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Abstract
Groundwater, Earth’s largest nonfrozen freshwater reservoir, is vital for water supply security. Groundwater models help 
to manage complex domestic, agricultural, and industrial water demands while preserving ecosystem health under climate 
change. The community-driven groundwater model portal (GroMoPo) hosts groundwater model metadata to analyse biases 
and distribution of groundwater models. Over 450 models are currently featured on GroMoPo, with most models from high-
GDP countries at local-to-regional scales. The GroMoPo initiative addresses current knowledge gaps and facilitates future 
collaboration and data sharing.
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Introduction

More than 99% of Earth’s liquid freshwater is stored 
underground, making groundwater an essential freshwa-
ter resource worldwide (UN Water 2022). Globally, many 
communities, especially in rural environments, rely solely 
on groundwater as their drinking water supply (UN Water 
2022). Additionally, many densely populated regions rely on 
groundwater for industrial and agricultural production (Lall 
et al. 2020). This dependency on groundwater resources is 
increasing over time and has already led to groundwater 

depletion in many areas, while many others are under threat 
(Bierkens and Wada 2019; Jasechko and Perrone 2021). In 
parallel, the number of local-to-regional-scale groundwater 
studies that focus on groundwater modelling has steadily 
increased over the past 40 years (Jia et al. 2020). This trend 
is likely to continue since groundwater models have become 
a commonly used tool across the hydrogeological commu-
nity, partly driven by the proliferation of groundwater mod-
elling codes, software packages, and advances in computing 
power. These models provide better understanding of spa-
tiotemporal patterns of groundwater flow and quality and 
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interactions between groundwater and surface water. Fur-
thermore, these models improve the fundamental mechanis-
tic understanding of hydrologic systems, which can then be 
applied to real-time or forecasting operational decision sup-
port tools. However, this increasing number of groundwater 
models is accompanied by significant challenges.

Every groundwater model can provide valuable insights 
for local decision-makers and the wider groundwater com-
munity. The choices made while building a groundwater 
model include components that are subjective and driven by 
regional experience or schools of thought. This local knowl-
edge comes into play because building a groundwater model 
involves simulating key processes that influence groundwa-
ter flow, as well as combining multiple input datasets, defin-
ing boundary conditions, and model validation with local 
observational data (Wagener et al. 2021). These choices and 
knowledge, which inform the hydrogeological conceptual 
model of the study area, are then embedded in the numeri-
cal implementation of the groundwater models and can also 
provide valuable insights for the wider groundwater model-
ling community. Yet local- and regional-scale groundwater 
models generally reach a small audience, and the knowl-
edge contained within these studies is not efficiently shared 
across the groundwater modelling community. In contrast, 
the recent development of global groundwater models (de 
Graaf et al. 2017; Gleeson et al. 2021; Verkaik et al. 2024) 
has brought more attention to groundwater issues world-
wide such as depletion and pollution (Lall et al. 2020). The 
missing link between global groundwater models and local-
to-regional-scale observations and model simulations has 
been identified as a limiting factor for the evaluation and 
improvement of these global groundwater models (de Graaf 
et al. 2017; Gleeson et al. 2021; Verkaik et al. 2024).

Biases in the geographical distribution of environmen-
tal studies have long been identified in environmental sci-
ences. As early as 1896, the editors of the Botanical Gazette 
noted that botanical science “rests largely upon the results of 
researches carried on in the north temperate zone … situated 
between the parallels of 40 and 55” (Editorials 1896). More 
recently, it has been noted that biases towards protected 
areas, the temperate zone, and wealthy countries potentially 
“limit the global relevance of ecological research” (Martin 
et al. 2012). Hydrological research similarly tends to con-
centrate in wealthier countries and the temperate climate 
zone (Addor and Melsen 2019; Burt and McDonnell 2015), 
something already reflected in highly biased observational 
networks, e.g. streamflow gauging stations (Krabbenhoft 
et al. 2022). Studies on hydrological hazards, such as floods 
and droughts, show a strong bias towards wealthy regions, 
often in strong contrast to the most impacted regions because 
of such extremes have on society (Stein et al. 2024). Partly, 
this bias is likely related to researchers from wealthier 
countries being more likely to afford the publishing fees in 

