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ToSiM-IoT: Towards a Sustainable Optimisation of
Machine Learning Tasks in Internet of Things

Ashish Kaushal, Osama Almurshed, Asmail Muftah, Nitin Auluck, and Omer Rana

Abstract—With the rise of digital infrastructure and Internet
of Things (IoT), a substantial amount of data is continuously
generated that needs to be processed efficiently. While mod-
ern artificial intelligence (AI) approaches have shown good
capabilities in handling large volumes of data, their excessive
demands for memory and processing power result in very high
utilisation of resources. In this work, we propose ToSiM-IoT,
an optimisation framework that introduces a layer selection
approach to identify an ideal mix of active and inactive layers,
using a genetic algorithm for model training. We also propose
a pruning mechanism that identifies performance-critical fea-
tures using heatmap visualisation, during model inference, and
eliminate the remaining features. Two machine learning (ML)
models — InceptionV3 and VGG16 have been evaluated on an
agricultural weed detection scenario, using the DeepWeeds image
classification dataset. Experimental results demonstrate that our
framework can achieve a significant reduction in model size and
training time, while maintaining high accuracy, for both models.
This demonstrates that our approach can be efficiently deployed
on intelligent IoT systems where computational capabilities are
limited.

Index Terms—channel pruning, genetic algorithm, heatmap
visualisation, internet of things, layer selection, machine learning,
optimisation.

I. INTRODUCTION

In recent years, the advancements in Internet of Things
(IoT) has offered significant opportunities to achieve Sus-
tainable Development Goals (SDGs) by providing enhanced
connectivity and real-time data analysis across various sectors.
By integrating sensors, actuators, and end-user devices, IoT
networks facilitate the collection of vast amounts of data
and enable more informed decision-making with optimised
utilisation of resources [1]. Integrating Machine Learning
(ML) and Artificial Intelligence (AI) models in IoT can
provide a direction for significant advancement in the domain
of computational technology. These models have also seen
exponential growth across numerous real-world tasks such
as image classification [2], object detection [3], and video
analysis [4] in the past few years. In order to achieve higher
accuracy and performance, researchers have focused on de-
signing architectures that are both deeper and broader, like
VGG, Inception, ResNet, YOLO etc.

Deployment of complex, deep models on resource-
constrained nodes, such as mobile robots, field side units,
unmanned aerial vehicles (UAVs), and end-user IoT devices,
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presents significant challenges [5]. Performing convolution
operations on these models demands substantial computational
power and energy. Additionally, the extensive number of net-
work parameters results in high storage requirements, causing
further challenges in resource-limited environments [6]. If we
consider InceptionV3 and VGG16 models as an example;
they have more than 138 million and 23 million parameters
respectively. Moreover, to process a single 224x224 image,
these models require around 6 billion and 30 billion floating-
point operations (FLOPs). In order to implement such large-
scale deep learning models on resource-constrained infrastruc-
tures, it is important to address the issue of their expensive
computation cost and high memory demands.

Numerous methods have been developed to handle the rising
demand of memory and resources in deep learning models.
Model enhancement techniques like pruning, quantization, reg-
ularisation, and knowledge distillation are crucial for reducing
the size and improving the speed of these models. Pruning [7]
involves removing unnecessary weights from a neural network,
effectively decreasing its complexity and size. Quantization [7]
converts parameter weight values from floating type to inte-
ger type, which decreases memory usage and can speed up
inference. Knowledge distillation [8] transfers the knowledge
from a large, complex model to a smaller, faster one without
significant loss in accuracy. Additionally, designing compact
neural architectures and optimising them for specific hardware
are a few other strategies used to further accelerate the model
performance.

Optimising ML pipelines and system life cycles often
presents significant challenges and is a very complex task.
Training larger neural networks with sparse activations can
enhance model scalability and performance. However, this
approach may lead to increased carbon emissions and energy
utilisation due to higher demand of system resources [9].
Offloading model training and inference task to data centres
powered by carbon-neutral energy sources offers a potential
reduction in emissions but might not be practical for all
application use cases. This is because the development of
carbon-neutral infrastructure is often constrained by geograph-
ical and material availability limitations [10]. Moreover, with
the rising trend of on-device learning to enhance data privacy,
more computational tasks are being offloaded from centralised
servers to the low-level edge and IoT devices [11], [12].
Therefore, there is a critical need for a sustainable training and
inference infrastructure that reduces resource utilisation — both
in terms of memory and computation — without compromising
performance of the models.

The primary contributions of this paper are as follows —

e We introduce a new method to significantly reduce
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the computational demands associated with the back-
propagation process in neural network training. This
technique minimises the computational load by reducing
the number of parameters that need to be updated, and
also cuts down the time required for both the current
training session and any future adjustments to the model.

e We propose an approach to refine the architecture of
ML models by carefully adjusting their parameter count.
The method uses an automated process to systematically
identify and prioritise the most significant parameters
based on the specific dataset used for training. This
not only reduces the complexity of the model, but also
significantly enhances the efficiency of ML operations
during both the training and inference phases.

e We design a mathematical formulation that performs
theoretical analysis to identify the objective functions
that critically influence the execution performance of ML
operations. The model quantifies the relation between
various parameters and their impact on computational
efficiency, thereby allowing for the precise tuning of the
model to optimise performance.

o We evaluate the proposed framework on an agricultural
weed detection use case scenario. It utilises the Deep-
Weeds Image classification dataset with two ML models
— VGG16 and InceptionV3.

Our proposed ToSiM-IoT framework utilises GA and Grad-
CAM based optimal solutions, primarily due to their adaptive
and efficient execution nature. The GA-based layer selection
method significantly reduces the computational overhead by
selectively activating a subset of layers, rather than engaging
the full network. This approach ensures that the training
process is lighter and faster, which is critical in environments
where quick real-time execution is needed. Morcover, by elim-
inating less critical features, the pruned models are not only
faster, but also consume less energy and space, making them
ideal for deployment on resource-constrained IoT systems.
A brief overview of the ToSiM-IoT framework is shown in
Fig. 1. Both our proposed techniques are highly adaptable
algorithms that can utilise the neural network architecture and
its parameters to varying data conditions without manual inter-
vention. This adaptability makes them suitable for autonomous
and dynamic environments where input conditions change
frequently. Despite the reduction in computational resources,
our methods maintain high accuracy levels, as they retain the
necessary elements that significantly contribute towards high
performance and efficiency.

