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1. Introduction

The interaction between addition and multiplication is one of the basic, but funda-
mental questions at the root of mathematics, most in evidence in problems of number 
theory such as the Goldbach conjecture. In matrix algebra, both binary operators are 
employed in the definition of matrix multiplication. For square matrices M , the determi-
nant is a purely multiplicative proxy, e.g. if det M �= 0, then there exists a unique inverse 
matrix M−1 with determinant 1/(detM), and the set of all n × n invertible matrices 
forms a group under matrix multiplication. However, unlike zero elements in number 
fields, when det M = 0, there still exists the unique Moore-Penrose inverse M÷ of M , 
with the properties that M÷MM÷ = M÷, MM÷M = M , and both MM÷ and M÷M

are symmetric. If det M �= 0 then the pseudoinverse coincides with the inverse.
We can view the determinant as a multiplicative scalar value associated with the 

square matrix M . As an additive scalar value associated with M , applicable to all n×m

matrices, we consider the average of the entries of M , called the weight of the matrix.

Definition 1. Let M ∈ Cn×m. Then the weight of the matrix M is defined by

wtM := 1 
nm

1Tn M 1m.

We call M weightless if wtM = 0.

Here 1n ∈ Cn is the (column) vector with all entries equal to 1 and 1Tn denotes 
the transpose (a row vector). For later use, let En,m := 1n1Tm ∈ Cn×m the matrix 
with all entries equal to 1, and abbreviate En,n := En. The matrix weight is linear, 
so that for two n × m matrices M and N and a scalar α, we have that wt(αM +
N) = αwtM + wtN . Evidently, the weight is not multiplicative, so one can have, e.g., 
wtM �= 0 with wtM−1 = 0, or M = NTN , with wtM �= (wtN)2. As an example, 
consider the Wilson matrix [9], denoted by W throughout this paper. This matrix is a 
mildly ill-conditioned, symmetric positive definite integer matrix, with 2-norm condition 
number κ2(W ) = ‖W‖2‖W−1‖2 ≈ 2.98409 × 103, where ‖A‖2 = maxx�=0 ‖Ax‖2/‖x‖2

and ‖x‖2 = (xTx)1/2. It was a favourite of John Todd as a “test matrix” [12–14] and has 
been used by various authors, for example in [1–4,7]. In [6,8] a quadratic form obstruction 
was identified to factoring an n× n symmetric matrix of integers M as M = ZTZ with 
Z again an integer matrix. One such factorisation is

W =

⎛
⎜⎜⎜⎝

5 7 6 5
7 10 8 7
6 8 10 9
5 7 9 10

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

2 1 0 0
3 1 0 0
2 2 1 1
2 1 2 1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

2 3 2 2
1 1 2 1
0 0 1 2
0 0 1 1

⎞
⎟⎟⎟⎠ = ZTZ,
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where det W = 1, wtW = 119
16 �= 361

256 = (wtZ)2. Nevertheless, there are relations 
between weights and determinants; in Lemma 5 below, we observe that for an invertible 
n× n matrix M , the weight of M−1 is

wtM−1 = det(M + En) − detM
n2 detM .

The weight of the inverse matrix can therefore be viewed as the relative change of the 
determinant of M under perturbation by En, averaged over the n2 matrix entries.

The paper is organised as follows. In Section 2, we introduce the unique Frobenius-
orthogonal decomposition of general n×m matrices into a “type S” part with row sums 
and column sums equal to 0, a “type V” part with the vertex cross sum property (equiv-
alent, for square matrices, with the co-Latin property), and En,m multiplied with the 
weight; see Definition 2 for details regarding these symmetry types. As an application, 
we identify the weighted type S and the type V matrices closest, in Frobenius norm, 
to a given matrix (Theorem 4). In Section 3, we observe that square type S matrices 
can be expressed as sums of squares of type V (co-Latin) matrices and a weight. This 
representation is not unique, and integer matrices can be expressed in terms of squares 
of rational matrices with small denominators. We then proceed to consider the pseu-
doinverses of type V (Section 4) and of type S (Section 5) matrices, showing that these 
symmetry types are preserved in the process. In Section 6, we investigate how the parts 
in the decomposition (defined in Section 2) of a matrix and of its pseudoinverse are 
related. Of course, taking the (pseudo)inverse is not an additive process, so the parts of 
the pseudoinverse are not simply the pseudoinverses of the parts of the original matrix; 
nevertheless, we establish some connections. This is particularly successful in the case 
of an invertible square matrix, where we are able to express the parts of the inverse in 
terms of the pseudoinverse of the type S part of the matrix, see Theorem 11. In the 
example of the Wilson matrix, we observe that its type S part is considerably better 
conditioned than the whole matrix. This suggests a possible application of the present 
results in numerical linear algebra.

2. S + V + wE: a matrix decomposition by symmetry

The square type S matrices with added weight are a subalgebra of the matrix al-
gebra, complemented by the type V matrices to form a superalgebra [10]. The idea of 
decomposing a real square matrix uniquely over the parts of this superalgebra, revisited 
in [8], can be extended to rectangular matrices with entries in C. In the present sec-
tion we prove the decomposition in generality, emphasising also its orthogonality in the 
Frobenius inner product, and conclude with an example.

In what follows we use the inner product u∗v for vectors u, v ∈ Cn, n ∈ N throughout; 
note that, somewhat unusually, this product is linear in the second, conjugate linear in 
the first factor, but it has the advantage of being conveniently expressed using the matrix 
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adjoint operation, as we identify Cn (column vectors) with the matrix space Cn×1. The 
orthogonal complements are formed in terms of this inner product.

We also endow the matrix space Cn×m with the Frobenius inner product (A,B) :=
trA∗B and with the associated norm ‖A‖F :=

√
(A,A) (A,B ∈ Cn×m). Clearly the 

above inner product in Cn coincides with the Frobenius inner product in Cn×1.
Returning to Definition 1 for the weight of an n×m matrix M ∈ Cn×m, the following 

statements follow by straightforward calculation.

Lemma 1. (a) The weight wt : Cn×m → C is a linear functional generated by the Frobe-
nius inner product with 1 

nmEn,m.
(b) The orthogonal projector in Cn×m onto the subspace spanned by En,m is

PE M = wtM En,m (M ∈ Cn×m).

(c) The orthogonal projector in Cn×m onto the subspace of weightless matrices is

P0 M = M − wtM En,m (M ∈ Cn×m).

The above considerations give a unique orthogonal decomposition of n×m matrices 
into a weightless (i.e. weight 0) part and a multiple of En,m. As an extension of the S⊕V

superalgebra decomposition of square matrices shown in [10] Corollary 2.10, we obtain 
in the following another orthogonal decomposition of the matrix space, where one of the 
part contains all matrices with constant row and column sums.

