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Abstract
The increasing complexity of modern power systems, driven by smart grid technologies, dispersed

generation, and renewable energy sources, has made power quality (PQ) evaluation more challen-

ging. Overuse of sensors and large data volumes further complicate accurate PQ assessment. This

paper proposes a flexible signal decomposition methodology using the nonsubsampled contourlet

transform (NSCT) for accurate PQ event detection. The NSCT’s multiscale, multidirectional, and

shift-invariant properties enable the decomposition of signals into transient and oscillatory
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components. High-frequency NSCT subbands are fused to extract oscillatory portions, while low-

frequency subbands are averaged to detect transients. Morphological component analysis (MCA)

and the split-augmented Lagrangian shrinkage algorithm (SALSA) optimize this process. Principal

component analysis (PCA) is applied to the extracted features to reduce dimensionality and

improve feature separability. These optimized features are used for training a multi-class support

vector machine, with its parameters further optimized for enhanced classification accuracy. The

proposed approach demonstrates superior frequency selectivity, adaptability, and computational

efficiency, making it suitable for robust PQ disturbance identification and a wide range of signal-

processing tasks.

Keywords
Signal processing, nonsubsampled contourlet wavelet transform, multi-class support vector

machines, power quality disturbances, smart grids

Introduction

Motivation and background
Power quality (PQ) refers to the characteristics of the electrical power supply that affect the per-
formance of connected electrical and electronic equipment (Ibrahim et al., 2023; Joga et al.,
2024; Mahmoud et al., 2023; Yi et al., 2024). With the proliferation of electronic devices, fast
control equipment, and renewable energy sources (RESs), maintaining a high-quality power
supply has become increasingly important. PQ disturbances can be broadly categorized into tran-
sient and steady-state disturbances (Hoummadi et al., 2024; Shao et al., 2024). Transient distur-
bances are short-duration events, such as voltage sags (VSG) (momentary drops in voltage),
swells (VSW) (momentary increases in voltage), interruptions (complete loss of voltage), and tran-
sients (rapid and short-term voltage variations). Steady-state disturbances are continuous issues,
such as harmonics (additional frequency components on top of the fundamental frequency) and
voltage fluctuations (small variations in voltage over time) (Kumar et al., 2022). The integration
of RESs, such as solar and wind, introduces additional challenges to PQ due to their intermittent
nature. Moreover, the simultaneous occurrence of multiple disturbances in the power system
(PS) complicates detection and mitigation (Krishna Ponukumati et al., 2024; Masoum et al.,
2010). The development of smart grids, incorporating advanced sensing, communication, and
control technologies, aims to enhance PQ. However, to effectively improve PQ, it is crucial to
accurately identify disturbances and their sources. This allows for the deployment of appropriate
mitigation strategies. System operators have recognized the importance of monitoring PQ distur-
bances to maintain a stable and reliable power supply.

Consequently, efforts have been made to develop intelligent adaptive techniques for the auto-
matic detection of multiple PQ disturbances. These techniques typically involve the use of
advanced algorithms and machine learning approaches to PS data and identify disturbances in real-
time (He et al., 2013). Diagnosing PQ disturbances often involves a multi-stage process, including
signal processing, feature extraction, and classification (Montero et al., 2017; Shukla et al., 2014).
Various techniques are employed at each stage to effectively identify and classify the disturbances.
Commonly used signal processing methods include fast Fourier transform (FFT), discrete wavelet
transform (DWT), and wavelet packet transform. Model-based parametric methods are employed to
estimate the parameters of sinusoidal components in a signal. Once the signal has been processed,
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relevant features are extracted, such as statistical characteristics, frequency-domain information,
and time-domain features. These features are then used as inputs to classifiers, such as decision
tree (DT), fuzzy logic, artificial neural network, and support vector machine (SVM), to identify
and categorize PQ disturbances (Abdelsalam et al., 2012; Arunadevi et al., 2024; Bracale et al.,
2012).

In recent years, multimodal medical image fusion based on multiresolution decomposition has
emerged as a powerful technique for extracting comprehensive information from source images of
varying modalities. This method has advanced rapidly and gained widespread application in the
past few decades. For instance, (Yao et al., 2016) combined medical images using WTs.
Ref. (Zhang et al., 2011) fused CT and MRI using curvelet transforms, while (Biswal et al.,
2009) developed a contourlet transform (CT)-based fusion technique for multimodal medical
imaging. Ref. (Cen et al., 2023) fused MRI and SPECT using the nonsubsampled contourlet trans-
form (NSCT). The NSCT, introduced by Biswal et al., 2014), is a well-known multiscale decom-
position method that has been successfully used in applications such as image denoising, and image
augmentation (Liu et al., 2015). The NSCT offers unique advantages, including its multiscale,
multidirectional, and shift-invariance properties. These features allow it to capture higher dimen-
sional singularities, such as edges and contours, which are inadequately represented by wavelets.
Additionally, NSCT avoids the pseudo-Gibbs phenomena that arise in the contourlet transform.
As a result, NSCT is particularly beneficial for image fusion, as it captures correlations between
distinct subbands and improves the overall fusion process (Hu et al., 2008). While NSCT-based
image fusion algorithms have demonstrated strong performance in the medical domain, current
approaches often overlook the inter- and intra-scale dependencies of the decomposition coeffi-
cients. These relationships are important, as the features exhibit large tails and non-Gaussian dis-
tributions, which can significantly affect the fusion efficiency. Maximizing the statistical
correlations between the subband coefficients can greatly enhance the performance of the fusion
process (Thirumala et al., 2018).

Ref. (Hajian and Akbari Foroud, 2014) collectively explain how multiscale, multidirectional,
and shift-invariant properties of the NSCT can be used to improve the extraction of features
from complex datasets, such as those encountered in PQ analysis. These properties allow for a
more detailed representation of the disturbances, which is essential for their accurate detection
and classification. Specifically, references like (Li et al., 2013; Tahir et al., 2023) highlight the
importance of maximizing statistical correlations between subband coefficients, which can signifi-
cantly improve feature extraction efficiency and classification accuracy. Additionally, the ability of
NSCT to handle noisy data, isolate important features, and avoid distortions caused by misregistra-
tion makes it a powerful tool for PQ monitoring, especially in real-time applications where high-
frequency sampling and large datasets are common.

Research gap
A major research gap in the current literature on PQ disturbance detection and classification lies in
the underutilization of advanced multiscale and multidirectional decomposition techniques, such as
the NSCT, which can better capture the complex and localized features of PQ disturbances. Most
existing approaches fail to fully exploit the inter- and intra-scale dependencies of decomposition
coefficients, which are crucial for enhancing feature extraction, especially in the presence of
non-Gaussian distributions and large-tailed features common in PQ signals. Furthermore, while
various signal processing methods, such as wavelets and Fourier transforms, are widely used for
PQ analysis, they often struggle with the high-dimensional and noisy nature of real-world PSs,
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particularly in dynamic grid environments. Additionally, the integration of machine learning tech-
niques, including SVM, with advanced decomposition methods is still in its nascent stages, and
there is limited research on optimizing the combination of these techniques to handle large-scale
datasets efficiently. Addressing these gaps by incorporating NSCT and refining feature extraction
methods, as well as enhancing the scalability of machine learning models, could significantly
improve the accuracy and robustness of PQ disturbance detection in complex, real-time grid
conditions.

Major contribution
The major contribution of this work lies in the integration of the NSCT with SVM for the classi-
fication of PQ disturbances. By leveraging the multiscale, multidirectional, and shift-invariant prop-
erties of NSCT, this approach captures finer details and localized features of PQ disturbances that
traditional methods, such as wavelet transforms, often overlook. This allows for improved feature
extraction, particularly for complex disturbances such as VSG, VSW, and transients, which are
characterized by non-Gaussian distributions and large tails. Additionally, this method addresses
the inter- and intra-scale dependencies of the decomposition coefficients, optimizing the extraction
of features that are more statistically significant for classification tasks.

