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ABSTRACT

Vector Symbolic Architecture (VSA), a.k.a. Hyperdimensional Computing (HDC) has transformative potential
for advancing cognitive processing capabilities at the network edge. This paper examines how this paradigm
offers robust solutions for AI and Autonomy within a future command, control, communications, computers,
cyber, intelligence, surveillance and reconnaissance (C5ISR) enterprise by effectively modelling the cognitive
processes required to perform Observe, Orient, Decide and Act (OODA) loop processing. The paper summarises
the theoretical underpinnings, operational efficiencies, and synergy between VSA and current AI methodologies,
such as neural-symbolic integration and learning. It also addresses major research challenges and opportunities
for future exploration, underscoring the potential for VSA to facilitate intelligent decision-making processes and
maintain information superiority in complex environments. The paper intends to serve as a cornerstone for
researchers and practitioners to harness the power of VSA in creating next-generation AI applications, especially
in scenarios that demand rapid, adaptive, and autonomous responses.
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1. INTRODUCTION

Artificial intelligence (AI) and machine learning (ML) are rapidly advancing UK Defence’s abilities to understand
situations and act at a higher tempo than our adversaries. An essential component in all defence operations is
the command, control, communications, computers, cyber, intelligence, surveillance and reconnaissance (C5ISR)
function that involves collecting, processing, exploiting and disseminating accurate information in a timely
manner to support decision making. C5ISR activities are complex and multifaceted; they currently require
significant input from human operators demanding a combination of cognitive capabilities including attention,
perception, memory, decision-making, problem-solving, and communication. Whilst human cognitive capabilities
are difficult to replicate in automated systems, this is precisely the challenge for generation-after-next AI and
Autonomy for Intelligence, Surveillance and Reconnaissance (A2ISR), which seeks to leverage recent advances
in AI and ML to release capacity and maximise understanding in the C5ISR enterprise to maintain information
advantage.

To fully achieve these goals, future C5ISR systems will require the capability to automatically perform a
necessary and sufficient set of ‘brain-like’ cognitive functions leveraging the latest developments in AI technology.
In the context of C5ISR this requires the capability for future AI to autonomously perform the range of cognitive
functions needed for the observe, orient, decide and act (OODA) loop processing cycle. To perform these
functions faster than our adversaries, specifically in dynamic and contested multi-domain operations, it has been
argued that OODA loop processing needs to be increasingly compressed and that future C5ISR will need to be
performed closer to the network edge.1 However, the mainstream approaches in current AI, based on very large
artificial neural networks (ANNs), needs massive computational and data resources, meaning these technologies
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are tied to data centres and heavily reliant on cloud hosting with stable network connectivity. To realise the full
benefits of C5ISR at the network edge, there needs to be a shift towards new AI and ML paradigms that: 1) Can
integrate a range of AI approaches (symbolic, sub-symbolic, and hybrid) and across a set of distributed nodes
(i.e., in a resilient and distributed manner); 2) Are resource efficient in bandwidth and computation; 3) Are
effective, benchmarked against state of art AI in relevant domains including learning, reasoning, and planning;
4) Are data-frugal and noise robust; and 5) Are future proof by being compatible with the range of emerging
technologies (e.g., neuromorphic hardware, in-memory processing) that are designed specifically for lower size,
weight, power and cost (SWaP-C).

In this paper, we describe how the brain-inspired vector symbolic architecture (VSA) a.k.a. hyperdimensional
computing (HDC) paradigm2,3 can achieve these requirements, and how VSA processing has transformative
potential for advancing cognitive processing capabilities at the network edge. Moreover, in its uniform processing
of symbolic and sub-symbolic information, combined with its ability to meet necessary and sufficient cognitive
processing functions, VSA is uniquely positioned to meet the requirements within a dynamic and contested
operational context, across the OODA loop.

Section 2 explains the basis of VSA computing and the cognitive processing functions required for C5ISR
in the context of the OODA loop. Section 3, as the main technical core of the paper, describes how the VSA
representation can be used as the ‘glue’ to integrate existing AI/ML components in distributed edge-of-network
settings and, importantly, how VSA can potentially be used to perform C5ISR AI/ML functions in a single
unified framework, removing silos between currently-disparate capabilities. The paper concludes in Sections 4
and 5 by considering opportunities and challenges for future exploitation.

2. VSA AND HUMAN COGNITIVE PROCESS

VSA presents a significant paradigm shift in AI and cognitive computing, characterised by its unique handling
of complex data structures and its efficient computational models. In VSA, concepts are symbolized using a
common representational format known as a hypervector : a very high dimensional vector. The fundamental idea
that underpins VSA is that practically anything can be represented as a symbolic hypervector. Because of this
common representation, hypervectors can in turn be combined to create new hypervectors that represent more
complex concepts. This is the basis by which VSA integrates sub-symbolic and symbolic processing: by treating
sub-symbolic vector representations as symbols that can be manipulated. While large, VSA hypervectors are
often binary, making them highly compact.

2.1 Real-World Application of VSA: Enhanced C5ISR Systems

A practical application of VSA lies in enhancing C5ISR systems. VSA’s proficiency in efficiently managing
high-dimensional data and executing complex pattern recognition is ideal for the diverse information processed
in C5ISR systems.

