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Pointwise decay of cumulants

in chaotic states at low density

S. Simonella1 and R. Winter2

1Sapienza Università di Roma
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Abstract. We study simple non-equilibrium distributions describing a classical

gas of particles interacting via a pair potential ϕ(x/ε), in the Boltzmann-Grad scaling

ε → 0. We establish bounds for truncated correlations (cumulants) of arbitrary order

as a function of the internal separation of particles in a cluster, showing exponential

or polynomial decay, for finite or infinite range interactions respectively.

Keywords: Boltzmann-Grad limit; low density; kinetic theory; cluster expansion; correlation

functions.

1. INTRODUCTION

This note reviews the cumulant method and discusses some of its implications from the

point of view of kinetic theory. The cumulants allow a quantitative analysis of the small

correlations in chaotic states of a rarefied gas. Typically, one assumes that particles have a

little “core” of size ε, meaning that their interaction is repulsive at the origin, and negligible

on scales larger than ε. The number of particles is increased with ε in such a way that,

letting the system evolve, we would see in average a finite number of interactions per unit

of time, and a variation of the macroscopic density on distances of order one (order of the

mean free path).

This is known as Boltzmann-Grad regime. Its interest arises in connection with validation

issues in kinetic theory, as it is the regime in which the Boltzmann equation has been proved

to hold rigorously, at least for short range potentials and small enough times; see [23] for

a foundational paper and [8, 13, 21, 22, 33, 38] for surveys. In such works, the famous

“Stosszahlansatz” of Boltzmann is ensured by the randomness of the initial conditions: one

starts with a chaotic measure such that the joint j-particle distributions factorize as ε→ 0,

and shows that the factorization is propagated at positive times.

It is difficult to establish the minimal set of probabilistic hypotheses on the initial con-

ditions that allow the result to hold. Actually, one gives sufficient conditions, and verifies

at the end that these conditions are valid for simple microscopic distributions. Therefore in

practice, one starts with measures proportional to f⊗ne−βUε
n , β > 0 where f is an assigned

(non-equilibrium) 1−particle density, and U ε
n is the potential energy of the n-particle con-

figuration. As U ε
n is concentrated on configurations of particles having mutual distance ε,

this measure can be regarded as a quasi-Poisson, or “maximally factorized” state. The only
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source of correlation comes from the interaction at short scale.

Our aim here is to quantify such correlations in detail, and especially how they decay in

space, passing from microscopic to macroscopic scales. To this end, a powerful tool at hand

is provided by cumulants, or truncated correlation functions. Roughly, the jth cumulant

measures the collective correlation in a cluster of j particles. This is a standard notion in

statistical mechanics; see for instance [15–17] where strong bounds on truncated functions

are used to prove analyticity of thermodynamic functionals; or [14] for a recent investigation

of the Ising model.

In the kinetic limit of non-equilibrium processes, truncated functions have been carefully

studied in recent years. It has been argued that, as ε → 0, the full collection of cumulants

retains a complete information about the dynamical correlations [6] (see also [20, 26]); in

particular, L1 estimates on cumulants have been used to provide a rigorous theory of fluctu-

ations and large deviations of a hard sphere gas on short time scales [7, 12, 37]. Moreover,

L2 estimates on similar truncated functions have been used to extend the equilibrium fluc-

tuation theory up to hydrodynamic scales [5, 9–11, 24]. It seems however hard, in general,

to obtain estimates in more accurate norms.

Most of the mathematical literature on the Boltzmann-Grad limit focuses on the simplest

case of hard-sphere interactions (see [2, 18, 31] for exceptions). Nevertheless the main results

are expected to hold as well for smooth short range interactions (for which they are proved in

some cases), and even for power laws with fast enough decay (for which no result is available).

Notice that, in the particular case of hard spheres, the maximally chaotic state (MCS from

now on) is a pure product up to the excluded volume; while for long range interactions the

product structure is perturbed by the tails.

In this paper we study grand canonical, maximally chaotic distributions for stable interac-

tions with fast decay. We shall not be concerned with the dynamical problem, but only with

the MCS itself. For such states, we prove decay of the jth truncated function, for arbitrary

j, in terms of a suitable quantity measuring the internal spatial separation in a cluster of j

particles. This translates into an exponential decay in ε at macroscopic distances in the case

of compactly supported interactions (actually true for exponentially decaying interactions as

well). Instead, the decay is in general polynomial in the case of interactions with an infinite

range. We will deal in this paper only with integrable potential tails decaying as |x|−s with

s > d − 1: for slower decay rates, screening-type effects need to be taken into account (see

e.g. [1, 4, 40], and [27, 28] for predictions on the structure of the kinetic limit for long-range

interactions).

