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Translational Statement

While loss of C5aR1 ameliorates clinical disease, C7
deficiency prevents the development of complement-
mediated thrombotic microangiopathy, suggesting that
preferentially targeting the terminal complement
pathway at C7 could provide disease remission in pa-
tients with complement-mediated thrombotic micro-
angiopathy, while leaving the C5a-C5aR1 axis available
to aid the patient in dealing with infections.
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Introduction of complement (C) inhibition into clinical
practice has revolutionized the treatment of patients with
complement-mediated atypical hemolytic syndrome
(aHUS). Our C3D1115N mouse model, engineered around a
gain of function point mutation in C3, is associated with
complement mediated aHUS in man, allowing us to study
the clinical disease in a preclinical model. Backcrossing our
model onto C7 deficient and C5aR1 deficient mice enabled
further determination of the roles of the C5a-C5aR1 axis
and C5b-9 (the membrane attack complex) on kidney
disease. C7 deficiency completely abolished both clinical
and histological evidence of disease. Removing C5aR1
(CD88) attenuated the risk of developing clinical disease,
but mice still developed thrombotic microangiopathy.
Therapeutic inhibition strengthened our genetic findings
showing both anti-C7 therapy and an oral C5aR1
antagonist, when used before evidence of significant
kidney injury, prevented mice from succumbing to disease.
However, there was ongoing histological disease within
mice treated with the C5aR1 antagonist. Our data suggest
that both C5aR1 and C7 play a role in the development of
the conditions required for thrombotic microangiopathy of
the kidney. While disrupting the C5a-C5aR1 axis is
beneficial, our genetic and therapeutic studies showed that
thrombotic microangiopathy of the kidney can still develop
and ultimately our data confirm that the membrane attack
complex is required to develop thrombotic
microangiopathy of the kidney. Overall, our study shows
that in addition to requiring alternative pathway
dysregulation, local generation of membrane attack
complex within the kidney is also critical to drive disease
pathology in complement-mediated aHUS.
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T he introduction of complement inhibition into clinical
practice has revolutionized the treatment of patients
with complement-mediated atypical hemolytic syn-

drome (aHUS); C5 inhibition reduces the incidence of end-
stage Qrenal disease and enables successful transplantation in
those who have reached end-stage renal disease.1–4 As com-
plement therapeutics evolve, targeted agents are progressing
through preclinical and clinical trials. Refining complement
inhibiting therapy has the potential advantages of easier
administration, reducing the immunosuppressive burden
and enabling wider access to medication through reduction
in costs. Successfully adopting a refined treatment approach
requires a detailed understanding of the pathogenesis. In
aHUS, the importance of C5a or C5b-9 in driving
complement-mediated thrombotic microangiopathy (TMA,
the histologic process resulting in the clinical disease) remains
to be fully elucidated. Current literature is conflicting; a
mouse model engineered around a complement factor H
(CFH) mutation found no benefit of C5aR1 deficiency on
renal TMA formation, whereas a model induced by antiphos-
pholipid antibodies found the C5a-C5aR axis critical to dis-
ease development.5,6 Thus, understanding the contributions
of C5a-C5aR and C5b-9 on disease development may help
1
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guide future treatment strategies for both existing and novel
drugs that target the complement system. Given the rarity
of complement-mediated aHUS coupled with the mortality
and morbidity associated with treatment failure, preclinical
models offer an invaluable translational insight and test bed
to ascertain if there is a clinical rationale to justify change
from the current gold standard of treatment. We used the
C3D1115N mouse model of complement-mediated TMA7 to
determine the role of the C5a-C5aR1 axis and C5b-9 on
disease.

METHODS
Mice
B6-C3D1115N mice were maintained in house and were gen-
otyped as previously described.7 RRID:IMSR_JAX:006845
(C5ar1tm1Cge or Balb/c-C5aR1�/�) and
RRID:MMRRC_042133-MU (C57BL/6N-C7em1(IMPC)J/J or
B6-C7�/�) were purchased from the Jackson Laboratory (JAX
Lab).8 B6-C3D1115N were backcrossed for 4 generations onto
either the Balb/c-C5aR1�/� or B6-C7�/�background.
Resulting mice, heterozygous for C3D1115N, were then inter-
crossed to produce the homozygous Balb/c-
C3D1115N.C5aR1�/� and B6-C3D1115N.C7�/� lines, respec-
tively. In addition, Balb/c-C3D1115N.C5aR1�/� mice were
subsequently backcrossed onto wild-type Balb/c to produce a
Balb/c-C3D1115N(.C5aR1þ/þ) line. Genotyping for C5aR1
deficiency was performed by polymerase chain reaction
following methods provided by the JAX lab (https://www.jax.
org/Protocol?stockNumber¼006845&protocolID¼23815).
Deletion of the C7 gene was monitored by polymerase chain
reaction using primer pairs 50-ATG�GCT�CTT�CCT�

CTC�ATC�TCC-3, 50-CTG�CAG�CTC�TCT�GAA�TGA�

AAG�T-3, 30 cycles (annealing 64.8 �C), generating 415 bp
(wild type) and 168 bp (C7KO). A humanized C5aR1 re-
ceptor knock-in mouse was generated by Cyagen Biosciences
(under contract from Idorsia; B6.C5aR1tm2(hC5aR1)Idor), and
this was crossed onto the C3D1115N background for 4 gener-
ations producing C3D1115N.hC5aR1þ/þ mice. Power calcula-
tions were used to guide N in experiments at outset based on
previous survival curves or variation in complement deposi-
tion in the kidney.7 All animal experiments were approved by
the animal welfare and ethics review board of Newcastle
University and the UK Home office under the auspices of
animal procedure licenses PD86B3678 and PP2560803. The
ARRIVE (Animal Research: Reporting In Vivo Experiments)
reporting guidelines were used.9

C5aR1 inhibition
We tested the ability of the oral C5aR1 antagonist ACT-1014-
647010 to protect mice from disease. Mice were placed on
diet, ad libitum from weaning, containing ACT-1014-6470
(with estimated dosing being calculated to 45 mg/d, i.e., 20
g of mouse eating approximately 3 g of diet daily) or a
matched diet without the drug for 8 weeks with daily health
checks. Any mice reaching predefined clinical scores for renal
disease or general welfare concerns were euthanized during
FLA 5.7.0 DTD � KINT4098_proof �

2

the study, with the remaining culled at the end of the study
where blood and tissue were harvested as described below.