Consider surveillance drones as an example: VSA can amalgamate and analyse data from various sen-
sors—visual, infrared, and radar—to form a comprehensive environmental understanding. The data from each
can be represented as hypervectors and the various hypervector operations can provide the capability to integrate
symbolic (structured data like coordinates) and sub-symbolic (unstructured data such as imagery) information
aids in real-time decision-making and threat assessment. Furthermore, the scalability and flexibility of VSA
ensure adaptability to evolving C5ISR systems, accommodating new sensors and data types. This adaptability
is crucial in the rapidly advancing defence technology sector.

VSA thus offers a comprehensive toolkit for addressing complex, multi-faceted problems in AI, rendering it
a potentially indispensable asset in contemporary engineering and computational research and development.

2.2 Human Cognition Process

Human cognition encompasses the wide array of mental processes involved in acquiring knowledge and under-
standing through experience, the senses and thought. It includes aspects such as perception, attention, memory,
learning, reasoning and planning, and language and communication. There has been a considerable amount of re-
search into ways of characterizing these different human cognitive functions as programmable representations. In



this paper we consider an approach that builds on the fundamental concept within human cognition, that allows
individuals to acquire, code, store, recall, and decode information about phenomena in their everyday spatial
environment: this is known as a cognitive map. Cognitive maps enable humans to understand the relationships
between things in their world, to make sense of these relationships leading to what is termed general intelligence.
Originated by psychologist Edward C. Tolman,4 the term originally referred to our mental representations of
the layout of environments, such as towns or buildings. Cognitive maps also allow humans to do much more
including decision-making, problem-solving, reasoning and planning a course of action.

The ability to form cognitive maps is evidence of the elaborate functionality within our brains. When we visit
a new city, for instance, we create a mental picture of how streets interconnect, where landmarks are located,
and how to move from one point to another. Over time, this mental map becomes more detailed and allows for
more efficient navigation within the environment.

Cognitive maps are inherently adaptive; they can be updated with new information as an environment changes
or as we learn more about a previously un-mapped domain. This adaptability signifies the higher-order cognitive
capabilities for learning and memory consolidation. Current machine learning and deep learning suffer from
the stability-plasticity dilemma, i.e., catastrophic forgetting of previously learned knowledge when attempting
to absorb new information and intransigence of significantly resisting to incorporate new information while
retaining old knowledge. VSA framework breaks the stability-plasticity dilemma due to its innate property of
superposition to retain all learned information and adapt by absorbing new information, making it free from
forgetting and flexible to adapt.

2.3 Cognitive Processing Required for C5ISR

Current C5ISR processing is essentially a human processing task that combines many different types of cogni-
tive processes. Given that the aim of exploiting AI in C5ISR is to automate many of these cognitive human
capabilities, we need to first define where these cognitive processes are required in the context of C5ISR. To
address this question, we consider the typical C5ISR sequence of operations that are performed using the OODA
loop model.5 The OODA loop serves as a critical framework for decision-making and information processing, by
encapsulating a sequence of steps that enable military forces to process information and respond effectively to
threats.

Observe : This step involves the collection of real-time data from a diverse array of sensors and sources.
The data can come from satellite imagery, human intelligence (HUMINT), signals intelligence (SIGINT), and
other surveillance and reconnaissance systems. The goal at this stage is to gather a comprehensive picture of the
operational environment, including enemy positions, movement, and potential vulnerabilities or threats. In terms
of the cognitive processing, the observe step requires the capability to perform the functions of perception and
attention. The latter has a key role to play in making effective use of limited computational resources.

Orient : Orientation is the analytical step where the collected data is synthesized and evaluated in the
context of the operational environment, including cultural, geographical, and situational factors. During this step,
military analysts are essentially interpreting the data, comparing it against existing knowledge, and integrating
it with their understanding of the tactical and strategic picture. We argue that, from a cognition perspective,
orientation is essentially the process of comparing the current observed world state with memorized cognitive
maps. It is in this step that C5ISR personnel must consider the implications of new information and update their
cognitive maps of the battlefield accordingly (i.e., learning). An important element of the orientation process is
therefore the capability to compare the current cognitive maps with previous experience, so that some efficient
method of storing (memory) and comparing cognitive maps is required. In terms of the cognitive processing, the
orientation step therefore requires the functions of memory and learning.

Decide : The decision step involves formulating a course of action based on the analysis conducted during
the orientation step. Decision-makers weigh the intelligence reports, consider the available options, evaluate
potential risks and benefits, and determine the best strategy to pursue. The decision step is critical as it sets the
stage for how forces will act and react to emerging situations. The reasoning and planning required in this step
are complex cognitive function that usually require interpretation of the current cognitive map(s), to plan what
are the required actions to achieve the desired mission goal(s), i.e. the course of action (COA). Ideally the COA



should be a continuous decision-making process based on the current perceived state of the world, such that
changes can be rapidly accounted for and new COA created in response. In terms of the cognitive processing,
the decide step therefore requires the functions of memory, learning, reasoning and planning.

Act : Action is the final step of the OODA loop, i.e. it is the implementation of the chosen COA. In
military C5ISR processing, this could manifest in various ways, such as repositioning forces, launching a strike,
executing a defensive manoeuvre, or adjusting surveillance assets for better coverage. The goal in this step
is to carry out decisions effectively and efficiently, to achieve the desired tactical or strategic objective. The
result of performing the required actions needs to be continually assessed; any changes to the current cognitive
map, and hence actions performed, will change the state of the perceived environment and used in the OODA
loop to continuously refine the actions. In terms of the cognitive processing, the act step therefore needs to
access all of the cognitive capabilities of the earlier steps. It is also the step that needs to communicate and
co-ordinate decisions and actions, and will often make significant use the cognitive functions of language and
communication, potentially in the context of limited communications bandwidth.