Another significant contribution is the application of principal component analysis (PCA) to
reduce the dimensionality of the extracted features before they are fed into the SVM classifier.
PCA helps to eliminate redundant or less informative features, thus improving the efficiency and
accuracy of the classification process. This dimensionality reduction enhances the SVM’s ability
to effectively classify PQ disturbances by focusing on the most relevant features while reducing
computational complexity. Furthermore, the research explores optimization strategies for SVM
classifiers, including kernel selection and feature scaling, to enhance their performance. By combin-
ing NSCT with PCA and SVM, this work provides a powerful and scalable framework for real-
time, accurate PQ disturbance classification in modern PSs, especially as they integrate RESs
and become more complex.

NSCT-based signal decomposition technique
NSCT is a shift-invariant contourlet overcomplete transform with flexible multiscale, multidirec-
tional picture expansion (Li et al., 2013). The nonsubsampled pyramids (NSP) and directional
filter bank (NSDFB) stages make up the NSCT decomposition process. The former decomposes
multiscale, whereas the latter decomposes directionally. Each level of the NSP separates pictures
into low- and high-frequency subbands. NSP generates k + 1 sub-band pictures, one low-frequency
and k high-frequency, with a decomposition level of k. NSDFB decomposes NSP high-frequency
subbands at each level.

For a given subband, l decomposition directions provide 2 l directional subbands with the same
size as the original picture. After repeatedly decomposing the low-frequency component, an image
is divided into one low-frequency sub-signal and a sequence of high-frequency directional
sub-band signal turns (k j = 1 2lj), where lj is the number of decomposition directions at the j
scale. Figure 1 represents the pyramid structure of NCT (Li et al., 2013).

The NCT decomposes an input signal into subbands using a series of low-pass and high-pass
filters. Each level of decomposition splits the signal into two subbands: the low-pass subband cap-
tures lower frequencies, while the high-pass subband retains higher frequencies or details. By recur-
sively applying the NCT up to the desired level, a multilevel signal representation is achieved.
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Constraints on the scale (α) and shape (β) parameters, along with proper filter design, ensure accur-
ate decomposition and reconstruction while preserving the signal’s characteristics without
redundancy.

The NSP, constructed through iterated nonsubsampled filter banks, achieves multiscale decom-
position by representing signals at multiple resolutions. The ideal frequency response of the non-
subsampled pyramid, shown in Figure 1, ensures that details at different scales are effectively
captured. This construction process involves cascading nonsubsampled filter banks, where each
subsequent level of decomposition uses filters upsampled by a factor of 2 in both dimensions.
This upsampling allows finer-scale information to be captured efficiently, employing the ‘à
trous’ algorithm, a wavelet decomposition technique. Cascading is performed by connecting the
output of one analysis block to the input of the next, enabling multiscale decomposition through
iterative filtering. The equivalent filters used for k-th level cascading in the nonsubsampled
pyramid are critical for ensuring perfect reconstruction, where the reconstructed signal closely
matches the original.

Investigations on the proposed signal processing technique
The proposed method integrates the NSCT with SVM for the effective detection and classification
of PQ disturbances. This method leverages the NSCT’s ability to capture detailed features from the
PS signals, and the classification strength of SVM to accurately categorize disturbances like voltage
sags, swells, harmonics, and transients. The approach is designed to improve the accuracy and effi-
ciency of PQ disturbance classification in complex PS. The first step in the proposed method is
signal preprocessing, where raw PS data is cleaned by removing noise and irrelevant components.
Preprocessing techniques such as bandpass filtering and normalization are employed to prepare the
signal for further analysis. This step ensures that only the essential parts of the signal, free from
noise, are analyzed, which is crucial for accurate feature extraction. Following the preprocessing,
the signal is subjected to feature extraction using the NSCT.

The NSCT is a multiresolution, multidirectional, and shift-invariant method that decomposes the
signal into multiple frequency subbands. Unlike traditional transforms, NSCT captures finer details
and edges within the signal, making it particularly useful for detecting subtle disturbances in PQ
data. By providing a shift-invariant decomposition, NSCT can handle non-stationary and
complex signals commonly encountered in PQ monitoring. The subbands obtained from NSCT
are then used to extract features that represent key characteristics of the disturbances. Since

Figure 1. Block diagram of NSCT of an input signal x[n].

Sinha et al. 5



NSCT generates a large number of features, dimensionality reduction is necessary to make the data
manageable. The PCA is applied to reduce the number of features while retaining the variance of
the data. PCA identifies the most significant features by transforming the data into a smaller set of
components. This process not only reduces the computational load but also enhances the perform-
ance of the classification algorithm by eliminating redundant and irrelevant features. Once the fea-
tures are extracted and reduced in dimensionality, they are fed into an SVM classifier for
categorization. SVM is a powerful supervised machine learning algorithm known for its effective-
ness in high-dimensional spaces. It works by finding an optimal hyperplane that separates the dif-
ferent classes of PQ disturbances. In this method, SVM is trained using the features derived from
the NSCT and PCA steps, enabling it to classify disturbances such as voltage sags, swells, harmo-
nics, and transients accurately. To improve the performance of the SVM classifier, optimization
techniques are applied. These techniques include selecting the best kernel type (linear, polynomial,
or radial basis function), scaling the features to a comparable range, and applying regularization to
prevent overfitting. These optimizations ensure that the SVM classifier can handle a variety of dis-
turbance types and generalize well to unseen data.

Finally, the proposed method is designed to be scalable and suitable for real-time implementa-
tion in large-scale power grids. With the increasing amount of data generated by distributed sensors,
the method incorporates strategies for efficient computation. Distributed and parallel computing fra-
meworks can be utilized to manage the computational demands of the NSCT and SVM processes,
while edge computing at sensor nodes can reduce the load on centralized systems by enabling loca-
lized pre-processing and denoising. These techniques ensure that the method can handle large data-
sets with high-frequency sampling and deliver real-time disturbance detection and classification.

NSCT method
The NSCT consists of two main components: the NSP and the NSDFB. These components work
together to achieve multiscale and directional decomposition of signals. The NSP performs the mul-
tiscale decomposition by dividing the signal into low-frequency and high-frequency subbands.
Specifically, at the k-th decomposition level, the NSP produces a total of k + 1 subbands: one low-
frequency subband and k high-frequency subbands. This process helps break down the signal at
different scales, allowing for a detailed representation of both coarse and fine details (Kim et al.,
2023).

In the next stage of the NSCT, the high-frequency subbands generated by the NSP are further
decomposed using the NSDFB. The NSDFB applies directional decomposition, where the signal
is divided into multiple directional subbands. If l represents the number of directions chosen for
the decomposition, then 2 l directional subbands are obtained. These directional subbands maintain
the same size as the original signal, preserving key information while allowing for the detailed ana-
lysis of edges and contours. The process of decomposition continues iteratively, where each low-
frequency subband undergoes further decomposition, resulting in additional high-frequency direc-
tional subbands. The final result is a set of directional subbands that represent the signal at different
scales and orientations. The correlation coefficients of the variables in the NSCT coefficients show
significant correlations that are different from zero, as illustrated in Figure 1. These correlations
reflect the interdependence between the different decomposition levels and directions. To model
these relationships, a generalized Gaussian distribution (GGD) is applied to approximate the distri-
bution of the NSCT subband coefficients. The GGD is characterized by two parameters: the shape
parameter (β) and the scale parameter (γ). The shape parameter controls the overall shape of the
distribution, while the scale parameter adjusts the spread. The GGD model is capable of
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representing a wide range of distribution types, from super-Gaussian (heavy-tailed) to sub-Gaussian
(light-tailed) distributions. This flexibility makes the GGD a useful tool for modeling the complex
distributions of NSCT coefficients in PQ disturbance analysis. By adjusting the parameters β and γ,
the GGD model can be tailored to fit the observed data, improving the accuracy of the signal ana-
lysis (Kim et al., 2023; Li et al., 2016).

P(x; α, β) = β

2αI
I

β

( ) e−
|x|
α( )β (1)

where I ′(·) is the Gamma function, α is the scale parameter (width of the PDF peak), and β is the
shape parameter which tunes the decay rate of the density function. In this context, the parameters α
and β are computed using the maximum likelihood (ML) estimator. This estimator finds the values
of α and β that maximize the likelihood function based on the observed data.