Anti-C7 inhibition
Within 24 hours of weaning, C3D1115N.hC5aRþ/þ homozy-
gote animals were treated with either anti-C7 monoclonal
antibody (mAb; 73D1 provided by Dr. W. Zelek) or IgG2a,k

isotype control (cultured in sterile conditions in house from
ECACC Qhybridoma 2:D12; 40 mg/kg) via intraperitoneal in-
jections every 7 days for 8 weeks. Mice underwent daily health
checks, and any mice breaching the predefined clinical scores
for renal disease or general welfare were euthanized and tis-
sues collected as above.

Mouse clinical monitoring and terminal blood analysis
Mice were monitored daily (weighing and urinalysis—Com-
bistix Q; Siemens) from weaning, reducing to weekly from 2
months of age, in the absence of detectable clinical disease.
Mice reaching clinical end point, as defined by welfare con-
straints agreed with the animal welfare and ethics review
board, were euthanized and tissues harvested. Because of the
restraints of clinical monitoring, blinding was not practical in
these experiments. Mice that remained clinically well were
culled in aged cohorts at 3, 6, and 12 months of age. Where
possible, blood was collected using cardiac puncture under
terminal anesthesia into precoated lithium heparin syringes
(in many cases mice were found in crisis, with insufficient
blood volume/hemodynamic pressure to allow blood draw
during terminal cardiac puncture). Where available and
possible, blood urea nitrogen (BUN) and hemoglobin (Hb)
measurements were obtained using an iSTAT analyzer with a
CHEM 8þ cartridge, following the manufacturer’s in-
structions (Abbott Laboratories Ltd.).

Flow cytometry for reticulocyte and platelet count
To measure reticulocyte or platelets, 10 ml of heparinized
blood was mixed with 1 ml of phosphate-buffered saline
control or 1 ml of BD reticulocyte agent (BD Retic-Count; BD
Biosciences) for 30 minutes at room temperature or with 400
ml of fluorescence-activated cell sorting flow buffer (phos-
phate-buffered saline containing 5% w/v bovine serum al-
bumin, 1 mM ethylenediamine tetraacetic acid, 0.1% w/v Na
azide, plus 1 ml purified Rat Anti-Mouse CD41 clone
MWReg30; BD Biosciences) for 1 hour on ice. Platelet count
was established using the method previously described.7

Samples were immediately analyzed on a fluorescence-
activated cell sorting symphony (BD Biosciences). An
example of this analysis is shown in Supplementary Figure S1.

Histology analysis
Kidneys were harvested, fixed in 10% formalin, and then
processed and embedded in paraffin. Sections (4 mm) were
then cut Q, stained with periodic acid–Schiff and Martius
Scarlet Blue, and imaged using an Olympus X microscope.
TMA is a histologic pattern of injury with no current stan-
dardized scoring system within clinical practice to enable
4 February 2025 � 11:22 pm � ce
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quantification of injury; therefore, kidney sections were
reviewed, and TMA was ascribed to be present or absent.

Immunofluorescence
Methods for C3 and C9 staining are essential as previously
described,7 with minor modification. Briefly, kidneys
embedded in optimal cutting temperature were frozen on dry
ice. In addition to C3 and C9, fibrinogen was also analyzed.
After fixation, sections were permeabilized with Triton-X, and
rabbit serum used as blocking serum for fibrinogen staining.
For fibrinogen, slides were incubated with sheep antihuman
fibrinogen 1:100, followed by rabbit antisheep Alexa 597
(1:200; Abcam). Slides underwent repetitive washing in
phosphate-buffered saline and then imaged after being
mounted in the 40,6-diamidino-2-phenylindole mounting
medium. Fluorescence images were taken at �20 on Leica
DM2000 LED using a Leica DFC7000 T camera. Densitom-
etry analysis of glomerular complement deposition was per-
formed using ImageJ. This is presented as mean glomerular
intensity (average pixel intensity on the gray scale in this
area). A minimum of 10 glomeruli were scored for each
mouse.
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Figure 1 | One-hundred percent survival free from renal
thrombotic microangiopathy (TMA) in the B6.C3D1115N.C7�/�.
B6.C3D1115N.C7�/� animals were monitored for renal disease
(proteinuria/hematuria) from postpartum day 15 until they reached
3 (n ¼ 7), 6 (n ¼ 6), and 12 (n ¼ 7) months of age. No animals
succumbed to disease, and no TMA was detected on histologic
examination, as per B6-C7�/� control animals at 3 (n ¼ 3), 6 (n ¼ 4),
and 12 (n ¼ 6) months of age. However, 8 of 14 B6.C3D1115N

animals succumbed to TMA during the study, and a further 4 were
found to have TMA on histologic analysis at the end point (denoted
by the sharp drop in “survival free from TMA” at 1 year). The
Mantel-Cox test was used to establish significance. ****P < 0.0001. Q27
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Immunohistochemistry
For F4/80 (macrophage) and Ly6-G (neutrophil) staining,
frozen sections were fixed in acetone and then blocked in
3% hydrogen peroxide. After repetitive washing, sections
were blocked in 20% normal goat serum and then incu-
bated with recombinant rabbit antimouse F4/80 (1:100;
Abcam) or rat antimouse Ly6-G 9 (1:50; R&D systems),
followed by goat antirabbit horseradish peroxidase (1:200;
Abcam) or goat antirat horseradish peroxidase (1:200;
Abcam) for Ly6-G. After further washing, sections were
incubated with DAB, counterstained with Meyers hemo-
toxylin, and then dehydrated through graded alcohols and
mounted in DPX. Images were then taken using an
Olympus X microscope at original magnification �20 and
analyzed using a freely available macro plug-in for ImageJ
(Immunohistochemistry Image Analysis Toolbox, open
source available online).