The OODA loop is therefore an essential concept within military C5ISR processing that facilitates rapid and
effective decision-making in the face of uncertainty. By efficiently observing the battlefield, orienting through
analysis, deciding on the best course of action, and acting to achieve mission objectives, military units can main-
tain situational awareness and operational superiority. The continuous and iterative nature of the OODA loop
ensures that forces can adapt to evolving situations and maintain an edge in an ever-changing conflict environ-
ment. The rationale for deploying AI in C5ISR is to speed up the cycle using real-time data feeds, advanced
analytics, artificial intelligence and machine learning. This is to enhance each step with an emphasis on perform-
ing these functions at the tactical edge of network environments with limited processing and communications
capacity.

2.4 VSA Offers an Integrated Approach to Cognitive Processing

Achieving ‘brain-like’ cognitive processing potentially requires a computing framework that operates in a similar
manner to the human brain. Traditional AI approaches include symbolic and connectionist methods.6 The
symbolic approach represents information via symbols and their relations, and solves problems or infers new
knowledge through the processing of these symbols. In the alternative connectionist approach, information is
processed in a network of simple interconnected computational units often called artificial neural networks.

Neuro-symbolic AI combines symbolic and connectionist AI to leverage the strengths of both. Neural networks
excel at processing complex data like images and audio but struggle with explainability and manual adjustments.
Symbolic AI, on the other hand, is easier to understand and fine-tune but can’t handle complex data due to
the overwhelming number of rules required. By combining these approaches, neuro-symbolic AI aims to harness
complex data processing with explainability.

VSA, inspired by Eliasmith’s work in How to build a Brain,7 offers a potential solution by representing
semantic concepts as high-dimensional vectors, enabling brain-like cognitive processing. This approach uses
the Semantic Pointer Architecture (SPA), where vectors symbolically represent concepts. Current AI models,
like large language models (LLMs), build symbolic vector spaces to perform tasks resembling human reasoning.
However, LLMs lack VSA’s consistent ability to process both symbolic and sub-symbolic information and are
less resource-efficient.

The basic operations performed using VSA processing are shown schematically in Figure 1. They begin with
hypervector generation followed by a process that binds and bundles hypervectors to create new hypervectors,
which can subsequently unbound to recover the original vectors from a clean-up memory. Importantly, the new
vectors semantically represent the vectors of which they are composed (i.e., vector of vectors, or a symbol of
symbols) and that it is possible to efficiently deconstruct these vectors to obtain the component vectors.

In the context of military applications, VSA has been demonstrated as an efficient technique for discovering
and re-tasking assets in bandwidth-constrained edge of network scenarios.8–10 VSA has also been shown to be
applicable to a wide range of functions that are directly applicable to C5ISR, such as signal processing,11 robot
control,12 and sensor fusion.13 Recent developments have demonstrated that VSA can also be used in the context
of AI/ML, particularly in neuro-symbolic processing.14



Figure 1. Schematic of the basic sequence steps in the VSA processing cycle which comprises: hypervector generation,
binding, bundling, unbinding and clean-up memory.

3. LEVERAGING VSA FOR ENHANCED COGNITIVE CAPABILITIES IN C5ISR

The intent of the following four sub-sections is to demonstrate in technical detail how VSA can be effective in
implementing the necessary and sufficient cognitive functions across the OODA loop, including perception and at-
tention (observe and orient), memory (orient and decide), decision-making, problem-solving and communication
(decide and act).

3.1 Observe: Hypervector Generation

In the observe step of the OODA loop the challenge is how to represent the wide range of sensors and sources of
information in a form that can be readily processed by the subsequent steps. As noted earlier, the basic idea that
underpins VSA is that practically anything can be represented as a symbolic vector in a high dimensional vector
space. An essential property of such vectors is that when the vector dimension D is large, any two randomly
generated hypervectors are orthogonal (i.e., vector dot product or hamming similarity is zero) with a very high
probability. Similarly, when lower dimensional vectors are randomly projected into a higher dimensional vector
space, they become quasi-orthogonal.15 The orthogonality property ensures that, up to some limit determined
by D, vectors can be bundled together (i.e., addition with some form of normalization). The resulting com-
pound vector (or vector of vectors) has the same dimension D as the vectors of which it is composed, with the
holographic property that the component vectors are distributed across the bundled vector and can be recovered
with high probability using the clean-up memory. In the context of C5ISR this facilitates the construction of hy-
pervectors that represent descriptions of things as diverse as imagery, time-varying signals, sensor characteristics
and intelligence reports. Some of these are described in the following sections.

