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Abstract

Large language models (LLMs) have demon-
strated immense potential across various tasks.
However, research for exploring and improving
the capabilities of LLMs in interpreting graph
structures remains limited. To address this
gap, we conduct a comprehensive evaluation
of prompting current open-source LLMs on
graph-to-text generation tasks. Although we ex-
plored the optimal prompting strategies and pro-
posed a novel and effective diversity-difficulty-
based few-shot sample selection method, we
found that the improvements from tuning-free
approaches were incremental, as LLMs strug-
gle with planning on complex graphs, particu-
larly those with a large number of triplets. To
further improve LLMs in planning with graph
sequences and grounding in truth, we intro-
duce a new graph-to-text dataset, PlanGTG,
annotated with two sub-tasks: reordering and
attribution. Through extensive automatic and
human evaluations, we demonstrate significant
improvements in the quality of generated text
from both few-shot learning and fine-tuning
perspectives using the PlanGTG dataset. Our
study paves the way for new research directions
in graph-to-text generation1

1 Introduction

Recent advancements in large language models
(Chowdhery et al., 2022; OpenAI, 2022, 2023; Tou-
vron et al., 2023; Jiang et al., 2023) have revolu-
tionized natural language processing (NLP) due
to their remarkable zero- and few-shot capabili-
ties. While LLMs have been explored for struc-
tured graph tasks (Rong et al., 2020) and graph
classification (Errica et al., 2020), their potential in
verbalizing graphs in natural language (graph ver-
balization) remains underexplored. Graph-to-text
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1PlanGTG datasets can be found in

https://github.com/probe2/kg_text..

generation (Koncel-Kedziorski et al., 2019; Ribeiro
et al., 2021) is a challenging task that yields text
from different graph structures and requires seman-
tic alignment between graph and text.

Knowledge Graphs (KGs) (Pan et al., 2017b,a)
store graph-like knowledge in triplets ⟨h, r, t⟩, stat-
ing that the head entity h is related to the tail entity
t through the relation type r. Verbalizing triplets
from KGs is essential for a wide range of tasks,
such as knowledge graph completion (Hu et al.,
2023b; Geng et al., 2023; Wiharja et al., 2020) as
relation prediction, entity typing (Hu et al., 2022,
2023a) and negative triples (Arnaout et al., 2022a,b,
2021a,b) for answer validation, as well as creat-
ing QA datasets from graph data; e.g. Common-
senseQA (Talmor et al., 2019; Romero et al., 2019)
and SciGraphQA (Li and Tajbakhsh, 2023). It also
plays a key role in mitigating hallucinations of
LLMs (Agrawal et al., 2023; Zhao et al., 2023b;
Yang et al., 2024; Zheng et al., 2024).

To advance the KG-to-text generation task in
the era of LLMs (Pan et al., 2023), we perform a
preliminary evaluation on how well open-source
LLMs perform on different prompts both in zero
and few-shot scenarios. The prompt searching re-
sults emphasized the role of detailed instructions in
unleashing LLMs’ potential to generate fluent and
accurate text from graphs. At the same time, we
did not observe improvements of LLMs over vari-
ous prompt optimizations in the zero-shot case (e.g.
different linearizations and triplet expressions). For
few-shot prompts, we empirically showed that
choosing moderately hard and diverse prompts re-
sults in the best performance and propose a novel
difficulty-diversity balanced demonstration selec-
tion method (DDD), which outperforms both sim-
ple difficulty or diversity-based method. However,
the absolute value of improvements is marginal, re-
flecting the limitations of in-context learning. The
analysis of graphs with varying complexity, mea-
sured by the number of triplets and graph diam-
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eters (the longest shortest path between any two
vertices), further suggests that current LLMs strug-
gle with planning when handling graphs with a lot
of triplets and with small diameters. This moti-
vates us to use instruction-tuning over sub-tasks to
strengthen LLMs’ planning abilities, thus improv-
ing the performance of graph-to-text generation.

Inspired by Zhao et al. (2023a), we investigate
whether instructing LLMs to explicitly output their
decision process for graph-to-text generation can
improve the quality of generated text. In addition,
we design two subtasks: 1) Reordering: reorder
the given KG triplets to better align with the gener-
ated text. 2) Attribution: attribute triplet indexes
in the generated text using sequential numbers to
enhance the interpretability of the generated text.
To achieve this, we create PlanGTG (Sec.4), a
new instruction dataset containing approximately
30,000 data pairs, featuring annotated attributions
of triplets from the text. This dataset is generated
using seeds rewritten from GraphNarritive (Shi
et al., 2023) and GPT-3.5-turbo, incorporating the
two subtasks sequentially.

We fine-tune LLMs with PlanGTG (Sec.5), con-
ducting extensive automatic and human evaluations.
Human evaluation results suggest that models fine-
tuned with instructions are capable of successfully
adjusting the order of KG triplets and correctly
marking the sequence numbers in the generated
text in most cases. Comparatively, models trained
with PlanGTG outperform those using the Event-
Narrative (Colas et al., 2022), TEKGEN (Agarwal
et al., 2021), and GraphNarrative (Shi et al., 2023)
datasets in both zero-shot generalization and full-
shot fine-tuning.

In summary, our main contributions are:

• We conduct comprehensive preliminary evalu-
ations of graph-to-text tasks on LLMs, and ex-
plore the most effective prompting strategies
in zero-shot and few-shot cases. We propose
a novel and effective demonstration selection
method DDD, and point out the remaining
challenge of planning on complex graphs.

