusion MRI imaging have reported 

that the POLD group has significantly altered ventilation mechanics (Chan et al., 2023), which 

is likely to be related to tissue remodelling. MMP9, S100A8 and CTSC in combination had 
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good predictive ability for identifying the POLD group using ROC analysis. Whether these 

combinations of proteins have prospective predictive value for PLD phenotypes prior to the 

development of lung function deficits will require further work. 

 

The analysis of the urinary proteome before and after inhaled therapies did not reveal a 

consistent pattern of proteome changes, with most altered protein abundances being 

observed in the placebo group. Overall, this part of the analysis appeared uninformative and 

unreliable. The reasons for this are unclear, however owing to the normalisation process I 

used to ensure robust comparisons between clinical and treatment groups, approximately 

one-third of all the RCT samples had to be excluded from the analysis. This may have limited 

the statistical power of the analysis to detect biologically meaningful changes between the 

groups. It is possible that differences were seen in the post-treatment EBC proteome analysis 

(as discussed in section 2.3.4) as this was sampling the lung more directly, and either inhaled 

therapies do not alter the systemic proteome (as reflected by the urine proteome), or twelve 

weeks of treatment is insufficient to detect significant alterations in systemic biology by this 

methodology. Future studies should aim to recruit larger number of participants to improve 

the discriminating ability of the analysis. 

 

In this analysis, I have studied the urinary proteome. Whilst this is not a lung-specific sample 

type, it easily and non-invasively obtainable, and has been utilised in the study of respiratory 

diseases in neonates (Ahmed et al., 2022) and adults (Martelo-Vidal et al., 2022) previously. 

In addition, as urine lacks the same homeostatic controls as blood, proteome changes in urine 

may be detectable at an earlier stage of disease (Wu and Gao, 2015) which makes it an 

attractive sample type to study in preterm-born children, as they may be at a milder or pre-

symptomatic stage of respiratory impairment, as their lung function continues to develop 

through adolescence into adulthood (Belgrave et al., 2018).  
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4.4.1 Strengths and limitations 

The analysis presented in this chapter represents one of the largest proteomic analyses of 

urine in the paediatric population, and although lung dysfunction was present in 

approximately 30% of the preterm-born group, this is the first study to my knowledge that 

has examined the urinary proteome of this cohort. The regression modelling has 

demonstrated that many of the protein changes I have observed are primarily related to 

current lung function phenotype. I have used a robust TMT-methodology to quantify protein 

abundances and allow accurate comparisons between phenotypes, however there may have 

been proteins with low abundances/low TMT-tag counts that did not reach the limit of 

detection of the mass spectrometer.  

 

To ensure accurate protein quantitation with Proteome Discoverer software I thoroughly 

examined and tested potential normalization strategies to overcome any dilutional effects on 

the urine samples analysed. At present there is no universally accepted proteomic analysis 

workflow, with differing analysis platforms (e.g. mass spectrometry, nuclear magnetic 

resonance, antibody-based platforms) and both labelled and unlabelled techniques, as 

different workflows lend themselves to analysing different biofluids and answering differing 

research questions (Cui et al., 2022, Pappireddi et al., 2019, Aslam et al., 2017). Owing to the 

variety of experimental designs, there is also no universally accepted normalisation method 

for proteomic workflows, and different analysis techniques will generate their own sets of 

limitations in this regard (Valikangas et al., 2018). This makes determining the appropriate 

normalisation method particularly important. This experiment utilised a TMT-based 

technology, which as I have previously discussed in section 1.5.1.1, allows for very accurate 

quantitation of individual proteins to allow for robust comparison of protein abundances 

between samples. Proteome Discoverer v2.1 is a commonly used software that was employed 
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to quantify and annotate the detected proteins, however my discussions with Thermo Fischer 

Scientific highlighted the limitations in the accuracy of the software when analysing data from 

samples with widely varying total protein load.  

 

After thoroughly evaluating a range of commonly used extrinsic (including urinary creatinine 

and total protein content determined by two methods) normalisation methods, it became 

clear that within the technical limitations of the experimental design and Proteome 

Discoverer software, an intrinsic normalisation method using the median total protein 

abundance would generate the most reliable results for this analysis. This meant however 

that 64 (23.6%) of the samples that had been analysed by MS had to be excluded from the 

final statistical analysis. Whilst this ensured that a robust statistical comparison of the 

included samples was performed, a relatively high number of samples had to be excluded 

from the final analysis, and this may have resulted in important biological discoveries being 

undetectable. In addition, there were some significant differences between the included and 

excluded subjects in the POLD group. Of particularly note, there was a significantly lower rate 

of BPD in the POLD group whose samples were included in the analysis when compared to 

those excluded. This may have skewed the proteomic changes seen in this group, and given 

that previous work on the RHiNO cohort has shown a significant association between a 

history of BPD and a POLD phenotype in childhood (Cousins et al., 2023), as I have discussed 

in section 1.6.2.3, the proteome profile for POLD I have generated with this analysis may not 

accurately reflect the group as a whole.  

 

Whilst this TMT-based methodology gives robust protein abundances for comparative 

purposes, it does not give absolute protein concentrations within a sample, which would 

need to be determined to directly apply this data clinically. Whilst this analysis lacks a 
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validation cohort, I am limited by the number of available large cohorts of preterm-born 

children who experienced a contemporary standard of neonatal care from which to sample.  

 

4.5 Conclusions 

In conclusion, in this chapter I have demonstrated distinct changes in the urinary proteome 

associated with the two recently described phenotypes of PLD; POLD and pPRISm. There was 

suggestion of proteins associated with the inflammatory and immune systems in the pPRISm 

group and of potential neutrophilic inflammation in the POLD group. I have also 

demonstrated potential predictive ability of combinations of proteins to identify the POLD 

and pPRISm phenotypes. Further work with specific targeting of these proteins is now 

required to confirm if these proteins can be used clinically to screen prospectively for 

preterm-born children at risk of future lung dysfunction, or whether they can be targeted 

therapeutically. 
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5 Metabolomic Analysis of Urine 

5.1 Introduction: 

As has previously been discussed in the introductory chapter (section 1.4), lung function 

impairments are known long-term consequences of preterm birth, including those with and 

without a neonatal diagnosis of bronchopulmonary dysplasia (BPD), also known as chronic lung 

disease of prematurity (CLD) (Kotecha et al., 2022b, Gibbons et al., 2023). Historically, studies have 

focused on pulmonary outcomes for those with BPD, however, as discussed in section 1.6.2, 

increasingly immature gestational age at birth and intra-uterine growth restriction (IUGR) appear 

to be more strongly associated with prematurity-associated lung disease (PLD) in childhood within 

the RHiNO cohort (Hart et al., 2022), who experienced a contemporary standard of neonatal care. 

 

In Chapter 3, I explored the metabolome of EBC from subjects participating in the RHiNO cohort, 

finding metabolic changes associated with alterations of glutathione metabolism and the urine 

cycle, implying oxidative stress, in the children with a neonatal history of BPD (section 3.3.2). 

However, this analysis did not find associations between key metabolites of interest involved in 

these processes and spirometry parameters. Therefore, these analyses were extended to the study 

the urinary metabolome of samples taken during the RHiNO study, focusing on spirometry-based 

PLD phenotypes, including POLD and pPRISm (as described in section 1.6.2.3 and 4.2.2).   

 

Whilst a proportion of individuals with PLD will respond to inhaled therapies (Goulden et al., 2021), 

the biological pathways implicated in the development of these PLD-associated phenotypes 

remain unclear, with most previous mechanistic work focusing on BPD diagnosed in the neonatal 

period (Um-Bergström et al., 2022) rather than current spirometry deficits. This limits the ability 

to accurately identify endotypes and target potential treatments. As discussed previously (section 

4.1.1), urine lacks the same homeostatic mechanisms as blood, therefore systemic metabolite 
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changes accumulate and the urinary metabolome may show alterations prior to symptoms or 

histopathological changes, reflecting an earlier stage of pathogenesis (Wu and Gao, 2015). 

Therefore, whilst not a lung-specific sample, urine has been extensively used in metabolomic 

studies of respiratory disease, such as asthma and COPD, where it has been demonstrated to show 

metabolomic alterations before they occur in serum (Wang et al., 2013). Alterations in glutathione 

metabolism, lipid metabolism and lipid peroxidation have been implicated in severe asthma 

phenotypes and COPD (Moitra et al., 2023). The early urinary metabolome in preterm infants 

demonstrates specific changes, including increased myoinositol and taurine, that predict later 

development of BPD (Fanos et al., 2014), whilst the exhaled breath condensate from adolescent 

BPD survivors demonstrates distinct metabolite abnormalities possibly related to pulmonary 

surfactant composition and anti-inflammatory pathways (Carraro et al., 2015). However, how 

these patterns relate to current lung function of preterm-born children remains unclear. 

 

5.1.1 Aims 

The urinary metabolome of children with PLD has yet to be studied. Therefore, I performed an 

exploratory metabolomic analysis of urine taken from preterm-born, school-aged children with 

term-born matched controls, aiming to delineate the metabolic pathways underlying the PLD 

phenotypes of POLD and pPRISm. 

 

5.2 Methods: 

5.2.1 Participants: 

This study was conducted on children recruited to the Respiratory Health Outcomes in Neonates 

study (RHiNO, EudraCT: 2015-003712-20) which has been extensively published (Goulden et al., 

2021, Hart et al., 2022, Course et al., 2023b) and described previously in this thesis (sections 1.6, 

2.2.1, 3.2.1 and 4.2.1).  

 



  Chapter Five 

180 
 

5.2.2 Lung Function Assessment: 

The same spirometry assessment as described in Chapter 4 (section 4.2.2) for the urinary 

proteome analysis was used to classify the PLD phenotypes for this urinary metabolome analysis. 

In brief, spirometry (Microloop, Care Fusion, UK) was performed by trained research nurses to ATS/ 

ERS guidelines (Miller et al., 2005) and normalised using GLI references (Quanjer et al., 2012). 

Respiratory medications were withheld prior to assessment (as described in 4.2.2) and children 

were free of respiratory infections for at least three weeks prior to testing. PLD phenotypes were 

categorised into POLD (FEV1<LLN and FEV1/FVC<LLN) and pPRISm (FEV1<LLN and FEV1/FVC≥LLN), 

as previously described (sections 1.6.2.3 and 4.2.2). Preterm-born control (PTc) and Term-born 

children had FEV1≥LLN. BPD was defined as oxygen-dependency at 28 days of age or greater for 

those born <32 weeks’ gestation and at 56 days of age for those born ≥32 weeks’ gestation) 

(Ehrenkranz et al., 2005). IUGR was defined as birthweight <10th percentile adjusted for sex and 

gestation (LMS Growth version 2.77, Medical Research Council, UK).  Neonatal history was 

corroborated with medical records. Doctor-diagnosed asthma was self-reported by parents. 

 

5.2.3 Urine Sampling:  

Urine samples were obtained at the time of spirometry and immediately placed on ice. Samples 

were then aliquoted and stored at -80°C as soon as possible on the day of collection until further 

processing and analysis, as described below.  

 

5.2.4 Metabolome analysis: 

Urine samples were analysed using Gas Chromatography Time-of-Flight Mass Spectrometry 

(GCTOF-MS) at West Coast Metabolomics Centre (University of California, Davis) (Fiehn et al., 

2008), who have previously published their analytical method (Fiehn et al., 2008), aimed at 

identifying constituents of primary metabolism (carbohydrates and sugar phosphates, amino 

acids, hydroxyl acids, free fatty acids, purines, pyrimidines, aromatics, and exposome-derived 
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chemicals). The analytical method and workflows used were similar to that of the EBC metabolome 

analysis, as described in section 3.2.3. A detailed description of the analytical method used for the 

urine samples is provided below.  

 

To extract the metabolite content of the urine sample, 30μL of urine was mixed with 1ml of 

extraction solution (composed of acetonitrile, isopropanol and water in a 3:3:2 (v/v/v) ratio) on 

ice. Samples were vortexed for 10 minutes, agitated for 5 min at 4°C on an orbital mixing 

chilling/heating plate before centrifugation for 2 minutes at 14,000 rcf. The supernatant was 

divided into two 450μL aliquots, with one aliquot kept in reserve. 100μL was removed from the 

remaining aliquot for sample analysis with another 100μL removed for use in the pool sample. All 

processed samples were stored at -20°C pending analysis. 

 

100μL of each sample was fractionated using an Agilent 6890 gas chromatograph (Agilent, Santa 

Clara, CA, USA), controlled using Leco ChromaTOF software v2.32 (LECO, St. Joseph, MI, USA), in a 

Rtx-5Sil MS column (Restek, Bellafonte, PA, USA) (30m length x 0.25mm internal diameter with 

0.25μm film made of 95% dimethyl/5%diphenylpolysiloxane). Quality control (QC) samples 

comprised two method blanks (involving all the reagents and equipment used to control for 

laboratory contamination) and four calibration curve samples, which spanned one order of 

dynamic range and consisted of 31 pure reference compounds. Column temperature was 

maintained between 50-330°C, with a helium mobile phase. Injection volumes of 0.5μL were used, 

with injection temperatures starting at 50°C, ramped up to a maximum temperature of 250°C by 

12°Cs-1.  Oven temperature program was set to 50°C for 1 min, then ramped at 20°C min-1 to 330°C, 

and held constant for 5 min. The analytical GC column was protected by a 10m long empty guard 

column which was cut by 20cm intervals whenever the reference mixture QC samples indicated 

problems caused by column contaminations. This sequence of column cuts has been validated, 

with no detrimental effects being detected with respect to peak shapes, absolute or relative 
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metabolite retention times or reproducibility of quantifications. This chromatography method 

yields retention and separation of primary metabolite classes (amino acids, hydroxyl acids, 

carbohydrates, sugar acids, sterols, aromatics, nucleosides, amines and miscellaneous 

compounds) with narrow peak widths of 2–3s and very good within-series retention time 

reproducibility of better than 0.2s absolute deviation of retention times. Automatic liner 

exchanges after each set of 10 injections were used, which reduces sample carryover for highly 

lipophilic compounds. 

 

All spectra were acquired using a Leco Pegasus IV (LECO, St. Joseph, MI, USA) time-of-flight mass 

spectrometer, with unit mass resolution at 17 spectra s-1 from 80-500Da at -70eV ionization energy 

and 1800V detector voltage with a 230°C transfer line and a 250°C electron ion source. Raw data 

files were normalised to QC/pool samples using the systematic error removal by random forest 

(SERRF) method(Fan et al., 2019). Raw data files were processed and metabolites identified with 

the BinBase metabolomics database (Lai et al., 2018), using an algorithm based on the following: 

validity of chromatogram (<10 peaks with intensity>107 counts s-1), unbiased retention index 

marker detection (MS similarity >800, validity of intensity range for high m/z marker ions), 

retention index calculation by 5th order polynomial regression. Spectra are cut to 5% base peak 

abundance and matched to database entries from most to least abundant spectra using the 

following matching filters: retention index window ±2,000 units (equivalent to about ±2s retention 

time), validation of unique ions and apex masses (unique ion must be included in apexing masses 

and present at >3% of base peak abundance), mass spectrum similarity must fit criteria dependent 

on peak purity and signal/noise ratios and a final isomer filter. Quantification of metabolites are 

reported as spectral peak height of the unique ion detected (m/z value) at the specific retention 

index. Peak heights are more precise for metabolites with low abundance than peak areas, due to 

the larger influence of baseline determinations on areas compared to peak heights. Raw data files 
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were processed, and metabolites annotated using the BinBase database (Lai et al., 2018) with a 

standardised algorithm.  

 

5.2.5 Statistical analysis: 

Demographics were compared using chi-squared or one-way ANOVA with Bonferroni correction 

as appropriate. Metabolite quantities were normalised using creatinine (as detected by MS), as 

recommended to account for dilutional effects (Li et al., 2022), log10 transformed and visually 

inspected for normality. Metabolites with mean and median peak intensities below the limit of 

detection were removed to ensure robust statistical comparisons. Fold changes between groups 

were calculated using mean metabolite quantity for each group. ANOVA with post-hoc Bonferroni 

correction was used to compare metabolite quantities between groups. Metabolite Set 

Enrichment Analysis (MSEA; identifying metabolic processes linked to significantly altered 

metabolites) was performed on all significantly altered metabolites between groups using the 

Small Molecule Pathways Database (SMPDB) (https://www.smpdb.ca), which is based upon the 

Human Metabolome Database (HMDB). Univariable and multivariable linear regression models 

identified significant associations between participant characteristics, spirometry values and 

metabolites of interest. p<0.05 was considered statistically significant. I used R v4.0.4 (R 

Foundation for Statistical Computing, Austria), including R packages “stringr”, “dplyr”, “ggplot2” 

and “ggpubr”, as well as MetaboAnalyst v5.0 (www.metaboanalyst.ca) for all analyses in this 

chapter. 

 

5.3 Results: 

From 768 children (565 Preterm-born and 203 Term-born) recruited to RHiNO, urine was analysed 

from 292 participants; I excluded 1 sample from a PTc subject as an outlier due to negligible overall 

metabolite detection. Demographics of the remaining 291 participants are given in Table 5-1. 

https://www.smpdb.ca/
http://www.metaboanalyst.ca/
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Preterm-born children had higher rates of doctor-diagnosed asthma than the Term-born group (41 

(20.8%) vs 6 (6.4%), p=<0.002). 51 (25.9%) of the Preterm-born subjects had BPD diagnosed in 

infancy (21 [41.2%] mild, 30 [58.8%] moderate/severe(Ehrenkranz et al., 2005)), and 48 (24.4%) 

had an FEV1<LLN. Of those, 25 (52.1%) were classified as pPRISm and 23 (47.9%) as POLD. Paired 

urine samples were available from 28 RCT participants, 10 from the ICS group, 11 from the 

LICS/LABA group and 7 from the placebo group. 242 metabolites were detected and annotated in 

total, with 238 (98.4%) metabolites having mean and median abundances above the limit of 

detection across all samples (Table 8-3). 

 

5.3.1 Comparisons between POLD and preterm- and term-control groups: 

Comparison between the POLD group and PTc group revealed several significant differences (Table 

5-1) including increased wheeze-ever (82.6% vs 51.0%, p=0.009), asthma (39.1% vs 17.5%, 

p=0.017), IUGR (39.1% vs 12.1%, p=<0.001) and BPD (47.8% vs 22.2%, p=0.009). When compared 

to the pPRISm group (Table 1), POLD had higher wheeze-ever (82.6% vs 52.0%, p=0.025) and higher 

rates of IUGR (39.1% vs 8.0%, p=0.01). 

