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Summary 

The biomimetic approach to enhance the performance of material has been attracting 

attention for decades, especially in cementitious materials such as concrete, in which they 

have shown promising results in terms of mechanical recovery after damage. The crack 

healing process is multiscale in nature and involves various mechanical and chemical 

mechanisms, which need to be taken into account in order to accurately predict the 

behaviour of these materials. Two distinct frameworks are chosen to represent the rate-

dependent crack-healing effect on the mechanical characteristics of self-healing materials. 

The discrete Lattice approach and micromechanical model are employed. The former 

represents the explicit random distribution of self-healing meso and microstructures, 

whilst the latter gives an overall form of constitutive behaviour of the system. The new 

micromechanical model simulates self-healing rate dependency as well as allowing for 

healing under loaded conditions. Moreover, continuous cycles of crack-healing and their 

effect on the mechanical performance of self-healing materials were considered through 

a novel micromechanical framework which satisfies the second thermodynamics law. The 

proposed constitutive formulation was implemented in the Cardiff finite element code 

Cardinal for simulating boundary value problems. The Lattice approach, on the other hand, 

includes element-level healing and considers the damage-healing effect on the updated 

overall stiffness matrix as well as the healed element. This method provides detailed 

information on fracture process zones and associated crack-healing regions. A range of 

self-healing scenarios and systems were simulated in this study and the proposed 

numerical methods were successfully validated against experimental data.  
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Chapter 1                                         

Introduction 

Cementitious materials, owing to the energy intensive methods used in their production 

and their widespread use, are a significant contributor to global carbon emissions. The 

most widely used cementitious material is concrete but this material is susceptible to 

cracking because of its relatively low tensile strength. This susceptibility gives rise to 

durability problems which can either reduce the lifespan of a structure or necessitate 

frequent maintenance interventions. The associated environmental and economic 

impacts of such required repairs are substantial. Furthermore, conventional repair 

practices disrupt the normal function of a structure, e.g., cause traffic congestion due to a 

full or partial concrete bridge closure. 

To tackle these issues, researchers have drawn inspiration from nature and developed 

biomimetic solutions for the production of cementitious materials (De Belie et al., 2018). 

This innovative approach has the potential to detect and repair damage in cementitious 

structures in a way that is akin to the regenerative properties observed in biological tissues 

and bones. Despite the novelty and interest surrounding the self-healing concept, it is 

currently applicable only in specific cases and remains far from practical implementation 

on a large scale. 

  Understanding and modelling self-healing behaviour is one of the challenges facing 

researchers. Despite several studies dedicated to developing models for self-healing 

phenomena (Jefferson et al., 2018), much work needs to be undertaken before such 

models are ready for engineers to apply to real structures.  Therefore, the development of 

a robust, physically based model applicable across a broad spectrum of scenarios is 

essential. Such a model would empower engineers to incorporate this technology into the 

design of their structures. 



Chapter 1: Introduction 
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1-1 Overall aims and objective. 

The main objectives and aims of this study are listed below: 

• Understanding the mechanisms and physics associated with self-healing 

processes in quasi-brittle materials.  

• Finding a tractable mathematical formulation to represent microcracking in self-

healing cementitious materials.  

• Developing a 3D micromechanical formulation which represents time dependent 

mechanical regain due to the self-healing action.  

• Enhancing the developed formulation for multiple damage-healing cycles and 

overlapping damage-healing conditions. 

• Implementing the developed formulation in a 3D finite element program to 

simulate boundary value problems and model structural elements made with 

biomimetic self-healing materials.  

• Enhancing the Lattice beam model to simulate self-healing action in the context 

of discrete crack-healing mechanisms.  

• Simulating self-healing problems with Lattice model to investigate the  

microstructural effects on the self-healing response and studying the fracture 

process zone during damage-healing event. 

• Validating and assessing the performance of the proposed numerical frameworks 

against experimental data available from previous work.  

• Investigating the possibility of incorporating the proposed model into design 

codes.  

1-2 List of publication 

Throughout this PhD and research journey, the primary findings and methodology 

presented in Chapters 3, 4, and 5 have been disseminated through publications in 

international journals. Additional results have also been shared in international 

conferences. The following is a list of journal articles and conference papers: 
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1-2-1 List of journal papers 

• Sayadi,S., Chang,Ze., Shan,H., Schlangen,E., Mihai,I., Jefferson, AD. "An enhanced 

lattice beam element framework for numerical simulation of rate-dependent self 

healing processes in cementitious materials” 

https://doi.org/10.1016/j.engfracmech.2023.109632. 

Under review papers 

• Sayadi,S., Mihai,I.,Jefferson,AD. "Rate dependent self-healing model for composite 

cementitious materials. International journals of solids and structure (2024). 

• De Nardi,C., Sayadi,S., Mihai,I., Jefferson, AD. "Simulation of autogenous self-

healing in lime-based mortars”. Numerical and Analytical Methods in 

Geomechanics (2024). 

1-2-2 List of conference paper 

• Sayadi,S., Ricketts,E., Schlangen,E., Cleall,P., Mihai,I., Jefferson, AD. "Effect of 

microstructure heterogeneity shapes on constitutive behaviour of encapsulated 

self-healing cementitious materials”. MATEC Web Conf. Volume 378, 2023, 

https://doi.org/10.1051/matecconf/202337809004. 

• Shan,H., Sayadi,S., Chang,Ze., Schlangen,E., Jefferson., Mihai,I. “Experimental 

validation of a discrete lattice model for simulating mechanical regains in a 

vascular self-healing cementitious material”. 8th International Conference on Self-

Healing Materials ICSHM Politecnico di Milano, Milan, Italy, 

• Sayadi,S., Chang,Ze., Shan,H., Schlangen,E., Jefferson., Mihai,I. “Microcapsules 

triggering probability in self-healing cementitious material: A parametric study”. 

8th International Conference on Self-Healing Materials ICSHM Politecnico di 

Milano, Milan, Italy, 

• Sayadi,S., Jefferson,AD, Mihai,I. "Time dependent micromechanical self-healing 

model for cementitious material." Edited by R. Maddalena and M. Wright-Syed 

(2021): 105.",RM4L2020 International Conference. 

• Sayadi,S., De Nardi,C., Jefferson,AD, Mihai,I, Gardner,D. " Enhanced 

micromechanical formulation for capturing permanent strain in lime materials" UK 

association for computational mechanics University of Nottingham, 

Nottingham,UK. 

https://doi.org/10.1016/j.engfracmech.2023.109632
https://doi.org/10.1051/matecconf/202337809004
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• Sayadi,S., Davolio,M., Al Obaidi,S., Ferrara,L., Mihai,I., Jefferson,AD. " Constitutive 

formulation for self-healing fibre-reinforced concrete" UK association for 

computational mechanics, Warrick University, Warrick, UK. 

1-3 Outline of the thesis 

This thesis is structured into six main chapters. Within these chapters, comprehensive 

information and details pertaining to existing models for capturing the constitutive 

behaviour of self-healing systems are presented. Additionally, the procedural aspects 

leading to the development of formulations and approaches proposed in this research are 

thoroughly discussed. 

Chapter two presents a comprehensive review of the models for capturing the 

mechanical behaviour of self-healing cementitious materials. It elucidates two primary 

mechanistic approaches for mathematically describing the fracture process in 

cementitious materials. The chapter also highlights several studies dedicated to capturing 

mechanical regain resulting from the healing process. In this review, the state of the art in 

self-healing modelling is discussed, and the primary research gaps identified. The chapter 

underscores the need for a reliable, widely applicable model to capture realistic self-

healing actions in cementitious materials with sufficient accuracy. 

One of the novel approaches reported in this research is presented in chapter three. The 

methodology, formulation, development and numerical implementation of the model are 

described in this chapter. The chapter outlines the enhancement of the TUDelft Lattice 

framework to capture rate-dependent damage-healing cycles in cementitious materials. 

The model introduced in this chapter provides a valuable tool for simulating self-healing 

behaviour at the structural level. This is further expanded in Chapter 5 by the exploration 

of a micro encapsulated self-healing composite material.  

In Chapter Four, another framework which provides a continuum representation of 

crack-healing effects on mechanical properties of the system, is introduced. This chapter 

details the development of a 3D micromechanical method designed to capture rate-

dependent damage-healing mechanisms. It specifically explores the suitability of this 

formulation for capturing mechanical regain in diffuse crack-healing systems, such as 

materials with embedded microcapsules. The theoretical formulation is presented and the 
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ability of the model to capture multiple and overlapping damage-healing cycles is 

assessed. Furthermore, a numerical framework is introduced to tackle the computational 

challenges associated with thermodynamic consistency. 

The implementation of the model in a finite element framework is described in detail in 

Chapter 5. This chapter explains how the new material is added to a hexahedral element 

for simulating boundary value problems. The behaviour of a number of experiments are 

replicated in this chapter. Finally, for a heterogenous microstructural case, the responses 

provided by the Lattice approach and micromechanical approach are presented and 

compared in this chapter.  

Finally, conclusions derived from each of the preceding chapters are summarised in 

Chapter 6. This chapter describes the main outcomes of this research in the context of the 

overall aims and objectives. Recommendations for future work are discussed at the end 

of this chapter.  
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Chapter 2                                       

Modelling self-healing concrete: a 

state-of-the-art review.   

In this review the essential developed concepts and theories alongside the efforts that 

have been made to model self-healing cementitious materials (SHCM) are discussed. This 

section emphasises models that follow mechanistic approaches. Many studies have 

explored different aspects of self-healing cementitious materials. These studies covered a 

vast range of topics from experimental investigations to analytical and numerical 

modelling. Some of these studies were focused on macroscopic response whilst others 

explored microlevel processes in these systems.  This chapter presents a brief overview of 

self-healing concepts in cementitious materials. An overview of self-healing concepts 

alongside different types of self-healing and associated mechanisms are discussed in 

section 2-1. Section 2-2 explains mechanistic-based approaches for modelling mechanical 

behaviour of cementitious materials. In this section, the main focus is on understanding 

and modelling the cracking process and its effect on compliance tensors, strength and 

constitutive formulations. The section reviews the methods and formulations that shaped 

current research methodologies. After addressing the damage process, section 2-3-2 

explains different self-healing frameworks, with a focus on mechanistic approaches. 

Section 2-4 highlights challenges and new problems in modelling self-healing systems and 

finally a discussion (section 2-5) is given in which research gaps are identified. 
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2-1 Self-healing cementitious materials 

Most construction materials, specifically those being used for carrying and resisting 

significant loads, are suspectable to cracking and damage. These reduce structural and 

material durability (Cappellesso et al., 2023) and result in degradation of structural 

performance, as well as a reduction in longevity and safety.  The desire to produce 

materials with a better functionality under harsh conditions, and to tackle durability 

concerns linked to cracking in brittle materials, has led scientists to come up with the idea 

of mimicking the self-healing abilities of biomaterials (W. Zhang et al., 2020). For 

cementitious materials, as discussed comprehensively in review articles by the UGent 

university team (Li et al., 2018; Van Tittelboom & De Belie, 2013), self-healing is defined 

as sealing the crack and regaining the lost mechanical properties. Self-healing systems in 

cementitious materials are categorized as either autogenous or autonomous self-healing.   

The self-healing action that happens due the cementitious system’s intrinsic self-healing 

capability is called autogenous self-healing. The other self-healing category (autonomic) 

involves external materials and devices being embedded in the original matrix. Healing is 

provided by external materials that participate in the healing action (Joseph et al., 2011). 

Some specific self-healing systems include microencapsulation (Xue et al., 2019), vascular 

network (Shields et al., 2021), bacteria based (Luhar et al., 2022) and fibre-reinforced self-

healing systems (Wu et al., 2012). Numerous experimental investigations have been 

conducted to comprehend the mechanisms underlying each of the self-healing systems 

mentioned above. Some of these studies are focused on characterizing the properties of 

self-healing materials, while others  explore the self-healing mechanisms (De Belie et al., 

2018; Ferrara et al., 2018). From a modelling perspective, it is crucial to identify and 

understand the mechanisms involved in damage-healing cycles. The first step in this 

identification process is assessing the impact of self-healing material components on the 

initial mechanical properties of the system. The second involves studying the mechanical 

behaviour of the system, including crack formation and the overall response of the system 

prior the healing activation. The third encompasses the healing itself, which is a multi-

physics process often associated with chemo-transport processes and the restoration of 

mechanical properties. For different self-healing systems, these mechanisms are 

schematically illustrated in Figure 2-1.  
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(a) 

 
(b) 

 

Figure 2-1 Different types of self-healing systems, a) micro encapsulated self-healing, b) vascular 
network. 

The aforementioned mechanisms might occur at different lengths scales, and these also 

depend on the type of self-healing system. The microstructure of self-healing systems is 

influenced by the corresponding healing mechanisms. Hence, despite the existence of 

many macroscopic constitutive frameworks for modelling cementitious materials such as 

plasticity and damage mechanics (Luhar et al., 2022), which are based on 

phenomenological assumptions, mechanistic approaches are used in the current research 

to capture the behaviour of self-healing systems.  

2-2 Mechanistic models for cementitious composite materials 

The overall response of cementitious composite materials is based on micro-scale 

mechanisms. These characteristics, which encompass the initial properties and potential 

microcracking, need to be accounted for in the constitutive formulation (van Mier, 2017). 

The behaviour of these materials depends on the microstructural properties and the 

mechanical processes that take place at microscale level. Multiscale approaches provide 

effective tools for considering the role of each individual constituent in the response of 

the system  (Van der Giessen, 2019). These approaches either model each process and 

constituent at lower scales explicitly and then pass information to the upper scale, as is 

the case in multiscale analysis finite element and Lattice procedures, or they employ 

homogenization techniques through micromechanical formulations.  

Microcapsule

Propagation and triggering Healing



Chapter 2: Modelling self-healing concrete: a state-of-the-art review. 

10 
 

The methods for estimating the overall elastic moduli of composite materials as well as 

their application for microencapsulated self-healing cementitious materials are presented 

in section 2-2-1. Section 2-2-2 summaries constitutive models for cementitious materials 

and explains both discrete and continuum frameworks respectively.  

2-2-1 Elastic moduli of composite materials 

Typically, at the mesoscale, cementitious composite materials have two main phases, 

namely, the cementitious matrix and aggregate. The cementitious matrix, which may be 

considered at the microscale, consists of different phases such as hydrated clinker, 

unhydrated particles and pores. The make-up of these phases greatly influences the 

mechanical properties of the overall cementitious composite.  

The micromechanical approach provides a bridge between different length scales. It 

allows the macroscopic response to be computed from information provided by 

microconstituent properties through homogenization schemes (Böhm, 1998; Van der 

Giessen, 2019). Different methods have been developed for estimating the overall 

properties of composite materials including upper and lower bound approaches (Reuss, 

1929; Voigt, 1889), Hill’s theory (Hill, 1965). Eshelby (Eshelby, 1957, 1959) derived a closed 

form formulation to calculate the response of an elastic medium with an inclusion. Later, 

for systems with multiple inclusions like systems with heterogeneity, some approximation 

methods, in which the homogenisation approach is used, were proposed. These 

homogenisation methods include Mori-Tanaka (Mura, 1982), self-consistent, Ponte-

Castaneda and Willis schemes ((Mura, 1982), Nemat-Nasser & Hori, 2013). The choice of 

the most suitable technique depends on the type of heterogeneity and the distribution of 

inclusions.  

The basic Eshelby solution (Eshelby & Peierls, 1957) is illustrated in Figure 2-2. This shows 

that if a subregion inside a matrix experiences a spontaneous deformation, it would no 

longer fit in its original space and will experience a constraint strain which is uniform inside 

the inclusion. The relationship between this eigen strain and constraint strain is defined 

with a fourth order constant tensor 𝐒 introduced by Eshelby. This tensor depends only on 

the shape of the inclusion and its elastic properties.  
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Figure 2-2. Constraint strain derivation procedure involving the cutting and welding method. 

The averaging theory gives an analytical formulation for estimating the overall properties 

of composite systems. For a two-phase dilute composite system, in which the interaction 

between inclusions is negligible, the effective stiffness matrix is calculated by the following 

equation (Benveniste, 1987). 

 in which 𝐃eff, 𝐃m, 𝑓, 𝐃Ω,  and 𝐀dill  are equivalent composite stiffness, matrix stiffness, 

inclusion volume fraction, inclusion stiffness and dilute strain concentration tensors 

respectively. The strain concentration tensor for a two-phase matrix inclusion system is as 

follows: 

where 𝐈4s is the symmetric part of the fourth order tensor, 𝐒 is the Eshelby tensor, and 

𝐂m is the matrix elastic compliance tensor which equal to 𝐃m
−1. The derivation of the 

above-mentioned tensors is given in the Appendix A and Appendix B.  Some approximative 

solutions have been developed for non-dilute cases, in which the interactions between 

inclusions are non-negligible. These approximate methods are generally categorized into 

effective field and medium approaches. One of the most straight forward methods is the 

Mori-Tanaka approach (Benveniste, 1987; Mori & Tanaka, 1973). In this method, a double 

inclusion system with inclusions denoted Ω1 and Ω2, where Ω1 includes Ω2, and this 

inclusion is subjected to a uniformly eigenstrain is considered. These inclusions are within 

an infinite domain named Λ. It is observed that the volume average (<>𝑣) of the strains 

and stresses induced by the Ω2 over the subtracted domain (Ω1 − Ω2) is zero.  As a result, 

the average far field stress or strain is replaced by the matrix average strain or stress 

tensor. Equation (2.3) shows the resulting effective stiffness matrix of a two-phase system. 

𝐃eff = 𝐃m + 𝑓𝛺(𝐃Ω − 𝐃m) ∙ 𝐀
dill 

(2.1) 

 

𝐀dill = [𝐈4s + 𝐒 ∙ 𝐂𝐦 ∙ (𝐃Ω − 𝐃m)]
−1 (2.2) 
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The second group of mean-field estimates for overall mechanical properties of 

composite materials have been named effective medium approaches. In these 

approaches, it is assumed that the inclusions are embedded in effective field for which the 

properties are not known in advance. Classical and generalized self-consistent scheme are 

the most important types of homogenization scheme within this category (Mura, 1982). 

As shown in the equation (2.4) the effective properties derived through an iterative 

procedure.  

 where 𝐒eff is the Eshelby tensor of inhomogeneities embedded in the effective medium 

and 𝐂eff = 𝐃eff
−1 . For cementitious matrices, researchers have employed micromechanical 

formulations to estimate the overall elastic properties of the cement matrix from 

microstructural properties. (Achour et al., 2020; Bernard et al., 2003; Königsberger et al., 

2017, 2020; Nguyen-Sy et al., 2020; Pichler & Hellmich, 2011; Sanahuja et al., 2007). The 

procedure for multiscale homogenization used in these studies is illustrated in Figure 2-3 

for a model that considers hierarchical homogenisation assuming spherical inclusions 

(Bernard et al., 2003). Later, detailed images derived from electron microscopic devices, 

revealed that hydrate products are needle shaped. Sanahuja et al. (2007) applied a 

modification to achieve a more realistic simulation and a better prediction of 

representative material element properties at different scales.  Figure 2-3 illustrates some 

specific homogenisation techniques along with the scales and configurations considered. 

This figure illustrates how different researchers used homogenisation methods to link 

lower scales (micro or nano) to higher scales (meso or macro).  Mostly, the Mori-Tanaka 

scheme is applied to cases that have a dominant matrix phase and clearly distinct 

inclusions. The self-consistent scheme tends to be used for configurations with multiple 

phases where no one particular phase is dominant (Bernard et al., 2003; Pichler & 

Hellmich, 2011) .  

𝐃eff = 𝐃m + [𝑓𝛺(𝐃Ω − 𝐃m) ∙ 𝐀
dill] ∙ [(1 − 𝑓𝛺)𝐈

4s + 𝑓𝛺𝐀
dill]

−1
 (2.3) 

𝐃eff = 𝐃m + 𝑓𝛺[𝐃Ω −𝐃m] ∙ [I
4s + 𝐒eff ∙ 𝐂eff ∙ (𝐃Ω − 𝐃eff)]

−1
 (2.4) 
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Figure 2-3 Multiscale homogenization method for estimating concrete elastic moduli. 
(Reproduced from (Bernard et al., 2003; Pichler & Hellmich, 2011; Sanahuja et al., 2007)) 

The homogenization approach provides a computationally convenient method for 

multiscale analysis. Alternative approaches have been explored in a few studies. For 

example,  Qian et al. (2011, 2017) employed the lattice method for multiscale analysis. 

The authors established a parameter passing methodology (see Figure 2-4) for modelling 

multiscale integrated systems such as cement paste, mortar and aggregate. They used 

their method to simulate a uniaxial tensile test specimen and thereby derive the 

mechanical properties at each scale. For a more accurate response, the solution derived 

from a lower scale should undergo an additional multiscale homogenisation to bridge 

between the different scales. 

 

 

 

Known properties 
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properties 

Upscaling from lower 
properties and estimating 

macroscopic response 

Figure 2-4 Passing parameter used in Lattice simulation (reproduced from Qian et al. (2017)) 
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Whilst the homogenization techniques were used for the macroscopic responses of 

cementitious composite, some studies followed the same method for microencapsulated 

self-healing systems (Ahmed & Sanada, 2019; Kanellopoulos et al., 2016; Li et al., 2016; 

Quayum et al., 2015; Zhou et al., 2020). Concrete, at mesoscale, inherently is a two-phase 

composite heterogeneous material. Introducing microcapsules filled with healing agent 

transforms it into a multiphase composite material. Such inhomogeneous materials 

comprise a variety of sub-materials at different scales.  

Wu et al., (1997) and Yang et al., (2007) employed both analytical and experimental 

methods to examine the influence of microcapsule inclusions on the initial properties of 

the cementitious matrix. The studies indicated that inclusions within the matrix can lead 

to a reduction in overall mechanical properties, resulting in stress concentrations and 

anisotropic behaviour. Abaimov et al. (2019)  obtained the overall mechanical properties 

of a representative volume of multiphase material using the hierarchical approach, which 

is essentially a multistep homogenization scheme. They also compared their results with 

the one-step homogenisation technique and check the accuracy of those methods against 

the experimental data. They found that for the overall elastic properties using multistep 

procedure for system with the higher volume of fraction led to a better approximation.   

The initial elastic properties of a self-healing cementitious system were estimated using 

a linear micromechanical model by Quayum et al. (2015). They utilised a two-step 

homogenisation technique (see Figure 2-5) to determine the elastic properties of 

cementitious composites containing embedded microcapsules. They also examined the 

impact of volume fractions of different constituents and the size of the Representative 

Volume Element (RVE). The results were compared with finite element solutions, leading 

to the conclusion that further research on the application of linear homogenisation, as 

well as further experimental investigations for validation, were necessary to address these 

issues.  
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Figure 2-5 Schematic methodology adopted by Quayum et al. (2015) for hierarchical 
homogenization. 

In an experimental-numerical study, Li et al. (2016) investigated the effect of adding 

spherical microcapsules to a concrete matrix on the elastic properties of SH concrete. 

Using Eshelby theory and assuming that cracks are randomly positioned over the medium 

with uniform orientation, and that the healing agent only flowed to the cracks because of 

capillary action, they studied the dependency of matrix parameters on self-healing 

mechanical behaviour. This also included the portion of cracks to be potentially healed. 

They showed that crack healing could cause more anisotropy as the load increases. By 

measuring the amount of water absorption on a pre-cracked sample they realized that 

cracks were healed partially and not fully. 

 Later,  Ahmed & Sanada (2019) treated the cores and shells of microcapsules as separate 

matrix-inclusion systems. They undertook the same hierarchical averaging procedure for 

the cement-capsules system and for the matrix-inclusion system. They assumed that each 

material phase behaved as an elastic isotropic material. They compared experimental data 

with the results from a series of finite element analyses of an RVE consisting of micro-

capsules and cementitious composite matrix. They showed that their proposed analytical 

model can perdict the elastic properties of encapsulated self-healing systems. They 

claimed that some parameters especially shell elastic modulus effect on effective elastic 

properties is insignificant up to a certain limit of volume fraction. However, according to 

the Mori-Tanaka scheme the inclusion mechanical paramters is explicitly included in the 

formulation. The authors conclusion was due to the fact that they normalized their results 

and they needed to examine different types of microcapsules with different properties. As 

expected, the results showed that the elastic property of the composite system is 

dependent on the volume fraction of capsules.  Following this research, Zhou et al. (2020) 

investigated the global sensitivity of polymeric microcapsules in a self-healing 

cementitious composite. They used an Extended Fourier Amplitude Sensitivity test to find 

the most influential parameters on the effective properties of SHCM materials. They 
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concluded that identifying the most influential parameters should lead to more precise 

prediction. They showed that the volume fraction of capsules is the most sensitive 

parameter, and that the effect of interfacial interaction could not be ignored. Figure 2-6 

shows the variation of matrix properties with changing microcapsule volume fractions. 

The results of the different homogenization techniques are also compared in this Figure.  

   
(a) (b) (c) 

Figure 2-6. Effect of microcapsules dosage on mechanical properties, a) Young’s modulus, b) 
tensile strength, c) compression strength 

2-2-2 Mechanical behaviour of cementitious composite materials 

The mechanical behaviour of materials, such as cementitious, rock, ceramics and most 

composites, is classified as quasi-brittle (Cornelissen et al., 1985; Labuz et al., 1985; Van 

Mier & Van Vliet, 2001). These are typically heterogenous materials composed of brittle 

constituents in which some of them have a lower tensile strength than others. 

Consequently, the failure mode in these materials is attributed to degradation and fracture 

of those weak brittle phases. In contrast to ductile materials, they don’t have significant 

strain hardening, and often exhibit a marked softening response after reaching the 

ultimate strengths (Huang & Karihaloo, 1993).  

There are many studies on the macroscopic modelling of fracture of quasi-brittle 

materials through both smeared and discrete approaches (Rashid, 1968; Rots et al., 1985; 

Rots & Blaauwendraad.,1989). The choice between employing a smeared or discrete 

method for capturing fracture processes is contingent upon the specific nature of the 

process under consideration, and  opinions vary on which is  the superior approach  (Borst 

et al., 2004; Cervera & Chiumenti, 2006; Jendele et al., 2001; Noghabai, 1999; Willam & 

Carol, 2014). With the discrete category, a discontinuity may be represented by a strong 

jump in the displacement field within a cracked element or by a soft displacement 

transition function to represent a weak form of discontinuity, as depicted in Figure 2-7. 



Chapter 2: Modelling self-healing concrete: a state-of-the-art review. 

17 
 

  
(a) (b) 

  
(c) (d) 

Figure 2-7 Discontinuity consideration in displacement formulation, a) strong form in 
displacement, b) weak form of discontinuity, c) strong jump in strain and d) strain corresponding 
the weak form of displacement discontinuity. 