3.1.1 Encoding Using Random Hypervectors

A basic mechanism for generating VSA hypervectors is to begin with a set of random hypervectors that represent
what we term atomic vectors (i.e., symbols). These vectors are stored in memory (i.e., the clean-up memory). To
represent more complex things, the atomic vectors can be bound and bundled together using the VSA algebraic
operators and these compound vectors of vectors can in turn be used to describe more complex things in a
hierarchical representation. In the context of C5ISR, previous work has demonstrated that it is possible to
represent complex document structures (e.g., an intelligence report), sensors and devices (e.g., sensor images,
combat radios) and higher-level configurations of these assets (e.g., communications plans) as vectors of vectors.16

Storing these compound vectors in a distributed memory (usually locally with the entity that is being de-
scribed by the vector) it has been demonstrated that it is possible to perform asset discovery and to reconfigure
the assets into new configurations in edge of Tactical Communications and Information Systems (TacCIS) net-
work settings by exchanging and locally interpreting the compound VSA vectors.14,16



Figure 2. A schematic illustrating the data fusion process using VSA vector embedding, depicting the workflow for
combining sensors and sources that are mapped into hypervectors using different types of ANN encoding.

3.1.2 Encoding Using Non-Random Hypervectors

An alternative to using random vectors that results in hypervectors with the same common encoded representa-
tion as the random hypervectors, is to build up a representation of an entity by using vectors that in some way
semantically represent the structure of the entity. Artificial neural networks are essentially techniques for learn-
ing such real valued vector representations which can then be mapped into hypervectors. This is achieved firstly
through a process called ‘standardisation’ where the vectors are transformed into pseudo-orthogonal vectors17

and secondly using a ‘random projection’ process that creates vectors with the required dimension and preserves
the holographic distributed representation properties of the resulting hypervectors.

One of the main advantages of this mapping is that real valued vectors of different dimension can be mapped
into a common VSA representation which then facilitates the binding and bundling of vectors from different
sources into a single semantic vector representation as a form of data fusion. An example is illustrated in Figure
2 showing the combining of data from a roadside camera, an unattended ground sensor and other sources, each
processed using different ANNs. Similar fusion of information from open source information (OSINF) sources
has recently been demonstrated, where the real valued vectors that represent pieces of OSINF are created using
natural language transformer models and these are bundled with vectors that represent associated meta-data
to facilitate search.18 A further advantage of the VSA representation is that the resultant hypervector retains
the holographic distributed representation of the component hypervectors. It was therefore possible to simply
truncate the vectors for transmission over low bandwidth networks and still retain a semantic representation of
the complex entity being represented.

3.1.3 Image Encoding

There are several approaches for encoding images as VSA hypervectors. The main approach has been to utilise
the capabilities of convolutional neural networks (CNN) to produce vector representations of the input images.
Mapping the vectors from the layers of CNN into a common hypervector representation enables new classifiers
to be rapidly developed using one-shot or few shot learning i.e., an efficient form of transfer learning.19 One
additional benefit of using VSA to perform this type of transfer learning task is that it becomes possible to bundle
vectors from all layers into a single vector and it has been shown that this significantly improves the classification
performance of new classifiers and facilitates the capability to identify that a new image is an outlier that has
not been previously seen during training of the CNN.20

Without a trained CNN it is also possible to use VSA to directly encode an image. An encoding scheme was
presented in12 that simply represented an image by encoding each pixel in the image by its X and Y co-ordinates



and colour intensity as random hypervectors, and binding and bundling these vectors to create a composite image
hypervector. This hypervector was in turn bound to a random hypervector that represented the class of the
image to create an image classifier that did not require a large amount of training data. However, this approach
did not perform well when the objects in the image were spatially translated or rotated. An alternative encoding
approach has been demonstrated in papers by Neubert et al.17 This approach uses a different encoding of position
using random vectors and this does provide for some spatial translation and combines this technique that encodes
parts of the image into a single hypervector. Importantly, the resulting VSA approach performs significantly
better than other state of the art techniques for image matching and retrieval for visual place recognition and
are particularly relevant to C5ISR processing.

The current state of the art using VSA uses a vector semantic representations (VSR) to construct hierarchical
vector description of an image by encoding the image based on the spatial layout of its semantic entities.21 This
approach uses image segmentation to identify entities in the scene and then represents the spatial relationships
between objects using vector binding. The resulting vectors are hierarchically bundled into a single VSR vector.
The evaluation demonstrated that the place recognition performance is on par or better than the compared
existing approaches. The approach does rely on the quality of the image segmentation but that the general
concept is expected to be applicable to other tasks and to also benefit from future developments on extracting
semantic (and other) information from images.

3.1.4 Spatio-temporal Signal Encoding

The processing of time varying signals and spatio-temporal signals using VSA has been largely dominated by the
desire to classify these signals. The classical approach is described in22 where the encoding of the time varying
signal from biosignals using the standard VSA operations of binding and bundling but making specific use of
the VSA permutation operator. The results demonstrated that electromyography (EMG) signals sampled at
500Hz from multiple sensors on the subjects arm could be used to successfully classify hand gesture recognition,
electroencephalography (EEG) based signals could be used in the context of brain–computer interfaces, and that
electrocorticography (ECoG) based signals could be analysed for seizure detection. In all cases the VSA imple-
mentation outperformed a standard support vector machine based classifier and training time was significantly
faster.

A similar approach23 has been used for voice recognition achieving comparable performance to alternative
deep neural network approaches but with significantly faster training times (around ×5). Further benefits of
using VSA hypervectors has recently been demonstrated by IBM using their in-memory processing technology11

to obtain a peak classification accuracy of 98.9% (within 0.04 percent of the baseline), while achieving 1.80–8.83×
higher energy efficiency over a dedicated digital CMOS encoder and a 284× gain energy efficiency over an encoder
running on a low-power general purpose computing platform.