II. UNDERSTANDING THE PROBLEM

To understand and analyse the sustainable deployment of
Al, it is crucial to explore the challenges described by re-
searchers in this domain. The following subsections highlight
the recent work done in the field and discuss their impact and
potential on sustainability.

A. Challenges in Al, Sustainability, and loT

Incorporating AI into the IoT provides high efficiency
and intelligence to systems, enabling devices to process data

autonomously. This integration equips devices with the ability
to make decisions, optimise operations, and provide insights
without direct or indirect human intervention. It includes
providing everyday devices with smart functionalities for
revolutionising processes and highlighting the transformative
potential of AI within IoT frameworks. However, utilisation
of this potential requires overcoming significant challenges,
particularly in adapting Al technologies to the diverse environ-
ments where [oT devices operate. Mhaisen et al. [13] provides
a survey of recent techniques and strategies designed for han-
dling Al tasks in IoT applications. Another work [14] focuses
on security techniques based on ML describing how Al can
be used for enhancing security in IoT systems. ML-based
techniques for authentication, malware detection, offloading,
and access control are mainly focused in this work. Bu et
al. [15] presents an agriculture system for IoT that utilises
Al and cloud computing for making smart decisions such as
determining the amount of water needed for irrigation in the
fields.

MODEL MODEL
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Fig. 1: A brief overview of ToSiM-IoT framework.

As ToT networks expand, so do the computational, memory,
and energy demands of Al models used with them. Larger Al
models require very high computational power and memory,
leading to increased energy consumption during both training
and inference phases. The work by Canziani et al. [16] and
Li et al. [17] analyses the trade-offs between model size,
performance, and energy efficiency; illustrating how larger
models, while potentially more accurate, can significantly
have high energy consumption and prominent impact on
the environment. The size of an Al model also affects its
deployability in real-world applications, especially in resource-
constrained environments. Large models may not be feasible
for deployment on mobile devices or in edge computing
scenarios, where energy efficiency is a critical performance
factor. This limitation challenges the scalability of Al solu-
tions and their ability to be deployed sustainably across a
diverse range of IoT platforms [16]. Many efforts to create
model architectures such as EfficientNet by Tan and Le [18],
[19], demonstrate the potential to reduce the impact of large
Al models. These architectures aim to maintain or improve
performance while reducing the computational demands and
energy consumption, addressing the sustainability concerns
associated with model size. Hu et al. [20] explore a channel
pruning method which can be used for compressing large Al
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models. Another work [21] evaluates the efficiency of model
compression within the context of energy-efficient inference.
Chen et al. [22] utilise the low-rank approximation to eliminate
the redundancy within the filter and accelerate the deep neural
network pruning process. The researchers [23] proposed a
mechanism which identifies the sensitive input values that are
highly correlated to the accuracy and applies the low-fidelity
quantization on non-critical regions to boost the execution
performance. Wu et al. [24] propose a method based on
dynamic gradient compression and knowledge distillation to
execute the federated learning tasks efficiently.

Along with optimisation, another crucial challenge is to
extend sustainable Al development beyond optimising model
efficiency and training time to encompass environmental and
societal impacts. This requires embedding sustainability in
AT's lifecycle, adopting new optimised techniques and cultivat-
ing a culture that prioritises sustainability, including transpar-
ent reporting of environmental impacts and adopting energy-
efficient practices. Addressing the sustainability issues related
to Al model training and size is vital for its performance
advancement, ensuring its societal benefits while minimising
environmental damage. The challenge, as illuminated in [25],
revolves around designing machine learning models that em-
phasise model architecture and strategic size reduction high-
lighting the importance of ensuring efficiency during the early
design stages of Al development, aiming for high-performance
Al technologies that provide optimal operation within limited
resource conditions.

B. Existing Solutions and their Potential

In deep learning, optimising models is important, par-
ticularly when considering the computational cost of train-
ing, which is heavily influenced by floating-point operations.
Strategies such as quantization, pruning, and layer freezing
can serve as important approaches to mitigate these costs and
enhance overall performance.

A strategic approach to reducing FLOPs involves converting
data from 32-bit floating-point precision (float-32) to 8-bit
integer precision (integer-8), followed by performing critical
operations in integer-8 and subsequently restoring the output
to float-32. This method effectively optimises computational
efficiency and memory usage while maintaining the accuracy
crucial for deep learning tasks. The effectiveness of this
quantization approach has been thoroughly explored with ma-
chine learning frameworks such as TensorFlow and PyTorch —
offering specialised tools to facilitate this process. Therefore,
emphasising its importance in improving model performance
through FLOP management process. Based on the concept
of computational efficiency, pruning is another strategy for
refining model's structure. By targeting and removing less
impactful parameters rather than adjusting model precision,
pruning enhances efficiency by focusing on the redundancy
of features. This technique maintains the model's integrity by
emphasising structural optimisation instead of numerical ad-
justments of weights and biases. The pruning process reduces
the computational complexity, operational costs, and ensures a
balance between preserving model performance and achieving

efficiency gains. Layer freezing, in addition to quantization
and pruning, allows a strategic selection to either train or
freeze neural network layers, impacting the learning process
without altering any internal parameters. This technique, often
achieved through hyperparameter tuning, reduces the number
of calculations and FLOPs, thereby reducing computational
load and energy consumption of the models. Layer freezing
improves training efficiency by allowing the training of spe-
cific layers and freezing rest of the layers, thereby presenting
another approach for optimising Al models.

Chinee apple

Snake weed
s T

Fig. 2: Three sample weed images from DeepWeeds dataset.

