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Abstract

We characterise regions in the complex plane that contain all non-
embedded eigenvalues of a perturbed periodic Dirac operator on the real
line with real-valued periodic potential and a generally non-symmetric
matrix-valued perturbation V. We show that the eigenvalues are located
close to the end-points of the spectral bands for small V' € L'(R)?*2, but
only close to the spectral bands as a whole for small V € LP(R)?*2? p > 1.
As auxiliary results, we prove the relative compactness of matrix multi-
plication operators in L?? (IR)2X2 with respect to the periodic operator
under minimal hypotheses, and find the asymptotic solution of the Dirac
equation on a finite interval for spectral parameters with large imaginary
part.
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1 Introduction

In the present paper, we consider the one-dimensional perturbed periodic Dirac
operator

d
H=—i02%+m03+q(x)+V(x) (x € R),
where o9 and o3 are Pauli matrices (see equation (18) below), m > 0 is the

particle mass, ¢ : R — R is a periodic potential and V : R — C?*? is a matrix-
valued perturbation. Although the unperturbed periodic operator

d
Hoz—io'z%—kmag—kq(a:) (x € R),
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is a self-adjoint operator in L?(R)?, the operator H is not self-adjoint in general
as we do not assume that the matrix multiplication operator V is symmetric.
We assume that V is bounded and that V € LP(R)?*?2 for some p > 1. Then H
has the same essential spectrum as Hy, consisting of closed intervals on the real
line (spectral bands), generally separated by spectral gaps, but may in addition
have discrete eigenvalues in the complex plane (see Theorem 2 below).

Our aim is to find a priori enclosures for these eigenvalues, i.e. regions char-
acterised in terms of the properties of the unperturbed periodic Dirac equation
and the p-norm of V which contain all (non-embedded) eigenvalues of H. In
the absence of a periodic background potential, ¢ = 0, [5] proved that, for
V € LY(R)?*2 with ||V||; < 1, the non-embedded eigenvalues of H lie within
circles around (but not centred at) the points £m, the end-points of the two
intervals of essential spectrum o.(H) = (—o0, —m| U [m,00). The radii of the
circles tend to 0 as the 1-norm of V' tends to 0, showing that when a coupling
parameter € is employed, the eigenvalues of Hy 4+ €V emanate from the points
+m only as € increases from 0.

In the present study, we extend this observation to the case where a periodic
background potential ¢ is present and allow V' to be p-integrable with p > 1. Our
main eigenvalue exclusion result (Theorem 3) states that a complex number A
outside the essential spectrum of H cannot be an eigenvalue of H if the p-norm of
V (defined in equation (9) below) satisfies the inequality ||V, < F,(\), where
F), is some non-negative function determined completely in terms of solution
properties of the unperturbed periodic equation. From our results, the following
picture emerges. For p = 1, F} is bounded above by 1 and in fact tends to
1 as [ImA| — oo (see Theorems 8, 9), so its level sets for levels < 1 lie in
neighbourhoods of the real line. Moreover, F; tends to zero exactly at the
end-points of spectral bands (Theorems 4, 5, 6). This means that for small
IVIlL < 1, the eigenvalues are confined to small neighbourhoods of the end-
points of spectral bands and, when a coupling parameter is applied, will emerge
from these end-points only. This behaviour appears to be a natural analogue to
that observed in [5] and [6].

However, for p > 1, F,(A) grows beyond all bounds as |Im A| — co. There-
fore the level sets of F}, will be in neighbourhoods of the real line for all positive
levels, and we get eigenvalue enclosure regions for any size of ||V||,. However,
F), tends to 0 at all points of the essential spectrum of H, which means that for
small ||V]|, the eigenvalues are confined to small neighbourhoods of the whole
spectral bands. Although we do not show the actual appearance of eigenvalues
in such position here, this opens up the possibility of eigenvalues approaching
(or, with a coupling parameter, emerging from) any point of the essential spec-
trum of H, similar to the behaviour observed in [1] for Schrodinger operators.

We mention that in the recent study [2], a detailed spectral analysis of the
different, but related Dirac operator where, instead of a real periodic potential,
q is a purely imaginary jump potential was performed.

The present paper is structured as follows. In Section 2 we summarise the
relevant results from Floquet theory of the periodic Dirac equation, describing
in particular the definition of the complex quasimomentum used in this paper.



We also give a formula for the resolvent operator of Hy and show that it is a
bounded linear operator not only in L?(R)2, but also between a dual pair of non-
Hilbert Lebesgue spaces (Theorem 1). In Section 3 we first prove that H has
the same essential spectrum (for all five usual definitions for a non-selfadjoint
operator) as Hy and only discrete eigenvalues besides (Theorem 2). A key part
of the proof is the observation that the operator of multiplication with a matrix-
valued function in L?P(R) is Hy-relatively compact (Lemma 2), for which we
provide a proof as it is not easily found in the literature in this generality, with
locally integrable ¢, and hence may be of independent interest. We then proceed
to the main eigenvalue exclusion theorem (Theorem 3) already described above.
In Section 4, we show that the function determining the exclusion criterion for
p = 1 tends to zero exactly at the end-points of the spectral bands. Finally,
in Section 5, we show that this function tends to 1 as Im A — oo. This result
is based on the general asymptotics of the fundamental system of the Dirac
equation on a finite interval for this limit (Theorem 7), which is here obtained
using a novel transformation of the Dirac equation into the pair of coupled
differential equation systems (21) and may be of interest in its own right.