• We construct the PlanGTG dataset by adding
two new subtasks, reordering and attribution,
to study how LLMs can be improved through
instruction fine-tuning with enriched auxiliary
task information.

• Extensive experiments and evaluations have
validated the effectiveness and utility of
PlanGTG. Additionally, we explored how a

curriculum learning approach, which strategi-
cally organizes the sequence of training data,
can further enhance model performance.

2 Related Work

Various approaches have been proposed for trans-
forming knowledge graphs into text. These include
graph neural network based methods (Ribeiro et al.,
2020) and language model based approaches (Liu
et al., 2022b; Zhao et al., 2023a; Wu et al., 2024).
Graph neural network based methods typically en-
code structured inputs explicitly as model represen-
tations (Puduppully et al., 2019; Guo et al., 2019;
Koncel-Kedziorski et al., 2019). Among LLM
based approaches, after LLM based sub-graph re-
trieval (Huang et al., 2024), a critical step is lin-
earizing input triplets (Zhao et al., 2020), and re-
cent efforts have introduced various planning tech-
niques (Zhao et al., 2020, 2023a), including effec-
tive CoT based summaries (Wu et al., 2024).

There are studies that have focused on evaluating
graph-to-text generation quality using pre-trained
language models. Shi et al. (2023) address hal-
lucinations in open-domain graph-to-text genera-
tion, while Yuan and Färber (2023) evaluate closed-
source LLMs such as GPT-3 and ChatGPT only
under the zero-shot setting. In contrast, our work
focuses on open-source LLMs, aiming to provide
a comprehensive evaluation across various aspects
of the graph-to-text conversion process, including
linearization, demonstration selection, and model
scaling. Furthermore, we propose two new sub-
tasks, reordering and attribution. These tasks are
designed to enhance transparency in the generation
process of LLMs and improve their performance.

Broadly speaking, there are also works on using
knowledge graphs and ontologies for text genera-
tion (Mellish and Pan, 2008; Parvizi et al., 2014;
Melnyk et al., 2022).

3 Preliminary Study

To investigate how to improve the performance of
LLM’s graph-to-text generation, we first perform a
preliminary study to answer 1) How can different
prompts influence the performance of graph-to-text
generation, and will prompt engineering be relevant
to attain such improvements? 2) Will scaling the
parameters of open-sourced LLMs improve their
graph-to-text verbalization abilities? We performed
experiments following the settings in Section 3.1.
For detailed experiment results, please refer to App.



C.

3.1 Experimental Setup
Datasets We conducted all of our experiments
on the following three benchmarks: WebNLG17,
WebNLG20, DART. Details about the datasets
and experimental setup can be found in App. A.
Evaluation Metrics We used both automatic
evaluations and human evaluations for our exper-
iments. Four popular metrics BLEU (B-4) (Pap-
ineni et al., 2002), METEOR (ME) (Banerjee and
Lavie, 2005), CHRF++ (CF) (Popović, 2015) and
BartScore (BS) (Yuan et al., 2021) are adopted as
evaluation metrics. Detailed explanations for all
metrics are given in App. B.
Model All preliminary experiments except the
scaling study are performed on Mistral-7b-instruct-
v0.2 (Jiang et al., 2023).

3.2 Prompt Searching
We first explored how different instructions and the
textual representation of triplets influence down-
stream performance in zero-shot cases. This allows
us to fix the optimal prompts as the prompt format
for the rest of the paper. In summary, more detailed
prompts for explaining the formulation of the pro-
vided triplets and the task’s goal result in more ac-
curate and coherent generations. Regarding triplet
formats, “head | relation | tail” performs slightly
better than other representations such as “⟨head⟩
⟨relation⟩ ⟨tails⟩”, but not significantly. Similarly,
although several works have demonstrated the sig-
nificance of different linearization techniques in
graph-to-text tasks (Yang et al., 2020; Hoyle et al.,
2021; Li et al., 2021), we found that LLMs are
robust over different linearization and we, there-
fore, applied the default linearizations provided in
the datasets in the rest of experiments. We con-
jecture that this robustness is due to LLMs being
more invariant with the position and order, likely
resulting from updated position embeddings such
as RoPE (Su et al., 2024). Detailed experiments
and discussions are available in App. C.1.

3.3 Example Selection
As the prompt templates are fixed during the
prompt searching, we explored how few-shot
demonstrations selection can influence and im-
prove the performance of graph-to-text generation
motivated by research emphasizing the importance
of demonstrations selection (Luo et al., 2023; Droz-
dov et al., 2023). We conducted experiments on

selecting demonstrations based on difficulty and
diversity. Here difficulty is assessed by computing
the cosine similarity between examples and input,
with the assumption that following similar demon-
strations facilitates easier graph-to-text generation.
Diversity is measured by whether examples are
within different k-means clusters. We will sum-
marize our main findings due to the page limits.
Please refer to App. C.2 for detailed experiment
results.