Besides the role of “typical” initial state in the rigorous derivation of the Boltzmann equa-

tion, we conclude by mentioning yet another application of MCS to the dynamical problem.

Of course the dynamics prevents the MCS structure to be propagated in time. Nevertheless,

these states have been proved useful as an argument to obtain finite density corrections

to the Boltzmann equation [35]. In the previous reference it is shown (restricting to hard

spheres) that, if the ansatz of maximal chaoticity is made at any time (thus disregarding
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dynamical correlations), then the density evolves according to an Enskog equation, and an

H−Theorem can be deduced for the associated entropy; see also [3, 25]. These remarks have

not been object of a fully rigorous investigation so far; see however [19, 32, 34] for related

discussions.

The rest of this work is organized in two parts. In Section 2 we set the assumptions on

the interaction, introduce the maximally chaotic states, and state our main result (Theorem

4 below). Section 3 is devoted to the proof. This combines classical cluster expansion (c.f.

[36]) with estimates on long chains of interacting particles.

2. ESTIMATES ON TRUNCATED CORRELATIONS

A. Potentials and kinetic limit

We consider a system of identical point particles placed in an open connected set Λ ⊂ Rd,

d ≥ 1 and we denote by

zi = (xi, vi) ∈ Λ× Rd , i ∈ N ,

the configuration of the i-th particle having position xi and velocity vi. With

zj = (z1, . . . , zj) , j ∈ N

we indicate the configuration of the first j particles.

The grand canonical phase space is

Ω =
⋃
n≥0

Ωn ,

where the canonical n-particle phase space is

Ωn =
{
zn ∈

(
Λ× Rd

)n | xi ̸= xk , i, k = 1, . . . , n, i ̸= k
}
.

The particles interact through a translation invariant pair potential given by a piecewise

continuous function ϕ : Rd → R ∪ {∞}. As customary in statistical mechanics [36], we

assume:

� stability : there exists a constant B ≥ 0 such that∑
1≤i<k≤n

ϕ(xi − xk) ≥ −Bn , (2.1)

for all n ≥ 0 and x1, . . . , xn ∈ Rd;

� decay :

Cβ :=

∫
Rd

dx |ζ(x, 0)| < +∞ , β > 0 (2.2)

where ζ(xi, xk) := e−βϕ(xi−xk) − 1.
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Stability is usually required to ensure the existence of a partition function. In our setting,

the stability property is motivated by [31], where the validity theorem for the Boltzmann

equation has been extended to forces including an attractive part provided that condition

(2.1) holds.

Since the potential is bounded below, (2.2) corresponds to a fast enough decrease at

infinity. Although we will be actually be interested in finite range interactions (for which

(2.2) is trivially true), our result could be extended to any potential satisfying the above

decay assumption.

We are interested here in a low density regime where particles interact strongly at a

short distance ε > 0. We will use then the potential in the rescaled form ϕ (x/ε). In the

Boltzmann-Grad scaling of a constant mean free path, the average number of particles should

diverge as

µε := ε−(d−1) . (2.3)

We introduce next a class of measures describing this asymptotic.

B. Grand canonical chaotic states

By definition, a state of the system is an absolutely continuous measure on Ω admitting

a set of densities {W ε
n}n≥0, where W

ε
n : Ωn → R+ are positive Borel functions. For each

n, W ε
n is assumed to be invariant under permutations of the particle labels. The quantity

(1/n!)W ε
n(zn) represents the probability density of finding n particles in the configuration

zn = (z1, . . . , zn). In particular the distribution of the number of particles is (1/n!)
∫
W ε

n

and the normalization condition reads

∞∑
n=0

1

n!

∫
Ωn

W ε
n(zn) dzn = 1 .

The collection of correlation functions {ρεj}j≥0 with ρεj : Ωj → R+ is given by

ρεj(zj) :=
∞∑
n=0

1

n!

∫
Ωn

W ε
j+n(zj+n) dzj+1 . . . dzj+n . (2.4)

Note that ρε0 = 1. We say that the state admits correlation functions when the series in the

right hand side is convergent, together with the series in the inverse formula

W ε
j (zj) =

∞∑
n=0

(−1)n

n!

∫
Ωn

ρεj+n(zj+n) dzj+1 . . . dzj+n .

In this case the correlation functions are an alternative description of all the statistical

properties of the system. After suitable normalization, the function ρεj provides the joint

distribution of j distinct particles.



5

Since the average number of particles is equal to the integral of ρε1, the Boltzmann-Grad

condition can be formulated by requiring that

lim
ε→0

µ−1
ε

∫
Ω1

ρε1(z) dz = 1 . (2.5)

Therefore the correlation functions ρεj will diverge as µj
ε.