Definition 2. Let M ∈ Cn×m and set w := wtM .
(a) Type S : M has the constant sum property if

M1m = mw1n, 1TnM = nw1Tm

(i.e. the rows of M sum to mw and the columns of M sum to nw); this is equivalent to

1TnMu = 0 (u ∈ {1m}⊥), uTM1m = 0 (u ∈ {1n}⊥).

(b) Type V : M = (Mi,j)i∈{1,...,n},j∈{1,...,m} has the vertex cross sum property if wtM = 0
and

Mi,j + Mk,l = Mi,l + Mk,j (i, k ∈ {1, . . . , n}, j, l ∈ {1, . . . ,m});

the latter condition is equivalent to

uTMv = 0 (u ∈ {1n}⊥, v ∈ {1m}⊥).

If n = m, then we call matrices with the vertex cross sum property also co-Latin.
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Remark 1. We collect n × m matrices with the constant sum property in the vector 
space Sn,m and matrices with the vertex cross sum property in the vector space Vn,m. 
The equivalence in part (b) follows from the fact that any vector in {1n}⊥ can be written 
as a linear combination of vectors that have as entries one 1, one -1 and zeros otherwise; 
indeed, if u ∈ {1n}⊥, then un = −(u1 + u2 + · · · + un−1) and

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

u1
u2
u3
...

un−1
un

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= u1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
−1
0
...
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ (u1 + u2)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
−1
...
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ · · · + (u1 + u2 + · · · + un−1)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
...
1
−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Square type V matrices are co-Latin in the sense that they have the property that for 
any n× n Latin square L, the matrix entries in the positions where L has equal entries 
sum to the same value; see [8], Theorem 5.1.

Theorem 1. The matrix M ∈ Cn×m has the vertex cross sum property if and only if

M = a1Tm + 1nb∗

with suitable a ∈ {1n}⊥, b ∈ {1m}⊥.

Proof. Let M ∈ Vn,m. As for any v ∈ {1m}⊥, we have Mv ∈ {1n}⊥⊥ = C1n, there 
is a linear form f : {1m}⊥ → C such that Mv = 1nf(v). By the Riesz representation 
theorem in the Hilbert space {1m}⊥, f(v) = b∗v for some representing vector b ∈ {1m}⊥, 
so

Mv = 1nb∗v (v ∈ {1m}⊥).

Now any x ∈ Cm is of the form x = α1m + v with suitable α ∈ C and v ∈ {1m}⊥, so

Mx = αM1m + 1nb∗v

= (a1Tm + 1nb∗) (α1m + v) = (a1Tm + 1nb∗)x,

where a := 1 
mM1m. Note that

1Tna = 1 
m

1TnM1m = nwtM = 0,

so a ∈ {1n}⊥. The converse is evident. �
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As En,m ∈ Sn,m, Lemma 1 gives a unique orthogonal decomposition of Sn,m into 
the subspace spanned by En,m and the space of weightless constant sum matrices 
So
n,m := P0 Sn,m. Overall we obtain the following decomposition of n×m matrices.

Theorem 2. Let M ∈ Cn×m. Then there are unique V ∈ Vn,m and S ∈ So
n,m such that 

M = V + S + wtM En,m. Specifically,

V =
(
In − 1 

n
En

)
M

1 
m
Em + 1 

n
En M

(
Im − 1 

m
Em

)
,

S =
(
In − 1 

n
En

)
M

(
Im − 1 

m
Em

)
,

where In, Im are the n× n and m×m unit matrices, respectively.

Proof. Note that 1 
n En is the orthogonal projector onto the subspace spanned by 

1n ∈ Cn, and consequently In − 1 
n En is the orthogonal projector onto the subspace 

{1n}⊥. Let

a := 1 
m

(
In − 1 

n
En

)
M 1m and b := 1 

n

(
Im − 1 

m
Em

)
M∗ 1n.

Then a ∈ {1n}⊥ and b ∈ {1m}⊥, so V := a1Tm + 1nb∗ ∈ Vn,m by Theorem 2. Further,

M − V =
(
In − 1 

n
En + 1 

n
En

)
M

(
Im − 1 

m
Em + 1 

m
Em

)

−
(
In − 1 

n
En

)
M

1 
m
Em − 1 

n
En M

(
Im − 1 

m
Em

)

=
(
In − 1 

n
En

)
M

(
Im − 1 

m
Em

)
+ 1 

n
En M

1 
m
Em.

The latter term is equal to 1 
nm 1n1TnM1m1Tm = wtM En,m ∈ Sn,m; the first term, which 

we denote by S, is an element of So
n,m, as

(
In − 1 

n
En

)
M

(
Im − 1 

m
Em

)
1m = 0, 1Tn

(
In − 1 

n
En

)
M

(
Im − 1 

m
Em

)
= 0.

The uniqueness of the decomposition follows from the fact that Vn,m ∩ Sn,m = {0}. �
Theorem 3. The subspaces Vn,m and Sn,m of Cn×m are orthogonal with respect to the 
Frobenius inner product (A,B) := trA∗B.

Proof. Suppose S ∈ Sn,m and V ∈ Vn,m. Then V = a1Tm + 1mb∗ with suitable 
a ∈ {1n}⊥, b ∈ {1m}⊥ by Theorem 2, so
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(S, V ) = tr(S∗a1Tm + S∗1nb∗)

= tr((S1m)∗a + b∗(1TnS)∗)

= tr(m wtS 1Tna + n wtS b∗1m) = 0.

Further, let S ∈ Sn,m and γ ∈ C. Then

(S, γEn,m) = γ tr(S∗1n1Tm) = γ1TmS∗1n = γnm wtS = 0. �
Remark 2. The symmetry types V and S are invariant under taking the adjoint, so that 
V ∈ Vn,m ⇒ V ∗ ∈ Vm,n, and S ∈ So

n,m ⇒ S∗ ∈ So
m,n.

Remark 3. The splitting of the matrix space Cn×m into three mutually Frobenius or-
thogonal subspaces of Theorem 2 suggests, in the case n = m, the attempt to give the 
subspace of weightless matrices, P0(Cn×n) = So

n,n⊕Vn,n, an algebra structure by means 
of the projected matrix product

A ◦B := P0(AB) (A,B ∈ P0(Cn×n)).

However, it turns out that this product, although bilinear, is not even power associative 
and hence does not generate a convenient algebra.

Theorems 2 and 3 have the following consequence.