Statistical analysis
All statistical analyses were undertaken using GraphPad prism
v9.0. Mantel-Cox was used for survival analysis. For the sta-
tistical test between 2 or more groups, a test of normality
(Kolmogorov-Smirnov) was undertaken, and when met, an
unpaired Student’s t test was performed. If unmet, then a
Mann-Whitney test was used. Welch’s correction was applied
if 2 groups were not assumed to have the same SD. Two-way
analysis of variance with Tukey’s multiple comparison
test was used to establish significance between the groups
and across time. A P value of <0.05 was taken as
statistically significant. P values are identified as follows: ns,
nonsignificant; *P < 0.05; **P < 0.01; ***P < 0.005; and
****P < 0.0001. Data are shown as mean � SEM.
FLA 5.7.0 DTD � KINT4098_proof �
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C7 deficiency prevents renal TMA in the B6-C3D1115N animal
model
We have previously demonstrated that B6-C3D1115N mice
develop a spontaneous TMA associated with significant
microangiopathic hemolytic anemia (MAHA) culminating in
the death of greater than 50% of animals within the first 10
weeks of life, which could be rescued via C5 deficiency.7 The
work of the group of Song demonstrated that C6 and C9 were
important for a renal TMA to develop, while disrupting C5a-
C5aR1 signaling had little effect.5 Therefore, we sought to
corroborate the importance of the membrane attack complex
(MAC) Qin our B6-C3D1115N model of complement-mediated
TMA through cross to a C7-deficient background. Over a
period of 12 months, all 20 B6-C3D1115N.C7�/� mice survived
in contrast to a contemporaneous cohort of B6-C3D1115N

animals, where only 6 mice survived and only 2 of 14 mice
survived TMA free (Figure 1). Postmortem histology of the
kidney collected at various time points revealed no evidence
of TMA in B6-C3D1115N.C7�/� kidneys, compared with sig-
nificant evidence of TMA in B6-C3D1115N controls (with 4 of
6 surviving mice having evidence of TMA after histologic
examination at the end point, Figure 2). The data suggest that
C7 (and C5b-9) is essential for the development of a
complement-mediated TMA in this model. BUN, Hb levels,
and reticulocyte and platelet counts were all comparable to
healthy baseline controls in the C7-deficient C3D1115N animals
(Figure 3) in keeping with no MAHA and the absence of
TMA. Surviving B6-C3D1115N with TMA (purple symbols)
versus those without (blue symbols) had higher BUN on
average, correlating with disease, although this was not re-
flected in the Hb levels. However, B6-C3D1115N mice that
required sacrifice (red symbols) uniformly had significantly
worse kidney function and lower Hb than surviving B6-
C3D1115N (Figure 3). The fibrin deposition seen in TMA5 is
significantly reduced in the B6-C3D1115N.C7�/� mice when
4 February 2025 � 11:22 pm � ce
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Figure 2 | C7 deficiency prevents renal thrombotic microangiopathy in the B6-C3D1115N mice. Representative periodic acid–Schiff
stained (a,c,e,g) and Martius Scarlet Blue stained sections (b,d,f,h) of B6-C3D1115N and B6-C3D1115N C7�/� at 3, 6, and 12 months of age. B6-
C3D1115N animals (approximately 2 months) (a) show segmental sclerosis (as indicated by *), mesangiolysis (as indicated by arrow) (b), and
glomerular fibrin deposition (indicated by * and arrow); collectively, these are features of thrombotic microangiopathy. Normal glomeruli seen
in the B6-C3D1115N.C7�/� at 3 months (c,d), 6 months (e,f), and 12 months (g,h) of age. (i,j) Representative images of B6-C3WT.C7�/� at 12
months of age showing normal glomeruli. Bar ¼ 20 mm (a–h) and 70 mm (i,j). WT, wild type. Q28To optimize viewing of this image, please see the
online version of this article at www.kidney-international.org.
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compared with C3D1115N controls (Figure 4b, d, f, and h).
However, levels of C3 glomerular deposition increase in the
kidney of B6-C3D1115N.C7�/� mice with age (Figure 4a, c, e,
Figure 3 | C7 deficiency protects against renal injury and microangi
analyzed via iSTAT and flow cytometry; See the Methods section. Lower b
in the B6-C3D1115N.C7�/� cohorts when compared with the B6-C3D1115N

red ¼ culled due to health concerns in study, purple ¼ survived to 1 yea
and blue ¼ mice that survived and did not have evidence of TMA (a,b). N
in the 3- and 6-month cohort, and data from the one available sample s
thrombocytopenia was observed in the B6-C3D1115N.C7�/� when compa
Tukey’s multiple comparison test was used to establish significance bet
between the multiple comparison are shown, with *P < 0.05, **P < 0.01
represented by dots, with mean � SEM illustrated.

FLA 5.7.0 DTD � KINT4098_proof �

4

and g), but this is not accompanied with any evidence of
MAHA, hematuria, proteinuria, or increased BUN levels
(Figures 2 and 3). This finding is entirely consistent with that
opathic hemolytic anemia. Where available, mouse blood was
lood urea nitrogen (BUN) levels and corrected hemoglobin were seen
controls. The control group is further subdivided by symbol color:
r but had thrombotic microangiopathy (TMA) on histologic analysis,
ormalization of reticulocyte was achieved through C7�/� deficiency

uggest that this remains the case at 12 months (c). The resolution of
red with the B6-C3D1115N (d). Two-way analysis of variance with
ween the groups of mice and across time. Only significant results
, ***P < 0.005, and ****P < 0.0001. Values from individual mice are
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Figure 4 | C7 deficiency and the glomerular complement burden in the B6.C3D1115N mice. Representative immunofluorescence images
of C3 (a,c,e,g) and fibrin (b,d,f,h) deposition in the B6-C3D1115N and B6-C3D1115N.C7�/� mice taken on a Leica DM200 at original
magnification �20. The exposure time was kept constant for the individual fluorophores. (i,j) Images were saved as LIF Q29files and then opened
as 8 BIT images in ImageJ. The region of interest (glomerulus) was demarcated, and then mean glomerular intensity for this area was calculated
within the software. Bar ¼ 50 mm. Values from individual glomeruli are represented by dots, with mean � SEM illustrated. Two-way analysis of
variance with Tukey’s multiple comparison test was used to establish significance between the groups and across time. Only significant results
between the multiple comparison are illustrated, with **P < 0.01, ***P < 0.005, ****P < 0.0001. To optimize viewing of this image, please see
the online version of this article at www.kidney-international.org.
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seen in age-matched C3D1115N mice with a C5 deletion
(Supplementary Figure S2). As expected, no evidence of MAC
(C7 deposits, Supplementary Figure S3C) was noted in the
glomerulus of these mice. However, unexpectedly, an
increased expression of native C9, which may be aggregated
or polymerized (see Supplementary Figure S3), was detected,
but given that C9 can be detected in glomeruli of healthy 12-
month-old B6.C3WT.C7�/� mice (Supplementary Figure S3I),
the increased C9 staining is not overtly pathogenic and could
be a mouse phenomenon as C9 staining is decreased in kid-
ney biopsies from patients receiving eculizumab.11,12

C5aR1 deficiency reduces TMA development in a Balb/c-
C3D1115N model
To investigate the role of the C5aR1-C5a axis in pathogenesis,
we next crossed the mice to a C5aR1-deficient line on the
Balb/c background (while not allowing for seamless com-
parison between the arms of this study, this was a choice of
necessity at the time, recognizing that this is a study limita-
tion). The Balb/c.C3D1115N line that was generated as a strain-
specific control demonstrated spontaneous renal TMA, with
MAHA, proving that the transfer of the D1115N change in C3
to the Balb/c background would drive clinical disease irre-
spective of background genetic variation (see Supplementary
Figure S4).