The earliest model for simulating damage in quasi-brittle materials, especially 

cementitious ones, based on micromechanical principles, originated from the work of 

Bazant’s team (Bazant, 1984; Bažant et al., 1984; Bazant et al., 1991; Bažant & Oh, 1983) 

between 1980 and 1990. He introduced the concept of the microcrack plane, wherein the 

microcracks are distinctively aligned with an arbitrary plane (Caner & Bažant, 2013). Ortiz 

(1985 and 1988) employed homogenisation techniques, incorporating the role of 

microcracks as a degradation mechanism coupled with a plasticity formulation, to enhance 

the representation of concrete behaviour in the compression regime. In this model, the 

additional macroscopic strain energy is derived from the average strain energy, as noted 

in equation (2.5). This is computed using information from all active microcrack planes. 

where 𝛔̅ and 𝛆̅ are far field averaged stress and strain derived from stress and strain 

tensor over the Ω domain.  

𝛔̅: 𝛆̅ = ∫𝛔(𝐱): 𝛆(𝐱)𝑑Ω

Ω

 
(2.5) 
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In the homogenization scheme, the influence of microcracks on the overall elastic moduli 

of cementitious system is calculated through two primary methods. The direct method, 

which involves adding the effect of microcracks directly to the constitutive formulation. 

This method introduced by (Budiansky and O’Connell 1976) for estimating overall moduli 

of elastic solid with microcracks defects (Nemat-Nasser & Hori, 1993), has been 

subsequently adopted and refined by numerous researchers. Particularly, it has been used 

for the development of constitutive models for cementitious materials (Davies & Jefferson, 

2015, 2017; A. Jefferson & Bennett, 2007; I. C. Mihai & Jefferson, 2011, 2017). The second 

approach involves employing the classical two phase Eshelbian formulation, treating the 

microcracks as ellipsoidal void inclusions with zero stiffness properties. However, 

employing the Eshelbian solution for estimating the overall behaviour of microcracked 

medium encounters difficulties. Following the initiation of multidirectional cracking, the 

isotropic medium changes into an anisotropic medium, consequently, the initial standard 

Eshelby tensor is not valid anymore and an iterative procedure for the calculation of the 

Eshelbian tensor at each microcracking event is required.  Figure 2-8 shows schematically 

the procedure for deriving the effective properties of quasi brittle materials with 

microcracks through the direct and Eshelbian approaches.  

 

Figure 2-8 Schematic micromechanical approaches for microcrack simulation 

For quasi-brittle materials, (Pensée et al., 2002) formulated both direct and Eshelbian 

approaches to determine the influence of microcracking on overall system properties. 

They showed that, taking the crack interactions into account might be a complex process 

and involve difficulties since it requires the numerical computation of the Eshelby matrix 

every time the crack density parameter changes in any direction. Later on,  Q. Zhu et al. 
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(2008) studied the effect of microcracks on effective properties using various 

homogenization schemes. They proposed equations for calculating overall elastic moduli. 

These equations are applicable to both open and closed crack conditions. Following the 

decomposition method, the overall macroscopic strain was derived through homogenising 

the strain field over the decomposed domains of closed and open cracks. Equation (2.6) 

shows this process mathematically.  

in which 𝛆𝐜(𝐳) represents the strain tensor at the domain boundary containing 

microcracks. 𝛆𝐦 denotes the uniform strain across the matrix. It was suggested that due 

to the spatial distribution of microcracks, the interaction between them is captured more 

accurately through the homogenisation technique suggested by  Ponte Castañeda (2002)  

(PCW scheme) rather than the Mori-Tanaka (Q. Zhu et al., 2008). This is because in Mori-

Tanaka’s scheme, the homogenization procedure is solely a function of the crack density 

parameter. The PCW scheme considers the interaction of sliding and damage evolution in 

a constitutive relationship derived from the following thermodynamic potential: 

In this equation, Ψ is potential energy, 𝛆̅𝑐 is the average strain of medium containing open 

crack.  

Similarly, Pichler et al. (2007) employed Eshelby’s inclusions principle, treating 

microcracks as empty inclusions. They assumed that the microcracks within an RVE are 

penny-shaped cracks with identical size and orientation. To predict brittle behaviour, they 

integrated classical fracture mechanics with micromechanics. 

To enhance their former approach, Zhu et al. (2009) developed an anisotropic damage 

model based on a homogenization scheme. They utilized the thermodynamic framework 

for damage evolution function proposed by Pensée et al. (2002). Subsequently, they 

proposed a simplified method for an isotropic case, assuming a uniform distribution of 

𝛆̅ =
1

Ω
∫𝛆𝐜(𝐳)𝑑Ω

Ω

+ 𝛆𝐦   ∀𝐳 ∈ ∂Ω 
(2.6) 

Ψ =
1

2
(𝛆̅ − 𝛆̅𝑐):𝐃𝑚: (𝛆̅ − 𝛆̅𝑐) −

1

2Ω
∫𝛆𝐦: 𝐃𝑚: 𝛆𝐜𝑑Ω

Ω

 
(2.7) 
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microcracks. In this way they derived the homogenized stiffness tensor for an isotropic 

damage case (Zhu et al., 2011).  

In another study, Levasseur et al. (2015), formulated a micromechanical model that 

coupled the material initial anisotropy and the damage-induced anisotropy while 

accounting for ‘unilateral’ (crack closure) effects of evolving microcracks. They employed 

a thermodynamic framework to derive the model variables from a micromechanical free 

energy closed-form equation. They showed that their 2D model can capture the initial 

anisotropy and damage growth in argillite material with good accuracy compared to 

experimental data from uniaxial tensile tests. This model was extended to 3D by Zhu & 

Shao (2015) Zhu & Shao (2015). They determined the free enthalpy of representative 

element volume consisting of a family of randomly oriented penny shaped microcracks 

based on the Mori-Tanaka homogenisation scheme. The aforementioned methodologies 

and approaches, along with their schematic configurations, are summarised in Table 2-1. 

It is important to note that in the current study, a representative volume element (RVE) 

was assumed to characterize the average elastic properties of the composite. However, its 

validity becomes highly questionable once macrocracking occurs. Gitman et al. (2007) 

demonstrated that, in the context of cracking, the concept of an RVE loses its significance. 

Therefore, in this study, the term ‘representative material element’ (RME) is used to 

describe an RVE specifically for elastic properties. 
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Table 2-1 Methods for considering microcracks through Eshelbian approach. 

Configuration 
Methods and 
results 

Assumptions references 

 

• MT  

• Decomposition 

• Frictional and 
sliding cracks 

• No crack 
interaction 

• 2D formulation 

• Uniformly 
distributed cracks 

(Pensée et 
al., 2002; 
Zhu et al., 
2008) 

 

• PCW 

• Crack interaction 

• Coupling of crack 
sliding and 
damage 
evolution 

• Homogenous 
material 

• Uniform stress  

• 2D formulation 

• Spatial 
distribution 

(Pichler et 
al., 2007; 
Zhu et al., 
2009) 

 

• PCW 

• Closed crack 
effect on 
stiffness 

• Coupled 
formulation 

• Crack interaction 

• 2D formulation 

• Uniform direction 
 

(Zhu et al., 
2011) 

 

• PCW 

• Friction and 
sliding  

 
 

• Homogenous 
material 

• Uniform stress  

• 3D formulation 

• Random 
orientation 

 

(Zhu & 
Shao, 
2015) 

 

• MT and PCW 

• Spherical 
inclusions for 
aggregate 
 

  

• Crack interaction 

• 2D formulation 

• Randomly 
oriented 
directions 

• Cracks formed 
between 
inclusions  

(Levasseur 
et al., 
2015) 

The direct approach, which involves incorporating the additional directional strain 

(Equation (2.8)) resulting from microcracks, allows for the calculation of the overall 

homogenised cracking medium. A notable advantage of the direct is its ability to 

x1

x2
D=0

D=3ksJ
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circumvent the need for numerical solutions in evaluating the Eshelby tensor for 

anisotropic cases (Deseumaux, et al., 2001).    

where 𝐧 is crack plane surface normal vector, [𝐮] is the crack opening displacement 

vector and 𝒩𝑐 is the number of cracks within RME. 

The direct approach has been investigated by many authors (Mura, 1982; Němeček et 

al., 2013; Pensée et al., 2002) and yields a 3D anisotropic damage model for estimating 

the effective elastic solid modulie with combined penny-shaped open and closed cracks. 

Feng et al. (2004), combined the micromechanical framework and phenomenological 

approach to capture the behaviour of quasi-brittle materials. They proposed a quasi-

micromechanical model that characterises microcracks using two terms: the orientational 

domain of microcrack growth and a scalar crack density parameter representing the 

isotropic part of the damage. Additionally, they proposed an approximation to account for 

microcrack interactions on overall elastic moduli and compared their results with effective 

field and effective medium approaches.  

Jefferson & Bennett (2007) followed a mechanistic approach to derive a micromechanical 

formulation for microcracking in a cementitious materials incorporating the rough contact 

mechanism due to crack closure. Extending their analysis, A. D. Jefferson & Bennett (2010) 

enhanced their previous work to cementitious composite materials. They used Eshelby 

theory to simulate the aggregate phase in the cementitious materials and Mori-Tanaka to 

consider the interactions between inclusions for volume fractions greater than 10 percent.  

Building upon this foundation, I. C. Mihai & Jefferson (2011) improved the microcrack 

initiation criteria by employing the Eshelby exterior tensor ((Eshelby & Peierls, 1959) to 

compute the strain and stress fields at the boundary of the inclusions. Experimental 

evidence highlighted the fact that microcracking mostly occurs in interfacial transition 

zone (ITZ), therefore using the exterior Eshelby tensor could increase simulation accuracy 

and make it closer to reality.   

Similar research conducted to investigate the effect of the ITZ and the interaction 

between aggregate particles with ITZ on the macroscopic response of concrete was 

εα =
𝒩𝑐
𝑟3
∫ 𝐧⨂[𝐮] + [𝐮]⨂𝐧𝑑𝑆
∂Ω

 (2.8) 



Chapter 2: Modelling self-healing concrete: a state-of-the-art review. 

23 
 

undertaken by Königsberger et al., (2013a and 2013b). They derived a stress concentration 

tensor related to the ITZ, and assumed that cracking in the ITZ was responsible for the 

nonlinear stress-strain behaviour in the pre-peak regime. Considering the microstructural 

properties of this region, Sharma & Bishnoi (2020) showed that the ITZ properties affect 

the overall macroscopic response of cementitious materials. Recently, Dutta & Chandra 

Kishen (2018) investigated the progressive damage between matrix and inclusions. They 

assumed that three consecutive mechanisms happen during a damage event. Their model 

included microcrack propagation along the interface, kinking of the interface into the 

matrix, and subsequent propagation. The model was developed in 2D and the Mori-Tanaka 

homogenisation scheme was employed for upscaling from micro to mesoscale. In their 

model, the cracks were assumed to be open and arc shaped.   

Following that study, Dutta & Kishen (2019) suggested a 2D micromechanical damage 

model considering the crack propagation within matrix using thermodynamics-based 

strain energy released function. They assumed the microcracks are slits that are 

distributed isotopically within a representative material domain. Due to uncertainty in 

estimation of each phase parameters, Chen, et al. (2022), followed a stochastic 

micromechanics-based approach to derive a constitutive formulation for cementitious 

materials. 

The schemes for damage evolution in several studies discussed in this chapter were 

based on energy potentials along with yield and damage state concepts. By contrast, 

Jefferson & Bennett (2007) suggested that a strain-based damage formulation, which 

utilises an exponential function, provides a more accurate representation of the damage 

evolution in cementitious materials with a few parameters that have physically meaning 

representations. Mihai and Jefferson (2013) introduced a smoothing function to simulate 

gradual microcrack closure. This not only improved the accuracy of their model but also 

helped alleviate some numerical problems, namely ‘chatter’, associated with abrupt crack 

opening and closing behaviour. The summary of the models that employed a direct 

approach is presented in Table 2-2. 
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Table 2-2 Methods for considering cracking using Budiansky and O’Connell approach (direct) 

Configuration Methods and results Assumptions references 

 

• Additional strain  

• Adding contact 

 
 

• No crack 
interaction 

• Randomly 
distributed cracks 

• Homogenous 
medium 

(Pensée et 
al., 2002; Q. 
Zhu et al., 
2008) 

 

• MT 

• Coupling of cracks 
sliding and damage 
evolution 

• Uniform stress  

• 2D formulation 

• Aligned cracks  

• Spatial distribution 

(Pichler et al., 
2007; Q. Z. 
Zhu et al., 
2009) 

  

• MT 

• Exterior Eshelby 

• Coupled formulation 

• 3D formulation 

• Penny shaped 
cracks 

• Standard loading-
unloading 
condition is applied 

 

(Mihai and 
Jefferson 
2013) 

 

Despite the popularity of homogenisation schemes for predicting the mechanical 

response of materials, modelling the explicit formation of micro and macrocracks remains 

challenging problem for researchers.  

Several numerical techniques have been developed to augment classical finite element 

formulations for capturing discontinuities within solid media arising from fracture action. 

The Extended Finite Element Method (XFEM) addresses displacement discontinuity by 

introducing an additional degrees of freedom and assigning an appropriate interpolation 

formulation. To mitigate mesh dependency issues, the Enriched Finite Element Method 

(EFEM) was devised. This method incorporates an additional displacement field to better 

approximate cracks through the enrichment of degrees of freedom (Feng et al., 2023).  

Another approach in capturing crack initiation, and propagation which is mostly 

applicable for quasi-brittle material is the cohesive-zone models (Alfano, 2006). It is 

assumed that in this zone, the tractions gradually decrease from a peak value to zero. In 

this zone, at microscale level, the decohesion occurs due to microcracks nucleation. The 

Open crack Interlock region

Closed crack

ITZ
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macrocracks formation is mainly because of progressive interface damage corresponding 

to microcrack growth and coalescence (Alfano & Sacco, 2006). 

One of the pioneering and highly effective methods employed for modelling 

cementitious materials at micro- and mesoscale is the Lattice approach, initially developed 

by Schlangen & van Mier (1992). Their initial 2D work was extended to 3D and expanded 

to include heterogeneous systems (Qian et al., 2011). This latter 3D version has been 

named the ‘TUDelft Lattice model’. Other investigators have developed lattice-type 

approaches and there are now three main categories of Lattice model; the Lattice Spring 

Model (LSM) (Bolander & Saito, 1998), the Lattice Discrete Particle model (LDPM) (Cusatis 

et al., 2011) and the original Lattice Beam network Model (LBM) (Alessandro et al., 2018). 

The LBM has been used extensively to investigate fracture and transport processes in 

cementitious materials (Athanasiadis et al., 2018; Šavija et al., 2012; Schlangen & 

Garboczi, 1996; Schlangen & van Mier, 1992; Vidya Sagar et al., 2019).  

   Qian et al. (2017) furthered the scope of LBM models by showing that they could be 

used as a sub-scale model that governs the effective constitutive behaviour of an upscaled 

macroscopic analysis. They generated cement paste microstructures using the 

HYMOSTRUCT3D model (van Breugel, 1995). In some studies, the geometry and 

positioning of aggregate particles were determined by using X-ray computed tomography 

(XCT) techniques (Zhang et al., 2016, 2018).  Other investigators used computational based 

algorithms for generating and positioning the aggregate particles; for example, Qian et al 

(2016) used the ANM computer model to generate a randomly positioned irregular shaped 

meso structure within a representative composite cementitious material. In their study, at 

each scale and for each phase, the mechanical properties were derived using nano 

indentation tests (Hu & Li, 2014).  More recent work has shown that the lattice framework 

can successfully describe the multiphase microstructure of cement paste (Xu et al., 2022). 

In this work, the authors assigned material properties according to the level of hydration 

of each cement-paste phase and compared experimentally observed fracture processes 

with model results. These aforementioned studies proved the efficacy of the lattice 

approach for simulating damage processes at multiple scales in cementitious materials. 

The different approaches discussed in this chapter for capturing discrete cracking problem 

are presented in Table 2-3. 
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Table 2-3 Different configuration for considering discrete crack. 

Name Configuration Assumptions and references 

XFEM 

 

• Additional degree of freedom 
added to the nodes  

• The crack initiation should be 
known 

• The accuracy of the solution is 
dependent on an enrichment 
function 

• Mesh density and nodal 
distribution near discontinuity 
can affect the crack path 
 

EFEM 

 

• The displacement jump is 
considered through heavy side 
or other appropriate functions 

• Discontinuity intersect is 
considered 
 

 

LBM 

 

• Multilateralization  

• Full or partial element removal 
to simulate damage 

• Mesh generated by the  
triangulation technique 
 

 

LDPM 

 

• Particles are connected by a 
Lattice strut 

• Mechanical interaction 
between particles is 
characterized by normal and 
shear stresses 
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In this research, the TUDelft Lattice beam approach was extended and enhanced to allow 

the explicit representation of the crack-healing process. The formulation and 

corresponding algorithm for the numerical implementation is fully described in Chapter 4.  

2-3 Review of theoretical framework for modelling self-healing 

A number of studies have been dedicated to modelling self-healing cement-based 

materials (SHCM). These materials comprise various phases at different length scales. 

Damage and healing within these materials involves several multi-physics processes. 

Consequently, different frameworks tailored to specific self-healing mechanisms have 

emerged over the past two decades. In general, there are two primary theoretical 

frameworks commonly used as the foundation for modelling the mechanical behaviour of 

self-healing systems.  The first category is continuum damage healing mechanics (CDHM) 

(Barbero et al., 2005).  This method gives the overall response of a representative material 

element by including damage and healing processes in the constitutive formulation. This 

approach mainly considers macroscopic material information. Another category is the 

discrete approach, in which a model is formulated in a way that considers explicitly the 

crack-healing process inside a discrete crack.  

In section 2-3-1, CDHM related models are presented. This section explains how these 

models consider healing and mechanical recovery. Also, ways of including chemo-physical 

phenomena in these models, such as curing and transport processes, are explained. The 

section also discusses how former studies shaped the development of the proposed 

micromechanical formulation for multiscale mechanistic approach developed in this 

research.  

Section 2-3-2 is devoted to discrete methods and their application. It explains how 

healing processes in discrete cracks are considered. The section also discusses the 

secondary problems associated with healing, such as the triggering of an embedded 

healing system.      

2-3-1 Continuum damage healing mechanics and micromechanics 

The models within the category of CDHM are constructed upon the foundation of the 

Continuum Damage Mechanics (CDM) framework (Voyiadjis et al., 2022). This method 
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offers a convenient framework for incorporating damage into quasi-brittle material 

models by embedding the effects of cracking within the constitutive formulation, as 

demonstrated by (Cervera & Chiumenti, 2006; Rots et al., 1985). CDM theory considers 

the effect of damage on the constitutive response by applying a damage variable, or 

tensor, which in this work is denoted 𝜔 (or 𝛚 , if in tensor form). The damage variable is 

assumed to be the ratio of damaged area (𝑎𝜔) of a representative material element to the 

total area (𝑎), as noted below: 

Extending Hooke’s law (Malvern, 1969) to account for anisotropic damage gives the 

following stress-strain relationship:  

The majority of CDHM formulations consider healing in one of two ways. The first of 

these involves explicitly accounting for healing by incorporating the contribution of the 

healed material component into the original constitutive equation, as initially suggested 

by (Schimmel & Remmers, 2006) for a one dimensional domain. The following equation 

proposed by (Schimmel & Remmers, 2006) shows the stress variable in a 1D system after 

a single damage-healing cycle.  

where 𝜎 and 𝜀 are the 1D stress and strain variables, 𝐸 and 𝐸ℎ are Youngs’ moduli of the 

original material and the healed material respectively, ℎ is the healing variable 

contribution which varies from 0 to 1, 𝜔ℎ is the redamage variable applied to the healed 

material and 𝜀ℎ is the healing strain variable, which  makes sure that the healed material 

forms in a stress-free condition and allows for the permanent strain that results from 

healing agent curing in open cracks.  

The ℎ variable is defined as the ratio of the healed (𝑎ℎ) to damaged relative areas (𝑎𝜔), 

as follows:  

𝜔 =
𝑎𝜔
𝑎

 (2.9) 

𝛔 = 𝐃: (𝐈𝟒𝐬 −𝛚): 𝛆 (2.10) 

𝜎 = (1 − 𝜔)𝐸𝜀 + ℎ(1 − 𝜔ℎ)𝐸ℎ(𝜀 − 𝜀ℎ) (2.11) 
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The second option introduces an effective damage parameter (𝜔𝑒𝑓𝑓) to simulate the 

healing effect. Darabi et al., 2012; Voyiadjis et al., 2011, 2012 use an effective configuration 

and the concept of effective stress space for self-healing materials, such that the nominal 

strain energy is equal to the effective strain energy. To derive the constitutive formulation, 

they assumed the following power equivalence hypothesis:  

where 𝜎𝑒𝑓𝑓 is effective stress configuration of healing state. The healing evolution function 

was adopted from a phenomenological equation proposed by (Mergheim et al., 2012). 

 The healing potential in a few studies (Abu Al-Rub & Darabi, 2012; Barbero et al., 2005) 

was driven by applying a thermodynamics framework to satisfy a potential energy 

dissipation criterion. In these studies, due to the lack of experimental data, the authors 

decided to consider the healing potential function in an analogous way to the damage 

potential function. An example potential is given in the equation below:  

where Ψ is the potential energy, Π is a driving force potential and 𝑭𝒉 is the healing force 

potential. In this equation, the subscript 𝑑, 𝑝 and ℎ refer to the damaged, plasticity and 

healing components of the potential energy respectively.    

In most of real self-healing cases, healing does not occur instantaneously. To address this 

challenge,  Mergheim et al., (2012) and Mergheim & Steinmann (2013) proposed a 

method for considering healing time dependency and simultaneous damage-healing 

processes. They developed the following equation assuming that, during healing, the 

mechanical response does not change unless the strain field changes:  

ℎ =
𝑎ℎ

𝑎𝜔
  (2.12) 

𝜕𝜎𝑒𝑓𝑓

𝜕𝑡
= (1 − 𝜔(1 − ℎ))𝐸

𝜕𝜀

𝜕𝑡
 (2.13) 

Ψ =
1

2
(𝜀 − 𝜀𝑝): 𝐷: (𝜀 − 𝜀𝑝) + Π𝑑 + Π𝑝 +Πℎ  (2.14) 

𝑭𝒉 =
∂Ψ

∂h
 (2.15) 
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Oucif et al. (2019) looked into the super-healing concept with CDHM theory in which the 

material strengths increase beyond the original values. They extended the classical 

definition to generalized nonlinear and quadratic super healing based on elastic stiffness 

strengthening.  

Recent efforts in modelling self-healing behaviour, employing the CDHM, reveal that the 

majority of these models are grounded in the frameworks developed by Voyiadjis teams. 

Some of these studies extended the work for healing under cyclic loading (Subramanian & 

Mulay, 2020). Other studies coupled the healing evolution function to a hydration degree 

derived from experimental data in order to represent hydration induced healing (Q. Chen 

et al., 2021). Shojaei & Voyiadjis (2023) introduced a statistical perspective to the CDHM 

framework. For modelling multiple self-healing cycles,  Sanz-Herrera et al. (2019) 

developed a framework that assumes that healing occurs under fully unloaded conditions, 

allowing for the estimation of the overall material response during the multiple cycle 

loading history where healing initiated at fully unloaded phase at each cycle. 

Nevertheless, a subset of these studies incorporates a mechanistic trace in their 

methodology, predominantly relying on experimentally informed parameters for deriving 

their model parameters. Additionally, a limited number of studies have endeavoured to 

simulate the mechanical behaviour of self-healing cementitious systems through 

micromechanical formulations. For instance, in the case of a dilute distribution of 2D 

ellipsoidal cracks, Li et al. (2016) calculated the homogenized compliance matrix of a 

representative self-healing material.  Zhu's team employed micromechanical simulations 

to deduce the constitutive material behaviour. They applied a micromechanical framework 

in a two-dimensional space to simulate the behaviour of self-healing systems 

incorporating microencapsulation under both tension and compression loads (H. Zhu et 

al., 2015, 2016). They assumed a random distribution of microcapsules (Zemskov et al., 

2011) within their representative material domain to estimate the portion of healed 

microcracks. 

ℎ(𝑡) = ∫ 𝜔(𝑠)𝜙(𝑠)
𝑡

𝑠=𝑡0

𝑒−(𝑡−𝑠)/𝜏𝑑𝑠 (2.16) 



Chapter 2: Modelling self-healing concrete: a state-of-the-art review. 

31 
 

 Davies & Jefferson (2017) enhanced the direct micromechanical approach to derive a 

constitutive formulation to represent healing in randomly distributed microcracks. Their 

formulation assumed that crack healing occurs in the interfacial transition zone, modelled 

through the Exterior Eshelbian method (Eshelby & Peierls, 1959; I. C. Mihai & Jefferson, 

2011). They also assumed that healing action occurs only once and instantaneously.  

In other studies, (K. Han, Ju, Zhang, et al., 2021; K. Han, Ju, Zhu, et al., 2021; T. Han et al., 

2021) a 3D evolutionary micromechanical damage-healing formulation was derived to 

predict the healing effect by estimating the effective compliance matrix. Self-healing due 

to crystallization on the overall elastic moduli of cementitious materials was estimated 

using the homogenization technique presented by Q. Chen, Li, et al. (2022). In this study, 

cracks were assumed to be penny-shaped inclusions and parallel to a defined material axis. 

The healing process was considered to create another inclusion inside the penny-shaped 

cracks, leading to a double inclusion homogenization problem. 

Most of these micromechanical based studies examined encapsulated self-healing 

systems in which the damage-healing process distributed throughout a representative 

volume of material. The summary of configurations used in the CDHM and 

micromechanics approaches discussed above are illustrated in Table 2-4. 

Table 2-4. Different configuration for considering healing 

Method Configuration References 

CDHM 

 

(Abu Al-Rub et al., 
2010; Abu Al-Rub 
& Darabi, 2012; 

Darabi et al., 
2012) 

MM2D 

 

(Li et al., 2016) 

MM3D 

 

(Davies & 
Jefferson, 2017) 
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2-3-2 Discrete crack-healing methods 

In the context of modelling healing in an open crack, the discrete modelling framework 

(van Mier, 2012) serves as the foundation for the development of self-healing 

formulations. This approach involves the explicit representation of macro cracks and 

simulation of healing processes, such as the transport flow of healing agents (Alsheghri & 

Abu Al-Rub, 2016; Ponnusami et al., 2015, 2018). There are different techniques for 

incorporating discrete cracks into numerical models, such as the extended finite element 

(XFEM) (Cervera et al., 2022),  finite elements with embedded discontinuities (EFEM)  

(Freeman & Jefferson, 2022), cohesive elements, and lattice methods (Cibelli et al., 2022).  

The discrete approach provides the option to consider the triggering mechanism of self-

healing systems, offering essential insights into crack nucleation and propagation 

(Ponnusami et al., 2015, 2019). Ponnusami et al. (2015) employed a cohesive zone 

approach in 2D space to investigate the interaction between cracks and embedded 

microcapsules in the matrix. Their findings revealed that the main fracture mechanism 

results from strength and toughness mismatches between the particles and the matrix. 

Additionally, pre-existing defects were found to alter crack propagation, with potential 

implications for design applications. 

 A similar study conducted by Šavija et al. (2016) explored the breakage of tubular 

capsules made of different polymers and wall thicknesses using a lattice beam approach. 

In a related experimental-numerical study, Lv et al. (2017) conducted a  combined 

experimental numerical study to investigate crack behaviour for encapsulated systems. 