peer-reviewed journals, while there might be a large amount 
of grey literature and studies on regional groundwater mod-
els in less economically developed regions. Furthermore, 
this bias can be potentially linked to limited local observa-
tions, training and teaching capacities and access to com-
putational facilities. Although the groundwater modelling 
community has been slow to address this issue, the time 
has come to confront its shortcomings. Under-represented 
regions serve as blind spots that impede the ability to under-
stand the present and prepare for the future in an increasingly 
interconnected world (Wilby 2019). A related challenge is 
the under-representation of researchers from marginalised 
regions and communities. Local capacity-building is an 
often-cited strategy to address both challenges (Scheihing 
et al. 2022), but too often high-impact research excludes 
local researchers (Minasny et al. 2020; North et al. 2020; 
Tavernier et al. 2023).

Sharing the knowledge created through building, run-
ning, and evaluating groundwater models is not yet common 
within the groundwater community, which can be attributed 
to multiple related reasons. Many groundwater models are 
built with proprietary software (Zipper et al. 2022) and/or 
contain private input data and information (Zipper et al. 
2019). In such cases, these groundwater models cannot 
be made open source and fully accessible. Furthermore, 
groundwater models are often developed for site-specific 
investigations and are rarely published in peer-reviewed 
journals. Increasing the visibility and discoverability of such 
groundwater models may increase the chances of reusability 
and collaboration while safeguarding sensitive data.

To address spatial bias in published models and promote 
access to local-to-regional-scale models, this study promotes 
that groundwater models (and publications thereof) need to 
incorporate the FAIR (findable, accessible, interoperable, 
and reusable) principle (Stall et al. 2017). FAIR groundwater 
models can better accommodate research that spans model 
scales, enables more efficient and accessible knowledge 
exchange within the groundwater modelling community, and 
avoids duplication of efforts (Reinecke et al. 2022). FAIR 
and open-source data are becoming a community standard 
and are often required for publications and grants by jour-
nals and funding agencies (Reinecke et al. 2022). Promot-
ing the FAIR principle within the groundwater modelling 
community will contribute to changing the current incentive 
structures in the academic system that can hinder common-
good activities such as model and data sharing (Verbeke 
2023). Sharing groundwater model input data and results 
is becoming easier with a growing number of freely acces-
sible storage services online (such as HydroShare, Zenodo, 
or PANGAEA). Therefore, establishing community stand-
ards for data sharing is crucial at this stage and can help 
groundwater modellers share their models and research. In 
recent years, the groundwater modelling field has undergone 
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a steady growth in publication rate (Jia et al. 2020). This can 
metaphorically increase the number of needles in an ever-
growing haystack of models (Stein et al. 2022).

GroMoPo goals and overview

A community-driven initiative called Groundwater Model 
Portal (GroMoPo) was initiated to help promote the adop-
tion of FAIR protocol in groundwater modelling by collect-
ing and distributing groundwater models via an open-source 
online platform (Zipper et al. 2023). GroMoPo is not solely 
a platform for sharing software and modelling code such as 
previous attempts to create global hydrological or hydrogeo-
logical databases (Wagener et al. 2004). Instead, GroMoPo 
provides an information-sharing point for the wider ground-
water modelling community where documentation about 
model setup, procedures, and goals is stored and shared to 
hopefully attract a wider audience and help promote uniform 
standards and practices in groundwater modelling. Ground-
water modellers, managers, policy-makers, researchers, and 
educators can all potentially benefit from GroMoPo by mak-
ing groundwater models and research more accessible to 
the wider public (Fig. 1). GroMoPo can help connect model 
builders and model users throughout the global groundwater 
community. GroMoPo can also serve as an educational tool 
through direct integration into the course material and by 
providing example models for educators and students world-
wide. Furthermore, GroMoPo may provide a gateway into 
groundwater modelling for other scientific fields and lead to 
increased interdisciplinary research in future work.