As a matter of notation, we write |w| for the Euclidean norm +/|w|? + |ws]?
of vectors w € C2.

2 The periodic equation

Let ®(-, \) be the canonical fundamental system of the periodic Dirac equation
with spectral parameter A € C, i.e. the solution of the (matrix) initial value
problem

—ioa® (2, \) + (mos + q(z)) Bz, \) = AB(z,\) (z €R), ®(0,\) =L (1)

where T is the 2 x 2 unit matrix and ¢ is a locally integrable, real-valued, periodic
function. The qualitative behaviour of the solutions can be studied by means
of Floquet theory considering the monodromy matrix M(\) := ®(a, A) (A € C),
where a > 0 is the period of ¢, see [3]. As the (Wronskian) determinant of the
monodromy matrix is equal to 1, its eigenvalues are inverses of each other. Their
positions in the complex plane can be characterised in terms of the discriminant
D(A) := Tr M(\). The characteristic equation for M (\),

P2 =D\ p+1=0,

shows that M(\) has two distinct eigenvalues if and only if ®(\) ¢ {—2,2}.
In this case, either the eigenvalues lie on the unit circle and are complex con-
jugates of each other (this happens when ®(\) € (—2,2)), or one eigenvalue,
p(N), lies outside, the other eigenvalue, 1/p()), lies inside the unit circle (this
happens when D (\) € C\ [-2,2]). If D(X) € {—2, 2}, then either the geometric
multiplicity of the eigenvalue £1 is 1 or M (A) = %I (see [3, Section 1.4]).

If p1 is an eigenvalue of M () and v € C?\ {0} is a corresponding eigenvector,
then u(x) := ®(z,\) v (x € R) is a Floguet solution of the Dirac equation

—ioou'(x) + (mos + q(z)) u(z) = Au(z) (v € R); (2)



clearly u(0) = v. Then the function ¢(z) := p~%/*u(z) (z € R) is a-periodic.
This shows that all solutions of the periodic Dirac equation are bounded if
D(N\) € (—2,2) and that there is one Floquet solution u4 (-, A) exponentially
small at —oo and one Floquet solution u_(-,A) exponentially small at oo if
D(A\) € C\[-2,2]. If D(N\) € {—2,2}, then either one or all solutions are
bounded. Hence we can deduce that o(Hp) = {A € C | D(\) € [-2,2]} C R for
the self-adjoint operator Hy = —ioa-L + moj + ¢ (see also [3, Theorem 4.7.1]).

The (entries of the) monodromy matrix M and hence also the discriminant
D are entire functions, cf. [7, Theorem 1.7.2]. Since m > 0 and ¢ is real valued,
it follows that ®(z,\) = ®(x,\) (z € R) and so M(\) = M()\) and D()\) =
D(A) for all A € C. If D(N) ¢ [—2,2], let vy (N\) and v_(A) be eigenvectors
corresponding to the eigenvalues p(\) and 1/p(\) of M (\), respectively. Then
p(A) = p()\) and we can choose the eigenvectors such that vi(A) = vi(\).
Therefore we focus on A with Im A > 0 in the following.

The discriminant can be written in the form

D(N) =2cosk(Na

= 2cosh(aImk(A)) cos(a Re k(X)) — 2isinh(aIm k(N)) sin(aRek(A))  (3)

(A € C,Im A > 0), where the (continuous) function k with Im k(A) > 0 is called
the complex quasimomentum (see also e.g. [10]). As can be seen from equation
(3), for A € R, the quasimomentum k(\) is real; it is closely related to the
rotation number (cf. [3, p.43]) in the intervals where D(\) € [—2,2] (stability
intervals), whereas it has constant real part € 7Z and positive imaginary part
in the intervals where ®(\) ¢ [—2,2] (instability intervals). More generally,
for A € C such that ImA > 0 and D()\) ¢ [—2,2], the eigenvalue of M(})
that lies outside the unit circle is p(A\) = e~ *Na the other eigenvalue being
1/p(\) = e*MNa_ Clearly k(\) € R implies that D(\) € [~2,2] and so A € R.
We also note the following.

Lemma 1. Let A€ C, Im A\ > 0. Then

Imk(\) = 2i Arcosh |©(j)|2 + \/<1 - |©()\)|2> + (Im@(/\))Q) .4

a 4

In particular,

)\hﬁn}}o Imk(A) =0 (5)

Zf@()\o) € [_2a2]
Proof. If Imk(X) = 0, then by equation (3) D(\) = 2cosak(N) € [-2,2] and
the right-hand side in equation (4) vanishes. If Im k() > 0, then by equation
(3) we find

_ (ReD()? (Im D))

"~ 4cosh®(almk()))  4sinh®(aImk(\))

(Re®()))?(cosh(2aIm k(X)) — 1) + (ImD(X))?(cosh(2a Im k(\)) + 1)
2(cosh?(2aTm k(X)) — 1)




and hence by solving the quadratic equation

cosh(2aTm k(M) = |®(4A>|2 jE\/H D) (ReD(V)? — (ImD(N))?

16 2
_ |©(4A)I i\/(l_ |“3(4A)|2) + (ImD(\)2.