In order to state the aforementioned validity theorem for the Boltzmann equation ([18,

23, 31]), it is essential to assume that the rescaled correlation functions µ−j
ε ρεj are bounded,

uniformly in ε, by the correlation functions of an equilibrium state. In fact, the invariance of

the energy is used to rule out the emergence of too strong correlations. Moreover, a strong

chaos property is assumed to the extent that

lim
ε→0

µ−j
ε ρεj = f⊗j , (2.6)

uniformly on compact sets of Ωj. Here f
⊗j(zj) = f(z1)f(z2) . . . f(zj) and f is a continuous

probability density on Ω1, playing the role of the Boltzmann density at a given time.

To fulfill such hypotheses, one resorts to the following grand canonical non-equilibrium

prescription.

Definition 1. Let ε > 0 and f be a continuous probability density on Ω1 with spatial density

ρ(x) :=
∫
Rd f(x, v)dv such that ρ̄ := ∥ρ∥L∞ <∞ . A “maximally chaotic” state (MCS) is a

grand canonical measure with densities

1

n!
W ε

n(zn) :=
1

Zε

µn
ε

n!
f⊗n(zn)ψ

ε
n(xn) , n ≥ 0, (2.7)

where Zε is the partition function

Zε :=
∑
n≥0

µn
ε

n!

∫
Ωn

f⊗n(zn)ψ
ε
n(xn)dzn, (2.8)

and {ψε
n}n≥0 are the Boltzmann factors

ψε
n(xn) :=

∏
1≤α<α′≤n

e−βϕ(
xα−xα′

ε
) , β > 0, (2.9)

(ψε
0 = ψε

1 = 1).

The equilibrium is recovered by the choice f(x, v) = (z/|Λ|)Mβ(v), where z > 0 and

Mβ is the normalized Maxwellian with inverse temperature β. Hence Definition 1 resem-

bles an equilibrium distribution for particles interacting by means of ϕ in an external field

−β−1 log ρ(x). This allows to apply known cluster expansion methods to analyze its prop-

erties in the limit ε→ 0.
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C. Main result

We first introduce some notation.

Definition 2. (i) Gk is the set of all graphs G (unoriented, with no loops and no multiple

edges) with vertices V (G) = {1, . . . , k} and edges E(G) ⊂ {{α, α′} | α, α′ ∈ V (G) , α ̸= α′}.
(ii) Ck ⊂ Gk is the set of all connected graphs on {1, . . . , k}, i.e. graphs G such that for any

α, α′ ∈ V (G) with α ̸= α′ there exist α1, · · · , αℓ with {α, α1}, {α1, α2}, · · · {αℓ, α
′} in E(G).

(iii) Tk ⊂ Ck is the set of trees on {1, . . . , k}, i.e. connected graphs with no cycles.

We shall adopt the following abbreviations. For S = {i1, i2, . . . , is} a set of indices of

cardinality s = |S|, and gs a generic function of s variables, we write

yS = (yi1 , · · · , yis) ,
gS = gs(yS) = gs(yi1 , · · · , yis) .
g⊗S = g(yi1)g(yi2) · · · g(yis) . (2.10)

Moreover, we indicate by (S1, . . . , Sk)S a generic non trivial partition of S into subsets

S1, . . . , Sk. We shall use later on the superscript zero, (S1, . . . , Sk)
0
S, for partitions of S into

possibly trivial subsets.

Definition 3. The truncated correlation (or cluster, cumulant) functions {ρε,Tj }j≥0 are de-

fined recursively on Ωj by ρε,T0 = 0,
ρε,T1 := ρε1 ,

ρε,TJ := ρεJ −
j∑

k=2

∑
(J1,...,Jk)J

k∏
i=1

ρε,TJi
, j ≥ 2 .

(2.11)

Our main result is that truncated correlations behave like “stretched trees”. More pre-

cisely, their magnitude is controlled by the length of a tree graph constructed on the space

configuration (x1, · · · , xj) and measuring the collective separation between particles; which

we define next.

Given a tree T ∈ Tj and a configuration of particles xj, the length of T on xj is

LT (xj) :=
∑

{α,α′}∈E(T )

|xα − xα′| . (2.12)

The length of the cluster L(xj) is the minimal length of all tree graphs connecting the

vertices x1, . . . xj, and possibly other vertices:

L(xj) := min
n

min
T∈Tj+n

min
xj+1,··· ,xj+n

LT (xj+n) . (2.13)

Finally, we introduce a rescaled decay function as in Eq. (2.2) by

ζε(xi, xk) := e−βϕ(
xi−xk

ε
) − 1 . (2.14)
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Due to the scaling (2.6), we are interested in estimating the truncated functions multiplied

by the factor µ−j
ε . We then obtain the following result. We use

Ωε
j := {xj | |xi − xk| > ε}. (2.15)

Furthermore we assume that ϕ satisfies one of the following hypotheses.