L(x; α, β) = log
∏n
i=1

p(xi; α, β) (2)

In this case, α and β are parameters that need to be estimated. We can obtain the unique root by the
likelihood equations below; here Ψ(·) denotes the digamma function:

∂L(x; α, β)
∂β

= L

α
+

∑N
i=1

β|xi|βα−β

α
= 0 (3)

∂L(x; α, β)
∂β

= L

β
+

LΨ
1
β

( )
β2

−
∑N
i=1

|xi|
α

( )β

log
|xi|
α

( )
= 0 (4)

Let β be fixed and β> 0; then equation (4) has the unique solution, which is the real and positive value:

α̂ = β

N

∑N
i=1

|xi|β
( )1

β̂

(5)

Combining equations (4) and (5), the shape parameter ft can be solved by the following transcendental
equation:

1+
Ψ

1

β̂

( )
β̂

−
∑N

i=1 |xi|β̂ log |xi|∑ |xi|β̂
+

log (
β̂

N

( )∑N
i=1 |xi|β̂

β̂
= 0 (6)

In (6), the determination β̂ can be effectively solved using the Newton–Raphson iterative procedure (Li
et al., 2013) and the algorithmwas described in (Ozgonenel et al., 2013). Therefore, with only two para-
meters, we can accurately characterize the marginal distribution of the NSCT coefficients. The
Dependency of Different NSCT Subbands: the Kullback–Leibler Divergence (KLD) is a way to
measure the difference between two probability distributions. The KLD is a concept often used in infor-
mation theory and statistics to quantify how one distribution differs from another. The KLD is often
denoted as D_KL (P || Q), where P and Q are the two distributions being compared. Here P is repre-
sented by a probability density function (PDF) which is denoted as p (X; θ2) parameterized by θ2, andQ
is represented by a PDF denoted as p (X; θ2) parameterized by θ2.
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Fusion of high-frequency coefficients for enhanced signal representation
The high-frequency subbands of a signal typically contain critical information regarding noise, harmo-
nics, or distortion, which are essential for accurate signal analysis (Li et al., 2013; Singh et al., 2023). In
many applications, different signal modalities provide overlapping and unique insights into the same
subject or scene. To effectively combine these diverse pieces of information, a selection rule is imple-
mented to prioritize and capture the most significant features of the source signal for fusion.

This fusion method focuses on high-frequency subbands and introduces the concept of weight
maps to guide the process. Weight maps assign importance to different coefficients based on their
relevance to the overall signal, ensuring that the fusion process emphasizes the most critical com-
ponents. Due to the multiscale and multidirectional characteristics of NSCT coefficients, there are
inherent dependencies between high-frequency coefficients across different subbands. These
dependencies are utilized to update and enhance the coefficients, ensuring a more accurate represen-
tation of the original signal.

The process involves updating the high-frequency coefficients by leveraging the relationships
between them across NSCT subbands. Once updated, these coefficients are combined according to
the weight maps, which control the fusion process by emphasizing important subbands. The goal is
to enhance the fused signal, capturing fine details while preserving the overall complexity.
However, the success of this method depends on the specific implementation of the fusion rule and
the parameters chosen. A balanced approach is sought to maintain the integrity of critical features
while minimizing the introduction of artifacts. The method’s effectiveness will vary depending on
the nature of the source signal and the specific fusion task at hand (Li et al., 2013; Singh et al., 2023).

Computing the regional standard deviation Dλ(x, y)

Dλ(x, y) =
																																																				∑
mϵM, nϵN

ω(m, n) × [Cλ(x+ m, y+ n)− Sλ(x, y)]2
√

(7)

1. Calculating the normalized Shannon entropy (Li et al., 2013; Singh et al., 2023).

Eλ(x, y) = 1
|R|

∑
i.j

(Cλ
0(i, j))

2 log (Cλ
0(i, j))

2 (8)

2. Computing the weights (δλ, ξλ) of the standard deviation Dλ(x, y) and the information entropy
Eλ(x, y), respectively.

δλ = |Dλ(x, y)|α
|DA(x, y)|α + |DB(x, y)|α ; ξλ =

Eλ(x, y)
EA(x, y)+ EB(x, y)

, (9)

3. Fusion for low-frequency

Let Cλ
0(x, y) denote the low-frequency subband coefficient at location (x, y); λ is input image A, B.

Finally, the fused image can be obtained by (Li et al., 2013; Singh et al., 2023).

Cλ
0(x, y) =

∑
λ=A,B

[δλCλ
0(x, y)+ ξλC

λ
0(x, y)] (10)

High-frequency subbands capture detailed information like edges, lines, and corners. The goal of this
process is to capture salient information from different imaging modalities and enhance the overall
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fusion performance. Updating of the High Frequency Subband Coefficients. First, we calculate the
horizontal dependency jsdl,θ,h between coefficients with different directions at the same scale l as

jsdl,θ,h(x, y) =
∑K

j=1.j&num;i

DJS (Cl,θi (x, y), Cl,θj (x, y)), (11)

where K is the total of the subbands at the l th scale.
Then we calculate the vertical dependency jsdi,θ, v between the specified subband’s (for instance

subband i) parents and children

jsdl,θ,v(x, y) =
∑K
j=1

DJS (Cl,θi (x, y), Cl−1,θj (x, y))+ DJS(Cl,θi (x, y), Cl+1,θj (x, y)) (12)

Further, the horizontal and vertical dependency components are normalized, respectively,

jsdl,θ,h(x, y) = jsdl,θ,h(x, y)
jsdl,θ,h(x, y)+ jsdl,θ,v(x, y)

, jsdl,θ,v(x, y) = jsdl,θ,v(x, y)
jsdl,θ,h(x, y)+ jsdl,θ,v(x, y)

(13)

Finally, the high-frequency NSCT coefficients are revised as

Cl,θ (x, y) = Cl,θ (x, y)
																																		
1+ jsdl,θ,h(x, y)2 + jsdl,θ,v(x, y)2

√
(14)

The process of constructing weight maps using saliency information and applying a Gaussian filter
to each high-pass subband. These weight maps play a crucial role in guiding the fusion algorithm
for achieving an informative and balanced fused signal. By assigning appropriate weights to differ-
ent parts of the subband coefficients based on their saliency levels, the fusion process is enhanced
and prioritizes significant elements such as edges and corners.

Sl,θ(x, y) = |Cl,θ(x, y)|∗grg, θg (x, y) (15)

where g(·) is a Gaussian low pass filter, whose size is (2rg + 1) × (2rg + 1), and the parameters rg
and θg are set to 5. Next, the weight maps are determined by comparison of the saliency maps
(Snl,θ(x, y), n ϵ [A, B])

Wn
l,θ(x, y) =

1
0

{
if (Snl,θ(x, y) = max (SAl,θ(x, y), SBl,θ(x, y))
otherwise

(16)

Finally, the fused subband coefficients CF
l,θ(x, y) can be obtained by the weighted summation

CF
l,θ(x, y) = WA

l,θ(x, y)C
A
l,θ(x, y)+WB

l,θ(x, y)C
B
l,θ(x, y) (17)

Determination of energy to capture the features

The challenges associated with evaluating the sparsity of wavelet coefficients obtained through the
NSCT decomposition. Unlike traditional WTs, NSCT employs a two-channel bandpass filter for
iterative signal decomposition, resulting in a sequence of wavelet coefficients that can vary in
length. This poses difficulties when using traditional measures like Shannon entropy to evaluate
sparsity accurately. The value is called “SAEWSE” to address this issue (Li et al., 2013; Singh
et al., 2023).
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p(j)i = Eλ(x, y) / Nj |w(j)∑ j+1
j=1

∑Nj

i=1
Ej

Nj
|wj

i|
(18)

SAEWSE = −
∑J+1

j=1

∑Nj

i=1

p(j)i ln p(j)i (19)

where Ej, Nj, and w( j) I represent the NSCT energy which is represented in equation (11), length of
the sequence, and coefficients of wavelets respectively up to the jth layer. To address this challenge,
it appears that a different measure called “SAEWSE” (sub-band average energy-weighted wavelet
Shannon entropy) is introduced.

This measure might be designed specifically to evaluate the sparsity of NSCT coefficients in a way
that accounts for their unique properties and the variations caused by the decomposition process.