C. Application Use-Case and its Generalisability

We have considered a weed identification agricultural sce-
nario as a use case in this work. Effective weed management in
precision agriculture is a critical task that can help farmers in
maximising crop yield, reducing cost, and minimising the use
of herbicides in agricultural fields. Two ML models — Incep-
tionV3 and VGG16 have been used for training and inference
procedures with the DeepWeeds dataset in our framework.
A few sample weed images from DeepWeeds dataset are
shown below in Fig. 2. The VGG16 architecture developed by
researchers from the Visual Graphics Group (VGG) at Oxford
is primarily known for its simplicity and depth. It features
a series of convolutional layers, mainly 16 (13 convolutional
and 3 fully connected layers), that use 3x3 filters with a stride
of 1 pixel. This small filter size allows it to capture the fine
details from the image through deeper architectures, without
a rapid increase in computational complexity. The layers are
followed by ReLU activation units and max pooling layers
to reduce spatial dimensions, while retaining the most critical
feature information. However, the InceptionV3 model — a part
of the GoogLeNet family, introduces a more complex archi-
tecture designed to provide high accuracy with computational
efficiency. The main aspect of InceptionV3 is its inception
modules, which allow the model to choose from filters of
various sizes (1x1, 3x3, 5x5) at each layer of the network.
This multi-scale processing enables the model to capture
information at various spatial hierarchies. Inception layers are
also designed with dimensionality reduction techniques that
involve 1x1 convolutions to reduce the computational burden
before expensive 3x3 and 5x5 convolutions. This configuration
makes InceptionV3 less prone to overfitting, while enhancing
its ability to generalize across different datasets and tasks.
The model also incorporates advanced features such as label
smoothing, factorized 7x7 convolutions, and batch normalisa-
tion, providing high efficiency and speed during training.
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Considering the applicability of our ToSiM-IoT framework,
while demonstrated in an agricultural scenario, it is funda-
mentally designed to be adaptable to a range of applications
beyond this specific use case. The use of GAs extends across
any ML scenario where model complexity and computational
efficiency are of concern. For instance, in healthcare, GAs can
be utilised to design deep learning models that consider vast
amounts of medical data, while optimising for accuracy and
speed — both highly critical in diagnostic applications. Simi-
larly, in autonomous vehicles, GAs can be crucial in refining
CNNss that process and interpret real-time sensory data, ensur-
ing that models are both quick and precise in their decision-
making under variable environmental conditions. Grad-CAM’s
capability to visually highlight which features in the data most
significantly impact the model’s predictions offers extensive
benefits for model refinement and optimisation in diverse use
cases. In the financial sector, this could be applied to identify
the most influential economic indicators affecting predictive
models for stock prices or market trends. In customer service
and sentiment analysis, Grad-CAM could pinpoint specific
aspects of customer interactions that most affect sentiment
scores, guiding better customer engagement strategies. By
integrating these methods into different domains, users can en-
hance model performance, and also achieve higher operational
efficiency, supporting compliance with growing regulatory
demands for transparency in Al applications, such as in Europe
under GDPR, or in various industries under sector-specific
regulations.

1II. MATHEMATICAL FORMULATION

In this section, we introduce the quantitative objective func-
tions for our ML optimisation framework. The formulation is
designed to identify the interrelations between various model
parameters, and their impact on computational efficiency. We
have formulated our selection approach as an optimisation
problem to maximise the accuracy of a neural network model
by strategically selecting layers for training. This selection
process is controlled by binary decision variables for each
layer z;.

Let x = (z1,22,...,2N), wWhere each layer x; is defined

as:
1 if layer 7 is active
O P )
0 if layer 7 is inactive
fori=1,2,..., N. The formulation consists of the following

key parameters:

e N: Number of layers.

o (C: Computational cost limit.

o ¢;: Computational cost of layer 4.

« v;: Performance value of activating layer 1.
o «, 3: Weighting coefficients.

To identify an ideal combination of trainable layers, we use
an adaptive heuristic search algorithm. The steps of the search
are as follows.

First, we initialise by generating a population of M chromo-
somes:

P = {x(l),aj(Q), e ,:c(M)} 2)

Then, we define a fitness function that can evaluate the
desirability of each selected chromosome:

Fitness(z) = Z(z) 3)

Based on the fitness, the next step is to select K chromosomes
for mating, and enhancing them:

S = select(P, K, Fitness) 4)

After the selection has been made, we identify some pairs
(z(®), () of chromosomes, and perform crossover to pro-
duce new offspring:

new)

a = crossover(z(® | z(*) (5)

Along with the crossover, we also perform mutation of the
offspring’s genes with a probability p,,:

x(mutated} — mutate(x(new)’pm) (6)

After performing the gene alteration, we integrate new off-
spring back into the population, by replacing them with weaker
chromosomes:

P = update(P, z(mutated)) 7

We repeat the sclection, crossover, mutation, and replace-
ment steps for G generations, or until a stopping criterion
specified by the user is met.

The objective of our layer selection mechanism is also
formulated as an optimisation function, represented as max-
imisation of Z(x), such that:

+

N N
Z(z) = OéZ’Uz'l’i -5 Zcixi - C ®)
i=1 i=1
Here ()T = max(z,0), which denotes the penalty for

exceeding the computational limit of selected resource node.
To achieve this, the following constraint should be satisfied:

N
Z C; T S C
i=1

The aim of this formulation is to find an optimal set of layers
(z;) that maximises the neural network's accuracy within the
given computational cost C. This constraint can be used to
establish a balance between execution performance, resource
utilisation; and highlights the complexity of training neural
network models along with the importance of each layer
selection decision.

For our feature pruning mechanism, we have designed
another multi-objective optimisation function. The aim of the
pruning process is to balance the predictive performance of the
model with its computational efficiency. The pruning function
is as follows:

P(z) = w- Acc(xz) — A - Comp(z) )

and ;€ {0,1} Vi

Here:
o © = (x1,x9,...,x.) is the binary vector indicating the
presence (1) or absence (0) of each channel ¢ in the
CNN’s target layer.
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o Acc(z) is the accuracy of the CNN, given the set of active
channels defined by z.

o Comp(x) quantifies the total computational cost associ-

ated with the active channels.

e w and A are weighting factors that prioritise accuracy

versus computational cost.