VSA has also been used to classify driving style from a number of times series signals generated by vehicle
sensors.24 The paper reports that the VSA approach not only achieved similar or slightly better classification
results than a range of other state of the art techniques, but also significantly reduced training time and in-
creased data efficiency. In addition, the authors note that the proposed VSA model allows implementation in
neuromorphic hardware based on spiking neural networks (SNNs).

One of the best existing methods for time series classification, in terms of accuracy and computation time, is
MiniROCKET.25 In a recent paper Schlegel et al.26 have shown that the internal high-dimensional representation
of MiniROCKET is well suited to be complemented by the algebra of VSA. The paper describes a VSA imple-
mentation called HDC-MiniROCKET, where the original algorithm is only a special case. HDC-MiniROCKET
equalled or outperformed MiniROCKET on all of the 128 URC standard time series datasets.27 Using VSA has
therefore been demonstrated to offer significant benefits compared to existing state of the art for spatio-temporal
signal encoding.

3.1.5 Encoding of other information sources

C5ISR requires not just the processing of information from sensors but also from intelligence reports and other
information sources. This information is often reported as text. In previous work it has been demonstrated that
text can be encoded from a basic set of atomic random hypervectors that can be as simple as representing the



Figure 3. An example of semantic vector generation using transformer networks, such as large language models, showing
the transition from asset descriptions to hyperdimensional binary vectors.

letters of an alphabet plus some random vectors to represent punctuation. Using a hierarchical VSA binding and
bundling scheme it is possible to build vectors to represent words, sentences, paragraphs, etc, up to complete
documents.28

An alternative to using random vectors to represent complex entities is the use of semantic vector representa-
tions that are learned using what are termed vector space embedding techniques. In a vector space embedding,
real-world entities—words, images, sounds, and other data objects—can be mapped into numerical vectors in a
way that reflects their semantic meaning or characteristics. The result is that entities with similar meanings or
properties are represented by vectors that are closer together in the vector embedded space. In the case of text,
the vector space embeddings are the cornerstone of the latest developments in AI, being most familiar in large
language model applications such as ChatGPT for text and DALL-E for images. The vector representations
within these applications are learned using hierarchical transformer neural networks where the different layers of
the transformer represent different aspects of the input sequence of words or other symbols. Analogous to the
way in which vectors from a CNN can be extracted and combined using VSA the same approach can be used
for these transformer models, and this facilitates combining these vectors with other information (e.g., vectors
representing meta data, images) without the need to retrain the LLM. This has recently been demonstrated as
illustrated in Figure 3 as a highly efficient approach to text search.

In summary, for the observe step of the OODA loop VSA provides a way to represent C5ISR data from
a wide range of sensors and sources in a common representational format (i.e., hypervectors). This in turn
facilitates the capability to rapidly integrate information into further hypervector representations and for these
to be compactly stored in memory. In the following sections we describe how these hypervector representations
can then be used to perform the required cognitive operations in the other steps of the OODA loop.

3.2 Orient: Knowledge Representation and Cognitive Maps

The orientation step of the OODA loop is where the vector representations generated in the observe step need to
be rationalised with existing knowledge to determine if the observed state of the world is aligned with previously-
acquired knowledge from memory.

In terms of cognitive functions, this is the process of comparing what is being observed with memories of the
world state. To perform this cognitive function, it is necessary to be able to represent these world states in a
form that can be efficiently stored in memory and that facilitates rapid comparison and matching.

A simple example of orientation can be understood from the semantic image processing example above. The
semantic hypervector representation of a complex scene is a compact representation that can be efficiently stored
in memory. Neubert et al.29 has demonstrated this approach to be an extremely efficient state-of-the-art method
to locate the vehicle or robot in the physical world (i.e., orientate to the position). It has also been demonstrated
that this is possible even when there are significant changes in the image due to light conditions, weather, etc, and



is therefore a robust way of orientating to location accounting for uncertainty in the observations. Importantly
‘location’ in this context can also be represented as a hypervector that not only represents the physical location
but using VSA binding can also represent the ‘location’ in different semantic representations (e.g., this is my home
or place of work) which can also be represented by hypervectors. VSA facilitates these different representations
to be hierarchically linked. Orientation is therefore a process of mapping what is being observed to a ‘memory’
of existing knowledge. In this section we argue that hypervector representations of cognitive maps are a way to
achieve these objectives and show through a simple example how cognitive maps can be learned directly from
observation.

Another major advantage of using VSA to encode images compared to state-of-the-art techniques is that
since the vector representation is a single highly compact hypervector the corresponding matching, based on
vector similarity, is significantly faster to compute than existing methods.

The more traditional AI approach to representing these relationships and hierarchies of relationships is to
use knowledge graphs (KGs). Liang et al.30 presents a survey of current state of the art. Since it is possible
to construct hypervector representations of any graph structure, it is possible to represent KGs as hypervectors.
Poduval et al.31 describes an approach to hypervector graph representation which is termed GraphHD. In this
representation the graph nodes are themselves hypervectors which semantically represent the node concepts
and the links between the nodes are represented using the VSA binding and bundling operations. Hypervector
representations of graphs facilitates the capability to rapidly discover similar graph structures using simple
vector matching operations, and importantly sub-graph structures within larger graphs.32 It is also possible
to efficiently navigate graph structures using VSA unbinding operations. VSA representations can therefore be
used to perform KG representation and multi-hop reasoning using very efficient vector operations.