Y = [Y(JL S , N), Y2(2, N), · · · Y(J H S , N)] T ∈ R(J H S − JL S + 1) × N (20)

EY(J, N) = ||HILBERT(Y(J, N))||2, J L S ≤ J ≤ J HS (21)

We acquire the frequency domain sequence FE(j,) by performing the M-point discrete Fourier trans-
form (DFT) on Ey(j, n), and from this, we can derive the power spectrum PE(j,) of the layer j signal
envelope.

PE( j, ω) = FE( j, w).F∗
E( j, w)

M
(22)

In this case, the Power SpectrumKurtosis (PSK) is defined as the complex conjugate of the power spec-
trum (FE*( j, ω)).

PSK(j) =
1

M / 2

∑M/2

i=1
[PE( j, w)− PE ( j, w)]

4

1
M / 2

∑M/2

i=1
[PE( j, w)− PE ( j, w)]

2
[ ]2 (23)

Based on Figure 2, it is observed that the value of SAEWAE (presumably an evaluation metric) is the
lowest among the presented options with respect to GCD and JSD.

Figure 2 shows how energy is distributed between the approximation and detail components
across different decomposition levels. The approximation energy captures the low-frequency
content, while the detail energy represents high-frequency components such as disturbances and
noise. At Level 3, a significant drop in approximation energy is observed, accompanied by a sub-
stantial rise in detail energy. This indicates that critical high-frequency information, essential for
distinguishing PQ disturbances, is concentrated at this level. Hence, Level 3 is chosen as the
optimal decomposition level to strike a balance between preserving meaningful features and avoid-
ing over-decomposition, which could introduce redundancy and increase computational load.

Parameters selection
This study presents a technique to decompose a signal into its oscillatory and transient components.
To achieve this, sparse representations of these components are obtained by using the parameters δλ
and ξλ in the NSCT. The oscillatory component is represented by high δλ and ξλ values in NCT,
whereas the transient component is modeled with low δλ and ξλ values. The separation of these
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components is effectively facilitated by morphological component analysis (MCA), which
leverages the limited coherence between the low and high values of δλ and ξλ. To address the opti-
mization problem inherent in MCA, the split-augmented Lagrangian shrinkage algorithm (SALSA)
(Singh et al., 2023) is employed in this study. This method iteratively updates the oscillatory and
transient components, facilitating the efficient decomposition of the signal. The ability of the NCT
to encode distinct frequency and temporal characteristics across different subbands enhances the
overall representation of the signal components (Biswal et al., 2009; Zhang et al., 2011).

The parameter selection process is key to achieving a balance between computational efficiency
and the accuracy of the decomposition. By fine-tuning the values of δλ and ξλ, the desired fre-
quency decomposition can be accurately achieved. This enables the separation of oscillatory and
transient features, capturing the full complexity of the signal for more effective analysis. If X is
the signal, then a signal is divided into high and low oscillatory components. The objective of
MCA is to find out X1 and X2 separately. Where X1 and X2 are the sparse representation of the
matrix. X1 is sparsely represented by NCT1 with JSD. The transformation matrix is denoted by
φ1. Similarly, X2 is sparsely represented by NCT2 with parameters of different JSD. A transform-
ation matrix is denoted by φ2 (Biswal et al., 2009; Zhang et al., 2011).

X = X1 + X2 (24)

{Wopt
1 , Wopt

2 } = arg
w1

min
w2

∥ W1 ∥1 +∥W2 ∥1

Such that
X = ϕ∗

1W1 + ϕ∗
2W2 (25)

where W1, represents the Calculation of the NCT1 coefficients of the signal X1.where W2 repre-
sents the calculation of the NCT2 coefficients of the signal X2.

{Wopt
1 , Wopt

2 } = arg
w1

min
w2

∥ W1 ∥1 +∥W2 ∥1∥ X − ϕ1
∗W1 − ϕ2

∗W2 ∥2≤ ε (26)

Figure 2. A plot illustrating the approximation and detail energy values at each decomposition level,

highlighting the energy redistribution as decomposition progresses.

Sinha et al. 11



{Wopt
1 , Wopt

2 } = arg
w1

min
w2

∥ X − φ∗
1W1 − φ∗

2W2 ∥22 +λ1 ∥ W1 ∥1 +λ2 ∥ W2 ∥1 (27)

Using optimal coefficient vector Wopt
1 , Wopt

2 the component X1 and X2 can be calculated.

J(W1 , W2) = ∥X − φ∗
1W1 − φ∗

2W2 ∥22 +λ1 ∥ W1 ∥1 +λ2 ∥ W2 ∥1 (28)

Here λ1 and λ2 are the Lagrangian Multipliers

λ1(k) = θ1 ∥ ψ (k)
1 ∥2 λ1(k) = θ2 ∥ ψ (k)

2 ∥2 (29)

The objective of minimizing the function in signal decomposition with sparsity constraints is
crucial for achieving effective signal analysis (Biswal et al., 2009; Zhang et al., 2011). To
address these challenges, the SALSA is employed, a specialized optimization method designed
to efficiently solve non-smooth and constrained optimization problems. SALSA’s iterative updat-
ing of variables while considering constraints makes it well-suited for tackling these complex pro-
blems. The core principle of SALSA revolves around the following minimization problem. The
generic formulation of the unbounded optimization issue, as described in equation (14), is
(Biswal et al., 2009; Zhang et al., 2011):

min
w

{f1(W)+ f2(W)} (30)

where

f1(W) = λ1 ∥ W1 ∥1 +λ2 ∥ W2 ∥1 (31)

f2(W) = ∥X − φ∗W ∥22 (32)

where

φ∗=φ∗
1, φ∗

2 and W = W1

W2

[ ]
min
W ,U

{f1(U)+ f2(W)} (33)

Such that U =W, where U =
U1

U2

[ ]
is used and φ∗

1, φ∗
2 are the azimuth and elevation angles,

respectively.

U(k+1) = argmin
U

f1(U)+ μ

2
U −W (k) − d(k)

2
2

{
= argmin

U
λ1 ∥ U1 ∥1 +λ2 ∥ U2 ∥1 +

μ

2
U −W (k) − d(k)

2
2

{
(34)

W (k+1) = argmin
W

f2(W)+ μ

2
U(k+1) −W − d(k)

2
2

{
= argmin

W
∥ X − φ∗W ∥22 +

μ

2
U(k+1) −W − d(k)

2
2

{
(35)

d(k+1) = d(k) − (U(k+1) −W (k+1)) (36)

The optimal U of μU−y22
2 + λ ∥ U ∥1 is given by Uopt = soft y, λ

μ

( )
soft(y, T) = max

y
(0, 1− T / |y|) (37)

12 Energy Exploration & Exploitation 0(0)



U(k+1) = soft(W (k) + d(k), λ / μ) (38)

W(k+1) = ((φ∗)Tφ∗ + μI)−1((φ∗)TX + μ(U(k+1) − d(k))) (39)

W (k+1) = 1
μ

I − 1
μ+ 2

φφ∗
( )

(φX + μ(U(k+1) − d(k)))

= 1
μ+ 2

φ(X − φ∗(U(k+1) − d(k)))+ (U(k+1) − d(k)) (40)

d(k+1) = W(k+1) − (U(k+1) − d(k)) = 1
μ+ 2

φ(X− φ∗(U(k+1) − d(k))) (41)

U(k+1) = soft(W(k) + d(k), λ / μ) (42)

V (k+1) = U(k+1) − d(k) (43)

d(k+1) = 1
μ+ 2

φ(X − φ∗V (k+1)) (44)

W (k+1)=d(k+1) + V (k+1) (45)

Even when wavelets have the same, their waveforms can vary significantly across different sub-
bands. The δλ and ξλ values in NSCT alone do not determine the specific shape or characteristics of
the wavelet waveform in each subband. Other factors, such as the specific subband frequencies and
filter characteristics, can influence the shape and properties of the wavelet waveforms.

Noise reduction by NSCT
The NSCT has proven to be highly effective in reducing noise in signals due to its ability to provide
multiscale and multidirectional decomposition. By decomposing the signal into various subbands,
NSCT isolates the low-frequency components, which typically carry the essential information, from
high-frequency components that often correspond to noise or distortion. The high-frequency sub-
bands, containing noise or undesired fluctuations, can be selectively filtered out through threshold-
ing techniques. This allows the signal to be denoised without losing crucial features. The directional
nature of NSCT further helps in capturing fine details of the signal while maintaining a high degree
of accuracy in the noise reduction process. By exploiting the correlations between subbands and
applying appropriate thresholding or fusion strategies, NSCT enhances the signal’s clarity,
making it a robust method for effective noise reduction in signal processing (Lee et al., 2018).