They constructed the mesh of a self-healing system using real microstructural information 

obtained from XCT scans.  Zhou et al. (2016) employed PFC2D software to study the 

fracture process near microcapsules in 2D matrix-capsule idealisations, utilizing the 

discrete element method where the capsules were assumed to be bonded particles that 

followed standard laws of motion. In this way, the fracture process was modelled by the 

breakage of bonds between adjacent particles. 

Mauludin & Oucif (2019) studied the effect of varying the interfacial strength on the 

fracture behaviour of microcapsules using the cohesive zone model. They embedded 

polymeric-based microcapsules in the centre of a 2D matrix domain and found that the 
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load-bearing capacity of the system depends on the interfacial strength, regardless of the 

core-to-shell thickness ratio of the microcapsules. Additionally, they demonstrated that 

the probability of triggering microcapsules under fixed interfacial fracture strengths 

depends on the core-to-shell thickness ratio. 

 Gilabert et al. (2017) presented a 3D XFEM based model in combination with the 

cohesive surface method to study the fracture process of encapsulated self-healing 

materials. They highlighted the role of bond strength between the capsule and matrix in 

the fracture process. The summary of methods and configurations used for simulating the 

triggering process involved in self-healing action is presented in Table 2-5. 

Table 2-5. Methods and configuration for simulating triggering process 

Method Configuration References 

Cohesive 
XFEM, 
DEM 

 

(Ponnusami et al., 
2015, 2019) 
(Mauludin & 
Oucif, 2019) 

 

LBM 

      

(Šavija et al., 
2016) 

 The finite element framework for simulating the damage-healing process using a 

phenomenological cohesive zone approach was adopted by Alsheghri & Abu Al-Rub 

(2016). They assumed that healing occurs at the crack tip. Following this research, 

Ponnusami et al. (2018) extended their cohesive model (Ponnusami et al., 2015) to include 

healing variables for simulating the mechanical recovery. Their model proved capable of 

capturing multiple instantaneous healing events. 
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In a different approach, Caggiano et al. (2017) proposed a damage/plasticity interface 

model with a zero-thickness element to represent the post-cracking response before and 

after self-healing. They demonstrated that their model can effectively capture the 

concrete's post-peak strength after healing. 

To extend the DEM method, Zhou et al. (2017) introduced a healing index derived from 

the number of broken bonds before and after healing. They concluded that the 

characteristics of self-healing depend on the initial damage and strengths, and that self-

healing causes local contact instabilities which result in fluctuations in the stress-strain 

response after the peak-load has been reached. Also, they showed that healing may 

reduce the ‘peak strain’, which in this paper is defined as strain corresponding to the peak 

load. 

In a distinct methodology within the context of discrete approaches, Chen & Ye (2019) 

utilized a Lattice Boltzmann single-component model to simulate healing caused by 

further hydration. Their model was employed to estimate healing efficiency as well as 

geometry changes.  

Adopting a strong discontinuity framework called SDA, for considering crack-healing 

effects on global mechanical responses of cementitious materials, Y. Zhang & Zhuang 

(2018) obtained a general range of healing parameters through back analysis of a set of 

experiments on a self-healing beam subjected to bending and shear. They compared the 

crack path with and without healing and showed how healing action causes a deviation in 

the crack propagation direction.  
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Table 2-6 Summary of existing models for capturing mechanical regain due to healing 
mechanism 

Description Mechanical response Range of applicability 

• Healing commenced in a 
fully unloaded condition 

• Redamage is considered  

• Healing occurred 
instantaneously  

• Healing can occur once 

• Formulation derived based 
on damage models 

 

 

• Intrinsic and extrinsic 
self-healing with 
microcapsules, where 
healing occurs rapidly 
enough for healing to 
be complete 

• Time dependency is 
included 

• Healing commenced in 
astress free condition 

• Single healing event is 
considered 

  

• Single healing 
systems with healing 
agent with different 
curing times 

• Multiple healing cycle is 
included 

• Healing should commence in 
stress free condition 

• At each cycle, healing 
commences instantaneously  

 
 

• Systems with mutiple 
healing cycle 
potential, such as 
microbial systems.  

• Healing occurs under 
sustained load 

• There is no overlap between 
healing and damage  

• Cohesive zone element 
method mostly used for this 
formulation 

  

• Systems with mutiple 
healing cycle 
potential, such as 
microbial systems. 

• Simultaneous damage and 
healing considered 

• Healing process time 
dependency is considered 

 

• Systems in which 
loading is resumed 
during the healing 
process, such as 
vascular networks 
and encapsulated 
systems. 

• Re-healing feature and 
continuous damage-healing 
mechanism is considered.  

• Damage and healing is 
formulated in elements with 
strong discontinuities  

 

• Systems with a 
continuous healing 
agent supply, 
provided by, for 
example, a vascular 
network.  
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2-4 Coupled Multiphysics models 

The prevalent and widely adopted theories for modelling damage-healing processes, 

aimed at capturing the mechanical recovery aspect in self-healing, have been outlined. 

However, as previously discussed, self-healing is a complex, multifaceted process. The 

transport of healing agents to the crack, chemical reactions, and the solidification process 

of the healing materials constitute sets of mechanisms associated with the self-healing 

phenomenon. Limited attention has been given to exploring and developing coupled 

chemo-physical-mechanical models of self-healing. The governing equations for discrete 

crack flow, diffusive and advection-diffusive processes, along capillary transport, are 

intertwined with mechanical frameworks, reflecting the essence of Multiphysics modelling 

in the context of self-healing. 

In the context of flow within discrete crack, Freeman & Jefferson (2020) devised a 

numerical framework for crack flow simulation, specifically tailored to simulate the flow 

of healing agents inside a non-uniform crack. This involved coupling the Navier-Stokes 

formulation, as noted in equation (2.17), with the mass balance equation to 

comprehensively capture the flow of healing agents throughout the cementitious matrix. 

where 𝒖̇ is velocity vector, 𝑃 is pressure, 𝜇 is viscosity and ∇ is differential operator.  

They applied the method proposed by Gardner et al. (2014) to incorporate the capillary 

flow action into their equation by introducing the viscous resistance force. Considering the 

fact that the transport properties of healing agent through time changes due to curing 

process, they described and modelled healing agent movement inside cracks of various 

geometries.  The healing process is described by moving curing fronts within the body of 

healing agent, which is simulated using the following advection diffusion equation: 

where ∅ is curing degree and 𝐷𝑓 is diffusive constant. 

𝜕𝒖̇

𝜕𝑡
+ (𝐮̇ ∙ ∇)𝐮̇ = −

∇𝑃

𝜌
+ 𝜇∇2𝐮̇ (2.17) 

𝜕∅

𝜕𝑡
+ ∇ ∙ (𝐮̇∅) − ∇ ∙ (𝐷𝑓∇∅) = 0 (2.18) 
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The transport flow of healing agent through the cementitious porous medium is 

modelled using the diffusive flux equation. 

where S is saturation degree, 𝐣 is the matrix flux and Q is the discharge flow.  

Employing the above-mentioned equation, and building on previous work on coupled 

models for self-healing materials (Di Luzio et al., 2014; Di Luzio & Cusatis, 2009b, 2009a) 

Di Luzio et al. (2018) introduced a model that captures solidification and crack-healing 

mechanisms through a coupled hygro-thermo-chemical approach. They described the 

driving force for self-healing as a reaction function of cement hydration, considering 

factors such as temperature, hydration degree, relative humidity, and crack width. A 

coupled diffusive-mechanical model was developed by Sanz-Herrera et al. (2019) which 

takes into account the chemical-diffusive action of mobile chemical species. The 

mechanical aspect of their model is developed based on the Continuum Damage Healing 

Mechanics (CDHM) model presented by Darabi et al. (2012). 

Rodríguez et al. (2020) used the lattice framework for modelling the crack sealing 

process. They simulated the moisture transport within a cracked sample and considered 

the effects of cracking on diffusivity. 

 In a similar context, but with different Lattice framework approach, Cibelli et al. (2022) 

followed a lattice discrete particle approach to simulate autogenous healing in 

cementitious materials. Their model incorporated fracture, moisture transport, and 

hydration processes through a Hygro-Thermo-Chemical formulation. The authors applied 

this model to simulate self-healing in dog bone-shaped and double-edged notched 

prismatic specimens, demonstrating that the numerical results aligned well with 

experimental data.  

Recently, Freeman et al. (2020) integrated their transport model with a novel cohesive 

damage-healing mechanics model. They implemented their formulation into an element 

with strong discontinuity, defining all healing variables at that level. Expanding on their 

work, they considered healing in a crack with varying opening displacement over time, as 

detailed in (Jefferson & Freeman, 2022). In this extension, healing was simulated by 

𝜕𝑆

𝜕𝑡
+ ∇ ∙ 𝐣 − 𝑄 = 0 (2.19) 
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accounting the interaction of the curing front and the crack geometry. The model took into 

consideration the interaction of healing processes with the crack opening displacement 

and its rate. The authors demonstrated that their model accurately captures the 

mechanical and transport features of autonomous self-healing. 

Building on their prior work, Freeman & Jefferson (2023) recently extended the model 

to a 3D domain for the simulation of realistic boundary value problems. Their simulations 

provide valuable insights into the transport of healing agents inside realistic crack 

geometries in a 3D domain. 

The modelling approaches for simulating different mechanisms associated with coupled 

self-healing processes is summarised in the Table 2-7 

Table 2-7 Coupled modelling approaches. 

Coupled 
process 

Configuration Description References 

flux 

 

The healing product forms 
inside the crack through 
coupling the flux mechanism 
and chemical process of 
carbonation.  

(Ponnusami et al., 
2015, 2019) 

(Mauludin & Oucif, 
2019) 

 

Moving 
curing front 

 

The amount of healing 
material is determined 
through the advection-
diffusion process. In this 
method the overlapping 
between curing fronts from 
opposing crack-surfaces 
determines the level of 
healing.  

(Freeman & Jefferson, 
2022, 2020; Jefferson & 
Freeman, 2022) 

Explicit 
transport 

 

The transport of healing 
materials is explicitly 
considered by adding pipe 
elements. These elements 
determine the level of 
saturation at each voronoi 
element. 

(Rodríguez et al., 2020; 
Singla et al., 2022) 

 

 

Diffuse curing front

Uncured healing

material

Cementitious substrate
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2-5 Discussion 

The approaches used to simulate mechanical self-healing have been considered in this 

chapter. It has been shown that most of the previous research undertaken on simulating 

self-healing processes has employed empirical methods for deriving the healing and 

damage driving forces. This has resulted in the development of models that are limited to 

the range of the experimental data used for their derivation. Many of the existing 

mechanistic approaches are limited to certain damage-healing conditions, e.g. 

instantaneous self-healing, healing under zero-strain conditions or separate damage and 

healing processes. 

Generally, it is shown that, depending on the self-healing system, either diffuse or 

discrete crack-healing is likely to occur. However, both can occur in the same structural 

element and therefore a comprehensive model would need to considered both scenarios. 

The continuum approach, as shown in the literature, can provide a convenient framework 

for capturing damage and healing processes. However, the currently proposed models are 

not able to consider three main features: i) the time dependency of the healing process, 

ii) simultaneous damage and healing processes, and iii) multiple re-healing events. 

For cases where the explicit representation of the microstructure and fracture process 

zones is required, the Lattice method is attractive. However, to date, and to the best 

knowledge of the author of this thesis, no study has been devoted to considering 

mechanical aspects of self-healing in the Lattice formulation.  

Although recently a few coupled models for representing discrete crack-healing systems 

have been developed, most of these models have defined explicitly the location and 

formation time of a principal crack. Therefore, existing models are not able to simulate 

accurately multiple and intersecting cracks and associated crack healing.    

The research gaps identified in this literature review are addressed in the remainder of 

this thesis. The research described comprises an enhanced and updated micromechanical 

model as well as a new Lattice formulation for capturing self-healing effects on mechanical 

properties. These are validated against experimental data. 
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Chapter 3                                             

Lattice beam method 

3-1 Introduction 

This chapter describes a new formulation for simulating time-dependent crack-healing 

in lattice models, which was implemented in the TUDelft Lattice program. The chapter 

provides  detailed information on the nature and extent of damage and healing zones at 

the mesoscale in cementitious structural elements. The Lattice method enables complex 

heterogeneity of cementitious systems with a selected level of randomness to be 

captured. The addition of healing to the model in a way that allows the simulation of 

micro- and macro-crack healing, in both an open and closed states, adds a considerable 

degree of complexity to the formulation. The enhancement was applied to the existing 

TUDelft Lattice model. This enhanced Lattice model is able to predict the overall 

mechanical recovery and system behaviour due to the healing in addition of the micro and 

mesoscale responses.  

  In the remainder of this chapter, lattice beam theory and the meshing procedure are 

explained in sections 3-2 to 3-4.  The healing formulation is described in detail in section 

3-5 and the computational details are noted in section 3-6.  The behaviour of proposed 

model is illustrated in Section 3-8. Section 3-9 gives numerical examples to show the 

typical responses that would be derived from the proposed model. A range of numerical 

examples that considers meso and microstructural Lattice representations are provided in 

section 3-10. Section 3-11  is devoted to discussion and conclusion.  

3-2 Lattice beam network model 

In the lattice method, a domain is discretised with beam elements which connect a set 

of randomly positioned nodes. The mesh of beam elements is generated using a Delaunay 

triangulation algorithm which simultaneously determines the corresponding Voronoi cells 



Chapter 3: Lattice beam method 

42 
 

(Qian et al., 2011), as illustrated in Figure 3-1. This procedure involves dividing the domain 

into cubic sub-cells of specified size. The mesh nodes are then positioned based on the 

desired level of randomness in each sub-cell. Subsequently, nodes are connected using 

Delaunay triangulation (Chang, Liang, et al., 2022; Chang, Zhang, et al., 2022). The cross 

section of the element is chosen such that it is equivalent to the common surface area 

between the two Voronoi cells (see Figure 3-1d). In this way, the whole discretised system 

approximately represents the continuum. In addition, it is necessary to adjust the radius 

of the sphere associated with each cell so that the initial stiffness of the lattice model 

matches that of the elastic system. This is part of the calibration procedure, which is 

explained in more detail in section 3.7.  

 
 

(a) (b) 

 
 

(c) (d) 

Figure 3-1 Illustration of the LBM, a) 2D lattice network with elements and Voronoi cells, b) 3D 
Lattice structure and c) an element in 3D space 

The level of randomness determines the mesh irregularity as depicted in Figure 3-2. 
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(a) (b) 

Figure 3-2. Effect of randomness on Lattice mesh, a) randomness=0.5 , and b) no randomness 

For a Lattice beam element in 3D space, the 1212 stiffness matrix is derived from 

applying the standard Galerkin weak form to the axial, bending, torsional and shear 

components of the beam governing equations.  The governing equilibrium, compatibility 

and constitutive equations for a continuum solid, as well as the associated Neumann and 

Dirichlet boundary conditions, are as follows:  

where 𝑻 is the traction vector on the boundary and 𝐃 is stiffness matrix of the continuum 

media.  

Applying Timoshenko’s beam theory to a lattice beam element with 12 degrees of 

freedom, generated using the discretisation process for continua described above, gives 

the following governing differential equation: 

where u is axial displacement field and 𝑣 is vertical displacement field 𝐼 is the second 

moment of inertia, 𝑓𝑥 and 𝑓𝑦 are force in x and y direction respectively. 𝐺 is the material 

shear modulus and 𝒦 is the Timoshenko shear coefficient.  

{
 
 

 
 

∇ ∙ 𝛔 + 𝒇𝒃 = 0
𝒖 = 𝒖𝟎
𝝈. 𝒏 = 𝑻
𝝈 = 𝐃: 𝛆

𝛆 =
1

2
(∇𝐮 + ∇𝐮T)

 

(3.1) 

{
 

 𝐸𝐴
𝑑2𝑢

𝑑𝑥2
 + 𝑓𝑥 = 0

𝐸𝐼
𝑑4𝑣

𝑑𝑥4
− 𝑓𝑦 +

𝐸𝐼

𝒦𝐴𝐺

𝑑2𝑓𝑦

𝑑𝑥2
 = 0

 

(3.2) 
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Expanding the boundary conditions for each degree of freedom on 𝜕Ω gives  

where 𝑢(𝑥), 𝑣(𝑥) and (𝑥) are axial, shear and rotational displacement components at 

an arbitrary coordinate x, and  𝑚(𝑥) and 𝑞(𝑥) are the applied moment and force vectors 

respectively. 

By multiplying the governing equations by a weight function and integrating over the 

beam domain the weak form is derived. The following are the proposed shape functions 

for the solution of the Galerkin problem: 

Shape functions for the axial and transverse components of displacement comprise 

linear and cubic polynomials respectively.  

For a Timoshenko beam element, the stiffness matrix is finally calculated as shown: 

{
 
 

 
 
𝑢(𝑥) = 𝑢0
𝑣(𝑥) = 𝑣0
𝜃(𝑥) = 𝜃0
𝑚(𝑥) = 𝑀0

𝑞(𝑥) = 𝑄0

 

(3.3) 

{
 
 

 
 𝑢(𝑥) =∑𝐿𝑖𝑢𝑖

2

𝑖=1

𝑣(𝑥) =∑𝑁𝑖𝑣𝑖

2

𝑖=1

+∑𝑀𝑖𝜃𝑖

2

𝑖=1

 

(3.4) 

{
 
 
 
 
 
 

 
 
 
 
 
 𝐿1 = 1 −

𝑥

𝑙

𝐿2 =
𝑥

𝑙

𝑁1 = 1 −
3𝑥2

𝑙2
+
2𝑥3

𝑙3

𝑁2 =
3𝑥2

𝑙2
−
2𝑥3

𝑙3

𝑀1 = 𝑥 −
2𝑥2

𝑙
+
𝑥3

𝑙2

𝑀2 = −
𝑥2

𝑙
+
𝑥3

𝑙2

 (3.5) 
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𝑘̂0 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝐸𝐴

𝑙
0 0 0 0 0

−𝐸𝐴

𝑙
0 0 0 0 0

12𝐸𝐼𝑧

𝑙3(1+𝜑)
0 0 0

6𝐸𝐼𝑧

𝑙2(1+𝜑)
0

−12𝐸𝐼𝑧

𝑙3(1+𝜑)
0 0 0

6𝐸𝐼𝑧

𝑙2(1+𝜑)

12𝐸𝐼𝑦

𝑙3(1+𝜙)
0

−6𝐸𝐼𝑧

𝑙2(1+𝜑)
0 0 0

−12𝐸𝐼𝑦

𝑙3(1+𝜙)
0

−6𝐸𝐼𝑦

𝑙2(1+𝜙)
0

𝐺𝐽

𝑙
0 0 0 0 0 −

𝐺𝐽

𝑙
0 0

(4+𝜙)𝐸𝐼𝑦

𝑙(1+𝜙)
0 0 0

6𝐸𝐼𝑦

𝑙2(1+𝜙)
0

(2−𝜙)𝐸𝐼𝑦

𝑙(1+𝜙)
0

(4+𝜑)𝐸𝐼𝑧

𝑙(1+𝜑)
0

−6𝐸𝐼𝑧

𝑙2(1+𝜑)
0 0 0

(2−𝜑)𝐸𝐼𝑧

𝑙(1+𝜑)

𝐸𝐴

𝑙
0 0 0 0 0

12𝐸𝐼𝑧

𝑙3(1+𝜑)
0 0 0

−6𝐸𝐼𝑧

𝑙2(1+𝜑)

12𝐸𝐼𝑦

𝑙3(1+𝜙)
0

6𝐸𝐼𝑦

𝑙2(1+𝜙)
0

𝐺𝐽

𝑙
0 0

(4+𝜙)𝐸𝐼𝑦

𝑙(1+𝜙)
0

𝑠𝑦𝑚
(4+𝜑)𝐸𝐼𝑧

𝑙(1+𝜑) ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

       (3.6)

   

A full derivation is given in Logan (2002) and Qian (2012a). 

The microstructure geometry can be determined using X-ray, electron microscopic 

images or by utilizing computational codes. The latter produce random shapes (inclusions) 

and positions them within a domain (cementitious matrix) thereby replicating the 

cementitious material’s microstructure. Figure 3-3 shows different types of Lattice 

meshes. The mechanical properties of each beam element are determined from 

experimental tests on concrete specimens (e.g. cylinder compression, cylinder splitting 

and direct tension tests). 

 
 

(a) (b) 

Figure 3-3 Lattice meshing example for heterogenous system, a) irregular inclusions, and b) 
embedded microcapsules 
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The skeletal finite element system, which is sparse in nature, is assembled in compressed 

row format (Barrett et al., 1994; Zienkiewicz et al., 2013). Initially, the sequential linear 

solution procedure was used to solve the nonlinear system of equations, but this was later 

modified to accommodate the new healing procedure, as explained in Section 3-5. The 

linearised equation system for each iterative step is solved using a Jacobi preconditioned 

conjugate gradient solver. 

   The basic method used to simulate damage in the conventional Lattice model is to 

remove elements from the structural system when the internal representative stress, 

defined in equation (3.11), exceeds the damage threshold strength (Section 3-3). This is in 

contrast to continuum damage mechanics in which a damage variable () varies 

continuously from zero (no damage) to unity (fully damage) at a material point. In damage 

mechanics terms, the classical lattice approach would be consistent with the damage 

variable for an entire element changing instantaneously from zero to one when the 

element fracture criterion is met. In this study, the conventional lattice approach has been 

modified to simulate progressive element-level damage in a step-wise (or segmented) 

fashion for incremental prescribed displacements. This involves the element damage 

variable being increased in discrete steps from zero to one. Details of this procedure are 

provided in Section 3-4.  In addition, rate dependent damage and healing behaviour has 

been introduced into the model, as explained in Sections 3-4-1 and 3-5.   

3-3 Standard LBM fracture model 

For a standard LBM mesh, as illustrated in Figure 3-1, the static equilibrium equation for 

an undamaged linear elastic lattice beam element is as follows: 

where 𝐊̂0, 𝐮̂ and 𝐟 are the element undamaged stiffness matrix (as illustrated in equation 

3.6), nodal displacement vector and force vector respectively, noting that ^ denotes 

element level variables. 

   The global equation system is obtained by assembling the contributions from each 

beam element, as follows:  

𝐊̂0𝐮̂ = 𝐟 (3.7) 
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where 𝐊G0 is the intact global stiffness matrix, and 𝐮 and 𝐟 are the global displacement 

and force vectors respectively. 

   Lattice beam elements are removed when the representative stress (𝜎), as given by 

equation (3.9), exceeds the damage threshold strength of the element (ft).  

   where 𝑁 and 𝑀 are the maximum axial force and bending moment of the beam section 

respectively, A is the cross-sectional area and 𝑊 is elastic section modulus; 𝛼𝑁 and 𝛽 govern 

the normal and flexural stress contributions to the equivalent stress respectively, and are 

set to 𝛼𝑁 = 1 and 𝛽 = 0.05, based on the values suggested by Chang (2019), through 

experimental and numerical validation for cementitious materials. 

   Beam elements are removed sequentially such that, at any point in the analysis, the 

element with the highest representative stress is removed. The solution procedure is 

sequentially linear with one element being removed per iteration until there are no beams 

left that exceed the damage threshold.  

   The assembled equilibrium equation system from equation (3.8), modified to account 

for fractured elements, is as follows: 

where  𝐊Gω is the global stiffness matrix updated for damaged (or fractured) elements.  

   It is noted that in the standard LBM fracture approach, the stiffness matrix of a 

fractured beam element is null, i.e. 𝐊̂ = 𝟎. Further details of how the standard LBM 

simulates the fracture behaviour of quasi-brittle materials can be found in (Chang et al., 

2020).  

3-4 Progressive damage. 

The standard LBM was later extended by Schlangen and co-workers (Qian, 2012b; 

Schlangen, 2022; Schlangen & van Mier, 1992) to capture the softening behaviour of 

𝐊G0𝐮 = 𝐟 (3.8) 

𝜎 = 𝛼𝑁
𝑁

𝐴
+ 𝛽 ×𝑚𝑎𝑥(

|𝑀𝑖|

𝑊𝑖

) 
(3.9) 

𝐊Gω𝐮 = 𝐟 (3.10) 
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concrete using a multi linear constitutive material law, which was assigned to each lattice 

beam element, such that an element can experience partial -rather than full- damage at a 

particular time. This method has now been extended to account for the softening 

behaviour of an element subjected to incremental prescribed displacements in a way that 

is compatible with incremental-iterative solution procedures.  

   The damaged element stiffness matrix is obtained from: 

𝜔 varies in a step-wise manner and is related to the initial and secant elastic moduli (𝐸0 

and 𝐸𝑖 respectively), as follows:  

𝜔 = 1 −
𝐸𝑖

𝐸0
           (3.12) 

where i denotes the step number.  

   The stepped damage procedure determines 𝐸𝑖 from the corresponding representative 

strain (ε𝑖); noting that ε𝑖 = 𝑢̃𝑖/𝐿𝑒, where 𝑢̃𝑖  is the representative element relative 

displacement and 𝐿𝑒 the element length. According to the Timoshenko strain energy and 

fracture mechanics theory, the energy dissipation rate would be depends on the element 

length and which can be normalized by the unit volume of a lattice beam. This method 

employs a stress v representative-strain softening curve based on experimental data 

appropriate for the materials that have been considered in this work, as illustrated in 

Figure 3-4b. In this figure, the material tensile strength (𝑓𝑡) and its corresponding secant 

elastic modulus (𝐸) at each damage step (𝑖 ∈ 1: 𝑛) is presented. It is worth noting that, in 

this model, the variation of strain along the lattice beam section is not computed; rather, 

the maximum value is used. For more accurate strain tracking and computation, fibre 

beam models may be employed. 

 

𝐊̂ = (1 − 𝜔)𝐊̂0 (3.11) 



Chapter 3: Lattice beam method 

49 
 

 
 

(a) (b) 

Figure 3-4 Stepped softening approach. a) schematic procedure and b) the softening 
representation of the considered materials in this study 

   In the progressive damage case, the global stiffness matrix (𝐊Gω)  is formed from the 

assembled element matrices (𝐊̂), noting that  is null for undamaged elements.   

3-4-1 Incremental damage 

In the classical Lattice algorithm, the prescribed displacement is adjusted such that only 

one lattice element reaches the damage threshold in each mechanical step. In effect, the 

lattice structure is fully unloaded after each step, and/or after each lattice element 

fracture event, and then the fully reloaded. This loading-unloading sequence continues 

until the system reaches either the desired prescribed displacement (or load) with no 

more element fracture events, or it becomes unstable due to the formation of a fracture 

path that crosses the entire structure.  

   This approach is not suitable for simulating healing in loaded (displaced) lattice 

structures. Rather, to simulate healing under sustained load, as well as considering 

continuous damage healing cycles, the existing TUDelft lattice method was modified to an 

incremental damage formulation. In this approach, at each mechanical step, an increment 

of displacement is applied to the system. The new algorithm determines the critical 

element(s), if any, with respect to fracture. A multilinear iterative segment is added to 

make sure the system is in equilibrium after the system stiffness matrix has been updated 

for any new damage. The following figure shows a comparison between the computed 

responses for a uniaxial test specimen undertaken with (i) the incremental damage 
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method, and (ii) the classical loading-unloading approach. The material and geometric 

properties are given in in Table 3-1. In this example the material parameters are chosen in 

a such way as to represent a typical cementitious mortar. Also, in this example, full damage 

is assumed to occur instantaneously and this is simulated by the removal of a lattice 

element when the failure criterion stress (equation (3.9) reaches to the strength threshold  

(ft in Table 3-1). 

