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ORIGINAL ARTICLE

Impact of imputation methods for ship technical parameters 
on emission estimations in ports
Ruikai Sun a, Wessam Abouarghoub a,b, Emrah Demir a and Andrew Potter a

aLogistics and Operations Management, Cardiff Business School, Cardiff University, Cardiff, UK; bDepartment of 
Operations and Project Management, College of Business, Alfaisal University, Riyadh, Saudi Arabia

ABSTRACT
Greenhouse gas emissions from ships have emerged as a pressing con
cern. Nevertheless, the quality of data in existing databases remains 
inadequate, with numerous instances of missing information. This pre
sents significant challenges for accurately estimating emissions associated 
with ship activities in port. This paper uses three imputation methods and 
applies them to three ports as a case study to evaluate their performance 
in emission estimation. The mixed-method demonstrates high accuracy 
while covering nearly all cases of missing data, resulting in the smallest 
error in estimating daily emissions. The results indicate that if the data 
quality is not improved, at least 12% of CO2 emissions may be under
estimated. The cases of missing data that the imputation model can 
address also have a significant impact. For example, the multiple linear 
regression method, which only covers partial cases of missing data, leads 
to an underestimation of emissions by 2% to 6%. The findings highlight 
that an appropriate imputation method can significantly improve the 
accuracy of emission estimation. They also highlight the importance of 
data quality, which not only reduces estimation errors but also helps 
prevent the substantial underestimation of emissions.
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1. Introduction

The value of the maritime supply chain for the global economy is indisputable, where more than 
80% of global merchandise trade passes through ports (UNCTAD 2024). Shipping freight is notably 
a more carbon-efficient mode of transport compared to road and air freight. Recent technological 
advancements in engine efficiency and ship design have led to reductions in emissions and 
improvements in fuel efficiency. Due to the massive scale of maritime trade and its anticipated 
growth, the shipping industry continues to have a significant impact on global greenhouse gas 
emissions. The industry’s carbon dioxide emissions account for approximately 3% of the global 
total, with an increase of 5.9% from 2012 to 2018 (IMO 2020). The increase in carbon dioxide (CO2) 
emissions from shipping is a mounting concern. In response, the International Maritime 
Organization (IMO), the regulatory authority for the shipping industry, has formulated and enacted 
policies aimed at decarbonization. For instance, the IMO’s initial GHG Strategy of 2023 focuses 
particularly on reducing the carbon intensity of shipping. The strategy sets a target to decrease CO2 
emissions per voyage by at least 40% by 2030, aiming for a 70% reduction by 2050, relative to 2008 
levels. Ports, as critical nodes connecting water and land transport, concentrate a large number of 
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ships within a confined area, leading to high emissions density (Yu, Sun, Sun, Wu, et al. 2022). It is 
estimated that 70% of ship CO2 emissions occur within 400 km of coastlines (S. Chen et al. 2021). 
These excessive carbon emissions will increase the effect of greenhouse gases from shipping and 
accelerate global warming. Therefore, accurately estimating emissions from ships in ports is crucial 
for addressing these challenges effectively.

Recent developments in the field of emission estimation have led to a renewed interest in data 
quality. Furthermore, missing data is a critical issue affecting data quality (Ezzine and Benhlima  
2018) and a common problem in maritime quantitative research (Ribeiro, Paes, and de Oliveira  
2023; Sun et al. 2025). Smaller databases faced quality issues, but their manageable size allowed for 
easier data cleansing. With advances in computing power, efficiency and storage capacity making it 
possible to compile and analyze database of incredible size and complexity, the era of so-called ‘big 
data’ has been created. However, the advent of big data, enabled by leaps in computing power, 
efficiency, and storage capacity, has not resolved the issue of missing data. Despite the surge in 
available information for analysis, larger datasets do not inherently mean more complete datasets 
(Lall and Robinson 2022). In the shipping field, obtaining complete ship technical parameters may 
be difficult due to the existence of different organizations and data collection standards (H. Wang 
et al. 2016). Although this paper uses different databases (LSGE and Clarkson) for validation, only 
a few shipping industry researchers and employees have access to multiple comprehensive data
bases. These databases are usually only accessible to institutions and companies. Therefore, 
although some of the missing data can be searched in different databases, they can be treated as 
missing data due to workload and access issues. However, these data play a key role in estimating 
emissions from ships in port, and too much missing data may result in estimates that are 
significantly lower than the actual values (Doundoulakis and Papaefthimiou 2022; Peng et al.  
2020; L. Wang and Li 2023). There has been little quantitative analysis of imputing missing data 
of ship technical parameters and no previous study has formally studied the impact of data quality 
and imputation methods on estimating port CO2 emissions from ships.

This paper uses the data from Port of Busan, Los Angeles and Felixstowe to analyze the impact of 
ship data quality on port emission estimation. Three methods (multiple linear regression, curve 
fitting and mixed-method) are utilized to impute the missing ship technical parameters. A fuel- 
based bottom-up emission estimation method is employed in this study to calculate the ship 
emissions in the port based on the imputed database as well as the original database. This research 
makes the following three contributions to previous research. Firstly, this paper is the first to 
quantify the impact of different imputation methods and data quality on the estimation of port CO2 
emissions from ships. Secondly, this paper proposes a mixed approach to address the shortage of the 
IMO-multiple linear regression method to impute missing values when both ship service speed and 
main engine power are missing. Thirdly, the performance of each missing data imputation method 
for different ship technical parameters is evaluated under two types of port using cross-validation 
with databases from two sources.

The remaining part of the paper is structured as follows: Section 2 provides a literature review of 
port ship emission estimation methods and data imputation in the maritime field and identifies 
research gaps. Section 3 presents the introduction of methods and preparation of the case study. 
Section 4 reports the empirical results and discussion. Section 5 concludes the research and presents 
future research directions.

2. Literature review

Ports are recognized as focal points for the emission of air pollutants and GHG (IMO 2014). As ship 
emissions are the largest source of port emissions, there has been a growing interest in research 
aimed at quantifying the emissions from ships within a port.