In Figure 3 a detailed comparison of the noisy signal, denoised signal, and original signal, along
with their corresponding spectrograms. In the time-domain plots, the first subplot displays the noisy
signal, which results from adding a high-frequency noise (150 Hz) to the clean 50 Hz signal. The
second subplot shows the denoised signal after applying the proposed denoising method, where the
noise has been significantly reduced, making the signal closer to its original form. The third subplot
presents the original, clean signal as a reference. The spectrograms further enhance this analysis by
visualizing the frequency content of each signal. The spectrogram of the noisy signal clearly shows
the broad frequency spectrum introduced by the noise. In contrast, the spectrogram of the denoised
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signal reveals that the high-frequency noise has been attenuated, allowing the 50 Hz signal to dom-
inate, and the spectrogram of the original signal only highlights the 50 Hz frequency. Together, the
time–domain plots and spectrograms effectively illustrate the impact of the denoising method on
both the temporal and frequency characteristics of the signal (Lee et al., 2018).

Choice of filter
In the proposed method, the NSCT is employed for signal decomposition and noise reduction. The
NSCT is considered suitable for processing multi-dimensional signals and is capable of capturing
both smooth contours and abrupt signal variations, which makes it ideal for denoising PQ signals
with complex disturbances. The filter chosen for the NSCT-based method is designed to work
effectively with the contourlet transform, which is known for offering superior performance over
traditional wavelet-based methods, especially when handling signals that exhibit edge-like features
or anisotropic characteristics. The NSCT itself is a non-subsampled, multi-scale, and multi-
directional transform that allows for optimal separation of the signal and noise, ensuring that
important features are preserved while minimizing noise (Li et al., 2017).

The key feature of the NSCT that influences the filter selection is its ability to capture directional
information adaptively at various scales. This capability is crucial for analyzing PQ events such as
VSG, VSW, transients, and harmonic distortions. The filter used in the NSCT method applies a
low-pass filter in the transform domain to the subband coefficients obtained after decomposition.
The filtering process involves the use of thresholding techniques, such as hard or soft thresholding,
to attenuate noise components while preserving the signal’s essential features (Li et al., 2017).

The choice of the NSCT-based filter is influenced by its ability to handle the complexities of PQ
signals, which often contain sharp discontinuities and local variations. Compared to other trad-
itional approaches, this method has been shown to yield better results in terms of both visual
and quantitative signal quality after denoising, as demonstrated in (Li et al., 2017), in which the
non-subsampled contourlet transform was introduced and shown to be highly efficient in capturing

Figure 3. Noise removal by NCT.
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the inherent structures of signals. The adaptive nature of the NSCT filter ensures that various types
of noise, including Gaussian, impulsive, and high-frequency noise, are effectively reduced, while
the integrity of the original signal’s key features is preserved.

The suggested method’s algorithm for choosing parameters
The selection of the NSCT parameters can be performed using an algorithm that considers the spe-
cific requirements and characteristics of the signal being processed. Here’s a general algorithm for
selecting the parameters in NSCT:

Define the objectives: Determine the specific objectives you want to achieve with NSCT. This
could be signal compression, denoising, feature extraction, or any other desired signal-processing
task. Based on the given input signal X(n) and a set of candidates r ∈ [rlow: τr: rup], where τr is the
step size of r, the following iterative procedure can be followed to determine the appropriate com-
bination with the maximum score:

1. Set J = np, where np is the number of main peaks in the spectral magnitude of X(n).
2. Iterate over each candidate value of r from rlow to rup with a step size of τr.
3. For each r value, compute the parameter Q using the equation specified in (8).
4. Use the obtained values of (r, Q, J ) to decompose the input signal X(n) using the NSCT

(Time-Varying Wavelet Transform) technique.
5. Compute the SAEWSE for the current (J, Q, r) combination using equation (6).
6. Repeat steps 3–5 for all candidate r values.
7. Determine the δλ and ξλ values in the NSCT combination that yields the maximum SAEWSE.

By following this iterative procedure, you can find the appropriate δλ and ξλ values in the NCT combin-
ation that maximizes the score, which can be used for further analysis or processing of the input signal.
The functions f1(W) and f2(W) are grid-like structures built in two dimensions. The extent of this grid is
the same as that of the data set. After that, we assign each grid cell aU value. All data values “near” this
grid point were averaged to arrive at this U value. We use this averaged knowledge to build the 3D
surface. Consequently, the variance at individual points on the grid is not displayed on the surface map.

These graphs are helpful in feature extraction because they show how a dependent variable and
two independent variables are related to one another. By plotting f1(W), f2(W), and U we can get the
features of different PQ events which are shown in Figure 4. Important parameters for extraction of
features for PQ events are listed below in Table 1 and over all process of PQ detection technique is
explained in Table 2.

Individual subspaces of the wavelet decomposition were selected to enhance the feature representa-
tion capability of NSCT. Common and unique subspaces for different PQ events are shown in Figures 4
to 6.The reconstructed signalwas obtained using the selectedwavelet feature subspace, and comparisons
weremade between the reconstructed signal and the original signal. Only thefirst 200 sampling points of
the signal were considered for ease of analysis. The NSCT reconstructed signal (Figure 6(c) and (d))
maintains consistent overallfluctuation characteristicswith the original signal, indicatingbettermatching
offluctuation characteristics. This enhancement leads to amore accurate feature subspace for subsequent
PQ events, improving the robustness and accuracy of the process. The NSCT reconstructed signal
closely fits the original signal compared to the NSCT reconstructed signal. The enhancements made
to the feature representation capability of NSCT, along with its improved signal reconstruction perform-
ance, contribute to better epilepsy recognition by accurately capturing and representing the fluctuation
characteristics of PQ signals.
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Results analysis
The detailed analysis of the PQ disturbances reveals specific spectral features that can be effectively
utilized for classification. Each disturbance type, such as VSG, VSW, transients, and harmonics,

Figure 4. (a) Simulated PQ disturbance (sag with harmonics), (b) DWT, (c) S- transform, (d) NSCT, (e) HHT,

(f) proposed method.

Table 1. Important parameters for the proposed method.

Parameters α and β are computed using the maximum likelihood (ML) estimator.

Regional standard deviation Dλ(x, y).
Eλ(x, y) is entropy Eλ(x, y), respectively.
Cλ
0(x, y) denote the low-frequency subband coefficient.

SAEWSE” is sub-band average energy-weighted wavelet Shannon entropy).

Power spectrum Kurtosis (PSK).

W1, represents the Calculation of the NCT1 coefficients of the signalX1.

W2 represents the calculation of the NCT2 coefficients of the signalX2.

φ∗
1, φ∗

2 are the azimuth and elevation angles, respectively.
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Table 2. The overall method of PQ events detection.

Step 1: Morphological component analysis (MCA)
The first step in the process involves applying MCA to the raw power quality signal. MCA is a

decomposition technique that separates a signal into different components based on its morphological

properties. The main idea is to split the signal into different sub-signals, typically categorizing them into

smooth (low-frequency) components and oscillatory (high-frequency) components. By isolating these

components, MCA helps to highlight the key features of the signal that are most indicative of different

power quality disturbances (e.g. VSG, VSW, harmonics, etc.). The output of the MCA step is a set of

components that will be used for further analysis.

Step 2: SALSA for noise removal
After MCA decomposition, SALSA is employed to remove noise from the signal components. SALSA is

an optimization-based algorithm that promotes sparsity in the signal while retaining important features. It

works by solving a convex optimization problem that encourages the decomposition of the signal into

sparse components, effectively filtering out unwanted noise. This helps in enhancing the signal quality,

making the features clearer and more distinct, which is crucial for the subsequent classification step. The

clean signal after SALSA is ready for further processing.