Since

5 2
() _\/<1_|@<4A>|2> F(moM)? <1

and cosh(2aIm k(\)) > 1 in the case under consideration, the square root must
have the positive sign. O

For Im A < 0, the Floquet multiplier (eigenvalue) satisfies

p(A) = p(N) = e—ih(Ma = =i(—kN)a,

This motivates the definition of the quasimomentum in the complex lower half-
plane by setting k(\) :== —k(X) (A € C,Im A < 0). Then we have p()\) = e~ (e
for all A € C such that ©(X\) ¢ [—2,2]. Note that this extended quasimomentum
function is not continuous at the real axis; nevertheless, its imaginary part is
continuous as Im k(\) = —(—Im k(X)) = Im k(X).

We now express the resolvent operator (Hy—A)~! in terms of a fundamental
system of Floquet solutions. Let A € C such that ©(A) ¢ [-2,2]. Then the
Floquet solutions

U+($, )‘)
u_(xz,A)

Oz, A) v () = p(N) 7y (x, ),
B, A) o () = pN) /% (2, )) (6)

with a-periodic functions (-, \) are linearly independent and hence form a
fundamental system of the Dirac equation. As uy(0,A) = ¢4+ (0,A) = vy (N), its
Wronskian is W(A) = det(v(A),v_(A)).

Theorem 1. Let A € o(Hy). Then
(Ho=N"Ha) = [ Gt fOdt (@ eRif e PR

with (matriz-valued) Green’s function

B etk [t—2| o (N ()T ift>a
G2 = = oo 0= ) {s&m) ort T i<z @BTER)

For all x,t € R, x # t, the Frobenius norm of the matriz G(x,t,\) is

_ et o (@ M e-(E )] if t >
A P YNGR V)] {Iap(M)l e (BN if t <.




Moreover, for any v € (1,2] and conjugate exponent ' = 1/(1 — %) > 2, the
integral operator R.(\) : L"(R)? — L™ (R)2,

(R, (N ) (z) = / Gla.t N f(t)di (xR f € L'(R)?)

i\‘w

is a bounded linear operator with operator norm | R,.(\)|| < C(A) (#k()\)) ,

where

o G M oo o= (5 M lloo
OO = ety ) )] @)

Remarks. 1. The Green’s function G is in fact independent of the choice of the
eigenvectors vy ().

2. In the absence of a periodic background potential g, an operator norm
bound for R, ()\) was obtained in [4, Theorem 3.1].

Proof. Let f € L?>(R)?; then solving the inhomogeneous Dirac equation
—ioou/(z) + (mos + q(z) — N u(z) = f(z) (x € R)

by the variation of constants method on the basis of the fundamental system
(U+(', >‘)7 U— ('7 A)) gives

u(z) = /R Gla,t, ) f(O)dt  (z €R).

For x # t, the Frobenius norm of the matrix G(z,t, A) is

Gz, 8, N)lr = V/Te(Gl, 8, A)* Glx,t, X))
|ez’k(>\) \t—x\‘

- | det(vy (N),v_ (M) \/Tf<m%0i($, N)* ot (x, A) px(t, A)T)

e ImE) sl
- Jdet(vr (), v- (V)]
o 6_Imk(>\) [t—x| \/| (J? )\)|2| (t /\)|2
= Tdet(v V), o))V IPED Pt

VT (@0 6 (@, 0) (80 g (6 )

with the sign in the index depending on whether t > x or ¢t < z. Setting
lot (s M) |loo :=sup o+ (-, )|, we can estimate the operator norm
z€R

I1G (2, t, M| < [Gla,t, )] 7 < O(A) 7 Pkl (8)



(z,t € R,t # x) with C()) defined in equation (7). Now let f € L"(R); then

= (/R ’/R G(x,t, ) f(t) dt g dx) :
: </ ([ 16 eniisena) ' dx)

= </ (L= a) T/ dx) |
<o ([ermenza)” ([ |f<x>|rdw)3'

- o) (hjkm) 11

by Young’s inequality, noting that % +2 = % + 1. This shows that the integral

operator R,.()\) (and in particular the resolvent operator (Hg — A)~! = Ra()))
is well-defined and bounded, with the stated operator norm estimate. O

1
7

Yo

3 Eigenvalue exclusion

We now consider the Dirac operator with an additional non-periodic perturba-
tion, H := Hy + V, where V is the operator of multiplication with the matrix-
valued function V : R — C?*2. We assume that V is bounded and, for some
p>1,V € LP(R)>*2, which means that the norm (cf. [6])

Vil = ( / ||v<x>||pdx)’l” )

is finite. Here ||V (x)| is the operator norm of the matrix V(z), « € R. This
is different from the operator norm ||V]| of the multiplication operator V in
L?(R)2.

For each z € R, we use the polar decomposition of V(z),

V(z) = B(x)A(z),  B(z)=U(x)[V(z)|z,  A(z)=|V(z)]?, (10)

where |V (z)| = (V(2)* V(z))2 and U(z) is a partial isometry of C2, cf. [12,
Theorem VI.10]; then

[A@) = VIV@I,  [IB@)l < VIVl  (zeR). (11)

Thus we have matrix-valued functions A, B € L2?P(R)?*2 that give rise to
bounded multiplication operators A, B on L?(R)2.



As we don’t assume that V' is symmetric, the operator H is not self-adjoint
in general; however, as a sum of a closed (self-adjoint) operator and a bounded
operator, it is closed (cf. [15, Theorem 5.5]). Moreover, we have the following

statement about its essential spectrum, using any of the 5 usual definitions (cf.
[8, Section 1.4]), e.g. the third,

oe(H) :={A € C| H — \is not a Fredholm operator}.

Theorem 2. o.(H) = 0.(Hp) = {X € R | D(X\) € [-2,2]}. The spectrum of H
outside o.(H) only consists of isolated eigenvalues of finite multiplicity.