We integrate Grad-CAM in our approach to identify the
importance of cach channel in the decision-making process.
To achieve this, we define a function I(7) that measures the
significance of each channel 7, based on its contribution to the
model’s output. This is determined by generating the heatmap
and visualising its impact score. The importance function I(c)
is given as:

= /H(T Yy, i) dx dy

Here, H(x,y,1) is the heatmap value at position (z,vy) for
channel 7, and the integral sums the contributions across
the spatial dimensions of the heatmap. The binary decision
variables x; for each channel i are determined as:

1, ifI(i) >T
0, otherwise

(10)

Y

Here, T is a dynamic threshold based on a value of the im-
portance scores of all channels, allowing for adaptive pruning
intensity based on model complexity and dataset specifics,
such that, the total computational cost of the retained channels
must not exceed a predefined limit L:

c
i=1

Here, w; represents the computational cost of channel . To
cnsure that the pruned model maintains a bascline level of
accuracy, we also impose a minimum performance constraint:

Acc(z) > Amin (13)

(12)

Here, Apin is the minimum acceptable accuracy for the pruned
model, to prevent over-pruning of similar channels, and ensure
a diverse set of features is retained:

Diversity(z) > Dmin (14)

Here, Dy, is the minimum required diversity level. The
solution to this problem involves using an algorithm that can
iteratively adjust the vector z to find the configuration that
optimises the objective function P(z), while satisfying all the
necessary constraints.

IV. COMPLEXITY ANALYSIS

The Genetic Algorithm method we utilised for layer selec-
tion strategically activates a subset of layers, thereby reducing
the total number of parameters that need to be updated
during back propagation. This selective training scales down
the computational complexity from O(n.m), where n is the
total number of layers, and m is the number of parameters
per layer typically considered in full-network training, to
O(k.m), where k < n and k represent the number of sclected
layers. It is fair to consider that genetic operations also con-
tribute to complexity, however, O(k.m) >> O(mutation) +

O(crossover) + O(selection), and the computational cost
is predominantly determined by the neural network training
itself. For space complexity, since each individual’s fitness
is computed once and stored, this does not affect the time
complexity, but contributes a bit to the overall memory require-
ments of the system. Pruning the neural network requires direct
operations, as it iterates over all parameters of the neural net-
work to apply the pruning criteria. When the feature pruning
method is integrated with Grad-CAM, it focuses on pruning
parameters based on their relevance, which can be observed
by their heatmap values. By pruning non-critical [eatures,
the number of computations required during the forward and
backward passes is significantly reduced. The computational
complexity for inference, O(p) for p parameters in the model,
is effectively reduced to O(q), where ¢ < p reflects the
pruned model’s parameters. This pruning not only accelerates
inference, but also reduces the model’s memory footprint,
making it suitable for real-time applications on devices with
limited computational capabilities. However, it is important
to note that Grad-CAM pruning requires additional memory
overhead to store heatmaps and pruning masks. In terms of
space complexity, storing these additional components requires
O(k.n) space, where k.n represents the size of the feature
maps at each layer.

V. PROPOSED FRAMEWORK

This section provides a detailed description of our proposed
ToSiM-IoT framework. The first subsection describes the
genetic algorithm based selection mechanism for layers and
the second subsection highlights the heatmap visualisation
technique for channel pruning.

Layer,
Model Input
Architecture Output

Solution
Encoding

__________ . N e
Ir Population Ir- Selection L Crossover 1 Ir Mutation 1|
| > I —— =]
L N d e e e e e --- 1 L S J

Fig. 3: Solution encoding in our layer selection mechanism.

A. Optimising Layer Selection with Genetic Algorithm

The solution encoding consists of an array that defines
each layer's selection during the training process. A genetic
algorithm is used to manipulate this encoding by modifying
the array to discover an optimal mix of active and inactive
layers. Selecting the optimal layers for training while keeping
the remaining layers frozen (to preserve their weights) con-
stitutes a complex computational challenge. It is crucial for
improving the model's functionality, especially considering the
complexity and scale of neural networks which make manual
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selection non-feasible. Therefore, an algorithm is needed to
efficiently navigate the potential configurations and identify
the most effective ones for deployment. Genetic algorithms
are particularly suited for this task due to their ability to
handle complex optimisation problems. Inspired by the ge-
netic process of combining attributes, these algorithms utilise
methods such as mutation, crossover, and selection to refine
solutions progressively. For the layer selection mechanism, the
GA will enable a systematic exploration of layer combinations,
identifying those layers that can significantly reduce the com-
putational demand and enhance the performance.

Algorithm 1 ToSiM-IoT Layer Selection
Input: G, py,, pe. K, C, ¢i, v, o, 8, N, M
Output: Return the best chromosomes based on fitness

1. Initialise: Generate an initial population P of M chromo-
somes. Each chromosome z9) is a binary vector of length
N.
function FITNESS(z)

return o - Zivzl v;x; — - max (Zf\il c;xi — C, 0)
end function
for gen =1 to G do

Select K chromosomes from P based on fitness to
form S.

AN AN R

7. for each pair (z(®),z(®)) in S do

8: () < Crossover(z(®), (")) with probability
pe = 0.9

9: glmutated)  Mutate(z(™¢®), p,,) with mutation
probability p,, = 0.2

10: Replace weaker chromosomes in P with
x(mutated)

11: end for

12: Evaluate FITNESS() of each chromosome

13: if termination condition is met then

14: break

15: end if

16: end for

Fig. 3 illustrates our solution encoding mechanism and its
manipulation by the genetic algorithm. The selection algorithm
chooses solutions in each iteration, followed by the crossover
and mutation operations. Mutation involves flipping bits (‘0
to ‘1’ or vice versa) by targeting specific indices based on a
random distribution. These operations are repeated multiple
times to generate new probable solutions. Individuals with
higher fitness are preferably selected through Binary Tour-
nament Selection mechanism, ensuring those more suited to
the problem are more likely to reproduce. A 90% chance of
Single Point Crossover promotes genetic diversity by mixing
genes from pairs of parents, while a 20% Bit Flip Mutation rate
introduces new genetic variations to explore the solution space
effectively. Algorithm 1 runs until a specific number of fitness
evaluations are obtained, maintaining constant population size.
This setup provides a balance between exploring new possibil-
ities and exploiting already-known good solutions, aiming for
an efficient search of optimal solutions with a limited number
of computational steps.