(H1): ϕ is compactly supported, without loss of generality

suppϕ ⊂ B1(0) (2.16)

(H2): For some s > 0 we have

|ζ(x, y)| ≤ C0ζ̃s(x, y), where ζ̃s(x, y) :=
1

(1 + |x− y|)s
. (2.17)

Theorem 4. (A) Suppose that the pair potential satisfies (2.1) and Hypothesis H1 (cf.

(2.16)). Then there exist positive constants ε0 = ε0(ϕ, ρ̄, β, B) and A, c such that the

truncated two-particle correlation function of the maximally chaotic state (2.7) satisfies

the bound:

|ρε,T2 (z2)|
µ2
ε

≤ (Af)⊗2

1− (ε/ε0)
(ε/ε0)

⌊ |x1−x2|
ε

⌋ , (2.18)

for all z2 ∈ Ω2 and ε < ε0. More generally, the j-th truncated correlation function

satisfies:

|ρε,Tj (zj)|
µj
ε

≤ (Af)⊗j

1− (ε/ε0)
jj−2 (ε/ε0)

(L(xj)/ε−(j−1))+ (2.19)

for all j, zj ∈ Ωj and ε < ε0.

(B) Let the potential ϕ satisfy Hypothesis H2 (cf. (2.17)) with s > (d − 1), , and assume

Λ ⊂ B(0;L/2), L > 0. Then there exist positive constants ε0 = ε0(ϕ, ρ̄, β, B) and A, c

such that for ε small enough:

|ρε,T2 (z2)|
µ2
ε

≤ (Af)⊗2

(1− (µεεs/ε′0))

∑
T∈T2

∏
{α,α′}∈E(T )

∣∣∣ζ̃εs (xα, xα′)
∣∣∣
 . (2.20)

More generally, if the potential ϕ satisfies Hypothesis H2 with s > 2(d − 1), then we

can bound the j-th truncated correlation functon by

|ρε,Tj (zj)|
µj
ε

≤ (Af)⊗j

j!(1− (µεεs/2/ε′0))

∑
T∈T c

j

∏
{α,α′}∈E(T )

∣∣∣ζ̃εs (xα, xα′)
∣∣∣1/2
 , (2.21)

for all j, and ε small enough. Here we denote by T c
j ⊂ Tj the set of linear tree graphs.
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In particular, if the particles are at macroscopic distance, the minimal distance between

them is a > 0 and the estimate provides the exponential decay:

|ρε,Tj (zj)|
µj
ε

≤ (Af)⊗j jj−2e−(j−1)a′ε−1 log ε−1

for some a′ > 0.

Remark. Estimates similar to (2.19) and (2.21) have been shown in [15–17], under the

name of ‘strong cluster property’, for the thermodynamic limit of equilibrium states. For

j > 2, the precise decay of the truncated correlation function depends on the geometry of the

positions xj. As in [15–17], this complex problem is circumvented by means of the reduction

to linear tree graphs, which accounts for the weaker decay in (2.21) compared to (2.20).

Theorem 5. Let Λ ⊂ B(0;L/2), L ∈ (0,∞). Suppose that the pair potential ϕ is even,

satisfies (2.1) and (2.17) with s > d− 1. In particular:

C ′
β,L := lim

ε→0
εd−s

∫
{|x|<L/ε}

|ζ(x, 0)| dx < +∞. (2.22)

We set

ε′0 =
1

2ρ̄ C ′
β,Le

2βB+1
.

Then the truncated correlation functions of the maximally chaotic state (2.7) with density

µε satisfy the bounds∥∥∥µ−j
ε ρε,Tj

∥∥∥
L1(Ωj)

≤ jj−2 (A′e)2jβB

1− (µεεs/ε′0)

(
εs∧dρ̄ C ′

β

)j−1

for all j and ε such that µεε
s < ε′0.

Remark. In the Boltzmann-Grad scaling (2.3), the above result seems to allow power

tails s > d − 1. It also allows s = d − 1 if the mean free path is small enough. Moreover

the latter case should provide fluctuations with long range correlations (instead of the usual

white noise), of the same order of those produced by collisions. On the other hand in order

to go beyond d−1, one should take densities even smaller than (2.3) to get a similar picture.

This leads to perplexities on the validity of the Boltzmann equation for such potentials.

The results above can be used to characterize the fluctuation field associated to the max-

imally chaotic states. Let Pε and Eε denote the probability of an event and the expectation

with respect to the MCS. We denote by πε the rescaled empirical measure associated to

zn ∈ Ω, as well as its action on test functions h ∈ C(Ω1)

πε(dxdv) =
1

µε

n∑
i=1

δ(x− xi), δ(v − vi) (2.23)

πε(h) =

∫
Ω1

h(x, v)πε(dxdv). (2.24)
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Further, we define the fluctuation field ζε applied to a test function h ∈ C(Ω1) as:

ζε(h) =
√
µε (πε(h)− Eε[πε(h)]) . (2.25)

Using the results above, we can characterize the covariance of the MCS.