Corollary 1. The linear mappings PS ,PV : Cn×m → Cn×m defined as

PS M :=
(
In − 1 

n
En

)
M

(
Im − 1 

m
Em

)

PV M :=
(
In − 1 

n
En

)
M

1 
m
Em + 1 

n
En M

(
Im − 1 

m
Em

)
(M ∈ Cn×m)

are the orthogonal projectors onto the subspaces So
n,m and Vn,m, respectively.

These result lead to the following approximation theorem of general matrices by con-
stant sum matrices of given weight and by matrices with the vertex cross sum property.

Theorem 4. Let θ ∈ C. For A ∈ Cn,m, the matrix

X =
(
In − En

n 

)
A

(
Im − Em

m 

)
+ θ En,m

is the unique matrix nearest to A in the Frobenius norm with every row sum equal to mθ

and every column sum equal to nθ. Furthermore,
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Y = A−
(
In − En

n 

)
A

(
Im − Em

m 

)
− wtA En,m

is the unique matrix in Vn,m nearest to A in the Frobenius norm.

Proof. For X ∈ Sn,m, we find

‖X −A‖2
F = ‖(PS X + PV X + wtX En,m) − (PS A + PV A + wtA En,m)‖2

F

= ‖PS X − PS A‖2
F + ‖PV A‖2

F + |wtE − wtA|2 ‖En,m‖2
F .

As we fix the weight wtE = θ, this expression is clearly uniquely minimised when we 
take X = PS +θ En,m; the formula in the Theorem follows by Corollary 1.

The matrix Y is evidently the orthogonal projection of A onto Vn,m and hence the 
nearest matrix to A in that subspace. �
Example 1. Let M ∈ C5×3 be the 5 × 3 matrix given by

M =

⎛
⎜⎜⎜⎜⎜⎝

1 2 3
0 1 1
4 5 6
2 1 0
1 0 3

⎞
⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎝

i 3i 0
i i 0
2i i i

2i i 0
i 0 i

⎞
⎟⎟⎟⎟⎟⎠

Then M can be decomposed into its type V and type S parts as follows,

M = VM + SM + 2E5,3 = 1 
15

⎛
⎜⎜⎜⎜⎜⎝

−6 + 11i −3 + 8i 9 − 4i
−26 + i −23 − 2i −11 − 14i
39 + 11i 42 + 8i 54 − 4i
−21 + 6i −18 + 3i −6 − 9i
−16 + i −13 − 2i −1 − 14i

⎞
⎟⎟⎟⎟⎟⎠

+ 1 
15

⎛
⎜⎜⎜⎜⎜⎝

−9 − 11i 3 + 22i 6 − 11i
−4 − i 8 + 2i −4 − i

−9 + 4i 3 − 8i 6 + 4i
21 + 9i 3 − 3i −24 − 6i
1 − i −17 − 13i 16 + 14i

⎞
⎟⎟⎟⎟⎟⎠

+ (2 + i)E5,3.

3. Representations as sums of squares of co-Latin matrices

In this section we focus on square matrices. We abbreviate Sn := Sn,n, So
n := So

n,n

and Vn := Vn,n.
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3.1. From the singular value decomposition

The singular value decomposition of a weightless type S matrix gives rise to the 
following representation in terms of squares of co-Latin matrices.

Theorem 5. Let A ∈ So
n. Then there are co-Latin matrices C1, . . . , Cr ∈ Vn, with r ≤ n, 

such that

A =
r∑

j=1 
C2

j − trA
n 

En.

Proof. Let λ1, . . . , λn ≥ 0 be the eigenvalues of the symmetric matrix A∗A and 
u1, . . . , un ∈ Cn corresponding orthonormal eigenvectors.

Suppose λ1, . . . , λr > 0 and λr+1 = · · · = λn = 0. Then v1, . . . , vr, defined as

vj = 1 √
λj

Auj (j ∈ {1, . . . , r})

are orthonormal eigenvectors of AA∗, and the singular value decomposition of A is, 
considering that the uj form an orthonormal basis of the orthogonal complement of the 
null space of A,

A =
r∑

j=1 
A uju

∗
j =

r∑
j=1 

√
λj vj u

∗
j . (3.1)

For j ∈ {1, . . . , r}, set aj :=
√
λj vj = Auj , bj := 1 

n uj and Cj := aj1∗n + 1nb∗j . As 
A1n = 0n, which means that 1n is an eigenvector of A with eigenvalue 0, the orthogonality 
of the eigenvectors gives a∗j1n = 0 = b∗j1n, so the matrix Cj is co-Latin. We then find

C2
j = aj1∗naj1∗n + aj1∗n1nb∗j + 1nb∗jaj1∗n + 1nb∗jajb∗j

= n aj b∗j + b∗jaj En

= Auj u
∗
j + 1 

n
u∗
jAuj En. (3.2)

Therefore

A =
r∑

j=1 
C2

j − 1 
n

r∑
j=1 

(u∗
jAuj) En.

The statement of the theorem now follows upon observing that

r∑
j=1 

u∗
jAuj =

r∑
j=1 

tr(u∗
jAuj) = trA

r∑
j=1 

uju
∗
j = trA. �
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Remark 4. The matrices C1, . . . , Cr constructed in the proof of Theorem 5 are not unique; 
indeed it is apparent that we can, for each j ∈ {1, . . . , r}, multiply aj with a non-zero fac-
tor and divide bj by the same factor without changing the singular value decomposition 
of A; this results in different matrices Cj .

Example 2. The part in So
4 of the Wilson matrix W according to the decomposition in 

Theorem 2 is

SW = 1 
16

⎛
⎜⎜⎜⎝

15 11 −9 −17
11 23 −13 −21
−9 −13 15 7
−17 −21 7 31

⎞
⎟⎟⎟⎠ , (3.3)

with (to 5 significant figures where relevant) the SVD representation

SW = V DU∗ =

⎛
⎜⎜⎜⎝

−0.41387 −0.045718 0.75936 1
2

−0.55390 0.25270 −0.61590 1
2

0.32015 −0.77900 −0.20164 1
2

0.64762 0.57202 0.058178 1
2

⎞
⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎝

3.9554 0 0 0
0 0.84680 0 0
0 0 0.44784 0
0 0 0 0

⎞
⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎝

−0.41387 −0.55390 0.32015 0.64762
−0.045718 0.25270 −0.77900 0.57202
0.75936 −0.61590 −0.20164 0.058178

1
2

1
2

1
2

1
2

⎞
⎟⎟⎟⎠ .