Whilst it is possible to represent KGs in this way, recent developments in AI have clearly demonstrated,
just as Eliasmith and others conjectured, that vector space embedding and performing operations on vectors in
the vector space (e.g., moving through the vector space and transforming or mapping between vector spaces)
surprisingly produces the capability to perform human-like cognitive functions. One of the main benefits of
vector space embedding is that the complexities of the real world can be mapped in such a way that simple
vector operations in the vector space can mirror complex reasoning in the real world. As an example, the
embedding application Word2Vec which uses triplets of co-occurring words to construct the vector space can
perform complex reasoning using simple vector operations (e.g., subtracting the vector for ‘male’ from the vector
for ‘king’ and adding the vector for ‘female’ results in the vector for ‘queen’). In the case of LLMs (e.g.,
GPT4) this is expanded using a simple attention mechanism to consider long word sequences that are mapped
(encoded) into a vector embedding space that represents the structure of language. Mapping any sequence of
words (i.e., symbols) into this embedding space produces an abstract vector that can be transformed (decoded)
into a different representation (e.g., another language) or to predict the next word (symbol) or a sequence that
represents the answer to a question.

This raises the possiblity to represent KGs in a semantic vector space and importantly to facilitate both
reasoning over KGs and graph completion (i.e., inferring relationships that are not in the observed graph)
using vector operations. This partially explains the motivation for representing KGs as graph neural networks
(GNNs)30 and leads to the question of the possibility to do something similar using hypervectors. A recent
paper33 has described how it is possible to do this using an approach termed cognitive map learner (CML). In
the paper the authors demonstrate that it is possible to learn the structure of any graph as a semantic vector
representation. Intriguingly this is done by randomly exploring the graph and the authors show that the full
graph structure can be inferred without the need to explore all possible paths (i.e., it automatically performs
graph completion).

The approach is also applicable to constructing other types of cognitive map and the paper also describes how
this concept can be applied to control a simple robot to perform tasks such as following and fleeing from ‘prey’
or ‘predator’. To illustrate how this applies in the orient step of the OODA loop we use a simple illustration of
an AI agent that must learn a cognitive map of its observed environment. The observed environment comprises
a grid that contains barriers through which the agent cannot pass. The agent performs short random excursions
from random locations based on a set of possible actions in the environment that avoids the barriers. Initially



Figure 4. (a) Initial CML composed of random vectors. The colour coding is a measure of the cosine distance from the
reference point in the grid. (b) Trained CML where the colour coded cosine distance corresponds to the average path
distances from the reference location to all other locations that avoids the barriers. (c) The corresponding ‘real world’
location grid and the position of the barriers.

the cognitive map (CM) vector space comprises random vectors with one random vector representing each cell of
the grid. These actions are also initially represented by random vectors with one vector for each possible action.

The initial CM is illustrated in Figure 4 (a) where the cosine distance between the central cell vector and
each of the other cell vectors is colour coded. The agent has zero cosine distance to its own location and the
cosine distance to any other part of the cognitive map is ≈ 1.0 (i.e., the vectors are quasi-orthogonal). So, the
only safe move is to stay where it is. The CM vectors and the corresponding action vectors are updated following
each random excursion using a simple learning rule. The corresponding situation following training is shown in
Figure 4 (b) when viewed from the same reference location.

The colour coding reflects the distance in the vector space, and it can be shown that this corresponds to the
average path distances to that location that avoids the barriers. Since the agent cannot pass through a barrier
the vector distance to any of these locations is still 1.0. In addition to learning the vector space the algorithm
also learns the vector representation of the ‘real world’ actions in that vector space. The result is that that
complex navigation in the ‘real world’ environment is analogous to simple vector transformations in the CM
vector space. These properties will be further exploited in the ‘Decide’ step of the OODA loop. Figure 4 (c)
shows the ‘real world’ location grid and the barrier positions. Whilst this is a simple example illustrating the
concept of creating a cognitive map it is important to recognise that this can be extended to much more complex
observation environments with much larger action spaces. Since the CM is expressed as a number of vectors
using VSA the vectors can be bundled to create a single vector that describes the entire CM. When observing a
new situation the corresponding CM in memory can be rapidly identified.

In summary, VSA can be used to represent knowledge from knowledge graphs and as cognitive maps and
also facilitates the capability to construct and learn new knowledge representations as hypervectors.

3.3 Decide: Reasoning and Planning

The decide step in the OODA loop is the step in which, having oriented to a cognitive map based on what has
and is being observed, a course of action (COA) has to be determined. This requires the cognitive functions of
reasoning and planning to achieve a desired goal.

So, can planning be achieved using a VSA representation? The CML approach described in the orient step,
demonstrates a way of constructing an abstract vector space representation of the observed ‘world state’ (the
cognitive map) and so the planning challenge becomes one of navigating not in the ‘real world’ but in the vector
space using simple vector operations.33 gives details of how this can be achieved since when learning the mapping
between the ‘real world’ and the abstract vector space that in parallel the mapping between actions in the real



Figure 5. (a) shows the path followed in the CM vector space. (b) shows the path followed in the ‘real world’ grid avoiding
the barriers.

world and corresponding vectors in the vector space are also learned. This makes it possible to move between a
current state to a goal state using vector additions.