Dataset # of shots B-4 ME CF BS

DART

1 21.33 33.69 55.10 -2.36
3 21.30 33.78 55.17 -2.33
5 22.22 33.90 55.47 -2.35

10 23.32 34.20 56.00 -2.35

WebNLG17

1 23.48 35.49 57.66 -1.92
3 25.07 35.98 58.60 -1.91
5 24.83 35.92 58.72 -1.94

10 25.28 35.87 58.85 -1.96

WebNLG20

1 26.07 38.01 58.64 -1.97
3 27.54 36.09 58.93 -2.00
5 27.42 35.95 58.58 -2.03

10 27.36 36.01 58.87 -2.03

Table 1: Comparison between different numbers of few-
shot selections on three popular graph-to-text datasets.
B-4, ME, CF, BS refer to BLEU-4, METEOR, CHRF++
and BartScore respectively

Finding 1: Selecting moderately difficult and
diverse demonstrations yields the best results,
but with fluctuations. We separate the level of
difficulties into 5 levels by uniformly selecting ex-
amples ranging from the most similar to the least
similar examples between the input and training
sets considering both graph similarity and gener-
ated text similarity in the one-shot scenario. For the
performance shown in Fig. 6 and Fig. 7, we found
that in most cases, the performance peaks at the
middle level of both difficulty and diversity. This
suggests that LLMs generalize better due to not re-
lying on memorized shortcuts from overly similar
demonstrations or samples closely resembling the
input. Although these findings give insights on the
demonstrations selection and motivate us to pro-
pose the difficulty-diversity balanced demos selec-
tion (DDD), there are cases where results fluctuate
unpredictably based on different demonstrations.
We attribute this variability to potential limitations
in the engineering of demonstrations.

Finding 2: DDD selections perform better than
simple diversity and difficulty selection, but
marginally. Based on our previous findings, we



Number (#samples) B-4 ME CF BS

triplets

1 (848) 23.36 38.93 61.22 -1.92
2 (797) 17.55 32.98 53.59 -2.36
3 (821) 17.09 32.57 53.24 -2.22
4 (869) 17.21 31.68 52.89 -2.29
5+ (1762) 11.79 29.59 47.08 -2.63

Diameters

0 (575) 23.29 38.92 61.19 -1.93
1 (3463) 14.18 30.30 48.65 -2.53
2 (850) 18.60 33.20 55.09 -2.00
3 (201) 17.75 32.37 54.41 -2.02
4 (8) 20.57 33.96 59.36 -2.24

Table 2: Comparison of performance between different
triplet numbers and graph diameters on DART dataset.

propose a DDD selection approach. This method
employs a dual-phase process where initially, lever-
aging findings from our diversity investigation, we
recall all samples within the same cluster. These
samples are then sorted by their difficulties (i.e.
the cosine similarity from the input graph). For
instance, in a 3-shot scenario, we select samples
ranked at 25%, 50%, and 75% in terms of similar-
ity. The comparative analysis presented in Table 14
shows that DDD is more effective across various
datasets than strategies solely focused on difficulty
or diversity. This highlights that concurrently con-
sidering difficulty and diversity in the selection of
demonstration samples could be the best sample
selection strategy. However, despite the good com-
parative results, the absolute value of improvement
is incremental both from the best result of one-shot
to three-shot and from DDD selection to difficul-
ty/diversity selection. This suggests that few-shot
example selections yield minimal improvements.

Finding 3: Increasing the number of shots does
not help. To mitigate the high randomness of
sampling demonstrations, we investigate the influ-
ence of increasing the number of demonstrations
based on the DDD selection methods. We picked
1, 3, 5, and 10 samples and reported the results
in Table 1. We found that increasing the number
of samples does not always help. This can possi-
bly explained by the fact that the samples selected
from DDD methods are already diverse enough for
LLMs to learn the task format and those difficult
demonstrations did not provide additional relevant
knowledge to help LLMs translate the input graph.

3.4 Improvment Space
Finally, we analyze the behavior of models over dif-
ferent complexity of graphs to explore the space for
improvements. We represent the graph complex-
ity through the number of triplets and the graph

diameters (the longest-shortest path between any
two vertices) and analyze the results on Mistral-7b-
instruct-v0.2 in Table 22. Firstly, as the number
of triplets increases, a consistent decline in perfor-
mance is shown across all metrics. This shows
the difficulties that LLMs face in text generation
from complex graphs. This motivates us to con-
sider improving the planning abilities of LLM to
handle graphs with more triplets. For graph diam-
eters, LLMs perform the worst when interpreting
graphs with only one diameter. This is because
when the number of triplets is small, LLMs may
suffer from hallucinations in order to make the
generation coherent and satisfying-looking. This
further motivated us to design a dataset that allows
LLMs to cite their generation in order to mitigate
the hallucination.

4 The PlanGTG Dataset

In the perspective of fine-tuning for improving
the performance of graph-to-text generation, we
construct PlanGTG (Planning for Graph-to-Text
Generation), a graph-to-text paired instruction-
tuning dataset, annotated for both reordering and
attribution subtasks. The construction of PlanGTG
is guided by several key objectives: (1) ensuring the
diversity of both the structure of graphs (size and
diameter) and the topic of texts; (2) avoiding text-
graph misalignment (i.e. textual descriptions con-
taining information not found in input graphs), a
significant cause of hallucination (Shi et al., 2023);
and (3) ensuring interpretability by annotating the
attribution triplets from the text descriptions and
automatically formatting the linearization labels.
These goals are achieved through sequential gener-
ation and parallel annotation.

4.1 Dataset Construction

The flow chart for the process of generating
PlanGTG is shown in (a) of Fig. 1, which consists
of three parts: seed data preparation, sequential
graph-text pair generation and parallel attribution
annotations. We apply GPT-3-turbo-1106 as the
base model for data generation. For seed prepara-
tion, sequential pairs generation and the parallel
annotation, the used prompts are shown in Fig. 9,
Fig. 10 and Fig. 8 in Appendix respectively.
Seed Data Creation We begin with the graph-
text pairs in GraphNarritive (Shi et al., 2023). As a

2For results on all datasets, see Table 15 and Table 16 in
App. C.4.