Despite Balb/c-C3D1115N.C5aR1�/� mice showing a sig-
nificant survival benefit (27 of 34 survived) versus Balb/c-
C3D1115N animals, 4 of 34 animals in the aging Balb/c-
C3D1115N.C5aR1�/� cohort died as a result of renal TMA
(Figure 5b and c). The remaining 3 deaths had alternative
causes, that is, bad teeth or litter runt; they could not be
attributed to renal disease as the animals had clear urinalysis
and no histologic evidence of disease. In an additional
FLA 5.7.0 DTD � KINT4098_proof �
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attempt to help explain the death of the remaining 3 animals,
the Balb/c-C3D1115N.C5aR1�/� underwent a further
comprehensive histologic review of the brain, lung, heart,
liver, spleen, and bone marrow at Charles River research
animal diagnostics, but no significant pathology was identi-
fied (data not shown). Postmortem histologic analysis of the
Balb/c-C3D1115N.C5aR1�/� surviving mice (at the prescribed
end point) showed that 3 of 7 mice taken at the 6-month cull
and a further 3 of 5 taken in the 12-month cull showed
histologic evidence of TMA (Figure 6e–h). No mice (n ¼ 15)
taken in the 3-month cull showed evidence of TMA.
Surviving Balb/c-C3D1115N.C5aR1L/L show improved clinical
parameters
In the Balb/c-C3D1115N.C5aR1�/� mice that remained clini-
cally well until their allotted end point, we found no
biochemical evidence of an impaired renal function Qas
determined by normal BUN levels compared with age-
matched controls (Figure 7a). Furthermore, Hb levels and
platelet and reticulocyte counts were within normal limits
(Figure 7b–d). These results come with the caveat that in mice
that succumbed to TMA and died acutely, that is, 4 of 34, no
blood was available for real-time analysis of renal function or
MAHA parameters, and so these results are inevitably skewed
toward surviving mice. The fact that some mice with histo-
logic evidence of TMA (Figure 6) had essentially normal levels
of BUN may highlight that there has been renal recovery, and
we are visualizing a historical TMA injury, which is not
affecting renal excretory function at our defined end point
and only becomes evidence on postmortem review. Conse-
quently, this suggests that the removal of the C5a-C5aR1 axis
can attenuate the disease process.
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Figure 5 | Survival free from thrombotic microangiopathy (TMA) is considerably improved on the Balb/c-C3D1115N.C5aR1�/�

background. (a) Seven animals in the Balb/c-C3D1115N.C5aR1�/� cohort (n ¼ 34) were euthanized due to health concerns, and histologic
evidence of TMA was identified in 4 of the animals. Of the 24 Balb/c-C3D1115N mice, 13 succumbed to TMA. (b,c) Martius Scarlet Blue Q30stains of
2 of the BALB/c-C3D1115N mice that were culled due to health concern and found to have TMA on histologic analysis. The Mantel-Cox test was
used to establish significance. ***P < 0.005; ****P < 0.0001. Bar ¼ 50 mm. WT, wild type. To optimize viewing of this image, please see the
online version of this article at www.kidney-international.org.
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C5aR1 deficiency reduces C9 and fibrin in the Balb/c-C3D1115N

kidney
The evidence that C5aR1 deficiency attenuates the
disease process is further substantiated through the
significant reduction in fibrin deposits in the glomeruli
Figure 6 | Renal limited thrombotic microangiopathy (TMA) detecte
were clinically monitored from postpartum day 15 and culled in 3- (n ¼
images of Balb/c-C3D1115N (2–3 months old) showing histologic features o
c-C3D1115N.C5aR1�/� mice in the 6- (n ¼ 3/7) and 12-month (n ¼ 3/5) coh
stained sections (e,f,g,h). In (e), * shows mesangiolysis, (f) * Illustrates fi
arrow is highlighting the thrombus. (i,j) Representative images of Balb/c-
microscopy images were taken on the Olympus SC 50, and images were t
(j). WT, wild type. To optimize viewing of this image, please see the onl

FLA 5.7.0 DTD � KINT4098_proof �
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of Balb/c-C3D1115N.C5aR1�/� mice (Figure 8c, f, i, l,
and o). Similar to what was observed in the
B6-C3D1115N.C7�/� mice, C3 glomerular deposits were
increased in Balb/c-C3D1115N.C5aR1�/� mice over time
(Figure 8a, d, g, j, and m).
d in aging Balb/c-C3D1115N.C5aR1�/�. Balb/c.C3D1115N.C5aR1�/�

15), 6- (n ¼ 7), and 12-month (n ¼ 5) cohorts. (a,b) Representative
f TMA. Postmortem histologic evidence of TMA was detected in Balb/
orts evidenced through periodic acid–Schiff and M Q31artius Scarlet Blue–
brin deposition, (g) * shows microaneurysm formation, and (h) the
C3WT.C5aR1�/� at 12 months of age showing normal glomeruli. Light
hen exported as TIFF files. Bar ¼ 10 mm (a,b), 20 mm (c–i), and 200 mm
ine version of this article at www.kidney-international.org.
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Figure 7 | Thrombotic microangiopathy (TMA) is not detectable on clinical parameters. Lower blood urea nitrogen (BUN) levels and
corrected hemoglobin were seen in the Balb/c-C3D1115N.C5aR1�/� cohorts when compared with the Balb/c-C3D1115N controls (a,b). Resolution
of thrombocytopenia was observed in Balb/c-C3D1115N.C5aR1�/� when compared with the Balb/c-C3D1115N (c). Normalization of reticulocyte
count was achieved through C5aR1 deficiency (d). Insufficient blood was available from the Balb/c-C3D1115N.C5aR1�/� that succumbed to TMA
to obtain measurements in these animals. Two-way analysis of variance with Tukey’s multiple comparison test was used to establish
significance between the groups and across time. Only significant results between the multiple comparison are illustrated, with *P < 0.05,
**P < 0.01, ***P < 0.005, ****P < 0.0001. WT, wild type.
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Pharmacologic blockade of C5aR1 or C7 attenuates disease
and provides a clear survival benefit
To determine whether pharmacologic blockade of C5aR1 or
an anti-C7 mAb attenuates the disease process (mitigating
against the strain difference of the Balb/c.C5aR�/� mice, thus
allowing seamless comparison), we used an oral C5aR1
antagonist (ACT-1014-6470)10 or a weekly intraperitoneal
injection of an anti-C7 mAb.13 To use the oral C5aR1 agent,
which is only active on the human receptor, humanized
C5aR1 mice were generated in which the mouse C5aR1 was
replaced with human C5aR1. After intercross and generation
of a new C3D1115N.hC5aR1þ/þ double knock-in line, we
carried out standard analysis to confirm that the phenotype
remained unchanged in the C3D1115N.hC5aR1þ/þ line. As
expected, key features of a renal TMA were readily identified,
validating the humanized model for therapeutic testing
(Figure 9a–f).