Research in this area has demonstrated the use of two traditional approaches for estimating ship 
emissions: top-down methods and bottom-up methods (Miola and Ciuffo 2011). Typically, top- 
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down estimation methods are often applied to the measurement of ship emissions on a national or 
regional scale, which is then geographically reduced by using proxy variables on a smaller scale 
(region or city) (Toscano and Murena 2019; Yu, Sun, Sun, and Shu 2022). The method is usually 
based on the average technical parameters and operating conditions of different types of ships 
combined with the number of ships, and then the data are aggregated in time and space to obtain an 
estimation. The bottom-up approach is based on the ship’s activity, which is based on the ship’s 
mode of operation (e.g. berthing, maneuvering and sailing), real-time speed, engine load factor, 
environmental conditions and sometimes even wind speed and wave height (Jalkanen et al. 2009; 
Tran et al. 2022; Tzannatos 2010). Ship emissions during this period of activity are then calculated 
based on the type of ship, main engine type, auxiliary engine type, service speed and various other 
technical parameters. Finally, the results of all activities are added together to obtain a total emission 
amount. It is generally agreed that a top-down approach is useful to obtain a preliminary estimate of 
local emissions, while a bottom-up approach allows for more precise and detailed results (Eyring 
et al. 2010; Ng et al. 2013).

In the bottom-up approach, there are two types of methods: the fuel-based method and the energy- 
based method (IMO 2014), the main difference between these two methods is the calculation of the 
emission factor. The fuel-based method’s emission factor is based on the chemical composition of the 
fuel to estimate the emissions per unit of fuel, so the fuel-based method is more focused on calculating 
the fuel consumption of the ship (Zis et al. 2014). The emission factor of the energy-based method is 
an estimation of the number of emissions per kW based on the engine power. These two methods are 
each suitable for calculating different types of emissions (IMO 2020). Carbon dioxide and sulphur 
oxides are suitable for fuel-based emission factors, while NOx, Particulate Matter, Methane, Nitrous 
oxide, and non-methane volatile organic compounds (NMVOC) are more suitable for energy-based 
emission factors. This paper focuses on estimating CO2 emissions, employing the fuel-based bottom- 
up method to calculate emissions from ships in port.

In addition to traditional methods, machine learning (ML) has significantly advanced the 
maritime emissions field. Yang et al. (2024) found that existing fuel consumption prediction models 
lack generalizability and proposed that developing a unified model based on ML is suitable for 
various vessel types could address this limitation. Furthermore, the application of ML models in 
unsupervised route planning for maritime autonomous surface ships can effectively reduce carbon 
emissions (Li and Yang 2023). In their study, Liu, Rong, and Guedes Soares (2023) and Q. Chen 
et al. (2022) enhanced emission accuracy and reduced model complexity by clustering AIS data and 
integrating vessel traffic density models with emission models.

With the development of shipping technology, the quantity of data collected on ships is constantly 
improving. Based on these data, the methods for estimating emissions from ships are also improving. 
However, the extensive data volume comes with challenges related to data quality. Peng et al. (2020) 
found that the quality of data was poor since the technical parameters of ships were provided by 
multiple maritime administrations. The lack of this necessary information made it difficult to calculate 
ship emissions using an activity-based approach, the author adopted an estimation method based on 
a sampling method for calculating ship exhaust emission inventories to improve the data quality. 
Khan et al. (2018) calculated ship emission data for the port of Incheon in October 2014 with a total of 
602 ships. Despite the assistance of the Korean maritime department and Incheon port authorities, 
263 vessels were directly excluded from the emission calculations due to missing technical parameters 
data. This would obviously result in underestimating the actual values. The same issue has been 
extensively investigated in studies on emissions from passenger ships (Q. Chen et al. 2021, 2023). The 
study combined seven databases (Marine traffic, CCS, KR, RS, NK, Clarkson, and BLM-Shipping) and 
found that the technical parameters of the 952 ships used as subjects were seriously missing. The 
missing rates of flag, IMO number, year of ship built, Gross Tonnage (GT), ship service speed, and 
rated power comprised 8.59%, 53.78%, 60.89%, 61.19%, 67.70%, and 67.11%, respectively. In parti
cular, the key indicators for calculating emissions, GT, ship service speed and rated power, are missing 
at a very high level. Furthermore, the use of high-resolution data for analysis is also prone to missing 
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data. In D. Chen et al. (2017) study, the authors estimated ship emissions in China in 2014, which 
included 166,546 ships. The coverage of key ship technical parameters ranged from 26.5% to 87.8%, 
with missing data reaching 70.4% especially for ship service speed. The situation of missing data in the 
database has not improved significantly over time. In a study of Nepali ports in 2021, the percentage of 
missing data was 10.55% for power installed onboard and 5.72% for maximum speed (Toscano et al.  
2021). These studies show that missing ship data is a common and critical issue in current emission 
estimation studies in the shipping industry.

In the maritime field, there are few studies on missing data regarding ship technical parameters. For 
instance, basic design parameters like Dead Weight Tonnage (DWT) and GT are often used to estimate 
key characteristics such as a ship’s ship service speed and main engine power (Charchalis 2013, 2014). 
There is also imputing of the data by ML and regression models forming a combined model (Kim, Steen, 
and Muri 2022). Based on the limitations of the database, all of these methods have restrictions in their 
application. Due to the lack of a harmonized database for these technical parameters. The studies 
mentioned above could only rely on a single database or on a limited number of samples (Cepowski  
2019; Cepowski and Chorab 2021). Therefore, it is important to mention again the IMO. Each member 
state uploads their maritime registry information, their database is very well developed and the proposed 
methods for imputing the technical parameters of ships are more relevant to the shipping industry. 
However, no studies have yet been conducted to test the effectiveness of these data imputation methods 
in practice.