The algorithm chooses the best action vector at each step (analogous to the A* algorithm) and adds the best
action vector to the current state vector to determine the next state. Mapping back into the real world gives
results in performing the best action at each step with the result that the associated agent follows a trajectory
that ends at the required goal. The approach has some similarities to reinforcement learning and whilst it is
possible to perform reinforcement learning tasks using VSA34 the agent here has not been trained to search for
a goal or given any prior knowledge of paths that lead to goals and so, unlike reinforcement learning, the CML
has not learned a policy, rather the planning step is simple a product of moving through a vector space using
vectors that represent ‘real world’ actions.

This suggests a novel approach to handling uncertainty in these planning situations. Uncertainty can
be defined as being in a state of limited knowledge, where it is impossible to exactly describe the existing
state, a future outcome, or more than one possible outcome. Since VSA represents both state and action as
vector operations in the vector space, this potentially provides a novel mechanism for handling uncertainty by
discovering plan solutions that are still constrained by the possible action vectors and also to infer areas of the
vector space that can be reached using possible action vectors but have not been explored. This is likely to be
an area of fruitful future VSA research.

Figure 5 gives an example of a typical trajectory followed to reach a specified goal whilst avoiding intervening
barriers. It should be noted that the algorithm can be implemented iteratively, or alternatively the trajectory
can be determined in memory with the sequence of action vectors being stored before the trajectory is followed.

In this simple example, the mapping between the vector space and the ‘real world’ locations is easy to
understand but in other environments complex actions in the ‘real world’ are still mapped into individual vectors
and so the important message is that planning done in the abstract vector space (i.e., cognitive map) is a much
simpler problem than planning in real world space.

So, can this be extended to hierarchical planning and what are the benefits? In35 an approach for assembling
CMLs into hierarchical configuration using the binding and bundling properties of VSA is described. The paper
addresses integrating and orchestrating multiple CMLs together as a finite state machine which is a notoriously
difficult task with traditional ANNs.36 Using VSA facilitates the hierarchical linking of independently developed
cognitive maps such that actions performed in the higher-level map can be mirrored in the lower-level maps.
A simple example is illustrated in Figure 6. A KG that describes how to achieve a goal as a set of tasks can
be mapped into a higher level CM that is linked to a lower level CM where an agent achieved the goal whilst
avoiding the barriers. The agent has to plan a COA to achieve the goals of the higher level tasks. This is precisely
what hierarchical planning systems are currently trying to achieve and so VSA approaches to this challenge offer
a potential solution.



Figure 6. Illustration of hierarchical CMs comprising a higher level CM mapped from a knwledge graph and the lower
level CM mapped from the positional grid map.

3.4 Act: Binding Decisions to Actions

As stated earlier, this final step of the OODA loop is to carry out the planned COA effectively and efficiently
to achieve the desired tactical or strategic objective. Whilst this is the final step in OODA, it drives the next
iteration of the loop since it is the step that actually progresses the goals—it controls and monitors the actions
that are being taken to achieve the goals.

The act step implements the real world actions that are suggested by the decide step and by monitoring the
effects of the actions to ensure that they are having the desired effect. In the context of the example described
above, the cognitive action required from the CM may need to be further interpreted into a sequence of sub-
actions that need to be taken to achieve this (e.g., turn left might require a sequence of actions to control a
vehicle or robot to perform the required manoeuvre). This could be achieved by having yet lower levels of CM
that describe these sub-actions but VSA is also ideally suited to this type of requirement since the required
sequence of actions can be represented as vector of bundled sub-action vectors and this can be bound to the
action vector and stored in memory. When an action vector is received it is a simple unbinding operation to
obtain the required sub action sequence.

The act step has to ensure that the required actions can and have been taken. This is typically achieved
through the subsequent observe step (direct changes that are taking place being observed) or inferred from
observation (subsequent orientation step). How this is achieved in practice will be specific to the particular
application.

4. OPPORTUNITIES AND CHALLENGES FOR VSA EXPLOITATION

In the preceding sections we have attempted to show how VSA is a powerful uniform framework for performing the
types of cognitive processing tasks that will be required for future C5ISR. In each step of the OODA loop, we have
explained that it is possible to represent a wide variety of things from sensors and sources through to knowledge
graphs and cognitive maps as semantic hypervectors. We have shown, through several referenced examples, that
these representations facilitate the capability to perform several of the cognitive functions required for C5ISR,
from object classification through to goal directed planning. Because of the common vector representation,
the potential exists to perform all the OODA loop processing in a unified framework, removing silos between
C5ISR functions. In this paper we have referenced a number of works that have already demonstrated that VSA
representations have many benefits, when compared to other state of the art solutions for performing equivalent
cognitive processing functions. The properties of the VSA hypervector representation also exhibit a number of
other properties that might also be exploited for future C5ISR applications, and these are discussed below.