Mice receiving the C5aR1 antagonist ACT-1014-6470
(approximately 45 mg/day) after weaning (for 8 weeks via
diet) showed 100% survival compared with only 35% survival
for C3D1115N.hC5aR1þ/þ mice on a normal diet (Figure 9a).
However, there was evidence of renal disease (25ery/ul hem
for at least 2 consecutive days) in 3 mice on the oral treatment
(Figure 9b) with 6 of 12 animals exhibiting postmortem
histologic evidence of a TMA at the end of the study.
Although there was histologic evidence of a TMA, the mice
FLA 5.7.0 DTD � KINT4098_proof �
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778
did not meet criteria necessitating euthanasia within the study
duration. Indeed, only the 3 mice with renal disease detected
by urine analysis showed a slight elevation in BUN levels in
the treatment group (normal range: 20–36 mg/dl, Figure 9g),
reflecting improved renal function across the treatment
cohort. When assessing markers of MAHA, normal parame-
ters were observed in the mice receiving the C5aR1 antago-
nist, except for platelet numbers, which remained low in
some of the treated animals (Figure 9h–j). The slightly
elevated BUN and marginally lower platelet numbers in some
treated mice compared with control may reflect the fact that
we also found a spectrum of histologic disease (Figure 9k–n).
These findings are not surprising and mimic those seen in the
Balb/c-C3D1115N.C5aR1�/� strain where genetic knockout of
C5aR1 did not prevent a TMA. Similarly, and as expected,
100% survival was achieved with anti-C7 mAb treatment
compared with the isotype control (Figure 10a). One mouse
was removed from the treatment study for analysis due to
postmortem finding that the kidney was hydronephrotic.
There was no evidence of hematuria in any other mice on
anti-C7 mAb treatment. Although the isotype control
conferred survival protection (Figure 10a; Supplementary
Figure S5), the rate of renal injury was similar across the
studies, with all mice on isotype control demonstrating sig-
nificant and sustained hematuria (Figure 10b). This was
mirrored on histologic analysis with 100% of the isotype
4 February 2025 � 11:22 pm � ce
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Figure 8 | Attenuation of glomerular complement deposition in the Balb/c-C3D1115N.C5aR1�/�. An initial reduction in glomerular C3 is
observed in the Balb/c-C3D1115N.C5aR1�/� 3-month cohort (a,d,m), with no change compared with controls at 6 months (a,g,m), followed by
an increase in glomerular C3 deposition at 12 months of age (a,g,m). Glomerular C9 deposition is reduced in all aged cohorts of the Balb/c-
C3D1115N.C5aR1�/� animals (b,e,h,k,n). Similarly, glomerular fibrin deposition is reduced in all aged cohorts of the Balb/c.C3D1115N.C5aR1�/�

animals (c,f,i,l,o). A minimum number of 10 glomeruli were scored from each mouse. Immunofluorescence images were taken on the Leica
DM200 at room temperature using fluorescein isothiocyanate (C3), Alexa 546 (C9), and Alexa 594 for fibrin. Bar ¼ 50 mm (a–i). The exposure
time was kept constant for the individual fluorophores. Images were saved as LIF Q32files and then opened as 8 BIT images in ImageJ. Region of
interest (glomerulus) was demarcated and then the mean glomerular intensity for this area calculated by the software (m–o). Two-way analysis
of variance with Tukey’s multiple comparison test was used to establish significance between the groups and across time. Only significant
results between the multiple comparison are illustrated, with *P < 0.05, **P < 0.01, ***P < 0.005, ****P < 0.0001. To optimize viewing of this
image, please see the online version of this article at www.kidney-international.org.
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control mice showing postmortem histologic evidence of
TMA, including glomeruli fibrin deposition with mesangiol-
ysis, microaneurysm formation, and intra-arterial thrombi
(Figure 10i). The anti-C7 mAb treatment resulted in lower
BUN and higher Hb levels than the isotype-treated B6-
C3D1115N.hC5aRþ/þ (Figure 10c and e). A clear difference
in the reticulocyte count was observed between the anti-C7
mAb and isotype control groups (Figure 10d). However,
despite some improvement in platelet counts, these were still
significantly lower than the wild-type control. Overall, anti-
C7 mAb treatment improved the majority of hematological
parameters. Analysis of Martius Scarlet Blue–stained sections
confirmed no evidence of TMA in 7 of 8 animals treated with
anti-C7 mAb (Figure 10g and h). One animal in the anti-C7
mAb therapy group was found to have glomerular sclerosis,
although end point BUN was in the normal range.

Attenuation of inflammatory infiltration in the absence of
C5aR1 or C7 in the C3D1115N mice
Our data to date have shown that the complement-mediated
TMA within the mice is initiated and driven by C5b-9, as
evidenced by the complete abolishment of clinical and his-
tologic disease in the B6-C3D1115N.C7�/� cohorts. Renal TMA
is associated with endothelial cell (EC) damage and immune
cell infiltrates.14 To investigate for the presence of neutrophils
and macrophages in the kidneys of both C7- and C5aR1-
deficient animals, kidneys were stained with anti-Ly6-G
FLA 5.7.0 DTD � KINT4098_proof �
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(neutrophils) and anti-F4/80 (macrophages; Figure 11). In
C7-deficient animals, inflammatory cell infiltrates were
significantly reduced compared with B6-C3D1115N mice and
remained equivalent to negative control animals at each
time point analyzed (Figure 11a–h). We see a similar
reduction in staining of F4/80 and Ly6-G when examining
the Balb/c-C3D1115N.C5aR1�/� at 6 months of age (the time
point when histologic evidence of disease emerges on
postmortem review; Figure 11i, i, m, n, l, and p Q). However,
at 12 months, neutrophil infiltrate in a proportion of the
Balb/c-C3D1115N.C5aR1�/� mice is similar to that observed
in Balb/c-C3D1115N mice.