Step 3: NSCT decomposition
With the cleaned signal, the next step involves NSCT. NSCT is a multi-scale, multi-directional

decomposition technique that captures both the spatial and frequency characteristics of the signal at

multiple scales. The decomposition is performed using the Undecimated DT-CWT, which is a key

building block for NSCT. This step breaks down the signal into subbands at various scales and

orientations, capturing fine details and high-frequency components. The output of the NSCT step is a set

of frequency bands at different resolutions, which will be used for feature extraction.

Step 4: Feature extraction
After the NSCT decomposition, the next step is to extract meaningful features from the decomposed

signal. Various statistical measures such as mean, variance, skewness, kurtosis, and higher-order

moments are computed from each subband. These features represent the key characteristics of the

signal at different frequency scales and orientations. The aim is to capture the signature of different

power quality disturbances based on their temporal and spectral properties.

Step 5: Dimensionality reduction with PCA
The extracted features, which may be high-dimensional, are then processed using PCA. PCA helps in

reducing the dimensionality of the feature set while preserving the most important information. It

identifies the principal components that explain the largest variance in the data. By projecting the features

onto these principal components, the dimensionality is reduced, and redundant or less informative

features are discarded. This step not only reduces the computational burden for the subsequent

classification but also improves the accuracy by focusing on the most informative features.

Step 6: SVM training
The next step is the training of an SVM classifier using the reduced feature set obtained from PCA. The

SVM is trained using a set of labeled training data where the features of different power quality events are

already known. The SVM classifier tries to find an optimal hyperplane that separates the different classes

in the feature space. For a multi-class classification problem like this (with 14 different power quality

events), the error-correcting output code (ECOC) approach is used, which transforms the multi-class

problem into multiple binary classification problems. The SVM uses a radial basis function (RBF) kernel to

map the feature space into higher dimensions, making it possible to classify non-linearly separable data.

Step 7: Model evaluation and prediction
Once the SVM model is trained, it is tested on a separate test dataset. The test data, which has been

pre-processed using the same procedures (MCA, SALSA, NSCT, PCA), is passed through the trained

model to predict the power quality event labels. The performance of the SVM model is evaluated by

comparing the predicted labels to the true labels of the test data. This step helps assess how well the

model generalizes to new, unseen data.

(continue)

Sinha et al. 17



Step 8: Confusion matrix and accuracy calculation
To evaluate the performance of the classifier, a confusion matrix is generated. The confusion matrix

provides insights into how well the classifier has classified each power quality event by showing the true

positives, false positives, true negatives, and false negatives. From the confusion matrix, various

performance metrics such as accuracy, precision, recall, and F1-score are calculated. Accuracy, for

example, is the percentage of correct classifications over the total number of test samples. This helps in

assessing the classifier’s overall performance and identifying any misclassification trends.

Step 9: Visualization of results
The results of the classification model are visualized using a confusion matrix plot. This plot provides a

clear, visual representation of the classifier’s performance by showing how many instances of each PQ

event were correctly or incorrectly classified. Additionally, decision boundary plots may also be

generated to visualize how the SVM classifier separates the different classes in the feature space. These

visualizations help assess how effectively the model discriminates between various PQ events.

Figure 5. Scalogram of different PQ disturbances using NSCT: (a) impulsive transient, (b) oscillatory

transient, (c) VSG, (d) VSW, (e) interruption, (f) normal.

Table 3. (continue)
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has distinctive characteristics in both time and frequency domains. These include changes in amp-
litude, harmonic content, and duration, which remain consistent across varying operational condi-
tions. By examining features such as frequency concentration, harmonic distortions, amplitude
variations, and smooth transitions, machine learning algorithms like SVM can accurately classify
and differentiate these disturbances, ensuring reliable PQ monitoring and fault detection.

Voltage sag
VSG events in Figure 7(a) exhibit key spectral features that differentiate them from other distur-
bances, including a dominant concentration of energy around the fundamental frequency, which
remains prominent despite a noticeable reduction in amplitude. This reduction is consistent, even
under varying operational conditions, such as RES integration or load changes. The sag event
has minimal higher harmonic activity, distinguishing it from transients or flickers. Additionally,
sag events maintain a smooth spectral profile, with clear transitions marking the beginning and
end, making it easy to detect in the time–frequency domain.

Voltage swell
VSW disturbances in Figure 7(b) exhibit a noticeable increase in amplitude around the fundamental
frequency, with energy concentrated in the lower harmonics. This increase in amplitude is clear and
prominent, distinguishing swells from other disturbances. During the VSW, the fundamental fre-
quency’s magnitude significantly rises, while higher harmonics remain largely unaffected or
show a slight increase. This consistent rise in voltage helps identify swells across different oper-
ational scenarios. The smoothness of the spectral pattern, devoid of high-frequency spikes,
allows swells to be clearly isolated in the time–frequency domain.

Harmonic distortion
Harmonic distortion in Figure 7(c) is characterized by the presence of significant peaks in the fre-
quency spectrum at multiple harmonic frequencies (e.g. third, fifth, seventh harmonics), which

Figure 6. Scalogram of different PQ disturbances using NSCT: (a) impulsive transient, (b) oscillatory

transient, (c) VSG, (d) VSW, (e) interruption, (f) normal.
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differentiate it from voltage sag or swell events. These harmonic peaks are more prominent than in
normal conditions and exhibit a consistent pattern of high harmonic content, which may vary
slightly depending on the load characteristics. Distortion generally maintains its energy distribution
across the harmonic frequencies, with a specific pattern of harmonics visible, aiding in classifica-
tion. The fundamental frequency remains at its nominal value, while the harmonic frequencies dom-
inate the spectrum.

Figure 7. Features of different PQ events. (a) VSG, (b) VSW, (c) harmonic distortion, (d) transient

disturbance, (e) interruption, (f) high-frequency noise, (g) low-frequency oscillation, (h) phase imbalance, (i)

harmonic interference, (j) voltage fluctuations, (k) phase shift, (l) DC offset, (m) voltage spike, (n) power

frequency flicker. (continued)
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Transient disturbance
Transients are sharp, high-frequency spikes that last for a very short duration (Figure 7(d)). These
disturbances appear in the time-domain as quick, high-amplitude fluctuations, and in the frequency
domain, they are visible as high-frequency components with rapid decay. The distinct features for
classification include the sudden onset and short duration of the spikes, with a marked absence of
energy in the lower frequencies. Unlike sag or swell events, transients show a very brief but intense
disturbance in the spectrum, making them easily identifiable in time–frequency analysis.

Interruption
During a power interruption, the voltage waveform completely drops as depicted in Figure 7(e),
creating a flat line in both the time–domain signal and the frequency spectrum. This absence of
voltage is visible as a zero-energy period in the frequency domain, with no harmonic content
present during the interruption. The key features for classification are the duration of the interrup-
tion and the exact timing, which can help differentiate between short interruptions and long-term
faults. This unique characteristic of a complete voltage drop with no spectral energy is essential
for machine-learning models in identifying interruptions.

Figure 7. Continued.
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High-frequency noise
High-frequency noise disturbances are characterized by random, irregular fluctuations at frequen-
cies above 1 kHz. In the time-domain signal, noise manifests as erratic, small-amplitude variations
(Figure 7(f)). The frequency spectrum of high-frequency noise shows irregular peaks at higher fre-
quencies, often scattered across the spectrum. The key features for classification include the fre-
quency range (above 1 kHz), the amplitude of the peaks, and the irregularity of the pattern. This
makes high-frequency noise easily distinguishable from other disturbances like voltage sags,
which primarily affect the fundamental frequency.

Low-frequency oscillation
Low-frequency oscillations (Figure 7(g)) are periodic variations that occur at frequencies much
lower than the system’s fundamental frequency. In the time-domain, these oscillations result in a
slow, sinusoidal variation in the voltage waveform. In the frequency domain, the oscillations
show up as peaks at very low frequencies, typically below 1 Hz. The key features for classification
include the frequency of the oscillations, their amplitude, and the frequency spectrum’s smooth
periodic nature. These low-frequency characteristics make oscillations distinct from disturbances
like transients or sags, which are short-lived or occur at higher frequencies.