 

Of 238 detected metabolites, 204 were detected in every sample from the POLD group. 49 (20.6%) 

metabolites were significantly altered when compared to PTc (Figure 5-1;Table 5-2), and 69 (29.0%) 

when compared to Term-born children (Figure 5-1, Table 5-3), with 31 metabolites common 

between the two comparisons. Interestingly, all significantly altered metabolites were of lower 

quantity in the POLD group when compared with the PTc group, apart from beta-alanine, which 

was elevated (log2FC 0.55, p=0.047). 
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Variable Term born (≥37/40) 
n = 94 

Preterm born (≤34/40) 
n = 197 

Preterm born Controls 
n = 149 

POLD 
n = 23 

pPRISm 
n = 25 

Current Characteristics 

Sex (male), n(%) 50 (53.2) 108 (54.8) 83 (56.1) 9 (39.1) 16 (64.0) 

Ethnicity (white), n(%) 91 (96.8) 190 (96.4) 143 (96.0) 22 (95.7) 25 (100) 

Age at testing (years), mean (SD) 9.7 (1.2) 10.0 (1.2) 10.0 (1.2) 9.9 (1.4) 10.2 (1.2) 

Weight (kg), mean (SD) 37.1 (10.8) 36.6 (10.3) 37.1 (10.1) 33.5 (10.8) 36.7 (10.7) 

Body Mass Index (kg/m2), mean (SD) 18.0 (3.4) 17.9 (3.3) 18.1 (3.2) 16.8 (3.1) 17.4 (3.5) 

Wheeze-ever, n(%) 25 (26.6) 108 (54.8)*** 76 (51.0) 19 (82.6)††₴ 13 (52.0) 

Doctor-diagnosed asthma, n(%) 6 (6.4) 41 (20.8)** 26 (17.5) 9 (39.1)† 6 (24.0) 

Neonatal Characteristics 

Gestational age (weeks), mean (SD) 39.9 (1.2) 30.7 (2.8)*** 30.9 (2.8) 29.5 (2.4) 30.7 (3.1) 

Birthweight (g), mean (SD) 3522 (522) 1666 (607)*** 1731 (590) 1313 (578)†† 1605 (639) 

Birthweight (z-score), mean (SD) 0.12 (1.0) 0.20 (1.35) 0.33 (1.31) -0.35 (1.56) -0.12 (1.22) 

Intrauterine growth restriction, n(%) 4 (4.3) 29 (14.7)** 18 (12.1) 9 (39.1)†††₴ 2 (8.0) 

Antenatal smoking, n(%) 4 (4.3) 23 (11.7)‡* 19 (12.8) 2 (8.7) 2 (9.1) 

Antenatal steroids, n(%) 2 (2.1) 167 (89.8)‡*** 127 (85.2) 18 (78.3) 22 (88.0) 

Mechanical ventilation, n(%) 1 (1.1) 82 (41.6)*** 61 (40.9) 14 (60.9) 7 (28.0) 

Bronchopulmonary Dysplasia (BPD), n(%) 0 (0) 51 (25.9)*** 33 (22.2) 11 (47.8)†† 7 (28.0) 

Table 5-1: Participant demographics 

Preterm vs Term: *p<0.05, **p<0.01, ***p<0.001. pPRISm/POLD vs Preterm born control: †p<0.05, ††p<0.01, †††p<0.001. pPRISm vs POLD: ₴p<0.05, 
₴₴p<0.01, ₴₴₴p<0.001 by Chi-squared/independent samples t-test/ANOVA with post-hoc Bonferroni correction as appropriate. 
pPRISm: Prematurity-related preserved ratio with impaired spirometry. POLD: Prematurity-related obstructive lung disease.  
‡Antenatal steroid data missing for 11 preterm-born children. Antenatal smoking data missing for 4 preterm-born children. 
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MSEA linked 14 significantly altered metabolites between the POLD and PTc groups to nine significantly 

altered metabolic processes (Table 5-4). Capric acid (log2FC -0.28, p=0.003), caprylic acid (-0.18, 0.003), 

and ceratinic acid (-0.64, 0.014) were linked with β-oxidation of very-long chain fatty acids (p=0.004). 

Alanine (log2FC -0.21, p=0.046), glutamic acid (-0.24, 0.023) and pyroglutamic acid (-0.17, 0.035) were 

linked with glutathione metabolism (p=0.008) (Figure 5-2). Comparisons of these six metabolites 

between all four study groups are shown in Figure 5-3. Significant reductions in capric acid, caprylic 

acid, ceratinic acid and glutamic acid were observed when compared to both the PTc and Term-born 

groups (p<0.05). In multiple group comparisons, pyroglutamic acid was significantly lower in the POLD 

group when compared to the Term-born group (p=0.029), and near significantly lower when compared 

to PTc (p=0.083). Univariable and multivariable linear regression analyses of these six metabolites with 

early- and current-life factors in the preterm-born group are given in Table 5-6. Alanine and glutamic 

acid had a significant association with only POLD in univariable analysis (p=0.046 and 0.022 

respectively). In multivariable analysis, capric acid, caprylic acid, ceratinic acid and pyroglutamic acid 

all maintained a significant association with the POLD group (p=0.009, 0.025, 0.01 and 0.044 

respectively). Figure 5-4 shows the relationship between these six metabolites and spirometry values 

(FEV1, FVC, FEV1/FVC and percent predicted forced expiratory flow between 25% and 75% of vital 

capacity (FEF25%-75%)). Significant associations were seen between FEV1 and capric acid, caprylic acid 

and ceratinic acid (p=0.013, 0.0034 and 0.005 respectively), FVC and capric and caprylic acid (p=0.043 

and 0.028 respectively), FEV1/FVC and ceratinic acid (p=0.024), and FEF25-75 and capric acid, caprylic 

and ceratinic acid (p=0.014, 0.0048 and 0.0018 respectively).
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Metabolite Retention Index m/z PubChem ID % of samples Log2FC p-value 

POLD vs PTc n=23 v 149 

7-methylguanine 768706 294 11361 100 -0.27 <0.001 

xylonic acid 589278 333 6602431 99.4 -0.66 <0.001 

myristic acid 634414 285 11005 100 -0.32 0.001 

citramalic acid 456203 247 1081 100 -0.44 0.002 

capric acid 452386 229 2969 100 -0.28 0.003 

caprylic acid 343457 201 379 100 -0.18 0.003 

salicylic acid 480699 267 338 98.8 -0.56 0.003 

1-monostearin 959214 203 24699 100 -0.32 0.004 

tartaric acid 534291 292 444305 99.4 -3.74 0.004 

ribose 553071 217 10975657 100 -0.22 0.005 

2-hydroxypyrazinyl-2-propenoicacidethylester 493127 121 5371086 100 -0.31 0.008 

ribitol 575497 217 827 100 -0.25 0.009 

quinic acid 634900 345 6508 100 -1.70 0.011 

erythritol 471922 217 222285 100 -0.22 0.012 

2-ketoisocaproic acid 290473 89 70 100 -0.50 0.012 

3,4-dihydroxycinnamic acid 748847 219 689043 100 -0.52 0.013 

2,8-dihydroxyquinoline 626989 290 97250 100 -0.31 0.013 

ceratinic acid 1033286 145 10469 86.0 -0.64 0.014 

adenosine 918039 236 60961 100 -0.22 0.014 

UDP-glucuronic acid 585473 217 17473 100 -0.52 0.015 

benzoic acid 339067 179 243 100 -0.24 0.015 

xylitol 567437 217 6912 100 -0.20 0.016 

xylulose 553450 173 439205 100 -0.24 0.017 

threitol 467595 217 169019 100 -0.32 0.017 

biphenyl 426625 154 7095 97.1 -0.26 0.018 

2-hydroxyhippuric acid 725465 206 10253 100 -0.88 0.019 

pentose 540818 103 229 100 -0.96 0.020 

isothreonic acid 489385 292 151152 100 -0.15 0.021 

lactose 929908 204 11333 98.3 -0.46 0.021 

N-acetylmannosamine 722897 319 439281 100 -0.35 0.022 

glutamic acid 529100 246 33032 100 -0.24 0.023 

glucuronic acid 665901 333 94715 100 -0.20 0.023 

xanthine 701688 353 1188 100 -0.22 0.024 
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2-picolinic acid 383668 180 1018 100 -0.52 0.026 

xylose 544100 103 135191 100 -0.80 0.026 

galactinol 1015529 204 N/A 100 -0.37 0.028 

sophorose 959716 319 N/A 98.3 -0.42 0.029 

3,4-dihydroxybenzoic acid 620200 193 72 100 -0.62 0.029 

2-monopalmitin 890356 129 123409 100 -1.12 0.030 

butane-2,3-diol 205778 117 262 100 -0.97 0.030 

pyroglutamic acid 485935 156 7405 100 -0.17 0.035 

glutamine 600000 156 5961 100 -0.17 0.035 

digitoxose 521798 117 94168 100 -0.06 0.040 

kynurenic acid 726186 231 3845 100 -0.44 0.043 

fumaric acid 390016 245 444972 100 -0.16 0.043 

glycerol 344466 205 753 100 -0.43 0.045 

alanine 244189 116 5950 100 -0.21 0.046 

beta-alanine 435564 248 239 100 0.55 0.047 

threonic acid 497572 292 5460407 100 -0.39 0.048 

pPRISm vs PTc n = 25 v 149 

beta-mannosyl glycerate 774364 204 5460194 81.6 0.67 0.002 

oleic acid 781527 339 445639 91.4 -0.52 0.021 

pentitol 563801 307 827 100 -0.14 0.035 

Table 5-2: Significantly altered urine metabolites in POLD and pPRISm groups when compared to preterm-born controls. 

m/z: Mass-to-charge ratio. Log2FC: Log2 fold change between groups 
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Metabolite Retention Index m/z PubChem ID % of samples Log2FC p-value 

POLD vs Term n=23 v 94 

biphenyl 426625 154 7095 98.3 -0.42 0.0003 

xylonic acid 589278 333 6602431 99.1 -0.94 0.0003 

myristic acid 634414 285 11005 100 -0.48 0.0005 

guanine 744307 352 764 99.1 -0.48 0.0007 

threitol 467595 217 169019 100 -0.73 0.002 

xylose 544100 103 135191 100 -1.14 0.002 

enolpyruvate 234394 217 1005 100 -0.43 0.002 

2-ketoisocaproic acid 290473 89 70 100 -0.50 0.002 

glutamic acid 529100 246 33032 100 -0.41 0.002 

pentose 540818 103 229 100 -1.51 0.002 

butane-2,3-diol 205778 117 262 100 -0.81 0.003 

2-hydroxyhippuric acid 725465 206 10253 100 -0.71 0.003 

5-hydroxymethyl-2-furoic acid 497561 123 80642 100 -1.32 0.003 

furoylglycine 553990 95 21863 100 -0.63 0.004 

urea 323728 189 1176 100 -1.55 0.004 

ribitol 575497 217 827 100 -0.34 0.005 

allantoic acid 726050 259 203 100 -0.48 0.005 

galactinol 1015529 204 NA 100 -0.48 0.005 

citramalic acid 456203 247 1081 100 -0.63 0.005 

6-deoxyglucitol 596111 319 151266 99.1 -2.15 0.005 

1-monostearin 959214 203 24699 100 -0.43 0.005 

quinic acid 634900 345 6508 100 -2.82 0.005 

capric acid 452386 229 2969 100 -0.32 0.006 

caprylic acid 343457 201 379 100 -0.19 0.006 

4-pyridoxic acid 673225 309 6723 100 -0.29 0.008 

7-methylguanine 768706 294 11361 100 -0.29 0.008 

gluconic acid 693148 333 6857417 100 -0.33 0.009 

hypoxanthine 619128 265 790 100 -0.55 0.010 

tartaric acid 534291 292 444305 99.1 -4.82 0.010 

2-hydroxypyrazinyl-2-propenoicacidethylester 493127 121 5371086 100 -0.42 0.011 

erythritol 471922 217 222285 100 -0.34 0.011 



  Chapter Five 

190 
 

mannose 645856 205 18950 100 -0.63 0.011 

deoxypentitol 528774 231 270738 100 -0.44 0.012 

ribose 553071 217 10975657 100 -0.29 0.013 

uric acid 730691 441 1175 100 -0.29 0.013 

N-acetylmannosamine 722897 319 439281 100 -0.47 0.014 

threonic acid 497572 292 5460407 100 -0.44 0.014 

azelaic acid 610551 317 19347555 99.1 0.10 0.015 

hippuric acid 638579 206 NA 100 -0.39 0.015 

gluconic acid lactone 645815 220 7027 100 -0.26 0.018 

butyrolactam 277199 142 12025 100 -0.28 0.018 

adenine 646534 264 190 100 -0.24 0.019 

shikimic acid 611100 204 8742 100 -0.70 0.021 

pyrophosphate 327517 110 1023 100 -0.51 0.021 

pyroglutamic acid 485935 156 7405 100 -0.28 0.023 

N-carbamoylaspartate 611345 257 93072 100 -0.40 0.023 

1-methylinosine 1026110 259 65095 68.4 -1.17 0.023 

parabanic acid 464991 100 67126 100 -0.29 0.024 

UDP-glucuronic acid 585473 217 17473 100 -0.56 0.025 

indole-3-lactate 764586 202 92904 100 -0.37 0.025 

maleimide 245118 154 10935 100 -0.28 0.027 

thymine 420133 255 1135 100 -0.33 0.030 

aconitic acid 586815 229 643757 100 -0.24 0.031 

kynurenic acid 726186 231 3845 100 -0.44 0.034 

uracil 385735 241 1174 100 -0.43 0.034 

pyrogallol 495011 239 1057 100 -0.54 0.034 

xanthine 701688 353 1188 100 -0.28 0.035 

raffinose 1120886 361 439242 100 -0.49 0.036 

cholesterol 1078536 129 5997 100 -0.64 0.036 

glycerol 344466 205 753 100 -0.43 0.038 

3-hydroxyanthralinic acid 640146 354 NA 100 -0.34 0.040 

2-picolinic acid 383668 180 1018 100 -0.40 0.041 

lactic acid 217657 191 612 100 -0.82 0.041 

methanolphosphate 289520 241 13130 61.5 -1.40 0.041 

benzoic acid 339067 179 243 100 -0.33 0.042 

N-acetylaspartic acid 548028 158 65065 100 -0.24 0.042 
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Table 5-3: Significantly altered urine metabolites between POLD and pPRISm groups compared with term-born controls. 

 

 

 

cellobiose 932179 204 6255 100 -0.55 0.046 

4-hydroxyphenylacetic acid 542795 179 127 100 -0.32 0.046 

asparagine 553743 231 6267 100 -0.22 0.049 

pPRISm vs Term n = 25 v 94 

oleic acid 781527 339 445639 100 -0.79 0.002 

beta-mannosyl glycerate 774364 204 5460194 100 0.39 0.009 

lactic acid 217657 191 612 100 -1.05 0.012 

furoylglycine 553990 95 21863 100 -0.98 0.013 

methanolphosphate 289520 241 13130 99.2 -0.73 0.019 

indole-3-lactate 764586 202 92904 98.3 -0.48 0.028 

glycyl proline 691357 174 3013625 99.2 0.44 0.028 

butane-2,3-diol 205778 117 262 100 -0.48 0.034 

3-hydroxyanthralinic acid 640146 354 NA 100 -0.30 0.044 

biphenyl 426625 154 7095 100 -0.16 0.044 

anthranilic acid 530297 266 NA 100 -0.31 0.044 

3-(3-hydroxyphenyl)propionic acid 583925 192 91 98.3 0.44 0.046 

xylonic acid 589278 333 6602431 100 -0.47 0.047 
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Figure 5-1: Volcano plots demonstrating significantly altered urine metabolites between groups (A) 
POLD vs PTc (B) POLD vs Term (C) pPRISm vs PTc (D) pPRISm vs Term. 

Fold changes between groups log2 transformed for visualization. Vertical line represents a Log2FC of 0. 
Horizontal line is equivalent to p-value 0.05. Size of point is relative to number of samples in which 
metabolite was detected. Metabolite name given if p<0.05. Log2FC: Log2 fold-change between groups. 
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Table 5-4 Metabolite Set Enrichment Analysis demonstrating altered biological processes implicated by significantly altered urine metabolite quantities 
between POLD and pPRISm groups when compared to preterm- and term-born controls. 

POLD: prematurity-associated obstructive lung disease. pPRISm: prematurity-associated preserved ratio impaired spirometry. PTc: preterm-born controls. 

Metabolic Process Significantly altered metabolites 
Enrichment 

Ratio 
p-

value 

POLD vs PTc 

Urea Cycle Alanine, fumaric acid, glutamic acid, glutamine 6.7 0.002 

β-oxidation of Very Long Chain Fatty Acids Capric acid, caprylic acid, ceratinic acid 8.6 0.004 

Aspartate Metabolism Beta-alanine, fumaric acid, glutamic acid, glutamine 5.6 0.005 

Glutathione Metabolism Alanine, glutamic acid, pyroglutamic acid  7.0 0.008 

Purine Metabolism Adenosine, fumaric acid, glutamic acid, glutamine, xanthine 3.3 0.014 

Glucose-Alanine Cycle Alanine, glutamic acid 7.4 0.027 

Amino Sugar Metabolism Glutamic acid, glutamine, N-acetylmannosamine 4.4 0.027 

Fatty Acid Biosynthesis Capric acid, caprylic acid, myristic acid 4.2 0.032 

Alanine Metabolism Alanine, glutamic acid 6.0 0.045 

POLD vs Term 

Aspartate Metabolism 
Asparagine, glutamic acid, N-acetyl-L-aspartic acid, pyrophosphate, ureidosuccinic 
acid 

4.4 0.004 

Galactose Metabolism D-mannose, galactinol, glycerol, pyrophosphate, raffinose,  4.1 0.006 

Purine Metabolism Adenine, guanine, glutamic acid, hypoxanthine, pyrophosphate, uric acid, xanthine 2.9 0.007 

pPRISm vs PTc 

No significant enrichment 

pPRISm vs Term 

Tryptophan Metabolism 3-hydroxyanthranilic acid, anthranilic acid  11.4 0.01 
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Figure 5-2: Diagram representing glutathione metabolism, highlighting altered urine metabolites within the POLD group and links with abnormalities in COPD 
described in the literature. 
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Figure 5-3: Violin Plots of Significantly Altered Urine Metabolites in POLD group, grouped by associated metabolic process. 

Black dot and bars show mean and standard error of the mean (SEM). Bars give p-values from ANOVA with post-hoc Bonferroni correction for between group 
comparisons. 
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Table 5-5: Univariable and multivariable linear regression analyses of identified urinary metabolites of interest with early and current life factors in preterm-born children. 

Variables with a p<0.1 in univariable analysis combined into multivariable model. *and bold indicates p<0.05. Dashes indicate a variable where p≥0.1 in univariable analysis 
and therefore not included in multivariable model. SE: Standard error, BMI: Body Mass Index, IUGR: Intrauterine growth restriction, POLD: prematurity-associated 
obstructive lung disease

Variable 

β-oxidation of Very Long Chain Fatty Acids Glutathione Metabolism 

Capric Acid Caprylic Acid Ceratinic Acid Alanine Glutamic Acid Pyroglutamic acid 

Beta SE p Beta SE p Beta SE p Beta SE p Beta SE p Beta SE p 

Univariable Models 

Sex, ref=Male -0.05 0.02 0.019* -0.02 0.03 0.51 -0.04 0.03 0.17 -0.04 0.03 0.19 0.03 0.02 0.15 -0.06 0.02 <0.001* 

Age at testing, 
years 

0.01 0.01 0.22 0.01 0.01 0.62 0.01 0.01 0.27 0.02 0.01 0.21 0.01 0.01 0.25 -0.01 0.01 0.11 

Weight, z-
score 

0.01 0.01 0.60 
-

0.001 
0.01 0.94 0.003 0.01 0.82 -0.01 0.01 0.55 0.01 0.01 0.34 -0.02 0.01 0.047* 

BMI, z-score 0.002 0.01 0.81 -0.01 0.01 0.59 <0.001 0.01 0.93 -0.02 0.01 0.19 0.01 0.01 0.44 -0.02 0.01 0.024* 

Gestational 
age, weeks 

0.003 0.004 0.41 0.01 0.01 0.04* 0.005 0.005 0.33 0.01 0.01 0.35 -0.003 0.004 0.46 <0.001 0.004 0.99 

Birthweight, z-
score 

-0.01 0.01 0.18 -0.01 0.01 0.36 -0.01 0.01 0.28 -0.002 0.01 0.83 -0.01 0.01 0.11 -0.01 0.01 0.09 

IUGR, ref=No 
IUGR 

-0.01 0.03 0.70 -0.04 0.04 0.35 -0.004 0.04 0.92 -0.05 0.05 0.31 0.01 0.03 0.71 0.01 0.03 0.84 

BPD, ref=No 
BPD 

0.01 0.03 0.66 0.01 0.04 0.89 -0.003 0.03 0.92 0.01 0.04 0.89 0.03 0.02 0.24 0.03 0.02 0.12 

POLD, ref=PTc -0.10 0.04 0.004* -0.14 0.05 0.004* -0.15 0.05 0.001* -0.10 0.05 0.046* -0.08 0.03 0.022* -0.06 0.03 0.036* 

pPRISm, 
ref=PTc 

-0.05 0.03 0.12 -0.04 0.05 0.37 -0.05 0.04 0.22 -0.05 0.05 0.29 -0.02 0.03 0.64 -0.003 0.03 0.91 

Asthma, 
ref=No 

-0.04 0.03 0.20 -0.09 0.04 0.021* -0.10 0.03 0.002* -0.05 0.04 0.18 -0.03 0.03 0.25 -0.07 0.02 0.003* 

Multivariable Models 

Sex, ref=Male -0.05 0.02 0.03* - - - - - - 

Not taken forward for 
multivariable analysis 

Not taken forward for 
multivariable analysis 

-0.08 0.02 <0.001* 

BMI, z-score - - - - - - - - - -0.02 0.01 0.019* 

Gestational 
age, weeks 

- - - 0.01 0.005 0.10 - - - - - - 

Birthweight, z-
score 

- - - - - - - - - -0.01 0.01 0.036* 

POLD, ref=PTc -0.09 0.04 0.009* -0.06 0.05 0.025* -0.12 0.05 0.010* -0.06 0.03 0.044* 

Asthma, 
ref=No 

- - - -0.06 0.04 0.06 -0.08 0.03 0.016* -0.06 0.02 0.009* 
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In addition to alanine and glutamic acid, significant differences in fumaric acid (log2FC -0.16, p=0.043) 

and glutamine (-0.17, 0.035) were linked by MSEA to urea cycle metabolism (p=0.002) (Table 5-4). In 

addition to fumaric acid, glutamic acid, and glutamine, MSEA linked a significant increase of beta-

alanine (log2FC 0.55, p=0.047) to aspartate metabolism (p=0.005). Results of linear regression analyses 

for these metabolites are shown in Table 5-6. Fumaric acid and glutamine remained significantly 

associated with the POLD group in multivariable models (p=0.021 and 0.012 respectively), but beta-

alanine was no longer significant on multivariable analysis (p=0.16).  