In the proof of this theorem, we use the relative compactness of the multi-
plication operator A with respect to Hy. We give a full proof of this statement
(which holds for any A € L?P(R)?*?), as it does not seem to be easily available
in the literature; note that we only assume that the periodic potential g is locally
integrable, so the results of e.g. [14, Theorem 4.1] or [4, Theorem 4.1] are not
directly applicable. We remark that in the case p = 1 the relative compactness
can be shown more easily by proving that A (Hy — A\)~!, an integral operator
with kernel A(z)G(z,t, ), is a Hilbert-Schmidt operator, using the Frobenius
norm estimate (8).

Lemma 2. Let A € o(Hy). Then the operator A (Hg — \)~! is compact.

Proof. (a) We first show that the statement is true for A € C§°(R)?*2. Let
a < b be such that supp A C [a,b]. Let (up)nen be a bounded sequence in
L3(R)2, |lupllz < K (n € N), and set y,, := A(Ho — A\) u, (n € N). Then, for
all z € [a,b] and n € N, we have by Theorem 1

()] < [ A@)] \ [ Gt dt\ <4 ([ ||G<x,t,A>|2dt)% el
< sup ||A(2)| (/}Re—ﬂmk@) It dt> ’ C\) K < oo

z€R

and y,(z) = 0 for all z € R\ [a,b], so the sequence of functions (yn)nen is
uniformly bounded. Also, for a < x < z < b we find, using the estimate (8),

19 (@) — (=) = \A(m) [t N -A@) [ GG dt\

1

/
AL

/ |(A(@) e* N @0 (2) = A(2) HV D (2)) o () ()] dt

e (2)p (5T — A=) VE D (2)p (1)) wa(t)| dt

etk (V) (t—2) o4 (z) — A(2) k(A (t—2) S0+(Z)> Qp_(t)T un(t)‘ dt),



where we abbreviated W := det(v4(A),v—(\)). Here the first integral is less
than or equal to

b 2
e A(x) p_(x) — HOA() o ()| ( / 2 IEO (1) dt) K,
—o0

and as A and ¢_ are continuous and hence uniformly continuous on [a, b], this
integral tends to 0 as |z — z| — 0 uniformly on [a,b] and in n € N. Analogous
reasoning applies to the third integral. The second integral can be estimated by

Nl

( [ T4 g () (0 — A(z)e '”sa_<z>so+<t>“dt)

x (/ |un<t>|2dt)2 <2 sup AW sup lor(0)] sup lo- ()] K vE

tela,b] tela,b] t€(a,b]

which tends to 0 as |« — z| — 0 uniformly on [a,b] and in n € N. Consequently,
the sequence of functions (y,)nen is also equicontinuous. By the Arzela-Ascoli
Theorem, it has a subsequence that is uniformly convergent and hence, in view
of the compact support, also converges in L?(R)2.

(b) Now let A € L?P(R)?*2. Let u,v € L*(R)?, ||lullz = ||v|]2 = 1. Then

— 71uv = T x Uu vix)dx
(A (Ho — X) ", ) /RA( >/RG( ) ult) dt o(z) d

N [ luto) ( [ jaw) |v<a:>|dm) dt

C [ FDF (M ¢ (A0 o))
N [ FTulVEr Fle ™ 1) (LG o)

~ 2Tm k() O >/ F(LAO 1)) (€ >%df

< 2Tm k(A (/ IF(AC)| o))" > (/R F(|u])(€)

&1 (Im k()2 d§> ’

where we used the Plancherel identity for the Fourier transform F' and then
Holder’s inequality with exponent r := % € [1,2) and conjugate exponent r’.
(In the case p = 1, where r = 1, the above and the following estimates hold

’

with (Jy [F(IAC) o))" veplaced with sup, cx [F(LAC)] [v])(z)]) By the




Hausdorff-Young inequality,

([rFmacn v|>|r’)’:'g ([ uaor ”'TY
) ¢217é </R (IAC) ) (|v|2>5')"1‘

<=/ )™ (fr) = gl

2p

T

using Holder’s inequality with exponents ¢ :=p+ 1 = and ¢ = = =

The same Holder inequality gives
F(ul) (&)

</R 2 + (Im k(A))?

As [|F(Jul)|lz = |lu|lz = 1, taking the supremum over u,v gives the bound for
the operator norm

rd£>i < (/]R(S2 + (Imk(A))z)_zpdffp ([l l2-

1
1 %
4o =7 < 200k ) ) (52 [ (€4 (mk)2) 2 de) "
R
As C§°(R) is dense in L?P(R), there is a sequence (A, )nen in C§°(R)2*2 that
converges to A in || - [|2p; by the above estimate, A,, (Hy — X\)~! converges to
A(Hy — A)~! in operator norm and the statement of the lemma follows from
(a) and the fact that the space of compact operators is closed in the operator

norm. O
We are now ready to prove Theorem 2.

Proof of Theorem 2. The resolvent set of H, o(H), contains points in the upper
and the lower complex half-planes, as A € o(H) if |[ImA] > ||V]|. By the
resolvent identity, we find for A € o(H) N o(Hp)

(Hy— N "' (H-N"1=H-N"TBAH, -\

As (H —)\)~! and B are bounded operators, this resolvent difference is compact
by Lemma 2. We can now apply Theorem IX.2.4 of [8] to conclude the equality
of the essential spectra (all five types) of H and of Hy.