 As shown in Figure 3-5, the response envelopes obtained with the classical loading 

unloading method and the incremental damage model are essentially the same; however, 

the former includes some secant unloading-reloading branches. The responses have been 

plotted as both load-displacement and averaged stress-strain graphs. The stress () and 

strain () in this example are the average engineering stress and strain variables which 

were calculated from force divided by cross section area and displacement divided by 

specimen length respectively.  

Table 3-1 Mechanical properties 

𝐸 (MPa) 𝑓𝑡(MPa) 𝜈  Sample dimensions (mm) 

29501.6 3.4 0.25 50 × 50 × 50 
 

 
 

(a) (b) 

Figure 3-5 Comparison of classical and incremental damage model for Lattice beam method, a) 
Force-deformation, and b) stress-strain 

3-5 Time dependent healing 

Healing is associated with chemical processes that involve (i) healing agent curing in 

autonomic systems, or (ii) further hydration of unhydrated particles in autogenous self-

healing. In both cases, healing is a time dependent phenomenon which involves the 
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diffusion and advection of healed material to and within the cracked area. It has been 

shown that the progress of healing in many biomimetic cementitious materials can be 

represented adequately with an exponential healing function (Freeman & Jefferson, 2023, 

2020; Jefferson & Freeman, 2022). 

This has been used in the present work to enhance the TUDelft-Lattice model to include 

transient healing. This is accomplished by recovering the properties of damaged elements 

over time and by allowing for the permanent relative displacements that occur when 

healing agent cures in an open crack. When damaged elements heal, the system stiffness 

matrix changes; however, the crucial point is that in a healing sub-step the internal forces 

should not be changed. This is because mechanical healing alone should not cause a 

change in the stress or strain energy. The basic assumption is that the healing agent in an 

open-crack cures in a stress-free condition. This ensures that the model does not violate 

the second law of thermodynamics (Jefferson et al., 2018) and, for a lattice system, this 

condition implies that the internal forces remain constant during a healing step. The model 

is based on the assumptions that (i) an adequate amount of healing agent is available to 

fill the crack fully, and (ii) the transport of healing agents to the crack is instantaneous. 

   To allow for healing, the basic element equilibrium equation (3.7) is modified, as 
follows:     

   where 𝐊̂h is the healed element stiffness matrix and 𝐮̂h is the element healed 

displacement vector. The normal component of 𝐮̂h physically represents the width of the 

cured healing agent zone in a crack (generally equal to the crack width at that position) at 

the time the crack is healed.     

  In the absence of re-damage, the element healing matrix at a time t is given by: 

where 𝜏 is a curing time constant, t is the current time, t0 is the healing initiation time, 

𝐊̂h∞ is the ultimate healing matrix and 〈 〉 denote Macaulay brackets.  

   In order to allow for multiple healing cycles and account for the gradual accumulation 

of the healing displacement vector, equation (3.14) is introduced into equation (3.13) and 

𝐊̂ω𝐮̂ + 𝐊̂h(𝐮̂ − 𝐮̂h) = 𝐟̂ (3.13) 

𝐊̂h(𝑡) = 𝐊̂h∞(1 − 𝑒
−〈𝑡−𝑡0〉/𝜏) (3.14) 
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the second term in the latter is re-written as a summation of convolution integrals, as 

follows: 

   where n represents the number of healing cycles, 𝐮h(𝑠) is the healed element 

displacement at the specific time of the curing (s),  and the first term of the right hand 

side is based on the derivative of equation (3.14) , i.e. 𝜕𝐊̂h(𝑡)
𝜕𝑡

=
𝐊̂h𝑒

−
𝑡
𝜏

𝜏
 , which represents the 

incremental stiffness regain. 

   The assembled equation system for the damage transient healing case is as follows: 

where 𝐮h is the global healed displacement vector and 𝐊h is the assembled healed 

stiffness matrix. As mentioned earlier, the internal forces in the system should not change 

during a healing step. This criterion imposes an extra constraint on the global and local 

equation systems. Theoretically, 𝐮h could be based on the relative displacement in an 

element at the time an increment of healing occurs, i.e. based directly on uh from the 

convolution integral in equation (3.15). However, this would involve storing a large amount 

of information and undertaking excessive computations involving the summation of all 

element healing displacement increments for all healing steps up to the step under 

consideration. An alternative, and far more tractable, solution is to apply the 

thermodynamic constraint (zero stress change at a healing step) to the global equilibrium 

equation. In this way there is no need to have a time history record of the element 

displacement vectors for the whole healing process and only the information from the 

previous step is required for an update. The internal force vector, allowing for the update 

in the global nodal healing displacement (𝐮h), is given by: 

   Since there should be no change in nodal forces during a healing step, the virtual offset 

displacement can be derived from equation (3.17), as follows: 

𝐊̂h(𝐮̂ − 𝐮̂h) = 𝐟𝒖𝒉(𝑡) = ∑ ∫
𝐊̂hi𝑒

−
(𝑠−𝑡0(𝑖))

𝜏

𝜏
(𝐮̂(𝑡) − 𝐮̂h(𝑠))𝑑𝑠

𝑡

𝑡0(𝑖)

𝑛

𝑖=1

 (3.15) 

𝐊Gω𝐮 + 𝐊h(𝐮 − 𝐮h) = 𝐟 (3.16) 

𝐟uh = 𝐊h(𝐮 − 𝐮h) (3.17) 
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3-5-1 Damage-healing solution algorithm 

When solving the system, it proves convenient to group the stiffness terms from equation 

(3.13), that pre-multiply 𝐮̂ and 𝐮̂h, separately and to shift the terms associated with  𝐮̂h to 

the righthand side of the equation, as follows: 

   where 𝐊̂𝜔ℎ = 𝐊̂𝜔 + 𝐊̂ℎ and  𝐟h = 𝐊̂h𝐮̂h.   

   The global system counterpart to equation (3.16) is then: 

𝐊ωh𝐮 = 𝐟 + 𝐟h              (3.20) 

where 𝐊ωh = 𝐊ω + 𝐊h and 𝐟h = 𝐊h𝐮h. 

   The overall problem is solved using a standard incremental-iterative solution algorithm 

(De Borst et al., 2012) with each increment of the solution being associated with a time 

step (p).  

   The healed stiffness matrix from the summed convolution integrals in equation (3.15) 

is evaluated at each time step using the recursive scheme described by Mergheim & 

Steinmann (2013). The elements available for healing include those that have partially 

healed but not re-damaged, as well as those newly damaged elements for which healing 

has been initiated. Allowing for the current and previous damage states, the healed 

stiffness matrix increments for the first and subsequent healing steps are given by 

equations (3.21) and (3.22) respectively, as follows:  

   The healed stiffness matrix increment is added to the current undamaged – healed 

stiffness matrix, as follows: 

𝐮h = 𝐮 − 𝐊h
−1𝐟uh (3.18) 

𝐊̂ωh𝐮̂ = 𝐟 + 𝐟h         (3.19) 

Δ𝐊̂h1 = 𝐊̂h∞(1 − 𝑒
−
Δ𝑡
𝜏 )𝜔𝑝,   (3.21) 

Δ𝐊̂h𝑝 = Δ𝐊̂hp−1𝑒
−
Δ𝑡
𝜏
𝜔𝑝

𝜔𝑝−1
,          (3.22) 

𝐊̂ωh𝑝 = 𝐊̂ωh𝑝−1 + Δ𝐊̂h𝑝   (3.23) 
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   The healed element force vector is then calculated from the healed stiffness increment 

at each time step, as follows: 

   When a healed element is re-damaged, the stiffness and healed internal force terms 

are updated proportionally to the level of re-damage thus, re-healing always commences 

from a null state. The calculation procedure is illustrated schematically in Figure 3-6. This 

figure shows the equivalent healed element status in terms of the regained stiffness and 

the internal stress. Since curing is assumed to be an exponential process, the stiffness 

regain increment is highest for the first step and then gradually reduces in subsequent 

steps. This is illustrated in Figure 3-7, in which the darker the colour the greater the 

proportion of healing over a time step. At a specific time-step, the overall regained healing 

stiffness is the summation of the stiffness increments throughout the healing history.  

   

(a) (b) 

Figure 3-6 Schematic illustration of healing for a partial damaged element, a) partially damaged 
element at time of healing, and b) healed element. 

   The solution process comprises two sub-steps. The first sub-step, named the 

‘mechanical step’, determines the global displacement vector and damage variable of each 

element. This requires iterations until the overall damage has reached a steady state. The 

second sub-step is the ‘healing step’. In this sub-step, the global displacements are 

assumed to remain constant whilst the stiffness matrices and uh are updated for healing. 

This procedure is shown schematically in Figure 3-7 and is illustrated for a one-dimensional 

problem in section 3-5-2. 


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𝐟h𝑃 = 𝐟h𝑝−1 + Δ𝐊̂h𝑃𝐮̂h𝒑 (3.24) 
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Figure 3-7 Sequence stiffness regain due to rate dependent healing procedure. 

   A preconditioned Conjugate Gradient solver is used to solve the assembled system of 

equations as well as to determine 𝐮h at each healing step, the latter being the solution of 

equation ((3.18).  

    During a solution, the program stores only the current element damage and healing 

variables, nodal displacement vector and force vector. The global system stiffness matrix 

is assembled at each step prior to the solution of the current equation system. This makes 

the algorithm efficient in terms of memory storage and computational cost.          

   The following algorithm presents the steps of the numerical implementation of model 

for a general rate dependent healing scenario which considers the partial damage-healing 

case.  

3-5-2 Formulation for 1D case 

For a better understanding of how the presented method works, a simplified 1-D case is 

used to illustrate the formulation and implementation procedure. A one-dimensional 

model comprising 3 elements and 4 nodes is used in this example, as illustrated in Figure 

3-8. As shown in the figure, the system is subjected to a force P in the direction shown in 

the Figure 3-8. At a selected displacement, it is assumed that element number 2 breaks 

and heals. The damage process is described in four stages (I-IV), each of which defines a 

different structural condition. Stage I is system just before loading. Stage II is the loaded 

system in elastic regime. At stage III the second spring (𝑘2) is assumed to fail and in stage 

IV this spring is instantaneously removed. For the sake of simplicity, in this illustration, it 

was assumed that the damaged element is instantaneously removed from the system. 

The healing process may also be represented in four stages (Ih-IVh), as follows: at stage Ih, 

the healed element is starting to form. Later the healed element is contributing in system 

Equivalent element 
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loading bearing for the Δ𝑢1increment (stage IIh). As loading resumes, the element number 

3 reaches to its threshold (IIIh) and is removed in stage IVh.  

 
I II III IV 

Figure 3-8 Schematic procedure for fracture process in Lattice 

 
Ih IIh IIIh IVh 

Figure 3-9 Schematic procedure for healing implementation in the Lattice. 

In this example, the system initial stiffness and equilibrium equations can be written in 

the following matrix form:  

where 𝑘 is the lattice beam element stiffness matrix, 𝑢 is nodal displacement, 𝑅 is 

reaction force and 𝑃 is external force. 

At stage III, where the second element is assumed to be broken, the system global 

stiffness matrix is updated as follows:  

At a specific stage (Like Figure 3-9) at which the nodal displacements are 𝐮𝐡, it is assumed 

that the healing commences. The equilibrium equations for such a system at the healing 

point are reformulated as noted in equation (3.27). Because the healed element is 

[

𝑘1 −𝑘1 0 0
−𝑘1 𝑘1 + 𝑘2 + 𝑘3 −𝑘2 −𝑘3
0 −𝑘2 𝑘2 0
0 −𝑘3 0 𝑘3

] {

𝑢1
𝑢2
𝑢3
𝑢4

} = {

𝑅1
𝑃
𝑅3
𝑅4

} (3.25) 

𝐊Gω = [

𝑘1 −𝑘1 0 0
−𝑘1 𝑘1 + 0 + 𝑘3 0 −𝑘3
0 0 0 0
0 −𝑘3 0 𝑘3

] (3.26) 
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generated in a deformed state, the internal force of healed element is calculated by 

𝑘ℎ(𝑢2 − 𝑢2ℎ) = 𝑓2.   

in which 𝑘ℎ is the healed element stiffness matrix. The matrix form of the above series 

of equations are rewritten, as follows: 

   wh ch th    justm  t h       f  c  (𝑓ℎ)  s   f      s f    ws: 

3-6 Computational solution parameters  

For all of the examples considered below, the starting value of the load step rate was set 

to 0.0001mm/sec. The relative convergence criterion used was the Euclidean norm of the 

residual force vector (⌊𝒓⌋) derived from solving the linear system of equations (𝐑 =

(𝐊𝐮 − 𝐟)) and then normalised as follows; 𝐑/(𝐊0𝐮1) where 𝐊0 is the initial stiffness 

matrix and 𝐮1 is the first displacement vector obtained before any nonlinearity occurs. The 

convergence criterion was set to 10−6. The maximum number of iterations was set to 

5000; however, for most of the cases, convergence was achieved within 300 iterations. For 

each iterative step, the previous response was always taken as the initial estimate for the 

CG solver.  

The lattice method is most suited to meso-scale analysis; applying this method to full- 

scale structures would have a very high computational cost. In addition, a viable two-scale 

method, in which the lattice method is used for lower scale (constitutive) computations 

and a continuum method is used for the overall discretisation, would require a complex 

homogenisation scheme. The longest element length in all the meshes was 2.5 mm. This 

{

𝑅1 = 𝐾1𝑢1 − 𝑘1𝑢2
𝑃 = −𝑘1𝑢1 + 𝑘1𝑢2 + 𝑘ℎ(𝑢2 − 𝑢2ℎ) − 𝑘ℎ(𝑢3 − 𝑢3ℎ) + 𝑘3𝑢2 − 𝑘3𝑢4

𝑅3 = −𝑘2(𝑢2 − 𝑢2ℎ) + 𝑘ℎ(𝑢3 − 𝑢3ℎ)
𝑅4 = −𝑘3𝑢2 + 𝑘3𝑢4

 (3.27) 

[

𝑘1 −𝑘1 0 0
−𝑘1 𝑘1 + 𝑘ℎ + 𝑘3 −𝑘ℎ −𝑘3
0 −𝑘ℎ 𝑘ℎ 0
0 −𝑘3 0 𝑘3

] {

𝑢1
𝑢2
𝑢3
𝑢4

} − [

0 0 0 0
0 +𝑘ℎ −𝑘ℎ 0
0 −𝑘ℎ 𝑘ℎ 0
0 0 0 0

]{

𝑢1ℎ
𝑢2ℎ
𝑢3ℎ
𝑢4ℎ

} = {

𝑅1
𝑃
𝑅3
𝑅4

} (3.28) 

𝑓ℎ = [

0 0 0 0
0 +𝑘ℎ −𝑘ℎ 0
0 −𝑘ℎ 𝑘ℎ 0
0 0 0 0

]{

𝑢1ℎ
𝑢2ℎ
𝑢3ℎ
𝑢4ℎ

} (3.29) 
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ensures that the meso-scale meshes are sufficiently fine to capture the cracking process 

within the fracture process zone for concrete specimens for which the coarse aggregate 

size was 10mm.  

3-7 Model calibration 

The cross section area of lattice beams (see Figure 3-4d), and their strengths are the two 

parameters that need to be calibrated. For the validation examples, these parameters 

were calibrated to ensure that the elastic response derived from the model matched that 

from the experimental data for the control specimens. Additionally, the number of post-

peak control curve dropping steps (Section 3-4-1 and Figure 3-4) for each material was 

adjusted to ensure that the post-peak behaviour obtained from the model accurately 

represented the observed experimental response in the post-peak regime. 

3-8 Illustrative damage healing responses for different uniaxial 

strain paths 

To illustrate the performance of the enhanced lattice model, the behaviour of a 50mm 

self-healing cementitious cube under tensile loading is considered for two different 

healing scenarios with three healing agents, each with different curing time properties. 

The first scenario is that healing agent is supplied to the system once at t=400s and there 

is a single healing cycle. In the second case, the healing agent is supplied continuously, 

after its release at 200s, and multiple healing cycles occur. The properties of the 

cementitious matrix and the healing agent are given in Table 3-2. The input parameters 

required for these simulations are the elastic mechanical properties of cementitious 

mortar. The parameters used in this simulation, given in Table 3-2, were taken from the 

experimental measurements of Selvarajoo, et al (2020). It is assumed that lattice elements 

fully damage instantaneously when the damage criterion reaches the strength threshold. 

In this numerical example, an incremental displacement is applied to the top of the cube 

at a rate of 0.001mm/s. The boundary conditions maintain an average uniaxial state of 

stress across the specimen.  
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Table 3-2 Material properties for uniaxial example test 

Properties 
Example 

𝐸𝑚,ℎ 
(MPa) 

𝑓𝑡𝑚,ℎ(MPa) 
𝜈𝑚,ℎ 

(MPa) 
thi* 
(s) 

𝜏 (s)  
Sample 

dimensions (mm) 

Single healing 29501.6 3.4 0.25 400 1 100 2000 50 × 50 × 50 
Re-healing 29501.6 3.4 0.25 200 1 60 1000 50 × 50 × 50 

*thi = Time, after the start of the test, at which healing is initiated  

 The mesh used to represent the sample is shown in first image of Figure 3-10d. Figure 

3-10b and c show the computed average stress (av) and nominal strain (nom) responses 

for three healing-agent cases. The average stress is computed from the total vertical 

reactions on the top face divided by the cross-sectional area and the strain measure is 

calculated by dividing the applied displacement by the specimen height. Figure 3-10d 

shows the state of the elements at different stages of the analysis.  This figure shows, as 

expected for a constant loading rate, that the stiffness recoveries and peak post-healed 

strengths reduce with the rate of healing. 

 

  
(a) (b) (c) 
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Figure 3-10 Constitutive behaviour of self-healing materials derived with the enhanced Lattice 

model, a) boundary conditions, b) av-nom curves for single healing scenario, c) av-nom curves for 
re-healing re-damaging scenarios and d) Lattice mesh at different phases of healing 
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3-9 Examples based on experiments 

In order to assess the validity of the proposed approach for simulating the mechanical self-

healing behaviour of structural elements formed from self-healing cementitious materials, 

the model was used to consider two series of experiments undertaken by Selvarajoo, et 

al. (2020). These tests comprised a set of notched cube specimens subject to tensile 

loading (DT series) and a series of notched beams subjected to 3-point loading with (i) a 

fixed crack width during the healing period (SF series) and (ii) continuous healing with 

varying crack opening displacement (SO series). The specimens were formed with an 

autonomic self-healing system that supplied healing agent to damaged zones from an 

external source.  

   The material properties used in the analyses are given in Table 3-3, along with the 

damage threshold used for the release of the healing agent in each case. The experimental 

arrangements are shown in Figure 3-11 and Figure 3-15 for the notched cube and beam 

specimens respectively.  

Table 3-3 Experiment details and the material properties used for modelling. 

Experiment 
name 

𝐸𝑚,ℎ 
(GPa) 

𝑓𝑡𝑚      
(MPa) 

𝑓𝑡ℎ       
(MPa) 

𝜈𝑚,ℎ 
CMOD at 
releasing  

(mm) 

Healing 
time (s) 

𝜏 
(s) 

Test type 

DT-300  30 3.5 3.4 0.2 0.1  300 60 Direct Tension  
DT-600  30 3.5 3.4 0.2 0.1 600 60 Direct Tension 
SF-120 30 3.0 3.4 0.2 0.15  120 60 3-point bending 

SO-0.0005 30 3.0 3.4 0.2 0.075  -* 60 3-point bending 
SO-0.002 30 2.5 3.4 0.2 0.075  -* 60 3-point bending 

* the healing time for the SO cases, starts from releasing action and continues until the end of the experiment. 

3-9-1 Direct tensile test 

A set of doubly notched 100mm cuboid samples were considered under uniaxial loading. 

Each sample was loaded in tension until the crack mouth opening displacement (CMOD) 

reached a limit of 0.1mm.  At this point, the loading was paused and the valve of the 

pressurized healing agent (cyanoacrylate) supply system was opened. This released the 

healing agent through the channels embedded in the samples. The healing agent supply 

was maintained for healing periods of 300s or 600s, after which the healing agent supply 

ceased, and the loading resumed so as to maintain a constant CMOD rate of 0.0001 mm/s. 
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The healing agent properties were taken from (Jefferson & Freeman, 2022; Selvarajoo, et 

al., 2020; Selvarajoo, et al., 2020) 

 
 

 

(a) (b)  (c)  

Figure 3-11 Experimental arrangement for notched cube tests Selvarajoo, et al. (2020), a) 3D 
schematic representation, b) front view and c) section view. 

   The mesh and boundary conditions used for the analysis are shown Figure 3-12. For 

simulating the post-peak behaviour, the elastic modulus at each damage step was 

calculated from the curve shown in  Figure 3-12c. The control values (𝜀𝑖 , (
𝐸𝑖

𝐸0
)) for each 

step  damage point (i) in this figure were derived such that the post-peak response of the 

simulation matched that from the experimental reference data as closely as possible. The 

mechanical properties used for the cement matrix and healed material elements are given 

in Table 3-3.  

 
  

(a) (b) (c) 

Figure 3-12 Boundary condition and mesh configuration, a) mesh and boundary conditions and 
b) perspective 3D view of the mesh, and c) Multi-linearised segmented behaviour for step-wise 
damage 

   The results for two different healing periods are presented in Figure 3-13. Based on 

experimental evidence (Selvarajoo, et al., 2020), it is assumed that the healing agent fully 

cures in a 0.1mm crack in 600s but that the curing process is incomplete after 300s. The 

uy 
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results are reported in the form of averaged stress vs CMOD. The average stress is 

calculated by dividing the normal force by the unnotched area. Plots that show damaged 

and healed elements before healing initiates (at CMOD=0.1) and during the healing period 

are shown in Figure 3-13. The experimental results in Figure 3-13 are denoted using the 

notation given in Table 3-3. 

   The results presented in Figure 3-13 show that stiffness and strength recoveries are in 

a good agreement with the experiments. The results (Figure 3-13b and c) confirm that the 

model is able to simulate partial healing and the response of specimens subject to 

different healing periods. It is noted that the numerical simulations allowed for the 

experimental observation that healing agent was transported to 60% of the crack area. 

The plots in Figure 3-14 show that the damage-healing zone extends above and below the 

notch with an overall characteristic dimension of approximately 15mm.   

The information provided by analysing the fracture zone is used to estimate the amount 

of required healing agent. For the SF case, this calculation was based on the element 

healed displacement (𝐮̂𝐡) and the cross-sectional area. The calculated amount of healing 

agent for this case was 1045 mm3. 

 
(a) (b) (c) 

Figure 3-13 Numerical simulation results for stress-CMOD of the DT series tests, a) loading 
protocol, b) stress-CMOD for DT-300 test and c) Stress-CMOD for DT-600 test. 
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(a) (b) (c) 

Figure 3-14 Damage and healing patterns for DT-600 test, a) damaged state at CMOD=0.1mm, 
b) curing phase at CMOD=0.1mm. and c) fully healed phase at CMOD=0.1mm. 

3-9-2 3-Point bending test 

The notched self-healing beam explored for the second example is illustrated in Figure 

3-15. Two different healing scenarios were considered, one in which the crack opening 

displacement remained constant during the healing period (SF tests) and the other for 

which the CMOD was increased at a constant rate with healing agent supplied at a 

pressure of 0.5 bar (SO tests). For the former (SF) series, an analysis was undertaken until 

the CMOD reached 0.15mm. Healing agent was supplied for a period of 120 s while the 

CMOD was kept constant, after which, the loading was resumed at a CMOD rate of 

0.001mm/s. For the latter (SO) series, post-crack CMOD rates of 0.0005 and 0.002 mm/s 

were used, with the analyses being continued until the CMOD reached 0.3mm. The reason 

for choosing these two different healing scenarios is to assess the ability of the proposed 

model to simulate healing for both fixed crack and moving crack scenarios, with the latter 

involving multiple and simultaneous damage and healing events. The material properties 

and test parameters are summarised in Table 3-3.   

 
  

(a) (b) (c) 

Figure 3-15 Experimental setup for notched beam tests, a) 3D schematic view, b) front view and 
c) beam section. 

Original          Damaged         Healed  
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The results from the fixed crack (SF) analysis are compared with experimental data in 

Figure 3-16a. The numerical response in terms of stiffness and strength recovery is 

generally in good agreement with the experimental data, although the initial peak in the 

numerical simulation is slightly greater than the experimental average. The difference is 

considered to be within the natural variability level for this type of material.  The results 

from the SO series analyses for the two different CMOD rates are compared to the 

experiment data from three tests with the same parameters in Figure 3-16b and c. This 

scenario is much more complex than the fixed crack case since healing and damage events 

overlap in time. The numerical responses are again in good general agreement with the 

experimental data and show the ability of the model to capture multiple re-damaging-re-

healing events. This can be seen clearly at the end of the graph (Figure 3-16b and Figure 

3-16c) where the numerical response tends to an asymptote, although the numerical plots 

do not exhibit the multiple peaks seen in the experimental data.  Plots showing the extent 

of damage, healing, re-damage and re-healing are presented in Figure 3-17a to c. It may 

be seen from these plots that the fracture zone is relatively wide, with a characteristic 

dimension of approximately 20mm after the first cracking stage and 60mm at the final 

stage after re-healing and re-damage have occurred. It may also be seen also that healing 

extends to the far reaches of the fracture process zone. 

 Following the same approach as used in the previous example, the required healing 

agent volume is 234 mm3. 

   
(a) (b) (c) 

Figure 3-16 Notched beam test simulation results, a) SF-120 test results, b) SO series with loading 
rate 0.0005mm/s and c) SO series with loading rate 0.002mm/s. 
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(a) (b) (c) 

Figure 3-17 Crack pattern and system phase in deformed state, a) damaged state CMOD 0.075 
mm, b) healed phase CMOD 0.12mm and c) re-damage-re-healed CMOD 0.2mm. (all deformations 
are magnified for clarity) 

   The examples presented in this chapter relate to an autonomic healing material; 

however, the proposed model framework is equally applicable to the simulation of 

autogenous healing processes. To apply the model to an autonomic problem the healing 

rate function would need to be determined from the hydration rate of unhydrated cement 

particles and the rate of formation of other cementitious healing compounds (e.g. 

portlandite) (Qian, 2012a). 

   The model provides detailed information on the distribution and size of damage and 

healing zones at the meso-scale, along with the associated volume of healing agent 

required at a particular time in the life of a structural element. These output data are far 

more refined that those provided by a comparable continuum model. This is essential 

information for the efficient design of a self-healing system and is also useful for 

researchers developing new self-healing systems.    

   The present chapter has concentrated on simulating time-dependent mechanical 

healing at the meso-scale but the model could be readily coupled to a transport model to 

simulate the movement of healing agent through the body of a structural element and 

within cracks (Freeman & Jefferson, 2020). 