 
Text:  Wright is affiliated with
Toronto University, located in
Toronto.

Triplet: (C.S. Wright, institution, Toronto University)
Text: Named by C.S. Wright of the Terra Nova Expedition for
Professor McLennan, a physicist at Toronto University

Triplet:    (C.S. Wright, institution, Toronto University)
Text: C.S. Wright is affiliated with Toronto University    .

Triplet:    (C.S. Wright,
institution, Toronto University), 
     (Toronto University,
location, Toronto)

Text:  Wright is affiliated with
Toronto University    , located
in Toronto    .Rewrite & Annotate

Entities: C.S Wright, Toronto Univeristy

Add one triplet
from entities

Extract Entities Extract Entities

Entities: C.S. Wright, Toronto
University, Toronto

Triplet: (C.S. Wright, institution,
Toronto University),  (Toronto
University, location, Toronto)

Seed Construction Sequential Triplet-Text Generation Parallel Annotation

(a) PlanGTG Construction Pipeline

Twitter

330 million

users

2006

Internet forum

Online discussion forum

(Twitter, users, 330 million)
(Twitter, founding year, 2006) (Twitter, category,
Internet forum) (Internet forum, communication
platform, online discussion platform)Large Language

Model

Fine-tuning for planning
founding year

ANSWER

(Twitter, users, 330 million)
(Internet forum, communication platform, online
discussion platform) (Twitter, category,
Internet forum) (Twitter, founding year, 2006)

GROUNDING

Large Language
Model

Fine-tuning for attributionTwitter, founded in 2006, is an Internet forum with 340 million users
. It serves as a communication platform and an online discussion platform ,
where users can engage in conversations and share information globally .

ANSWER

Twitter , with 330 million users , is an online discussion platform
categorized as an Internet forum . It was founded in 2006 .

GROUNDING

(b) Two-phase Training Methodology

Fine-tuning for reordering

Figure 1: (a) The flow chart of the construction for the PlanGTG dataset, the squared text refers to the output of GPTs
and the circled text represents the result extracted automatically by rules. The newly added information by GPTs
is marked in bold. (b) Our training pipeline: The training methodology consists of two phases: planning-guided
generation and attribution generation. It enables LLMs to first generate triplets that follow a more natural language
order and subsequently guide the generation of attributed answers.

start, we choose data-text pairs with only one triplet.
To ensure diversity, we uniformly selected n ran-
dom samples from each type of relation present
in GraphNarritive. Next, we prompt GPT-3.5-
turbo-1106 to ‘regenerate’ the text based on the
source text and graphs, incorporating the annota-
tion derived from the graph. For instance, given the
triplet “C.S. Wright | institution | Toronto Univer-
sity” alongside the text “named by C.S. Wright of
the Terra Nova Expedition for Professor McLennan,
a physicist at Toronto University”, we use GPT to
regenerate the text as “C.S. Wright is affiliated with
Toronto University. (1)”. This allows us to make
both the initial attribution annotation and discard
the redundant information from the initial descrip-
tion text. We create about 3 thousand one-triplet
seeds to serve as the foundation data.

PlanGTG Generation We then generate the
PlanGTG dataset from the foundation data in a

sequential way. Specifically, for each triplet-text
pair, we ask ChatGPT to (1) generate the graph by
adding one new triplet that integrates well with the
existing triplets, (2) then update the corresponding
text description incorporating information of the
added triplet and (3) make the attribution annota-
tion. We conduct one inference for Steps 1 and 2
and perform a separate inference for Step 3 and dif-
ferent demonstrations are provided for Step 3. This
is because we empirically found that integrating the
attribution annotation numbers may harm the per-
formance of generating the text description of the
new triplets. We also provide the existing entities
from the triplet list and guide GPT to choose one of
the entities in Step 1 to ensure the connectivity of
the generated graph. The above process shows the
steps to craft one sample with n+ 1 triplets from
n triplets. For each foundation seed, we do these
steps iteratively to attain 2 to 10 triplets. Even-
tually, we created PlanGTG with 28,837 training



Dataset Hallucinated
Entities↓

Missed
Entities↓

Hallucinated
Relations↓

Missed
Relations↓

GR↑

TEKGEN 0.84 0.08 0.92 0.07 4.48
EVENT 0.69 0.05 0.70 0.08 4.69
GN 0.62 0.02 0.74 0.03 4.73
PlanGTG 0.36 0.01 0.42 0.03 4.78

Table 3: Human evaluation on pretraining datasets. Co
hen’s kappa coefficients for labeling three factors are
as follows: 0.82, 0.79, and 0.77. GN represents the
GraphNarrative dataset. GR means the Grammar.

points and 996 development points after filtering
data points with wrong patterns.

Dataset Description In general, PlanGTG con-
sists of 28,837 training pairs and 996 development
graph-text pairs, with an average of 5.48 triplets
within graphs and 37.6 words in the text. In the
Appendix D.2, Fig 3 shows the distribution of the
number of triplets in the dataset. Fig 4 shows the
distribution of the diameters in the graph. Fig 5
shows the distribution of the words contained in
the text. To ensure that PlanGTG does not over-
lap with the test sets, we checked all triplets in
PlanGTG. The percentages of overlapping triplets
across datasets are 0% for DART, 0% for WebNLG
2017, and 0.00019% for WebNLG 2020 test sets.
Additionally, none of the input graphs overlap with
these test sets.