The complement of the essential spectrum of H, C \ o.(H), is open and
either connected (if Hy has at least one spectral gap) or has the upper and
lower complex half-planes as connected components (if o(Hy) = R — this hap-
pens if m = 0, see [13, Proposition 1]). In either case, each component of the
complement of o.(H) contains points of the resolvent set o(H), and we can
therefore apply Theorem XVII.2.1 of [9] to conclude that the spectrum of H
outside o.(H) only consists of isolated eigenvalues of finite multiplicity. O

10



In the statement of the eigenvalue exclusion theorem, we use the function
[: D) — (0,1], D(T') = {A € C?*2 | A has two distinct eigenvalues},

_ [det(vs,00)]

I'(A) = , (12)
o] o]

where vy € C?\ {0} are eigenvectors of A for the two different eigenvalues. As
the eigenvectors are uniquely determined up to a complex factor, T'(A) does not
depend on the choice of eigenvectors and is therefore well-defined. The domain
D(T) is an open subset of C2*2 and T is continuous. However, I' cannot be
continuously extended to all of C2*2; for example,

. 1 0 . 1 e
ahﬂ%r(o 1+s>_17’é0_shi%r<52 1)’

so I' has no continuous extension at the unit matrix. For the monodromy matrix
M of equation (1), we have the following statement.

Lemma 3. For all A € C, M(X\) € D(T') if and only if D(N) ¢ {-2,2}.
We can now state the main eigenvalue exclusion theorem.

Theorem 3. Letp > 1 and let V € LP(R)**?2N L% (R)?*2. Then A € C\o.(H)
is mot an eigenvalue of H if

VI < T(MA) v+ (M) r-() - (fFp=1),

p—1

IVl < IO 5= ) (k) (5E5) T (e 1),

where 02 (0.3)]
»+Y,
Y+(A) = 13
) SUPze(0,a] |<)0:|:(‘T7 >‘)| ( )

and @4 are the periodic functions in equation (6).

Remark. The additional factor that appears on the right-hand side of the in-
equality in Theorem 3 for p > 1 tends to 1 as p — 1, so the exclusion criterion
is formally continuous in p.

Proof. By the Birman-Schwinger Principle (see e.g. [2, Theorem B.2]), A is an
eigenvalue of Hy+ V if and only if —1 is an eigenvalue of A (Hy—\)~! B, where
A, B are as in equation (10).

Case 1: p = 1. For u,v € L*(R)?, we obtain from Theorem 1 and the

11



estimate (8), noting that e~ MM [t=2l < 1/

[(A(Ho — 2 Bu,v)| = ‘ /- (A(w) | G nswu) dy)Tm)dx

< /jo [A@) G, y, VIIB@) w(y)] [v(z)] dy dz

<o ([ ta@ip@las) ([ 1s@i i)

< CN) VI lollz l[ull2,

where we used Holder’s inequality and the estimate (11) in the last step. Setting
v := A(Hp—\)"! Bu and taking the supremum over u, we hence find the estimate
for the operator norm of the Birman-Schwinger kernel

IA(Ho = \)'B[ < () [V

Case 2: p> 1. Let r := % € (1,2) with conjugate exponent r’ = pQTpl > 2.
We now associate the matrix-valued functions A and B with multiplication
operators A5 : L (R)2 — L%(R)2, By, : L*(R)?> — L"(R)? and write the
Birman-Schwinger kernel as A(Ho — A)"'B = A,s 5 R,.(\)Ba,,, where the opera-
tor R,(\) : L"(R)%> — L™ (R)? is defined as in Theorem 1. For u € L" (R)?, we

find
: NEO\?
vaule = [ 1@ P ) < ([ 1a@IE ()7 i)
=2
< </ V(:E)||r’2dx> el
R
using Holder’s inequality with exponents % and % As TI’I:Q — p, we obtain

1
the operator norm estimate |4,/ 2| < ||V|3. Similarly, we find for u € L?(R)?

| Ba. vl = (/R B(x)u(x)|rdx)’l" < </R 1B (|u(x)|2)% dx)i

2—r

< ( / ||v<w>||frdx> lull,

using Holder’s inequality with exponents % and Q—i, and hence, as 57— = p,

1
the operator norm estimate ||Bs .|| < ||[V]Z. In conjunction with Theorem 1,
we obtain

[ACHy = 27 BI = 140 2R () Ba | < [Aw 2l 1B ) 118 |
p—1
2 p—1\ 7
< R
<c0 (g 50) W

12



. 1
since % = 2=

Now if A is an eigenvalue of H, then —1 is an eigenvalue of A(Hy— A\)B and

therefore ||A(Hoy — A\)~!BJ| > 1; noting that ﬁ =T(M(N) v+ (A) v—(A) since

©+(0,\) = vi(A), we obtain the eigenvalue exclusion criteria in the theorem by
contraposition. O

4 Behaviour near the essential spectrum

In this section we study the behaviour of the right-hand side of the inequalities
in Theorem 3, in particular as A approaches the essential spectrum o.(H). We
begin by finding a positive lower bound for the factors v4 () defined in equation
(13).