 

Figure 5-5 shows interactions between the significantly altered metabolic processes between the POLD 

and PTc groups identified by MSEA. Direct relationships exist between alanine metabolism, aspartate 

metabolism and urea cycle. Purine and glutathione metabolism were also linked by glutamate 

metabolism, which showed a near-significant enrichment (p=0.08).  

 

69 metabolites were significantly altered in the POLD group when compared to the Term-group (Table 

5-3). MSEA linked 14 to three significantly altered metabolic processes (Table 5-4). As with the 

comparison with the PTc group, aspartate metabolism (p=0.004) and purine metabolism (p=0.007) 

showed significant enrichment, however glutamic acid was the only common metabolite observed. 

Galactose metabolism showed a significant enrichment on comparison of the POLD with the term-

born group (p=0.006) (Table 5-4).  

 

5.3.2 Comparisons between pPRISm and preterm- and term-control groups: 

Of 238 detected metabolites, 204 were also detected in every sample from the pPRISm group. 3 (1.3%) 

metabolites were significantly altered when compared to PTc (Figure 5-1; Table 5-2) and 13 (5.5%) 

when compared to the Term-born subjects (Figure 5-1, Table 5-3), with two metabolites being common 

between the two comparisons (beta-mannosyl glycerate and oleic acid). 

 



  Chapter Five 

198 
 

 

 
Figure 5-4 Scatter plots with linear regression lines demonstrating relationship between metabolites 
of interest and spirometry variables in preterm-born children. 

Points represent individual metabolite measurements. Line represents linear regression model, with 
95% confidence interval represented by grey shading. FEV1: Forced expiratory volume in one second. 
FVC: Forced vital capacity. FEF25-75: Forced expiratory flow between 25% and 75% of vital capacity. 
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Table 5-6: Univariable linear regression analyses of identified urinary metabolites of interest identified as part of Aspartate Metabolism and Urea Cycle with early and current 
life factors in preterm-born children. 

*and bold indicates p<0.05, italics indicate p<0.1. Dashes indicate a variable where p≥0.1 in univariable analysis and therefore not included in multivariable model. Variables 
with a p-value <0.1 in univariable model included in multivariable model. BMI: Body Mass Index, IUGR: Intrauterine growth restriction, BPD: Bronchopulmonary dysplasia, 
POLD: prematurity-associated obstructive lung disease, pPRISm: prematurity-associated preserved ratio impaired spirometry 

 

Variable 
Beta-Alanine Fumaric Acid Glutamine 

Beta SE p-value Beta SE p-value Beta SE p-value 

Univariable Models 

Sex, ref=Male 0.01 0.05 0.86 -0.02 0.02 0.30 -0.03 .02 0.16 

Age at testing, years -0.01 0.02 0.55 -0.004 0.01 0.64 0.002 0.01 0.79 

Weight, z-score -0.05 0.02 0.021* -0.02 0.01 0.08 -0.01 0.01 0.14 

BMI, z-score -0.05 0.02 0.003* -0.02 0.008 0.049* -0.01 0.01 0.052 

Gestational age, weeks <0.001 0.01 0.99 <0.001 0.004 0.95 0.003 0.004 0.47 

Birthweight, z-score -0.04 0.02 0.032* -0.01 0.01 0.19 -0.01 0.01 0.29 

IUGR, ref=No IUGR 0.11 0.06 0.098 -0.005 0.03 0.88 -0.02 0.03 0.45 

BPD, ref=No BPD 0.05 0.05 0.34 0.03 0.03 0.24 0.01 0.02 0.64 

POLD, ref=PTc 0.14 0.07 0.043* -0.07 0.03 0.055 -0.07 0.03 0.034* 

pPRISm, ref=PTc 0.09 0.07 0.19 0.01 0.03 0.81 -0.02 0.03 0.61 

Asthma, ref=No 0.01 0.06 0.90 -0.04 0.03 0.20 -0.04 0.03 0.12 

Multivariable Models 

BMI, z-score -0.04 0.02 0.025* -0.02 0.01 0.021* -0.02 0.01 0.017* 

Birthweight, z-score -0.02 0.02 0.21 - - - - - - 

POLD, ref=PTc 0.10 0.07 0.16 -0.08 0.03 0.021* -0.08 0.03 0.012* 
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Figure 5-5: Interactions between metabolic processes identified by Metabolite Set Enrichment Analysis (MSEA) as significantly enriched in the urine metabolome of the POLD 
group compared to PTc. 

Processes colour coded according to their p-value. Size of circle relative to enrichment ratio of metabolic process. ER: Enrichment ratio 
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Beta-mannosyl glycerate (log2FC 0.67, p=0.002), oleic acid (-0.52, 0.021) and pentitol (-0.14, 0.035) 

were significantly altered in the pPRISm group when compared to PTc, however MSEA showed no 

significant links to any specific metabolic process (Table 5-4). Two altered metabolites in the pPRISm 

group when compared to the Term-born group (3-hydroxyanthranilic acid [log2FC -0.30, 0.044] and 

anthranilic acid [-0.31, 0.044]) were significantly linked by MSEA to tryptophan metabolism (p=0.01).  

 

5.3.3 Comparison of urinary metabolome before and after inhaled therapies: 

Overall, paired urine metabolome results were available from 28 RCT participants, ten in the ICS group, 

eleven in the ICS/LABA group and seven in the Placebo group. From the 238 metabolites included in 

the analysis (as described above and detailed in Table 8-3), twelve were significantly altered in the ICS 

group, five in the ICS/LABA group and eight in the placebo group (Figure 5-6,Table 5-7). All significantly 

altered metabolites were detected in every set of paired samples analysed. Indol-3-acetate was 

significantly lower before treatment compared to post-treatment in both the ICS/LABA and Placebo 

groups (Log2FC -0.63, p=0.045 and Log2FC -0.78, p=0.005 respectively). No common significantly 

altered metabolites were seen between the ICS and ICS/LABA groups.  

The results from MSEA for the three treatment groups are given in Table 5-8. Of the twelve significantly 

altered metabolites in the ICS group, five (Maltose-1, Pyrophosphate, N-carbamoylaspartate, 

Isoleucine and 2-ketoisocaproic acid) were differentially associated with five metabolic processes 

involved with carbohydrate, nucleotide, amino acid, and biotin (vitamin B7) metabolism. Of the five 

significantly altered metabolites in the ICS/LABA group, two (pyruvic acid and alpha-ketoglutarate) 

were linked to ten metabolic processes, predominantly covering carbohydrate and amino acid/protein 

metabolism and excretion.  Seven metabolic processes were also identified as significantly altered in 

the placebo group, with Glycine and Serine Metabolism, Alanine Metabolism, Urea Cycle, Ammonia 

Recycling and Glutamate Metabolism being identified as altered in both the ICS/LABA and Placebo 

MSEA results, although with different metabolites implicated in both groups. 
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Figure 5-6: Volcano plots comparing urinary metabolome before to after treatment in the three RCT inhaler groups. 

Vertical line represents a Log2FC of 0. Horizontal line is equivalent to p-value 0.05. Size of point is relative to number of samples in which metabolite was 
detected. Metabolite name given if p<0.05. ICS: Inhaled corticosteroid. LABA: Long-acting β2 agonist; Log2FC: Log2 fold-change between groups 
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Table 5-7: Significantly altered urine metabolites in the three RCT treatment groups.  

m/z: mass-to-charge ratio. Log2FC: Log2 fold change. p values represent between group comparisons using a paired samples t-test 

Metabolite Retention Index m/z PubChem ID % of participants Fold Change log2FC p value 

Inhaled Corticosteroid (n=11) 

isoleucine 359251 158 6306 100 0.67 -0.59 0.012 

2-ketoisocaproic acid 290473 89 70 100 0.63 -0.67 0.013 

maltose-1 946601 204 439186 100 0.49 -1.02 0.019 

indole-3-lactate 764586 202 92904 100 0.70 -0.52 0.022 

allantoic acid 726050 259 203 100 0.61 -0.72 0.024 

4-hydroxyphenylacetic acid 542795 179 127 100 0.75 -0.41 0.026 

pyrophosphate 327517 110 1023 100 0.62 -0.70 0.029 

pentose 540818 103 229 100 0.53 -0.93 0.038 

butane-2,3-diol 205778 117 262 100 0.66 -0.61 0.042 

conduritol beta-epoxide 675635 318 9989541 100 0.07 -3.93 0.043 

N-carbamoylaspartate 611345 257 93072 100 0.76 -0.40 0.047 

pimelic acid 523205 155 385 100 0.64 -0.65 0.050 

Inhaled Corticosteroid/Long-Acting β2-agonist (n=10) 

uric acid 730691 441 1175 100 0.72 -0.48 0.006 

pyruvic acid 213805 174 1060 100 0.67 -0.59 0.011 

alpha-ketoglutarate 507392 198 51 100 0.73 -0.46 0.016 

parabanic acid 464991 100 67126 100 2.04 1.03 0.028 

indole-3-acetate 764586 202 92904 100 0.65 -0.63 0.045 

Placebo (n=7) 

indole-3-acetate 764586 202 92904 100 0.58 -0.78 0.005 

1-hexadecanol 679596 299 2682 100 1.92 0.94 0.012 

3-hydroxyanthralinic acid 640146 354 N/A 100 0.75 -0.41 0.024 

2-picolinic acid 383668 180 1018 100 0.56 -0.83 0.026 

ornithine 619196 142 88747248 100 0.61 -0.71 0.030 

glycine 368707 248 750 100 0.71 -0.49 0.032 

3,(3-hydroxyphenyl)propionic acid 583925 192 91 100 0.62 -0.68 0.044 

pyruvic acid 213805 174 1060 100 0.60 -0.73 0.048 
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Table 5-8: Metabolite Set Enrichment Analysis results for significantly altered metabolites in the RCT treatment groups

Metabolic Process Significantly altered metabolites Enrichment Ratio p-value 

ICS 

Starch and Sucrose Metabolism Maltose-1, Pyrophosphate 10.8 0.013 

Aspartate Metabolism Pyrophosphate, N-carbamoylaspartate 9.5 0.016 

Pyrimidine Metabolism Pyrophosphate, N-carbamoylaspartate 5.9 0.041 

Valine, Leucine and Isoleucine Degradation Isoleucine, 2-ketoisocaproic acid 5.7 0.044 

Biotin Metabolism Pyrophosphate 20.9 0.048 

ICS/LABA 

Glucose-Alanine Cycle Pyruvic acid, Alpha-ketoglutarate 38.5 0.001 

Alanine Metabolism Pyruvic acid, Alpha-ketoglutarate 29.5 0.002 

Cysteine Metabolism Pyruvic acid, Alpha-ketoglutarate 19.2 0.004 

Urea Cycle Pyruvic acid, Alpha-ketoglutarate 17.9 0.004 

Ammonia Recycling Pyruvic acid, Alpha-ketoglutarate 16.1 0.005 

Citric Acid Cycle Pyruvic acid, Alpha-ketoglutarate 15.6 0.006 

Gluconeogenesis Pyruvic acid, Alpha-ketoglutarate 15.2 0.006 

Glutamate Metabolism Pyruvic acid, Alpha-ketoglutarate 10.4 0.013 

Warburg Effect Pyruvic acid, Alpha-ketoglutarate 8.8 0.018 

Glycine and Serine Metabolism Pyruvic acid, Alpha-ketoglutarate 8.5 0.019 

Tryptophan Metabolism Indole-3-acetate, Alpha-ketoglutarate 8.5 0.019 

Malate-Aspartate Shuttle Alpha-ketoglutarate 25.1 0.039 

Pyruvaldehyde Degradation Pyruvic acid 25.1 0.039 

Placebo 

Glycine and Serine Metabolism Glycine, Ornithine, Pyruvic acid 8.5 0.003 

Alanine Metabolism Glycine, Pyruvic acid 19.6 0.004 

Urea Cycle Ornithine, Pyruvic acid 11.9 0.011 

Ammonia Recycling Glycine, Pyruvic acid 10.8 0.013 

Glutamate Metabolism Glycine, Pyruvic acid 7.0 0.030 

Arginine and Proline Metabolism Glycine, Ornithine 6.4 0.035 

Tryptophan Metabolism Indole-3-acetate, 3-hydroxyanthralinic acid 5.7 0.044 
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Table 5-9: Table showing common metabolites between baseline lung function group comparison and 
RCT treatment group comparison. 

Metabolites in red were reduced in baseline comparison and in pre-treatment samples. Metabolites 
in blue were elevated in baseline samples and reduced in pre-treatment samples. 

 

I next compared the metabolites altered by inhaled therapies to those metabolites identified as altered 

in the baseline samples when comparing the lung function groupings (Table 5-9). Six metabolites 

identified as significantly altered within the POLD group were also identified as altered within the 

treatment groups. All six were significantly reduced in the POLD group at baseline and were also 

significantly reduced in pre-treatment samples. Four (butane-2,3-diol, 2-ketoisocaproic acid, indole-3-

lactate and 4-hydroxyphenylacetic acid) were significantly increased following ICS treatment and two 

(2-picolinic acid and 3-hydroyanthranilic acid) were significantly increased by placebo. The pPRISm 

group were also identified as having significantly reduced quantity of indole-3-lactate. 3,(3-

hydroxyphenyl)propionic acid was significantly increased in the pPRISm group when compared to Term 

controls, and this was also identified as having a significantly reduced quantity in the pre-treatment 

samples in the placebo group.   No common metabolites were seen in the ICS/LABA treatment group 

when compared to the baseline lung function group comparisons. In addition, none of these common 

metabolites were identified as significantly enriched in MSEA for either the baseline lung function 

group comparisons or the treatment group comparisons. 

 

5.4 Discussion 

In this novel, exploratory metabolomic analysis of urine from school-aged children with PLD, I have 

demonstrated significant differences in multiple metabolites linked with several metabolic processes 

Treatment 
Group 

Lung function group comparison 

POLD vs PTc POLD vs Term pPRISm vs PTc pPRISm vs Term 

ICS 
butane-2,3-diol 

2-ketoisocaproic acid 

indole-3-lactate 
4-hydroxyphenylacetic 

acid 
None 

indole-3-lactate 
 

ICS/LABA None None None None 

Placebo 2-picolinic acid 
3-hydroxyanthranillic acid 

2-picolinic acid 
None 

3,(3-hydroxyphenyl) 
propionic acid 
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in the POLD group when compared to preterm- and term-born controls. Of particular interest were 

significant decreases in metabolites consumed and produced during fatty acid biosynthesis and 

metabolism, especially β-oxidation of very-long chain fatty acids, and glutathione metabolism, findings 

which are similar to those reported in studies of adults with COPD, as I will discuss below. It has 

previously been demonstrated that a neonatal history of BPD is significantly associated with 

development of an obstructive spirometry pattern in childhood (Cousins et al., 2023), and a recently 

published meta-analysis has demonstrated that this airway obstruction likely increases over the life 

course (Gibbons et al., 2023). There is increasing concern that PLD predisposes to early-onset COPD in 

adulthood (Pulakka et al., 2023), and my current exploratory urine metabolome analyses suggest that 

the altered metabolic activity present in childhood for those with a POLD phenotype is similar to adult 

studies of COPD. In contrast, minimal differences were noted for the urinary metabolome in the 

pPRISm phenotype when compared with the preterm- and term-born controls, implying less systemic 

active metabolic processes occurring within this group.  

 

β-oxidation of very-long chain fatty acids occur in peroxisomes, where fatty acids are broken down 

before transportation to mitochondria, where further fatty acid degradation and energy release occurs 

(Schrader et al., 2020). The increased energy requirements secondary to airway inflammation and 

increased work of breathing in obstructive respiratory diseases such as COPD have been suggested to 

increase fatty acid consumption (Wada et al., 2005), with previous urine metabolomic studies 

supporting this finding with increased products of fatty acid catabolism (Wang et al., 2013). Previous 

metabolomic studies of airway samples in preterm infants who later developed BPD have also shown 

decreased quantities of metabolites involved in β-oxidation of fatty acids (Lal et al., 2018), as well as 

increases in acylcarnitines, which are released following β-oxidation of fatty acids during oxidative 

stress (Piersigilli et al., 2019). Similarly, altered β-oxidation of fatty acids (Callejon-Leblic et al., 2019) 

and increases in serum acylcarnitine have also been noted in COPD (Kim et al., 2021, Moitra et al., 

2023). I observed significantly decreased capric and caprylic acids in the POLD group. Capric and 
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caprylic acids, both medium-chain fatty acids, have anti-inflammatory and antioxidant effects (Lee and 

Kang, 2017) in porcine models of intestinal disease. Whether these metabolites have similar roles in 

the lung is speculative. I also observed a reduction of the very-long chain fatty acid ceratinic (also 

known as hexacosanoic) acid in the POLD group, which is likely related to increased consumption for 

energy release owing to inflammatory processes and oxidative stress. β-oxidation of very-long chain 

fatty acids in peroxisomes leads to the production of hydrogen peroxide (H2O2) (Foerster et al., 1981), 

a reactive oxygen species (ROS) resulting in oxidative damage and altered intracellular signaling. 

Increase in peroxisome activity, due to increased fatty acid metabolism, leads to peroxisome-induced 

oxidative stress (Schrader and Fahimi, 2006), with peroxisomal enzymes responsible for fatty acid 

breakdown and H2O2 production disproportionately upregulated compared to H2O2-scaveging 

enzymes, such as catalase, in rodent models (Chu et al., 1995). Capric, caprylic and ceratinic acids had 

linear relationships with spirometry values across the preterm-born children, suggesting that β-

oxidation of very-long chain fatty acids generally has an association with lung function. 

 

Capric and caprylic acid, along with myristic acid were also implicated in fatty acid biosynthesis, 

another significantly altered process in the POLD group when compared with the Preterm and Term 

control groups. Myristic acid, a long-chain saturated fatty acid, was significantly decreased in the POLD 

group. Fatty acid metabolism impairments have been observed in airway secretions from patients with 

COPD both during the stable phase and during acute exacerbations (van der Does et al., 2017). 

Macrophage activity activates and regulates COPD-related pulmonary inflammation (Kotlyarov and 

Kotlyarova, 2021), and fatty acid metabolism is intrinsically linked with metabolic reprogramming of 

macrophages. Fatty acid biosynthesis has been shown to enhance pro-inflammatory activity and 

interleukin synthesis by macrophages, whereas fatty acid oxidation has a role in anti-inflammatory 

macrophage activity (Batista-Gonzalez et al., 2019).  
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I observed reduced levels of alanine, glutamic acid and pyroglutamic acid within the POLD group, 

which were significantly linked to glutathione metabolism. The lower levels of these metabolites are 

suggestive of lower glutathione concentration as all three are involved in glutathione synthesis (Figure 

5-2). Glutathione provides potent defense against pulmonary oxidative injury, with studies of healthy 

adults demonstrating higher glutathione levels in the airways than in serum (Cantin et al., 1987). 