3-10 Additional applications of the Lattice model 

Two studies are presented in this section, which used the lattice model to explore, (i) 

how changes in the meso-structure of mortar affect the predicted fracture behaviour and, 

(ii) how the degree of activation (or triggering) of embedded microcapsules varies with 

the volume fraction of capsules and with the relative strength of the microcapsule shell. 

In the first study, a series of irregular mesostructures  representing a cementitious mortar 

were generated and the effects of varying the geometry and disposition of the inclusions 

Original          Damaged         Healed  
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on the fracture path were examined. In the second study, the triggering mechanism for 

microencapsulated systems was studied. Multiple configurations with different volume 

fractions of microcapsules were considered to assess the probability of capsule breakage. 

In addition, the effect of varying the relative shell to matrix strength ratio on the capsule 

breakage behaviour was examined.  

3-10-1 Mesostructure effect on fracture characteristics 

In this section a study is reported that explored the effect of varying the microstructure 

geometry on the predicted cracking behaviour and mechanical response of a structural 

component. In this investigation, different inclusion geometries, from irregular-shapes to 

spheroids, were considered. Since the work reported in this section  was conducted before 

the incremental method was implemented, the classical Delft Lattice method was used in 

the study.  

The image segmentation technique was used to convert the actual aggregate shapes 

obtained from computationally generated images to their equivalent form in terms of 

regular shapes; namely circles, triangles, squares, pentagons and hexagons. Figure 3-18 

shows the different shapes derived from the image of the mesostructure. The equivalent 

inclusions are depicted in various colour spectra since in image segmentation each 

individual inclusion is treated as a separate phase. 

 
(a) 

 
(b) 

Figure 3-18 Meso structure configuration with different geometry, a) vf=29.26 and b) vf=31.2 

The mechanical properties used in the investigation are given in Table 3-4. It is assumed 

that the material behaves in brittle way and that sudden and full damage occurs when a 
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lattice element reaches its threshold value. This results in the element being removed 

from the system. 

Table 3-4 Cementitious matrix and aggregate properties.  

𝐸𝑚 (MPa) 𝐸Ω (MPa) 𝑓𝑡𝑚(MPa) 𝜈𝑚  𝜈Ω  Sample dimensions (mm) 

32000 49000 0.75 0.1 0.28 40 × 40 × 40 

*since this example consist of two phase, the subscript (m) specifies matrix and () shows the inclusions  

It is assumed that micro- and macro-cracking only take place within the matrix and that 

the aggregate particles remain elastic throughout the simulation.  

 The numerical simulations were conducted in 2D. Figure 3-19a shows the boundary 

conditions for the test and the meshes are illustrated in Figure 3-19b . 186497 Elements 

and 62500 nodes were used to capture microcracking and cracking localization with a high 

resolution.   

  
(a) (b) 

Figure 3-19 Boundary condition and mesh resolution illustration 

 The different stress-displacement curves (Figure 3-20) show that the responses 

computed using meshes with idealised regular shaped aggregate particles are very similar 

to those obtained from a mesh with irregular particles. In this illustrative example, the 

strengths of both the matrix and the ITZ were assumed to be relatively low (0.75 MPa), 

resulting in computed average peak strengths that were lower than those of standard 

concrete.   However, as shown in Figure 3-21, the crack path and initial cracking zones are 

different. This highlights the importance of the inclusions’ shape for studies that focus on 

crack patterns and propagation.  

uy 
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(a) (b) (c) 

Figure 3-20 Stress-displacement curve for a) irregular shape inclusion, b) circular, and c) mix of 
polynomial 

 

   
(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

Figure 3-21 Crack pattern and propagation with different microstructure 



Chapter 3: Lattice beam method 

69 
 

3-10-2 A study on microcapsule activation  

One of the primary issues in designing a microencapsulated self-healing system with 

randomly distributed microcapsules is whether the capsules will be activated (or 

‘triggered’) by cracks within the cementitious matrix. Specifically, the issues are (i) will the 

shell of a microcapsule rupture when intersected by a crack in the cementitious matrix, 

and (ii) will the array of cracks within the matrix rupture sufficient microcapsules -and 

release sufficient healing agent- to bring about healing. These issues depend on the crack 

pattern, the location of the microcapsules, volume fraction of microcapsules, their 

mechanical properties, and the bond between the microcapsules and matrix (Zemskov et 

al., 2011). 

To investigate the second of these issues, the probability of healing within an RVE of an 

encapsulated cementitious system is computed for 100 lattice meshes, each with a 

different volume fraction of microcapsules (Ω𝑐), as well as with different distributions of 

microcapsules. The RVE mesh was subjected to uniaxial tension loading. A framework is 

proposed to assess the maximum healing potential at each damage stage. Based on 

healing agent content and cracks near the microcapsules, the number of cracked elements 

that potentially could be healed was calculated. It is assumed that the bond between 

microcapsules and matrix is perfect, which means that once a crack intersects a capsule, 

it would break and release the healing agent. Also, it is assumed that an expansive healing 

agent is used; therefore, all of the healing agent would be released and would fill the 

cracks adjacent to capsules. The healing ratio is defined by equation (3.30). 

where, 𝑁𝐻𝑒𝑙𝑒𝑚𝑒𝑛𝑡 is the number of healed elements, 𝑁𝑐𝑟𝑎𝑐𝑘 is the total number of 

damaged elements in each step and 𝐻𝑝𝑟 is the healing ratio. An average damage 

parameter (𝜔̅) is used in this study. This is defined as the ratio of the current number of 

damaged elements to the total number of damaged elements at the stage under 

consideration. This parameter varies from 0 to 1 (undamaged and fully damaged 

respectively) and represents an average of the damage variable for the whole domain. The 

𝐻𝑝𝑟 =
𝑁𝐻𝑒𝑙𝑒𝑚𝑒𝑛𝑡
𝑁𝑐𝑟𝑎𝑐𝑘

 
 (3.30) 
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damage parameter is used to identify the healing ratio corresponding to the damage 

parameter.  

In these examples, no notches or predefined cracks were introduced into the meshes. 

This meant that cracks initiated at random locations. A schematic showing how 

microcapsules are arranged within cementitious matrix is presented in Figure 3-22. 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 3-22 Schematic illustration of microcapsules within the cementitious matrix.  a, b and c 
1%; d, e and f are 3% volume fraction. 

Figure 3-10 shows the different arrangements of microcapsules with different volume 

fractions. For these simulations, 10 volume fractions with 10 different random 

distributions were assessed and the maximum healing ratio calculated for each case. In all 

these simulations, the matrix and capsules properties were constant, as given in Table 3-5.  

Table 3-5 Material properties* 

Matrix Interface Capsule 

𝐸  𝜈 𝑓𝑡   𝐸  𝜈 𝑓𝑡   𝐸  𝜈 𝑓𝑡   Ω𝑐 Pos 

31000 0.2 1 31000 0.2 1 3100 0.2 1 1-10% 10-Ran 
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*  The unit of 𝐸, 𝑓𝑐 and 𝑓𝑡 is (𝑁/𝑚𝑚
2) 

The results from the series of analyses shows that the possibility of triggering capsules 

and healing the cracks strongly depends on the arrangement and number of capsules 

within the RVE. Figure 3-23 shows the maximum healing potential versus (𝜔̅) for different 

capsules arrangement. The mean probability of healing for each volume fraction of 

capsules was calculated by averaging the derived values (i.e. the number of damaged 

elements, number of healed elements and number of activated capsules through loading 

history) for different capsules positions. As shown, the average healing potential increases 

with the volume fraction of capsules. Although, beyond a volume fraction of 5% the 

healing ratio becomes constant. The graphs shown in  Figure 3-24 suggest that the healing 

ratio initially decreases as the damage parameter increases but eventually reaches a 

platque when the damage parameter reaches approximately 0.5 

 

Figure 3-23 Maximum healing probability for different capsules arrangement 



Chapter 3: Lattice beam method 

72 
 

 

Figure 3-24 Average of maximum healing probability for different capsules volume fraction 

The ratio of activated capsules to the total number of capsules in the RVE is presented in 

Figure 3-25. This shows that the ratio of capsules activated does not necessarily rise with 

the total number of capsules. These simulations suggest that the optimum range of 

microcapsules is between 3 and 5 percent for the cementitious material considered in this 

study.    

 

Figure 3-25 Percentage of capsules breakage for different arrangement 
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3-11 Conclusions 

A model has been presented for simulating the response of structural elements formed 

from self-healing cementitious materials based on the TUDelft lattice framework. The 

existing LBM has been extended to account for simultaneous and rate-dependent damage 

and healing processes. The main conclusions from the present study are given below.  

The model is able to replicate the mechanical response of self-healing cementitious 

materials with good accuracy, including fracture and rate-dependent healing behaviour. 

It is able to simulate multiple healing cycles, as well as overlapping damage and healing 

processes. 

The meso-scale lattice simulations provide valuable information on the size, geometry 

and disposition of the fracture and healing zones for the full history of a simulation. In 

addition, the model can be used to determine response data for regions that is hard to 

access and observe.  

The method provides a viable means of computing the amount of agent required to 

produce healing at any time within an analysis.  

The mechanical and chemical properties of healing agents have a significant influence on 

the degree of healing and on the overall response of a self-healing material.  

The rate of applied loading and the healing rate of an agent both influence strongly the 

mechanical response of a self-healing structural element.    

The experimental and numerical results indicate that, for multiple re-healing-re-

damaging scenarios, the overall response reaches an asymptote in which healing and 

damage increments balance each other. 

The detailed meso-scale data provided by the new lattice model would be of 

considerable value to researchers developing new self-healing material systems, as well as 

to engineers designing structural elements formed from self-healing materials. 

The explicit mesostructural simulations show that using idealised regular shapes for 

inclusions, in place of more accurate irregular shapes, affects the crack pattern but has a 

negligible effect on overall mechanical response. 
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The disposition of capsules within a cementitious matrix has a significant influence on 

the degree of healing and on the probability that given percentage of capsules will be 

triggered. Also, the number of activated capsules does not necessarily increase with 

microcapsule dosage.  

The optimal dosage of microcapsules was found to be approximately 5%. This percentage 

was found to maximize the probability of healing whilst minimizing the reduction in 

mechanical properties due to the presence of the microcapsules.  
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Chapter 4                                             

Micromechanical model 

4-1 Introduction 

In this chapter, a new micromechanics-based constitutive model for self-healing 

cementitious materials is proposed. The model is aimed at self-healing materials with 

distributed healing mechanisms, such as materials with embedded microcapsules and 

enhanced autogenous healing capabilities. The model considers anisotropic microcracking 

and time-dependent healing with no restrictions on the number or timing of microcracking 

or healing events that can be simulated. An efficient two-level recursive scheme is adopted 

for computing the healing and re-microcracking state variables. The formulation ensures 

that the simulation of microcracking and healing is always consistent with the second law 

of thermodynamics.  A series of single point simulations illustrate the versatile capabilities 

of the model, and the model is validated using experimental data. The experiments 

considered with the model include a set of cylindrical specimens formed of concrete with 

embedded microcapsules containing sodium silicate. The validations showed that the 

model is able to capture the characteristic mechanical behaviour of these structural 

elements.       

  In the remainder of this chapter, the overall micromechanical formulation for capturing 

microcracking behaviour is explained in sections 4-2 and 4-3. Section 4-4 describes in 

detail the derivation of the self-healing formulation. A new approach for ensuring that 

there is zero stress change during a pure healing increment is presented in subsection 4-

4-2. Section 4-5 is devoted to the numerical implementation and sections 4-6 and 4-7 

present different types of examples that describes single point and parametric 

simulations, along with a series of validation examples of the proposed constitutive 

formulation.   
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4-2 Micromechanical formulation for microcracking and healing 

The main concepts of the constitutive model are presented in Figure 4-1. The 

cementitious composite is modelled as an elastic solid containing series of randomly 

distributed circular microcracks which can have any orientation, defined by ψ and θ (see 

Figure 4-1a). The model accounts for healing by simulating the filling of the microcracks 

with healing agent and subsequent curing of the agent (see Figure 4-1b). The model aims 

to represent the behaviour of a representative material element (RME). 

 
(a) 

 
(b) 

Figure 4-1 Schematic representation of RME.  a) Coordinate system:  b) illustration of 
microcracked (left) and partially healed (right), material states. 

4-3 Directional microcracking 

The model draws on a series of previous micromechanics-based constitutive formulations 

for cementitious materials (Davies & Jefferson, 2017; A. Jefferson & Bennett, 2007; I. C. 

Mihai & Jefferson, 2011). These authors, in turn, employed the model of Budiansky and 
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O’Connell (1976) (see also Nemat-Nasser & Hori, 1997) to represent microcracking. In this 

approach, the effects of multi-directional microcracking are represented by an additional 

strain tensor, 𝛆add, in the following constitutive relationship: 

where 𝛆addis the overall additional strain due to microcracking, which can be initiated in 

any direction, 𝛔 and 𝛆 are the overall stress and strain tensors respectively, and 𝐃 is the 

elasticity tensor.  

For a series of circular microcracks that have the same orientation, defined by (,), the 

non-zero components of the added strain tensor (Jefferson & Bennett, 2007) are given by: 

where 𝒻 is the crack density parameter,  𝜈 and 𝐸 are Poisson’s ratio and Young’s modulus 

of the elastic medium respectively.  𝐬  is the local stress tensor.  

For convenience, in this chapter, a reduced form of tensors is given -as a vector or matrix-  

in which only those terms that can be non-zero are included e.g. 𝐬 =  [𝑠𝑟𝑟  𝑠𝑟𝑠 𝑠𝑟𝑡]
T. 

To account for the effects of all active microcracks, the added strains  from equation 

(4.2) are integrated over a hemisphere S (Nemat-Nasser & Hori, 1997) as follows. 

where 𝐍𝜀is the strain transformation tensor (Jefferson, 2003).  

In each direction, the crack density parameter is represented as a function of a 

directional microcracking variable (𝜔) which varies from 0 for intact material to 1 for fully 

microcracked material. The relationship between the microcracking variable and the crack 

density parameter was derived by Jefferson & Bennett (2007), and is given by: 

Substituting equation (4.4) into equation (4.2) gives 

𝛔 = 𝐃: (𝛆 − 𝛆add) (4.1) 

𝜺𝛼 = 𝒻
16(1 − 𝜈2)

3𝐸

[
 
 
 
 

𝑠𝑟𝑟
4

2 − 𝜈
𝑠𝑟𝑠

4

2 − 𝜈
𝑠𝑟𝑡]
 
 
 
 

 (4.2) 

𝛆add =
1

2𝜋
∯𝐍 ε: 𝛆α 

𝑆

 (4.3) 

𝒻 =
3

16(1− 𝜈2)
(
𝜔

1 −𝜔
) (4.4) 
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in which the local compliance tensor (CL), which relate rr, rs and rt strain to stress 

components, may be expressed by the following matrix:  (
1

𝐸
) [

1 0 0

0
4

(2−𝜈)
0

0 0
4

(2−𝜈)

]  

If the local strain tensor in each direction is defined as 𝛆L, such that it comprises the sum 

of the added (𝛆α) and the elastic (𝛆Le) local strain tensors, a local stress-strain relationship 

may be derived from (4.5( to be: 

where 𝐃L = 𝐂L
−1   

The local variables (i.e. εα, s and ω) are functions of direction (i.e. θ, ψ), and equation 

(4.6) has the form of a conventional isotropic damage mechanics stress-strain relationship 

(Krajcinovic, 1996) except that here it relates to local stress to local strain tensors. 

4-3-1 Microcrack evolution function 

 The microcracking function, also termed the microcracking strain surface, given in 

equation (4.7) is taken from (Jefferson & Bennett, 2010).  

in which 𝜁𝑒𝑓 = (
𝐿𝑟𝑟

2
(1 + (

𝜇

𝑞
)
2

) +
1

2𝑞2
√𝐿𝑟𝑟

2 (𝑞2 − 𝜇2)2 + 4𝑞2𝛾2),  𝜇 = 𝜇𝑠𝐸

𝐺
, 𝛾 = √𝐿𝑟𝑠

2 + 𝐿𝑟𝑡
2 ,  

𝑞 =
𝑞𝑠𝐸

𝐺
, 𝜁𝑒𝑓  is termed the effective microcracking strain and   is the microcracking strain 

parameter. 𝜇𝑠 is the friction angle between matrix and aggregate and 𝑞𝑠 is the ratio of 

interface shear strength to matrix tensile strength.  

The following loading-unloading conditions apply to equation (4.7) once the effective 

microcracking strain in a particular direction exceeds the crack initiation strain  (𝜀𝑡):  

𝛆α = (
𝜔

1 − 𝜔
)𝐂L: 𝐬 (4.5) 

𝐬 = (1 − 𝜔)𝐃L: 𝛆L (4.6) 

𝐹(𝜺𝐿 , ) = 𝜁𝑒𝑓 −   (4.7) 

𝐹𝜁 ≤ 0; 𝜁̇ ≥ 0; 𝐹𝜁𝜁̇ = 0  (4.8) 
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  𝜀𝑡 =
𝑓𝑡𝑖

𝐸
 and 𝑓𝑡𝑖   is the uniaxial tensile stress at which microcracking initiates, noting that 

𝑓𝑡𝑖  is normally significantly lower than the uniaxial tensile strength of the cementitious 

composite (𝑓𝑡).    

The evolution of the microcracking variable is given by the following equation, taken 

from I. C. Mihai & Jefferson (2011):  

in which c is the microcrack evolution constant, 𝜀0 =
𝑢𝑜

𝑙𝑒
 is the strain at the fully 

microcracked state, 𝑢𝑜 is displacement at the end of the softening curve and 𝑙𝑒 is the finite 

element characteristic length. This is based on Bažant & Oh (1983) crack-band model, 

which assumes that when softening commences, the strains will localise into a one-

element-wide band within a finite element mesh. This ensures that the energy consumed 

in the formation of a crack (Gf) does not change with the mesh grading, noting that 𝐺𝑓 =

 𝑓
𝑡 ∫ 𝑒

−𝑐(
−𝜀𝑡

𝜀0−𝜀𝑡
)
𝑑𝜁

∞

0
. 

Figure 4-2b illustrates the microcracking strain surface (equation(4.7)) and shows a set 

of parallel microcracks in the cementitious composite.  

  

(a) (b) 

Figure 4-2 Microcracking strain surface, b) parallel set of microcracks  

The response of the microcracking evolution function is illustrated in Figure 4-3 for a 

range of material parameters. This figure shows that the value of c has a strong influence 

on the post-peak stress behaviour. The actual values of c used in later simulations are 

calibrated from material constitutive data. The microcrack initiation strain (t) mainly 

𝜔() = 1 −
𝜀𝑡

𝑒
−𝑐(

−𝜀𝑡
𝜀0−𝜀𝑡

)
 (4.9) 
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affects the pre-peak response whilst the strain at the end of softening curve (0) -as with 

c- affects the post-peak behaviour. 

 

Figure 4-3 Microcracking evolution response with respect to different material parameters. 

The effect of the alignment of the microcracks on overall response of an RME is 

illustrated in the following example. In this example, three scenarios are considered where 

the microcracks develop at =0o, =45o and in randomly distributed orientations. It is 

assumed that the crack density variable varies from 0 to 1. For the aligned microcrack case, 

the elastic moduli were computed using the method described by Nemat-Nasser & Hori, 

1997. The results are normalized to the representative material parameters as noted in 

Table 4-1 . 

Table 4-1 RME characteristics used for simulation in Figure 4-4 

Variables 𝐸 (N/mm2)   𝑓𝑡𝑖 0 

Properties 24000  0.15 1 0.001 

As shown in Figure 4-4, the material strength and stiffness degraded the most when the 

microcracks align with the major tensile strain plane. Moreover, the comparison between 

the normalised secant stiffness matrix component ( 𝐌 = 𝐃−1 𝐃sec) (see Figure 4-4d and 

f) reveals that the micromechanical formulation simulates anisotropic behaviour due to 

the microcracks forming in different orientations.  
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(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

Figure 4-4 RME behaviour under different microcrack configurations, a-c) microcracking 
alignment, d-f) compliance matrix variation for different microcracking alignments, and g-f) 
corresponding constitutive behaviour  

4-4 Healing simulation 

The effect of healing on the mechanical properties is taken into account by restoring the 

stiffness of the healed material in the local constitutive relationship (equation (4.6(), via 

the healing variable (ℎ𝑣  ∈ [0, 𝜔]). This represents the proportion of microcracked 

material that is healed material at a given time. The evolution of ℎ𝑣 is explained in Section 

4-4-1. When healing agent cures in an open microcrack, there is a moment in time when 

solid material first bridges between the opposing crack faces. This is when mechanical 

healing of the crack commences, and it is assumed that this bridging material is stress free 

at the time of formation.  This ‘stress free at formation’ condition is assumed to apply to 

every new increment of bridging material. This assumption is not only consistent with 

experimental data (Selvarjoo et al. 2020), but also ensures that the simulation of healing 

does not create spurious energy and therefore does not violate the second law of 

thermodynamics. Expanding on this issue; when healing is simulated, the stiffness of the 

matrix
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material increases. Thus, if the strain remained constant, the stress and the strain energy 

would increase. This would violate the second law unless the increase in strain energy was 

matched by the release of thermal-chemical energy. Since there is no evidence that the 

stress rises during healing, the surest way to ensure that the model satisfies 

thermodynamics principles is to introduce a healing strain (h) that evolves such that the 

stress does not change due to healing alone. Furthermore, this strain simulates the 

permanent strains associated with solidified healing agent, which prevents microcracks 

from fully closing. Further detail and mathematical explanation related to discrete crack is 

explained  in (Jefferson & Freeman, 2022). In this thesis, and for the micromechanical 

model, the method that used to compute 𝛆𝐡 is described in Section 4-4-2. The model also 

accounts for the fact that the healed material re-microcracks by employing a second 

microcracking variable, termed the healed microcracking variable, (𝜔ℎ ∈ [0,1]), which 

gives the proportion of previously healed material that has re-microcracked. 𝜔ℎ evolves 

according to equation (4.9) except that 𝜁, 𝜀0 & 𝜀𝑡 are replaced by their healed material 

counterparts i.e. 𝜁ℎ, 𝜀ℎ0 & 𝜀ℎ𝑡. Generally, in this Chapter, the subscript (h) denotes healed 

material. This convention is applicable to the rest of the examples presented in this 

chapter. 

   The addition of healing and re-microcracking to equation (4.6) leads to the following 

local constitutive equation:  

where 𝐬Lhis the local stress tensor after healing, and 𝐃Lhthe local elasticity matrix of the 

healed material.  

The local strain tensor may be obtained by re-arranging equation (4.10), as follows: 

The variable  is now applied to the additional inelastic strain caused by all 

microcracking and healing. It is obtained by subtracting the local elastic component from 

the local strain, remembering that 𝛆𝛼  = 𝛆L − 𝛆Le, where the latter is now given by 𝛆Le =

𝐂L𝐬Lh. Thus, the additional inelastic strain is as follows: 

𝐬Lh = (1 − 𝜔)𝐃L: 𝛆L + ℎ𝑣(1 − 𝜔ℎ)𝐃Lh: (𝛆L − 𝛆h) (4.10) 

𝛆L = [(1 − 𝜔)𝐃L + ℎ𝑣(1 − 𝜔ℎ)𝐃Lh]
−1: [𝐬Lh + ℎ𝑣(1 − 𝜔ℎ)𝐃Lh: εh] (4.11) 
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Rearranging gives:  

where 𝐈𝟐𝒔 is the second order identity tensor, and  𝐂Lh = 𝐃Lh
−1

 . 

Equation (4.13) shows that the additional microcracking strain has two major 

components, one (the 1st rhs term) is associated with the local stress, and the other (2nd 

rhs term) is linked to the healing strain.  

 The model assumes a static constraint for relating the local stress tensor to the Cartesian 

stress tensor as follows: 

where 𝐍 is the stress transformation tensor (Jefferson and Bennett, 2010) 

 The two components of total added strain are now obtained by numerically integrating 

equation (4.13) around a hemisphere and employing equation (4.15), as follows:  

The method used to evaluate 𝛆h, which is presented in section 4-4-2, ensures that there 

is no change in the global stress due to an increment of healing alone. The derivation of 

the method accounts for interactions between healed microcracks in different directions. 

The latter interactions were not considered in the method proposed by Davies and 

Jefferson (2017).     

 Using equations (4.15) and (4.16) in the overall constitutive relationship (based on 

equation (4.1) gives 

 where 𝐃𝑠𝑒𝑐ℎis the equivalent secant stiffness matrix, as given below. 

𝛆𝛼 = [(1 − 𝜔)𝐃L + ℎ𝑣(1 − 𝜔ℎ)𝐃Lh]
−1: [𝐬Lh + ℎ𝑣(1 − 𝜔ℎ)𝐃Lh: 𝛆h] − 𝐂L: 𝐬Lh (4.12) 

𝛆𝛼 = [[(1 − 𝜔)𝐃L + ℎ𝑣(1 − 𝜔ℎ)𝐃Lh]
−1 − 𝐂L]: 𝒔Lh + [

(1 − 𝜔)

ℎ𝑣(1 − 𝜔ℎ)
𝐂Lh ∙ 𝐃L + 𝐈

𝟐𝒔]

−1

: 𝛆h  (4.13) 

𝐬Lh = 𝐍:𝝈  (4.14) 

𝛆at =
1

2𝜋
∯𝐍ε ∙ [[(1 − 𝜔)𝐃L + ℎ𝑣(1 − 𝜔ℎ)𝐃Lh]

−1 − 𝐂L] ∙ 𝐍: 𝛔 

𝑆

 (4.15) 

𝛆ah =
1

2𝜋
∯𝐍ε ∙ [

(1 − 𝜔)

ℎ𝑣(1 − 𝜔ℎ)
𝐂Lh ∙ 𝐃L + 𝐈

𝟐𝒔]

−1

: 𝛆h
𝑆

 (4.16) 

𝛔 = 𝐃sech ∶ (𝛆 − 𝛆ah) (4.17) 
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where 𝐈𝟒𝐬  is fourth order identity tensor.  

4-4-1 Time dependent healing evolution  

 In this work it is assumed that the time taken for the healing agent to fill and start curing 

is 𝑡𝑐0; thus, in the absence of re-microcracking, the relative proportion of material 

available for healing (a) is given by:    

where t is the current time relative to the time at the start of an analysis.   

 Healing occurs by healing-agent curing in microcracks. The function (equation (4.20)) 

used to simulate the evolution of the degree of cure (𝜙ℎ ∈ [0,1]) is taken from Selvarajoo 

et al. (2020) and Freeman & Jefferson (2022a, 2023).  

where 𝜏 is the curing time parameter, which depends on the chemical properties of the 

healing agent and the current curing time (𝑡𝑐 = 𝑡 − 𝑡𝑐0).  

The response of the curing function with different material parameter values is 

illustrated in Figure 4-5.  