The GroMoPo database is created by manually extract-
ing metadata from over 450 groundwater model reports and 
articles (as of December 2024). Initially, the metadata were 
gathered from a dataset of approximately 150 studies col-
lected by the GroMoPo team. This dataset was expanded 
further through a systematic search using the Web of Sci-
ence search engine. For more details, refer to Zipper et al. 
(2023). All but a few studies were added to the GroMoPo 
database by the GroMoPo team to kick-start the initiative. 
In the future, the GroMoPo initiative aims to engage the 
groundwater modelling community by encouraging authors 
to upload information themselves.

New database entries can be added via an online form 
set up within the open-source Streamlit (Streamlit 2025) 
application (Gromopo 2025 and Zipper et al. 2023). When 
submitting information about a groundwater model, the new 
database entry is automatically submitted to the HydroShare 
data repository (Hydroshare 2025), hosted by CUAHSI 
(The Consortium of Universities for the Advancement of 
Hydrologic Sciences), and the GroMoPo database is updated 
using a tag created in the form submission. Accordingly, the 
GroMoPo application allows users to browse through the 
database by selecting groundwater models from a map—see 
Figure S1 in the electronic supplementary material (ESM)—
to visualise the corresponding metadata. There are several 
metadata attribute themes, ranging from general to technical 
information (Table 1). Further information and a detailed 
description of the GroMoPo database can be found in Zip-
per et al. (2023).

The main focus of this study is to analyse how common 
trends and biases in groundwater modelling from recent dec-
ades are reflected in the GroMoPo database. Additionally, 

Fig. 1  Envisioned GroMoPo 
contributions and potential input 
from (blue arrows) and benefits 
to (red arrows) groundwater 
community and beyond (modi-
fied from Zipper et al. 2023)
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a conceptualisation of future GroMoPo improvements and 
goals is presented. To identify trends and biases in the 
GroMoPo database and in the groundwater community more 
broadly, a two-fold analysis was conducted. First, model 
data were aggregated into specific attribute themes (Fig. 2); 
Table 1 visualises the distribution of the key model attrib-
utes. Second, the spatial extent of each groundwater model 
on GroMoPo is used to correlate model attributes with mul-
tiple global datasets to investigate potential biases and trends 
in the collected groundwater model studies. Socio-economic 
factors such as gross domestic product (Kummu et al. 2018) 
(GDP), population density (Center for International Earth 
Science Information Network - CIESIN - Columbia Uni-
versity 2018) or human development index (Kummu et al. 
2018) (HDI) were considered as well as physical factors like 
observed groundwater-table decline (Kuzma et al. 2023), 
water-table depth (Fan et al. 2013) (WTD), lithology type 
(Hartmann and Moosdorf 2012) and climate zone (Beck 
et al. 2018). The centroid of each model bounding box is 
used to extract information from global datasets. The spatial 
distribution of the centroid points overlaid over the global 
datasets is provided in the ESM (see Figures S3–S5 therein).

Results

Geographical, spatial and temporal distribution 
of groundwater models

The geographical extent of the collected groundwater mod-
els covers predominantly Europe and North and South 
America, with relatively lower coverage in Africa, Asia 