Here U is the orthogonal matrix comprised of normalised eigenvectors of SW , u1, u2, u3, 
u4, V = U and D the diagonal matrix of the singular values of SW . To construct the 
vectors aj and bj , and so the co-Latin matrices Cj for 1 ≤ j ≤ 4 we set

aj := SWuj , and bj := 1
4uj , with Cj = aj1T4 + 14b

T
j ,

so that C2
j = 4uju

T
j + λj

4 u
T
j uj , yielding SW − 21

16En = C2
1 +C2

2 +C2
3 , where to 5 significant 

figures

C1 =

⎛
⎜⎜⎜⎝

−1.7405 −1.7755 −1.5570 −1.4751
−2.2944 −2.3294 −2.1109 −2.0290
1.1629 1.1279 1.3464 1.4282
2.4581 2.4231 2.6416 2.7235

⎞
⎟⎟⎟⎠ ,
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C2 =

⎛
⎜⎜⎜⎝

−0.050144 0.024461 −0.23347 0.10429
0.20256 0.27716 0.019235 0.35699
−0.67109 −0.59648 −0.85441 −0.51665
0.47296 0.54756 0.28964 0.62739

⎞
⎟⎟⎟⎠ ,

C3 =

⎛
⎜⎜⎜⎝

0.52991 0.18610 0.28966 0.35462
−0.085987 −0.42980 −0.32624 −0.26128
0.099538 −0.24428 −0.14071 −0.075757
0.21589 −0.12792 −0.024354 0.040599

⎞
⎟⎟⎟⎠ .

3.2. From the Smith normal form

Theorem 5 and the approach using the singular value decomposition have the disad-
vantage that even if the matrix A has integer or rational entries, the co-Latin matrices 
Cj will in general also have irrational entries. Note that the singular value decomposition 
shown in equation (3.1) can equivalently be stated in the form

A = V diag(
√

λ1, . . . ,
√

λr, 0, . . . , 0) U∗,

where U and V are the n × n matrices with columns u1, . . . , un and v1, . . . , vn, respec-
tively; here vr+1, . . . , vn ∈ Cn are chosen such as to extend v1, . . . , vr to an orthonormal 
basis of Cn if r < n.

For integer matrices, the singular value decomposition has a natural analogue in 
the Smith normal form [11]: for any matrix A ∈ Zn×n, there are invertible matrices 
P,Q ∈ Zn×n and positive integers α1, . . . , αr ∈ N satisfying αj |αj+1 for j ∈ {1, . . . , r−1}
(where r ≤ n) such that

A = Q diag(α1, . . . , αr, 0, . . . , 0) PT . (3.4)

Use of this factorisation leads to the following representation in terms of squares of 
co-Latin matrices with rational entries.

Theorem 6. Let A ∈ Zn×n ∩ So
n. Then there are co-Latin matrices

C1, . . . , Cr ∈ 1 
n
Zn×n ∩ Vn,

with r ≤ n, such that

A =
r∑

j=1 
C2

j − trA
n 

En.

Proof. In the Smith normal form of A given in equation (3.4), let q1, . . . , qn be the 
columns of Q and p1, . . . , pn be the columns of P . Then, for any u ∈ Rn,
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Au = Q diag(α1, . . . , αr, 0, . . . , 0) PTu

= (q1, . . . , qn) diag(α1, . . . , αr, 0, . . . , 0)

⎛
⎜⎝
pT1 u

...
pTnu

⎞
⎟⎠ =

r∑
j=1 

αj qjp
T
j u

and therefore A =
r∑

j=1
αj qjp

T
j . Now we observe that 0 = A 1n =

r∑
j=1

αj qj p
T
j 1n implies 

that pTj 1n = 0 for all j ∈ {1, . . . , r}, since α1, . . . , αr �= 0 and qj , . . . , qr are linearly 
independent; similarly,

0 = AT 1n =
r∑

j=1 
αj pj q

T
j 1n

implies qTj 1n = 0 for all j ∈ {1, . . . , r}.
Therefore, if we set aj := αjqj , bj := 1 

n pj and Cj := aj1Tn + 1nbTj , then Cj ∈ 1 
n Zn×n

is co-Latin for all j ∈ {1, . . . , r} and, by equation (3.2)

A =
r∑

j=1 
αjqjp

T
j =

r∑
j=1 

n aj bTj =
r∑

j=1 

(
C2

j − bTj aj En

)
,

giving the representation stated in the theorem since

r∑
j=1 

bTj aj = 1 
n

r∑
j=1 

αj p
T
j qj = 1 

n

r∑
j=1 

tr(αj p
T
j qj) = 1 

n
tr

⎛
⎝ r∑

j=1 
αj qj p

T
j

⎞
⎠ = trA

n 
. �

Example 3. The Smith normal form of the matrix 16SW (see eq. (3.3)) is

16SW = Qdiag(α1, α2, α3, 0)PT

=

⎛
⎜⎜⎜⎝

15 −28 10 0
11 −20 7 0
−9 17 −6 0
−17 31 −11 1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 0 0 0
0 16 0 0
0 0 96 0
0 0 0 0

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 5 25 −31
0 −2 3 −1
0 −1 1 0
0 0 0 1

⎞
⎟⎟⎟⎠ ,

where Q and P have determinant 1 and their first three columns are orthogonal to 14. 
The construction in the proof of Theorem 6 gives the co-Latin matrices

C1 = 1
4

⎛
⎜⎜⎜⎝

61 65 85 29
45 49 69 13
−35 −31 −11 −67
−67 −63 −43 −99

⎞
⎟⎟⎟⎠ , (3.5)



322 N.J. Higham et al. / Linear Algebra and its Applications 710 (2025) 310–335 

C2 = 1
4

⎛
⎜⎜⎜⎝

−1792 −1794 −1789 −1793
−1280 −1282 −1277 −1281
1088 1086 1091 1087
1984 1982 1987 1983

⎞
⎟⎟⎟⎠ ,

C3 = 1
4

⎛
⎜⎜⎜⎝

3840 3839 3841 3840
2688 2687 2689 2688
−2304 −2305 −2303 −2304
−4224 −4225 −4223 −4224

⎞
⎟⎟⎟⎠

satisfying 16SW = C2
1 + C2

2 + C2
3 − 21 E4.

4. Products and pseudoinverses of Type V matrices

In this section we consider products of type V matrices in greater generality. It is 
known that Vn forms the odd complement of Sn in a matrix superalgebra, see [10] 
Theorem 2.5 (a), so a product of co-Latin matrices is either co-Latin or a constant sum 
matrix depending on whether the number of factors is odd or even. Here we give an 
explicit formula for the matrix resulting from a product of several type V matrices. 
Moreover, as matrices of low rank, type V matrices do not have inverses but we show 
that their Moore-Penrose pseudoinverses preserve the type V structure.