Theorem 4. (a) Let X € C such that D(\) ¢ [—2,2]. Then
e—a(lmk(k)—k\/m?-&-(lm)\)z) <V <1
(b) Let Ao € R be such that D(\o) € [~2,2]. Then
e” ¥ <liminf vy (A) < 1.
/\—)Ao

Proof. (a) The upper bound is immediate from the definition of L. For the
lower bound, we note that | |? satisfies the differential equation

Lles P = pue N B (Npl ) @B, (14)
with Tm k(\)  Tm \
FIm m — 1Im
B () = <m+i1m)\ ﬂmk(A))'

Indeed, the Floquet solutions uy (-, A) are solutions of the differential equation
(2), which can be rewritten in the form

v = <m + q(()x) —-A " q((Jx) " A) ule: ) (@ € R);

so by differentiation of pi(z,\) = us(z,\) et N* (z € R) we find that
¢y (x,A) = By(z, A) px(z, ), where

+ik(\)  m—q(z)+ A
Bi(m’)\):(erq(:r))\ igk(A)) (z €R).

Hence
d . -
7 1P (@ NP = (@, )T @l (2,A) + @ (2, )T o (2, 2)

=i (a, N7 (Bi(x, N) + By (, )\)T) o)

13



and equation (14) follows noting that B4 ()\) = B+ (z,)) + B+ (x,\)T does not
depend on z. From (14),

d d -
oo < | Lo | = loste VB WpaG )

< B o, M) 2.

To find the operator norm of the symmetric matrix By (), we calculate its
eigenvalues F2Im k() + 24/m?2 4+ (Im A)? and F2Imk(N) — 2¢/m? + (Im A)2,

and hence the spectral radius

IBL(N)]| = 2Tm k(X) + 2¢/m2 + (Im \)2.

Hence the above differential inequality gives
o2 (2, NP < o2 (0,A)|? @I ERF2VmIHIMND T (5 ¢ [0, a)

and so the lower bound in the Theorem.
(b) By part (a), we have

(V) — e—a(Imk(A)—h/mQ—&-(Im )\)2) >0
for all A € C such that ©(\) ¢ {—2,2}, so using equation (5), we find

0 < liminf (fyi()\) _ oo (tm k) +y/mP (I A)2))
A= Ao

lim efa(lm k(A)++/m2+(Im /\)2)

i () i () e
=hnifee =y, HnRe ) e

O

We now counsider the function I'(M (X)), which, as a composition of a conti-
nous and an entire function, is continuous. By Lemma 3 and the definition of T,
we see that T'(M (X)) > 0 for all A € C for which ©(\) ¢ {—2,2}. However, at
the points where ®(A) € {—2,2}, ['(M (X)) is not defined. These points are the
real values of A where either M (\) = +I — then ©’(A) = 0 and ) is an interior
point of a spectral band where two instability intervals meet — or M () # +I
has eigenvalue £1 with algebraic multiplicity 2, but geometric multiplicity 1 —
then ®’(\) # 0 and A is an end-point of a spectral band (cf. [3, Theorem 1.6.1]).
In the following we investigate the limiting behaviour of I'(M (X)) at these ex-
ceptional points. We can characterise the derivative of M at such points as
follows. Let A € R. Denoting the columns of the canonical fundamental system
® of equation (1) by v and v, we have

M'(X) = M(\) (1}558) Ij’l((AA))) "

14



where
L0V = /0 " (un(, A)or (3, 3) + a2, N (2, M) d,
b\ = /Oa(vl(ac, N2 + va(2, A)?) da,
B = [ (e AP + sl ) da

(see [3, eq. (1.6.4), (1.6.6)]). Note that I; (), I2(A) and I3()\) are complex in
general; however, for real spectral parameter they are real and have the following

property.
Lemma 4. For any A € R, I1(\)? < Io(\) I3(\). In particular, Is(\), I3(\) # 0.

Proof. Since A € R, u and v are R2-valued continuous functions. The Cauchy-
Schwarz inequality in L?(0,a)? then gives

LI(\)? = (/Oa u(z, \)Tv(z, \) dx)2
< [ e VP de [ oo P ds = RO 1)

with equality if and only if uw and v are linearly dependent functions; however,

the latter is impossible as u(0, \) = (é) and v(0,\) = ((1)> O

We can now find the limit of T'(M (X)) at a point A\g € R where D(\g) = £2,
distinguishing the cases of M(\g) = £I and of M (X\¢) # £I. Note that in the
following theorems 5 and 6, the limits A — Ag allow complex .

Theorem 5. Let A\g € R be such that M(\o) = sI, where s € {—1,1}. Then

lim D(M(\)) = 2 VI2(o) I3(h) — 11 (Mo)?

> 0.
A= Ao IQ()\()) + Ig()\o)

Proof. Since M is entire, we have by equation (15) for A € C, abbreviating
Ij = Ij(>‘0)a .7 € {132,3}3
M(X) = M(Xo) + M'(Xo) (A = Ao) + R(A = Xo)
s]I+s]I( hob > (A= Xo) + R(A— Ao)
I3 —h
= 8]I+S(>\—>\0)N()\—)\Q),
where

N(A) := (1}3 %1) + # (A€C).

15



Here R(A)/A is analytic with I{imo R(A)/A = 0. Clearly, w € C? is an eigenvec-
—

tor of N(A— )\g) for eigenvalue p € C if and only if it is an eigenvector of M(\)
for eigenvalue s (1 + (A — Ag) ). Therefore T'(M (X)) = T(N(X — X)) and we
only need to find /{inb L(N(A)).

—

L b
—Is -
purely imaginary eigenvalues +iy/IoI3 — I? with corresponding eigenvectors

wy = .12 2 > w- = —hii 1213_112 .
—Il—‘r’L\/IQIg—Il I?)