DISCUSSION
The C3D1115N mouse model of aHUS recapitulates the clinical
phenotype both on the C57BL/67 and Balb/c strain
(Supplementary Figure S4), proving the D1115N change in
C3 to be robust and reproducible in generating spontaneous
complement-mediated aHUS, independent of the influence of
background genetic traits in these mouse strains.15 C7 defi-
ciency protected C3D1115N mice from developing a renal TMA
and MAHA up to 12 months of age, with 0% disease pene-
trance compared with 85% in the B6-C3D1115N mice.
Therefore, we demonstrate C5b-9 to be central in initiating
renal TMA in vivo under normal conditions and that C5a/
C5aR1 amplifies the effects of C5b-9 (Figure 12). This is
suggested by the observations that although C5aR1 deficiency
4 February 2025 � 11:22 pm � ce
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Figure 9 | Oral C5aR1 inhibition in B6-C3D1115N.hC5aR1D/D mice provides a clear survival benefit and prevents development of
clinical disease. (a) Survival analysis shows B6-C3D1115N.hC5aR1þ/þ mice succumb to a spontaneous renal thrombotic microangiopathy (TMA)
in a similar fashion to the B6-C3D1115N parent strain—confirming full function of the hC5aR1 knock-in gene. The data also demonstrate that
early therapeutic treatment of B6-C3D1115N.hC5aR1þ/þ mice with ACT-1014-6470 (C5aR1 inhibitor) via diet is highly effective. (b) Oral hC5aR1
antagonism does not completely prevent renal disease in the mice, that is, for at least 2 consecutive days, 25ery/ul of hematuria was detected
in 3 mice, an indication of renal TMA, and an additional 3 mice were found to have renal TMA on histologic analysis after cull. Mantel-Cox was
used to establish significance. (c–e) Periodic acid–Schiff–stained sections showing histologic features of TMA (*including double contouring
and mesangiolysis) of C3D1115N.hC5aR1 confirming the phenotype after the introduction of the hC5aR1. (f) Martius Scarlet Blue Q33stain showing
fibrin clot in a vessel in the C3D1115N.hC5aR1þ/þ mouse. N ¼ 4 examined Bar ¼ 10 mm (c–f). (g) Blood urea nitrogen (BUN; plasma marker of
kidney impairment) levels collected during terminal bleeds at the end of the study. (h) Mice receiving the C5aR inhibitor have higher levels of
hemoglobin than untreated controls. (i) Reduced reticulocytosis in treated mice. (j) Improved platelet counts in treated mice. Two-way
analysis of variance was used for statistical analysis in Graphpad. Data are shown as mean � SEM. Only significant results between the
multiple comparison are illustrated, *P < 0.05, **P < 0.01, ***P < 0.005, ****P < 0.0001. Note that as around 50% of B6.C3D1115N.hC5aRþ/þ

died before we were able to collect blood, the data in (f) thru (i) are skewed to surviving mice; indeed 2 mice show little or no evidence of
disease at the end point. (k–n) Histologic analysis of C3D1115N.hC5aR1þ/þ after 8 weeks of C5aR1 antagonist containing diet. Stained sections
showing varied histology in the mice that received the C5aR1 inhibitor treatment; TMA was identified in 6 of 12 mice treated with a range of
TMA, that is, (k) thrombi, (l) mesangiolysis/double contouring, (m) mesangiolysis, and (n) fibrin deposits. Bar ¼ 10 mm (k–n). To optimize
viewing of this image, please see the online version of this article at www.kidney-international.org.
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(removal of the C5a-C5aR axis) clearly attenuates disease, it
does not totally abolish TMA. Despite the subtle reduction in
the penetrance of histologic disease observed in the Balbc-
C3D1115N (75% compared with 85% in the B6-C3D1115N

strain), which had no effect on overall mortality from TMA,
we still identified histologic disease in a proportion of the
Balbc-C3D1115N.C5aR�/�. Pharmacologic inhibition on the
B6 background through either a C5aR1 antagonist or anti-C7
mAb further substantiated our genetic findings, particularly
when suppression of renal disease (measured by active uri-
nary sediment and histologic injury) is also accounted for.
The data herein also suggest that MAC-driven inflammation
is recruiting neutrophils in the absence of C5aR1 signaling,
and this, over time, may contribute to TMA. We propose that
while C5b-9 initiates disease, C5a-mediated signaling
FLA 5.7.0 DTD � KINT4098_proof �
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amplifies these igniting effects, culminating in a positive
feedforward loop, with potentiated complement activation
and EC activation. By removing C5a signaling through the
absence of C5aR1, there is a reduction in complement-
induced inflammation, reducing inflammatory infiltrate,
which translates into an attenuated disease process within the
kidney (Figure 12).

Our findings share some similarities with a previously
published mouse model of renal TMA, a factor-H point
mutation (W1206R, FHR/R).5 In this model, C6 and C9
deficiency significantly improved survival and diminished
renal TMA, suggesting that C5b-9 contributed significantly to
renal TMA. However, we did not see any significant pro-
teinuria (beyond control levels) in the aging
B6.C3D1115N.C7�/� mice, suggesting that despite increasing
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Figure 10 | Prophylactic use of an anti-C7 mAb ameliorates disease in B6-C3D1115N.hC5aR1D/D mice. (a) Prophylactic treatment of B6-
C3D1115N.hC5aR1þ/þ mice with anti-(a)C713 via weekly i.p. injection from weaning confers 100% protection from disease. The isotype control is
also protective (see Supplementary Figure S4), although (b) does not completely prevent renal thrombotic microangiopathy (TMA; 2 or more
consecutive days of 25ery/ul hematuria) in the mice. Mantel-Cox was used to establish significance. (c) Blood urea nitrogen (BUN) levels
collected during terminal bleeds at the end of the study. (d) Reduced reticulocytosis in treated mice. (e) Hemoglobin levels in treated animals
are not significantly different to wild-type (WT) mice. (f) Improved platelet counts in treated mice. (c,d,f) Two-way analysis of variance with
Welch’s correction or (e) Kruskal-Wallis was used for statistical analysis using Graphpad. Data are shown as mean � SEM. Only significant
results between the multiple comparison are illustrated, *P < 0.05, **P < 0.01, ***P < 0.005, ****P < 0.0001. Note that one anti-C7 mAb treated
B6.C3D1115N.hC5aRþ/þ was removed from analysis in (b)–(f) due to a hydronephrotic kidney, and one isotype control mouse was found dead.
(g–j) Histologic analysis of C3D1115N.hC5aR1þ/þ after 8 weeks of anti-C7 monoclonal antibody (mAb) therapy. No evidence of TMA in 7 of 8
animals treated with aC7 treatment using Martius Scarlet Blue Q34staining; representative glomeruli from 2 different mice treated with the aC7
mAb are shown with normal glomeruli (g,h). Bar ¼ 20 mm (g,h). All isotype control mice showed histologic evidence of ongoing TMA including
glomeruli fibrin deposition with mesangiolysis and microaneurysm formation (i) as well as an intra-arterial thrombi (j). Bar ¼ 10 mm (I,j). To
optimize viewing of this image, please see the online version of this article at www.kidney-international.org.
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levels of deposited C3, this was tolerated, which was not the
case in the C6-deficient FHR/R mouse. Furthermore, the Song
group found no survival benefit with C5aR1 gene deficiency
in the FHR/R model, and that the renal TMA persisted.5 In
addition to this, neither C6 and C9 nor C5aR1 deficiency
rescued the hemolytic anemia or resolved the thrombocyto-
penia (although there were a variety of levels across mice). In
both C3D1115N and FHR/R mice, there is markedly reduced
complement regulation by FH at cell surfaces; consequently,
there is significant consumption of C3 (to 25% vs. 50% of
normal levels, respectively) and C5 (to 33% vs. 52% of
normal levels, respectively),5,7 but it is important to highlight
the significant difference in the FHR/R model to our C3D1115N