Fig. 4: Visualisation of the data and its corresponding class
activation heatmap for identified labels.

B. Efficient Feature Mapping for Channel Pruning

Modern deep neural networks consist of various types
of convolutional layers, and the execution runtime during
an inference phase is dominated by the evaluation of these
layers. In order to speed up the inference process, our strat-
egy involves pruning complete feature maps by utilising the
analytical capability of Grad-CAM and performing heatmap
visualisation to identify the impactful features. Grad-CAM —
stands for Gradient-weighted Class Activation Mapping [26],
is a technique that can enhance the interpretability of CNNs
by analysing gradients in the final layer and quantifying the
significance of each neuron in the decision-making process.
This technique visualises the importance of features using
heatmaps, where colour intensity represents values between
0 and 1 to show the scale of significance in the data. Fig. 4
below shows a step-by-step visualisation of the active areas
in an image that was highlighted during the feature identifi-
cation process. We have considered a threshold variable for
establishing the separation between the importance value of
features and assisting the pruning process to climinate less
critical connections, thus optimising model performance and
efficiency.

We have designed the Algorithm 2 that shows the step-by-
step approach of our pruning workflow. The process begins
with the identification and extraction of the target CNN layer
from the neural network model. Following this, the weights of
the designated layer are extracted before further analysis and
manipulation are performed. Next, the channel importance is
calculated by summing up heatmap values per channel, indi-
cating their contribution to the model's output and assistance
in pruning decisions. The selection of retained channels is
based on a pre-specified importance threshold value. Channels
with cumulative heatmap values surpassing this threshold are
selected for retention, while those with values below it are
considered for removal. This process ensures the retention of
only those channels that significantly contribute to the net-
work's effectiveness. The pruning phase involves the targeted
deletion of weights and biases associated with channels that
are deemed non-essential (below the threshold). This crucial
step aims to decrease the model's computational demands
while preserving its true predictive characteristics. The values
of L and A,,;, considered in this work are 300mins and
65%. Following the pruning process, a new CNN layer is



JOURNAL OF KX CLASS FILES, VOL. X, NO. X. AUGUST 2024

created. This layer mirrors the original layer in terms of its
architectural parameters (e.g., kernel size, strides, padding,
activation function) but differs in the number of filters, which
are adjusted to match the count of channels retained. The
pruned weights and biases are then allocated to the newly
instantiated CNN layer, ensuring that the layer is properly
equipped to perform its function within the network. The final
step replaces the original convolutional layer with its pruned
version, ensuring the model's integrity and connectivity.

VI. EXPERIMENTAL DESIGN AND SETUP

The section describes the experimental tools and detailed
configurations that have been utilised during evaluation of our
ToSiM-IoT framework.

A. Tools and Hardware Configuration

In our setup, we have used TensorFlow to build and modify
state-of-the-art VGG16 and InceptionV3 models. We also
used JMetalPy' for genetic algorithm operations in our layer
selection mechanism. For pruning, we leveraged TensorFlow?
and Keras built-in capabilities to implement our Grad-CAM
solution. The heatmap generation in the approach uses Tensor-
Flow's Keras API®, where a function builds a model to observe
a specific convolutional layer's output and model's predictions
for an image array. This process generates heatmap values
highlighting key image regions and shows the API's ability to
analyse and interpret model behaviour. We performed the ML
operations on a virtual instance of dual-core Intel(R) Xeon(R)
CPU at 2.00GHz, 12 GB of RAM, and an NVIDIA Tesla T4
GPU with 16 GB of memory. The system has 79GB of total
storage, with 27GB used and 52GB available. Datasets were
pre-loaded from Google Drive as virtual instances to minimise
data transfer overhead and optimise the execution.

Our agricultural use case considers collecting data from IoT
devices at the network's edge and processing it on a Field-Side
Unit (FSU) using the DeepWeeds [27] image classification
plant-based dataset. The DeepWeeds dataset is the first large,
public dataset for Australian range-land weeds, having 17,509
images of eight common species of weeds from eight regions
spread across northern Australia. This dataset is designed to
support the development of classification methods, enabling
the use of robotic weed control in challenging environments
and highlighting the role of machine learning in improving
weed management and agricultural tasks.

B. Estimation of Power Consumption

To estimate the power consumption of Nvidia T4 GPU,
based on its running time, we have used the following math-
ematical model:

Let Pjyqq be the power consumption in watts when resource
node (GPU) is running and let 7}, be the total time for which
our node is executing the tasks.

Thttps://github.com/jMetal/jMetalPy
Zhitps://www.tensorflow.org
3https://www.tensorflow.org/guide/keras

Algorithm 2 ToSiM-IoT Channel Pruning
Input: model, L, T, Anin

Output: prunedModel

1: function CALC_IMPORTANCE(model, layer Name)
2: layer <— GETLAYER(model, layer Name)

3 weights, biases < GETWEIGHTS (layer)

4: importance <— empty map

5: for channel in layer do
6
7
8
9

importance[channel] < H(x,y, channel) dx dy
end for
return importance
: end function

10: importance <— CALCULATEIMPORTANCE (model, layer Name)

11: retainChannels < empty list
12: for channel,imp in importance do
13: if vmp > T then

14: APPEND(retainChannels, channel)

15: end if

16: end for

17: function OPTIMIZELAYER(model, retainChannels)

18: newWeights, newBiases < arrays of zeros with
sizes based on retainChannels

19: compCost <+ 0

20: model Acc + 0

21: for channel in retainChannels do

22: newW eights[channel], newBiases[channel] <
weights[channel], biases[channel]

23: compCost < compCost + Wehannel

24: model Ace <+ model Acc + Vehannel

25: end for

26: if compCost < L and model Acc > Apin then

27: layer < CREATELAYER(len, kSize, stride, pad, act)

28: SETWEIGHTS (layer, newW eights, new Biases)

29: REPLACELAYER(model, layerName, layer)

30: end if

31: end function
32: OPTIMIZELAYER(model, retainChannels)
33: return prunedModel

Given that Pj,,q = 74 watts. The total power consumption
(Protar) in watt-hours (Wh) can be calculated as follows:

Ptotal = (Pload X Tload)

Similarly, in kilowatt-hours (kWh), the power can be calcu-
lated as:

(15)

Ptoml = (jjl,oad X Tload) /1000 (16)

This model allows us to estimate the T4 GPU's power
consumption over the duration for which GPU was consuming
power and executing the ML tasks utilised for evaluation in
our experimentation.