Hence by equation (12)

2(IyI5 — I? 4 il /1,13 — i3)|? LI; —I?
F(N(O))2:|(23 it/ - )" ) By~ 1

Using Lemma 4, we see that the matrix N(0) = ( ) has distinct

Iy (Ia + I3) I3 (I2 + I3) (I + I3)*

By analytic perturbation theory (see [11, Theorem II.1.8]), the eigenspaces of
N (A) converge to those spanned by wy and w_ as A — 0, and we conclude that

. L B B LIy —I?
Jim T(M(V) = lim V() = T(NV(0)) =2 Y22
which is positive by Lemma 4. 0
Theorem 6. Let Ao € R be such that ©(N\g) = £2, but M (o) # £I. Then

Jim T(M (X)) =0,

Proof. We can write the monodromy matrix as

a(\) b(N)
M) = <c()\) D(N) — a()\)> (A eC)

with entire functions a,b,c (and D). As the (Wronskian) det M (\) = 1 for all
A, we find
ch=a® —a* - 1. (16)
Therefore, if b(Ag) = ¢(Ag) = 0, then a(Ag) = D(Ag)/2 and hence M (\g) = =£I,
contradicting the hypotheses. So b(A\g) # 0 or ¢(N\g) # 0.
We first consider the case b(Ag) # 0. Then b # 0 in a neighbourhood of A.
For A in this neighbourhood, we can write, using equation (16),

Oy a() b\

= NDN)—a(N)>— )
a(M) (b)()\)a( )" =1 D(A) —a(N)

with eigenvalues DALY DNE 4 ”2@()\)L4 and eigenvectors

b()) b(A)
2

2
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Then |w4 (A\)| > |b(A)] and, by equation (12),

b DOE 4| |yBE 4]
PMO) < = F = o)

—0 (A= Xo).

If b(A\g) = 0, then ¢ # 0 in a neighbourhood of Ag, and for A in this neighbour-

hood we can write

aM)DN)—a(N)?-1
M(\) = (“(A) ey ) :

N D) —al))

this matrix has the same eigenvalues as above and eigenvectors

wi () = (W 2@@):(15 D) + a(A)> ,

—0 (A= Xo)-

5 Asymptotics for large Im A

The results of the preceding section show that the functions v+ do not tend
to zero at any point in the complex plane and that I' o M tends to zero only
(and exactly) at the end-points of the spectral bands. However, they do not
yet preclude the possibility that these functions become small for A\ far away
from the real axis; in fact, the lower bound in Theorem 4 (a) tends to zero as
|Im A\| = oo and hence is not very good in this respect. In the present section,
we show that in fact T'(M()\)) and 4 (M) tend to 1 as | Im A| — oo, which implies
that the level sets of T'(M(X))v+(A)v—(\) are located in strip neighbourhoods
of the real axis. The basis for this is provided by the following asymptotic of
the canonical fundamental system of a Dirac system with real-valued potential
on a bounded interval; this result may be of interest in its own right.

We focus on the case Im A > 0, as the asymptotics for Im A — —oo are the
same due to the symmetry of the Dirac equation (1) with real-valued g.

Theorem 7. Let ¢ € L'[0,a] be real-valued and m > 0. Let Q(z) = []q
(x €[0,a]) and let p € R, a > 0. Then, for each x € [0,a], the solution of the
ingtial value problem (1) with A\ = p + i« has the asymptotic for oo — oo

1/ . )
e~ D, +ia) = 5 (ez@(z)wz) n efzaze—z(czu)fw)) I

1, . ,
+3 (,el(Q(@*MI) T efzamefz@(m)fm)) o2+ Ounit(L). (A7)
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Here Oynif means that the bound is uniform in z € [0, a.

Corollary 1. Under the hypotheses of Theorem 7,
: 1 o) —
e~ O(z, p+ia) = 3 Q=1 (T — g5) + O(1) (a0 = 0)
for each x € (0, qa).

3

Proof of Theorem 7. Write ® = > o, ¢; with complex-valued functions ¢q, ¢1,
j=0

¢2, ¢3 and the Pauli matrices

S I N ) N A NP BT

Then the initial value problem (1) is equivalent to the system

() ~comeme () v (3 ) (2).
(1) = comirmcen () en (3 9 (2) o0

with initial values ¢¢(0) = 1, ¢1(0) = ¢2(0) = ¢3(0) = 0. We now make the
ansatz

2)=5 0w (o (-5 (oo

with functions wug, ug, us, us and given r(z) = —az — i(Q(x) — ux) (z € [0,4a]).
This is motivated by the fact that, with constants ui,us,us, us, the above are
the general solution of the decoupled equation system when m = 0. The initial
conditions translate to u1(0) = u2(0) = 1, uz(0) = u4(0) = 0. Using this ansatz
in the coupled differential equation system (19) and then multiplying the first
equation (from the left) with the row vectors (1,1) and (1,—1), the second
equation with the vectors (1,4) and (1, —i), respectively yields the two separate
differential equation systems

{u'l =me 2y {ug =me 2 uy

21
uly = me? uy uh = me? uz (21)

which are in fact the same system, but with different initial values. Focusing
on the system on the left-hand side first, we observe that

ur|'(2) < [ui (2)] = me**® Jua|(z),  Jual'(@) < Juj(@)] = m e |ug|(2).