and Australia (Fig. 2a). Only nine models currently in the 
database are from Australia and Oceania, despite Australia 
and New Zealand having a strong history and expertise in 
groundwater modelling. Several regions show a high density 
of groundwater models (e.g. the Netherlands, the Nile Delta, 
Northern China and the Midwest of the United States of 
America). These regions are known for relying on ground-
water extraction to sustain the regional freshwater demand; 
however, other groundwater-dependent regions (e.g. Mekong 
Delta) facing groundwater depletion are not yet represented 
in GroMoPo, and further data collection efforts are neces-
sary. Figure 3 also highlights differences among continental 
subregions (defined by the United Nations)—for instance, in 
Africa, most groundwater model studies are concentrated in 
the northern and eastern parts of the continent. This hints at 
a higher reliance on groundwater resources in these areas, 
particularly in the Nile Delta region. Similarly, in Asia, most 
groundwater model studies are found in the eastern (e.g. 
China, Japan) and southern (e.g. India, Pakistan, Iran) sub-
regions. Several subregions around the world have a con-
spicuously limited number of groundwater model studies, 
such as middle, western, and southern Africa; Central and 
Southeast Asia; Central America and the Caribbean; and 
Eastern Europe. This scarcity may partly stem from gaps in 
the GroMoPo data collection efforts, despite a strong focus 
on identifying groundwater model studies in these areas with 
poor database coverage; furthermore, it underscores the need 
for enhanced groundwater modelling education, funding, 
and applications in these underrepresented subregions.

More than half of the articles and reports collected 
depict groundwater models covering domains between 
1001 and 100,000  km2 (see Fig. 2b), a scale that can be 

Table 1  GroMoPo attribute 
themes and information 
collected through an online 
form

a Indicates a mandatory field

Attribute theme Information collected

General information Author names and contact  emailsa

Link to report/article (e.g. DOI)a

Publication title, abstract and publication  yeara

Country of primary model developer or institution and whether the 
model developer’s institute is located in the same country as the 
model  locationa

Model data availability (e.g. report/paper only, input/output publicly 
available)a

Spatial extent Bounding box  coordinatesa

Model scale (in  km2)
Geological information Dominant geological material in the model domain

Geological data availability
Model general information Number of model layers

Temporal extent
Maximum model depth

Model technical information Numerical code used
Model purpose (e.g. climate change scenario)
Model calibration
Model coupling (e.g. to surface-water model)
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considered to characterise local-to-regional groundwa-
ter flow patterns (Gleeson and Paszkowski 2014). One-
quarter of the collected groundwater models consider 
areas larger than 100,000  km2, thus representing supra-
regional, national, and continental-scale models.

There is a clear trend of an increasing number of 
groundwater models being developed and published 
since 2010 (Fig.  3). This could be associated with 
increased access to more powerful computational facili-
ties, increased Web of Science records allowing more 
models to be discovered, more efficient and accessible 
numerical codes and (free) software packages, and/or an 
accelerating necessity to understand current and future 
groundwater conditions to secure water supply human 
consumption and ecological sustainability. The growing 
focus on groundwater modelling research (Jia et al. 2020) 
in recent years also highlights the importance and utility 
of a globally centralised database of groundwater model 
metadata and related studies.

Knowledge centres and knowledge transfers 
in groundwater modelling

The primary centres for groundwater modelling, based on 
the current GroMoPo database, are in Asia, Europe, and 
North America (Fig. 3). To assess potential knowledge 
transfer between different regions, a comparison is drawn 
between the areas being studied and the countries where 
the institutions conducting the groundwater model studies 
are based. The findings presented here reveal that approxi-
mately 85% of groundwater model studies compiled in 
GroMoPo were developed locally (Fig. 4).

Trends emerge when examining the 15% of studies that 
were developed outside their local regions. The subre-
gions with the highest proportion of nonlocally developed 
groundwater model studies include eastern, middle, and 
southern Africa, as well as southeastern and western Asia. 
These subregions also have the lowest overall number of 
groundwater model studies, highlighting a significant 

Fig. 2  a Global coverage of groundwater models and several attrib-
utes inside the GroMoPo database. b The most common model scale 
 (km2) found in groundwater models, c the number of groundwater 
models developed during the last four decades, d the most common 

depth (meters below sea level) considered in groundwater models, 
and e the most common number of groundwater model layers used in 
groundwater simulations
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knowledge gap in groundwater modelling within these 
areas (Fig. 3).