4.2 Dataset Quality

Two professional human annotators assess the qual-
ity of the generated graph-text pairs in PlanGTG.
We randomly select 200 examples and the annota-
tors evaluate the hallucination, missing information,
grammatical correctness and fluency of the gener-
ated text (using a 5-point Likert (Likert, 1932)). De-
tailed explanations for all metrics are given in App.
B. The scores from both annotators are averaged.
At the same time, we also evaluate the quality of
automatically extracted pre-training texts (EVENT,
TEKGEN, and GraphNarrative) in the same way.
Table 3 reveals that, on average, there are 0.36 hal-
lucinated entities and 0.42 hallucinated relations
per graph-text pair in PlanGTG. This reflects that
our instruction dataset, although generated by Chat-
GPT, maintains high quality due to carefully de-
signed generation instructions and meticulous post-
processing. This quality is notably superior to auto-
matically extracted pre-training texts, with Graph-
Narrative exhibiting the highest indicators of 0.62
for hallucinated entities and 0.74 for hallucinated
relations.

In contrast, our evaluation shows low rates of

missing entities and relations at 0.01 and 0.03, re-
spectively, indicating that ChatGPT consistently
incorporates graph information into text without
significant information loss. Regarding language
naturalness, the score 4.84 demonstrates that the
generated text is highly fluent with minimal gram-
matical errors. These results highlight the high
quality of our generated text compared to automat-
ically extracted pre-training texts. For instance,
GraphNarrative’s best scores for missing entities
and relations are 0.02 and 0.03, respectively, and
its language naturalness score is 4.73, indicating
slightly lower performance in these aspects.

5 Experiments

5.1 Experimental setting

To evaluate whether PlanGTG can enhance LLMs
generalizability in graph-to-text tasks, we con-
ducted experiments on both zero- and full-shot
learning. In our zero-shot experiments, as shown
in (b) of Figure 1, we fine-tuned LLMs on the
PlanGTG dataset and subsequently evaluated their
performance on WebNLG 2017, WebNLG 2020,
and DART datasets. For the baselines, we fine-
tuned LLMs on other graph-to-text generation
datasets. We compared three classic datasets:
EVENT (EventNarrative) (Colas et al., 2022), GN
(GraphNarrative) (Shi et al., 2023), and TEKGEN
(Agarwal et al., 2021). In our training phases, we
use the commonly employed cross-entropy loss
for generation tasks to align the model’s predic-
tions with the grounding generation, which is our
PlanGTG dataset. In the full-shot experiments, af-
ter fine-tuning on PlanGTG, we continued to fine-
tune the models on the training sets of WebNLG
2017. For more details on our training experiments,
please refer to the App. E.

5.2 Model Performance

Zero-shot: Table 4 demonstrates that integrat-
ing the two introduced subtasks significantly en-
hances our fine-tuned model compared to the base-
line LLaMA2-7b-chat and Mistral-7b-chat mod-
els. Specifically: 1) Compared to the untuned
LLaMA2-7b-chat model, we achieve an average
increase of 5.99 points in the BLEU metric and an
average increase of 0.3 points in the BARTScore
metric; 2) For the other automatically extracted
datasets, we observe that their performance is even
worse than that of the untuned LLMs. This sug-
gests that domain differences between the extracted



Model Dataset WebNLG17 WebNLG20 DART

#Metrics B-4 ME CF BS B-4 ME CF BS B-4 ME CF BS

LLaMA2-7b-chat

Zero 17.32 28.11 45.82 -2.85 17.45 23.62 38.94 -2.81 14.14 29.29 46.58 -2.85
EVENT 5.26 20.93 32.03 -3.32 5.83 21.37 30.89 -3.67 5.47 20.48 32.13 -3.49
GN 9.99 22.78 36.05 -3.14 9.04 20.76 33.14 -3.35 12.33 22.63 39.48 -3.55
TEKGEN 7.21 15.64 27.06 -3.96 4.74 14.22 24.89 -3.78 12.04 22.06 33.76 -3.70
Ours 28.76 30.88 50.80 -2.38 20.60 25.50 42.16 -2.51 21.44 31.58 51.30 -2.72

Mistral-7b-chat

Zero 16.60 26.14 45.98 -2.67 17.42 23.07 37.50 -2.74 15.25 26.23 47.71 -3.07
EVENT 6.48 23.06 34.86 -3.01 6.34 22.34 33.71 -2.99 7.87 23.50 37.70 -3.48
GN 10.44 23.23 35.27 -3.08 10.20 20.98 31.75 -3.08 17.44 24.43 41.95 -3.22
TEKGEN 8.18 21.46 32.81 -2.82 4.92 18.86 29.11 -2.81 13.44 25.52 37.93 -3.10
Ours 29.76 31.30 51.17 -2.36 19.95 25.79 42.06 -2.43 27.46 30.50 50.21 -2.69

Table 4: Zero-shot performance of different methods for graph-to-text generation on three domains. B-4, ME, CF
and BS are short for BLEU-4, Meteor, CHRF++ and Bartscore. GN is short for GraphNarrative.