The solutions exist on [0, a] and, as continuous functions, are bounded. By an
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integration by parts and using the initial values,

l(e) = s+ [l < " )
—2ax —2at
= 1)+ — dt
e ) - )+ 2 [ (0
2 T
< g 3¢ @+ g [ e w0 d (@ €(0,a)),
SO
"0 s Jus(e)
sup Jua(@)] < 2+ T2 sup fus(o
z€[0,a] 2a 2 z€[0,a]
and hence
(@) < g <
su — < —
IE[OI,)a] * 2 1-— ’nzzia T a

for a > m?a. Consequently,

x x 2
|ul<x>—1\s/ |u;|:/ met luy(t) dt < (¢ — 1) (z € [0,a]).
0 0 2a

Now applying an analogous procedure to the right-hand side system in equation
(21), we find

g () = Ju2] (0 /|u2|/<1+m/ 20t (1)

=1 2 e usl() )+ o /Oe2m|u|<>t

2 x
<1 T e fug(a) 4 2 /0 ¢~201 201 |y (4) i

- 2
SO )
mea
sup. fus ()] < 1+ 2 sup Jus(e)]
z€(0,a] @ zeo,a]
and hence
1
sup |ua(z)| < — <2
z€[0,a] 1-— n;aa

for o > m?a. Also,

s () = Juus] (0) + / s/ < m / & luy|(8) dt
0 0

m

_ Y Rax _1_E ant ltdt

m

m2 [? _
— (62‘” lug|(z) — 1) + — g2ote—20t lus|(t) dt
2a 0

2¢

IN
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and therefore

Jug(t)] < —
sup |us < — —— —_—
te[0,2] 201 — ™9 20 20 4 g

which gives

1 2z 2 2
sup Jus(t)] < (- ) s 2 e -y < 2 e

te[0,] 1-— "21—2“ 200 — m2a 2«
for all 2 € [0,a] and a > m?a. Consequently,

2m?a

s (z) — 1] Sm/ome_mt s (1)) dt < (@ € [0,d]).

By equation (20), we have thus obtained the asymptotics

(¢0> (17) — e azr eii(Q(I)f,uz) <1> (1 " O(ﬁ))
¢2 2 1 .

e’ T x)—px 1
# G @@ (1) (14 Oume(2).

e—ax iy ) 1 e2o¢r T i ) 1
(2;) (z) = ¢ (Q(z)—px) ( ) O( - )+76(Q( )—p) (z) Ounif(é),

and equation (17) follows. O

On the basis of the preceding theorem, we now find the asymptotics of the
quasimomentum and of T" o M (in Theorem 8) and of ¢4 and v+ (in Theorem
9).

Theorem 8. Let p € R, a > 0. Then we have the following asymptotics as
a — oo for the monodromy matriz of the periodic Dirac equation (1)

e M+ i) = 3 {QOHI (I~ gy) 4 O(2),
the discriminant
e D (p + ia) = e @@—ra) 4 O(),
the quasimomentum

k(u+ia)=u+ia—@+o(l)

(03

and the eigenvectors of M (p + ic)
. 1 . 1
weiutio) = (L) 40 w-eria)= (1) +od),

Consequently,
D(M(p+i0)) =14 0(2).
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Proof. The asymptotics of the monodromy matrix and hence the discriminant
follow directly from Corollary 1. As e~®®M (u+ic) has determinant e =2, solv-
ing its characteristic equation shows that the two eigenvalues of this matrix have
asymptotics e (Q(@)=ra) L O(L) and e20e (e~(@@)=ra) 1 O(1)), respectively.

1 1
a e

Hence the larger eigenvalue of M (u + icx) is

e (@@ =pa) | (L)) 2 cmiliria— 22 r0(L)a,
o
and we can read off the asymptotics for the quasimomentum. The asymptotic
form of the eigenvectors follows from that of the matrix e~ **M (u + i) and its
eigenvalues. O

Theorem 9. Let p € R, a > 0. For the periodic Dirac equation (1), the periodic
functions p+ of equation (6) have asymptotics

o (2, +ia)] = |0 (0, p+ i) (1 + Ounit(3)) (@ — o0)
uniformly in x € [0,a]. Consequently, the functions vy of equation (13) satisfy
Ye(p+ia) =1+0(3)  (a—o0).

Proof. By Theorem 8 and equation (17), observing that
3 (I=o09) vy (p+ia) = vy (u+ia) +O(2), 31+ 09)vy(p+ia)=0(3),
we obtain
1 (3, -+ i) = ROTIVTB(z 4 i) vy (11 + )
= ¢ilh=HL+0(R))z g—az O(x, p+ia) vy (p+ia)
= Q@ =% a+0umis(R)) (y, (1 + ia) + o(L))
+ o202 ,—i(Q(2)+ LM 2—2p2+Ounit (1)) O(L) + Oynit (L)
and hence
o+ (, o + i) = (1 + Ounit (7)) (v4 (1 + i) + O(3)) + Ounit (3,)
= [vo4 (1 + i) + Ounit () = l9+(0, o+ i) (L + Ounit (3))-

Analogous reasoning for ¢ _ (z, u+ia) does not work since the exponentially large
factor e =R+ (= p(\)#/® in equation (6)) leads to uncontrolled amplification
of the O(1) error term. However, the Floquet solution u_(z, \) is equal, up to
a constant factor, to osty(a — z, A) (z € R), where @4 is the Floquet solution
corresponding to the eigenvalue of modulus greater than 1 of the periodic Dirac
equation with potential §(z) := ¢(a — z) (z € R). Therefore the corresponding
periodic functions satisfy (up to a constant factor) |¢_(x, \)| = |@+(a—z, N)|, so

we obtain the asymptotics of |p_| by applying the above reasoning to |¢4|. O
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