Animal models demonstrate pulmonary glutathione depletion enhances oxygen toxicity (Deneke et al., 

1985). I noted decreased pyroglutamic acid and glutamic acid in the POLD group, both key 

intermediaries in glutathione synthesis and recycling. One pathway of glutathione consumption is in 

the removal of H2O2 by conversion of reduced glutathione to glutathione disulfide, catalysed by the 

peroxisomal enzyme glutathione peroxidase (Schrader and Fahimi, 2006). Reduced quantities of 

metabolites involved with glutathione metabolism, and thereby increased oxidative stress, have been 

observed in other respiratory pathologies, including COPD. Decreased alanine, pyroglutamic acid, 

glutamic acid and glutathione have been reported in a metabolomic study of murine lungs and in 

bronchoalveolar lavage fluid from adults with pulmonary inflammation and respiratory failure (Pacht 

et al., 1991, Ambruso et al., 2021). Pyroglutamic acid, glutamic acid, alanine and glutathione levels are  

decreased in targeted assay and/or metabolomic studies of serum from adults with COPD (Faucher et 

al., 2004, Callejon-Leblic et al., 2019), with pyroglutamic acid quantity being associated with a 

pulmonary emphysema phenotype (Callejon-Leblic et al., 2019). Whilst I did not detect glutathione in 

either its reduced or oxidized form, glutathione has a short half-life of approximately ten minutes 

(Hong et al., 2005), thus making its detection in urine challenging. 

 

In contrast to the several altered metabolic pathways affected in the POLD group, suggestive of an 

ongoing active disease process, I observed a relatively stable metabolome within the pPRISm group 

when compared to the two Control groups. Only one metabolic process, namely tryptophan 

metabolism, was altered in the pPRISm group when compared to the Term control group. 3-

hydroxyanthranillic acid was significantly lower in the pPRISm group and is a product of tryptophan 
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oxidation. Tryptophan is an essential amino acid, and deficiency limits protein synthesis, causing 

cellular dysfunction and decreased proliferation Reduced plasma tryptophan levels have been 

observed in COPD, particularly during acute exacerbations (Gulcev et al., 2016). Reduced tryptophan 

metabolism, as suggested by our results, can also lead to reduced production of kynurenine. 

Kynurenine promotes naïve CD4+ T-cells to become anti-inflammatory T-regulator lymphocytes, rather 

than highly-inflammatory Th17 lymphocytes (Stone et al., 2013).  

 

Regarding the results for the changes in the urinary metabolome in the three RCT treatment groups, I 

have not identified a consistent pattern of changes comparing pre- to post-treatment samples in paired 

analysis. No common significantly altered metabolites or metabolic processes were identified between 

the ICS and ICS/LABA groups, and whilst although there was only one commonly altered metabolite in 

both the ICS/LABA and Placebo groups, five common significantly affected metabolic processes were 

seen in both groups. Comparing the metabolite changes seen in the treatment groups to those seen 

in the baseline lung function group comparisons, indole-3-lactate quantity was lower in both the POLD 

and pPRISm groups when compared to term-born controls, and its quantity was significantly increased 

by ICS treatment. Indole-3-lactate is also a product of tryptophan metabolism and has been identified 

as having anti-inflammatory properties in in vitro models of the preterm human intestine (Meng et al., 

2020), where its production is related to intestinal microbiome composition. In contrast to my findings, 

a previous metabolomic study of human plasma from adults with asthma being treated with 

fluticasone propionate at similar doses to those used in the RHiNO study, demonstrated small but 

significant reductions in indolelactate following seven days of treatment compared to placebo (Daley-

Yates et al., 2022). This suggests a different underlying mechanism to the reduced lung function seen 

in PLD (POLD and pPRISm) in this cohort compared to asthma. The fact that the changes in indole-3-

lactate were only present in ICS monotherapy and not seen in combination therapy with LABA in my 

results suggest the dual effect of these drugs may influence different metabolic pathways. 
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5.4.1 Strengths and Limitations 

This exploratory study represents the first time, to my knowledge, that the urinary metabolome of PLD 

has been studied in childhood. This analysis has been performed in one of the largest contemporary 

preterm-born paediatric populations available, who would have experienced modern standards of 

neonatal care. Using an untargeted approach, I have identified many individual metabolites and several 

significantly altered and biologically relevant metabolic pathways in the spirometry-defined clinical 

groups. Composition of the urinary metabolome can be affected by dietary intake (Stratakis et al., 

2022), for which I had insufficient information to adjust for in the analyses. I adjusted the metabolite 

concentrations for dilutional effects using urinary creatinine, which is a widely accepted and 

recommended practice in urine metabolomic studies (Li et al., 2022). However, as these samples were 

collected at the time of spirometry, they were not necessarily early morning specimens, nor 24-hour 

urine collections, which may reveal greater metabolomic differences. These results require replication 

in a validation cohort, but this is currently limited by a lack of similar contemporaneous cohorts to 

study. 

 

5.4.2 Conclusion 

In conclusion, in this chapter I have demonstrated active metabolic processes with multiple 

significantly altered metabolites in the urinary metabolome of children with a POLD phenotype, 

including changes in β-oxidation of very-long chain fatty acids, fatty acid biosynthesis and glutathione 

metabolism. These changes imply increased cellular energy requirements and oxidative stress which 

have also been observed in COPD. In contrast, the metabolome appears more stable in pPRISm with a 

suggestion of altered tryptophan metabolism. Whether this phenotype is associated more with 

structural abnormalities rather than metabolic ones is speculative and will require further study. 
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6 Discussion: Integrating Proteomic and Metabolomic 

Findings 

6.1 Overview 

In this thesis, I have explored the mechanisms underlying different respiratory phenotypes in preterm-

born school-aged children. To do this, I have utilized two different non-invasively collected samples, 

namely exhaled breath condensate, which is reflective of the biology of the respiratory tract (Davis et 

al., 2012), and urine which is reflective of systemic biology (Wu and Gao, 2015). These samples 

underwent untargeted proteome and metabolome analyses by mass spectrometry, using commercial 

analysis protocols, to provide a comprehensive representation of any altered biological mechanisms 

present in participants of the RHiNO study. I have used well-established risk factors to compare 

participant proteome/metabolome, such as history of BPD, upon which much of the existing published 

literature has focused, as well as newer PLD spirometry-based phenotypes, including PTlow, POLD and 

pPRISm, which have recently been defined within the RHiNO cohort (Cousins et al., 2023, Hart et al., 

2022), as discussed in section 1.6.2. 

 

This final chapter shall first give a recap of the key findings from the four results chapters and then 

discuss how these findings describe the biological mechanisms underlying differing phenotypes of PLD. 

 

6.2 Key Findings 

The key findings of this thesis are summarized below and in Table 6-1. 
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6.2.1 Analysis of the EBC proteome 

• Despite a low overall protein content, mass spectrometry tandem-mass tag proteomic analysis 

of EBC was technically successful, and identified 210 separate proteins overall, with nineteen 

proteins common to all baseline samples. 

• Cytokeratin abundance (KRT6A and KRT6B) was significantly increased in the BPD group at 

baseline when compared to preterm-born controls.  

• Significantly reduced abundances of three proteins involved in desmosome structure (DSG1, 

DSC1, JUP) were significantly reduced within the BPD group compared to preterm-born 

controls in baseline samples. 

• The reduced abundances of DSG1, DSC1 and JUP at baseline were predominantly observed in 

those participants with a history of BPD and current low lung function (PTlow; FEV1≤85% 

predicted). 

• Abundance of DSG1, DSC1 and JUP increased significantly following 12-weeks combined 

inhaler therapy (ICS/LABA) to levels comparable with term-born controls at baseline, an effect 

seen predominantly in those preterm-born children in the RCT with a history of BPD. No 

significant changes were seen in these proteins with monotherapy (ICS) or placebo. 

• 12-weeks of combined inhaler therapy also decreased the abundance of heat shock protein 

beta-1 (HSPB1), a protein associated with protein aggregation and folding, increased 

abundance of which has previously been associated with responses to oxidative stress and 

inflammation (Acunzo et al., 2012). 

• PTlow was associated with significantly reduced abundances of three antiproteases (ANXA1, 

SERPINB3 and SLPI) at baseline, however none of these proteins was altered by any of the 

inhaler therapies. 
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Sample Type Analysis Methodology Key Findings 

Exhaled Breath Condensate  

Proteomics 

Within the BPD group: 

• Increased KRT6A and KRT6B 

• Reduced DSG1, DSC1 and JUP 

• Reduced abundances of DSG1, DSC1 and JUP most marked in those with low lung 
function (FEV1≤85%) 

Metabolomics 

 Within the BPD group: 

• Reduced quantities of alanine, urea, pyroglutamic acid, and ornithine 

• Alterations in alanine and pyroglutamic acid linked to a reduction in glutathione 
metabolism 

• Alterations in alanine, urea and ornithine linked to alterations of urea cycle 

Urine 

Proteomics 

Within the pPRISm group: 

• Altered abundances of 16 proteins linked to inflammation, and leucocyte and 
lymphocyte cell numbers. 

• Four proteins (DNASE1, PGLYRP1, B2M and SERPINA3) showed a reasonable ability to 
discriminate pPRISm from PTc 

Within the POLD group: 

• Increased abundances of four proteins (AGT, CTSC, MMP9 and S100A8) were linked 
with alterations of neutrophil biology 

• Three proteins associated with tissue remodeling (S100A8, MMP9 and CTSC) showed a 
strong ability to discriminate POLD from PTc 

Metabolomics 

Within the POLD group: 

• Reduced quantities of six metabolites differentially linked with β-oxidation of very-
long chain fatty acids (capric acid, caprylic acid and ceratinic acid) and glutathione 
metabolism (alanine, glutamic acid and pyroglutamic acid). 

Table 6-1: Summary of the key findings of baseline EBC and Urine sample data analyses 
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6.2.2 Analysis of the EBC metabolome 

• Despite an overall low metabolite content, mass spectrometry-based metabolomic analysis of 

EBC was also technically successful, identifying 235 separate metabolites in total, with 38 

being detected above the limit of detection in every baseline sample.  

• Ten metabolites were significantly altered in the BPD group when compared to preterm-born 

controls, including reductions in alanine, urea, pyroglutamic acid, valine and ornithine. 

• Fourteen metabolites were significantly altered in the BPD group when compared to term-

born controls. As with the comparison to the preterm-born controls, significant reductions in 

alanine, urea, pyroglutamic acid and valine were also seen, as well as significant reductions in 

glycine, oleamide and glutamic acid.  

• Metabolite set enrichment analysis (MSEA) significantly linked the reductions seen in alanine 

and pyroglutamic acid (as well as glycine in the comparison to term-born subjects) to 

alterations in glutathione metabolism. The changes observed in alanine, ornithine and urea 

were significantly linked to alterations in urea cycle metabolism. 

• In univariable linear regression modelling, no significant associations were observed between 

these metabolites of interest and current lung function parameters. 

• No metabolic processes were significantly enriched following inhaled therapies in those 

preterm-born children with low lung function (FEV1≤85% predicted). 

 

6.2.3 Analysis of the urine proteome 

• Following data normalisation, 785 proteins were detected across all samples included in the 

analysis, 129 of which were detected in every sample.  

• 37 proteins were significantly altered in the pPRISm group when compared to PTc, sixteen of 

which were significantly linked to six likely upregulated biological processes related to 
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inflammation, and leucocyte and lymphocyte cell numbers. In addition, there was a suggestion 

that CD4+ T-lymphocyte number may be downregulated. 

• Four proteins (DNASE1, PGLYRP1, B2M and SERPINA3) showed a reasonable ability to 

discriminate pPRISm from the preterm-born cohort in ROC analysis. 

• 44 proteins were significantly altered in the POLD group when compared to PTc, of which only 

four (AGT, CTSC, MMP9 and S100A8) were significantly linked to one likely upregulated 

biological process related to neutrophil biology.  

• Three proteins associated with tissue remodeling (S100A8, MMP9 and CTSC) showed a strong 

ability to discriminate POLD from the preterm-born cohort in ROC analysis. 

• No significantly altered proteins in the POLD and pPRISm groups when compared to preterm- 

or term-born controls were significantly altered by inhaled therapies. 

 

6.2.4 Analysis of the urine metabolome 

• Overall, 242 different metabolites were detected across all samples, with 204 being detected 

in both every POLD and pPRISm sample analysed. 

• Within the POLD group, 49 metabolites were significantly altered when compared to the 

preterm-born controls, of which fourteen were linked by MSEA to nine significantly altered 

biological processes, including β-oxidation of very-long chain fatty acids (capric acid, caprylic 

acid and ceratinic acid) and glutathione metabolism (alanine, glutamic acid and pyroglutamic 

acid). 

• All six of these metabolites remained significantly associated with POLD in multivariable linear 

regression analyses when other relevant early and current life factors were considered. 

• On comparing the pPRISm group to preterm-born controls, only three metabolites were 

significantly altered, which were not linked by MSEA to a biological process. 
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• On comparing the pPRISm group to term-born controls, thirteen significantly altered 

metabolites were observed, of which two (3-hydroxyanthranilic acid and anthranilic acid) were 

significantly linked to tryptophan metabolism by MSEA.  

• Indole-3-lactate, a product of tryptophan metabolism, was significantly lower in both POLD 

and pPRISm groups at baseline and was significantly increased by ICS treatment. 

 

6.3 Discussion 

The results in this thesis represent the first time that proteomic and metabolomic analysis techniques 

have been applied to non-invasively collected samples in a large cohort of preterm-born school-aged 

children who would have experienced a contemporary standard of neonatal care. It is also the first 

time that the mechanisms underlying current lung function phenotypes of PLD in preterm-born school-

aged children have been investigated using these techniques. In addition, these exploratory analyses 

represent some of the largest sample sizes of EBC and urine on which these proteomic and 

metabolomic techniques have been applied in the published literature.  

 

6.3.1 Biological Mechanisms in Children with a History of Bronchopulmonary 

Dysplasia 

BPD remains a key outcome metric for the neonatal community (Webbe et al., 2020), and as survival 

improves from increasingly immature gestations, and therefore increasingly immature stages of lung 

development, the incidence of BPD is rising (Stoll et al., 2015). In addition, much of the follow-up work 

with regard to lung function and respiratory morbidity in preterm-born survivors in later life has 

focused on those with a neonatal history of BPD, finding spirometry impairments that are generally 

more severe than their preterm-born counterparts without a BPD diagnosis (Kotecha et al., 2022b, 

Doyle et al., 2019b). Consequently, much of the mechanistic work studying these later lung function 
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impairments has also focused on those with a neonatal history of BPD (Um-Bergström et al., 2022, 

Filippone et al., 2012, Carraro et al., 2015).  

 

However, as neonatal intensive care has advanced over the last thirty years, the clinical phenotype of 

BPD has changed significantly since its original description (Northway et al., 1967), and therefore it 

remains important to study cohorts of preterm-born survivors born at increasingly immature 

gestations and who would have experienced a contemporary standard of neonatal care. This includes 

cohorts with routine exposure to maternal antenatal corticosteroids, exogenous pulmonary surfactant 

replacement and modern neonatal ventilation strategies. Understanding the mechanisms underlying 

longer-term respiratory morbidity following BPD, including whether these are fixed or active 

processes, will aid in identification, prognostication, and therapeutics for this growing cohort of 

children. 

 

The analysis of EBC revealed significant differences in both the proteome and metabolome of preterm-

born children with a neonatal history of BPD when compared to preterm- and term-born controls 

(Figure 6-1). The EBC proteome in children with BPD demonstrated reduced abundance of proteins 

which are structural components of desmosomes (DSG1, DSC1 and JUP) as well as increased 

abundances of proteins known to form the cytoskeleton and intermediate filaments (KRT6A and 

KRT6B), which connect with desmosomes to give the cell structural strength (Herrmann et al., 2007). 

The changes seen in the desmosome proteins were most profound in those who had a history of BPD 

and current low lung function (PTlow); however, no difference was seen in any of these proteins within 

the PTlow group as a whole. DSG1, DSC1 and JUP all showed a significant increase in those children who 

entered the RCT and were treated with combination of ICS and LABA, and again this treatment effect 

was most noticeable in those in the PTlow group who had a history of BPD. Interestingly, no treatment 

effect was seen for these proteins in the monotherapy ICS group.  
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With regard to the EBC metabolome, I have demonstrated significant reductions in metabolites 

involved in the synthesis of glutathione and the urea cycle in those preterm-born children with a 

history of BPD. Taken together, the metabolite changes seen suggest a reduction in the production of 

glutathione, a potent airway antioxidant (Cantin et al., 1987, Grigg et al., 1993) as well as reduced urea 

cycle activity, leading to the accumulation of intracellular ammonia, potentially precipitating 

pulmonary oxidative stress (Li et al., 2023). 

 

As has previously been discussed in this thesis (in section 2.4), there is evidence from in vitro studies 

of bronchial epithelium that increased inflammation leads to a reduction in desmosome size and 

number (Andersson et al., 2010, Carayol et al., 2002), as well as reduced desmosome size and number 

in bronchial wall biopsies taken from adults with both allergic and non-allergic asthma (Shahana et al., 

2005). An increase in cytokeratins has also been identified as a potential marker of lung injury and 

inflammation in EBC from mechanically ventilated adults (Gessner et al., 2008) and serum studies of 

preterm infants who later develop BPD (Panahabadi et al., 2021). In conjunction with the reduced 

abundance of protease inhibitors (ANXA1, SERPINB3, CSTA and SLPI) seen in the BPD group, there is a 

suggestion of an active tissue remodeling process occurring in the airways of those subjects with a 

history of BPD.  

 

Oxidative stress is the consequence of an imbalance between the production of reactive oxygen 

species (ROS) and their elimination by protective mechanisms, such as antioxidant enzymes (Hussain 

et al., 2016).  Increased inflammation has been implicated in other pulmonary airway diseases, such 

as asthma, as a promoter of oxidative stress and reduced antioxidant defenses (Bezerra et al., 2023). 

My findings from the EBC metabolome analysis, mapping to a reduction in glutathione metabolism 
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and availability, and thereby impaired antioxidant defenses, has been noted in airway samples from 

other inflammatory paediatric lung diseases, including asthma (Fitzpatrick et al., 2009) and cystic 

fibrosis (Kettle et al., 2014). Reduced glutathione is also seen in broncheoalveolar lavage fluid taken 

from neonates on the first day of life who later develop BPD (Grigg et al., 1993, Collard et al., 2004). 

The fact that a reduction in glutathione metabolism has been implicated in early neonatal lung disease, 

as well as in the results from these analyses, suggests that this abnormality may persist many years 

after the initial pulmonary insult, although longitudinal studies from the neonatal period into later life 

would be required to confirm this speculation.  

 

There is evidence from computed tomography (CT) radiological studies of preterm-born individuals in 

childhood, who would have experienced a comparable standard of neonatal care to those in the RHiNO 

cohort, that those with a neonatal history of BPD have significantly increased rates of pulmonary 

structural abnormalities, including bronchial wall thickening and decreased pulmonary attenuation, 

suggestive of reduced pulmonary vascularity, reduced alveolar complexity and potentially pre-

emphysematous lung changes (Simpson et al., 2017). Linear and subpleural opacities have also been 

observed in CT scans in infancy (Mahut et al., 2007) and childhood/adolescence (Simpson et al., 2017, 

Aukland et al., 2009) in subjects with BPD, and likely represent early fibrotic lesions. These radiological 

appearances would be in keeping with the findings from my proteomic and metabolomic analyses of 

EBC from children with a history of BPD, with bronchial wall thickening, a consequence of airway 

inflammation (Tiddens et al., 2000), and altered lung tissue structure. In murine animal models, altered 

glutathione metabolism and consequent increased oxidative stress in the airways has been associated 

with abnormal lung tissue development (Robbins et al., 2021). 