Corollary 6. Let ϕ satisfy Hypothesis H2 (2.17) with s > d− 1. Then the fluctuation field

ζε converges in law to a Gaussian fluctuation field ζ(h) with

E[ζ(h)ζ(g)] =
∫
Ω2

f(z1)h(z1)g(z2)δ(z1 − z2)dz1dz2. (2.26)

Let ϕ satisfy Hypothesis (2.17) with s = d− 1, and more precisely

|ϕ(x)− A

|x|d−1
|+ |∇ϕ(x) + (d− 1)Ax

|x|d+1
| ≤ C

|x|d
, (2.27)

for some constants A,C > 0. Then the same result holds provided that C ′
b in (2.22) is

small enough. In this case, ζ is not given by white noise, but instead the covariance has a

long-range part:

E[ζ(h)ζ(g)] =
∫
Ω2

f(z1)h(z1)g(z2)δ(z1 − z2)dz1dz2 +

∫
Ω2

ρT2 (z1, z2)h(z1)g(z2)dz1dz2, (2.28)

where ρT2 is given by

ρT2 = lim
ε→0

µ−2
ε ρε,T2 . (2.29)

Remark. Below the threshold s = d−1, the maximally factorized states no longer satisfy

the Boltzmann-Grad condition (2.5). To demonstrate this, let ϕ for simplicity be given by

ϕ(x) = |x|−s. (2.30)

We compute the expected number of particles

N =

∫
Ω1

ρ1dz1 (2.31)

under the rescaling

µε = ε−2.

To simplify the argument, let f(z) = f0(v) be a spatially homogeneous density, and Λ = T1
be the unit torus. Let us define

A(n, ε) =

∫
Ωn

f⊗nψε
n(xn)dzn. (2.32)

Then we can write

N
µε

=

∑∞
n=0

1
n!µε

µn+1
ε A(n+ 1, ε)∑∞

n=0
1
n!
µn
εA(n, ε)

. (2.33)



10

Since the denominator is bounded below by 1, we can bound this by

N
µε

≤
∑Mε

n=0
1

n!µε
µn+1
ε A(n+ 1, ε)∑∞

n=0
1
n!
µn
εA(n, ε)

+
∞∑

n=Mε

1

n!µε

µn+1
ε A(n+ 1, ε), (2.34)

for any sequence Mε. We now observe that

A(n, ε) =

∫
Ωn

f⊗nψε
n(xn)dzn ≤ e−βεsn2

. (2.35)

By Jensen’s inequality, we have on the other hand, for some κ0 > 0

A(n, ε) =

∫
Ωn

f⊗nψε
n(xn)dzn ≥ e−n2κ0εs . (2.36)

Now we choose Mε = ⌈−d/β log(ε)ε−s⌉ to find:

N
µε

≤
∑Mε

n=0
1

n!µε
µn+1
ε A(n+ 1, ε)∑∞

n=0
1
n!
µn
εA(n, ε)

+ Cεd (2.37)

=

∑Mε

n=1
n
µε

1
n!
µn
εA(n, ε)∑Mε

n=0
1
n!
µn
εA(n, ε)

+ Cεd. (2.38)

Now since s < d− 1, we conclude

N /µε ≤ Cε(d−1)−s log ε→ 0. (2.39)

For a lower bound, we observe for mε = ⌈1
2
ε−s⌉ and ε > 0 small enough:

2mε∑
n=mε

1

n!
µn
εA(n, ε) ≥

2mε∑
n=mε

1

n!
(e−βµε)

n ≥
mε∑
n=0

1

n!
µn
εA(n, ε). (2.40)

Then, for such values of ε:

N
µε

≥ 1

3

∑Mε

n=mε

n
µε

1
n!
µn
εA(n, ε)∑Mε

n=mε

1
n!
µn
εA(n, ε)

≥ 1

6
ε(d−1)−s, (2.41)

choosing ε > 0 small enough.

3. PROOF OF THEOREM 4

Proof of Theorem 4. The correlation functions (2.4) of an MCS (see Def. 1) are given by

the following explicit expression:

ρεj(zj)

µj
ε

=
f⊗j(zj)

Zε

∞∑
n=0

µn
ε

n!

∫
Λn

ψε
j+n(xj+n) dρ(xj+1) · · · dρ(xj+n) . (3.1)
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Expanding the Boltzmann factor

ψε
k(xk) =

∏
1≤α<α′≤k

(1 + ζε(xα, xα′)) ,

one finds a sum over all possible graphs on k vertices:

ψε
k(xk) =

∑
G∈Gk

∏
{α,α′}∈E(G)

ζε(xα, xα′) .