#Metrics B-4 ME CF BS

Methods All Seen Unseen All Seen Unseen All Seen Unseen All Seen Unseen

Direct FT 45.32 49.83 39.53 35.47 37.50 33.06 62.04 65.16 58.18 -2.17 -2.06 -2.29
Instruction FT 36.34 40.09 31.54 33.39 34.89 31.62 56.10 58.61 53.01 -2.54 -2.48 -2.61

EVENT 36.76 39.16 33.69 33.39 33.72 32.99 56.36 57.38 55.13 -2.4 -2.46 -2.34
GN 43.18 47.58 37.56 36.86 38.64 34.76 61.95 65.12 58.03 -2.38 -2.28 -2.40
TEKGEN 44.12 48.40 38.68 37.02 38.76 34.95 62.55 65.50 58.93 -2.30 -2.14 -2.38

Ours 46.35 50.40 41.17 37.94 39.71 35.84 63.92 66.95 60.18 -1.91 -1.83 -2.00

Table 5: Performance of LLaMA2-7b-chat on WebNLG17 test set when fine-tuned with EVENT, GraphNarrative,
TEKGEN and further fine-tuned with WebNLG17. Direct FT denotes that we directly fine-tune the model on
WebNLG17 without adding instructions. Instruction FT adopts the same instructions as the second instruction in
Appendix E.

Dataset WebNLG17 WebNLG20 DART

#Metrics B-4 ME CF BS B-4 ME CF BS B-4 ME CF BS

PlanGTG 21.13 28.69 48.96 -2.41 17.62 23.20 39.04 -2.60 20.45 29.37 47.10 -2.82
+reorder 10.24 25.95 42.71 -2.72 9.45 21.35 35.19 -2.75 9.45 26.64 43.17 -2.98
+attribution 18.41 26.85 46.18 -2.54 16.10 23.87 38.86 -2.71 15.84 27.08 44.48 -2.89
+both (ours) 28.76 30.88 50.80 -2.38 20.60 25.50 42.16 -2.51 21.44 31.58 51.30 -2.72

Table 6: Ablation study for different modules on WebNLG17, WebNLG20 and DART.

datasets and the downstream tasks are magnified
by LLMs. The datasets previously suitable for
conventional model pretraining may not translate
effectively to LLMs (Gardent et al., 2017b; Li et al.,
2020; Nan et al., 2021). Thus, fine-tuning LLMs
on PlanGTG demonstrates enhanced domain gen-
eralization capabilities.
Full-shot: To validate the benefit of additional fine-
tuning models with PlanGTG on downstream tasks,
we conducted additional fine-tuning on WebNLG
2017 for 5 epochs using the checkpoint from the
last epoch for testing. This fine-tuning employed
the LLaMA2-7b-chat model. For baselines, in ad-
dition to the pre-training datasets mentioned in the
zero-shot section, we also fine-tuned LLMs using
the WebNLG 2017 training dataset, both with and
without instructions, following the methodology in
our zero/few-shot experiments.

Results presented in Table 5 reveal a surpris-
ing decrease in performance when instructions
are added compared to fine-tuning alone. This
might be attributed to the model’s utilization of in-

structions during inference, leading to outputs that
deviate from the standard graph-to-text task for-
mat. However, our method, which incorporates
instruction-tuning, exhibits significant improve-
ments over all baselines. Regarding results on both
seen and unseen data, our method outperforms the
best baseline (Direct FT) by 0.57 BLEU and 0.23
BARTScore points on seen data, and by 1.64 BLEU
and 0.29 BARTScore points on unseen datasets.
Similar trends could be observed across the ME-
TEOR and CHRF++ metrics, indicating that our
method can effectively enhance the model’s gener-
alizability capabilities on downstream tasks.

5.3 Ablation Study

To further analyze the impact of the two proposed
subtasks on model performance, we fine-tuned the
LLaMA2-7b-chat model on each subtask and eval-
uated its zero-shot performance.

From results in Table 6, we observe that the per-
formance of PlanGTG with instruction fine-tuning
surpasses that of the baseline in Table 4. This high-



Dataset WebNLG17 WebNLG20 DART

Methods B-4 ME CF BS B-4 ME CF BS B-4 ME CF BS

One-pass 23.85 34.44 55.67 -2.16 25.61 30.97 47.60 -2.34 21.67 31.00 51.41 -2.54
Baby-steps 28.47 38.00 57.84 -2.39 27.82 30.60 49.96 -2.61 26.99 33.30 54.60 -2.81
Annealing 25.40 34.09 55.16 -2.10 27.00 30.09 49.60 -2.33 25.17 32.79 53.29 -2.51
Ours 21.13 28.69 48.96 -2.41 17.62 23.20 39.04 -2.6 20.45 29.37 47.10 -2.82

Table 7: Results achieved by fine-tuning the LLaMA2-7b-chat model on the PlanGTG dataset, without incorporating
reordering and attribution, using various curriculum methods.

Dataset Hallucinated
Entities

Missed
Enti-
ties

Hallucinated
Relations

Missed
Rela-
tions

Grammar

Gold 0.56 0.08 0.71 0.07 4.58
LC 2.81 1.95 1.81 1.77 3.09
Ours 1.63 1.27 1.49 1.12 3.88

Table 8: Human evaluation of sentences generated from
our model trained with PlanGTG and LLaMA2-7b (LC).

lights the effectiveness of PlanGTG even without
incorporating the two subtasks. Moreover, incorpo-
rating these subtasks leads to additional improve-
ments in model performance, indicating their bene-
ficial impact on enhancing task understanding and
output quality.

However, when evaluating the subtasks individu-
ally (+reorder and +attribution), the results are less
favorable. Introducing the reorder task alone may
introduce noise as the model may not fully grasp
the significance of the sequence of numbers. Simi-
larly, introducing the attribution task alone could
cause a significant mismatch between the model-
generated text and the sequence of triplets, thereby
degrading text quality.