 

An interesting finding from my thesis is that proteomic and metabolomic changes were seen in the 

EBC of participants with a history of BPD, but this was not seen in the urine samples, where changes 
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were found to be associated with current lung function phenotypes. EBC primarily samples the 

epithelial lining fluid of the airway (Davis et al., 2012), and thereby the proteome and metabolome of 

a specific anatomical site, whereas urine samples the systemic proteome and metabolome (Martelo-

Vidal et al., 2022) and reflects biological processes occurring within the body as a whole. As discussed 

extensively throughout this thesis, BPD occurs as a result of early pulmonary injury in preterm infants 

(Jobe and Bancalari, 2001), and the data from this thesis suggests an ongoing, active, inflammatory 

process in childhood, resulting in tissue remodeling and oxidative stress, which appears to be limited 

to the airways. In addition, combination inhaler therapy with ICS/LABA appears to reverse some of 

these structural changes in the airways for those with BPD and current low lung function (PTlow). As 

also discussed in my thesis, whilst it is recognized that those with BPD are at risk of later life lung 

function impairments (Kotecha et al., 2022b, Doyle et al., 2019b), within the RHiNO cohort, BPD does 

not appear to be the best predictor for later respiratory impairments (Hart et al., 2022), and this may 

be the reason that although I found proteomic and metabolomic changes in the EBC of the BPD group 

in RHiNO, these changes did not consistently associate with lung function impairments or spirometry 

values. 

 

6.3.2 Biological Mechanisms in Lung Function Groups 

Rather than solely focusing on outcomes based upon historic diagnoses of respiratory compromise, 

namely BPD, I have also used clinical phenotypes based upon current spirometry impairments to 

assess for mechanisms underlying PLD in this cohort of preterm-born children. In this thesis, I have 

used both an FEV1≤85% predicted cut-off for low lung function, which was used in the RHiNO study as 

entry criteria to an RCT of inhaled therapies (Goulden et al., 2021), as well as specific patterns of lung 

function impairment, namely POLD and pPRISm, defined by using GLI LLN thresholds for lung function 

impairment (Quanjer et al., 2012), and defined for the first time in the RHiNO cohort (Cousins et al., 

2023).  
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Figure 6-1: Summary diagram highlighting the key proteomic and metabolomic findings from EBC and urine samples and their relationships between different 
respiratory phenotypes of prematurity-associated lung disease.
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Proteomic and metabolomic analyses of the urine samples revealed significant alterations associated 

with current lung function parameters using the ‘LLN’ (lower limit of normal) definitions described in 

the RHiNO study (Cousins et al., 2023), namely POLD and pPRISm (Figure 6-1). My analysis of the 

urinary proteome demonstrated multiple significantly altered protein abundances in the pPRISm 

group, which were linked to multiple biological processes concerned with inflammation and 

lymphocyte biology, with a suggestion of an alteration in the expression of CD4+ and CD8+ T-

lymphocytes. A recent study of BAL fluid from preterm-born adults with a history of BPD has 

demonstrated a downregulation of CD4+ and upregulation of CD8+ cytotoxic T-cells compared to 

control subjects, as well as a positive correlation between CD4+/CD8+ ratio and FEV1, and a negative 

correlation between numbers of CD8+ cells and FEV1 and FEV1/FVC (Um-Bergström et al., 2022). 

Similar alterations in CD4+ and CD8+ T-cells have also been observed in studies of adults with COPD 

(Eriksson Strom et al., 2020, Sales et al., 2017). I have also demonstrated changes to the urinary 

proteome in children with a POLD phenotype suggesting alterations of neutrophil biology, with 

increased abundance of three proteins (S100A8, MMP9 and CTSC) associated with tissue remodeling 

(Seren et al., 2021, Jerkic et al., 2020, Lorenz et al., 2008). The urinary metabolome analysis 

demonstrated multiple altered metabolic processes within the POLD group, including alterations in β-

oxidation of very-long chain fatty acids and a reduction in glutathione metabolism. Conversely, few 

significantly altered metabolites were noted in the pPRISm group compared to the control groups. 

 

As I have previously discussed in this thesis, there is increasing concern from the research evidence 

that individuals who are born preterm are at an increased risk of developing COPD in early adulthood 

(Bolton et al., 2015, Simpson et al., 2023, Doyle et al., 2019a). In a Scandinavian registry study of over 

two million individuals, those born extremely preterm had a 2-3 fold increased likelihood of having a 

obstructive respiratory pattern when aged 18-29 years compared to term-born controls, with a 

consequent  increased risk of care episodes for COPD in young adulthood and middle age (Pulakka et 
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al., 2023). The increased abundances of S100A8, MMP9 and CTSC seen in the urinary proteome of the 

POLD group has also been observed in studies of adults with COPD (Lorenz et al., 2008, Wells et al., 

2018, Merkel et al., 2005, Huang et al., 2020). The lungs of children with a POLD phenotype have also 

been demonstrated to have significant structural abnormalities on hyperpolarized 129Xe ventilation and 

diffusion MRI imaging (Chan et al., 2023), further supporting the role of these tissue remodeling 

proteins in precipitating lung dysfunction for this group. The urine metabolome of the POLD group 

showed a reduction in metabolites which are indicators of glutathione metabolism, which I also 

observed in the EBC metabolome of those with BPD. Both analyses showed significant reductions of 

pyroglutamic acid, glutamic acid, and alanine in POLD and BPD compared to their respective control 

groups (Figure 6-1). Previously published data from the RHiNO study has demonstrated that a neonatal 

history of BPD is significantly associated with the development of a POLD phenotype in childhood 

(Cousins et al., 2023), and data from published meta-analysis (Gibbons et al., 2023) and longitudinal 

spirometry studies of preterm-born individuals (Doyle et al., 2019b) have also demonstrated that those 

with BPD demonstrate an increasingly obstructive respiratory phenotype as they age. Studies of adults 

with COPD have also demonstrated impairments in glutathione metabolism (Callejon-Leblic et al., 

2019, Faucher et al., 2004), as have studies of neonates who later develop BPD, as discussed above 

(Grigg et al., 1993, Collard et al., 2004). The data from my analyses suggests a common mechanism for 

lung injury/impairment related to a lower quantity of glutathione, and, therefore, oxidative stress and 

impaired antioxidant mechanisms, in both BPD and POLD. This glutathione deficit may be present from 

birth and early neonatal lung injury; and may extend into development of COPD in later life. This 

hypothesis would need to be examined in longitudinal studies from the neonatal period and into 

adulthood. 

 

PRISm has only recently been described in the adult literature (Higbee et al., 2022, Marott et al., 2021, 

Wan et al., 2021, Wijnant et al., 2020), and this phenotype in the preterm-born school-aged paediatric 
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population was first described by the RHiNO study (Cousins et al., 2023). In the adult population, PRISm 

has been associated with an increased risk of respiratory disease, cardiac disease, and all-cause 

mortality (Wan et al., 2021, Marott et al., 2021). Data from a follow-up study examining respiratory 

trajectories over a five-year period found that 50% of those with an initial PRISm phenotype developed 

COPD, however, interestingly 15% reverted to normal spirometry (Wijnant et al., 2020). Whilst the 

natural history and evolution of pPRISm requires further study, given the increased risk of significant 

respiratory-related morbidity and mortality in the adult population with this spirometry phenotype, it 

warrants further investigation in the preterm-born population.  

 

The urine proteome analyses demonstrated associations between systemic alterations in 

inflammatory and immune processes in the pPRISm group, likely related to increases in inflammation 

and reductions in T-lymphocyte numbers, particularly CD4+ T-cells (Figure 6-1). As previously discussed 

in this thesis, alterations in T-lymphocyte numbers has been seen in bronchoalveolar lavage fluid from 

young adults with BPD, with a negative correlation between CD8+ cells and lung function (Um-

Bergström et al., 2022), and CD8+ T-cell number is increased in histological studies of adolescents with 

a background of BPD (Galderisi et al., 2019).  Whilst overall few urine metabolome differences were 

seen in the pPRISm group in my analyses, there was a suggestion of alterations in tryptophan 

metabolism on comparison with the term-born control subjects. Tryptophan is an essential amino acid 

required for protein synthesis and cellular proliferation, which has also been observed to be reduced 

in COPD exacerbations (Gulcev et al., 2016). Whilst the underlying biological mechanisms for 

development of PRISm in the adult population have yet to be fully investigated, many of the factors 

associated with development of PRISm, such as cigarette smoking, air pollution and obesity, are also 

associated with pulmonary and systemic inflammation (Huang et al., 2024). High-resolution computed 

tomography studies of adult PRISm patients have demonstrated minimal structural changes in this 

phenotype compared to controls and COPD patients, and overall, the underlying biological 
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mechanisms require further research (Lu et al., 2022, Huang et al., 2024). These analyses have 

identified that there are alterations in systemic biology in the pPRISm group, and further research is 

warranted to understand the evolution and longer-term implications of these mechanisms in the 

preterm-born population, and how they relate to the outcomes observed in the adult population. 

 

6.3.3 Effect of Inhaled Therapies on Identified Biological Mechanisms 

Despite the well-studied lung function impairments in later life following preterm birth (Kotecha et al., 

2022b), there has been relatively little research in how to treat PLD, or how inhaled therapies may act 

on underlying pathological mechanisms. Two studies from the pre-/peri-surfactant era examined the 

use of inhaled corticosteroids in preterm-born children (Table 6-2). Chan et al. performed a double- 

blind, placebo-controlled cross-over study of fifteen low birth weight children, aged eight years who 

were born with a mean gestational age of 30.5 weeks. All were born before the routine use of 

exogenous pulmonary surfactant replacement. The children received twice daily 200μg of inhaled 

beclomethasone dipropionate for four weeks or placebo in a cross-over study. There was no significant 

effect on peak expiratory flow rate (PEFR), forced expiratory volume in one second (FEV1) or airway 

hyperresponsiveness following treatment (Chan and Silverman, 1993). In the other study occurring 

during introduction of exogenous surfactant treatment, Pelkonen et al. studied eighteen children 

(median gestation at birth of 28 weeks and median of age 10.1 years) who had evidence of reversibility 

of airway obstruction as assessed by response to short-acting β2-agonists. These children received 

inhaled budesonide (0.8 mg/m2/day for 1 month followed by 0.4 mg/m2/day for 3 months) over a four-

month period. No significant difference was noted for percent predicted FEV1 (median 74% before and 

after treatment). However, PEFR diurnal variability improved suggesting decreased bronchial lability 

after treatment (Pelkonen et al., 2001). Neither of these studies examined underlying biological 

mechanisms. A more recently published study (Urs et al., 2023), examining a group of preterm-born 

children who would have experienced a contemporary standard of neonatal care, trialed the use of 
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either twice daily inhaled fluticasone propionate 125μg (another form of inhaled corticosteroid) or 

placebo for 12 weeks. However, reduced lung function was not a pre-requisite for entry into this trial. 

 

Overall, a modest improvement was seen, with a 4% improvement in FEV1, although a subset (23% of 

the cohort) had a more marked improvement of 6% (Table 6-2). Although it has been shown previously 

that fractional exhaled nitric oxide (FENO) is not increased in preterm-born individuals (Course et al., 

2019), a decrease was seen following treatment, suggesting an element of airway inflammation in PLD. 

The RHiNO trial was the first to assess the use of a LABA in combination with ICS (as described in my 

introduction chapter, section 1.6.3.4) for the management of PLD, finding a clinically significant 14% 

increase in FEV1 for combination inhaler therapy (Goulden et al., 2021), and the analyses in this thesis 

represent the first time the effect of inhaled treatments on underlying biological mechanisms 

associated with PLD phenotypes has been studied.  
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Study 
(author, 

year) 
Country 

Inhaled therapies investigated 
(Drug, dose, duration) 

Active  
(n)  

Placebo 
(n) 

Results 

Chan et al. 
1993 

United 
Kingdom 

Beclomethasone dipropionate  
200 μg twice daily 

15 15 
Mean FEV1 1.3 litres post treatment in beclomethasone 

group, 1.25 litres in placebo group. 

Pelkonen et 
al. 2001 

Finland 
Budesonide  

0.8 mg/m2/day for 1 month followed 
by 0.4 mg/m2/day for 3 months 

18 N/A 
%pred FEV1 74% pre and post treatment (p=0.50)  

Significant improvement in PEFR diurnal variation (p=0.02) 

RHiNO  
(Goulden et 

al. 2022) 

United 
Kingdom 

Fluticasone propionate 
100 μg twice daily for 12 weeks 

20 14 
%pred FEV1 increased 7.7% (95% CI -0.3 to 15.7, p=0.16) 

Mean FENO reduced from 29.8 to 15.8 ppb 

Fluticasone propionate 100 μg and 
Salmeterol xinafoate 50 μg 

twice daily for 12 weeks 
19 14 

%pred FEV1 increased 14.1% (95% CI 7.3 to 21.0, p=0.002) 
Mean FENO reduced from 25.2 to 15.9 ppb 

PICSI  
(Urs et al. 

2023) 
Australia 

Fluticasone propionate 
125 μg twice daily for 12 weeks 

87 83 

0.30 (95% CI 0.15, 0.45) improvement in FEV1 z-score 

Reduced FEV1 bronchodilator response:  
-2.21 (-4.68, -0.26) z-score 

Mean FENO reduced from 15.2 to 10.5 ppb (p=<0.05) 

Table 6-2 Summary of evidence from trials using inhaled corticosteroids in preterm-born children 

FEV1: forced expiratory volume in one second. FVC: forced vital capacity. FEF50: forced expiratory flow over middle 50% of FVC. PEFR: peak expiratory flow rate. 
FENO: fractional exhaled nitric oxide. ppb: parts per billion. CI: Confidence interval. %pred: percentage predicted. 
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The most robust data from my analyses on the effect of inhaled therapies on biological 

mechanisms underlying PLD comes from the EBC proteomic analysis. This demonstrated that 

the reduced abundances of the desmosome-constituent proteins (DSG1, DSC1 and JUP) seen 

in those in the PTlow group with a history of BPD could be reversed to abundances comparable 

with the term-born controls using 12-weeks of combined (ICS/LABA) inhaler therapy. In this 

group, there was also reduced abundance of HSPB1 following combination inhaler treatment, 

with HSPB1 being important in the response to oxidative stress and inflammation (Acunzo et 

al., 2012).  This combined treatment was associated with a significant 14% increase in FEV1 

when compared to placebo (Goulden et al., 2021), and the improvement in lung function is 

likely related to a reduction in airway inflammation and structural repair of the parenchyma, 

and, thereby, improved lung mechanics. There is a suggestion of a synergistic effect between 

ICS and LABA, as these changes were not seen in the ICS monotherapy group. In addition, no 

biologically significant changes were seen in the EBC metabolome within the treatment 

groups for those in the PTlow group. Regarding the urine samples, no significantly altered 

proteins in the POLD or pPRISm groups compared to controls were significantly altered by 

inhaled therapies. In the urine metabolome, ICS treatment significantly increased indole-3-

lactate, which was seen as low in both the POLD and pPRISm groups at baseline, when 

compared to the preterm controls. However, this change was not seen in the combination 

inhaler therapy group. Indole-3-lactate has previously been demonstrated to play a role in 

the regulation of inflammation, with a multiomics-based study of human allergy 

demonstrating upregulation of interleukins-4 and -6 in macrophages (Zhen et al., 2022), and 

in murine models of necrotizing enterocolitis and intestinal disease, indole-3-lactate has been 

shown to directly inhibit genes that produce inflammatory cytokines (Huang et al., 2021), 

suppresses inflammatory T-cells and induces immunoregulatory T-cells (Cervantes-Barragan 

et al., 2017). The role of indole-3-lactate in lung pathology and the effect of corticosteroids 

on its quantity requires further study. Indole-3-lactate is a downstream product of tryptophan 
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metabolism, and MSEA had identified this as a significantly altered metabolic process in the 

pPRISm group compared to term-born controls, although indole-3-lactate was not included 

in that linkage.  

 

6.3.4 Summary of findings: 

Overall, the data presented in this thesis demonstrates that both risk factors for later PLD 

(including BPD) and current spirometry-based phenotypes (including POLD and pPRISm) are 

differentially associated with proteomic and metabolomic alterations, associated with 

differing biological processes. The EBC proteome in those with a history of BPD demonstrates 

changes in structural proteins, including cytokeratins and constituents of desmosomes, which 

are potentially amenable to combined inhaled therapies. The EBC metabolome for those with 

a history of BPD shows changes in metabolites related to processes including antioxidant 

mechanisms and oxidative stress, with common metabolite changes seen in the urine 

metabolome of those with a POLD phenotype. In addition, the urine metabolome in 

individuals with a POLD phenotype demonstrates changes associated with fatty acid 

metabolism and β-oxidation of fatty acids, with similar findings having been observed in 

adults with COPD. The urine proteome of those with a POLD phenotype demonstrates 

changes associated with and upregulation of neutrophil activation and tissue remodeling 

proteases. The urine proteome for those with a pPRISm phenotype shows multiple changes 

related to inflammation and T-lymphocyte biology, with a suggestion of altered CD4+ and 

CD8+ expression regulation, which has also been observed in studies of adults with a history 

of BPD and adults with COPD.  

Overall, the data presented in this thesis suggests that despite the initial pulmonary insult, 

secondary to preterm birth, having occurred several years previously, there are ongoing, 

active biological processes related to inflammation, lymphocyte and neutrophil activation, 
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cellular metabolism and antioxidant mechanisms present in these children with PLD, which 

may be amenable to existing and novel treatments.  

 

6.4 Strengths and Limitations 

6.4.1 RHiNO study population 

This thesis has used data from the RHiNO study, which represents the largest cohort of 

preterm-born children studied who would have experienced a modern standard of neonatal 

care, with high antenatal corticosteroid exposure and the routine use of exogenous 

pulmonary surfactant replacement. Consequently, my findings should be applicable to the 

current preterm neonatal population as they age. There are some limitations with the RHiNO 

cohort, namely that it predominantly includes an ethnically white population in which lower 

socio-economic groups are underrepresented (Hart et al., 2022), which is a common issue 

with cohort studies. Despite the large number of preterm-born children recruited, overall, 

the numbers of children with a PLD phenotype were relatively small. In addition, although 

the RCT stage of RHiNO included 53 children, and represents one of the few studies of the 

treatment of PLD (Goulden et al., 2021), the numbers per treatment group were relatively 

small. Overall, this may have limited the ability to detect significant proteomic and 

metabolomic changes in these groups. The findings from the EBC and urine proteomic and 

metabolomic analyses do require replication in a validation cohort, however there is a lack of 

comparable cohorts both within the UK and internationally with the same level of 

phenotyping and participant numbers. As the numbers with a PLD phenotype were relatively 

small overall within RHiNO this also limited the ability to perform internal validation studies. 

Also, these findings represent the first-time biological mechanisms of inhaled therapies have 

been examined in PLD and owing to the small numbers involved in the RCT, this has likely 

limited the discriminating power of my analyses to detect all the relevant proteomic and 
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metabolomic changes. Future studies should aim to target recruitment of larger numbers of 

subjects with a PLD phenotype. 

 

6.4.2 EBC Samples 

EBC is emerging as an attractive method of taking biological samples from the airways in a 

safe and non-invasive manner, as evidenced by a recent ERS technical guideline for its use in 

the study of respiratory diseases (Horvath et al., 2017). It is ideal for studying lung disease in 

a healthy paediatric population, where it can be sampled from large numbers of children in 

an acceptable and cost-effective manner. However, unlike invasively obtained samples from 

procedures such as bronchoscopy, it is not possible to know which lung compartment and 

section of the respiratory ‘tree’ (i.e. main bronchi, or lower branches of bronchii) is being 

sampled by EBC collection, as it gives more of a global impression of the biology of the 

airways. Also, as it is a passively collected sample and the epithelial lining fluid content is 

overall quite low, there may have been biologically relevant proteins or metabolites present 

in the samples that were below the limit of detection of the mass spectrometry technology 

used for analysis. ELF concentration in EBC is technically challenging to quantify and at 

present there is no accepted internal standard or reference compound present within EBC to 

adjust for dilutional effects (Horvath et al., 2017). Ideally, it would be preferable to confirm 

the findings of my analyses with more invasively collected samples such as broncheoalveolar 

lavage, however, there are significant ethical considerations of performing such invasive 

sampling in an otherwise healthy paediatric population.  