C. Experimental Configuration

This section describes the configuration details for executing
the layer selection and feature pruning mechanism in this
work.



JOURNAL OF KX CLASS FILES, VOL. X, NO. X. AUGUST 2024

1) Layer Selection Setup: This configuration focuses on
setting up the layer selection mechanism of our ToSiM-IoT
framework. The steps are as follows:

a) Data Splitting: The dataset is divided into three
segments: 60% for training, 20% for validation, and 20% for
testing. This division is used to ensure effective model training,
fine-tuning, and performance assessment of the framework.

b) Data Preparation: The process begins with resizing
images to standardised input dimensions, followed by data
augmentation techniques such as flipping and rotating. Ad-
ditionally, these images are normalised, by converting pixel
values from integers to floats and scaling them to the range of
[0, 1], and then batched during the training process.

¢) Model Customisation: This phase involves transform-
ing pre-trained InceptionV3 and VGG16 models, which were
initially trained with the ImageNet dataset. The models are
customised with DeepWeeds dataset by appending new layers
and freezing the original layers to preserve learned/retained
features. This customisation aims to leverage the pre-existing
knowledge of the models while making them relevant for the
new tasks.

d) Initialise Training: The models are trained with de-
fined hyperparameters, including 10 epochs and batch sizes of
20. Additionally, a genetic algorithm is utilised to fine-tune
the model and customise it.

e) Genetic Algorithm Based Selection: A similar model
adjusted based on various parameters undergoes brief training
to learn the changes and improve model adaptability. The
generated models are then evaluated with a focus on accuracy
and the obtained results are used to assist in genetic algorithm
driven refinements, continuously improving model outcomes.
The genetic algorithm population considered in our experi-
mentation is 10.

f) Evaluation and Analysis: After training, the models
are evaluated on the test dataset to determine their gener-
alisation capabilities. This evaluation helps in assessing the
effectiveness of the training and the customisation process. The
performance metrics are plotted over the epochs to analyse the
model's learning behaviour and fit with respect to the data.

2) Feature Maps Pruning Setup: After model training,
this part of our configuration is designed to use a heatmap
visualisation technique for pruning the features. The steps are
as follows:

a) Data Preparation: The process begins by dividing the
complete dataset into two separate parts (referred to as Dataset
A and Dataset B) to simplify the training and evaluation
process.

b) Initial Training: In this step, Dataset A is utilised
as a base for the model's initial training process. This phase
establishes the benchmark for the model's performance and
provides insights into their learning capabilities.

c) Pruning Phase: Following the initial training, the
model undergoes a pruning process where we selectively
remove some of the model components, such as weights,
biases, or neurons, that have minimal impact on the output.
The aim is to simplify the model's structure and enhance its
operational efficiency. We have used the approach outlined in

section V-B to selectively remove the model components and
reduce its size.

d) Fine-Tuning with Dataset B: After pruning, Dataset
B is used to fine-tune the selected model. This phase aims
to perform minor adjustments to our model's parameters to
refine its performance, focusing on recovering or improving
aspects, and generalisations that potentially gets diminished
or removed during our earlier pruning phase. We have used
both Dataset A and B as training sets within this experimental
approach. The main difference in their usage is that — Dataset
A is allocated for initial model training whereas Dataset B is
designated for post-pruning fine-tuning.

e) Evaluation and Analysis: The final step involves a
comprehensive evaluation of the model after its fine-tuning.
This analysis focuses on various performance metrics to verify
the rate of the improvements we were able to achieve during
the pruning and fine-tuning phases.

VII. RESULTS AND EVALUATION

This section highlights the experimental results and our
findings after evaluating the proposed ToSiM-IoT framework.
Fig. 5 compares the training times (in seconds) for one
epoch of the InceptionV3 and VGG16 models across different
percentages of trainable layers, ranging from 10% to 100%
of the total layers. The training time increases for both
models as the percentage of trainable layers increases, which
is expected since more parameters require more computational
effort to update the model. Moreover, VGG16 has consistently
higher training time across all percentages of trainable layers
than InceptionV3. This can be attributed to the architectural
complexities and the overall number of parameters in VGG16,
known for its simplicity in structure but high computational
cost due to the depth and size of its fully connected layers.
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Fig. 5: Total training time with different percentage of train-
able layers

The Table I below summarises the power consumption,
measured in watts, of two deep learning models (per epoch)
during the training sessions with different percentages of their
layers trainable. Specifically, it shows measurements for three
scenarios: when 10%, 50%, and 100% of the layers are
trainable. For both models, the power consumption increases
as the percentage of frozen layers decreases. This progressive
increase in power can be attributed to the computational
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Trainable (%) | InceptionV3 | VGGI6
0.1 11.61 18.13
0.5 19.11 28.68
1.0 33.50 48.48

TABLE I: Power consumption (watts) of models during train-
ing (one epoch) with different percentages of trainable layers.

demand associated with updating a greater number of param-
eters. With more layers participating in the training process,
the models require more computational resources, leading to
higher energy usage. The comparison between InceptionV3
and VGGI16 also reveals the inherent differences in their
architectural efficiency. InceptionV3 consistently requires less
power than VGG16 across all scenarios, indicating it is a more
energy-efficient model for training tasks. This can also be due
to its more optimised architecture, which might involve fewer
parameters or more efficient operations compared to the deeper
and more parameter-intensive architecture of VGG16.
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- = VGG16
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Fig. 6: Accuracy benchmarks on DeepWeeds dataset for model
training.