This paper uses the missing data imputation methods used by IMO in the Fourth Greenhouse 
Gas Study 2020 (IMO 2020) and the Calculation of the attained energy efficiency existing ship index 
(EEXI) Resolution (IMO 2021) as test methods. The Felixstowe port and Busan port are analyzed 
for ship emission estimations. A mix-method based on these two methods was also added to the 
case study as the third method. The complete data from the Clarkson database was also used as 
a control group to test the performance of each method for different technical parameters.

3. Experiments

In this section, the detailed process of experiment is introduced, including methodology and 
description of case study process. We first impute the ship’s missing technical parameters of ship 
service speed and main engine power, using IMO multiple linear regression, IMO curve fitting and 
mixed methods. Then, we apply a fuel-based bottom-up emission estimation model to calculate 
carbon emissions in ports. Finally, the Empirical Cumulative Distribution Function and Friedman– 
Nemenyi Test were used to evaluate their performance and impact on estimation of port CO2 
emissions from ships based on LSGE and Clarkson databases.

3.1. Methods for imputing missing ship technical parameters

3.1.1. Imo-curve fitting
Previous research has demonstrated through simple correlation analyses that there exists a power 
function relationship between ship technical indicators and DWT (Charchalis 2013, 2014; IMO  
2021). In 2021, IMO released a guideline (IMO 2021) that includes estimating missing technical 
parameters through curve fitting with power functions. This approach is considered to have 
a stronger advantage in estimating missing maritime technical parameters, such as ship service 
speed and main engine power. The function to compute the ship service speed (knots) is as follows:

Ship service speed (knots): 

where,
V is the ship’s service speed (knots)
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A and B are constants and their values depend on the ship type as shown in Table 1.
The function to compute the main engine power (kW) is as follows: 

where,
PME is the power of main engines (kW)
C and D are constants and their values depend on the ship type as shown in Table 1.

3.1.2. Imo-multiple linear regression (IMO-MLR)
IMO’s Fourth GHG study (IMO 2020) introduced a revised methodology for imputing missing 
technical parameters of ships. This methodology is founded on an algorithm developed by 
University Maritime Advisory Services (UMAS) International Ltd. The algorithm employs multiple 
linear regression for each ship type, utilizing design parameters such as beam, draft, Length Overall 
(LOA), and DWT as variables (Cepowski 2019; IMO 2020). Johansson, Jalkanen, and Kukkonen 
(2017) demonstrated that this formula offers greater accuracy in estimating ship speed and main 
engine power, and it has been recommended for use by shipping researchers. The following formulas 
are the multiple regressions used to compute the missing ship service speed and main engine power.

Ship service speed (knots): 

Main engine power (kW): 

where,
V: the ship’s service speed, measured in nautical miles per hour (knots), in deep water and assuming 
the weather is calm with no wind and no waves.
PME is the power of main engines (kW)
LOA is the length overall, measures ship’s length (m)
a1; a2; a3; a4; b1; b2; b3; b4 are regression coefficients

3.1.3. The mixed-method
However, as we can see from IMO-multiple linear regression’s formula, it cannot be used when 
both ship service speed and main engine power are missing. IMO-curve fitting requires only DWT 
for its input variables, so it is not very accurate. However, considering that missing DWT is rare 
(Kim, Steen, and Muri 2022; Sun, Abouarghoub, and Demir 2025), taking the port of Felixstowe in 
the case study as an example, none of the ships coming to Felixstowe from 2019 to 2020 are missing 

Table 1. Factors reated to service speed and main engine power calculation.

Ship type A B C D

Bulk carrier 10.658 0.027 23.751 0.541
Gas carrier 7.446 0.076 21.470 0.595
Tanker 8.136 0.054 22.842 0.558
Containership 3.240 0.183 0.504 1.030
General cargo ship 2.454 0.188 0.882 0.921
Refrigerated cargo carrier 1.060 0.3152 0.027 1.386
Combination carrier 8.139 0.0538 22.854 0.558
LNG carrier 11.054 0.050 20.710 0.635
Ro-ro cargo ship (vehicle carrier) 16.677 0.018 262.769 0.400
Ro-ro cargo ship 8.079 0.091 37.771 0.635
Ro-ro passenger ship 4.114 0.199 9.134 0.911
Cruise passenger ship having non-conventional propulsion 5.124 0.127 1.355 0.887

(Source: IMO 2021)
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DWT data. Therefore, when encountering a scenario where both ship service speed and main 
engine power are missing, IMO-curve fitting can be applied to impute the main engine power and 
then IMO-multiple linear regression can be applied to estimate the ship service speed based on the 
results of IMO-curve fitting. Thus, a mixed method is created. The formula for this method is 
presented below. It requires only DWT and LOA as input variables to estimate the missing technical 
parameters, effectively addressing the issue of incomplete technical parameters. Furthermore, the 
non-linear regression formula has been linearized, simplifying parameter estimation while preser
ving the model’s capacity to capture non-linear relationships (Asghari et al. 2022; Molnar and Orosz  
2024; Yan, Liu, and Wang 2024).

Ship service speed (knots): 

Main engine installed power (kW): 