model. The FHR/R mice develop widespread macrovascular
thromboses in multiple organs, which is not typical of the
clinical syndrome in man, and this may link to “noncanonical
or noncomplement” roles that FH is reported to play in
coagulation16 and in cell activation (via competition with
FHR proteins17) that could be more significantly disrupted by
FLA 5.7.0 DTD � KINT4098_proof �
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a loss-of-function FH molecule. Interestingly, although
C5aR1 deficiency rescued the macrovascular thromboses, it
did not resolve thrombocytopenia in FHR/R mice, which in all
likelihood reflects MAC-driven TMA in the kidney. The he-
molytic anemia in the C3D1115N mice is rescued through C7
and C5aR1 deficiency reflecting the restoration of health to
the glomerular endothelium. The protective effects of C5aR1
deficiency on the glomerular endothelium in C3D1115N mice
mirror that seen in an alternative immune complex mouse
model of TMA induced by antiphospholipid antibodies where
deficiency improved pathologic and clinical features of dis-
ease. C5aR1 deficiency undoubtedly protects C3D1115N mice
from renal TMA in a manner akin to the APL Qmodel. Another
modifier we were unable to explore is the role of the C5L2
receptor. The specific role of this receptor remains contro-
versial, but C5adesArg (less potent form of C5a) retains high
affinity to it, so may exert some effects.18 The C3a-C3aR axis
can be both inflammatory and anti-inflammatory in renal
tissue depending on the context of the injury,19 and with the
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Figure 11 | Attenuation of inflammatory infiltration in the absence of C5a or C7 in the C3D1115N mice. Positive F4/80 and Ly6-G staining
is seen in both the B6-C3D1115N (a,e) and Balb/c-C3D1115N (i,m) mice. Reduced F4/80 and Ly6-G staining is seen in both the B6-C3D1115N.C7�/�

(b,f) and the Balb/c-C3D1115N.C5aR1�/� at 6 months (j,n) or 12 months, with the exception of neutrophils in the Balb/c-C3D1115N.C5aR1�/� mice
(o,p), where some mice showed similar infiltrate to the Balb/c-C3D1115N mice. No difference in staining was noted when deficient mice were
compared with their wild-type (WT) controls—B6-C3WT.C7�/� (d,h) and Balb/c-C3WT.C5aR1�/� (l,p). Light microscopy images were taken on
the Olympus SC 50 and were then exported as TIFF files. Bar ¼ 200 mm (a–g,i–o). Two-way analysis of variance with Tukey’s multiple
comparison test was used to establish significance between the groups and across time. Only significant results between the multiple
comparison are illustrated, with *P <0.05, **P < 0.01, ***P < 0.005, ****P < 0.0001. To optimize viewing of this image, please see the online
version of this article at www.kidney-international.org.
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potential increased C3 deposition in the C5aR1-deficient
mice, this may also provide some additional signaling that
was not as pronounced in the FHR/R mice and is protective in
our model. These changes may in sum provide an explanation
for the difference between the FHR/R and C3D1115N models
with respect to the effectiveness of deficient C5aR1 signaling
in slowing disease progression.

Our genetic data demonstrate that while blockade of C7
prevents a TMA, a C5aR1 antagonist may ameliorate disease;
this is clearly the case in C3D1115N.hC5aR1þ/þ mice receiving
the C5aR1 antagonist orally from weaning. There was no
statistical difference in BUN, Hb, reticulocytes, and platelets,
that is, no evidence of an MAHA was detected between the
treated and wild-type control (Figure 9g–j), mirroring the
protective effects of the C5aR1 deficiency in younger mice.
However, despite the survival advantage conferred by C5aR1
inhibition (i.e., 100% survival while on the drug), the
pathologic features of TMA could still be readily seen in 50%
of mice on treatment. We have previously demonstrated in
FLA 5.7.0 DTD � KINT4098_proof �
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this model that some mice develop early features of TMA by
day 7 postpartum,7 and in this study, mice could only be
treated from weaning (postpartum days 21–24). Thus, some
of the features seen in these mice could be due to subclinical
damage before treatment; however, the development of TMA
in the genetic knockout of C5aR1 indicates that blockade at
this level is insufficient to prevent TMA. That ACT-1014-
6470 treatment mirrored the effects of genetic knockdown
of C5aR1 suggests effective target engagement, albeit in a
model dependent on the MAC with only a minor amplifying
effect of C5a after disease initiation. Consequently, genetic
deletion of C7 Qin this model and that of C6 and C9 in the
FHR/R model5 indicate that targeting MAC is superior to
targeting C5aR1. Pharmacologic inhibition with anti-C7
mAb consolidated this hypothesis and provides trans-
lational evidence that pharmacologic inhibition of C7 may
prove to be a more efficacious treatment for disease remis-
sion in man, given that there was a greater level of renal
injury (evidenced through an active urinary sediment and
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Figure 12 | Proposed mechanisms for C5b-9-driven thrombotic microangiopathy (TMA). C5b-9 ignites a series of events that lead to the
activation of the endothelial cells and platelets culminating in the pathologic process of TMA. C5a amplifies the effects of C5b-9 leading to a
feedforward mechanism of ongoing complement activation, endothelial cell activation, and platelet activation and aggregation. C5b-9 leads to
the endothelial expression of tissue factor that activates the extrinsic pathway. An increase in prothrombinase activity leads to the increased
generation of thrombin that can then independently cleave C5, leading to further terminal pathway activation. Exocytosis of P-selectin and
von Willebrand factor (vWF) factor onto the endothelial cell surface leads to platelet activation and captures circulating vWF, creating an
adhesive scaffold on the endothelial cell surface. Expression of platelet activating factor transforms resting platelets to activated platelets,
which then leads to platelet leucocyte aggregates. Expression of intercellular adhesion molecule-1 and E-selectin in unison with tumor necrosis
factor alpha (TNF-a) recruits inflammatory cells, which C5a then amplifies, leading to additional activated neutrophils. C5b-9 leads to p-selectin
translocation onto the platelet surface, which provides a surface for ongoing AP activity and the release of C3, FB Q35, and properdin, which then
provides a further source for ongoing complement activation. The release of prothrombotic microparticles Q36, C5a and C5b-9 release from
platelets then amplifies the ongoing vicious cycle. All these events culminate in activated platelets encountering a primed prothrombotic
endothelial cell surface, resulting in a TMA. AP Q37, XXX; PAF, XXX.
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histologic evidence of disease) on oral C5aR1 blockade
compared with anti-C7 mAb.