 

6.4.3 Urine Samples 

Urine is an easily available biofluid that provides the opportunity to study disease 

mechanisms, making it ideal for use in large cohort studies of clinically well paediatric 
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participants. The urine sampling performed in the RHiNO study was opportunistic at a time 

of assessment that was convenient for the family to attend. Therefore, the urine samples are 

from random timepoints throughout the day, and not necessarily early morning urine 

samples, which may have accumulated more proteomic and metabolomic changes from a 

prolonged period without regular micturition. In addition, 24-hour urine collections would 

have provided large sample volumes and may have revealed greater proteomic and 

metabolomic differences between subjects. Dietary intake can alter the urine metabolome 

(Stratakis et al., 2022), but unfortunately this data was not collected in the RHiNO study and 

therefore I have been unable to adjust for this in my analyses. Overall, the protein and 

metabolite content of the urine samples was far greater than EBC, as would be expected, but 

there may be some biologically relevant molecules present in the urine samples that were 

below the limit of detection for the mass spectrometry technology used for my analyses. 

 

6.4.4 Data Normalisation 

Normalisation of proteomic and metabolomic data is known to be challenging, particularly 

for excretory samples (Valikangas et al., 2018, Callister et al., 2006, Li et al., 2022) as have 

been used in this thesis. As discussed above (section 6.4.2), whilst EBC is increasingly used in 

the study of respiratory pathologies, at present there remains no widely accepted internal or 

external standard or method to normalize the resulting data (Horvath et al., 2017). For the 

proteomic analysis of EBC the same total protein load was used for each sample by the 

University of Bristol Proteomics Facility where possible, to attempt to ensure comparable 

results between samples and MS runs. This was not possible for the EBC metabolomic 

analysis, however, reassuringly, there appeared to be no significant relationship between EBC 

volume collected and both key protein and metabolite findings in the analysis. 
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Whilst urinary creatinine is a more widely accepted internal normalization factor for urine 

metabolomics experiments (Li et al., 2022), normalization of the urine proteome dataset was 

one of the more challenging aspects of this thesis, as described in section 4.2.4. The method 

employed, namely normalizing the data set to the median total protein content of each MS-

run and excluding those samples with a +/-2-fold difference in total protein content, operated 

within the technical limitations of the Proteome Discoverer v2.1 software and ensured robust 

statistical comparisons between included samples. However, it did also result in a large 

proportion of the samples analysed being excluded from the final data analysis.  Whilst there 

were minimal differences overall between the included and excluded samples, this did reduce 

the number of samples included in the analysis and may have reduced the statistical power 

of the experiment to detect significant differences in some proteins.  

 

6.4.5 Proteome and Metabolome Analyses 

The analyses presented in this thesis have used data from the analysis of excreted biological 

samples (i.e., EBC and urine), which are not as rich in protein and metabolite content as blood 

or whole cell/tissue lysates. As a result, there may be biologically important proteins and 

metabolites present in the samples which did not reach the limit of detection for the mass 

spectrometry analyses used. This is relevant not only for identifying individual compounds, 

but also the implicated biological processes, as this is based upon enrichment analysis 

methodology (IPA® and MSEA), which rely on over-representation of compounds to map to 

affected biological systems.  

Both the proteomic and metabolomic analyses presented in this thesis were untargeted, 

meaning that the biological samples were analysed for all detectable compounds, and not 

aimed at identifying specific proteins or metabolites, so as to give as complete an analysis of 

the proteome and metabolome as possible. However, for the purposes of the data analyses, 
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this was restricted to those proteins and metabolites that could be identified and annotated 

with a high degree of confidence. This was important for the enrichment analyses and 

mapping to relevant biological processes, as these can only be performed with known 

compounds. However, there may have been significant differences in patterns in molecules 

that could not be accurately identified and annotated between the groups that may have had 

use in discriminating one phenotype from another.  

Tandem Mass Tag (TMT) is a robust methodology in proteomics for comparing the same 

protein’s abundance between samples, which has generated reliable results on changes in 

protein levels between clinical groups and before and after treatment. However, the relative 

abundances produced by TMT methodology does not allow for robust comparison of 

different protein abundances within the same sample (Pappireddi et al., 2019). This limits the 

ability to determine the effects of different proteins on one another within a single sample. 

Whilst mass spectrometry is a highly sensitive analysis method, the reproducibility of findings 

between experiments has been challenging in both proteomic (Tabb et al., 2010) and 

metabolomic analyses (Ghosh et al., 2021), for example due to technical limitations of the 

equipment employed, different analysis platforms and workflows, ‘noise’ detected by the 

mass spectrometer and differences in characteristics between respective studies subjects. 

Unlike the genome, the proteome and metabolome are temporally dynamic and influenced 

by environmental factors, as well as host factors, meaning that finding equivalent cohorts that 

have been recruited and sampled in the same manner in order to replicate findings is 

challenging. These limitations also impact the application of these analysis methods to clinical 

practice. 
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6.4.6 Statistical Analysis Approaches  

I have used robust statistical approaches for analysing my proteomic and metabolomic data 

sets that are well-established in the literature (Wang et al., 2022, Niziol et al., 2023, Juang et 

al., 2021, Bond et al., 2019), and for the metabolomics data, I have employed the use of 

MetaboAnalyst, which is frequently used by other groups analysing metabolome datasets 

(Pang et al., 2022, Chen et al., 2022). During the course of these analyses I have become 

proficient with using R (R Core Team, 2021) and learning to code in the R language, as well as  

employing a range of R packages. I have developed an understanding of handling the large 

datasets produced by MS-based analysis workflows, and the statistical techniques employed 

in proteomic and metabolomic analyses. Enrichment analyses and use of software that maps 

patterns of changes in the proteome and metabolome to biological processes have also been 

key skills I have learnt.  

Owing to the exploratory nature of my analyses, I have used a p-value of <0.05 as a threshold 

for statistical significance in order to not exclude potentially important biological discoveries, 

which is a higher threshold than some other authors have used in published works. However, 

many of my findings have a much higher level of statistical significance. 

Owing to the excretory nature of the samples, and, therefore, lower protein and metabolite 

content, I have been limited in some of the statistical approaches I could take to analyse my 

data. To ensure robust results, some analyses were restricted to include only proteins or 

metabolites that were either present in every sample analysed, or a high majority. This is 

particularly true for the EBC samples (see sections 2.3 and 3.3). This again may have excluded 

some biologically relevant compounds from enrichment analyses. Methods such as Principle 

Component Analysis (PCA) and Partial Least Squares Discriminant Analysis (PLS-DA) have 

been employed by other authors in the analysis on -omics data as multivariable dimension 

reduction techniques to identify patterns of changes able to discriminate phenotypes or 
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clinical groups (Alonso et al., 2015, Cui et al., 2022). However, this was not appropriate for my 

data owing to the low overall number of proteins or metabolites common to every sample 

analysed.  

 

6.5 Implications for future research and clinical practice 

There are a number of ways that the research presented in my thesis should be developed in 

future studies. Firstly, the results for this exploratory analysis of the EBC and urine proteome 

and metabolome analysis require replication in a validation cohort, using a population of 

different preterm- and term-born children of a similar age and who would have experienced 

a contemporary standard of neonatal care. If successful, then comparing to other age groups 

would be appropriate.  

Direct measurement of compounds of interest identified in these analyses, using techniques 

such as Enzyme-Linked Immunosorbent Assay (ELISA), are required to accurately quantify 

their concentration, and would be necessary before any of the compounds of interest could 

potentially be employed clinically as a biomarker.  

Longitudinal studies using these analytical techniques following a cohort of preterm infants 

from birth into childhood and adulthood would be useful to ascertain whether the implicated 

biological mechanisms are the same or evolve as subjects age and develop lung function 

impairments. In addition, this would ascertain whether the identified proteins and 

metabolites of interest could predict lung function impairments in later life, which would 

potentially allow for early risk stratification of preterm-born individuals clinically, and raises 

the possibility of targeted therapy to prevent future lung function impairments. 

With regard to the potential for treatments to alter these identified metabolites of interest 

and biological processes, my analysis only detected significant relevant alterations in the EBC 
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proteome at the end of treatment. The proteome of the lungs (along with spirometry) also 

needs to be studied a period of time after the discontinuation of treatment to see whether 

the changes seen within the EBC proteome following combination inhaler therapy are 

maintained, along with the improvement seen in FEV1 (Goulden et al., 2021). This will be 

important for clinical management to know whether a 12-week course of treatment will 

suffice, or whether treatment needs to be continued longer term in order for the lung 

function improvements to be maintained. In the future, studies of inhaled therapies for 

treatment of PLD should consider obtaining more invasively collected samples, such as 

broncheoalveolar lavage fluid or tissue biopsy, which may not only be richer in protein and 

metabolite content but also ensure sample acquisition from the distal airways and acinar 

units. This may overcome some of the issues identified with EBC in 6.4.2. 

 

6.6 Thesis Conclusions 

In this thesis, I have presented data that demonstrates that preterm-born school-aged 

children with differing phenotypes of PLD have ongoing active changes in biological processes 

associated with inflammation, immune system function and oxidative stress, as well as 

alterations in lung parenchyma structure.  

In those with a history of BPD, there was evidence of persistent parenchymal structural 

changes primarily related to desmosomes, which for those with BPD and low lung function, 

appears to be modifiable with combination inhaler therapy (ICS/LABA). Glutathione 

metabolism, and thereby antioxidant defenses, appear to be impaired in both those with a 

history of BPD and a current POLD phenotype. In addition, POLD was associated with 

alterations in β-oxidation of fatty acids, fatty acid metabolism and neutrophil activity. These 

biological processes are also seen in adult subjects with COPD. In those with a pPRISm 
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phenotype, there appears to be altered T-lymphocyte biology and evidence of persistent 

inflammation.  

Differing phenotypes of PLD are associated with different underlying biological processes and 

highlight the need for greater understanding of current lung function profiles in preterm-born 

subjects as they age to appropriately understand the underlying pathophysiology. Given that 

many of the biological processes I have identified have also been seen in studies of adults 

with COPD, there is a suggestion that some PLD phenotypes share a common 

pathophysiology. 
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8 Appendices 

Accession 
Number 

Gene 
Name 

Protein Name 
Number of 

Samples 
Accession 
Number 

Gene 
Name 

Protein Name 
Number 

of 
Samples 

H6VRG2 KRT1 Cytokeratin-1 218 P04040 CAT 
Catalase 

 
191 

H6VRG3 KRT1 Cytokeratin-1 218 Q01469 FABP5 Fatty acid-binding protein 5 190 

P01040 CSTA Cystatin-A 218 P02768 ALB Albumin 187 

P02533 KRT14 Keratin, type I cytoskeletal 14 218 P04406 GAPDH 
Glyceraldehyde-3-phosphate 

dehydrogenase 
186 

P02538 KRT6A Keratin, type II cytoskeletal 6A 218 Q15517 CDSN Corneodesmosin 185 

P08779 KRT16 Keratin, type I cytoskeletal 16 218 Q9NZT1 CALML5 Calmodulin-like protein 5 184 

P13645 KRT10 Keratin, type I cytoskeletal 10 218 P62736 ACTA2 Actin, aortic smooth muscle 165 

P13647 KRT5 Keratin, type II cytoskeletal 5 218 Q7Z794 KRT77 Keratin, type II cytoskeletal 1b 165 

P14923 JUP Junction plakoglobin 218 P31151 S100A7 Protein S100-A7 164 

P15924 DSP Desmoplakin 218 P10599 TXN Thioredoxin 156 

P25311 AZGP1 Zinc-alpha-2-glycoprotein 218 P31025 LCN1 Lipocalin-1 154 

P31944 CASP14 Caspase-14 218 Q13835 PKP1 Plakophilin-1 154 

P35527 KRT9 Keratin, type I cytoskeletal 9 218 Q6UWP8 SBSN Suprabasin 153 

P35908 KRT2 Keratin, type II cytoskeletal 2 epidermal 218 P05089 ARG1 Arginase-1 152 

P62979 RPS27A Ubiquitin-40S ribosomal protein S27a 218 P12273 PIP Prolactin-inducible protein 148 

Q02413 DSG1 Desmoglein-1 218 Q06830 PRDX1 Peroxiredoxin-1 144 

Q04695 KRT17 Keratin, type I cytoskeletal 17 218 P06702 S100A9 Protein S100-A9 142 

Q08554 DSC1 Desmocollin-1 218 P60709 ACTB Actin, cytoplasmic 1 137 

Q8N1N4 KRT78 Keratin, type II cytoskeletal 78 218 Q96QE3 ATAD5 
ATPase family AAA domain-

containing protein 5 
128 

Q5D862 FLG2 Filaggrin-2 214 P32119 PRDX2 Peroxiredoxin-2 127 

P81605 DCD Dermcidin 210 A1A4E9 KRT13 Keratin 13 123 

P07355 ANXA2 Annexin A2 198 Q6KB66 KRT80 Keratin, type II cytoskeletal 80 122 

Q14CN4 KRT72 Keratin, type II cytoskeletal 72 198 P78386 KRT85 Keratin, type II cuticular Hb5 119 
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O75223 GGCT Gamma-glutamylcyclotransferase 195 P04792 HSPB1 Heat shock protein beta-1 118 

P20930 FLG Filaggrin 194 P47929 LGALS7 Galectin-7 116 

P04259 KRT6B Keratin, type II cytoskeletal 6B 193 P05109 S100A8 Protein S100-A8 111 

P01834 IGKC Immunoglobulin kappa constant 104 Q5T749 KPRP 
Keratinocyte proline-rich 

protein 
50 

Q08188 TGM3 
Protein-glutamine gamma-

glutamyltransferase E 
102 Q5T749 KPRP 

Keratinocyte proline-rich 
protein 

50 

Q13867 BLMH Bleomycin hydrolase 101 Q9UI42 CPA4 Carboxypeptidase A4 48 

Q96P63 SERPINB12 Serpin B12 99 P22531 SPRR2E Small proline-rich protein 2E 43 

B4DKJ0 Unknown 
cDNA FLJ58539, highly similar to 

Keratin, type II cytoskeletal 4 
95 Q16610 ECM1 Extracellular matrix protein 1 40 

P69905 HBA1 Haemoglobin subunit alpha 93 P06733 ENO1 Alpha-enolase 39 

Q86YZ3 HRNR Hornerin 92 P08670 VIM Vimentin 39 

P0DUB6 AMY1A Alpha-amylase 1A 91 Q9GZZ8 LACRT 
Extracellular glycoprotein 

lacritin 
35 

P27482 CALML3 Calmodulin-like protein 3 88 W8QEY1 Unknown Lactotransferrin 35 

Q15323 KRT31 Keratin, type I cuticular Ha1 87 Q9UGM3 DMBT1 
Deleted in malignant brain 

tumours 1 protein 
34 

Q7Z3Y8 KRT27 Keratin, type I cytoskeletal 27 84 Q9UJ41 RABGEF1 
Rab5 GDP/GTP exchange 

factor 
34 

P61626 LYZ Lysozyme C 83 O76011 KRT34 Keratin, type I cuticular Ha4 33 

P02810 PRH1 
Salivary acidic proline-rich 

phosphoprotein 1/2 
81 Q9HCM4 EPB41L5 Band 4.1-like protein 5 33 

P04083 ANXA1 Annexin A1 81 P62805 H4C1 Histone H4 32 

Q9NSB2 KRT84 Keratin, type II cuticular Hb4 81 O76013 KRT36 Keratin, type I cuticular Ha6 31 

P68871 HBB Haemoglobin subunit beta 72 P01591 JCHAIN Immunoglobulin J chain 30 

Q14525 KRT33B Keratin, type I cuticular Ha3-II 72 Q9C075 KRT23 Keratin, type I cytoskeletal 23 30 

B2R853 Unknown 
cDNA, FLJ93744, highly similar to Homo 

sapiens keratin 6E (KRT6E), mRNA 
70 Q9Y224 RTRAF 

RNA transcription, translation 
and transport factor protein 

30 

P01876 IGHA1 Immunoglobulin heavy constant alpha 1 66 P62328 TMSB4X Thymosin beta-4 29 

Q15828 CST6 Cystatin-M 66 P01857 IGHG1 
Immunoglobulin heavy 

constant gamma 1 
28 

O60814 H2BC12 Histone H2B type 1-K 65 P14618 PKM Pyruvate kinase PKM 28 
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P00441 SOD1 Superoxide dismutase 61 Q8TF66 LRRC15 
Leucine-rich repeat-containing 

protein 15 
28 

P23490 LORICRIN Loricrin 61 G3V1M9 PRB1 
Basic salivary proline-rich 

protein 1 
27 

P29508 SERPINB3 Serpin B3 58 P12035 KRT3 Keratin, type II cytoskeletal 3 27 

A0A0S2Z4G4 TPM3 Tropomyosin 3 isoform 1 57 P68431 H3C1 Histone H3.1 27 

Q96DR8 MUCL1 Mucin-like protein 1 54 Q9BYR6 KRTAP3-3 Keratin-associated protein 3-3 25 

O43790 KRT86 Keratin, type II cuticular Hb6 53 Q9HCY8 S100A14 Protein S100-A14 25 

P22735 TGM1 
Protein-glutamine gamma-

glutamyltransferase K 
24 Q92820 GGH Gamma-glutamyl hydrolase 15 

P82279 CRB1 Protein crumbs homolog 1 24 Q9UKX2 MYH2 Myosin-2 14 

Q05639 EEF1A2 Elongation factor 1-alpha 2 23 P07339 CTSD Cathepsin D 13 

P04080 CSTB Cystatin-B 20 P78385 KRT83 Keratin, type II cuticular Hb3 13 

P15090 FABP4 Fatty acid-binding protein, adipocyte 20 P31947 SFN 14-3-3 protein sigma 12 

P63104 YWHAZ 14-3-3 protein zeta/delta 20 P60174 TPI1 Triosephosphate isomerase 12 

Q52LG2 KRTAP13-2 Keratin-associated protein 13-2 20 P42357 HAL Histidine ammonia-lyase 11 

Q5T750 XP32 Skin-specific protein 32 20 P02814 SMR3B 
Submaxillary gland androgen-

regulated protein 3B 
10 

Q6ZVX7 NCCRP1 F-box only protein 50 20 P0DPA2 VSIG8 
V-set and immunoglobulin 

domain-containing protein 8 
10 

P35579 MYH9 Myosin-9 19 P16615 ATP2A2 
Sarcoplasmic/endoplasmic 
reticulum calcium ATPase 2 

10 

Q6E0U4 DMKN Dermokine 19 Q6A163 KRT39 Keratin, type I cytoskeletal 39 10 

Q8IUC0 KRTAP13-1 Keratin-associated protein 13-1 19 Q96DA0 ZG16B 
Zymogen granule protein 16 

homolog B 
10 

B4DJM5 Unknown 
cDNA FLJ61294, highly similar to 

Keratin, type I cytoskeletal 17 
18 Q9NQ38 SPINK5 

Serine protease inhibitor 
Kazal-type 5 

10 

P01036 CST4 Cystatin-S 18 Q9UKK9 NUDT5 ADP-sugar pyrophosphatase 10 

P02452 COL1A1 Collagen alpha-1(I) chain 18 A2IDD5 CCDC78 
Coiled-coil domain-containing 

protein 78 
9 

P03973 SLPI Secretory leukocyte peptidase inhibitor 18 P02812 PRB2 
Basic salivary proline-rich 

protein 2 
9 

Q14533 KRT81 Keratin, type II cuticular Hb1 18 P06454 PTMA Prothymosin alpha 9 
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Q3LI77 KRTAP13-4 Keratin-associated protein 13-4 18 P16104 H2AX Histone H2AX 9 