Fig. 6 outlines the validation accuracies of two convolu-
tional neural network models we have considered for optimisa-
tion in our framework. We performed the model training using
the layer selection mechanism described above in previous sec-
tions. The accuracies are measured across a span of 10 epochs,
providing insight into the learning efficiency and performance
of each model over time. InceptionV3 demonstrates a starting
accuracy of 75.81% at epoch 1, which exhibits a generally
upward trend, peaking at 88.32%. The overall trend indicates
improvement in model performance with continued training
and shows the strong ability of InceptionV3 to generalise
from training data to unseen validation data. On the other
hand, VGG16 starts with a bit lower accuracy of 65.33% at
epoch 1 and follows an upward trend by peaking at 82.67%.
The observed differences in accuracy between InceptionV3
and VGGI16 can be attributed to factors inherent in their
architectures and the complexity of the task. InceptionV3 con-
sists of an Inception module, which is designed to efficiently
manage computational resources while capturing complex
features at various scales. This design contributes to its higher
accuracy and ability to better generalise during the validation
phase. VGG16 model is characterised by its simplicity and
depth with repetitive convolutional blocks and demonstrates
a considerable capacity for feature extraction. However, its

architecture sometimes have higher susceptibility to overfitting
and require more data or regularisation to achieve optimal
generalisation, which explains its lower performance compared
to InceptionV3 in this scenario.
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Fig. 7: Change in model accuracy with different percentages
of features retained.

The heatmap-based pruning approach when evaluated on
two available models (Fig. 7) shows that there is a general
trend of increase in accuracy when higher percentage of fea-
tures are retained. This pattern is observed because retaining
more features likely preserves more relevant information nec-
essary for accurate predictions. Models with deeper or more
complex architectures, like the VGG, show a more significant
impact from feature pruning, requiring a higher percentage
of features to be retained for optimal accuracy. InceptionV3’s
design, incorporating modules with parallel convolutions of
different kernel sizes, allows it to capture information at
various scales effectively and thus ensuring high accuracies
across all percentages.
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Fig. 8: Effect on training time with changing percentages of
retained features.

The pruning process aims to reduce the computational com-
plexity of the models by selectively removing less important
channels based on their contributions using heatmaps. This
selective reduction can significantly affect the training time of
the models, as observed in Fig. 8. The VGG16 model shows an
increasing trend in training time as the percentage of features
retained increases. Over the range of feature percentages, the
training time increases from 163 minutes to 271 minutes
gradually. The significant change in training time indicates
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that the pruning process effectively removes redundant or
less important features without compromising the model's
predictive power significantly. For the InceptionV3 model,
the training time initially decreases when the percentage of
retained features goes from 10% to 50%; and then increases
slightly when feature retension percentage is increased to
100%. This suggests that InceptionV3 may achieve optimal
performance with a moderate level of feature retention, where
the balance between model complexity and computational load
is ideal. Beyond this point, the slight increase in training
time as more features are retained could be due to the added
computational burden outweighing the benefits of additional
features.
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Fig. 9: Change in model size with different percentages of
features retained.

Fig. 9 shows that the size of a model is directly related to its
complexity and the amount of information it can process and
store. The increase in model size with a high percentage of
features indicates a near-linear relationship between the two
factors. More features mean more channels in the convolu-
tional layers, which in turn increases the number of weights
and biases that need to be stored, thereby increasing the model
size. The InceptionV3 model shows a more complex pattern.
The size increases from 174.41 MBs at 10% feature retention
to 217.23 MBs at 100% feature retention. It is observed
that the increase in size is not as linear as with VGGI6,
especially in the higher percentages of feature retention. The
larger initial size of InceptionV3 compared to VGG16 at lower
feature retention levels suggests that even with fewer features,
InceptionV3’s complex architecture requires more parameters
to be stored. This complexity contributes to the overall increase
in model size as more number of features are retained.

Features (%) | InceptionV3 | VGGI6
0.1 164.03 219.53
0.5 194.86 238.03
1.0 224.46 334.23

TABLE II: Power consumption (watts) of models after pruning
with different percentages of retained features.

The given Table II illustrates the effect of pruning process
on power consumption of both the models at specific levels
(10%, 50%, and 100%) of retained features. For both models,
the power consumption increases as the percentage of retained
features increases. The data indicates that VGG16 consumes

10

more power than InceptionV3 across the same levels of
feature retention, suggesting that VGG16’s architecture may be
inherently more power-intensive or less efficient at these high
levels of feature reduction. Additionally, the increasing trend in
power consumption with higher feature retention percentages
highlights the relationship between model complexity and
power needs. It shows that even slight increases in retained
features can significantly impact power consumption, likely
due to the increased computational workload associated with
processing a higher number of features.

Model (—) InceptionV3 VGGI6
Class () P R F1 P R FI1
Chinese apple | 88.0 | 90.5 | 89.2 85.1 | 80.2 | 82.6
Lantana 95.0 | 94.5 | 94.7 81.6 | 85.4 | 83.5
Parkinsonia 98.9 | 92.4 | 95.6 90.2 | 88.7 | 89.4
Parthenium 92.0 | 92.5 | 92.2 77.5 | 82.1 | 79.8
Prickly acacia | 92.0 | 93.6 | 92.8 85.6 | 84.3 | 849
Rubber vine 90.0 | 92.8 | 91.4 88.7 | 80.4 | 843
Siam weed 93.0 | 92.7 | 92.8 83.8 | 88.3 | 86.0
Snake weed 93.8 95 94.4 849 | 86.1 | 85.4
Negatives 94.8 | 93.4 | 94.1 90.4 | 92.1 | 91.2

TABLE III: Class-wise performance metrics for InceptionV3
and VGG16 models. P: Precision; R: Recall; F1: F1-Score