3.2. Methods for emissions calculation

A fuel-based bottom-up approach is used in this study to estimate the carbon emissions from ships 
in ports. The method is an advanced approach based on automatic identification systems (AIS) 
activity data, which has been gradually improved in recent years through extensive use and 
validation (Schwarzkopf et al. 2021; Spengler and Tovar 2022; Woo and Im 2021). Ship emissions 
are calculated for each time interval between two consecutive AIS reports using the ship AIS activity 
data and ship technical parameters. The AIS activity data includes variables such as the IMO 
number, AIS date and time, status, speed, and so forth. This data is dynamic and changes over time 
(Ribeiro, Paes, and de Oliveira 2023; Yang et al. 2024). In contrast, the ship technical parameters— 
such as ship type, main engine power, dead weight tonnage, and gross tonnage—remain relatively 
fixed after the ships are produced (Kim et al. 2020). The detailed relationship between these 
variables is illustrated in Figure 1. Based on these relationships, the selected input variables are 
listed in Table 2, which includes four ship activity variables and seven ship technical parameters. 
These variables can be used to estimate ship emissions, which primarily stem from fuel consump
tion by the main engine, auxiliary engines, and boilers (Zhou et al. 2024). Using the four selected 
ship activity variables, the ship’s operation mode and operational time between two AIS signals can 
be determined, facilitating the estimation of auxiliary engine and boiler power (Chen et al. 2021). 
The seven selected ship technical parameters provide the main engine power, while emission factors 
and specific fuel consumption are derived from engine specifications. By integrating engine power, 
engine load, and their specific fuel consumption, the amount of fuel consumed per unit time during 
each engine’s activity can be obtained. The total emissions can then be calculated based on the 
emission factor and the activity time. Additionally, if real-time engine load data is not available, it 
can be estimated using ship service speed, AIS speed, ship design draft, and AIS draft (USEPA  
2020). The relationship between the variables shows that for ship emission calculations, ship service 
speed and main engine power are the two most important quantitative variables for ship technical 
parameters. The research subjects of the missing parameters in this paper will therefore be limited 
to ship service speed and main engine power.

The amount of ship emission will be discrepant during different operation mode: cruising, 
maneuvering, and berthing/anchored (Toscano and Murena 2019). In cruising mode, the ship will 
travel at its service speed, main engines will operate at their highest load. Therefore, the auxiliary 
engines only hold lowest loads and boilers will be shut down. The maneuvering mode will be 
happened when ship close to its destination, it will require ship to travel at the slowest speed. Main 
engines will operate at low loads, auxiliary engines and boilers will start rising the loads to a high 
rate. In berthing and anchored mode ship will only use its auxiliary diesel engines maintain ship 
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Figure 1. Relationship of ship emission estimation variables.

Table 2. Description of input data for emission calculation.

Variable Description

AIS speed Ship’s real-time speed provided by AIS transponders.
AIS location Ship’s real-time location provided by AIS transponders, consists of latitude and longitude.
AIS time Time information when upload AIS data.
AIS draft Ship’s real-time draft provided by AIS transponders.
Fuel type Type of fuel used on ship.
Ship service speed The average speed maintained by a ship under normal load and weather conditions.
Main engine power Main engine maximum power output
Ship design draft The distance between the sea level and the bottom of hull
Ship size A number indicative of a ship’s cargo carrying capacity.
Ship type Type of ship.
Ship built year Ship construction time
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equipment’s operation. And boilers are operated to keep main engines and fuel systems warm, in 
case the ship could leave port when there is an unexpected situation (IMO 2014). Therefore, 
according to previous studies (USEPA (2020); S. Chen et al. 2021, Q. Chen et al. 2021), different 
engine emissions need to be calculated for each operation mode with the following formulas:

Under cruising: 

Under maneuvering: 

Under berthing/anchored: 

Ei are emissions by operating mode i (g)
EFf is fuel-based emission factor, grams of pollutant per gram of fuel consumed (g/g)
LF is load factor of main engines (unitless)
PME: is the power of main engines (kW)
PAE is the power of auxiliary engines (kW)
Pboiler is the power of boiler (kW)
VAIS is AIS speed (knots)
V is ship service speed (knots)
DAIS is AIS draft (m)
D is ship design draft (m)
SFC is certified specific fuel consumption (g/kWh)
time is duration time of this activity (hr)

3.3. Port background

This paper uses three ports of varying sizes as case study samples based on Lloyd’s port throughput 
rankings (Lloyd, 2023). The selected ports are Busan, Los Angeles and Felixstowe, with respective 
throughputs in 2023 of 23,035,734 TEU, 9,911,155 TEU, and 3,297,000 TEU. These ports adequately 
represent the range of throughput among the world’s top 100 ports. To facilitate a comparison of 
emissions across different ports, the emission estimation scope is defined as a 20 nautical-mile radius 
centered on each port, aligning with common practices in maritime research (Chang and Wang 2012; 
Merk 2014; USEPA 2020; Zhao, Chen, and Lee 2022). Due to the small number of emissions generated 
by miscellaneous ships in port, the complexity of calculating these emissions and the difficulty of 
accessing miscellaneous ship data (S. Chen et al. 2021; Murcia González 2021), this study assesses all 
types of cargo ships arriving in port, except for miscellaneous ships.

Table 3 summarizes the annual ship calls at the Ports of Busan, Los Angeles, and Felixstowe. The 
first column of the table identifies the case study, where the first two letters denote the port’s name, 
and the last four digits indicate the year of the case. BS refers to Busan, LA to Los Angeles, and FX to 
Felixstowe. As shown in the table, container ships are the dominant ship type at all three ports, with 
Los Angeles having the highest proportion at 66%, followed by Felixstowe at 56% and Busan at 48%. 
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The second most common ship type at Busan and Los Angeles is oil tankers, accounting for 
approximately 20%. In contrast, the second largest ship type at Felixstowe is Ro–Ro ships, 
comprising 42%. This is because Felixstowe is the largest and busiest container port in the UK 
and one of the largest in Europe. The ship types at Busan and Los Angeles are more diverse than 
those at Felixstowe. Additionally, it is noteworthy that the combined share of General Cargo, Dry 
Bulk, and Other Dry ships at Busan Port reaches 19%. This distribution reflects Busan’s dual role as 
South Korea’s largest container port and its largest bulk port. The varied distributions of ship types 
across the three ports enhance the reliability of the experimental results.