5.4 Human Analysis

Human Evaluation Following the standards in
Section 3.1, we conducted a human evaluation in-
volving two assessments of the generated text. We
randomly selected 200 graph-to-text pairs from the
WebNLG17 dataset, paired with generated texts
from the LLaMA2-7b-chat model and LLaMA2-
7b-chat model trained with PlanGTG.

Results in Table 8 show that our model produces
texts with higher fidelity and fluency compared to
baseline models. In our approach, the reordering
subtask improves alignment between the model-
generated text and the knowledge graph, while
the attribution subtask enhances the model’s in-
terpretability of its generated text.

5.5 Impact of Curriculum Learning

It has been observed that the selection of demon-
strations plays a significant role and the difficulty
of training examples has an impact on the model

results during instruction fine-tuning (Lee et al.,
2024). However, it is unknown whether this also
applies to graph-to-text tasks. Given that knowl-
edge graphs contain structured information, we
used the number of triplets in a KG as a measure
of complexity. We leveraged curriculum learning
to analyze the impact of progressing from simple
to complex learning on the model performance in
the graph-to-text instruction fine-tuning process,
using PlanGTG without the two subtasks for train-
ing. Specifically, we tested three classic curriculum
algorithms: (1) One-pass (Bengio et al., 2009), (2)
Baby-steps, (Spitkovsky et al., 2010) (3) Anneal-
ing (Xu et al., 2020), more details are shown in
App. G. The rest of the training settings are consis-
tent with the experiments in Sec. 5.3.

Results in Table 7 show that compared to instruc-
tion fine-tuning without using curriculum learn-
ing, all three curriculum learning methods enhance
model performance. Among them, Baby-steps ob-
tains the best results, followed by Annealing, with
One-step being the least effective. This suggests
that the model may gradually forget the learning
of simple graphs (e.g, with 1 or 2 triplets) for
text alignment during the learning process from
simple to complex. This could potentially impair
the model’s ability to generate simple sentences,
thereby impacting its overall performance.

6 Conclusion

We have conducted a comprehensive analysis over
both zero- and few-shot scenarios in graph-to-text
generation tasks to evaluate the capabilities and
challenges of LLMs. Our findings reveal that
(1) LLMs struggle to understand complex graphs
and (2) moderately difficult and diverse demon-
strations may help LLMs for translating graphs to
text. Based on these findings, we propose solu-
tions from both few-shot learning and fine-tuning
perspectives to enhance the effectiveness of LLMs.
In terms of few-shot prompting, we propose the
DDD method to select samples considering both
difficulty and diversity simultaneously, leading to



improvements in both the one-shot and few-shot
cases. For model fine-tuning, we construct a high-
quality graph-to-text dataset, PlanGTG, and de-
velop two new subtasks. Fine-tuning LLMs on
PlanGTG demonstrates a significant improvement
in the alignment generation and generalization abil-
ities of LLMs. Additionally, through learning from
simple to complex data, the model’s ability to gen-
erate text from graphs is further enhanced. Our
work lays the groundwork for future research aimed
at effectively enabling LLMs to reorganize graph
structures and identify sequential information in
generated texts.

Limitations

We identify the following limitations related to our
approach and experiments. Firstly, due to compu-
tational resource constraints, we do not evaluate
larger models, such as LLaMA2-70b. Moreover,
during fine-tuning, we adopt LoRA, a parameter-
efficient fine-tuning method, which, compared to
full-parameter fine-tuning, may result in some per-
formance trade-offs compared to full-parameter
fine-tuning approaches. Additionally, we face limi-
tations in both budget and computational resources,
restricting us from scaling up the dataset or con-
ducting fine-tuning on larger datasets. As a result,
PlanGTG is not very large in size. Furthermore,
given the focus of the paper on exploring graph-to-
text generation tasks in the era of LLMs, we have
not extensively investigated the two new subtasks
introduced.
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Dataset # train # dev # test Average

triplets Words

DART 30,526 2,768 5,097 3.62 20.95

WebNLG17 (seen) 6,940 872 971 3.02 20.26
WebNLG17 (unseen) 891 2.75 19.00

WebNLG20 (seen) 13,211 1,666 883 3.63 24.36
WebNLG20 (unseen) 896 2.71 19.64

Table 9: Statistics for the graph-to-text datasets.
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A Datasets

WebNLG17 Challenge (Gardent et al., 2017a): A
standard graph-to-text dataset, with each instance
being composed of a graph from DBpedia and cor-
responding text annotated by humans. The test
set is divided into the seen and unseen partitions
respectively. The unseen partition includes 5 cat-
egories absent from the training and development
sets.
WebNLG20 Challenge (Castro Ferreira et al.,
2020): It includes 10 categories carried over from
WebNLG17 and 5 additional new categories that
are not present in the 2017 dataset. Furthermore,
this edition introduces a brand-new category “Com-
pany”.
DART (Nan et al., 2021): A collection of graph-to-
text pairs, which have been compiled from multiple
sources, such as WebNLG and E2E (Dušek et al.,
2018), along with sentences obtained via crowd-
sourcing and matching tables sourced from Wik-
iSQL (Zhong et al., 2017) and WikiTableQuestions
(Pasupat and Liang, 2015). We perform the same
partition as (Zhao et al., 2023a). The statistics of
the datasets are shown in Table 9.