Phase imbalance
Phase imbalance results (Figure 7(h)) in unequal voltages across phases in a multi-phase system.
The imbalance is visible in the time-domain as irregularities in the phase voltages, with varying
amplitude between phases. The frequency spectrum shows harmonic content that is more pro-
nounced in the affected phases. The key features for classification include the magnitude of the
imbalance, the differences in harmonic components across phases, and phase angle shifts. These
features are distinct from disturbances like sags or transients, as phase imbalance creates specific
harmonic patterns related to the imbalance in voltage.

Harmonic interference
Harmonic interference occurs when multiple harmonic sources combine to create overlapping
peaks in the frequency spectrum. These overlapping peaks at different harmonic orders are
visible as irregularities in the harmonic content (Figure 7(i)). The key features for classification
are the presence of these overlapping harmonic peaks, their frequencies, and the amplitudes at dif-
ferent harmonic orders. This unique pattern of combined harmonic content makes harmonic inter-
ference distinguishable from other disturbances like voltage flicker or transients, which have
different temporal and spectral characteristics.

Voltage fluctuations
Voltage fluctuations are typically periodic variations in voltage, often caused by large, fluctuating
loads. In the time-domain, these fluctuations result in gradual, periodic changes in the voltage wave-
form as seen in Figure 7(j). In the frequency spectrum, these fluctuations manifest as periodic peaks
at the power frequency (50 or 60 Hz). Key features for classification include the modulation depth,
frequency of oscillations, and the presence of sidebands. These fluctuations, being periodic and
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smooth, are easily distinguishable from other disturbances like voltage sags or transients, which
exhibit more abrupt changes.

Phase shift
Phase shifts occur when there is a misalignment in the timing between voltage and current wave-
forms, resulting in changes in the phase angle. In the time-domain, the voltage waveform appears to
shift relative to the reference as in Figure 7(k). The frequency spectrum shows a shift in the phase
angle of both the fundamental frequency and its harmonics. The key features for classification
include the magnitude and timing of the phase shift, as well as its effect on the harmonic compo-
nents. Phase shifts are distinct from other disturbances as they specifically affect the phase relation-
ships rather than the amplitude or frequency content.

DC offset
A DC offset occurs when a constant voltage is added to the AC waveform, causing a shift in the
signal baseline as in Figure 7(l). In the time-domain, this appears as a constant displacement of
the waveform. In the frequency domain, a DC component appears as a peak at 0 Hz. The key fea-
tures for classification include the magnitude of the DC offset and the impact it has on the overall
waveform. DC offsets are easily distinguished from other disturbances, as they are the only disturb-
ance that causes a constant shift in the baseline without affecting the higher-frequency content.

Voltage spike
Voltage spikes are high-amplitude, short-duration increases in voltage (Figure 7(m)). These appear
in the time-domain as sharp, narrow peaks, and in the frequency spectrum, they are associated with
high-frequency components. The key features for classification include the amplitude and duration
of the spike, as well as the rapid rise and decay. Voltage spikes are distinguishable from other dis-
turbances by their brief yet intense nature and high-frequency content, which is typically not seen in
disturbances like voltage sags or swells.

Power frequency flicker
Power frequency flicker as in Figure 7(n), typically caused by large fluctuating loads, results in peri-
odic voltage variations at the power frequency (50 or 60 Hz). In the time-domain, flicker appears as
periodic changes in amplitude, and in the frequency spectrum, it manifests as peaks at the power
frequency with sidebands. Key features for classification include the frequency of flicker oscilla-
tions, their modulation depth, and the presence of sidebands. This distinct periodic pattern helps
differentiate flicker from disturbances like sags or transients, which exhibit more irregular or short-
duration changes in the voltage waveform.

The MATLAB script begins by defining a sampling frequency of 1000 Hz and a time vector for
a duration of 5 s, generating a fundamental 50 Hz sine wave signal. To simulate real-world scen-
arios, variable load effects are incorporated through a slow sinusoidal variation, while renewable
source integration is modeled using a high-frequency sine wave combined with Gaussian noise.
A total of 14 distinct PQ events are then generated. These include voltage sag (30% drop), swell
(30% rise), harmonic distortion (addition of third, fifth, and seventh harmonics), transient distur-
bances (spike at 3 s), interruptions (signal loss), and noise (high-frequency Gaussian noise).
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Other events simulate low-frequency oscillations, phase imbalance, harmonic interference, voltage
fluctuations, phase shifts, DC offset, voltage spikes, and power frequency flicker.

Each signal is analyzed using NSCT to generate a 3D spectrogram, offering insights into the
temporal and spectral characteristics of the events. The spectrograms use a hamming window
with an overlap of 128 samples and an FFT length of 512, enabling high-resolution visualization.
The resulting plots utilize the jet colormap to highlight variations in signal magnitude over time and
frequency, while logarithmic scaling enhances visualization. Additionally, the script includes a
placeholder for applying denoising methods, with denoised signals also analyzed via NSCT to
compare their features with raw data. Each plot is labeled with event-specific details to ensure
clarity and facilitate a comprehensive evaluation of PQ disturbances.

Application of the proposed method during changing grid conditions and environmental
factors, such as variable loads and renewable energy integration
As in (Joga et al., 2024), the present paper IEEE 123 unbalanced distribution network with DG allo-
cation has been considered. Now according to Figure 8, in any condition, VSG events are charac-
terized by a reduction in the amplitude of the fundamental frequency, which remains dominant
despite the drop. The harmonic content is minimal, making it easily distinguishable from other dis-
turbances like transients or flickers, which show more abrupt spectral changes. VSW events, on the
other hand, are identified by a significant rise in the fundamental frequency, with higher harmonics
remaining largely unaffected. Transients and voltage spikes are defined by their short duration and
high intensity, with energy concentrated in high frequencies, while phase shifts specifically affect
phase relationships. Fluctuations show periodic, smooth modulation, distinct from other abrupt dis-
turbances. DC offsets uniquely shift the waveform’s baseline, causing no change in higher frequen-
cies, making them easy to differentiate. Each disturbance has unique features, such as rise and decay
patterns, harmonic shifts, and frequency content, enabling precise classification in time-frequency
analysis. The detailed time-frequency characteristics, including harmonic content, amplitude
changes, frequency distribution, and smoothness of transitions, can serve as reliable features for
classifying different types of PQ disturbances using SVM.

PCA combined with SVM
In recent years, the use of PCA combined with SVM has proven to be an effective approach for clas-
sifying complex PQ events. This technique leverages PCA’s ability to reduce dimensionality while
retaining significant features from the data, making the classification process more efficient and less
prone to overfitting. In the context of PQ event classification, where high-dimensional data is often
encountered, applying PCA allows for the retention of key features that are critical for accurate classi-
fication. The first step in the classification pipeline involves generating a synthetic dataset for the 14
different PQ events. These events, ranging from voltage sags to flickers and transients, are characterized
by different voltage and frequency disturbances, making their accurate identification crucial for power
grid management. The dataset consists of a set number of samples and features, which are used to train
the model. Randomly assigned class labels correspond to the specific PQ event, allowing for the devel-
opment of a robust classification model. Next, the dataset is divided into training and testing sets, typ-
ically with 60% of the data used for training and 40% for testing. This ensures that the model is exposed
to a variety of scenarios during training while allowing for an unbiased evaluation of its performance.
Both the training and testing datasets are normalized to ensure that each feature contributes equally to

24 Energy Exploration & Exploitation 0(0)



the model’s learning process. Normalization helps eliminate the impact of feature scaling differences,
thus preventing any individual feature from disproportionately influencing the classification model.
Dimensionality reduction is then performed using PCA, which identifies the principal components
that explain the majority of the variance in the dataset. The number of components retained is deter-
mined based on the cumulative variance explained, with an 80% threshold commonly used. This
step is crucial because it helps simplify the feature space, making the training process faster and
more efficient, while also potentially improving model generalization. The PCA transformation is
applied consistently to both the training and testing datasets to ensure that the same features are
used for evaluation. For the classification step, an SVM model is trained using the PCA-reduced

Figure 8. Application of the proposed method during changing grid conditions and environmental factors,

such as variable loads and RESs integration. (a) VSG, (b) VSW, (c) harmonic distortion, (d) transient

disturbances, (e) voltage spike, (f) phase shift, (g) voltage fluctuation, (h) DC offset.
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training data. In this case, an error-correcting output code (ECOC) scheme is employed to handle the
multi-class nature of the classification task. The ECOC approach breaks down the multi-class problem
into multiple binary classification problems, improving the model’s ability to distinguish between the
various PQ events. This method has been shown to improve the robustness of the SVM model, espe-
cially in complex classification tasks like PQ event identification. Once the model is trained, predictions
are made on the testing dataset, and the results are evaluated using a confusion matrix.