  
(a) (b) 

Figure 4-5 Curing function illustration, a) different 𝜏, and b) different healing activation times 

𝐃sech = (𝐈
𝟒𝐬 +

𝐃

2𝜋
∙ (

1

2𝜋
∯𝐍ε ∙ [[(1 − 𝜔)𝐃L + ℎ𝑣(1 − 𝜔ℎ)𝐃Lh]

−1 − 𝐂L] ∙ 𝐍

𝑆

)

−1

∙ 𝐃) (4.18) 

𝑎(𝑡) = ∫ 𝜔̇(𝑠)𝑑𝑠
𝑡

𝑡𝑐0

 (4.19) 

𝜙ℎ(𝑡) = (1 − 𝑒−𝑡𝑐/𝜏) (4.20) 
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 With these assumptions, and in the absence of re-microcracking, the degree of healing 

at time t is given by the following convolutional integral: 

where 
ℎ𝑒

 is a healing efficiency parameter. 

The assumption that the degree of cure matches the degree of healing is different from 

that used in the macrocrack healing model of Jefferson and Freeman (2022), in which 

healing was computed from the overlap of curing fronts within a macro-crack. However, 

in microcracks with relatively small crack opening displacements, the degree of heal may 

be equated directly to  with little loss of accuracy.  

  Re-healing is defined as the healing of material that has previously healed and re-

microcracked. The present model provides no restriction on the number of cycles of re-

microcracking and re-healing. The evolution of the re-healing variable (hr) is given by the 

same form of convolutional integral as that used for virgin healed material, given in 

equation (4.21), except that  is replaced by h, as follows: 

where 𝑡ℎ𝑟  is the re-healing activation time.  

Introducing (4.21) and (4.22)into equation (4.10) gives: 

where subscript i denotes the number of re-healing cycles of re-microcracked material.  

 Evaluating the second term in equation (4.23) requires the evolution of each parameter 

to be tracked and stored through time for each healing cycle. This potentially has a high 

computational cost and a considerable computer storage demand. Therefore, to avoid this 

computationally costly and inconvenient process, an averaging scheme was developed 

that introduced an equivalent microcracking parameter (𝜔ℎ𝑒𝑞).  

ℎ𝑣(𝑡) = 
ℎ𝑒
∫

𝜕𝜔

𝜕𝑠
(1 − 𝑒−(

𝑡−𝑠
𝜏
))𝑑𝑠

𝑡

𝑠=𝑡𝑐0

 (4.21) 

ℎ𝑟(𝑡) = 
ℎ𝑒
∫

𝜕𝜔ℎ
𝜕𝑠

(1 − 𝑒−𝑡/𝜏)𝑑𝑠
𝑡

𝑡ℎ𝑟

 (4.22) 

𝐬Lh(𝑡) = (1 − 𝜔)𝐃L: 𝛆Lh(t) + 
ℎ𝑒
∫
𝜕𝜔

𝜕𝑠
(1 − 𝑒−

𝑡−𝑠
𝜏 )

𝑡

𝑠

(1 − 𝜔ℎ(𝑠))𝐃Lh: (𝛆Lh(t) − 𝛆h(𝑠))𝑑𝑠

+ 
ℎ𝑒
∑∫

𝜕𝜔ℎ𝑖
𝜕𝑠

(1 − 𝑒−
𝑡−𝑠𝑖
𝜏 ) (1 − 𝜔ℎ𝑖(𝑠))𝐃Lh: (𝛆Lh(t) − 𝛆h(𝑠𝑖))𝑑𝑠

𝑡

𝑠𝑖

𝑛

𝑖=1

 

(4.23) 
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Through this homogenization approach, it is assumed that for an RME of unit area, the 

microcracked, healed, re-microcracked and re-healed  have the relative areas illustrated in 

Figure 4-6. It is assumed that the re-microcracking variable is relative to the virgin healing 

proportion of material. The total healed material (h), at any one time, is the sum of the 

virgin healed proportion of material minus the re-microcracked portion, i.e. (ℎ =

ℎ𝑣(1 − 𝜔ℎ)). The effect of re-healing on the reduction of the re-microcracking variable is 

shown in equation (4.24). In this case instead of having multiple portions of healed, re-

healed or re-microcracked, the equivalent RME state would be shown in terms of healed 

and equivalent microcracked variables (𝜔ℎ𝑒𝑞) as depicted in Figure 4-6. The key 

assumptions for this homogenisation technique were adopted from Jefferson & Freeman 

(2022) and adjusted for the micromechanical framework as follows: 

• The re-healing process is considered in a way that healing agent is supplied 

instantaneously; therefore, any re-microcracked material within the RME is 

assumed to be curing. 

• The curing process for re-healing material is the same as that for the virgin 

healing material. 

  It is assumed that at a specific time, the portion of healed material and re-healed material 

should be equal to the overall undamaged portion of healed material.  

𝜔ℎ𝑒𝑞 , named the healed-microcracking variable, reduces when re-healing occurs and 

increases when re-microcracking occurs. ℎ𝑣(𝑡) represents the limit of virgin healed 

material in terms of increasing . 

 By introducing the new equivalent re-cracking variable, equation (4.23) becomes: 

After a healing update, the microcrack evolution of healed material is calculated, noting 

that the effective strain for healed material (
ℎ

) is derived based on the increment of strain 

this material experienced after healing commenced.  

ℎ𝑣(𝑡) (1 − 𝜔ℎ𝑒𝑞) = ℎ𝑣(1 − 𝜔ℎ) + ℎ𝑟 (4.24) 

𝐬Lh(t) = (1 − 𝜔)𝐃L: 𝛆Lh(t) + ℎ𝑣(𝑡) (1 − 𝜔ℎ𝑒𝑞(𝑡))𝐃Lh: (𝛆Lh(𝑡) − 𝛆h(𝑡)) (4.25) 
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 The effective microcracking strain variable for re-microcracking is obtained from:  


ℎ

 evolves according to the healed equivalent of the loading-unloading conditions given in 

equation (4.8). 

Figure 4-6 shows schematically the changing state of the material during successive 

microcracking-healing cycles. 

 

Figure 4-6. schematic representation of material states in successive microcracking and healing 
cycles. 

4-4-2 Healing strain computation   

Once healing commences, the healing agent is in a liquid state and starts to harden (cure) 

inside an open crack. This means that the healed portion of the material within the RME 

has an eigen strain denoted 𝛆𝐡 (healing strain). The healing agent curing process occurs in 

a stress-free condition as mathematically described in equation (4.10).  

Introducing the healing strain into the local constitutive equation (𝐒𝐋𝐡
∗ = 𝐃𝐋𝐡: (𝛆𝐋 − 𝛆𝐡))  for 

the healing component of material with the local stress tensor (𝐬𝐋𝐡
∗ ) ensures that -during 

healing- the stress state does not change. This implies that the second thermodynamic 

law is also satisfied.  

RME domain 

virgin microcrack

t<tc0

 (I)

Virgin microcrack Virgin healing re-microcracking re-healingIntact

1st healing cycle, t=tc0

(II)

Hatch legend

Updated re-microcracking variable
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portion
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further cracking of
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experience

re-microcracking
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cracked-healed portion.

these material entities

are formed in different

time and deformation

state.

2nd cycle

(III)
3rd cycle

(IV)
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(V)


ℎ𝑒𝑓𝑓

= (𝛆L − 𝛆h)  (4.26) 
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In former studies, the healing strain (𝛆𝐡) was calculated for an instantaneous healing 

event, during which the loading was constant. In this case, at each crack plane, the healing 

strain was obtained from the following equation (Davies & Jefferson, (2017):  

where 𝜔𝑐 is microcracking variable at the moment that healing commences and here 𝐬 is 

the current transformed local stress tensor. This zero change in local stress is only 

considered for a healing increment. Also, in the previous derivation, the zero stress change  

condition was not checked for all local crack planes. However, due to the interactions 

between cracks, the above equation might not fully satisfy the 2nd law of thermodynamic, 

especially for cases in which healing occurs under loaded conditions. The following 

example illustrates the above-mentioned flaws. For different loading conditions, as well as 

for different healing initiation times, the constitutive response is computed. The results, 

given in Figure 4-7, show the changes in the both the local and global stresses during 

healing step that occur when the healing strain is calculated using the method described 

by Davies & Jefferson (2017). In this figure, the results of computations undertaken using 

equations (4.10, (4.17, and (4.27) for a monotonic loading path and three different 

loading-unloading paths are presented for three different activation times. The 

mechanical parameters employed in this study are given in Table 4-2. 

Table 4-2 Mechanical parameter for controlling the stress-free condition 

Variables 𝐸 (𝑁/𝑚𝑚2) 𝐸ℎ (𝑁/𝑚𝑚2)  𝜈, 𝜈ℎ 𝑓𝑡𝑖 , 𝑓𝑡ℎ  (𝑁/𝑚𝑚2) 𝑡𝑐0  (𝑠) 

Properties 24000 24000  0.15 1 100, 200, and 400 

As shown in Figure 4-7 the normal stress (denoted in the figure) changes significantly 

during the healing step (denoted by subscript 𝑖 − 1 to 𝑖) for some cases. This stress change 

is much higher if healing commences when microcracking is well advanced (e.g. 𝜔 > 0.9 

). According to Figure 4-7, for the loading-unloading scenario, the stress change during the 

healing step reduces from load path 1 to load path 3. This indicates that Davies and 

Jefferson’s formulation introduces less error when healing occurs at low microcracking 

levels and in unloaded conditions. 

𝛆𝐡 = 𝐂𝐋(1 − 𝜔𝑐)
−1𝐬  (4.27) 
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Figure 4-7  Illustration of stress-strain responses and stress changes during a healing increment, 
in global and local coordinates according to the method of Davies & Jefferson (2017). 

The computed healing-increment stress changes for two contrasting cases are shown in  

Figure 4-8. (i) is for a fully unloaded condition and (ii) is for a scenario where the original 

material is almost fully microcracked when healing commences.  

 

Figure 4-8 Stress state at healing step for fully microcracked and fully unloaded case 

 The above observation indicates that the approach to the calculation of the healing 

strain tensor needed to be modified in order to maintain the zero stress change condition 

Healing increment 

Healing increment 
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during a healing step.  The revised approach, described below, accounts for the 

interactions between microcrack planes when healing occurs in open microcracks.. 

In the new method the local healing strain is derived by satisfying the zero-stress 

condition for the local crack; thus, during a healing increment, 𝐬𝐋𝐡
∗ (𝑡): as given below, 

should not change. 

Also, the healing strain for a set of healed microcracks should create no change in the 

Cartesian stress tensor during a healing increment. The healing strain tensor, in Cartesian 

coordinates for a set of healed microcracks, is derived from equation (4.29). This equation 

introduces a set of interaction factors which modify the local healing strains from those 

obtained given by equation (4.16). These modification factors may be determined by 

solving this equation (4.30).  Converting the equation (4.3) in numerical form (equation 

(4.32)) gives 6 equations with 87 unknowns as noted below. 

Assuming that 𝐍 𝜺𝒊𝒅 ∙ 𝐍εid ∙ [
(1−𝜔𝑖𝑑)

ℎ𝑣𝑖𝑑(1−𝜔ℎ𝑖𝑑)
𝐂Lh ∙ 𝐃L + 𝐈

𝟐𝒔]
−1

 is a coefficient matrix for each 

direction considered (i.e.  

each spherical integration direction), the revised system is as follows: 

Expanding the above series leads to following 6 equations: 

ℎ𝑣(𝑡)(1 − 𝜔ℎ(𝑡))𝐃𝐿ℎ(𝛆L(t) − 𝛆h(t)) = 𝐬𝐿ℎ
∗ (𝑡) (4.28) 

𝛆ah = 𝛆 − 𝐃sech
−1 𝝈𝑖−1 (4.29) 

𝜺ah  =
1

2𝜋
∯𝐍ε ∙ [

(1 − 𝜔)

ℎ𝑣(1 − 𝜔ℎ)
𝐂Lh ∙ 𝐃L + 𝐈

𝟐𝒔]

−1

𝜶: 𝛆h
𝑆

 (4.30) 

𝜺ah  = ∑ 𝐍εid ∙ [
(1 − 𝜔𝑖𝑑)

ℎ𝑣𝑖𝑑(1 − 𝜔ℎ𝑖𝑑)
𝐂Lh ∙ 𝐃L + 𝐈

𝟐𝒔]

−1

𝛼𝑖𝑑: εhid

29

𝑖𝑑=1

 (4.31) 

∑

[
 
 
 
 
 
 
𝐶11
𝑖𝑑 𝐶12

𝑖𝑑 𝐶13
𝑖𝑑

𝐶21
𝑖𝑑 𝐶22

𝑖𝑑 𝐶23
𝑖𝑑

𝐶31
𝑖𝑑 𝐶32

𝑖𝑑 𝐶33
𝑖𝑑

𝐶41
𝑖𝑑 𝐶42

𝑖𝑑 𝐶43
𝑖𝑑

𝐶51
𝑖𝑑 𝐶52

𝑖𝑑 𝐶53
𝑖𝑑

𝐶61
𝑖𝑑 𝐶62

𝑖𝑑 𝐶63
𝑖𝑑]
 
 
 
 
 
 

[

𝜀ℎ1
𝑖𝑑

𝜀ℎ2
𝑖𝑑

𝜀ℎ3
𝑖𝑑

] 𝛼𝑖𝑑 =

[
 
 
 
 
 
𝜀𝐺ℎ1
𝜀𝐺ℎ2
𝜀𝐺ℎ3
𝜀𝐺ℎ4
𝜀𝐺ℎ5
𝜀𝐺ℎ6]

 
 
 
 
 

29

𝑖𝑑=1

 

 

(4.32) 
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Rearranging the above equation gives: 

The coefficient matrix size of this equation is 87×6 with 87 strain components and 29 

modification factors as unknowns. The other constraint that needs to be satisfied is that 

the stress state at each local crack plane should also not change. Applying this local 

condition to the computation of the local healing strain for a finite healing step results in 

a nonlinear set of equations (4.35) that are solved using a Newton Raphson iterative 

procedure: 

where Δℎ𝑖 is the additional healing increment at the current healing step. The subscript 

(i) denotes the current step. The variables at the former step (i-1) are known. The above 

equations are solved for 𝜀ℎ𝑖. Subsequently the derived 𝜀ℎ𝑖 variables are substituted into 

equation (4.34) to determine the vector of microcracking interaction coefficient factors 

(𝜶). Equation (4.34) is an under determined system of equations which has an infinite 

number of solutions. This may be resolved by applying the least squares constraint or 

singular value decomposition (SVD) method. Here, the SVD scheme is adopted.  

[
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29𝜀ℎ
29
3

𝐶61
1 𝜀ℎ

1
1
+ 𝐶62

1 𝜀ℎ
1
2
+ 𝐶33

1 𝜀ℎ
1
3
+ 𝐶61

2 𝜀ℎ
2
1
+ 𝐶62

2 𝜀ℎ
2
2
+ 𝐶63

2 𝜀ℎ
2
3

⋯ 𝐶61
29𝜀ℎ

29
1
+ 𝐶62

29𝜀ℎ
29
2
+ 𝐶63

29𝜀ℎ
29
3]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
𝜀𝐺ℎ1
𝜀𝐺ℎ2
𝜀𝐺ℎ3
𝜀𝐺ℎ4
𝜀𝐺ℎ5
𝜀𝐺ℎ6]

 
 
 
 
 

 (4.33) 

[
 
 
 
 
 
 
𝐶11
1 𝐶12

1 𝐶13
1 𝐶11

2 𝐶12
2 𝐶13

2 ⋯ 𝐶11
29 𝐶12

29 𝐶13
29

𝐶21
1 𝐶22

1 𝐶23
1 𝐶21

2 𝐶22
2 𝐶23

2 ⋯ 𝐶21
29 𝐶22

29 𝐶23
29

𝐶31
1 𝐶32

1 𝐶33
1 𝐶31

2 𝐶32
2 𝐶33

2 ⋯ 𝐶31
29 𝐶32

29 𝐶33
29

𝐶41
1 𝐶42

1 𝐶43
1 𝐶41

2 𝐶42
2 𝐶43

2 ⋯ 𝐶41
29 𝐶42

29 𝐶43
29

𝐶51
1 𝐶52

1 𝐶53
1 𝐶51

2 𝐶52
2 𝐶53

2 ⋯ 𝐶51
29 𝐶52

29 𝐶53
29

𝐶61
1 𝐶62

1 𝐶63
1 𝐶61

2 𝐶62
2 𝐶63

2 ⋯ 𝐶61
29 𝐶62

29 𝐶63
29]
 
 
 
 
 
 

6×87

[
 
 
 
 
 
 
 
 
 
 
 
 

(

 
 
 
 
 
 
 
 
 
 

𝛼1𝜀ℎ1
1

𝛼1𝜀ℎ2
1

𝛼1𝜀ℎ3
1

𝛼2𝜀ℎ1
2

𝛼2𝜀ℎ2
2

𝛼2𝜀ℎ3
2

⋮
𝛼29𝜀ℎ1

29

𝛼29𝜀ℎ2
29

𝛼29𝜀ℎ3
29
)

 
 
 
 
 
 
 
 
 
 

]
 
 
 
 
 
 
 
 
 
 
 
 

87×1

=

[
 
 
 
 
 
𝜀𝐺ℎ1
𝜀𝐺ℎ2
𝜀𝐺ℎ3
𝜀𝐺ℎ4
𝜀𝐺ℎ5
𝜀𝐺ℎ6]

 
 
 
 
 

6×1

 (4.34) 

{
 
 

 
 

𝜔((𝜀𝐿 − 𝜀ℎ𝑖
)) = 1 −

(1 − 𝜔ℎ𝑖−1
)ℎ𝑖−1 + Δℎ𝑖

ℎ𝑣𝑖

ℎ𝑣𝑖
(1 − 𝜔 ((𝜀𝐿 − 𝜀ℎ𝑖

))) (𝜀𝐿 − 𝜀ℎ𝑖
) = ℎ𝑣𝑖−1

(1 − 𝜔 ((𝜀𝐿 − 𝜀ℎ𝑖−1 
)))

 (4.35) 
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An example is presented in order to compare the difference in responses obtained using 

the modified healing strain update with the method presented by Davies & Jefferson 

(2017). In this example the strain path and material parameters (Table 4-2), are the same 

as those used above for the computation of the responses shown in Figure 4-7 and Figure 

4-8. The result of the comparison as shown in Figure 4-9, show that the difference in 

response computed using the two methods is much higher for the cases where healing 

commences at high level of the microcracking, as well as when healing under loaded 

conditions.  

 

Figure 4-9 Comparing the difference in responses between method with modification factor and 
without. 

4-5 Numerical implementation 

The integration over the hemispherical domain is evaluated numerically using MacLaurin’s 

integration rule with 29 sample directions (Stroud, 1973). A study on the accuracy, and 

effects of varying, the spherical integration rule used for this type of micromechanical 

model was undertaken by Mihai (2012) The choice of the 29-point integration rule 

followed the findings from Mihai’s study. The evaluation of the spherical integrations 

represents a significant computational cost, although the nature of the micromechanics 

model is such that the computations undertaken for each integration direction are 

relatively in-expensive. 
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   The constitutive relationship (equations (4.16)) is integrated over time using a time 

stepping procedure in which ti defines the current time and t (= 𝑡𝑖 − 𝑡𝑖−1) denotes a 

time-step. 

A recursive scheme proposed by Mergheim & Steinman (2013) is adopted to evaluate the 

cumulative healing parameter at each time step. By knowing the amount of healed 

material at a previous step, the total healed material at the next step can be calculated as 

follows: 

   Each time step is sub-divided into a healing step and a mechanical step. The following 

algorithm is used to compute microcracking variables during mechanical step. The Newton 

Raphson technique is adopted to solve the nonlinear system of equations. The algorithm 

for deriving the healing variable for each microcrack is given in algorithm box 1. 

Algorithm 1 Computational algorithm for healing variables 

 𝑰𝒇 𝒉𝒆𝒂𝒍𝒊𝒏𝒈 = 𝒕𝒓𝒖𝒆 if healing is activated at this step 

1:  𝒇𝒐𝒓 𝑗 = 1 𝑡𝑜 𝑛𝑗 Loop over each direction 

2:   𝑎𝑣𝑗 = 𝑎𝑣𝑗 +  Δ𝜔𝑗 Calculate available microcracked material available for healing 

3:   ℎ𝑣𝑗 = ℎ𝑣𝑗𝑒
−𝛥𝑡
𝜏 + 𝑎𝑣𝑗(1 − 𝑒

−𝛥𝑡
𝜏 ) Update the healing variable 

4: 
  

ωℎ𝑒𝑞𝑗 = 1 −
(1 − 𝜔ℎ𝑗𝑖−1

)ℎ𝑣𝑗𝑖−1
+ Δℎ𝑗

ℎ𝑣𝑗𝑖
 

Derive equivalent re-microcracking variable 

5:   𝑆𝐿𝑖−1 = ℎ𝑣𝑗𝑖−1
(1 − 𝜔ℎ𝑗𝑖−1

)𝐷𝐿ℎ(𝜀𝐿𝑗𝑖−1
− 𝜀ℎ𝑗𝑖−1

) Applying the local stress-free condition  

6: 
  𝜔𝑒𝑟𝑟 = ωℎ𝑒𝑞𝑗 − ω(

h
(𝜀𝐿𝑗𝑖−1

− 𝜀ℎ𝑗𝑖
)) Error due to initial guess for equivalent effective strain 

7:   𝑆𝐿𝑖 = ℎ𝑣𝑗𝑖
(1 − 𝜔ℎ𝑗𝑖

)𝐷𝐿ℎ(𝜀𝐿𝑗𝑖−1
− 𝜀ℎ𝑗𝑖

) Current local stress field after healing 

8:   𝑆𝐿𝑒𝑟𝑟 =  𝑆𝐿𝑖 − 𝑆𝐿𝑖−1 Stress difference due to initial guess for local healing strain 

9:   𝑾𝒉𝒊𝒍𝒆 |𝑆𝐿𝑒𝑟𝑟|^|𝜔𝑒𝑟𝑟| < 𝑡𝑜𝑙 Newton Raphson iteration for finding effective parameters 

10: 
  

 
ℎ𝑗
= 

ℎ𝑗
+𝜔𝑒𝑟𝑟/

𝜕𝜔

𝜕
ℎ𝑗

 Updating the effective strain 

11:    𝜔𝑒𝑟𝑟 = 𝜔ℎ𝑒𝑞𝑗 −𝜔(ℎ𝑗
) Updating re-microcrack error 

12:    𝜀ℎ𝑗 = 𝜀ℎ𝑗 + (∇𝑆𝐿𝑒𝑟𝑟)
−1𝑆𝐿𝑒𝑟𝑟 Updating healing strain 

13:    𝑆𝐿𝑒𝑟𝑟 = 𝑆𝐿(𝜀𝐿𝑗𝑖−1
− 𝜀ℎ𝑗𝑖

) Updating local stress difference error 

After calculation of local microcrack-healing variables during the healing step process, the 

global offset strain as well as the microcracking interaction factor is calculated by the 

method presented in Section 4-4-2 

 

 

ℎ𝑣𝑖+1 = ℎ𝑣𝑖  
𝑒−

Δ𝑡
𝜏 + 𝑎𝑖+1(1 − 𝑒

−
Δ𝑡
𝜏 ) (4.36) 
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Algorithm 2 Computation algorithm for deriving crack interaction factor. 

 𝑮𝒍𝒐𝒃𝒂𝒍 𝒔𝒕𝒓𝒆𝒔𝒔 𝒇𝒓𝒆𝒆 𝒄𝒉𝒆𝒄𝒌 if healing is activated at this step 

1:  𝒇𝒐𝒓 𝑗 = 1 𝑡𝑜 𝑛𝑗 Loop over each direction 

2:   𝐀𝑗 = [(1 − 𝜔𝑗𝑖−1)𝐃L + ℎ𝑣𝑗𝑖
(1 − 𝜔ℎ𝑒𝑞𝑗)𝐃Lh] Local micro-healing matrix used in line 4 of this algorithm 

3:  𝒆𝒏𝒅  

4: 

 

𝐃sech = (𝐈 +
𝐃el 
2𝜋

∑𝐍 εj
T [𝐀𝑗

−1 − 𝐂L]𝐍j

29

𝑗=1

)

−1

𝐃el  

Calculate RME stiffness matrix after healing process 

5:  𝐃sech: (𝛆 − 𝛆ah) = 𝛔i−1 Impose global stress free condition during healing 

6:  𝑆𝑜𝑙𝑣𝑒 𝑓𝑜𝑟 𝛆ah Deriving the global healing strain 

7: 
 
𝜺𝑎ℎ  =∑𝐍 𝛆𝐢

T [𝐀𝑗
−1 (ℎ𝑣𝑗(1 − 𝜔ℎ𝑒𝑗)𝐃Lh)] 𝛼𝜺ℎ𝑗

nj

𝑗=1

 
Setting the equation for deriving the microcrack interaction factor 

8:  𝑆𝑜𝑙𝑣𝑒 𝑓𝑜𝑟 𝜶  

The algorithm developed for computing the stress and updating the microcracking and 

healing variables at a particular timestep is given in Algorithm box 3. For convenience, 

Voigt notation is used in the description of algorithm 3.  
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Algorithm 3 Constitutive driver algorithm 

𝑰𝒏𝒑𝒕: ℎ𝒗𝒊−𝟏 ,𝜔ℎ𝑖−1 , 𝝈𝒊−𝟏, 𝚫𝜺, 𝜏0, Δt. 