Unsurprisingly, the major knowledge centres are also 
responsible for the highest share of cross-regional ground-
water modelling studies. Together, Asia, Europe, and North 
America account for 80% of these cross-regional studies. 
This trend can likely be attributed to the significant scientific 
funding available in Europe and North America for research 
initiatives beyond their borders.

Socio‑economic, environmental and technical 
patterns in groundwater model development

Groundwater-table decline (Kuzma et al. 2023) and ground-
water depletion is a growing issue in many regions world-
wide (see Fig. 5). Correspondingly, more than a third of 
the groundwater model studies on GroMoPo are in regions 
with medium to extremely high groundwater stress—Kuzma 
et al. (2023); see Figure S2 in the ESM. The GroMoPo data-
base has a high density of models in regions with the high-
est groundwater-table decline and groundwater depletion, 
namely the Midwest and Western USA, the Middle East 
and the Ganges and Indus basins in the Indian subcontinent, 

perhaps reflecting a heavier research focus on areas with 
stressed groundwater resources.

The analysis presented here also illustrates a socio-
economic bias of groundwater models being more likely 
to be developed for wealthier and more developed regions: 
most models represent regions with a human development 
index (HDI) > 0.7 and gross domestic product (GDP) > USD 
10,000 per capita based on global gridded HDI and GDP 
data for the year 2015 from Kummu et al. 2018 (Fig. 6b 
and S3 of the ESM). The number of groundwater model 
studies located in regions of Africa and East and Southeast 
Asia is much lower in general, though there are dense clus-
ters of groundwater modelling studies in specific countries 
like India, China or Ethiopia. This socio-economic bias is 
expected since regions like North America and Europe have 
been at the forefront of groundwater modelling development 
and research (see Figs. 3 and 4). Additionally, costs associ-
ated with groundwater monitoring, groundwater modelling, 
and investment into (and accessibility of) higher education 
limit groundwater model development in economically 
impoverished regions. Access to computational facilities and 
groundwater modelling software licence costs may also play 
a role in groundwater models being prevalent in wealthier 

Fig. 3  Number of collected groundwater model studies based on their time of publication and geographical location (per continent and United 
Nations defined subregions). The size bars represent the percentage of studies published in each time period on continental and subregional scale
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regions, although open-source and free software is widely 
available. The costs associated with supporting the time of 
groundwater modellers, whether academic or in industry, 
to develop and/or publish the models may be an additional 
challenge.

Furthermore, the analysis presented here shows that most 
groundwater models on GroMoPo cover relatively uninhab-
ited regions or regions with quite low population density, 
especially when looking at groundwater models developed 
in the USA (Fig. 6c and S5 of the ESM). This bias towards 
rural regions could be linked to groundwater being mostly 
used for agriculture in more sparsely populated areas, 
which would also correspond to the regions with higher 

groundwater head table decline shown in Fig. 5. The low 
population density bias might be caused by an averaging 
effect—when a groundwater model that includes a densely 
populated city also encompasses surrounding rural areas, 
the overall average population density in the model domain 
can appear low (see Fig. 2). However, groundwater models 
in Asia and Europe represent regions with slightly higher 
population densities, potentially reflecting greater overall 
population densities in these regions and/or greater deple-
tion associated with nonagricultural uses.

When looking at the distribution of physical attributes 
(Fig. 4d–f and S6–S7 of the ESM) of the collected ground-
water models studies, it is clear that most groundwater 

Fig. 4  Summary of ground-
water modelling knowledge 
transfers across continents and 
subregions
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models are in regions with either arid or temperate climate 
zones with shallow water-table depth and consisting mostly 
of unconsolidated sediments or multiple geological materials 
(e.g. mixed lithologies with unconsolidated sediment lay-
ers and sedimentary rocks). Groundwater models in regions 
with volcanic and carbonate systems are under-represented 
in the current GroMoPo dataset.