Notably, isotype control also had a therapeutic effect
(Supplementary Figure S5), possibly a mixture of plasma
expansion and mild complement depletion, and inhibition of
monocytes and macrophage activation, correlating with the
previously described protective effects of intravenous immu-
noglobulin.20 However, histologic evidence of a TMA was
identified in all mice receiving the isotype control.

From current literature, it is difficult to tease apart the
specific individual roles of C5b-9 and C5a on glomerular EC
activation, given their individual capability to induce a pro-
thrombotic environment.21 C5a and C5b-9 can alter the
thrombotic phenotype of the glomerular EC, triggering
exocytosis of von Willebrand factor and p-selectin from
Weibel-Palade bodies;22,23 this activates the coagulation sys-
tem through stimulating an increase in expression of tissue
factor, which supports formation of the prothombinase
complex, further potentiating platelet aggregation and
modifying vascular tone.24,25 Further, C5b-9 induces expres-
sion of adhesion molecules and platelet activation factor,26

and C5a appears to reduce endothelial expression of throm-
bomodulin, increase vessel permeability, and induce platelet-
leucocyte aggregates.22 In addition to EC dysfunction, com-
plement activation can also activate platelets. Activated
platelets are, in turn, a source of complement. C5b-9 acts as a
FLA 5.7.0 DTD � KINT4098_proof �
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platelet agonist, releasing procoagulant particles and von
Willebrand factor with simultaneous translocation of p-
selectin to the platelet surface.27–29 C5a potentiates the acti-
vation of platelets. This activated platelet surface provides a
scaffold for the initiation of the alternative pathway, which is
further enhanced when properdin becomes bound.30 An
alteration in the thrombotic phenotype of the EC coupled
with activated platelets creates a hypercoaguable endothelial
luminal environment, providing optimum conditions for a
continuing renal TMA (see Figure 12).

Removing C7 prevents the activation of EC from C5b-9,
thus attenuating glomerular EC activation from hyperfunc-
tional C3 in the C3D1115N model of TMA. Binding of C7 to
C5b6 forms a stable trimeric complex allowing it to become
associated with the cell membrane.24 The addition of C8 to
C5b-7 forms a tetrameric complex that promotes binding and
polymerization of C9, enabling it to induce its cytolytic ac-
tivity on the cell. Both clusterin and protein S preferentially
bind C7 to regulate C5b-9. Clusterin prevents the insertion of
C5b-7 into the cell membrane, whereas protein S binds to
C5b-7, inhibiting polymerization of C9.24 The lytic and
sublytic effects on ECs require the complex to insert into the
membrane to signal the cell; thus by preventing insertion
through C7 deficiency the effects are thwarted. C7 is the
central portion of C5b-9 Qand is an important limiting fac-
tor;31 the success of C7 deletion in abolishing disease within
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our mouse model makes C7 an attractive therapeutic target.
Current C5 inhibition requires continuous intravenous ther-
apy, with a high target concentration; thus large drug doses
are required to achieve a therapeutic effect.32 Targeting C7
could circumvent this while also enabling C5a to function in
its physiological roles.

Limitations
There is an obvious limitation when comparing 2 different
strains of mice, that is, B6.C3D1115N and the Balb/c C3D1115N,
which was due to the available strains of mice, that is, diffi-
culties transporting mice during the COVID-19 pandemic.
However, we believe that the therapeutic inhibition of tar-
geting both C7 and C5aR1 on the same genetic background
(i.e., B6-C3D1115N.hC5aRþ/þ) substantiates our genetic data.
There is a smaller limitation in that the anti-C7 mAb study
was conducted after the completion of the C5aR1 antagonist
study rather than contemporaneously due to operation con-
straints, and it is possible that genetic or environmental
modifiers may have changed between the studies despite mice
being maintained in a heterozygous C3þ/N background and in
the same facility. Another intrinsic limitation is that fully
reflective hematological analysis is dependent on mice being
euthanized in a controlled manner at end point rather than
succumbing to disease when researchers were not on site, and
therefore, at certain points in the study, due to inaccessibility
to the facilities (during the COVID pandemic), opportunities
to collect the samples, as we had hoped, were not afforded to
us. This will skew certain readouts toward normal when they
would be expected to be more severely affected and limited
the scope of analysis in certain cohorts.

In summary, the C3D1115N mouse model of aHUS faithfully
recapitulates the clinical manifestations of complement-
mediated aHUS. Examination of C7 and C5aR1 deficiency
over 12 months demonstrates that while loss of either is pro-
tective, there is a clear added survival benefit with C7 deficiency
across time, that is, MAC is essential for the generation of
TMA, while C5aR signaling provides a potentiating effect.

The data suggest that C5b-9 in the kidney plays an
essential role as the trigger and driver of pathogenesis on
activating the complement system in the context of
complement-mediated aHUS.

This work offers key insights into disease mechanisms and
as to future pharmacologic targets in complement-mediated
aHUS. Future preclinical work will be required to establish
if therapeutic inhibition at more advanced stages of disease
(where hematuria and proteinuria are established) will induce
remission in mice before clinical trials.
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