3.4. Data description

The ship technical data and AIS activity data are mainly provided by LSGE. This database includes 
information on ship activity from all over the world. Between 2019 and 2020, 5,797,477 AIS activity 
data records and 42,151 ship calls technical information related to the Port of Busan, Los Angeles and 
Felixstowe, were collected. We also prepared a complete ship technical parameter database from 
Clarkson for validation. As shown in Figure 2, in 2019 and 2020, Busan recorded 17,775 and 17,511 
ship calls, respectively, of which only 47% included complete ship technical information. Five percent 
of the data were missing only the service speed, while 32% were missing only ME power. Additionally, 
12% of the data were missing both service speed and ME power, presenting challenges for data 
imputation. Less than 2% of ship calls lacked data DWT. In contrast, Los Angeles and Felixstowe had 
higher data completeness, with no cases of missing DWT. Los Angeles recorded 1,579 and 1,404 ship 
calls in 2019 and 2020, respectively, with 85% of port calls containing complete ship technical 
information. A 5% of the data were missing only the service speed, and 9% were missing only ME 
power, while fewer than 2% lacked both service speed and ME power. Felixstowe showed a similar 
pattern to Los Angeles, with 2,015 and 1,867 ship calls in 2019 and 2020, respectively. Among these 
ship calls, 88% contained complete ship technical information, 4% of the data were missing only the 
service speed, and 6% were missing only ME power. In 2020, only five cases at Felixstowe involved 

Table 3. Annual ship call type summary 2019–2020.

Case Study
Chemical 
Tankers Containers

Dry 
Bulk

General 
Cargo

LPG 
Tankers

Oil 
Tankers

Other 
Dry

Other 
Tankers Reefers

Ro- 
Ros

BS_2019 396 8,538 373 2,550 66 3,634 576 68 838 736
BS_2020 336 8,332 528 2,143 96 4,122 484 89 611 770
LA_2019 2 1,003 66 34 0 346 0 0 19 109
LA_2019 0 969 58 38 0 241 0 0 17 81
FX_2019 3 1,168 0 3 0 10 1 6 0 824
FX_2020 3 1,039 0 1 0 12 3 3 0 806

Figure 2. Ship call status summary.
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missing both service speed and ME power. The varying patterns of data completeness at the three 
ports highlight differences in the performance of imputation methods.

3.5. Missing data imputation

After collecting the data, we start to impute the missing data. As mentioned in the Methodology, 
three different methods will be used to impute the technical parameters of the ships, and after 
substituting the data into the algorithms we will get the imputed database. At the same time, 
Clarkson database will be introduced as a control group to see if the distribution of the imputed data 
is consistent with the original data. Their database has completed technical parameters data for 
most ships. The data from Clarkson will be regard as actual database. When the data preparation 
part is finished, the next step will be emission estimation based on these five datasets, which 
includes three imputation methods’ datasets, no impute dataset and actual dataset.

3.6. Emission estimation

In this section, a bottom-up fuel-based method is utilized to estimate port CO2 emissions from ships. In 
the process of calculation, several parameters of emission need to be evaluated based on the real-time AIS 
data. The first parameter needs to be evaluated is the operating mode of the ship. According to the IMO 
(2020) study and the available AIS parameters, a ship in port operating mode decision matrix has been 
created. The ship’s AIS speed and main engine status are used to determine the ship’s operating mode in 
port to determine the ship’s operating mode. The AIS ship status here refers to whether the ship’s main 
engine is in a starting state or not, while the ship’s AIS speed level is used to represent the engine load 
factor of the main engine. Finally, the operating mode of ship is determined based on the conditions of 
main engine, detailed information is shown in Table 4. The explanation has been mentioned in section 3. 
It can be seen from the data in Table 5, CO2 emission factors of the ship obtained according to the fuel 
type. The auxiliary engine and boiler power of the ship is determined by the type of ship, DWT, and 
operating modes. The SFC value of the engine can be determined by the ship’s build year, fuel type and 
engine type. Further information can be found in the tables in Appendices 1–3.

The imputed databases are input into the fuel-based bottom-up method combined with the 
corresponding AIS activity data to calculate CO2 emissions for each activity of ship. The emissions 

Table 4. Ship in port operating mode decision matrix.

AIS ship status AIS speed Ship operating mode

Underway Using Engine <1 At berth
1–5 Maneuvering
>5 Cruising

Moored <1 At berth
1–3 Anchored
>3 Maneuvering

(source: IMO 2020)

Table 5. Fuel-based CO2 emission factor.

Fuel type Carbon content EF (g CO2/g fuel)

HFO 0.8493 3.114
MDO 0.8744 3.206
LNG 0.7500 2.750
Methanol 0.3750 1.375
LSHFO 1.0% 0.8493 3.114

(source: IMO 2020)
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are divided by the unit time to obtain the carbon intensity of the port, which allows a time series of 
emissions to be plotted as a line figure to further analyze the trends in port emissions.

4. Results and discussion

4.1. Results of ship technical parameter imputation

We compared imputed ship technical parameters using three different methods with the actual 
data. First, Empirical Cumulative Distribution Function (ECDF) plots were employed to observe 
differences in their distributions. ECDF is the distribution function associated with the empirical 
measure of a sample (Dekking et al. 2005). This cumulative distribution function is a step function 
that jumps up by 1/n at each of the n data points. It gives a clear indication of where the value is in 
the overall percentile. The y-axis of the graph is the cumulative probability, and the x-axis is the 
range of target data.

Figure 3 illustrates the performance of data imputation for ship service speed across different 
ports. For Busan, the mixed method produces a distribution that is closest to the actual data 
distribution. In Los Angeles and Felixstowe, where fewer ship calls lack service speed information, 
the mixed method and IMO-MLR exhibit comparable performance, both outperforming IMO- 
curve fitting. The range of missing ship service speeds varies across the three ports. For Busan and 
Los Angeles, missing speed values fall within the 8–26 knot range, while for Felixstowe, they range 
from 22 to 26 knots. This discrepancy arises because Busan and Los Angeles are general-purpose 
ports handling diverse vessel types, whereas Felixstowe is a container port, and this speed range 
aligns with the average service speed for container ships (Rodrigue 2020).

Figure 4 shows the performance of data imputation for main engine power across the ports. For 
Busan and Los Angeles, the mixed method performs better than the other methods. However, the 
results of Felixstowe are more complicated. IMO-curve fitting performs best when main engine 
power is less than 20,000 kW, whereas IMO-MLR is more effective when main engine power 
exceeds 20,000 kW. Further analysis is required to evaluate their performance. The range of missing 
values for main engine power is similar across the three ports, reflecting various vessel sizes.