The most popular numerical codes applied in ground-
water modelling within GroMoPo are the USGS-developed 
MODFLOW and SEAWAT, being used in more than 80% of 
the groundwater models collected (Fig. 6g). These numerical 

codes are open source and therefore provide an excellent 
opportunity for future input and output groundwater model 
FAIR data sharing. Amongst other popular numerical codes 
used in groundwater modelling are the DHI-developed 
FEFLOW and MIKE-SHE; these, however, are not open 
source, which might be one reason for their lower usage 
compared to the USGS-developed numerical codes.

Finally, the analysis presented here shows the main 
purpose of groundwater modelling studies on GroMoPo 
is to assess groundwater supply via the availability of 
groundwater volumes, drawdown levels, etc. (Fig. 6h). 

Fig. 5  Location of collected groundwater model studies expressed as 
blue centroid points of the rectangle bounding boxes shown in Fig. 2 
overlaid over estimated water-table decline (Kuzma et al. 2023). The 

pie chart shows the percentage of collected groundwater model stud-
ies that fall within each estimated water-table decline range
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Groundwater quality is also a key focus of groundwater 
modelling studies, with more than 30% of the collected 
groundwater modelling studies dealing with the effects of 
saltwater intrusion or groundwater contamination. Other 
common purposes for groundwater modelling are decision 
support for water management, general scientific inves-
tigations, streamflow depletion, climate change impact 
assessments, agricultural sustainability and growth, and 
land subsidence.

Discussion

The process of collecting groundwater model metadata 
and information from individual reports and articles is an 
important step towards a better understanding of the use 
and trends in groundwater modelling. Furthermore, it helps 
the groundwater community to assess which systems have 
been characterised with models that provide opportunities 
for further study.

Fig. 6  Socio-economic attributes: a GDP (Kummu et  al. 2018), b 
HDI (Kummu et al. 2018) and c population density (Center for Inter-
national Earth Science Information Network - CIESIN - Colum-
bia University 2018); and physical attributes: d climate zone (Beck 
et al. 2018), e water-table depth (Fan et al. 2013) and f lithology type 

(Hartmann and Moosdorf 2012) for collected groundwater model 
studies. The most used numerical codes (g) and model purpose for 
each study (h) are also shown. More than one model purpose can be 
identified in one study
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While trying to avoid geographical bias through a sys-
tematic review approach (see Figs. 2 and 3), there is a 
visible lack of groundwater model studies collected from 
several regions. This could be caused by a potential linger-
ing bias (despite best efforts) in collecting the groundwater 
modelling studies, as is suggested by the limited number 
of groundwater models in Australia, a region considered 
to be at the forefront of groundwater modelling research 
and applications. In other regions, such as parts of Africa 
and Asia, the lack of groundwater models can be linked to 
lower access to higher education and groundwater model-
ling experience. These regions are also more likely to col-
laborate with foreign partners to build groundwater models 
and assess groundwater resources, especially from Europe 
or North America. Furthermore, the search was limited to 
published studies in English only, while local and regional 
groundwater modelling reports and scientific articles may 
be published in other languages in regions such as South 
America or Africa, or exist outside peer-reviewed journals 
indexed in the Web of Science. There are certainly additional 
groundwater model studies from economically developing 
regions that may be published as technical reports or as 
master theses. Future work on the GroMoPo database will 
need to confront this bias and should focus on expanding the 
GroMoPo community beyond its current North American 
and European membership. The purpose of this study is to 
facilitate future engagement with government agencies and 
other entities with large collections of groundwater mod-
els to enable bulk imports of their metadata into GroMoPo, 
although it can be expected that this could propagate the 
geographical bias already present in the current GroMoPo 
dataset.