4.1 Opportunities to Exploit VSA

In the general context of AI and ML, VSA-based learning tackles the challenges that are inherently hard for
conventional machine learning by exploiting the unique properties of the VSA framework that are especially



appealing for edge computing and hardware implementation. There are therefore many opportunities to exploit
the properties of VSA for future C5ISR. These properties include:

Noise robust: VSA represents the information (data) in holographic, distributed hypervectors. Unlike the
computing framework used by traditional machine learning—where an error of a single data value would lead
to erroneous data and hence erroneous prediction—a data value is distributed and represented in a hypervector
in high dimensional space, which minimises information loss even if some bits of the hypervector are flipped or
corrupted. This feature makes VSA-based learning robust to noise in data and tolerable to errors in communi-
cation.37

Data-frugal: Mainstream machine learning generally requires large volumes of training data. In contrast, the
flexible data encoding schemes of VSA bypass many of the data and learning problems associated with traditional
machine learning. As VSA encodes data in hypervectors, it naturally facilitates a mechanism to seamlessly and
easily unify multimodal data, via a simple association and superposition of hypervectors of different data models.
Similarly, VSA superposition property offers an unrivalled systematic tool for dealing with data issues such as
missing values and tackling learning problems such as one/few-shot learning and continual learning.

Computationally-efficient: VSA facilitates the encoding, processing, and storing of data in a common vec-
tor space, enabling in-memory computing which eliminates the latency of data movement between CPU and
memory.38 VSA-based learning utilises simple but very efficient algebraic operations of hypervectors, primar-
ily leveraging its binding property to combine data features and its superposition property to capture complex
relationships and nuanced patterns in data. VSA learning is typically done via one-pass of the data but can
also be done iteratively to minimise model errors like traditional learning. Unlike floating point operations used
in traditional machine learning, distributed VSA bitwise operations use simple binding (bitwise multiplication,
permutation/cyclic shift), bundling (bitwise addition), and comparison (bitwise XOR) to make the computing
process parallel and hence fast and scalable.

Energy-efficient and hardware-friendly: Due to bitwise manipulations of hypervectors, VSA operations are
friendly for implementation and consume minimal energy.14,16,39 This energy efficiency makes VSA learning
superior over traditional machine learning on edge devices where computing power and energy capacity are often
severely constrained.40 The feature of all bitwise operations makes VSA hardware-friendly when implementing
learning algorithms on circuits.

Next generation processor-compatibility: VSA hypervector representations are ideally suited to being imple-
mented in next generation neuromorphic processing devices such as SNNs and ‘in-memory’ processing technolo-
gies11,14,16 which not only provide the potential for ultra energy efficient processing41 but also, in the case of
SNNs, offer potentially significant advantages for military applications when coupled to emerging devices such
as event-based cameras42,43 and ultra high speed processing using spiking photonic devices.44

All these properties clearly have resonance with the challenges of A2ISR and specifically where these functions
have to be performed in challenging edge of network tactical environments where size, weight, power and cost
(SWaP-C), and limited communications bandwidth are major considerations, and where speed of response to
the increasing tempo of the modern battlespace is increasingly important.

4.2 Challenges

Section 3 has shown that there are potentially many solutions to meet the challenge of the cognitive processing
functions required for each step of the OODA loop for future C5ISR Solutions. For each cognitive function—
perception, attention, memory, decision-making, problem-solving and communication—there is evidence that
VSA is effective, in most cases benchmarked against the state of the art in AI. While these works can be regarded
as offering ‘point solutions’, the most compelling argument for the applicability of VSA is that it provides
the mathematical tools for combining these diverse representations into alternative vector representations for
performing different tasks.

Whilst there is a common representation of ‘everything’ in the form of hypervectors, different works have
made different modelling choices, notably in the handing of data dimensions including time, space, and ontology.
Each specific modelling choice has strengths and limitations. The key challenge, however, is how to best link the
different processing stages into a continuously operating cycle and particularly at the network edge. This is also



one of the main challenges for AI in general, which is striving for a mechanism to engineer heterogeneous AI
solutions as a type of ‘plug & play’ approach where models can be added together and run in parallel without the
need for retraining. The mechanism suggested in35 for combining CMLs using VSA offers a potential solution
to this challenge. The challenge is to determine the most efficient ways in which this can be achieved.

A related challenge is how best to use VSA as an integration technology to harness the strengths of other
AI approaches, while mitigating their weaknesses. Work combining VSA approaches with LLMs and other
transformer models is at a relatively early stage and likely to prove a fruitful area for research and development
in the near term.

5. CONCLUSIONS

In this paper we have shown how VSA is a powerful framework for performing the types of cognitive processing
tasks that will be required for future C5ISR. In each step of the OODA loop, we have explained that it is possible
to represent a wide variety of assets, from sensors and sources through to knowledge graphs and cognitive maps, as
semantic hypervectors and explained how state of the art efficient analytics (e.g., adaptive, distributed, federated
neuro-symbolic and probabilistic AI) can be performed across OODA using VSA. We have also identified that
the representation of both state and action using VSA hypervectors offers a potential novel approach to handling
uncertainty in the OODA planning and decision phase and is likely to be a fruitful direction for future research.
We have shown through several referenced examples—that integrate symbolic and connectionist approaches to
AI—that VSA hypervector representations facilitate the capability to perform many of the cognitive functions
required for C5ISR, from object classification through to goal-directed planning, using VSA techniques that
perform all the processing in a uniform representational framework.

The paper has provided an extensive set of references that describe the state of the art of VSA. These
demonstrate that VSA solutions perform as well or better than existing state of the art solutions, usually
with lower computational complexity. VSA hypervector representation is complementary to many of the current
developments in AI/ML. It indeed provides a potential mechanism to meet one of the major outstanding research
challenges, by providing a mechanism to engineer heterogeneous AI solutions as a type of ‘plug & play’ solution,
where models can be added together and run in parallel without the need for retraining.
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