Truncated functions have a similar expression, the main difference being that generic

graphs are replaced by connected graphs. We introduce Ursell functions {uεk}k≥0 by uε0 = 0,

uε1 = 1 and

uεk(xk) :=
∑
G∈Ck

∏
{α,α′}∈E(G)

ζε(xα, xα′) , k > 1 .

Then we have the following classical result.

Lemma 7. Suppose that conditions (2.1) and (2.2) are satisfied. Then the MCS has partition

function

Zε = exp

{
µε

∞∑
m=1

µm−1
ε

m!

∫
uεm(xm) dρ

⊗m(xm)

}
, (3.2)

and the truncated correlation functions are given by

ρε,Tj (zj)

µj
ε

= f⊗j(zj)
∞∑
n=0

µn
ε

n!

∫
Λn

uεj+n(xj+n) dρ(xj+1) . . . dρ(xj+n) , (3.3)

where the series and integrals are absolutely convergent, uniformly for

ε <
1

ρ̄ Cβe2βB+1
. (3.4)

The result follows directly from the following subtle estimate, known as tree-graph in-

equality.

Lemma 8. Suppose that condition (2.1) is satisfied. Then one has∣∣∣∣∣∣
∑
G∈Ck

∏
{α,α′}∈E(G)

ζε(xα, xα′)

∣∣∣∣∣∣ ≤ e2kβB
∑
T∈Tk

∏
{α,α′}∈E(T )

|ζε(xα, xα′)| . (3.5)

This bound goes back to work of Penrose for positive interactions [29], later extended to

stable interactions [30] (see also [39] for an improvement).

Proof of Lemma 7. Given Lemma 8, the proof reduces to simple combinatorics. Since

ψε
n(xn) =

n∑
k=1

∑
(J1,...,Jk)J

k∏
i=1

uεJi
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where J = {1, · · · , j} (and using the notations introduced in (2.10)) one gets from (2.8) that

Zε = 1 +
∑
n≥1

n∑
k=1

1

k!

∑
m1,...,mk>0

m1+...+mk=n

k∏
i=1

(
µmi
ε

mi!

∫
Λmi

uεmi
(xmi

) dρ⊗mi(xmi
)

)
,

from which interchanging the sums we find

Zε = 1 +
n∑

k=1

1

k!

(
∞∑

m=1

µm
ε

m!

∫
Λm

uεm(xm) dρ
⊗m(xm)

)k

.

Thus (3.2) holds.

Similarly, given a partition (J1, . . . , Jk)J of J = {1, . . . , j}, a subset I0 ⊂ J c = {j +
1, . . . , j + n} and a partition of J c \ I0 into (possibly trivial) subsets I1, . . . , Ik, we expand

ψε
j+n in (3.1) into corresponding connected components

ψε
j+n(xj+n) =

∑
I0⊂Jc

ψε
I0

j∑
k=1

∑
(J1,...,Jk)J

∑
(I1,...,Ik)

0
Jc\I0

k∏
i=1

uεJi∪Ii

and obtain

ρεj(zj)

µj
ε

=
f⊗j(zj)

Zε

j∑
k=1

∑
(J1,...,Jk)J

∞∑
n=0

µn
ε

n!

∑
(I0,I1,...,Ik)

0
Jc

(∫
Λi0

ψε
I0
dρ⊗I0

) k∏
ℓ=1

(∫
Λiℓ

uεJℓ∪Iℓ dρ
⊗Iℓ

)

=
f⊗j(zj)

Zε

j∑
k=1

∑
(J1,...,Jk)J

∞∑
n=0

∑
m0+...+mk=n
m0,...,mk≥0

(
µm0
ε

m0!

∫
Λm0

ψε
m0

(ym0) dρ
⊗m0(ym0)

)
k∏

ℓ=1

(
µmℓ
ε

mℓ!

∫
Λmℓ

uεjℓ+mℓ
(xJℓ ,ymℓ

) dρ⊗mℓ(ymℓ
)

)
.

By comparing with (2.11), we get (3.3).

Absolute convergence in the region (3.4) follows from (3.5), recalling that |Tk| = kk−2

(Cayley’s formula), that µεε
d = ε, and using (2.2) to control the decay functions. A more

explicit bound for the truncated functions is provided in the rest of this section.

We turn to the proof of (2.19). From (3.3) and (3.5) we get∣∣∣∣∣ρ
ε,T
j (zj)

µj
ε

∣∣∣∣∣ ≤ f⊗j(zj)e
2jβB

∞∑
n=0

µn
ε

n!
e2nβB

∫
Λn

ūεj+n(xj+n) dρ(xj+1) . . . dρ(xj+n) (3.6)

where

ūεj+n(xj+n) :=
∑

T∈Tj+n

∏
{α,α′}∈E(T )

|ζε(xα, xα′)| .
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For given n and T ∈ Tj+n, we study the integral

IεT (xj) :=

∫
Λn

∏
{α,α′}∈E(T )

|ζε(xα, xα′)| dρ(xj+1) . . . dρ(xj+n) .