Another factor behind the selection bias could be the 
financial and physical requirements for groundwater mod-
elling and groundwater use in general. Monitoring wells 
and modelling software licences impose a significant finan-
cial hurdle to the development of groundwater models, and 
groundwater modelling may be a nonpriority in governmen-
tal spending in impoverished regions. Additionally, ground-
water modelling expertise is often limited to a small group 
of experts, which can lead to limited output of groundwater 
model studies in these regions, and employing such expertise 
can lead to groundwater modelling representing a substan-
tial expense for groundwater-related projects. In the future 
development of GroMoPo, it would be of great benefit and 
interest to bring in local partners (from academic, govern-
mental or private sector) to help populate the database and 
gain new insights into the current knowledge gaps in ground-
water modelling.

One of the main issues encountered during the data 
collection process was the delineation of the groundwater 
model study area. Most studies unfortunately did not provide 
a shapefile with the exact groundwater model boundary, so 

it was decided to approximate the area covered by expand-
ing a bounding box over the depicted model boundary in a 
given study or report (see Fig. 3). In the presented analysis, 
centroids of these bounding boxes were used to explore the 
relationship between the groundwater model location and 
various categories such as HDI, GDP or groundwater table 
drop (see Fig. 4). This simplification can lead to potential 
errors in the analysis when extracting values from a global 
raster dataset (e.g. population density). However, most 
groundwater models collected in this study so far are small, 
with around 75% of groundwater models covering less than 
100,000  km2. Therefore, the analysis by centroid points pre-
sumably shows a higher degree of certainty than it would 
over larger groundwater model scales. In future upgrades, 
GroMoPo will be able to accommodate additional model 
domain geometries beyond the square bounding extent, 
where polygons provided with existing model submissions 
can be visualised instead of their bounding boxes.

The online Streamlit application (Fig. 2) simplifies the 
collection of groundwater model metadata, making it more 
efficient and accessible to the entire hydrogeological com-
munity. The ambition for GroMoPo is to become a commu-
nity standard by providing groundwater model developers 
with a routine method to publish their metadata alongside 
their academic articles. Currently, completing the form 
and submitting groundwater model metadata to GroMoPo 
takes only a few minutes. This minimal commitment can 
lead to greater visibility, knowledge exchange, and poten-
tial collaborations. In the future, the GroMoPo initiative 
aims to engage scientific journal editors who could encour-
age authors to submit their groundwater model metadata 
to GroMoPo before publishing their articles. Additionally, 
this study will hopefully lead to future collaborations with 
other international partners (such as IGRAC) to host the 
GroMoPo platform and help promote the database amongst 
the larger hydrological, water management, and policymak-
ing community.

The main goal of GroMoPo is to make groundwater mod-
els FAIR and accessible to facilitate future groundwater 
modelling, management, policy-making, research, and edu-
cation opportunities. This study illustrated how GroMoPo 
enables analysis of the groundwater modelling metadata and 
documentation to identify trends and biases in groundwa-
ter flow models globally. Collecting several key metadata 
attributes for more than 450 groundwater models enabled 
an analysis of the most common practices and parameters 
in groundwater modelling. Most of the studies collected 
come from economically developed regions, highlighting 
a potential knowledge gap in the current GroMoPo version. 
GroMoPo can contribute to bridging this gap by providing 
a platform for the groundwater modelling community to 
exchange experiences and groundwater modelling knowl-
edge worldwide (and hopefully also input data and code in 
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the future), leading to better interoperability and reusability 
of groundwater models. The open access to GroMoPo can 
also lead to interesting insights and analyses of groundwater 
models by any member of the groundwater modelling com-
munity with an interest in exploring the database.

This study aspires to ignite interest in collecting ground-
water model knowledge and information in the future, and 
thus help to gain new insights into groundwater modelling 
as well as connect the individual members of the groundwa-
ter modelling community. The GroMoPo initiative would, 
therefore, like to appeal to the members of the community 
and invite them to share groundwater model metadata and 
information. In this way, the groundwater models will be 
easier to find, access, and share in the future, promoting the 
FAIR principle, which is becoming the standard across all 
scientific fields.
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