(𝐌𝐞𝐜𝐡𝐚𝐧𝐢𝐜𝐚𝐥 𝐚𝐧𝐝 𝐝𝐚𝐦𝐚𝐠𝐞 𝐞𝐯𝐨𝐥𝐮𝐭𝐢𝐨𝐧 𝐩𝐫𝐨𝐩𝐞𝐫𝐭𝐢𝐞𝐬 ) 

Enter, required input parameters  

1: 𝒇𝒐𝒓 𝑗 = 1 𝑡𝑜 𝑛𝑗 Loop over integration direction 

2:  𝜺𝐿𝑗 = 𝐍𝜀𝑗𝛆  Calculated local strain at each direction 

3: 
 (𝜀𝐿) =

𝜀𝐿𝑟𝑟
2
[1 + (

𝜇

𝑞
)
2

] +
1

2𝑞2
(√(𝑞2 − 𝜇2)2𝜀𝐿𝑟𝑟

2 + 4𝑞2𝛾𝐿
2) Find effective strain parameters 

  
𝑒𝑓𝑓

= max (
𝑒𝑓𝑓𝑖−1

, (𝜀𝐿))  

4:  Update 𝜔𝑗  Update microcracking variable 

5: 𝒆𝒏𝒅   

6: 𝛔 = (𝐈 +
𝐃𝐞𝐥 
2𝜋

∑𝐍𝜀𝑗
𝑇

𝜔𝑗

1 − 𝜔𝑗
𝐂𝑳𝐍i

29

𝑖=1

)

−1

𝐷𝑒𝑙 𝛆 
Constitutive formulation with microcracks 

7: 𝑰𝒇 𝒉𝒆𝒂𝒍𝒊𝒏𝒈 = 𝒕𝒓𝒖𝒆 if healing is activated at this step 

8:  𝒇𝒐𝒍𝒍𝒐𝒘 𝒂𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎 𝟏 & 𝟐 Loop over each direction 

9: 𝒆𝒏𝒅   

10: 
𝒎𝒆𝒄𝒉𝒂𝒏𝒊𝒄𝒂𝒍 𝒔𝒕𝒆𝒑 Apply mechanical step (by strain or stress 

increment) 

11: 𝒇𝒐𝒓 𝑗 = 1 𝑡𝑜 𝑛𝑖  Loop over each microcrack direction 

12:  𝜺𝐿𝑗 = 𝐍𝜀𝑗(𝛆 + 𝚫𝛆)  Calculate local strain after applying load 

13: 
 

𝑒𝑓𝑓
(𝜺𝐿) =

𝜀𝐿𝑟𝑟
2
[1 + (

𝜇

𝑞
)
2

] +
1

2𝑞2
(√(𝑞2 − 𝜇2)2𝜀𝐿𝑟𝑟

2 + 4𝑞2𝛾𝐿
2) Find effective strain parameters for original 

material 

    

14: 

 
ℎ𝑒𝑓𝑓

(𝜺𝐿 − 𝜺ℎ) =
𝜀ℎ𝑟𝑟
2
[1 + (

𝜇

𝑞
)
2

]

+
1

2𝑞2
(√(𝑞2 − 𝜇2)2𝜀ℎ𝑟𝑟

2 + 4𝑞2𝛾𝐿
2) 

Find effective strain parameters for healed 

material 

  
𝑒𝑓𝑓

= max (
𝑒𝑓𝑓𝑖−1

, (𝜀𝐿))  

  
h𝑒𝑓𝑓

= max (
h𝑒𝑓𝑓𝑖−1

, 
ℎ𝑒𝑓𝑓

(𝛆𝐿 − 𝛆ℎ))  

15: 
 Update 𝜔𝑗  & 𝜔ℎ𝑗 Update microcracking variables for original and 

healed 

16:  𝐀𝑗 = [(1 − 𝜔𝑗)𝐃L + ℎ𝑣𝑗 (1 − 𝜔ℎ𝑗)𝐃Lh] Update healing parameters 

17: 𝒆𝒏𝒅   

18: 

 

𝐃sech = (𝐈 +
𝐃el 
2𝜋

∑𝐍 εj
T [𝐀𝑗

−1 − 𝐂L]𝐍j

29

𝑗=1

)

−1

𝐃el  

Update healed secant stiffness 

19: 
 

𝜺𝑎ℎ  =∑𝐍 𝛆𝐣
T [𝐀j

−1 (ℎ𝑣𝑗 (1 − 𝜔ℎ𝑗)𝐃Lh)] 𝜺ℎ𝑗

29

𝑗=1

 
Update homogenized healing strain vector in 

global coordinate 

20:  𝛔 = 𝐃sech(𝛆 − 𝛆Gh) Calculate stress vector in mechanical step 

4-5-1 Calibration 

For real cases, the model parameters are calibrated by using experimental data from 

uniaxial microcracking tests to determine the softening parameters of equation (4.9), such 

that the peak and post-peak behaviour are captured accurately. Then, the healing-

efficiency parameter (
ℎ𝑒

) is found using data from uniaxial microcracking – healing tests, 

with 
ℎ𝑒

 being calibrated such that the computed overall stiffness recovery matches the 

corresponding experimental value. The healing activation time is obtained through direct 

observation.  These microcracking and healing parameters are variable since they depend 
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on the mechanical properties of the overall self-healing system, as well as those of the 

components, such as microcapsule shells and vascular network channels 

4-6 Volumetric response 

The proposed methodology is first tested for a volumetric isotropic model. This model is 

subjected to a volumetric strain increment (𝜀𝑣 = 𝜀𝑥𝑥 + 𝜀𝑦𝑦 + 𝜀𝑧𝑧)  where both 

microcracking parameters are calculated directly. The volumetric strain (𝜀𝑣) is 

incremented until 𝜀𝑣=0.003, at which point healing is initiated. 4 cases are considered to 

demonstrate the healing response of the proposed formulation, with particular attention 

on the healing rate-dependency as well as the re-healing potential. The material 

properties are given in Table 4-3.  

Table 4-3. material properties for the volumetric model 

V    b  s 𝐸 (𝑁/𝑚𝑚2) 𝐸ℎ (𝑁/𝑚𝑚2)  𝜈,𝜈ℎ 𝑓𝑡𝑖 , 𝑓𝑡ℎ  (𝑁/𝑚𝑚2)  (s) 

P     t  s 24000 12000  0.15 1 60-200 

In this example, the response for a single rapid healing case is shown by the dotted grey 

line (see Figure 4-10). Also, three continuous microcracking-healing scenarios that are 

shown in continues black, blue and red line for different types of curing respectively along 

with a damage only case (continuous grey line) are considered. The model response is 

depicted in Figure 4-10. The results show how varying the curing time affects the stiffness 

regain slope as well as the post-peak behaviour. In this example the strain rate is 

0.000005/s.  
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Figure 4-10 Volumetric stress-strain response 

4-7 Single point simulations 

A series of single-point simulations is presented in this section in order to illustrate the 

performance of the proposed constitutive model. The material properties used for the 

simulations are given in Table 4-4. The first example replicates a uniaxial tensile test with 

an applied strain rate of 5×10-6 /s applied in the xx-direction. The simulations were 

undertaken for a range of curing time parameters (see  range in Table 2) and healing 

scenarios. The latter comprise no-healing, single healing, and multiple healing scenarios. 

‘Multiple healing’ means that the mechanism within the model to simulate an unlimited 

number of simultaneous microcracking and healing steps is active.  

The overall responses for each scenario, along with the associated evolutions of the 

microcracking variables, are given in Figure 4-11. 

Table 4-4 Material properties 

V    b  s 𝐸 (𝑁/𝑚𝑚2) 𝐸ℎ (𝑁/𝑚𝑚2)  𝜈, 𝜈ℎ 𝑓𝑡𝑖 , 𝑓𝑡ℎ  (𝑁/𝑚𝑚2)  (s) 

P     t  s 24000 12000  0.15 1 1-60-200 
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In this example, healing was assumed to commence when the strain reached 0.003.  

The results show that the response is strongly affected by the value of the curing time 

parameter with the healing response being less abrupt for larger values of . It is 

noteworthy that the responses of the three healed material simulation tend to the same 

asymptotic stress, which is associated with balanced healing and damage rates.  

  

(a) (b) 

Figure 4-11 Computed uniaxial responses, a) variation of stress with time, b) re-microcracking 
variables 

In order to provide more insight into the behaviour of the model, the variation of the 

microcracking and healing variables for 4 selected directions have been plotted for all 

three healing scenarios for the 𝜏 = 60𝑠 case in Figure 4-12. The direction numbers 

correspond to the spherical integration directions given in Appendix  B   

As may be expected, maximum microcracking occurs in direction 1 which coincides with 

the loading direction. The microcracking variable in direction 1 (i.e.1) has a value of 0.99 

at the time healing initiates; by contrast, the corresponding value of 28 =0.90. The  

values for the directions that do not correspond with the loading direction illustrate the 

effect of the local shear strains, as well as the local normal strains, on the degree of 

microcracking around the hemisphere. As may be expected, the progression of the 

microcracking and healing responses for the non-coincident directions lag those of 

direction one, with the lag increasing as the angle between direction 1 and the normal to 

the local direction under consideration increases. The microcracking and healing variables 

are visualized in a set of 2D polar plots in Figure 4-12.    
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t=10 s t=20 s t=75 s t=175 s t=610 s t=700 s t=800 s t=1800 s 

(a) (b) 

  

  
t=610 s t=700 s t=800 s t=1800 s t=610 s t=700 s t=800 s t=1800 s 

(c) (d) 

Figure 4-12 Microcracking and healing vectors evolution, a) virgin microcrack b) virgin healing, c) 
re-microcrack for single healing and d) re-microcracking-re-healing-re-microcracking variables for 
multiple healing case 

4-7-1 Parametric study 

The results of a systematic parametric study are now presented in which the model was 

used to predict the uniaxial response of a self-healing cementitious sample. The reference 

properties are those given in Table 4-4. The material properties altered sequentially in the 

study were the curing time, healed material Young’s modulus and healed material 

strength. The sequence of values used for each parameter are given in Table 4-5. The range 

of healing scenarios considered are as follows: 

i) single healing under continuous monotonic loading (𝜀̇ =  5 × 10−6 /s ):  

ii) multiple microcracking-healing under continuous monotonic loading (𝜀̇ =

 5 × 10−6 /s ):  
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iii) multiple microcracking-healing events under loading-unloading-reloading 

conditions (loading 𝜀̇ = 5 × 10−6   ; unloading  𝜀̇ =  −5 × 10−6  ; reloading 

rate varies as shown in figure (III)) 

Table 4-5 Material properties for parametric study 

 

Figure 4-13 Parametric study results 

Figure 4-13 presents the predicted mechanical response for all of the cases considered. 

As shown in this figure, the relative effect of changing each parameter is evident from the 

graphs, with changes in the healed-material strength and stiffness greatly affecting the 

post-healed peak load and post-peak softening response. As already mentioned in the 

earlier example, changing  has a profound influence on the apparent stiffness and 

ductility of the post-healed response, with greater values of  being associated with lower 

post-healed peak strengths and an apparent more ductile response.     

Case/material 

properties 
values 𝜏(sec) 𝐸ℎ(N/mm2) 𝑓𝑡ℎ(MPa) 

𝜏 1, 10, 50, 100, 400 variable 12000 1 

𝐸ℎ/𝐸 0.25, 0.5, 1, 1.5, 2 50 variable 1 

𝑓𝑡ℎ/𝑓𝑡𝑖  0.25, 0.5, 1, 1.5, 2 50 12000 variable 
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4-7-2 Microencapsulated uniaxial test 

The proposed model’s ability to replicate the mechanical response of samples formed 

from a self-healing cementitious material containing microcapsules is assessed by 

considering the experimental tests on a set of cylindrical samples undertaken by James et 

al. (2014). In this work, the investigators measured the effects of healing on the elastic 

modulus of a microencapsulated self-healing cementitious material system. The tests 

considered material formed with 400-500 µm sized micro-capsules containing sodium 

silicate at dosages of 0.5% and 1% by volume of the cement paste / concrete /mortar. The 

tests followed a procedure from ASTM C469 for measuring the static elastic modulus. Each 

cylindrical sample was loaded axially up to 70% of the nominal compressive strength to 

order to induce a degree of damage. The samples were then unloaded and allowed to heal 

for 3 days and then reloaded to fully fracture of specimen.  

The material properties used for the simulations are presented in Table 4-6. 

Table 4-6 Material properties 

 

 

 

The results of the simulations are presented in Figure 4-14, with Figure 4-14a giving the 

loading protocol and Figure 4-14b the experimental and numerical values of the elastic 

moduli before and after healing for each case. It is evident from the difference between 

the initial E  values of the control samples and the samples containing microcapsules, that 

the presence of the microcapsules reduced the stiffness of the material.   

The results of the samples with microcapsules shows that the model is able to reproduce 

the increase in stiffness brought about by healing and capture the effect of increasing the 

dosage of microcapsules.   

Material/properties E (N/mm2) 𝜈 𝑓𝑡𝑖(𝑁/𝑚𝑚2)  𝜀0  

Matrix 32430 0.25 1 0.0025  
Capsule 3000 0.2 -   

Healing agent 3000 0.2 5 0.0003  
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(a) (b) 

Figure 4-14 Experimental validation, a) loading protocol, b) stiffness recovery comparison 

4-8 Conclusions  

A new micromechanical model for simulating the response of self-healing cementitious 

materials has been presented in this chapter. The proposed constitutive formulation 

captures the time-dependent behaviour of these materials with good accuracy using 

relatively few physically meaningful material parameters.  

The model simulates microcracking and its healing using the assumption that all 

microcracked material has the potential to be healed. The micromechanics formulation is 

well suited to simulating distributed cracking and healing systems where the healing 

material is spread throughout the structural element. This applies to healing systems that 

use embedded microcapsules and to natural and enhanced autogenous self-healing. The 

model is not aimed at simulating discrete cracks or systems that use vascular networks, 

although some aspects of the behaviour of the latter can be captured by the model.    

 Based on the results, the following conclusions can be drawn:   

• the mechanical properties of healed material -often a healing-agent 

cementitious-matrix composite- greatly affect the post-cracking mechanical 

response of self-healing materials:  

• a series of simulations, including a parametric study, show that the overall 

microcracking-healing response is strongly dependent on the curing time 

parameter of the self-healing agent, as well as on the degree of microcracking at 

which healing is assumed to commence:  
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• the recursive scheme used to update the healing and re-cracking variables is an 

effective way to simulate the response of elements to multiple and continuous 

microcracking-healing cycles in a computationally efficient manner.  
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Chapter 5                                               

Finite element implementation and 

boundary value problems 

5-1 Introduction 

To simulate structures made of self-healing materials, an appropriate constitutive material 

model has to be implemented in a suitable finite element (FE) program. This 

implementation allows boundary value problems (BVP) to be solved. The work described 

in this chapter aims to validate the MM model by assessing its ability to capture the 

mechanical response of self-healing structural elements, as observed in experiments.   

In this chapter, the FE implementation and FE formulation are described in Section 5-2. 

The micromechanical formulation, that was given in detail in Chapter 4, was coded and 

added as a material module to the Cardiff University’s finite element code, Cardinal. 

Section 5-3, presents the BVP examples and compares numerical and experimental results. 

Section 5-4 is devoted to the conclusions.    

The cases considered with the model are as follows:  

• Single element illustration under different loading paths  

• Petersson’s (1981) uniaxial test  

• 3-point bending test of a beam with and without crystalline admixture (Cibelli et 

al., 2022) 

• 3-point bending test of a beam with a vascular network (Davies et al., 2021) 

• Uniaxial test of microencapsulated self-healing systems (Sayadi et al., 2023) 
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5-2 Finite element implementation 

The micromechanics-based self-healing constitutive model was implemented in the finite 

element code Cardinal, which was developed at Cardiff University.  A standard weak form 

was adopted to evaluate the stiffness matrix at each assembly step. The element is 

assumed to be an 8-node hexahedron with 24 degrees of freedom as depicted in Figure 

5-1. 

 

Figure 5-1 8 node hexahedral element 

 The element shape functions are as follows; 

where 𝑁 is the element shape function. The local coordinates for an isometric element 

are 𝜉, 𝜂 𝑎𝑛𝑑  as shown in Figure 5-1. The subscript 𝑖 denotes the shape function number 

associated with the element node number.   

Material nonlinearity was considered, and the domain was assumed to be continuous 

throughout the loading history.  The governing equation system in matrix form is given by:  

where 𝐮 is the nodal displacement vector, F is the nodal force vector, 𝐊(𝐮(𝛆)) is the global 

stiffness matrix assembled from each individual element stiffness matrix (𝐤e), the latter 

being given by:  

(−)

y

x

z







(−)(−−)

(−)

(−−) (−)

(−−)

()

Isoparametric element

𝑁𝑖(𝜉, 𝜂, ) =
1

8
(1 + 𝜉𝜉𝑖)(1 + 𝜂𝜂𝑖)(1 + 

𝑖
) (5.1) 

𝐊(𝐮(𝛆))𝐮(𝛆) = 𝐅(𝐮) (5.2) 
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in which 𝐁 is the strain-displacement matrix and 𝐃sech is the material secant stiffness 

matrix (from equation (4.18)) at each element integration point. The quasi-Newton-based 

nonlinear solution algorithm was adopted to solve the nonlinear equilibrium equations. 

To avoid instability in the solution, particularly near the peaks of the response curve where 

the tangent of the stress-strain curve approaches zero, a secant stiffness is used when 

solving the nonlinear systems of equations. In this element, numerical integration of 

equation 5.3) was undertaken using a standard 2x2x2 Gauss-Legendre integration rule. 

In the finite element computations, the element characteristic length (𝑙𝑒), used in 

equation (4.9), is derived based on the cube root of the element’s volume. This becomes 

inaccurate when the aspect ratio of an element differs significantly from unity.  In this case, 

a directional characteristic length may be computed using the method described by Alnaas 

& Jefferson (2016) 

5-3 Numerical examples and model validation 

In this section, five types of BVP examples are presented to demonstrate the proposed 

model's ability to capture cracking and crack-healing in cementitious materials. For the 

cementitious composite example, it is assumed that crack-healing occurs within the 

matrix. Initially, the nonlinear finite element framework was tested using one cubic finite 

element. This was to ensure that the constitutive formulation was implemented and 

coupled with the FE framework correctly. Subsequently, four different experimental test 

setups were considered with the model. The output from these simulations were then 

compared with the experimental results. The microcracking and healing variables, as well 

as the model performance, were observed, and data obtained from the model were 

analysed. The following table summarises the BVP examples considered in this chapter: 

 

 

 

𝐤e = ∫ 𝐁𝐓𝐃𝒔𝒆𝒄𝐁d𝑒
𝑒

 (5.3) 
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Table 5-1 Summary of the numerical example details 

Example Name Method Element type 
Number of 
elements 

reference 

EX_1 One element MM* 
8 nodes, 

hexahedron 
1 - 

EX_2 Petersson MM 
8 nodes, 

hexahedron 
20577 

(Petersson, 
1981) 

EX_3 
3-point bending 

with CA* 
MM 

8 nodes, 
hexahedron 

2116 
(Ferrara et 
al., 2014) 

EX_4 
3-point bending 

with vascular 

MM 
8 nodes, 

hexahedron 
7068 

(Davies et al., 
2021) 

EFEM* 
8 nodes, 

hexahedron 
7068 

EX_5 
Microencapsulated 

plate 

MM 
8 nodes, 

hexahedron 
10593 

(Sayadi et al., 
2023) 

Latice 12DOF Beam 65000  

 * Micromechanical formulation, ** finite element with embedded strong discontinuity  

5-3-1 One-element illustration 

In order to verify the implementation of the model in the FE code, and to illustrate the 

performance of the model, the predicted response from the model implemented in a 

single-point constitutive driver program is compared with the response computed with a  

single 8-noded cubic element with 100100100 mm.  The element was subjected to (i) 

uniaxial tension, (ii) compression with confinement stress and (iii) uniaxial compression. 

The boundary conditions and element geometry are schematically shown in Figure 5-2. 
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(a) (b) 

 
(c) 

Figure 5-2 The boundary condition for the single element example, a) tension uniaxial, b) 
confined compression, and c) uniaxial compression 

The same parameters used for single-point simulations mentioned in Chapter 4 were 

adopted for studying the behaviour of the single 3D element with the micromechanical 

constitutive formulation. The material parameters are given in Table 5-2. 

Table 5-2 Material properties used as an input for EX_1. 

Material/Properties 𝐸(𝑁/𝑚𝑚2) 𝜈 𝑓𝑡𝑖 (N/mm2) 0  µ 𝑞 

Matrix 24000 0.15 1 0.0067 1.0 1.5 

  The element was subjected to a monotonic axial displacement of up to 0.006mm for 

tension and 0.05mm for compression loading path. The 1𝑁/𝑚𝑚2 confinement normal 

stress was assigned for the compression load case, as shown in Figure 5-2b. Healing was 

initiated when the maximum microcracking variable () reached 0.99. The results are 

illustrated in Figure 5-3.   

u

u
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(a) (b) 

 
 

(c) (d) 

 
 

(e) (f) 

Figure 5-3 Responses computed with one finite element for a range of tension and compression 
loading paths 

The responses presented in Figure 5-3 resemble those of the single-point simulations 

reported in Chapter 4. This verifies the model implementation.  

5-3-2 Petersson test 

Petersson (1981) tested a concrete dog-bone-shaped specimen under uniaxial 

deformation. The specimen's bottom face was fully fixed, and the top face was subjected 
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to progressive vertical displacements. Petersson reported that a considerable degree of 

diffuse microcracking occurred during the experiment.  

  
(a) (b) 

Figure 5-4 Petersson’s direct tension test setup a) dimensions and boundary conditions, b) finite 
element mesh (all dimensions in this figure are in mm) 

In this numerical example, the domain was discretised by the transfinite meshing 

method. The Finite Element mesh employed, which was obtained after a mesh 

convergence study, is shown in Figure 5.13. The representative mesh used for this 

simulation comprised 20577 elements and 23200 nodes. As shown in Figure 5-4a, the 

nodes at the bottom face of the model were fully constrained and the nodes at the top 

face were subjected to prescribed incremental displacements. The resultant displacement 

vector was applied progressively to the top-face nodes in 100 increments. The boundary 

conditions reflected the fact that the specimens were glued to the top and bottom loading 

platens in the experiments. The micromechanical constitutive material model was 

assigned to all elements. In this way, all regions of the domain could potentially experience 

microcracking.  In the analysis, body forces due to self-weight were neglected. 

The model material parameters are summarised in Table 5-3. 

Table 5-3 Peterson specimen material input 

Material/Properties 𝐸(𝑁/𝑚𝑚2) 𝜈 𝑓𝑡𝑖 (N/mm2) 0  µ 𝑞 

Matrix 38000 0.2 1.8 0.2 1.0 1.5 

R
15

0

1
0

0

5
0

0

500

uy 
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The global response is shown in Figure 5-5. In this figure, the stress (𝜎) is the average 

stress and is assumed to be the normal force divided by the effective area at the neck. The 

simulated response indicates that the micromechanical model captures the initiation of 

microcracking and the nonlinear phase. However, the numerical post-peak response is 

somewhat different from that observed in the experiment.  

 

Figure 5-5 Numerical and experimental average stress-displacement responses for the 
Petersson’s experiments 

The distribution of normal microcracking variables for all elements is illustrated in Figure 

5-6 which represents the cracking progression through the loading history. This figure 

shows the dispersion as well as localization of nonlinearity throughout the domain. The 

snapshots of the model are chosen at top surface displacements of 0.002, 0.01 and 0.04 

mm for Figure 5-6a, b, and c respectively.  
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(a) (b) 

  

(c) (d) 

Figure 5-6 Original microcracking distribution, a) elevation view at top displacement equal to 
0.002mm, b) displacement equal to 0.01mm, c) displacement equal to 0.04mm, and d) localised 
damage 

In this example, Petersson’s experiment was used as the basis of a hypothetical test case 

in which a microencapsulated self-healing system was added to the dog-bone specimen. 

It was assumed that, at a specific microcracking threshold, microcapsules are activated 

and healing commences. As loading resumes, more elements reach the microcracking 

threshold for initiating healing, which causes multiple cycles of healing, as shown in Figure 

5-7b. Also, when the loading resumes microcracking and healing occur simultaneously.  

The overall response of the system is illustrated in Figure 5-7. It is assumed that healing 
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materials have the same properties as the matrix and that the curing time constant (𝜏) is 

1 second, which represents a rapid-action healing agent. In this case, the action of re-

microcracking and healing occurs very fast.  The healing was initiated when the microcrack 

variable reached 0.995.  

  
(a) (b) 

Figure 5-7 Load path and stress-displacement curve, a) load path, and b) stress-displacement 
curve for the crack-healing case 

The healing variables as well as re-microcracking variables at different stages are shown 

in Figure 5-8. It is shown that -through time- more elements reach the microcracking 

threshold and participate in the healing process.  Figure 5-8d indicates that not all 

damaged elements participate in the healing process since they are below the trigger 

criterion. This criterion mimics the stress-based microcapsule triggering condition.  
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(a) (b) 

 

 

(c) (d) 

Figure 5-8 Healing state at different prescribed displacements at the top of the specimen, a) 0.04 
mm, b) 0.055, c) 0.07, and d) 0.076 mm 

The re-microcracking variables show the sequence of healed material experiencing 

cracking. Also, the overlapping microcracking and healing processes are depicted in Figure 

5-9c, which shows re-microcracked elements and their healing status. As expected, not all 

the healed elements experienced re-microcracking. The re-microcracking evolution affects 

the global response since the area within each regain cycle reduces as does the degree of 

strength recovery.  
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(a) (b) 

 
(c) 

Figure 5-9 Re-microcracking variables distribution at different prescribed displacement, a) 
elevation view for 0.05 mm, b) elevation view for 0.06mm, and c) 3D isometric view for 0.07mm 

5-3-3 3-point bending test CA 

The 3-point beam bending experiments conducted by Ferrara et al. (2014) are considered 

in this example. In these experiments, concrete beams of size 45010050 mm (Figure 
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5-10a), were cast and loaded until the crack mouth opening displacement (CMOD) 

reached 150µm and 300µm for the first and second healing cycles respectively. Some of 

these beams were formed from a standard concrete mix and others were formed with a 

concrete containing a proprietary crystalline admixture (CA) (Ferrara et al., 2014), which 

was assumed to act as an autogenous healing enhancer. After cracking, each sample was 

stored for 12 months in either, (i) dry air or, (ii) a water curing tank. The beams were then 

re-loaded until failure. The cases considered in this example are summarised in Table 5-4 

Table 5-4 Material properties for EX-3 

The material properties used for this example (see Table 5-4) were based on those 

reported by Di Luzio et al. (2018), Ferrara et al.(2014), and Cibelli et al. (2022). The testing 

arrangement, specimen geometry, boundary conditions and finite element mesh used for 

the analysis are illustrated in Figure 8. 

Since, at the second cycle for the specimens without CA, no significant healing was 

observed, only the first healing cycle was considered for the simulations. The second 

healing cycle was considered for the specimen with CA in the modelling to illustrate the 

influence of level of the microcracking.  

  
(a) (b) 

Figure 5-10 a) beam geometry and boundary conditions, b) finite element mesh 

Multiple analyses on the reference samples were performed to determine an 

appropriate mesh and assess mesh convergence. For this purpose, half of the specimen 

was modelled by using symmetry. Four cases with 336,972,1452 and 2160 elements were 

B

100

450

5
0

5
0

B
Section B-B

Load

clip gauge

Case condition Designation 
E, Eh 

(N/mm2) 
ν, νh  fti(N/mm2) 

fth 
(N/mm2) 

(days) 
he

 

Healing 
without CA 

Dry WCAD 35000 0.25 0.1 0.5 270 0.01 

Healing 
without CA 

Wet WCAW 35000 0.25 0.3 0.5 270 0.02 

Healing with 
CA 

Dry CAD 35000 0.25 0.45 0.5 135 0.08 

Healing with 
CA 

wet CAW 35000 0.25 0.5 0.5 135 0.1 
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considered. The force-deflection results are plotted in Figure 5-11, and these show that 

the response of the 1452 element mesh is adequately converged, as shown in Figure 

5-11e, in which the responses computed using the 2160 element mesh and 1452 element 

mesh are almost indistinguishable from each other.    

  
(a) (b) 

  
(c) (d) 

 
(e) 

Figure 5-11 Mesh convergency test with different number of elements, a) 336, b) 972, c) 1452, 
d) 2160, and e) Force-deflection response. 