Since the potential is compactly supported in the ball of radius 1, we can restrict the inte-

gration region to the set

Sε
T (xj) :=

{
|xα − xα′| < ε ∀{α, α′} ∈ E(T )

}
.

In particular IεT (xj) = 0 certainly holds unless n ≥ n0 = n0(xj), where n0 is defined as the

minimum number of open balls of radius ε, Bε(xj+1), · · · , Bε(xj+n), necessary to realize a

connection between the points (x1, · · · , xj); meaning that ∪1≤i≤j+nBε(xi) is a connected set.

By (2.12)-(2.13), we observe that n0 cannot be smaller than L (xj) /ε− j.

Given xj, n ≥ n0 and T ∈ Tj+n, we apply Fubini and perform the integrations in the

following ordered way:

(i) first, we integrate with respect to all the available leaves (vertices of degree 1), thus

obtaining a smaller tree;

(ii) we iterate the procedure and prune the tree graph leaf by leaf, until we are left with

a union of j − 1 linear chains joining x1, · · · , xj;
(iii) we integrate with respect to the remaining variables forming the chains.

Each one of the elementary integrals in steps (i) and (ii) is bounded by (cf. (2.2))∫
|ζε(0, x)| dρ(x) ≤ εdρ̄ Cβ .

Similarly using (2.1) (with n = 2), a chain made of m + 1 edges is bounded by

(1 + e2βB)
(
εdρ̄ Cβ

)m
. We conclude that

IεT (xj) ≤ (1 + e2βB)j−1
(
εdρ̄ Cβ

)n
.

Thus ∣∣∣∣∣ρ
ε,T
j (zj)

µj
ε

∣∣∣∣∣ ≤ f⊗j(zj)e
2jβB(1 + e2βB)j−1

∞∑
n=n0

εn

n!
e2nβB(j + n)j+n−2 (ρ̄ Cβ)

n

where we used again µεε
d = ε. As

(j + n)j+n−2

n!
≤ jj−2(A′)j(2e)n (3.7)

for some pure constant A′ > 0, we obtain the final result by choosing A = A′e2βB(1 + e2βB)

and

ε0 =
1

2ρ̄ Cβe2βB+1
.
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For the proof of (2.21), we start from the representation∣∣∣∣∣ρ
ε,T
j (zj)

µj
ε

∣∣∣∣∣ ≤ f⊗j(zj)e
2jβB

∞∑
n=0

µn
ε

n!
e2nβB

∫
Λn

ũεj+n(xj+n) dρ(xj+1) . . . dρ(xj+n), (3.8)

where ũεj+n(xj+n) is given by

ũεj+n(xj+n) :=
∑

T∈Tj+n

∏
{α,α′}∈E(T )

∣∣∣ζ̃εs (xα, xα′)
∣∣∣ . (3.9)

Now we use the following result which can be found as Lemma 5 in [17]:∑
T∈Tj+n

∏
{α,α′}∈E(T )

∣∣∣ζ̃εs (xα, xα′)
∣∣∣ ≤ 2

(j + n)j+n−2

(j + n)!

∑
T∈T c

j+n

∏
{α,α′}∈E(T )

∣∣∣ζ̃εs (xα, xα′)
∣∣∣ 12 . (3.10)

Now the variables xj + 1, . . . , xj + n can be integrated using the estimates:∫
Λ

∣∣∣ζ̃εs (x, y)∣∣∣ 12 dρ(y) ≤ Csε
s/2 (3.11)∫

Λ

∣∣∣ζ̃εs (x, y)∣∣∣ 12 ∣∣∣ζ̃εs (y, z)∣∣∣ 12 dρ(y) ≤ Csε
s/2
∣∣∣ζ̃εs (x, z)∣∣∣ 12 . (3.12)

Inserting these estimates back into (3.8) yields:∣∣∣∣∣ρ
ε,T
j (zj)

µj
ε

∣∣∣∣∣ ≤ f⊗j(zj)

∑
T∈T c

j

∏
{α,α′}∈E(T )

∣∣∣ζ̃εs (xα, xα′)
∣∣∣1/2
 ∞∑

n=0

(Csε
s/2µε)

n(j + n)j+n−2e2(j+n)βB

n!j!

≤ f⊗j(zj)

∑
T∈T c

j

∏
{α,α′}∈E(T )

∣∣∣ζ̃εs (xα, xα′)
∣∣∣1/2
 ∞∑

n=0

jj−2(A′)j(2eCsε
s/2µε)

ne2(j+n)βB

j!
.