Lemma 2. Let Vj = aj1Tnj+1
+ 1nj

b∗j ∈ Vnj ,nj+1 , where aj ∈ {1nj
}⊥ ∈ Cnj , 

bj ∈ {1nj+1}⊥ ∈ Cnj+1 for j ∈ {1, . . . , N}, with n1, . . . , nN+1 ∈ N. Then

V1V2 · · ·V2k+1 =

⎛
⎝ k∏

j=1
n2j b

∗
2ja2j+1

⎞
⎠ a11Tn2k+2

+

⎛
⎝ k∏

j=1
n2j+1 b

∗
2j−1a2j

⎞
⎠ 1n1b

∗
2k+1 (4.1)

if N = 2k + 1 is odd, k ∈ N0; and

V1V2 · · ·V2k+2 =

⎛
⎝ k∏

j=1
n2j b

∗
2ja2j+1

⎞
⎠n2k+2 a1b

∗
2k+2

+

⎛
⎝ k∏

j=1
n2j+1 b

∗
2j−1a2j

⎞
⎠ b∗2k+1a2k+2 En1,n2k+3 (4.2)

if N = 2k + 2 is even, k ∈ N0.

Proof. We first observe that the product of two type V matrices takes the form

V1V2 = (a11Tn2
+ 1n1b

∗
1)(a21Tn3

+ 1n2b
∗
2) = n2a1b

∗
2 + (b∗1a2)En1,n3 ,

using the identities 1Tn2
1n2 = n2 and 1n11Tn3

= En1,n3 .
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Now we prove identity (4.1) by induction on k. The case k = 0 is trivial. Suppose 
k ∈ N0 is such that the claimed identity holds. Then

V1V2 · · ·V2k+3 = (V1V2 · · ·V2k+1)(V2k+2V2k+3)

=

⎛
⎝ k∏

j+1
n2j b

∗
2ja2j+1

⎞
⎠ (n2k+2b

∗
2k+2a2k+3) a11T2k+4

+

⎛
⎝ k∏

j=1
n2j+1 b

∗
2j−1a2j

⎞
⎠ (n2k+3b

∗
2k+1a2k+2) 1n1b

∗
2k+3

=

⎛
⎝k+1∏

j=1 
n2jb

∗
2ja2j+1

⎞
⎠ a11Tn2(k+1)+2

+

⎛
⎝k+1∏

j=1 
n2j+1b

∗
2j−1a2j

⎞
⎠ 1n1b

∗
2(k+1)+1,

using the identity 1Tn2k+2
En2k+2,n2k+4 = n2k+21T2k+4 for the first term. This completes the 

proof by induction.
Identity (4.2) then follows by multiplying (4.1) by V2k+2 = a2k+21n2k+3 + 1n2k+2 b

∗
2k+2

on the right hand side. �
By taking all matrices in the product to be the same (square) matrix, we obtain the 

following formulae for matrix powers of co-Latin matrices.

Corollary 2. Let C ∈ Vn be a co-Latin matrix and a, b ∈ {1n}⊥ its generating vectors, 
so C = a1Tn + 1nb∗. Then for any non-negative integer k ∈ N0, the matrix powers of C
satisfy

C2k+2 = nk+1(b∗a)k ab∗ + nk(b∗a)k+1 En,

C2k+1 = nk(b∗a)k (a1Tn + 1nb∗).

As a consequence of Theorem 4, we can find the closest constant sum approximant 
with given weight to the square of a co-Latin matrix as follows.

Corollary 3. Let C be a co-Latin matrix constructed from vectors a and b, so C = a1∗n +
1nb∗ with a, b ∈ {1n}⊥, and let θ ∈ C. Then the unique matrix with every row and 
column sum equal to θ that is nearest to C2 in the Frobenius norm is given by

X = nab∗ + θ En,

and the Frobenius norm of the difference satisfies

‖C2 −X‖ = n |b∗a− θ|;

in particular, the norm of the difference vanishes if and only if θ = b∗a.
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Proof. By Theorem 4, the unique constant sum matrix X with weight θ nearest to A is 
given by

X =
(
In − En

n 

)
A

(
In − En

n 

)
+ θ En.

We know from Corollary 2 that

C2 = n ab∗ + (b∗a) En,

so its weightless constant sum part is given by

PS C2 =
(
In − En

n 

)
C2

(
In − En

n 

)
= n ab∗

(see Corollary 1) and the result follows.
Since C2 −X = (bTa− θ) En, we find

‖C2 −X‖F = |bT a− θ| ‖En‖F = n |bT a− θ|. �
For any type V matrix V ∈ Vn, we now construct the Moore-Penrose pseudoinverse, 

i.e. the unique matrix V ÷ such that V ÷V V ÷ = V ÷, V V ÷V = V and both V V ÷ and 
V ÷V are symmetric. Note that the first two of these equations imply that V ÷ and V
have the same rank.

Theorem 7. Let V ∈ Vn,m be a type V matrix and a ∈ {1n}⊥, b ∈ {1m}⊥ its generating 
vectors, so V = a1Tm + 1nb∗. Set

a÷ = b 
nb∗b

and b÷ = a 
ma∗a

;

then the matrix V ÷ = a÷1Tn +1n(b÷)∗ ∈ Vm,n is the Moore-Penrose pseudoinverse of V .

Proof. By construction, it is evident that a÷ ∈ {1m}⊥, b÷ ∈ {1n}⊥, so V ÷ is of type V. 
Using equation (4.1) of Lemma 2 with k = 1, we find

V V ÷V = m(b÷∗
a) a1Tm + n(b∗a÷) 1nb∗

= m 
a∗a 
ma∗a

a1Tm + n 
b∗b 
nb∗b

1nbT = a1Tm + 1nb∗ = V

and

V ÷V V ÷ = n(b∗a÷) a÷1Tn + m(b÷∗
a) 1mb÷

∗

= n 
b∗b 
nb∗b

a÷1Tn + m 
a∗a 
ma∗a

1mb÷
∗ = a÷1Tn + 1mb÷

∗ = V ÷.
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Further, we note that

ab÷
∗ − b÷a∗ = a 

a∗

ma∗a
− a 

ma∗a
a∗ = 0

and

a÷b∗ − ba÷
∗ = b 

nb∗b
b∗ − b 

b∗

nb∗b
= 0;

using equation (4.2) of Lemma 2 with k = 0, we find that

V V ÷ = mab÷
∗ + (b∗a÷)En = mb÷a∗ + (b∗a÷)En = (V V ÷)∗

and

V ÷V = na÷b∗ + (b÷∗
a)Em = nba÷

∗ + (b÷∗
a)Em = (V ÷V )∗. �

Example 4. We consider C1 from Example 3 (see eq. (3.5)), in the quadratic co-Latin 
rational expansion for the constant sum equals zero part of the Wilson matrix. Here we 
have the vector representation C1 = a1Tn + 1nbT , with

a = (15, 11,−9,−17)T , and b =
(

1
4 ,

5
4 ,

25
4 
,−31

4 

)T

.