The experimental and numerical responses of the control samples are given in Figure 

5-12, which also shows the distribution of selected microcracking variables. The results 

show that the model is able to simulate the overall response of the control specimens with 

good accuracy. 
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3D prespective-𝜔1 

 
Front elavation-𝜔1 

 
Front elavation-𝜔28 

 
(a) (b) 

Figure 5-12 Experimental and numerical control beam responses, a) Load v CMOD 
response, b) microcracking variables at a CMOD of 150 

The mean experimental and numerical load-CMOD responses, for the samples without 

and with CA, are given in Figure 5-13 and Figure 5-14 respectively. In these graphs, the 

post-curing reloading response commences from the unloading point of the initial cracking 

stage. In the numerical simulation, the healing process occurs during the unloading - 

reloading phase. The reloading process includes both elastic recovery and the effects of 

healing on stiffness and strength. The model does not include a mechanism for capturing 

the hysteresis in unloading-reloading cycles, which results from the interactions between 

asperities of opposing crack faces. This occurs in standard concrete and is considered to 

be a second order effect. A model for simulating this effect may be found in Jefferson 

(2002)  . 
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(a) (b) (c) 

    
(d) (e) (f) 

Figure 5-13 Force-CMOD response for WCAD samples (a-c) and WCAW (d-e), a)reference sample 
loading unloading curve, b) reloading process with healing, c) magnified illustration of (b), 
d)reference loading-unloading for WCAW, e)reloading with healing and f) magnified illustrating of 
(e)  

    
(a) (b) (c) 

     
(d) (e) (f) 

Figure 5-14 Force-CMOD response for samples with CA cured in dry (CAD) (a-c) and wet 
conditions (d-e) (CAW), a) reference sample loading-unloading curve, b) reloading process with 
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healing, c) magnified illustration of (b), d) reference loading-unloading for CAW, e) reloading with 
healing and f) magnified illustrating of (e) 

Comparing Figure 5-13b and c with 10e and f, shows that the stiffness and strength 

recoveries due to healing were significantly less for dry-cured specimens than for the wet-

cured specimens without CA.  The model captures this difference, although does show a 

small increase in post-healed strength for dry specimens that was not evident in the 

corresponding experiment. However, in the wet conditions, the strengths increased by up 

to 10% compared to strengths at the unloading points. The effect of CA on mechanical 

recovery shows itself in strength and stiffness regains, as illustrated in Figure 5-14 c and f. 

Figure 5-15 shows the distribution of the healing and re-microcracking variables at 

selected stages of the analysis for the CAW case. Figure 5-15a shows that, at the beginning 

of reloading stage, the healed material re-damage variable is zero, since, at this time, it 

had just formed in stress free condition. Subsequently, the material re-microcracks as the 

loading progresses. Re-microcracking values for the normal crack plane of the healed 

materials are shown in Figure 5-15 b and c at CMOD=310 and 350 µm respectively. This 

figure shows that the further damage is localized where healing material was formed.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 5-15 Healed material status after reloading a) healing at CMOD=275 µm, b) re-damage at 
CMOD=310 µm c) re-damage at CMOD=350 µm, d) overlapping damage and healing illustration, 
and e) the force-CMOD for CAW 
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5-3-4 3-point bending test vascular 

In this example, the three-point bending of a cementitious specimen with an embedded 

vascular network presented by Davies et al. (2021) was considered. The test setup and 

specimen dimensions along with the 3D mesh used for simulation are illustrated in Figure 

5-16. Another purpose of this example is to compare the response derived from the 

element with embedded strong discontinuity (EFEM) approach with the results achieved 

from the micromechanical approach. Therefore, the model geometry and mesh 

configuration are the same as the model input used by Freeman & Jefferson (2023). As 

mentioned in Chapter 2, they employed a coupled transport-mechanical model to 

simulate self-healing along with elements with embedded strong discontinuities. In This 

model, it is assumed that healing occurs only in a discrete crack and that the overall 

stiffness matrix is computed by including the healing contribution in the element stiffness 

matrix.   

 

 
(a) (b) 

Figure 5-16 Rob's test setup (Davies et al., 2021) , a) dimension and boundary conditions, and b) 
mesh 

The specimen was loaded in three-point bending until a crack mouth opening 

displacement (CMOD) of 0.3 mm was reached, after which the specimen was unloaded, 

and left submerged in water for a healing period of one week before being reloaded to 

failure.  

To investigate the mesh sensitivity, two finite element meshes were employed. The 

coarse mesh comprised 1,950 elements, whereas the fine mesh comprised 7,068 

elements. For both cases, the mesh was refined in the vicinity of the line-of-application of 

the applied displacement in order to more accurately capture the stress in this region.  For 
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the reference sample, the results from analyses with the two different meshes are plotted 

in Figure 5-17. 

For simulating the mechanical regain due to self-healing, the fine mesh configuration 

(7068 elements) was used. The material mechanical characteristics are noted in Table 5-5. 

Microcracks started to initiate before the peak, therefore the tensile strengths used as 

input for the micromechanical model should be less than the ultimate strength reported 

in the experiment.  

 

Figure 5-17 Comparing the course and fine mesh response 

 In this example, the healing agent enters the crack plane through the embedded 

vascular network. The degree of healing according to the equation described in chapter 4 

was calculated after healing period.  
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Table 5-5 Mechanical properties 

Material/Properties 𝐸(𝑁/𝑚𝑚2) 𝜈 𝑓𝑡𝑖  (N/mm2) 

Matrix 30000 0.2 3 

Healing material 8505.0 0.2 0.2 

The results presented in Figure 5-18 show the Load-CMOD responses for both the EFEM 

and MM approaches. The results indicate that the numerical simulation captured both 

microcracking effects and healing with acceptable accuracy. Also, the simulation suggests 

that the MM model captures the pre-peak effect much more accurately than the post-

peak, when judged against the experimental data. However, the MM methods tends to 

overestimate the post-peak behaviour because is does not consider macro-cracking. The 

MM model also gives more detailed information about the microcracking and healing 

processes via the time evolution of the microcracking, healing, and re-microcracking 

variables.  The contour plot in Figure 5-19 shows how matrix virgin microcracking evolves 

through the loading history. At a CMOD of 250𝜇𝑚, when healing commenced, all 

microcracks that intersected the embedded vascular network engaged in the healing 

process.  
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Figure 5-18 Force-CMOD curve for self-healing cases 

According to the experiment, as expected, due to the presence of a notch in the middle 

of the beam, cracking localized in the vicinity of the notch and the healing agent was 

transported to the main localized crack. This suggests that the elements in the middle of 

the beam should be subjected to healing as shown in Figure 5-20a. 
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(a) 

 
(b) 

 
(c) 

Figure 5-19 Matrix damage variables at different CMOD, a) 50 m, b) 100 m, and c) 200m  

As reloading resumes, the healed materials contribute to the load bearing capacity. This 

healed material may also undergo re-microcracking. Since, healed materials formed in a 

stress-free condition, they experienced first cracking when the difference between applied 

local strain and healing strain (𝜀𝐿 − 𝜀ℎ) on any directional healed microcracks reaches the 

threshold that is defined for re-microcracking criterion. The progression of re-

microcracking and overlapping crack-healing processes is illustrated in Figure 5-20.  
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(a) 

 
(b) 

 
 

(c) 

Figure 5-20 Healing and re-microcracking variables at different CMOD, a) 250µm, b) 290 µm, and 
c) 300 µm  
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5-3-5 Encapsulated self-healing_ Lattice vs micromechanics 

In this example, both the enhanced Lattice method and micromechanical approach were 

employed to simulate the mechanical response of specimens formed from encapsulated 

self-healing cementitious materials. This example explores the difference in global 

response between the homogenised (MM) continuum and explicit mesoscale 

representation methods.  

A self-healing cementitious mortar with 63.5% aggregate and 2.5 % microcapsules, by 

volume, was considered to examine how self-healing affects the response of a uniaxial 

tensile test. A 40mmx40mm square 2D domain was used for the comparison (the analysis 

was carried out in 3D with a nominal mesh thickness of 1mm), in which the prescribed 

boundary conditions and meshing type are schematically shown in the Figure 5-21. The 

top surface displacement was applied at a rate of 0.0001mm/sec (0.000025mm/mm/sec 

for the strain path) such that healing would be initiated when the applied boundary 

displacement reached 0.075 mm. Here, it is assumed that healing  occurred 

instantaneously.  

  

(a) (b) 

Figure 5-21 Boundary condition and meshing type, a) structured mesh, and b) Dulaney 
triangulation  

The Mori-Tanaka approach was employed to derive the elastic properties of the RME in 

the continuum MM model which used the constitutive formulation described in Chapter 

4. The lattice mesh was generated using a pixel-based framework for the aggregate phase 
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to determine microcapsule geometry and location. The shape of the microcapsules was 

created using the Bresenham algorithm (Bresenham, 2010), which rasterizes the shell of 

the microcapsules in the pixel-based domain. The centre of each capsule was chosen such 

that there was no overlap between neighbouring microcapsules and the aggregate 

particles. The algorithm randomly distributed microcapsules within the composite 

cementitious domain. The material mechanical properties and geometry are presented in 

Table 5-6 and Figure 5-22 respectively. In this example, it is assumed that for the Lattice 

model, the aggregate particles remain elastic throughout the simulation. 

Table 5-6 Material mechanical properties. 

Material/Properties 𝑣𝑓% 𝐸(N/mm2) 𝑓𝑡𝑖(MPa) 𝜀𝑡 

Matrix-interface 33.0 30000 4 0.00015 
Aggregate 63.5 49000 - - 

Microcapsules 2.5 30 0.1 - 
Healing agent - 30000 3.0 0.00015 

 

It is worth reminding that the parameter 𝜀𝑡, given in Table 5-6, is the microcracking strain 

parameter used for the micromechanical model.  

In the lattice approach, the total number of nodes and elements was chosen to be fine 

enough to capture the microstructure features as well as the crack propagation. In total, 

the mesh contained 61366 nodes and 181960 elements.    

  
(a) (b) 

Figure 5-22 Considered RVE for: a) computational microstructure, b) Lattice mesh in the 
highlighted region 

Matrix         Aggregate         Microcapsule 
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In this study, it was assumed that the bond between microcapsules and cement was 

perfect. It was also assumed that a given capsule ruptures when it is intersected by a 

propagating crack. To compare the crack pattern with and without healing, the system was 

solved for both scenarios. 

The calculated responses derived from the two proposed methods are presented in 

Figure 5-23. The slope of the force-displacement curve indicates that the overall stiffness 

of the RME calculated from both the Lattice and MM methods are close to each other. 

Figure 5-23 shows the average stress versus average strain responses for the MM and 

Lattice approaches with and without the healing.  For the Lattice method, the average 

stress is defined by dividing the normal reaction force to the section area of the specimen. 

The average strain is defined as calculation of normal displacement to the sample length. 

The crack patterns of the control and healing cases are presented in Figure 5-25 and Figure 

5-26 respectively. 

  
(a) (b) 

Figure 5-23 Uniaxial responses, a) MM approach, and b) Lattice approach 

To have a clear visualization of the fracture pattern for the lattice model, a morphological 

operation (Comer, 1999) was performed to eliminate single dispersed damaged elements 

from the Lattice method. In this way, the main continuous crack was isolated from regions 

of diffuse cracking. This helped with crack tracking and with the comparison of principal 

crack paths. Through this method, single damaged elements with no adjacent damaged 

elements would be removed. This method retains damaged elements that form 

continuous cracks.  Figure 5-24 illustrates the morphological operations.  



Chapter 5: Finite element implementation and boundary value problems 

132 
 

  
(a) (b) 

Figure 5-24 The rendering of the crack pattern generated by morphological operations at the 
collapsed stage, a) without the operation, and b) after the operation. 

Figure 5-25 shows the crack pattern as well as normal to the crack direction of the 

microcracking variable distribution over the domain at two different stages.  

 For the sake of clarity, only the distribution of microcracking variables with values 

greater than 0.7 are shown in Figure 5-25d.  
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(a) (b) 

  
(c) (d) 

Figure 5-25 Crack pattern and microcracking variable (𝜔1) distribution at different strains level, 
a) Lattice method at =0.00005, b) Lattice method at =0.00015, c) MM method at =0.00005 and 
d) MM method at =0.00015 

Figure 5-25 shows that the microcracking distribution over the domain derived from the 

micromechanical approach is different from that of the explicit lattice approach, despite 

the similarity of the predicted global average stress-strain responses. This pattern is also 

visible in the re-microcracking variable distribution and re-fracture pattern of the lattice 

elements. In addition, the localization of microcracking variables shows the influence of 

the applied boundary conditions, in which the horizontal displacement is considered to be 

fixed at the lower face of the specimen. The meso- and micro- scale fracture patterns show 

that, for the experiments with specimens glued at one end, the heightened stresses and 

cracks are concentrated in the vicinity of the fixed base region. To avoid this, dog-bone-

shaped samples are recommended.    It is worth noting that, as mentioned above, a high 

number of nodes and elements were required for the explicit representation of the 
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microstructures.  Consequently, the computational costs for the Lattice method were 

relatively high compared to those of the MM approach, in which the total number of 

elements was 10953. For further investigation of the crack patterns at micro- and meso- 

scales, experimental data obtained using DiC (digital image correlation) would be useful 

for validating the lattice method.  

  
(a) (b) 

  
(c) (d) 

Figure 5-26 The crack pattern after healing and re-microcracking variables.  a) MM method at 
=0.0002, b) MM method =0.0003 c) Lattice method at =0.0002, and d) Lattice method 
=0.00025  
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5-4 Conclusions  

The 3D finite element implementation of the proposed constitutive formulation for 

capturing rate-dependent crack-healing in cementitious materials was described in this 

chapter. Different boundary value problems and experimental setups were modelled. The 

numerical prediction was validated using the data from experiment.  The model’s 

capability to capture crack-healing behaviour and its affect on the overall mechanical 

characteristics of structures formed from self-healing cementitious materials was 

evaluated. Based on the results, the following conclusions can be drawn:   

• The proposed model can simulate different types of self-healing scenarios and 

can replicate the behaviour of structural elements undergoing simultaneous 

microcracking and healing. 

• Relatively few physically and chemically meaningful parameters are required for 

both the MM and Lattice approaches to simulate the self-healing systems.  

• The stiffness and strength regains observed in experiments on self-healing 

cementitious materials can be predicted with a good accuracy by both the MM 

and Lattice models.  

• Meso- and micro- structures of cementitious composites, and their cracking and 

healing behaviour, can be modelled explicitly by the Lattice method. Healing 

effects can alter crack propagation paths. 

• The MM approach, which simulates diffusive microcracking and healing, is 

applicable to microencapsulated systems. Macrocracking behaviour can be 

simulated with the MM model but the idealisation becomes increasingly 

inaccurate as the degree of macrocracking progresses. 

• The computational costs of the MM approach are much less than those of the 

Lattice method. 
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Chapter 6                                       

Conclusion and recommendations for 

future work 

The main aim of this research was the development of a robust widely applicable 

formulation for capturing the mechanical behaviour of biomimetic self-healing 

cementitious materials. The focus was on a mechanistic approach to the constitutive 

and element formulations.  This chapter briefly summarises the objectives mentioned 

in the introductory part of this thesis as well as how they were achieved. For both the 

Lattice and micromechanical (MM) methods, the implementation, validation and main 

outcomes are discussed. The conclusions and the model performance are summarised 

in Section 6-1. Throughout the research, there were multiple options for model 

extensions and enhancements, which would be worth pursuing in the future. These 

are considered in section 6-2.  
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6-1 Discussion and conclusions 

The main conclusions from this study are given below. 

The investigations reported in this thesis were carried out to identify the mechanisms 

and processes involved in self-healing. The mechanical regain due to self-healing, 

from micro scale to macro scale, and its effect on overall stress-strain responses were 

studied. Considerable effort was devoted to developing a mathematical description 

of these processes using ‘a science-based approach’. This was initially proposed in 

the SMARTINCS research grant agreement 860006.  

The TUDelft Lattice model, which was specifically developed to simulate the micro 

and mesostructural response of cementitious materials, was enhanced to capture 

time-dependent self-healing behaviour.  

• Crack-healing was accounted for using a time dependent element recovery 

approach accompanied by a unique method for ensuring that nodal forces 

remain constant during the healing process. The upgraded lattice system is able 

to evaluate and assess the mechanical response of different self-healing systems. 

This approach gives valuable information related to the fracture zone as well as 

the amount of healing agent required for self-healing. The latter is particularly 

useful for engineers considering design applications.  

• The proposed lattice model was validated against experimental results. The 

behaviour of a three-point bending test of a beam as well as uniaxial tension test 

of a cube equipped with vascular network and microcapsules under different 

loading and healing conditions were replicated. The numerical results showed 

good agreement with the experimental observations. 

• Using the MM approach, the differences between responses computed using 

directional microcracking and aligned microcracks were highlighted. It was shown 

that a formulation with aligned microcracks perpendicular to a loading direction 

predicts a greater reduction in the mechanical properties of a representative solid 

with increasing loading than in formulations with other directional 

configurations.  
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• A novel rate dependent micromechanical formulation was developed to capture 

microcrack-healing action in self-healing cementitious systems. The re-healing 

and re-microcracking processes are included in this model. The model is focused 

on mechanical regain due to the self-healing action and is coupled with 

numerically convenient form of diffusion-advection process during curing phase 

of the healing materials.  The model shows that mechanical properties of healing 

materials as well as the curing rate strongly affect the constitutive behaviour of 

the system after healing.  

• The micromechanical constitutive formulation gives information related to the 

micromechanical variables and the healed portion of those microcracks through 

time. The formulation and healing variables are developed in a way that, during 

the healing process, the stress states at the local crack level and global level do 

not change. This required the solution of an underdetermined nonlinear system 

of equations. The curing and loading rate at the time of healing, affect the 

evolution of the healing and re-microcracking variables.  

• The performance of the proposed MM constitutive formulation was explored 

using single-point stress-strain paths in a parametric study. The model was also 

validated through replication of a compression test on a cementitious specimen 

with an embedded encapsulated self-healing system.   

• The MM constitutive model was implemented in a finite element code to 

simulate boundary value problems. Specifically, the material constitutive model 

was added to a 3D standard hexahedral element in Cardiff’s Cardinal finite 

element program. The comparison between the single point constitutive 

response and the results derived from the one single 8-noded element verified 

the implementation of the model.   

• Four types of boundary value problems were considered with the model. The 

results shows that the proposed model can capture diffuse microcracking and 

give an accurate prediction of the overall responses of the systems considered. 

Two different types of self-healing experiment, in which the curing regime and 

model geometry were varied, were simulated.  The overall numerical results were 

in a good agreement with the experimental observations.  
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• The self-healing micromechanical model is mainly applicable to diffusive crack-

healing systems such as encapsulation-based self-healing systems or self-healing 

systems with additives such as crystalline admixtures. The numerical model can 

capture the initiation and propagation of microcracks and observed post peak 

behaviour with a good accuracy. 

• The lattice model may be used to inform the micromechanical parameters as well 

as predict crack initiation. Also, the explicit microstructural representation helps 

to identify the healing potential throughout the domain.  However, the 

micromechanical constitutive approach gives a reliable computationally efficient 

method for simulating self-healing composite systems.  

6-2 Recommendations for future work 

Throughout this research work multiple potential future developments were identified. 

These are summarised below. 

The healing efficiency and its dependence on the level of the damage were treated as 

material constants, which were input into the model. The reduction of healing efficiency 

with the level of microcracking could be formulated using a mechanistic approach.  

Currently, it is assumed that the supply of healing agent and agent transport driving force 

(e.g. capillary force) are sufficient to ensure that healing agent is present in all microcracks 

and discrete cracks at the time of healing. In reality, this may or may not be the case. 

Therefore, there would be benefit in adding healing agent transport to a coupled version 

of the model via integration of transport governing equations, and associated transport 

finite elements, with either the micromechanical model or the Lattice model. This coupled 

model would be able determine the availability of healing materials within a cracked 

region.  

The current micromechanical self-healing model could be extended and coupled with 

the element with strong discontinuity, already present in the FE code, to simulate the 

merging of microcracks into one or more macro cracks and thereby capture post-peak 

behaviour after healing with a better accuracy.  

Healing under smooth and/or rough contact might affect the results. The current method 

does not consider these mechanisms. It would be worth investigating the healing process 
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during contact and studying the stress field before and after healing using a combined 

experimental-numerical study.  

The current approach assumes that healing materials reach and completely fill cracked 

regions immediately after healing initiation. However, impediments such as air bubbles 

within the network channels as well as weak triggering or weak release of healing agent 

from the capsules may alter the self-healing process. These mechanisms would be worth 

investigating and including in a future model.  

Experimental observation shows that healing in fibre-reinforced self-healing 

cementitious materials is greater than in comparable plain specimens because crack-

widths are  smaller in the former and healing tends to increase with decreasing crack 

width.  The proposed formulation potentially could be extended and to fibre-

reinforcement self-healing materials. 

Some experimental studies have been devoted to assessing the mechanical regain in self-

healing systems. However, for the validation of numerical models, a wide range of 

experimental data is needed. Although a significant amount of data exists for vascular 

network systems, there is much less available for the encapsulated self-healing systems 

and self-healing systems with bacteria. A future combined experimental-numerical study 

aimed at gathering such data would be valuable. 

A substanial experimental studies is needed to investigate the crack pattern before and 

after healing in different length scale especially in systems with heterogeniety. This 

information is useful to validate the numerical simulations as well as to determine the 

accuracy of homogenization techniques.  

.  
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Appendix A                                                                      

Elastic tensors component 

For an ideal Hookean solid, the elastic compliance tensors (𝐃) assuming that the material 

is isotropic is derived from following equation using the Lame constant (𝜆) and the shear 

modulus (𝜇).  

where 𝐈𝟐 and 𝐈𝟒𝐬 are second order tensor and symmetric part of the fourth order identity 

tensor respectively.   𝜆 and 𝜇 are individually referred to as Lamé's constant. The 

following equation shows the calculation of 𝐈𝟒𝐬. 

In this equation, the 𝛿 is the Kronecker delta, and 𝑖 and 𝑗 are the indices. The Kronecker 

delta is one if 𝑖 = 𝑗 and is equal to zero if 𝑖 ≠ 𝑗. 

  In Matrix and vector notation (Voigt), the above tensor (𝐃) in a 3D Cartesian coordinate 

may be presented in a 6x6 matrix as follows: 

 

 

 

 

 

 

𝐃 = 𝜆𝐈𝟐⊗𝐈𝟐 +2𝜇𝐈𝟒𝒔 (A.1) 

𝐈𝟒𝐬 = 𝐼𝑖𝑗𝑘𝑙
4𝑠 = δik𝛿𝑗𝑙 = 0.5(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘) + 0.5(𝛿𝑖𝑘𝛿𝑗𝑙 − 𝛿𝑖𝑙𝛿𝑗𝑘) (A.2) 
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 (A.3) 
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Appendix B                                                                      

Eshelby tensor 

The constraint displacement field is expressed in terms of the Green’s function of the 

elastic body as follows. 

  Employing the strain derivation equation from displacement field (0.5(∇u + ∇uT), lead 

to calculation of the constraint strain as follows. 

  Assuming a fourth order auxiliary tensor (𝓒) which relates the stress and displacement 

field gradient gives 

  Substituting (B.3) in Eshelby’s theory (𝐒: 𝛆 = 𝛆𝐜) gives 

  For a system with a spherical elastic inclusion, the Eshelby fourth order tensor is derived 

from following equation using Einstein notation   

 

 

 

 

uc(x) = ∫𝝈 ∙ 𝒏(𝒙′)𝐺(𝑥, 𝑥′)𝒅

𝛀

𝛀  (B.1) 

εc(x) = 𝟎. 𝟓 ∫[𝝈 ∙ 𝒏(𝒙′) ⊗ ∇𝑮(𝒙, 𝒙′) + 𝝈 ∙ 𝒏(𝒙′) ⊗ ∇𝑮(𝒙, 𝒙′)T]𝒅

𝛀

𝛀  (B.2) 

∇uc(x) = −𝓒: 𝛔 (B.3) 

𝐒(x) = −𝟎. 𝟓𝐃 ⋅ (𝓒 + 𝓒𝐓) (B.4) 

Sijkl =
5𝜈 − 1

15(1 − 𝜈)
𝛿𝑖𝑗𝛿𝑘𝑙 +

4 − 5𝜈

15(1 − 𝜈)
(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘) (B.5) 
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Appendix C                                                                     

weights and corresponding direction for numerical 

integration 

The following table shows the coordinates and the weights for the directional integration 

over the sphere. These coordinates and points are illustrated in Figure C-1. 

Dir (x,y,z) weight Dir (x,y,z) weight 

1 (1,0,0) 0.0254 16 (
√3

3
, 
√3

3
, 
−√3

3
) 0.04219 

2 (0,1,0) 0.0127 17 (
√3

3
, 
√3

3
, 
√3

3
) 0.04219 

3 (0,0,1) 0.0127 18 (
√11

11
,
−√11

11
, 
−3√11

11
) 0.04035 

4 (0,-1,0) 0.0127 19 (
√11

11
,
√11

11
, 
−3√11

11
) 0.04035 

5 (0,0,-1) 0.0127 20 (
√11

11
,
−3√11

11
, 
−√11

11
) 0.04035 

6 (
√2

2
, 
−√2

2
,0) 0.04515 21 (

√11

11
,
−3√11

11
, 
√11

11
) 0.04035 

7 (
√2

2
,
√2

2
,0) 0.04515 22 (

√11

11
,
−√11

11
, 
3√11

11
) 0.04035 

8 (0,
−√2

2
,
−√2

2
) 0.02257 23 (

√11

11
,
√11

11
, 
3√11

11
) 0.04035 

9 (0, 
−√2

2
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√2

2
) 0.02257 24 (

3√11

11
,
−√11

11
, 
−√11
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) 0.04035 

10 (0,
√2

2
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−√2

2
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2
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13 (
√2

2
,0, 

√2

2
) 0.04515 28 (

√11

11
,
3√11

11
, 
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11
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−√3

3
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−√3

3
) 0.04219 29 (
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,
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11
, 
√11

11
) 0.04035 

15 (
√3

3
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−√3

3
, 
√3

3
) 0.04219    

 

(a) 
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(b) 

Figure C-1 Schematic numerical points, a) 3D figure, b) direction and weight for numerical 
integration 
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Appendix D                                                                      

Tensorial notation 

The following tensorial notation (Table D-1) is used in continuum mechanics, damage 

continuum mechanics and micromechanical approaches. The equivalent Einstein 

summation convention is mentioned. In this table 𝛼 is a scalar, 𝒂 and b are first order 

tensors, 𝐀, 𝐁 and 𝐂 are second order tensors; 𝐃, 𝐄 and 𝐅 are fourth order tensors.  

Table D-1 Tensorial notation 

Direct tensor notation Summation convention Operation symbol 

𝐀 = 𝐚⊗ 𝐛 𝐀ij = 𝐚𝑖𝐛𝑗 
⊗  s  y   c     uct 

𝐃 = 𝐀⊗𝐁 𝐃𝑖𝑗𝑘𝑙 = 𝐀𝑖𝑗𝐁𝑘𝑙  

𝛼 = 𝑎 ∙ 𝑏 𝛼 = 𝑎𝑖𝑏𝑖 

∙  s   t     uct 𝐂 = 𝐀 ∙ 𝐁 𝐂𝑖𝑘 = 𝐀𝑖𝑗𝐁𝑗𝑘  

𝐅 = 𝐃 ∙ 𝐄 𝐅𝑖𝑗𝑚𝑛 = 𝐃𝑖𝑗𝑘𝑙𝐄𝑘𝑙𝑚𝑛 

𝛼 = 𝐀: 𝐁 𝛼 = 𝐀𝑖𝑗𝐁𝑖𝑗  
:  s t  s   c  t  ct    

𝐁 = 𝐃:𝐀 𝐁 = 𝐃𝑖𝑗𝑘𝑙𝐀𝑘𝑙 

 

 

 