By assumption, s > 2(d−1), and µε = ε−(d−1), the series is absolutely convergent for ε small

enough and the claim follows.

Proof of Theorem 5. We proceed as in the proof of Theorem 4 up to formula (3.6), of which

we want to control the right hand side for j ≥ 0 in norm L1, for Λ bounded and β,B fixed

by the assumptions on ϕ. By (2.22) we have that

sup
x0∈Λ

∫
Λ

|ζε(x0, x)| dρ(x) = sup
x0∈Λ

εd
∫

Λ−x0
ε

|ζ(x, 0)| ρ(x0 + εx) dx ≤ εsρ̄ C ′
β,L .

For given T ∈ Tj+n, we apply Fubini and perform the integrations by pruning the tree graph

leaf by leaf (in an order which is otherwise arbitrary):∫
Λj+n

∏
{α,α′}∈E(T )

|ζε(xα, xα′)| dρ⊗(j+n)(xj+n) ≤
(
εsρ̄ C ′

β,L

)j+n−1
.
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Therefore

e2jβB
∞∑
n=0

δj+n>0
µn
ε

n!
e2nβB

∑
T∈Tj+n

∫
Λj+n

∏
{α,α′}∈E(T )

|ζε(xα, xα′)| dρ⊗(j+n)(xj+n)

≤
(
εsρ̄ C ′

β,L

)j−1
e2jβB

∞∑
n=0

(j + n)j+n−2

n!

(
µεε

se2βBρ̄ C ′
β,L

)n
δj+n>0

≤ jj−2
(
εsρ̄ C ′

β,L

)j−1
(A′e)

2jβB
∑
n≥0

(
µεε

s2e1+2βBρ̄ C ′
β,L

)n
δj+n>0

where in the last step we used (3.7), which gives the result for j > 0. For j = 0 the partition

function (3.2) is obtained with the bound

Zε ≤ exp

{
µε

2e1+2βB

1− (µεεs/ε′0)

}
.

Proof of Corollary 6. The result follows if we can show that the limit in (2.29) exists. We

have shown that the series expansion

ρε,T2 (z2)

µ2
ε

= f⊗2(z2)
∞∑
n=0

µn
ε

n!

∑
G∈C2+n

∫
Λn

∏
{α,α′}∈E(G)

ζε(xα, xα′) dρ(x2+1) . . . dρ(x2+n) , (3.13)

is absolutely convergent. Therefore, it remains to prove term-by-term convergence of the

expansion above. It is easy to see that

lim
ε→0

∫
f⊗2(z2)

µn
ε

n!

∫
Λn

∏
{α,α′}∈E(G)

ζε(xα, xα′) dρ(x2+1) . . . dρ(x2+n)h(z1, z2)dz1dz2 = 0,

for each G ∈ C2+n \ T2+n and continuous function h. On the other hand, for G ∈ T2+n a tree

graph, the limit

CG(h) := lim
ε→0

∫
f⊗2(z2)

µn
ε

n!

∫
Λn

∏
{α,α′}∈E(G)

ζε(xα, xα′) dρ(x2+1) . . . dρ(x2+n)h(z1, z2)dz1dz2

exists. This can be seen by observing that the claim is true for n = 0, and remains true

when a leaf is added to the tree, courtesy of (2.27).

We define a tree partition scheme, i.e. a map π : Ck → Tk such that for any T ∈ Tk, there

is a graph R(T ) ∈ Ck satisfying

π−1({T}) =
{
G ∈ Ck /E(T ) ⊂ E(G) ⊂ E(R(T ))

}
.

Such a partition scheme can be obtained in the following way. We first order the set of all

possible edges. Then, given a graph G, we define its image T iteratively. We start by drawing

the two smallest edges of G. Then we proceed iteratively following the order of edges, and

adding the edge at each step provided that it does not create a cycle, until all edges of G
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have been checked. The procedure ends obviously with a unique tree T ∈ Tn. In order to

characterize R(T ), we then have to investigate which edges of G have been discarded. These

are the edges {α, α′} such that walking on T from α to α′ we always see edges of smaller

order.

We therefore get for positive potentials that∑
G∈Ck

∏
{α,α′}∈E(G)

ζε(xα, xα′) =
∑
T∈Tk

∑
G∈π−1(T )

∏
{α,α′}∈E(G)

(−ζε(xα, xα′))

=
∑
T∈Tn

 ∏
{α,α′}∈E(T )

(−ζε(xα, xα′)

 ∏
{α,α′}∈E′(T )

(1− ζε(xα, xα′))

 .

and the conclusion follows from the fact that (1− ζε(xα, xα′)) ∈ [0, 1].
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