Applying Theorem 7 we find that

a÷ =
(

1 
1612 ,

5 
1612 ,

25 
1612 ,−

1 
52

)T

and b÷ =
(

15 
2864 ,

11 
2864 ,−

9 
2864 ,−

17 
2864

)T

,

whence

C÷
1 = 1 

1154192

⎛
⎜⎜⎜⎝

6761 5149 −2911 −6135
9625 8013 −47 −3271
23945 22333 14273 11049
−16151 −17763 −25823 −29047

⎞
⎟⎟⎟⎠ .

5. The pseudoinverses of Type S matrices

In addition to giving an explicit formula for the Moore-Penrose pseudoinverse of a 
type V matrix, Theorem 7 shows that this pseudoinverse is again a type V matrix. In 
the following we show that the pseudoinverses of (weightless) type S matrices are also of 
(weightless) type S.

Theorem 8. Let S ∈ So
n,m. Then S÷ ∈ So

m,n.
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Proof. We find

S÷1n = S÷SS÷1n = S÷(SS÷)∗1n = S÷S÷∗
S∗1n = S÷S÷∗0 = 0

and similarly

S÷∗1m = (S÷SS÷)∗1m = S÷∗
S∗S÷∗1m = S÷∗(S÷S)∗1m

= S÷∗
S÷S1m = S÷∗

S÷0 = 0. �
Theorem 9. Let A ∈ Sn,m and S = PSA ∈ So

n,m, so A = S + wtA En,m. Then

A÷ =
{

S÷ if wtA = 0,
S÷ + 1 

nmwtA E if wtA �= 0.

Proof. By Theorem 8, S÷ ∈ So
m,n. In the case w := wtA �= 0, we find

(S + wEn,m)(S÷ + 1 
nmw

Em,n)(S + wEn,m)

= SS÷S + w2

nmw
En,mEm,nEn,m = S + wEn,m

and similarly

(S÷ + 1 
nmw

Em,n)(S + wEn,m)(S÷ + 1 
nmw

Em,n)

= S÷SS÷ + w

n2m2w2 Em,nEn,mEm,n = S÷ + 1 
nmw

Em,n,

bearing in mind that the product of any matrix in So
n,m with En,m vanishes. Also, the 

matrices

(S + wEn,m)(S÷ + 1 
nmw

Em,n) = SS÷ + 1 
n
En

and

(S÷ + 1 
nmw

Em,n)(S + wEn,m) = S÷S + 1 
m

Em

are symmetric because SS÷ and S÷S are. �
In the case of a square matrix in Sn represented as a sum of squares of co-Latin 

matrices arising from the singular value decomposition as in Theorem 5, we obtain the 
following formula for the pseudoinverse.
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Corollary 4. Let A ∈ So
n and let Cj = aj1∗n+1nb∗j , for j ∈ {1, . . . , r} be co-Latin matrices 

such that

A =
r∑

j=1 
C2

j − trA
n 

En

and such that aj , bj ∈ {1n}⊥ have the property that the aj are pairwise orthogonal and 
the bj are pairwise orthogonal. Then

A÷ =
r∑

j=1 

bj a
∗
j

n a∗jaj b
∗
j bj

.

Proof. By Lemma 2,

C2
j = najb

∗
j + b∗jaj En (j ∈ {1, . . . , r}).

The matrix A =
r∑

j=1
n ajb∗j ∈ So

n has pseudoinverse 
r∑

j=1

bja
∗
j

n a∗
jaj b∗j bj

; indeed,

r∑
j=1 

n ajb∗j

r∑
k=1

bka
∗
k

n a∗kak b
∗
kbk

r∑
l=1 

n alb∗l =
r∑

j,k,l=1

n aj
b∗jbk a

∗
kal

a∗kak b
∗
kbk

b∗l

=
r∑

j=1 
n ajb∗j

since a∗kal = a∗kak δk,l and b∗jbk = b∗kbk δj,k. Similarly

r∑
j=1 

bja
∗
j

n a∗jaj b
∗
j bj

r∑
k=1

n akb∗k

r∑
l=1 

bla
∗
l

n a∗l al b
∗
l bl

=
r∑

j,k,l=1

bj a
∗
jak b

∗
kbl a

∗
l

n a∗jaj b
∗
j bj a

∗
l al b

∗
l bl

=
r∑

j=1 

bja
∗
j

n a∗jaj b
∗
jbj

.

Moreover, the matrices

r∑
j=1 

n ajb∗j

r∑
k=1

bka
∗
k

n a∗kak b
∗
kbk

=
r∑

j=1 

aja
∗
j

a∗jaj

and
r∑

j=1 

bja
∗
j

n a∗jaj b
∗
jbj

r∑
k=1

n akb∗k =
r∑

j=1 

bjb
∗
j

b∗j bj

are evidently symmetric. �
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Example 5. As an example we apply the above theory to the constant sum part SW of 
the Wilson matrix, considered in Example 2 (see eq (3.3)). Then, to 5 significant figures,

a1 =

⎛
⎜⎜⎜⎝

−0.41387
−0.55390
0.32015
0.64762

⎞
⎟⎟⎟⎠ , a2 =

⎛
⎜⎜⎜⎝

−0.045719
0.25270
−0.77900
0.57202

⎞
⎟⎟⎟⎠ , a3 =

⎛
⎜⎜⎜⎝

0.75936
−0.61590
−0.20164
0.058178

⎞
⎟⎟⎟⎠ ,

and bj = aj/4 (j ∈ {1, 2, 3}). Applying the construction of Corollary 4, we obtain

S÷
W =

3 ∑
j=1 

bj a
∗
j

n a∗jaj b
∗
j bj

=

⎛
⎜⎜⎜⎝

4
3 −1 −1

3 0
−1 1 0 0
−1

3 0 5
6 −1

2
0 0 −1

2
1
2

⎞
⎟⎟⎟⎠ .

6. Decomposition of matrices and their pseudoinverses

In this section we consider the relationship between the decompositions according to 
Theorem 2 of a given n×m matrix A = S +V +wEn,m and of its pseudoinverse matrix 
A÷ = S′ + V ′ +w′Em,n. By Theorems 7 and 8, S and V will have respective weightless 
pseudoinverse matrices S÷ ∈ So

n,m and V ÷ ∈ Vn,m, where S′ �= S÷ and V ′ �= V ÷ in 
general. We also note that the weights w and w′ are not directly related and in particular 
don’t need to vanish together, cf. Lemma 5 below.

We first consider the general case and then give a more detailed, comprehensive set of 
relations between the parts of the decomposition in the special case of a regular square 
matrix. The calculations are simplified by the following observation.