Next, we use the Friedman–Nemenyi test to compare the performance of different methods on 
each estimation value. Friedman test is a nonparametric test, which is used to compare three or 
more paired groups (Friedman 1937). It gives a conclusion on whether there is a difference between 
the performance of the algorithms or models. If there is a difference, a post-hoc test is also required 
to find out which algorithms or models have statistical differences in performance between them. 
Therefore, the Nemenyi test is chosen as the post-hoc test in this paper. The Nemenyi test is used to 
compare the performance of algorithms against each other Nemenyi (1963). The method compares 
the average ranking of each algorithm against the critical difference (CD). If the average ranking of 
two algorithms is less than the CD, it implies there is no statistically significant difference between 

Figure 3. ECDF for imputed ship service speed.
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them. In this paper, we will use the ‘nemenyi ()’ function of the ‘tsutils’ package in R, which 
produced by Kourentzes, to calculate and visualise the results of the Friedman–Nemenyi Test. We 
input the absolute error of the three methods with real values to the function to get the ranking of 
the models. A lower score means less error and better accuracy of the model.

The Figures 5 and 6 show the results of Friedman–Nemenyi Test. If one method’s result is 
similar to other method, their CD area will overlap and the dot in the middle of each line will be red. 
The middle dot represents the mean rank value. The left and right dot of each line is the CD area 
boundary. The value on the x-axis is the ranking score of the model. Figure 5 presents the 
Friedman–Nemenyi test results for ship service speed, which corroborate the findings from the 
ECDF plots. The mixed method has the best performance across all ports, particularly at Felixstowe, 
where it is significantly more accurate than other methods. Figure 6 displays the Friedman– 

Figure 4. ECDF for imputed main engine power.

Figure 5. Friedman-Nemenyi test for ship service speed (left: Busan; mid: Los Angeles; right: Felixstowe).

Figure 6. Friedman-Nemenyi test for main engine power (left: Busan; mid: Los Angeles; right: Felixstowe).
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Nemenyi test results for main engine power. In Busan and Los Angeles, the mixed-method remains 
the most suitable method. However, at Felixstowe, the IMO-curve fitting method performs better. 
This is due to the port has limited ship types and smaller sample size. Overall, the mixed method is 
the most effective approach, but further validation is required by applying these three methods 
within the emission estimation model. This is because the coverage rate is also a critical perfor
mance indicator when implementing the model in practice (Sun, Abouarghoub, and Demir 2025).

4.2. Results of port emission estimation

After inputting the imputed data and no impute data of Felixstowe and Busan port into the fuel- 
based bottom-up method, we get the port CO2 emissions from ships per day. Figure 7 illustrates the 

Figure 7. ECDF for port daily CO2 emission.
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ECDF of port daily CO2 emissions in 2019 and 2020, which covers a total of 731 days. It indicates 
a significant gap between the results without imputation and those with imputation. The distribu
tions produced by the three imputation methods also differ. The daily emissions estimated using the 
mixed-method are closest to the actual data. The distribution for IMO-MLR is noticeably lower 
compared to the other two methods and the actual data, while the IMO-curve fitting distribution is 
slightly higher. We conducted a Friedman–Nemenyi test for daily CO2 emissions, and Figure 8 
provides the detailed results. The results of the Friedman–Nemenyi test are consistent with the 
ECDF plot, with the mixed-method having the smallest estimation error for daily emissions after 
imputation.

Table 6 gives a clearer view of the impact of imputation methods on total emissions. First, we 
need to validate the accuracy of the data. For Los Angeles, where official emissions estimates are 
available, the emissions calculated using actual ship technical parameters are consistent with the 
official figures (LA 2024). This demonstrates that our emissions calculations are aligned with 
realistic values. The table underscores the importance of selecting an appropriate imputation 
method. Using IMO-MLR results in underestimations of annual emissions by 2% to 6%. This is 
because IMO-multiple linear regression is not effective at handling cases where both ship service 
speed and main engine power are missing simultaneously. This limitation becomes more significant 
in cases with more missing data, such as Busan. There is no significant difference in accuracy 
between mixed method and IMO-curve fitting, but IMO-curve fitting overestimates annual emis
sions by 2%, while mixed-method keeps the error within 0.6%. Hence, the mixed method also 
performs best in annual emissions calculations. Furthermore, data quality has a significant impact 
on emission estimates. Without using imputation methods to improve data quality, emissions 
would be underestimated by at least 42% in Busan, 12.82% in Los Angeles, and 18.79% in 
Felixstowe. This highlights the critical role of imputation in ensuring reliable emission estimation.

Figure 8. Friedman-Nemenyi test for daily CO2 emission (left: Busan; mid: Los Angeles; right: Felixstowe).

Table 6. Port CO2 emissions (t) from ships 2019–2020.

Port year Actual No impute IMO- MLR IMO-curve fitting Mixed method

Busan 2019 470,574 259,644 442,069 481,328 463,237
Busan 2020 503,269 289,628 469,740 515,304 490,251
Felixstowe 2019 70,171 56,984 69,810 72,337 70,358
Felixstowe 2020 81,619 63,134 80,751 83,773 81,300
Los Angeles 2019 168,147 146,584 165,207 171,778 167,031
Los Angeles 2020 158,821 136,281 155,573 162,456 157,399
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5. Conclusions