Q96QA5 GSDMA Gasdermin-A 18 Q02383 SEMG2 Semenogelin-2 9 

P13929 ENO3 Beta-enolase 17 Q3SY84 KRT71 Keratin, type II cytoskeletal 71 9 

Q14574 DSC3 Desmocollin-3 17 Q6S8J3 POTEE 
POTE ankyrin domain family 

member E 
9 

Q2PPJ7 RALGAPA2 
RalGTPase-activating protein 

subunitalpha-2 
17 Q6YFL4 KRTHB6 Type II keratin (Fragment) 9 

Q6ZUA9 MROH5 
Maestro heat-like repeat family 

member 5 
17 Q92764 KRT35 Keratin, type I cuticular Ha5 9 

P17066 HSPA6 Heat shock 70 kDa protein 6 15 Q9BZE2 PUS3 
tRNA pseudouridine(38/39) 

synthase 
9 

P22528 SPRR1B Cornifin-B 15 Q9HC84 MUC5B Mucin-5B (MUC-5B) 9 

Q14508 WFDC2 
WAP four-disulfide core domain protein 

2 
15 P04279 SEMG1 Semenogelin-1 8 

P05976 MYL1 
Myosin light chain 1/3, skeletal muscle 

isoform 
8 Q9BYR9 KRTAP2-4 Keratin-associated protein 2-4 7 

P09228 CST2 Cystatin-SA 8 O43829 ZBTB14 
Zinc finger and BTB domain-

containing protein 14 
6 

P11055 MYH3 Myosin-3 8 Q5XKE5 KRT79 Keratin, type II cytoskeletal 79 6 

P31949 S100A11 Protein S100-A11 8 Q9Y618 NCOR2 
Nuclear receptor corepressor 

2 
6 

P49454 CENPF Centromere protein F 8 P13639 EEF2 Elongation factor 2 5 

P52566 ARHGDIB Rho GDP-dissociation inhibitor 2 8 P62937 PPIA 
Peptidyl-prolyl cis-trans 

isomerase A 
5 

P00491 PNP Purine nucleoside phosphorylase 7 A0A1B0GVI3 KRT10 
Keratin, type I cytoskeletal 10 

(Fragment) 
4 

P09211 GSTP1 Glutathione S-transferase P 7 D3DTX7 COL1A1 
Collagen, type I, alpha 1, 

isoform CRA_a 
4 

P11021 HSPA5 Endoplasmic reticulum chaperone BiP 7 O95678 KRT75 Keratin, type II cytoskeletal 75 4 

P47756 CAPZB F-actin-capping protein subunit beta 7 P05455 SSB Lupus La protein 4 

P60900 PSMA6 Proteasome subunit alpha type-6 7 Q9BYR8 KRTAP3-1 Keratin-associated protein 3-1 4 

Q8NEZ4 KMT2C Histone-lysine N-methyltransferase 2C 7 Q9H1E1 RNASE7 Ribonuclease 7 4 

Q8WVV4 POF1B Protein POF1B 7 Q15149 PLEC Plectin 2 

Table 8-1: List of all proteins detected within EBC samples, in decreasing order of number of samples in which it was detected 
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Metabolite 
% BPD 

Samples 
BPD 

mean 
BPD 
SD 

% NoBPD 
Samples 

NoBPD 
mean 

NoBPD 
SD 

% Term 
samples 

Term 
mean 

Term 
SD 

1,2,4-benzenetriol 23.5 1.81 0.29 30.9 1.88 0.29 29.6 1.78 0.36 

1,2-anhydromyoinositol 5.9 1.33 0.53 14.5 1.63 0.42 9.9 1.58 0.35 

1-hexadecanol 100 2.50 0.11 99.1 2.48 0.14 100 2.48 0.12 

1-kestose 0 1.48 0.20 4.5 1.51 0.30 1.4 1.50 0.29 

1-methyladenosine 0 1.40 0.22 0.9 1.42 0.23 1.4 1.37 0.26 

1-monostearin 100 2.73 07 99.1 2.75 07 100 2.72 0.10 

2,3-bisphosphoglyceric acid 26.5 1.86 0.33 35.5 1.96 0.50 29.6 1.92 0.53 

2,3-dihydroxybutanoic acid 0 1.45 0.23 0 1.44 0.29 2.8 1.44 0.33 

2,8-dihydroxyquinoline 0 1.49 0.14 0 1.39 0.22 1.4 1.45 0.19 

2-aminophenol 0 1.51 0.23 0 1.55 0.20 1.4 1.50 0.23 

2-deoxytetronic acid 5.9 1.70 0.18 5.5 1.74 0.21 11.3 1.78 0.34 

2-hydroxy-2-methylbutanoic acid 97.1 3.08 0.68 91.8 3.16 0.66 93.0 3.13 0.59 

2-hydroxyglutaric acid 35.3 1.95 0.13 30.9 1.93 0.16 42.3 1.99 0.18 

2-hydroxyhippuric acid 2.9 1.50 0.31 0 1.44 0.23 1.4 1.38 0.35 

2-hydroxypyrazinyl-2-propenoic acidethylester 100 3.55 08 99.1 3.53 0.13 100 3.57 0.10 

2-hydroxyvaleric acid 100 3.50 04 99.1 3.45 0.17 100 3.49 06 

2-ketoisocaproic acid 100 3.04 0.31 98.2 3.07 0.33 98.6 3.11 0.31 

2-methylglyceric acid 0 1.55 0.18 2.7 1.57 0.27 4.2 1.64 0.23 

2-monopalmitin 100 2.98 0.55 99.1 2.90 0.57 100 2.81 0.47 

2-picolinic acid 17.6 1.75 0.38 35.5 1.81 0.39 36.6 1.83 0.46 

3,3-hydroxyphenyl-3-hydroxypropionic acid 0 1.50 0.23 1.8 1.49 0.22 4.2 1.53 0.38 

3,3-hydroxyphenylpropionic acid 100 2.49 04 98.2 2.48 0.11 100 2.49 03 

3,4-dihydroxybenzoic acid 0 1.71 0.18 3.6 1.70 0.22 5.6 1.69 0.36 
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3,4-dihydroxycinnamic acid 55.9 2.03 0.13 60.9 2.03 0.20 63.4 2.06 0.18 

3,4-dihydroxyhydrocinnamic acid 8.8 1.62 0.27 16.4 1.72 0.43 12.7 1.70 0.29 

3,4-dihydroxyphenylacetic acid 20.6 1.68 0.44 19.1 1.63 0.40 21.1 1.67 0.40 

3,6-anhydro-D-galactose 2.9 1.47 0.28 0 1.44 0.26 1.4 1.51 0.30 

3-aminoisobutyric acid 73.5 2.19 0.24 67.3 2.16 0.32 78.9 2.23 0.29 

3-hydroxy-3,4-hydroxy-3-methoxyphenylpropionic 
acid 

0 1.44 0.22 0 1.42 0.32 1.4 1.44 0.35 

3-hydroxy-3-methylglutaric acid 0 1.46 0.18 0 1.41 0.27 1.4 1.49 0.27 

3-hydroxyphenylacetic acid 0 1.48 0.20 0 1.50 0.18 2.8 1.54 0.27 

3-hydroxypropionic acid 100 3.00 06 99.1 3.00 0.11 100 3.00 07 

3-phosphoglycerate 0 1.48 0.17 1.8 1.44 0.25 1.4 1.50 0.24 

4-hydroxybenzoate 44.1 2.00 0.21 47.3 1.99 0.20 52.1 2.00 0.27 

4-hydroxyhippuric acid 14.7 1.65 0.40 20.9 1.69 0.37 28.2 1.81 0.38 

4-hydroxyphenylacetic acid 2.9 1.45 0.37 5.5 1.48 0.36 5.6 1.53 0.41 

4-methylcatechol 0 1.52 0.18 0 1.51 0.19 1.4 1.49 0.22 

4-pyridoxic acid 0 1.37 0.24 0 1.40 0.28 1.4 1.43 0.28 

5-aminovaleric acid 23.5 1.93 0.17 35.5 1.98 0.31 22.5 1.92 0.18 

5-deoxy-5-methylthioadenosine 0 1.38 0.29 0 1.38 0.34 1.4 1.47 0.28 

5-hydroxy-3-indoleacetic acid 0 1.39 0.32 0 1.42 0.20 1.4 1.42 0.29 

5-hydroxymethyl-2-furoic acid 100 2.29 0.10 98.2 2.27 0.10 100 2.29 0.16 

6-deoxyglucitol 0 1.45 0.25 0.9 1.45 0.26 1.4 1.44 0.29 

7-methylguanine 0 1.41 0.32 0 1.44 0.27 1.4 1.45 0.28 

aconitic acid 0 1.50 0.27 3.6 1.54 0.26 4.2 1.61 0.38 

adenine 0 1.47 0.23 0 1.48 0.21 1.4 1.48 0.25 

adenosine 2.9 1.53 0.25 1.8 1.55 0.39 7.0 1.58 0.40 

adipic acid 100 3.28 0.23 99.1 3.27 0.21 100 3.26 0.18 

alanine 100 3.25 0.27 99.1 3.42 0.43 100 3.42 0.36 
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allantoic acid 0 1.47 0.20 0 1.45 0.26 1.4 1.42 0.36 

alloxanoic acid 8.8 1.84 0.15 15.5 1.83 0.21 11.3 1.88 0.15 

alphaketoglutarate 0 1.47 0.26 4.5 1.51 0.40 7.0 1.53 0.43 

aminomalonate 2.9 1.45 0.39 10 1.62 0.33 7.0 1.59 0.29 

anthranilic acid 0 1.43 0.23 0 1.47 0.30 2.8 1.53 0.32 

arabitol 100 2.77 07 99.1 2.80 0.11 100 2.83 0.27 

arachidic acid 100 3.55 05 99.1 3.56 0.12 100 3.55 0.10 

ascorbic acid 0 1.41 0.20 0 1.34 0.27 1.4 1.45 0.22 

asparagine 100 2.70 08 99.1 2.73 0.18 100 2.73 0.17 

aspartic acid 100 2.70 0.12 99.1 2.78 0.40 100 2.77 0.28 

azelaic acid 97.1 2.32 0.14 96.4 2.33 0.17 93.0 2.30 0.22 

benzoic acid 100 4.10 04 99.1 4.10 04 100 4.10 04 

beta alanine 0 1.40 0.35 3.6 1.53 0.25 1.4 1.48 0.29 

betagentiobiose 14.7 1.71 0.24 19.1 1.71 0.45 15.5 1.63 0.46 

betamannosylglycerate 0 1.39 0.32 0 1.44 0.31 1.4 1.43 0.33 

biphenyl 100 2.34 06 99.1 2.33 07 100 2.32 07 

butane-2,3-diol 100 3.50 0.32 99.1 3.61 0.48 100 3.59 0.41 

butyrolactam 88.2 2.19 0.47 89.1 2.28 0.35 90.1 2.24 0.37 

capric acid 100 3.17 07 99.1 3.16 07 100 3.16 06 

caprylic acid 100 3.91 04 99.1 3.89 05 100 3.91 05 

catechol 0 1.53 0.22 0 1.51 0.26 2.8 1.43 0.36 

cellobiose 79.4 2.25 0.32 81.8 2.31 0.48 77.5 2.28 0.40 

ceratinic acid 91.2 2.20 0.12 91.8 2.20 0.13 90.1 2.18 0.17 

cholesterol 61.8 2.11 0.23 68.2 2.16 0.35 57.7 2.09 0.38 

citramalic acid 14.7 1.74 0.21 14.5 1.75 0.34 14.1 1.76 0.29 

citric acid 91.2 2.38 0.29 96.4 2.49 0.44 97.2 2.54 0.58 

citrulline 14.7 1.73 0.32 16.4 1.74 0.41 18.3 1.80 0.40 
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conduritolbetaepoxide 26.5 1.71 0.47 22.7 1.74 0.50 38.0 1.92 0.55 

creatinine 29.4 1.77 0.73 30.9 1.89 0.76 25.4 1.83 0.95 

cystathionine 0 1.51 0.27 3.6 1.51 0.37 2.8 1.56 0.30 

cysteine 2.9 1.55 0.36 10.9 1.60 0.38 12.7 1.64 0.48 

cysteineglycine 32.4 1.84 0.41 42.7 1.91 0.43 42.3 1.96 0.39 

cystine 26.5 1.84 0.22 20.9 1.86 0.20 42.3 1.94 0.23 

dehydroabietic acid 97.1 3.00 0.43 96.4 2.91 0.49 95.8 2.87 0.56 

dehydroascorbic acid 58.8 2.00 08 49.1 1.98 0.15 50.7 2.02 0.20 

deoxypentitol 0 1.48 0.16 5.5 1.54 0.30 4.2 1.55 0.35 

digalacturonic acid 29.4 1.92 0.12 30 1.92 0.14 39.4 1.93 0.15 

digitoxose 100 2.60 0.13 99.1 2.57 0.17 100 2.64 0.15 

diglycerol 100 2.73 06 99.1 2.73 08 100 2.74 0.13 

dihydro-3-coumaric acid 100 2.51 05 97.3 2.47 0.12 100 2.50 05 

docosenoic acid 100 3.27 0.42 99.1 3.32 0.58 100 3.36 0.49 

dodecanol 100 3.25 0.10 99.1 3.24 0.12 100 3.25 09 

enolpyruvate 2.9 1.70 0.17 2.7 1.68 0.21 0 1.68 0.18 

erythritol 23.5 1.70 0.34 26.4 1.67 0.46 19.7 1.71 0.60 

erythronic acid lactone 0 1.44 0.31 0 1.47 0.21 1.4 1.45 0.25 

erythrose major 2.9 1.47 0.31 10.9 1.62 0.31 7.0 1.55 0.30 

ethanolamine 100 2.84 0.27 96.4 2.91 0.40 98.6 2.89 0.46 

ferulic acid 0 1.44 0.22 0 1.41 0.28 1.4 1.43 0.27 

fructose 76.5 2.27 0.37 72.7 2.37 0.62 80.3 2.40 0.54 

fucose 100 2.85 06 99.1 2.84 08 100 2.85 0.15 

fumaric acid 76.5 2.13 0.15 72.7 2.13 0.24 74.6 2.14 0.27 

furoylglycine 55.9 1.95 0.53 43.6 1.98 0.45 42.3 1.84 0.56 

galactinol 38.2 1.98 0.31 55.5 2.08 0.34 56.3 2.10 0.37 

galactitol 38.2 1.77 0.50 48.2 2.08 0.68 42.3 1.99 0.57 
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galactonic acid 5.9 1.47 0.32 5.5 1.54 0.28 5.6 1.56 0.38 

galactose 85.3 2.37 0.39 80.9 2.54 0.62 87.3 2.53 0.62 

glucoheptulose 0 1.40 0.36 0 1.44 0.30 1.4 1.49 0.32 

gluconic acid 2.9 1.53 0.21 8.2 1.60 0.33 14.1 1.66 0.40 

gluconic acidlactone 0 1.46 0.25 0 1.41 0.30 4.2 1.48 0.31 

glucose 47.1 2.12 0.46 54.5 2.25 0.53 66.2 2.36 0.57 

glucuronic acid 0 1.57 0.30 4.5 1.62 0.25 5.6 1.62 0.37 

glutamic acid 8.8 1.61 0.28 20.9 1.82 0.51 25.4 1.79 0.41 

glutamine 100 3.98 0.38 99.1 4.09 0.29 100 4.01 0.38 

glutaric acid 88.2 2.18 0.18 79.1 2.15 0.19 84.5 2.17 0.20 

glycerol 100 3.92 0.17 99.1 3.96 0.21 100 3.87 0.15 

glycerol-3-galactoside 14.7 1.50 0.48 15.5 1.64 0.32 28.2 1.80 0.40 

glycerol alpha phosphate 0 1.47 0.20 0 1.46 0.18 1.4 1.44 0.29 

glycine 100 3.42 0.33 99.1 3.53 0.35 100 3.55 0.27 

glycolic acid 100 2.82 0.16 98.2 2.83 0.20 100 2.86 0.23 

glycylproline 2.9 1.53 0.22 7.3 1.59 0.31 7.0 1.61 0.41 

guanine 0 1.53 0.20 0 1.50 0.22 1.4 1.47 0.27 

heptadecanoic acid 100 3.73 04 99.1 3.72 04 100 3.72 03 

hippuric acid 5.9 1.60 0.23 10.9 1.67 0.39 8.5 1.71 0.53 

histidine 32.4 1.97 0.14 53.6 2.07 0.30 56.3 2.05 0.24 

homocystine 0 1.42 0.34 3.6 1.56 0.31 4.2 1.45 0.44 

homovanillic acid 5.9 1.51 0.36 6.4 1.53 0.32 7.0 1.53 0.48 

hydroxycarbamate 100 2.73 0.11 99.1 2.71 0.10 100 2.70 09 

hydroxyproline dipeptide 2.9 1.68 0.16 4.5 1.65 0.23 2.8 1.72 0.37 

hypoxanthine 0 1.38 0.32 2.7 1.46 0.33 2.8 1.43 0.45 

indole-3-acetate 0 1.52 0.20 0.9 1.45 0.25 2.8 1.56 0.32 

indoxylsulfate 0 1.37 0.35 4.5 1.41 0.32 4.2 1.45 0.45 
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isocitric acid 0 1.41 0.18 1.8 1.50 0.24 5.6 1.54 0.43 

isoleucine 100 2.86 0.14 99.1 2.96 0.36 100 2.93 0.24 

isopropyl benzene 100 3.75 0.51 99.1 3.82 0.47 100 3.66 0.48 

isothreonic acid 5.9 1.75 0.14 10 1.78 0.19 8.5 1.83 0.37 

itaconic acid 97.1 2.69 0.32 95.5 2.56 0.28 95.8 2.67 0.50 

kynurenic acid 0 1.40 0.35 0 1.47 0.21 2.8 1.42 0.38 

lactic acid 100 3.62 0.24 99.1 3.69 0.50 100 3.70 0.35 

lactose 35.3 1.93 0.23 38.2 1.97 0.25 43.7 1.94 0.21 

lactulose 55.9 2.09 0.33 50 2.14 0.54 46.5 2.11 0.46 

lauric acid 100 3.98 05 99.1 3.97 05 100 3.97 0.10 

leucine 100 3.48 0.83 99.1 3.39 0.73 100 3.46 0.71 

levoglucosan 32.4 1.92 0.26 47.3 1.98 0.26 39.4 2.01 0.34 

levoinositol 0 1.38 0.23 0 1.37 0.34 1.4 1.36 0.42 

lysine 2.9 1.59 0.18 11.8 1.67 0.47 12.7 1.65 0.39 

maleimide 100 2.43 0.28 85.5 2.33 0.30 93.0 2.38 0.29 

malic acid 35.3 1.99 0.35 41.8 2.08 0.45 54.9 2.12 0.40 

maltose-1 91.2 2.30 0.30 90.9 2.42 0.45 84.5 2.30 0.37 

mannose 23.5 1.91 0.52 37.3 2.14 0.84 42.3 2.16 0.83 

metanephrine 0 1.45 0.20 0.9 1.43 0.28 1.4 1.42 0.32 

methanolphosphate 26.5 1.94 0.97 23.6 1.92 0.93 40.8 2.18 1.12 

methionine 14.7 1.38 0.52 12.7 1.48 0.60 12.7 1.57 0.60 

methylmaleic acid 0 1.62 0.17 0.9 1.62 0.16 1.4 1.62 0.16 

montanic acid 100 2.46 0.10 97.3 2.42 0.13 100 2.46 09 

myoinositol 26.5 1.92 0.33 37.3 1.98 0.43 50.7 2.05 0.47 

myristic acid 100 3.41 04 99.1 3.40 05 100 3.40 04 

N-acetylaspartic acid 2.9 1.59 0.24 3.6 1.62 0.32 8.5 1.63 0.40 

N-acetylmannosamine 2.9 1.75 0.14 4.5 1.75 0.17 5.6 1.77 0.22 
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N-acetylputrescine 5.9 1.59 0.26 21.8 1.86 0.74 22.5 1.74 0.67 