Lemma 3. Let S ∈ S◦
m,n and V = a1Tm + 1nb∗ ∈ Vn,m, with n,m ∈ N. Then we have the 

following triple matrix product relations.

1. V Em,nV = nm ab∗,
2. Em,nV Em,n = SEn,m = En,mS = SCS = 0, and
3. V SV = b∗Sa En,m.

6.1. General formulae

Rewriting the triple product identity AA÷A = A as

(S + V + wEn,m)(S′ + V ′ + w′Em,n)(S + V + wEn,m) = S + V + wEn,m,

the product on the left has 27 terms, of which 12 vanish by Lemma 3. The remaining 
terms give
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S + V + wEn,m = SS′S + w′V Em,nV + V V ′S + SV ′V + V V ′V + SS′V + V S′S

+ w(SV ′En,m + En,mV ′S) + ww′(V Em,nEn,m + En,mEm,nV )

+ w(V V ′En,m + En,mV ′V ) + V S′V + w2w′En,mEm,nEn,m.

Setting V = a1Tm + 1nb∗ and V ′ = a′1Tn + 1mb′∗ we may rewrite this as

S + V + wEn,m = SS′S + w′nm ab∗ + n(Sa′)b∗ + m ab′∗S

+V V ′V + 1nb∗SS′ + SS′a1Tm + w(n Sa′1Tm + m 1nb′ ∗S) + ww′nm V

+w(n b∗a′ + m b′ ∗a)En,m + (b∗S′a)En,m + nm w2w′En,m,

which gives rise to three separate equations using the direct sum decomposition of the 
matrix space into So

n,m, Vn,m and CEn,m.
Applying the same approach to the symmetry condition AA÷ = (AA÷)∗, we obtain 

the following theorem; its last statement follows from the fact that A is the pseudoinverse 
of A÷.

Theorem 10. Let A be an n × m matrix with decomposition A = S + V + wEn,m and 
pseudoinverse matrix A÷ = S′ + V ′ + w′Em,n. Then the following identities hold,

S = SS′S + w′n2ab∗ + n(Sa′)b∗ + m ab′ ∗S,

V = V V ′V + 1nb∗SS′ + SS′a1Tm + w(nSa′1Tm + m 1nb′ ∗S) + ww′ nmV,

w (1 − n b∗a′ + m b′a− nm ww′) = b∗S′a,

SS′ + V V ′ = (SS′ + V V ′)∗ ,

and

SV ′ + V S′ + wEn,mV ′ + w′V Em,n = (SV ′ + V S′ + wEn,mV ′ + w′V Em,n)∗ .

These identities remain true when A, S, V , w, a and b are swapped with A÷, S′, V ′, 
w′, a′ and b′.

6.2. Invertible matrices

We now relate the decomposition of an invertible matrix into its weightless constant 
sum, co-Latin and weight parts to the decomposition of its inverse.

It turns out that the Moore-Penrose pseudoinverse of the weightless constant sum 
part plays a pivotal role in this connection.

Lemma 4. Let M be an invertible n × n matrix with inverse M−1, and let M = C +
S + wEn and M−1 = C ′ + S′ + w′ En be their decompositions as in Theorem 2, with 
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w := wtM , w′ := wtM−1. Let C = a1T + 1b∗, C ′ = a′1T + 1b′ ∗ with a, b, a′, b′ ∈ {1n}⊥
as in Theorem 1.

a) Then

b∗a′ = b′ ∗a = 1 
n
− ww′n, (6.1)

wnb′ ∗ = −b∗S′, (6.2)

w′nb∗ = −b′ ∗S, (6.3)

w′na = −Sa′, (6.4)

wna′ = −S′a. (6.5)

Moreover,

In − 1 
n
En = nab′ ∗ + SS′ = na′b∗ + S′S. (6.6)

b) If w′ �= 0, then S has rank n− 1 and

S′ = S÷ + a′b′ ∗

w′ . (6.7)

c) If w′ = 0, then S has rank n− 2.

Remark. Equations (6.2), (6.3), (6.4) and (6.5) are equivalent to the identities

CS′ = −wEnC
′, C ′S = −w′EnC, SC ′ = −w′CEn and S′C = −wC ′En,

respectively.

Proof. a) We start from the equations

In = MM−1 = CC ′ + CS′ + w′CEn + SC ′ + SS′ + wEnC
′ + ww′nEn (6.8)

and

In = M−1M = C ′C + C ′S + wC ′En + S′C + S′S + w′EnC + ww′nEn. (6.9)

Multiplication of equation (6.8) by En on the right gives

En = CC ′En + CS′En + w′nCEn + SC ′En + SS′En + wEnC
′En + ww′n2En

= n (b∗a′) En + 0 + n1nb∗S′ + wn21nb′ ∗ + 0 + 0 + ww′n2En,

so using the uniqueness of the decomposition in Theorem 2, we obtain the identities
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1 = nb∗a′ + ww′n2, 0 = n1n (b∗S′ + nwb′ ∗).

The analogous treatment of equation (6.9) gives

1 = nb′ ∗a + ww′n2, 0 = n1n (b′ ∗S + nw′b∗).

These identities imply equations (6.1), (6.2) and (6.3). Furthermore, multiplying equation 
(6.8) by En on the left, we find

En = EnCC ′ + EnCS′ + w′EnCEn + EnSC
′ + EnSS

′ + wnEnC
′ + ww′n2En

= n (b∗a′) En + w′n2a1Tn + 0 + 0 + 0 + nSa′1Tn + ww′n2En,

so the uniqueness of the decomposition of Theorem 2 gives

0 = (w′na + Sa′) n1Tn

and hence equation (6.4). An analogous calculation starting from equation (6.9) yields 
equation (6.5). The identities (6.6) follow by using equations (6.1), (6.2) and (6.4) in 
equation (6.8) and by using equation (6.1), (6.3) and (6.5) in equation (6.9), respectively.

b) We can use equation (6.4) to rewrite equation (6.6) in the form

In − 1 
n
En = − 1 

w′ Sa
′b′ ∗ + SS′ = S

(
−a′b′ ∗

w′ + S′
)
,

which implies that S has rank n − 1 (note that this is the maximal possible rank for a 
weightless constant sum matrix). In particular, both the range of S and the orthogonal 
complement of the null space of S are equal to {1n}⊥. For the Moore-Penrose pseu-
doinverse S÷, this means that SS÷ = S÷S = In − 1 

n En. Hence the above identity 
yields

S÷ = S÷SS÷ = S÷(In + 1 
n
En) = S÷S

(
S′ − a′b′ ∗

w′

)

= (In − 1 
n
En)

(
S′ − a′b′ ∗

w′

)
= S′ − a′b′ ∗

w′ .