The purpose of the current study was to quantify the impact of data quality on port emission. This study 
compares the performance of three methods used for imputing missing ship technical parameters in 
port emissions calculations. The Port of Busan, Los Angeles, and Felixstowe were selected as case 
studies for this paper. Based on 42,151 ship calls with 5,797,477 AIS activity records, the fuel-based 
bottom-up method was used to calculate ship emissions in the port, after imputing missing technical 
parameters. The ECDF plots and the Friedman–Nemenyi Test were used to quantify the impact of 
imputing results. The main findings of this study are as follows. First, the calculations show that if the 
missing data is not imputed to improve the quality of the data, it will have a significant impact on the 
calculation of port ship emissions. In the Port of Los Angeles and Felixstowe, if raw data is not 
processed, annual CO2 emissions are underestimated by 13% and 14%, respectively, compared to 
actual values. The situation would be even worse in larger ports. In the Port of Busan, using 
unprocessed data would result in an underestimation of 42% of CO2 emissions. Secondly, for annual 
port CO2 emissions from ships, the mixed method performs best across all case studies. The IMO-curve 
fitting method tends to overestimate CO2 emissions by 2%, while the IMO-MLR method under
estimates them by 2% to 6%. As the error rate increases, the underestimation with the IMO-MLR 
method becomes more significant. The ability of the imputation method to handle missing data is also 
a crucial indicator for evaluating the model’s performance. Thirdly, for daily port CO2 emissions from 
ships, the mixed-method consistently provides the smallest estimation error after imputation. Finally, 
the three imputation methods vary in performance when applied to the technical parameters of ships. 
The mixed-method generally performs best in estimating ship service speed and main engine power, 
while the IMO-curve fitting method is more accurate for estimating main engine power in container 
ships. However, several limitations need to be noted regarding the present study. Although the ports of 
Busan, Los Angeles and Felixstowe are different types of ports, the number of ports is only three. It is 
necessary to include more ports in the case study for more generalize findings. Furthermore, the 
parameters derived in this paper only focus on the service speed and main engine power of the ships, 
and more parameters can be added for analysis later. The current study employs traditional methods for 
data imputation, which may not capture the complexities associated with missing data in this context.

Future research should address the identified limitations to advance the field. First, a systematic 
study can be conducted to examine the impact of data quality on ports of different sizes and types. 
Second, more accurate imputation models for missing data can be developed using machine 
learning models. Third, a unified evaluation standard can be created to assess maritime data quality 
levels. Finally, apart from port emission estimation, data quality issues in other maritime traffic 
research can also be further investigated.
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Appendix 1. Boiler power output

Ship Type Size Range unit

Boiler Power Output (kW)

At berth Anchored Manoeuvring Sea

Bulk carrier 0–9999 dwt 70 70 60 0
Bulk carrier 10000–34999 dwt 70 70 60 0

Bulk carrier 35000–59999 dwt 130 130 120 0
Bulk carrier 60000–99999 dwt 260 260 240 0

Bulk carrier 100000–199999 dwt 260 260 240 0
Bulk carrier 200000+ dwt 260 260 240 0

Chemical tanker 0–4999 dwt 670 160 130 0
Chemical tanker 5000–9999 dwt 670 160 130 0
Chemical tanker 10000–19999 dwt 1000 240 200 0

Chemical tanker 20000–39999 dwt 1350 320 270 0
Chemical tanker 40000+ dwt 1350 320 270 0

Container 0–999 TEU 250 250 240 0
Container 1000–1999 TEU 340 340 310 0

Container 2000–2999 TEU 460 450 430 0
Container 3000–4999 TEU 480 480 430 0
Container 5000–7999 TEU 590 580 550 0

Container 8000–11999 TEU 620 620 540 0
Container 12000–14499 TEU 630 630 630 0

Container 14500–19999 TEU 630 630 630 0
Container 20000+ TEU 700 700 700 0

General cargo 0–4999 dwt 0 0 0 0
General cargo 5000–9999 dwt 110 110 100 0
General cargo 10000–19999 dwt 150 150 130 0

General cargo 20000+ dwt 150 150 130 0
Liquefied gas tanker 0–49999 cbm 1000 200 200 100

Liquefied gas tanker 50000–99999 cbm 1000 200 200 100
Liquefied gas tanker 100000–199999 cbm 1500 300 300 150

Liquefied gas tanker 200000+ cbm 3000 600 600 300
Oil tanker 0–4999 dwt 500 100 100 0

Oil tanker 5000–9999 dwt 750 150 150 0
Oil tanker 10000–19999 dwt 1250 250 250 0
Oil tanker 20000–59999 dwt 2700 270 270 270

Oil tanker 60000–79999 dwt 3250 360 360 280
Oil tanker 80000–119999 dwt 4000 400 400 280

Oil tanker 120000–199999 dwt 6500 500 500 300
Oil tanker 200000+ dwt 7000 600 600 300

Other liquids tankers 0–999 dwt 1000 200 200 100
Other liquids tankers 1000+ dwt 1000 200 200 100
Ferry-pax only 0–299 gt 0 0 0 0

Ferry-pax only 300–999 gt 0 0 0 0
Ferry-pax only 1000–1999 gt 0 0 0 0

Ferry-pax only 2000+ gt 0 0 0 0
Cruise 0–1999 gt 1100 950 980 0

Cruise 2000–9999 gt 1100 950 980 0
Cruise 10000–59999 gt 1100 950 980 0

(Continued)
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(Continued).

Ship Type Size Range unit

Boiler Power Output (kW)

At berth Anchored Manoeuvring Sea

Cruise 60000–99999 gt 1100 950 980 0

Cruise 100000–149999 gt 1100 950 980 0
Cruise 150000+ gt 1100 950 980 0
Ferry-RoPax 0–1999 gt 260 250 170 0

Ferry-RoPax 2000–4999 gt 260 250 170 0
Ferry-RoPax 5000–9999 gt 260 250 170 0

Ferry-RoPax 10000–19999 gt 390 380 260 0
Ferry-RoPax 20000+ gt 390 380 260 0

Refrigerated bulk 0–1999 dwt 270 270 270 0
Refrigerated bulk 2000–5999 dwt 270 270 270 0
Refrigerated bulk 6000–9999 dwt 270 270 270 0

Refrigerated bulk 10000+ dwt 270 270 270 0
Ro-Ro 0–4999 dwt 260 250 170 0

Ro-Ro 5000–9999 dwt 260 250 170 0
Ro-Ro 10000–14999 dwt 390 380 260 0

Ro-Ro 15000+ dwt 390 380 260 0
Vehicle 0–9999 gt 310 300 250 0
Vehicle 10000–19999 gt 310 300 250 0