Analysing the process of structured training and fine-tuning
process, which involves initial training with Dataset A, fol-
lowed by model pruning and subsequent fine-tuning with
Dataset B, provides a comprehensive understanding of the
approach and its implications on the model performance. This
approach utilises the distinct characteristics of two datasets to
enhance model performance progressively. The initial training
on Dataset A establishes a foundation, allowing the model
to learn general features and patterns. The pruning process
then refines the model by eliminating less significant features,
reducing complexity and computational demand. Finally, fine-
tuning with Dataset B adjusts the model to perform well
in specific, possibly more challenging, real-world scenarios.
This method highlights the adaptability of the models to
new information and their capacity for incremental learning.
The maximum accuracy achieved after re-training by VGG16
and InceptionV3 models is 86.8% and 93.1% respectively. A
detailed class-wise description of other performance metrics
is shown in Table III. Comparing the accuracies with the
ones recorded after the pruning process, both models exhibit
significant improvements after fine-tuning. The VGG16 model
observed an average of 6.3% increase over the initial results
whereas InceptionV3 achieved improvements of 4.3%.

VIII. SUMMING UP THE FINDINGS

The experimental results highlight the differences in per-
formance dynamics of VGG16 and InceptionV3 models un-
der varying configurations of trainable layers, with particular
emphasis on training time, power consumption, and accuracy
benchmarks. We observed that VGG16 has longer training
times and higher power consumption across all degrees of
trainable layers. On the other hand, the InceptionV3 has
higher accuracy and model size over the different percentages
of retained features. The InceptionV3 model performs about
32.63% better than the VGG16 model in terms of execution
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time with different values of trainable layers. The average
accuracy of InceptionV3 model is around 6%-7% higher
than VGGI16 across all degrees of retained features. As the
percentage of retained features is reduced, the model size for
InceptionV3 and VGG16 decreases by 20.27% and 37.5%
as we go from 100% to 10%. Moreover, we also observed
that the average power consumption of InceptionV3 models is
26.33% better than the VGG16 models. The VGG16 model
showed a 66.26% decrease in training time when the number
of features are reduced to 10%. In contrast, the InceptionV3
model exhibits a 27.27% decrease over the same measure.
The results also show that the InceptionV3 model is approxi-
mately 18.90% more efficient in training time compared to the
VGG16 model. A comparison of our ToSiM-IoT framework
with some other optimisation techniques is shown below in
Table IV. Comparing the two architectures highlights that
the model structure, number of features, and trainable layers
are some of the critical parameters that directly affect the
performance of Al models and can be a deciding factor for
the efficient implementation of ML optimisation approaches on
limited resource nodes. Moreover, based on the time, accuracy,
and space requirements of limited resource nodes; a decision
can be made using our framework to select the optimal values
of parameters that will generate the best possible results for
the end-users and applications for which the ML models are
designed.

Techniques InceptionV3  VGGI6
L1-Norm Based Pruning 85.3 78.6
L2-Norm Based Pruning 88.4 82.2
Quantization 87.5 81.6
Random Layer Freezing 82.7 79.7
Group Lasso Regularisation 87.8 83.4
ToSiM-IoT 93.1 86.8

TABLE IV: Comparison of Model Accuracies Across Differ-
ent Optimisation Techniques.

IX. EXPLORING ASPECTS FOR FURTHER OPTIMISATION

We observed that our ToSiM-IoT framework achieves desir-
able results in reducing the training time and model size, how-
ever, in order to contribute towards more sustainable practices
for IoT applications, it does present certain limitations that can
provide options for future exploration and enhancement.

Our approach for layer selection is currently managed as
a single-objective optimisation problem, where the number of
layers are predetermined by the user. For improvement, we
can consider the number of layers as an additional objective
function along with model accuracy, using a multi-objective
optimisation method. This will allow for a balanced trade-off
between maximising accuracy and minimising the number of
layers, addressing this problem as a connected optimisation
challenge. Moreover, the pruning approach is a constraint
satisfaction problem where the aim is to meet specific condi-
tions defined by a predetermined threshold. For improvements,
we can consider the pruning approach as an optimisation
challenge, rather than simply satisfying the set constraints.
This adjustment can decrease the variability and transform the
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pruning threshold value into an adjustable variable. Objective
functions can then be used to evaluate the most effective areas
for pruning, identifying the optimal threshold that aligns best
with a particular model and dataset.

From our experiments, we also observed that each neu-
ral network has distinct characteristics that can significantly
influence the optimisation framework. These characteristics
include layer size, total number of parameters, model branch-
ing (which allows for the concurrent execution of (two or
more layers), and the parameter count within individual layers.
We can explore the possibility of designing a method that
examines these specific aspects of each network to support
ongoing testing and improvements. By understanding these
clements, we aim to restructure models to promote cnergy-
efficient and sustainable operations, thereby improving the
performance of ML-based tasks in IoT infrastructures.

X. CONCLUSION

The paper introduces ToSiM-IoT, a sustainable optimisation
framework for enhancing the efficiency of Machine Learning
(ML) tasks in the Internet of Things (IoT) based applications.
Our framework leverages the ability of genetic algorithms
and heatmap visualisation techniques for layer selection and
pruning in ML models. Through systematic experimentation
with VGG16 and InceptionV3 models using the DeepWeeds
dataset, we demonstrated that our proposed methodology sig-
nificantly reduces model size and training time, without com-
promising on accuracy. Results also show that the strategy of
selectively freezing neural network layers and pruning less sig-
nificant parameters addresses the critical challenge of limited-
resource availability of 10T infrastructure. The framework can
act as the potential procedure for the deployment of ML and
Al capabilities in environments where computational, storage,
and energy resources are in limited capacity. We plan to extend
the optimisation techniques to other ML models and differ-
ent real-world IoT applications to understand domain-specific
challenges and adjust our approach accordingly. We also plan
to develop methods that approximate power consumption and
utilise them as heuristic measures in an optimisation problem.
We aim to design ML models that are capable of predicting
power consumption based on the hardware used and applied
computational model. This decision can be utilised to enhance
the energy ecfficiency structure and ensure improved resource
allocation in IoT infrastructures.
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