N-carbamoylaspartate 2.9 1.44 0.20 3.6 1.51 0.28 4.2 1.54 0.29 

N-carbamylglutamate 0 1.47 0.31 0.9 1.51 0.24 4.2 1.52 0.34 

nepsilontrimethyllysine 0 1.67 0.20 1.8 1.64 0.28 4.2 1.64 0.22 

nicotinic acid 14.7 1.76 0.25 14.5 1.80 0.54 22.5 1.84 0.49 

N-methylglutamic acid 88.2 2.30 0.26 89.1 2.29 0.24 91.5 2.28 0.28 

nonadecanoic acid 100 2.74 06 99.1 2.71 07 100 2.71 07 

noradrenaline 0 1.50 0.29 2.7 1.53 0.33 2.8 1.46 0.28 

octadecanol 100 3.05 0.12 99.1 3.01 08 100 3.02 0.10 

oleamide 82.4 2.48 0.39 83.6 2.38 0.34 97.2 2.54 0.32 

oleic acid 97.1 2.56 0.18 99.1 2.56 0.14 100 2.57 0.11 

ornithine 97.1 2.72 0.41 99.1 2.92 0.59 97.2 2.88 0.53 

orotic acid 0 1.50 0.26 0 1.37 0.34 1.4 1.43 0.35 

palatinitol 0 1.42 0.32 6.4 1.49 0.38 2.8 1.52 0.28 

palmitoleic acid 5.9 1.67 0.19 0 1.59 0.18 1.4 1.56 0.26 

parabanic acid 94.1 2.76 0.35 94.5 2.81 0.34 95.8 2.80 0.32 

pcresol 100 2.53 0.15 97.3 2.55 0.19 98.6 2.59 0.31 

pentitol 0 1.34 0.21 0 1.36 0.31 1.4 1.43 0.36 

pentose 73.5 2.25 0.29 65.5 2.15 0.30 60.6 2.14 0.39 

phenol 100 3.20 05 99.1 3.21 0.13 100 3.20 08 

phenylalanine 100 2.70 09 99.1 2.75 0.22 100 2.73 0.17 

phosphate 100 3.24 0.64 98.2 3.26 0.63 98.6 3.20 0.54 

pimelic acid 100 2.48 0.15 98.2 2.48 0.15 98.6 2.47 0.20 

pinitol 55.9 2.11 0.39 53.6 2.09 0.45 49.3 2.10 0.43 

proline 52.9 1.99 0.49 55.5 2.18 0.58 64.8 2.22 0.49 

pseudo uridine 0 1.48 0.16 0.9 1.49 0.30 4.2 1.56 0.46 

psicose 26.5 1.72 0.55 25.5 1.76 0.74 22.5 1.73 0.68 
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ptolylglucuronide 41.2 1.98 0.42 41.8 1.98 0.39 38.0 1.96 0.52 

putrescine 32.4 1.90 0.29 37.3 2.14 0.67 33.8 2.03 0.62 

pyrogallol 11.8 1.62 0.30 11.8 1.71 0.31 12.7 1.67 0.29 

pyroglutamic acid 97.1 3.55 0.37 99.1 3.75 0.45 100 3.71 0.39 

pyrophosphate 100 3.35 0.27 99.1 3.34 0.30 100 3.36 0.28 

pyruvic acid 52.9 2.04 0.44 51.8 2.19 0.61 54.9 2.15 0.50 

quinic acid 32.4 1.84 0.55 28.2 1.87 0.57 38.0 1.98 0.63 

quinolinic acid 0 1.54 0.20 0 1.56 0.20 1.4 1.61 0.26 

raffinose 0 1.48 0.23 4.5 1.51 0.32 4.2 1.53 0.24 

ribitol 50 2.17 0.66 51.8 2.20 0.67 66.2 2.41 0.65 

ribonic acid 0 1.60 0.19 5.5 1.60 0.26 2.8 1.59 0.31 

ribose 0 1.45 0.25 1.8 1.46 0.31 5.6 1.46 0.44 

saccharic acid 20.6 1.54 0.48 16.4 1.58 0.39 19.7 1.60 0.45 

salicylaldehyde 73.5 2.14 0.35 70.9 2.16 0.25 81.7 2.26 0.25 

salicylic acid 61.8 2.09 0.23 71.8 2.16 0.37 71.8 2.16 0.37 

serine 97.1 2.92 0.64 98.2 3.23 0.79 100 3.19 0.72 

serotonin 2.9 1.47 0.24 4.5 1.59 0.47 5.6 1.62 0.47 

shikimic acid 97.1 2.27 0.23 98.2 2.40 0.38 97.2 2.37 0.38 

sinapinic acid 14.7 1.88 0.18 16.4 1.90 0.11 21.1 1.91 0.14 

sophorose 0 1.54 0.26 0 1.47 0.33 1.4 1.38 0.44 

sorbitol 100 2.53 0.17 96.4 2.67 0.45 98.6 2.65 0.36 

succinic acid 100 2.58 0.16 98.2 2.61 0.27 100 2.64 0.25 

sucrose 97.1 2.52 0.37 91.8 2.64 0.59 98.6 2.67 0.49 

tagatose 67.6 2.15 0.32 70.9 2.31 0.54 73.2 2.31 0.51 

tartaric acid 0 1.40 0.33 0.9 1.50 0.24 2.8 1.54 0.35 

threitol 61.8 2.07 0.28 58.2 2.04 0.26 64.8 2.14 0.40 

threonic acid 2.9 1.45 0.34 4.5 1.51 0.37 7.0 1.62 0.43 
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threonine 52.9 2.07 0.35 62.7 2.22 0.50 62.0 2.25 0.45 

thymine 0 1.49 0.26 0.9 1.44 0.30 1.4 1.42 0.29 

trehalose 97.1 2.42 0.25 98.2 2.46 0.24 94.4 2.41 0.25 

triethanolamine 58.8 2.10 0.28 77.3 2.25 0.35 67.6 2.12 0.26 

tryptophan 64.7 2.08 0.23 56.4 2.14 0.35 70.4 2.18 0.30 

tyrosine 94.1 2.31 0.25 90 2.45 0.47 93.0 2.44 0.41 

UDP-glucuronic acid 38.2 1.78 0.41 54.5 1.86 0.46 70.4 2.06 0.42 

uracil 14.7 1.74 0.32 14.5 1.72 0.36 26.8 1.81 0.39 

urea 97.1 3.12 0.44 99.1 3.35 0.55 100 3.32 0.57 

uric acid 0 1.42 0.29 4.5 1.56 0.30 5.6 1.52 0.46 

uridine 2.9 1.54 0.25 0 1.52 0.26 0 1.51 0.22 

urocanic acid 2.9 1.55 0.28 9.1 1.65 0.41 7.0 1.68 0.25 

valine 97.1 2.87 0.31 99.1 3.06 0.47 100 3.08 0.38 

vanillic acid 8.8 1.54 0.30 10 1.55 0.39 21.1 1.65 0.34 

xanthine 0 1.45 0.19 1.8 1.45 0.28 1.4 1.47 0.29 

xanthosine 0 1.42 0.37 3.6 1.51 0.32 4.2 1.50 0.35 

xylitol 58.8 2.01 0.12 52.7 2.06 0.26 50.7 2.05 0.27 

xylonic acid 0 1.40 0.26 0.9 1.38 0.27 1.4 1.41 0.31 

xylonic acid isomer 2.9 1.59 0.18 2.7 1.63 0.26 4.2 1.68 0.26 

xylose 100 2.23 0.11 97.3 2.25 0.18 98.6 2.29 0.29 

xylulose 0 1.55 0.20 0 1.49 0.19 2.8 1.55 0.32 

Table 8-2: List of all detected metabolites in EBC, percentage of samples in which they were detected and mean and standard deviation of each metabolite by 
group (data log10 transformed).
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Metabolite 
Retention 

Index 
m/z PubChem ID 

No. of 
samples 

Percentage 
of samples 

1,2,4-benzenetriol 521803 239 10787 291 100 

1,2-anhydromyoinositol 651472 318 119054 291 100 

1-hexadecanol 679596 299 2682 287 98.6 

1-kestose 1123027 361 440080 256 88.0 

1-methyladenosine 829921 259 27476 287 98.6 

1-methylinosine 829921 259 27476 201 69.1 

1-monostearin 959214 203 24699 291 100 

2,3-dihydroxybutanoic acid 384796 292 250402 291 100 

2,8-dihydroxyquinoline 626989 290 97250 291 100 

2-aminophenol 438445 150 NA 282 96.9 

2-deoxytetronic acid 433456 189 150929 291 100 

2-hydroxy-2-methylbutanoic acid 264833 145 95433 290 99.7 

2-hydroxyglutaric acid 506306 247 43 291 100 

2-hydroxyhippuric acid 725465 206 10253 291 100 

2-hydroxypyrazinyl-2-propenoicacidethylester 493127 121 5371086 291 100 

2-hydroxyvaleric acid 309587 131 98009 291 100 

2-isopropylmalic acid 508690 275 5280523 203 69.8 

2-ketoisocaproic acid 290473 89 70 291 100 

2-methylglyceric acid 372491 219 560781 290 99.7 

2-monopalmitin 890356 129 123409 291 100 

2-picolinic acid 383668 180 1018 291 100 

3,3-hydroxyphenyl-3-hydroxypropionic acid 632357 267 102959 291 100 

3,3-hydroxyphenylpropionic acid 583925 192 91 290 99.7 

3,4-dihydroxybenzoic acid 620200 193 72 291 100 

3,4-dihydroxycinnamic acid 748847 219 689043 290 99.7 
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3,4-dihydroxyhydrocinnamic acid 673176 179 348154 291 100 

3,4-dihydroxyphenylacetic acid 625046 179 547 291 100 

3,6-anhydro-D-galactose 588886 231 16069996 291 100 

3-aminoisobutyric acid 452655 248 64956 291 100 

3-hydroxy-3,4-hydroxy-3-methoxyphenylpropionic acid 688753 297 NA 288 99.0 

3-hydroxy-3-methylglutaric acid 521554 247 1662 291 100 

3-hydroxyanthralinic acid 640146 354 NA 291 100 

3-hydroxyphenylacetic acid 527648 164 12122 291 100 

3-hydroxypropionic acid 269265 177 68152 291 100 

3-phosphoglycerate 610734 227 724 282 96.9 

4-hydroxybenzoate 537925 223 135 291 100 

4-hydroxyhippuric acid 784581 294 151012 291 100 

4-hydroxyphenylacetic acid 542795 179 127 291 100 

4-methylcatechol 416586 268 9958 285 97.9 

4-pyridoxic acid 673225 309 6723 290 99.7 

5-aminovaleric acid 536657 174 138 291 100 

5-deoxy-5-methylthioadenosine 967036 236 439176 291 100 

5-hydroxy-3-indoleacetic acid 777606 290 1826 291 100 

5-hydroxymethyl-2-furoic acid 497561 123 80642 290 99.7 

6-deoxyglucitol 596111 319 151266 290 99.7 

7-methylguanine 768706 294 11361 291 100 

aconitic acid 586815 229 643757 291 100 

adenine 646534 264 190 291 100 

adenosine 918039 236 60961 291 100 

adipic acid 474435 111 196 291 100 

alanine 244189 116 5950 291 100 

allantoic acid 726050 259 203 290 99.7 
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alloxanoic acid 785329 331 94146 189 64.9 

alpha-ketoglutarate 507392 198 51 291 100 

aminomalonate 455754 218 100714 291 100 

anthranilic acid 530297 266 NA 287 98.6 

arabitol 572730 103 94154 291 100 

arachidic acid 856421 117 10467 291 100 

ascorbic acid 672898 332 54670067 290 99.7 

asparagine 553743 231 6267 291 100 

aspartic acid 480387 232 5960 291 100 

azelaic acid 610551 317 19347555 290 99.7 

benzoic acid 339067 179 243 291 100 

beta-alanine 435564 248 239 291 100 

beta-gentiobiose 973116 204 441422 291 100 

beta-mannosylglycerate 774364 204 5460194 231 79.4 

biphenyl 426625 154 7095 285 97.9 

butane-2,3-diol 205778 117 262 291 100 

butyrolactam 277199 142 12025 291 100 

capric acid 452386 229 2969 291 100 

caprylic acid 343457 201 379 291 100 

catechol 376695 254 289 291 100 

cellobiose 932179 204 6255 291 100 

ceratinic acid 1033286 145 10469 250 85.9 

cholesterol 1078536 129 5997 290 99.7 

citramalic acid 456203 247 1081 291 100 

citric acid 617342 273 311 291 100 

citrulline 621404 157 9750 291 100 

conduritol-beta-epoxide 675635 318 9989541 220 75.6 
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creatinine 502599 115 588 291 100 

cystathionine 772979 218 439258 239 82.1 

cysteine 500158 220 5862 291 100 

cysteine-glycine 715335 220 439498 289 99.3 

cystine 804619 218 595 291 100 

dehydroabietic acid 850374 239 94391 207 71.1 

dehydroascorbic acid 633423 173 440667 291 100 

deoxypentitol 528774 231 270738 291 100 

digalacturonic acid 950338 233 439694 222 76.3 

digitoxose 521798 117 94168 291 100 

diglycerol 591074 103 42953 291 100 

dihydro-3-coumaric acid 582960 192 91 291 100 

docosenoic acid 911928 129 6433893 291 100 

dodecanol 507619 243 8193 291 100 

enolpyruvate 234394 217 1005 286 98.3 

erythritol 471922 217 222285 291 100 

erythronic acid lactone 407495 247 5325915 286 98.3 

erythrose major 443306 205 439574 185 63.6 

ethanolamine 342561 174 700 291 100 

ferulic acid 732779 338 445858 273 93.8 

fructose 639442 307 439709 291 100 

fucose 578299 160 439650 291 100 

fumaric acid 390016 245 444972 291 100 

furoylglycine 553990 95 21863 291 100 

galactinol 1015529 204 NA 291 100 

galactitol 669079 319 5460044 291 100 

galactonic acid 690882 292 128869 291 100 
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galactose 648756 319 439357 291 100 

glucoheptulose 828606 217 5459879 290 99.7 

gluconic acid 693148 333 6857417 291 100 

gluconic acid lactone 645815 220 7027 291 100 

glucose 659798 319 64689 291 100 

glucuronic acid 665901 333 94715 291 100 

glutamic acid 529100 246 33032 291 100 

glutamine 600000 156 5961 291 100 

glutaric acid 421596 261 743 291 100 

glycerol 344466 205 753 291 100 

glycerol-3-galactoside 805227 204 16048618 291 100 

glycerol-alpha-phosphate 590747 357 754 291 100 

glycine 368707 248 750 291 100 

glycolic acid 227636 177 757 291 100 

glycyl proline 691357 174 3013625 291 100 

guanidinosuccinate 699521 444 NA 282 96.9 

guanine 744307 352 764 287 98.6 

heptadecanoic acid 751309 117 10465 291 100 

hippuric acid 638579 206 NA 291 100 

histidine 663790 154 6274 291 100 

homocystine 874865 128 10010 289 99.3 

homovanillic acid 601084 326 1738 291 100 

hydroxycarbamate 325318 278 16639161 286 98.3 

hydroxyproline dipeptide 879596 156 61159526 289 99.3 

hypoxanthine 619128 265 790 291 100 

indole-3-acetate 684929 202 802 291 100 

indole-3-lactate 764586 202 92904 291 100 



 Appendices 

277 
 

indoxyl sulfate 577333 277 10258 291 100 

isocitric acid 617338 245 5318532 291 100 

isoleucine 359251 158 6306 291 100 

isomaltose 983199 160 439193 231 79.4 

isopropylbenzene 240619 105 7406 291 100 

isothreonic acid 489385 292 151152 291 100 

itaconic acid 386511 147 811 291 100 

kynurenic acid 726186 231 3845 291 100 

kynurenine 769709 218 25245862 277 95.2 

lactic acid 217657 191 612 291 100 

lactose 935640 191 440995 283 97.3 

lactulose 929908 204 11333 291 100 

lauric acid 547906 117 3893 291 100 

leucine 346357 158 6106 291 100 

levoglucosan 569637 204 2724705 291 100 

levoinositol 651238 432 NA 291 100 

lysine 663483 317 5962 291 100 

maleimide 245118 154 10935 291 100 

malic acid 463180 233 525 290 99.7 

maltose-1 946601 204 439186 291 100 

mannose 645856 205 18950 291 100 

metanephrine 621765 297 21100 291 100 

methanolphosphate 289520 241 13130 162 55.7 

methionine 483560 176 6137 290 99.7 

methylmaleic acid 418804 259 643798 282 96.9 

montanic acid 1087377 117 10470 250 85.9 

myo-inositol 730022 305 892 291 100 



 Appendices 

278 
 

myristic acid 634414 285 11005 291 100 

N-acetylaspartic acid 548028 158 65065 291 100 

N-acetylmannosamine 722897 319 439281 291 100 

N-acetylputrescine 595523 174 122356 291 100 

N-carbamoylaspartate 611345 257 93072 291 100 

N-carbamylglutamate 651275 257 121396 291 100 

n-epsilon-trimethyllysine 512366 118 440121 291 100 

nicotinic acid 366992 180 938 290 99.7 

N-methylglutamic acid 455629 98 439377 291 100 

nonadecanoic acid 822782 117 12591 291 100 

noradrenaline 754841 174 439260 291 100 

octadecanol 755409 327 8221 291 100 

oleamide 849710 144 5283387 211 72.5 

oleic acid 781527 339 445639 271 93.1 

ornithine 619196 142 88747248 291 100 

orotic acid 586317 254 967 291 100 

oxoproline 485935 156 7405 291 100 

palatinitol 996670 204 88735 269 92.4 

parabanic acid 464991 100 67126 288 99.0 

p-cresol 280360 165 2879 291 100 

pentitol 563801 307 827 291 100 

pentose 540818 103 229 291 100 

phenol 218927 151 996 291 100 

phenylalanine 537804 192 6140 291 100 

phosphate 361492 314 1004 289 99.3 

pimelic acid 523205 155 385 291 100 

pinitol 622466 260 164619 234 80.4 
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proline 364716 142 145742 291 100 

pseudo uridine 813899 217 15047 291 100 

psicose 635244 307 NA 291 100 

p-tolyl glucuronide 847531 180 154035 291 100 

putrescine 588119 174 1045 290 99.7 

pyrogallol 495011 239 1057 291 100 

pyrophosphate 327517 110 1023 291 100 

pyruvic acid 213805 174 1060 291 100 

quinic acid 634900 345 6508 291 100 

quinolinic acid 581638 296 1066 290 99.7 

raffinose 1120886 361 439242 230 79.0 

ribitol 575497 217 827 291 100 

ribonic acid 599680 292 5460677 291 100 

ribose 553071 217 10975657 291 100 

saccharic acid 699211 333 33037 291 100 

salicylaldehyde 405583 193 6998 284 97.6 

salicylic acid 480699 267 338 286 98.3 

serine 395020 204 5951 291 100 

serotonin 863824 174 5202 289 99.3 

shikimic acid 611100 204 8742 291 100 

sinapinic acid 788416 338 637775 150 51.5 

sophorose 959716 319 NA 286 98.3 

sorbitol 667922 217 5780 291 100 

succinic acid 370608 247 1110 291 100 

sucrose 915139 271 5988 291 100 

tagatose 631835 307 439312 291 100 

tartaric acid 534291 292 444305 289 99.3 
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threitol 467595 217 169019 291 100 

threonic acid 497572 292 5460407 291 100 

threonine 409568 218 6288 291 100 

thymine 420133 255 1135 291 100 

trehalose 948197 191 7427 290 99.7 

triethanolamine 531892 262 7618 202 69.4 

tryptophan 774603 130 6305 291 100 

tyrosine 671252 218 6057 291 100 

UDP-glucuronic acid 585473 217 17473 291 100 

uracil 385735 241 1174 291 100 

urea 323728 189 1176 291 100 

uric acid 730691 441 1175 291 100 

uridine 861508 217 6029 263 90.4 

urocanic acid 699866 267 736715 291 100 

valine 313502 144 6287 291 100 

vanillic acid 597845 297 8468 291 100 

xanthine 701688 353 1188 291 100 

xanthosine 926133 325 64959 258 88.7 

xanthurenic acid 795062 406 5699 290 99.7 

xylitol 567437 217 6912 291 100 

xylonic acid 589278 333 6602431 290 99.7 

xylonic acid isomer 590775 189 10264 290 99.7 

xylose 544100 103 135191 291 100 

xylulose 553450 173 439205 291 100 

Table 8-3: All identified urinary detected metabolites, and the number and percentage of samples in which they were detected. 
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