The confusion matrix provides a detailed breakdown of the model’s performance, indicating the
number of correct and incorrect predictions for each PQ event class. From this, the overall classi-
fication accuracy is calculated. This metric is crucial for understanding how well the model gener-
alizes to unseen data. Additionally, a visualization of the confusion matrix is provided to facilitate
the interpretation of the model’s performance. The results of the classification are promising, as the
use of PCA for dimensionality reduction significantly enhances the efficiency of the SVM classifier
while maintaining a high level of accuracy. By reducing the number of features, the PCA-SVM
model is less prone to overfitting, which is a common issue in high-dimensional spaces.
Furthermore, the confusion matrix helps to visualize the performance of the model in distinguishing
between the 14 different PQ events, highlighting the areas where the model excels and where
further improvements may be needed. In conclusion, the combination of PCA and SVM, especially
with the ECOC scheme, offers a powerful method for classifying PQ events. This approach not only
reduces computational complexity but also improves classification accuracy, making it a valuable
tool for real-time PQ monitoring and fault diagnosis in modern electrical grids. Future research
could focus on refining this methodology, exploring different feature extraction techniques, and
applying the model to real-world datasets to further validate its effectiveness.

The generated image i.e. Figure 9 of decision boundaries for 14 classes in the PCA-SVM clas-
sification model visualizes how the classifier separates different PQ events based on their principal
components. The x and y axes represent the two most important components identified through
PCA, which capture the majority of the data’s variance. The decision boundaries, shown as lines
or curves, define regions where the model distinguishes between classes. The colors represent

Figure 9. Decision boundaries of 14 classes using PCA-SVM.
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different PQ events, with points plotted based on their actual class. The image offers an insight into
the SVM’s ability to classify and separate the various events effectively within the reduced feature
space. Areas with dense points and clear separations suggest good classification performance, while
areas near the boundaries highlight potential misclassifications. The image displaying decision
boundaries of the 14 PQ event classes, as generated by the PCA-SVM model, shows how the clas-
sifier divides the feature space into regions corresponding to each class. Each distinct color in the
plot represents a specific PQ event, with each region being assigned a class label from 1 to 14. The
decision boundaries are drawn based on the results of the dimensionality reduction from PCA,
which simplifies the feature set for SVM classification. The accuracy of the model is evident
from the clarity of these boundaries, where each class is well separated from the others. The
regions in the plot give a visual representation of how the model differentiates various PQ distur-
bances, such as voltage sags, swells, and harmonic distortions, based on the principal components.
This helps in understanding the effectiveness of the PCA-SVM approach for multi-class classifica-
tion in PQ analysis. To map the 14 classes to their corresponding PQ events, which are assigned
each class a specific PQ event as follows:

Class 1: VSG (type 1), Class 2: VSW (type 2), Class 3: Transients (type 3), Class 4: Harmonics
(type 4), Class 5: Voltage spike (type 5), Class 6: Phase shift (type 6), Class 7: Flickers (type 7),
Class 8: DC offset (type 8), Class 9: Interharmonics (type 9), Class 10: Unbalanced voltage (type
10), Class 11: Frequency deviation (type 11), Class 12: Ground fault (type 12), Class 13:
Overvoltage (type 13), Class 14: Undervoltage (type 14). In addition, Figure 10 presents the con-
fusion matrix for 14 PQ events with 99.8% accuracy.

Figure 10. The confusion matrix.
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Complexity calculation of the proposed method
The computational complexity of the proposed methodology, which combines NSCT decompos-
ition with SVM classification, can be broken down into three main stages. Firstly, the NSCT
decomposition involves two primary steps: the undecimated DT-CWT and the bandpass filter
decomposition. The DT-CWT has a complexity of (O(N2̂ log N)) per level of decomposition,
where (N) represents the size of the input image. Given (L) decomposition levels, the total complex-
ity of this step becomes (O(L . N2̂ log N)). The bandpass filtering step, used to extract frequency
components at different scales, has a complexity of (O(N^2)) per level, resulting in a combined
complexity of (O(L . N2̂ log N)\) for the entire NSCT decomposition process. This demonstrates
that while NSCT decomposition is computationally demanding, it scales with the size of the
image and the number of decomposition levels.

Secondly, the SVM training process, which solves a quadratic optimization problem, exhibits a
complexity (O(N s2. N f )), where (N_s) is the number of samples and (N_f) is the number of fea-
tures. This quadratic growth makes SVM training computationally expensive for large datasets, par-
ticularly when the number of samples and features is large. Finally, after training, SVM prediction
involves computing the dot product between the support vectors and the new sample, which has a
complexity of (O(N_f)), where (N_f) is the number of features. This step is much less computation-
ally intensive compared to training. Overall, the computational complexity of the methodology is
governed by the complexity of NSCT decomposition and SVM training, making it efficient for
smaller datasets but potentially resource-intensive for larger datasets. Optimization techniques, par-
allel processing, or hardware acceleration could significantly reduce runtime, ensuring scalability
for more extensive applications. Table 3 lists a comparison of the investigated classifiers in
terms of accuracy and execution time to prove the impact of the suggested method.

Conclusions
In conclusion, the proposed methodology, which integrates NSCT with PCA and SVM, provides a
robust and efficient framework for classifying PQ events. The NSCT decomposition plays a crucial
role in accurately capturing both spatial and frequency details of PQ signals by using the DT-CWT.
This approach ensures that the signal is represented across multiple scales and orientations, allow-
ing for the precise identification of subtle variations in signal characteristics. However, the compu-
tational complexity of NSCT, particularly with large data sets, is a notable challenge. The
decomposition process, despite its effectiveness, can be computationally expensive, making it
necessary to optimize for efficiency. Once the feature extraction is complete, PCA is applied to
reduce the dimensionality of the data while preserving the essential features. By retaining compo-
nents that explain a significant portion of the variance, PCA minimizes the computational load and
enhances the efficiency of the classification process. This is followed by the use of SVM with

Table 3. Comparative result.

Classifiers Accuracy Execution time (s)

NSCT & PCA-SVM (proposed) 99.8% 0.017

Dual FFNN 94.9% 0.0903

Dual MSVM, Sigmoid C = 52, and γ = 0.095 90.6% 0.0235

Dual Msvm-RBF, C = 30, and γ = 0.9 98.5% 0.0267
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ECOC to handle the multi-class classification of PQ events. The methodology achieved impressive
classification accuracy, with results showing 99.8% accuracy. This outcome highlights the power of
combining PCA with SVM in handling complex, high-dimensional data typical in PQ applications.
Despite the promising results, the computational complexity associated with both NSCT decom-
position and SVM training presents challenges, particularly in real-time applications or environ-
ments with limited hardware. Training an SVM, which requires solving a quadratic optimization
problem, is computationally intensive, and this becomes more pronounced when handling large
datasets. Additionally, the NSCT decomposition process itself is costly in terms of computational
time and resources. These factors may limit the practicality of the methodology in scenarios requir-
ing real-time processing or where hardware resources are constrained. Looking forward, there are
several areas for future research and improvement. One possibility is to optimize the NSCT decom-
position process, for example, through subsampling, parallel processing, or using GPU acceler-
ation, to make it more efficient. Additionally, alternative dimensionality reduction techniques
could be explored to complement or replace PCA, to achieve better performance while reducing
computational demands. To address the challenges of training SVMs, lightweight classifiers or
ensemble methods could be employed, reducing both training times and computational complexity.
As computing technologies advance, exploring deep learning methods such as convolutional or
recurrent neural networks for feature extraction and classification could offer significant benefits.
These models have the potential to automatically learn hierarchical features from raw data, elimin-
ating the need for manual feature engineering. Moreover, incorporating cloud computing or distrib-
uted systems to offload the computational burden could make real-time PQ monitoring more
feasible without being limited by local hardware.
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