Vehicle 20000+ gt 310 300 250 0
Yacht gt 0 0 0 0

Service-tug gt 0 0 0 0
Miscellaneous-fishing gt 0 0 0 0

Offshore gt 0 0 0 0
Service-other gt 0 0 0 0

Miscellaneous-other gt 110 110 90 0

(source: IMO 2020)
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Appendix 2. Auxiliary engine power output

Ship Type Size Range unit

Auxiliary Engine Power Output (kW)

At berth Anchored Manoeuvring Sea

Bulk carrier 0–9999 dwt 110 180 500 190
Bulk carrier 10000–34999 dwt 110 180 680 190

Bulk carrier 35000–59999 dwt 150 250 1100 260
Bulk carrier 60000–99999 dwt 240 400 1100 410

Bulk carrier 100000–199999 dwt 240 400 1100 410
Bulk carrier 200000+ dwt 240 400 1100 410

Chemical tanker 0–4999 dwt 110 170 190 200
Chemical tanker 5000–9999 dwt 330 490 560 580
Chemical tanker 10000–19999 dwt 330 490 560 580

Chemical tanker 20000–39999 dwt 790 550 900 660
Chemical tanker 40000+ dwt 790 550 900 660

Container 0–999 TEU 370 450 790 410
Container 1000–1999 TEU 820 910 1750 900

Container 2000–2999 TEU 610 910 1900 920
Container 3000–4999 TEU 1100 1350 2500 1400
Container 5000–7999 TEU 1100 1400 2800 1450

Container 8000–11999 TEU 1150 1600 2900 1800
Container 12000–14499 TEU 1300 1800 3250 2050

Container 14500–19999 TEU 1400 1950 3600 2300
Container 20000+ TEU 1400 1950 3600 2300

General cargo 0–4999 dwt 90 50 180 60
General cargo 5000–9999 dwt 240 130 490 180

General cargo 10000–19999 dwt 720 370 1450 520
General cargo 20000+ dwt 720 370 1450 520
Liquefied gas tanker 0–49999 cbm 240 240 360 240

Liquefied gas tanker 50000–99999 cbm 1700 1700 2600 1700
Liquefied gas tanker 100000–199999 cbm 2500 2000 2300 2650

Liquefied gas tanker 200000+ cbm 6750 7200 7200 6750
Oil tanker 0–4999 dwt 250 250 375 250

Oil tanker 5000–9999 dwt 375 375 560 375
Oil tanker 10000–19999 dwt 690 500 580 490
Oil tanker 20000–59999 dwt 720 520 600 510

Oil tanker 60000–79999 dwt 620 490 770 560
Oil tanker 80000–119999 dwt 800 640 910 690

Oil tanker 120000–199999 dwt 2500 770 1300 860
Oil tanker 200000+ dwt 2500 770 1300 860

Other liquids tankers 0–999 dwt 500 500 750 500
Other liquids tankers 1000+ dwt 500 500 750 500
Ferry-pax only 0–299 gt 190 190 190 190

Ferry-pax only 300–999 gt 190 190 190 190
Ferry-pax only 1000–1999 gt 190 190 190 190

Ferry-pax only 2000+ gt 520 520 520 520
Cruise 0–1999 gt 450 450 580 450

Cruise 2000–9999 gt 450 450 580 450
Cruise 10000–59999 gt 3500 3500 5500 3500

Cruise 60000–99999 gt 11500 11500 14900 11500

(Continued)
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(Continued).

Ship Type Size Range unit

Auxiliary Engine Power Output (kW)

At berth Anchored Manoeuvring Sea

Cruise 100000–149999 gt 11500 11500 14900 11500

Cruise 150000+ gt 11500 11500 14900 11500
Ferry-RoPax 0–1999 gt 105 105 105 105

Ferry-RoPax 2000–4999 gt 330 330 330 330
Ferry-RoPax 5000–9999 gt 670 670 670 670

Ferry-RoPax 10000–19999 gt 1100 1100 1100 1100
Ferry-RoPax 20000+ gt 1950 1950 1950 1950
Refrigerated bulk 0–1999 dwt 520 570 560 570

Refrigerated bulk 2000–5999 dwt 1100 1200 1150 1200
Refrigerated bulk 6000–9999 dwt 1500 1650 1600 1650

Refrigerated bulk 10000+ dwt 2850 3100 3000 3100
Ro-Ro 0–4999 dwt 750 430 1300 430

Ro-Ro 5000–9999 dwt 1100 680 2100 680
Ro-Ro 10000–14999 dwt 1200 950 2700 950

Ro-Ro 15000+ dwt 1200 950 2700 950
Vehicle 0–9999 gt 800 500 1100 500
Vehicle 10000–19999 gt 850 550 1400 510

Vehicle 20000+ gt 850 550 1400 510
Yacht gt 130 130 130 130

Service-tug gt 100 80 210 80
Miscellaneous-fishing gt 200 200 200 200

Offshore gt 320 320 320 320
Service-other gt 220 220 220 220
Miscellaneous-other gt 150 150 430 410

(source: IMO 2020)
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Appendix 3. Engine specific fuel consumption

Engine Type Fuel Type before 1983 1984–2000 2001+

SSD HFO 205 185 175

MDO 190 175 165
MeOH – – 350

MSD HFO 215 195 185

MDO 200 185 175
MeOH – – 370

HSD HFO 225 205 195
MDO 210 190 185

LNG–Otto (dual–fuel, medium–speed) LNG – 173 156
LNG–Otto (dual–fuel, slow–speed) LNG – – 148

LNG–Diesel (dual–fuel) LNG – – 135
LBSI LNG – 156 156
Gas Turbines HFO 305 305 305

MDO 300 300 300
LNG – – 203

Steam Turbines (and boilers) HFO 340 340 340
MDO 320 320 320

LNG 285 285 285
Auxiliary engines HFO 225 205 195

MDO 210 190 185

LNG – 173 156

(source: IMO 2020)
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