c) From M = a1Tn + 1nb∗ + S + w1n 1Tn it is evident that ranM = ranS + span{1n, a}, 
where ranA denotes the range {Ax | x ∈ Cn} of an n×n matrix A. As M has full rank, 
it follows that S has rank at least n− 2. If w′ = 0, then by equation (6.4) Sa′ = 0. Now 
a′ �= 0 since otherwise equation (6.1) gives the contradiction 0 = 1 

n . Hence the null space 
of S contains the two non-null orthogonal vectors a′ and 1n. �

We next note that the weight of the inverse matrix M−1 is determined by the deter-
minants of M and of M + En; interestingly, it has no connection with the weight of M
itself.
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Lemma 5. Let M be an invertible n× n matrix. Then the weight of its inverse is

wtM−1 = det(M + En) − detM
n2 detM . (6.10)

Proof. Writing the inverse in terms of the adjugate matrix [5], M−1 = 1 
detM adjM , 

Lemma 4.1 of [8] with u = v = 1n gives

det(M + En) = detM + 1Tn (adjM)1n = detM + n2 wt(M−1 detM),

and the claimed identity follows by rearrangement, using the linearity of the weight 
function. �
Remark. Equation (6.10) shows that the weight of the inverse matrix vanishes if and 
only if det(M + En) = detM . By a scaling argument, this can be seen to be equivalent 
to det(M + αEn) = detM for all non-zero numbers α. However, differentiation with 
respect to α gives nothing new, as d 

dα det(M + αEn) |α=0= n2 wt(adjM).

In the following theorem, we show that, once its weight has been obtained by equation 
(6.10), the components of the inverse matrix can be found in terms of the co-Latin part 
of M and the pseudoinverse of its weightless constant sum matrix part, provided both 
weights do not vanish; together with equation (6.10), this gives a description of the 
non-linearity involved in taking the inverse.

Theorem 11. Let M be an invertible n × n matrix with inverse M−1, and let M =
C +S+wEn and M−1 = C ′ +S′ +w′ En be their decompositions as in Theorem 2, with 
w := wtM , w′ := wtM−1. Let C = a1T + 1b∗, C ′ = a′1T + 1b′ ∗ with a, b, a′, b′ ∈ {1n}⊥
as in Theorem 1. Assume that w,w′ �= 0; then

C ′ = −nw′(S÷C + CS÷),

S′ = S÷ + w′S÷CEnCS÷.

Proof. Using equations (6.2), (6.5) and (6.7),

C ′ = a′1Tn + 1nb′ ∗ = − 1 
nw

S′a1Tn − 1 
nw

1nb∗S′ = − 1 
wn

(S′C + CS′)

= − 1 
wn

(S÷C + a′b′ ∗

w′ C + C
a′b′ ∗

w′ + CS÷)

= − 1 
wn

(S÷C + CS÷ + a′1Tn
w′ (b′ ∗a) + (b∗a′) 1nb

′ ∗

w′ )

= − 1 
wn

(S÷C + CS÷ + 1 
w′ ( 1 

n
− ww′n) C ′)

= − 1 
wn

(S÷C + CS÷) + C ′ − 1 
ww′n2 C ′,
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and the claimed formula for C ′ follows by rearrangement. Furthermore, equation (6.7) 
gives

S′ = S÷ + a′b′ ∗

w′ = S÷ + 1 
w′n2 C ′EnC

′

= S÷ + n2w′ 2

w′n2 (S÷C + CS÷) En (S÷C + CS÷)

= S÷ + w′ S÷CEnCS÷,

noting that S÷ is again a weightless constant sum matrix by Theorem 8. �
Example 6. For the Wilson matrix the construction of Theorem 11 gives us C ′ =
−nw′(S÷C + CS÷)

= −4 × 3
8

⎛
⎜⎜⎜⎝

1 
12

⎛
⎜⎜⎜⎝

−37 −37 −37 −37
27 27 27 27
13 13 13 13
−3 −3 −3 −3

⎞
⎟⎟⎟⎠ + 1 

12

⎛
⎜⎜⎜⎝

−37 27 13 −3
−37 27 13 −3
−37 27 13 −3
−37 27 13 −3

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠

= 1
4

⎛
⎜⎜⎜⎝

37 5 12 20
5 −27 −20 −12
12 −20 −13 −5
20 −12 −5 3

⎞
⎟⎟⎟⎠

and S′ = S÷ + w′S÷CEnCS÷

= 1
6

⎛
⎜⎜⎜⎝

8 −6 −2 0
−6 6 0 0
−2 0 5 −3
0 0 −3 3

⎞
⎟⎟⎟⎠ + 3

8 × 1
9

⎛
⎜⎜⎜⎝

1369 −999 −481 111
−999 729 351 −81
−481 351 169 −39
111 −81 −39 9

⎞
⎟⎟⎟⎠

= 1 
24

⎛
⎜⎜⎜⎝

1369 −999 −481 111
−999 729 351 −81
−481 351 169 −39
111 −81 −39 9

⎞
⎟⎟⎟⎠ .

Remark 5. Theorem 11 offers an alternative way of representing the inverse of an invert-
ible matrix, based on the symmetry type decomposition shown in Section 2. This suggests 
a possible area for further investigation applying our results, as it may be possible to 
obtain the inverses of ill-conditioned matrices more readily in terms of less ill-conditioned 
matrices. The formulae in Theorem 11 only require (after the decomposition of the ma-
trix M) finding the pseudoinverse of the constant-sum part S and the weight w′ of the 
inverse matrix, which, along with the weight of M , must be non-zero for the formulae 
to be valid. The matrix S÷ is a pseudoinverse, but in the situation where the rank of S
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equals n−1 — which, by Lemma 4 b) and c) is equivalent to w′ �= 0 and can thus be used 
to ascertain this without calculating w′ —, its null space and co-kernel are known to be 
equal to {1n}⊥, so the pseudoinverse can be calculated as the inverse of an invertible 
(n− 1)× (n− 1) matrix. Calculation of w′ by equation (6.10) requires calculation of two 
determinants and may therefore not be numerically efficient for matrices of large size; 
however, w′ can be obtained more directly once S÷ and the fact that w′ �= 0 are known. 
Indeed, by Theorem 11 M−1 = S÷ + w′ (S÷CEnCS÷ − n (S÷C + CS÷)), so

1n = MM−11n = w′M (n1n − n2S÷a),

which determines w′.
For the Wilson matrix, we find that the eigenvalues of S are 3.95536, 0.846797, 

0.447843 and 0, so the ratio of the largest and smallest non-zero eigenvalues is equal to 
8.83202, which is considerably less than the condition number of W , κ2(W ) ≈ 3 × 103.
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