B Evaluation Metric Details

Human Evaluation Following (Shi et al., 2023),
we assessed the quality of various pretraining
datasets and the sentences generated by models.
Specifically, our evaluation examined if sentences

either from the dataset or generated by models in-
troduced facts not included in the corresponding
graphs or failed to mention details. Our analy-
sis employed four metrics: the number of halluci-
nated entities (entities mentioned in the sentence
but absent in the graph), missed entities (entities
omitted in the sentence but present in the graph),
hallucinated relations (relations mentioned in the
sentence but absent in the graph), and missed rela-
tions (relations omitted in the sentence but present
in the graph). Besides, we evaluated the gram-
matical correctness and fluency of the generated
text. This evaluation utilized a 5-point Likert (Lik-
ert, 1932) scale, ranging from 1-point (indicating
"very poor") to 5-points (indicating "highly satis-
factory"). We present an annotation interface and
a corresponding example in Fig. 2 to demonstrate
how humans annotate the quality of PlanGTG.

Automatic Evaluation We used four common
automatic metrics to assess graph-to-text gener-
ation: BLEU (B-4) (Papineni et al., 2002), ME-
TEOR (ME) (Banerjee and Lavie, 2005), CHRF++
(CF) (Popović, 2015) and BartScore (BS) (Yuan
et al., 2021). Specifically, BLEU measures the
n-gram overlaps between the generated text and
reference text. We set n to 4. CHRF++ computes
the F-score averaged on both character and word-
level n-grams. METEOR considers the semantic
matches between source and reference text and
BartScore uses BART (Lewis et al., 2020) to mea-
sure the quality of the generated text.

C Preliminary Evaluation

C.1 Prompt Searching

Instruction Format Exploration Since prompt
is the key to the interaction between the LLMs and
humans, we started by investigating how the verbal-
ization of instructions influences the downstream
performance. For system prompts, we constructed
a simple version where only a general instruction
is given and a detailed version where the definition
of triplets and a detailed instruction are provided.
For the user prompt, we constructed four instruc-
tions sorted by their level of detail in the prompts
from A to D. In addition, to simulate the control-
lable text generation in industrial applications, we
constructed D*, where an additional task of writ-
ing triplet dollar signs after generating the text is
added. Table 11 presents the performance results
for WebNLG20 and WebNLG. The prompt tem-
plates used are shown as follows



Task Description
You are asked to annotate the quality of a graph-text pair based on the following criteria:

• Hallucinated Entities: The number of entities mentioned in the sentence but absent in the graph.

• Missed Entities: The number of entities present in the graph but omitted in the sentence.

• Hallucinated Relations: The number of relations mentioned in the sentence but absent in the graph.

• Missed Relations: The number of relations present in the graph but omitted in the sentence.

• Grammatical Correctness and Fluency: Provide a score between 1-5 where:

– 1: Very poor
– 2: Poor
– 3: Neutral
– 4: Fluent
– 5: Very natural

Graph
Indonesia | citytown | Bogor (1) Bogor | population | 950,334 (2) Bogor | altitude | 200 meters (3)

Text
Located in Indonesia, Bogor is a city with a population of 950,334 and an altitude of 200 meters.

Annotation Information
• The number of hallucinated entities:

• Missed entities:

• Hallucinated relations:

• Missed relations:

• Grammatical correctness and fluency: (1-5)

Figure 2: Human evaluation task annotation interface for the PlanGTG dataset.



Method WebNLG17_unseen WebNLG20_unseen DART

B-4 ME CF BS B-4 ME CF BS B-4 ME CF BS

<head> 18.46 34.53 54.15 -2.13 22.87 34.74 56.10 -2.03 11.57 29.97 45.68 -2.70
<head></head> 18.64 33.81 53.37 -2.17 24.34 30.54 50.46 -2.45 12.86 30.54 47.26 -2.68
head | relation 19.67 34.99 54.97 -2.10 23.32 35.48 57.07 -1.97 13.43 31.09 48.17 -2.60

Table 10: Influence of the triplet formulation.

SYS USR WebNLG20_all WebNLG17_all DART

Prompt Prompt B-4 ME CF BS B-4 ME CF BS B-4 ME CF BS

Simple

A 8.97 24.12 42.59 -2.70 9.03 23.90 41.94 -2.81 5.57 21.79 36.92 -3.29
B 10.80 25.09 43.86 -2.58 9.35 22.40 41.84 -2.91 5.77 21.32 35.80 -3.41
C 10.03 24.76 42.53 -2.67 9.68 24.75 42.27 -2.66 5.58 22.08 36.91 -3.17
D 24.22 34.65 58.07 -2.07 22.72 34.65 53.12 -2.09 15.26 30.71 47.87 -2.62
D* 21.66 33.84 54.89 -2.10 18.12 32.53 51.78 -2.22 13.44 30.52 47.33 -2.68

Detailed

A 15.28 31.64 49.70 -2.10 13.77 31.29 47.87 -2.33 10.12 28.32 43.12 -2.79
B 14.33 31.07 48.70 -2.21 14.37 31.68 48.64 -2.32 10.49 28.60 43.79 -2.81
C 20.88 34.27 55.74 -2.03 17.69 33.59 52.34 -2.17 12.38 29.75 46.22 -2.70
D 24.00 36.13 58.17 -1.91 19.39 34.93 54.95 -2.09 13.43 31.00 48.04 -2.61
D* 24.29 29.69 49.17 -2.61 18.06 33.64 43.00 -2.85 11.03 26.42 40.70 -3.09

Table 11: Zero-shot LLaMA2 performance between different prompts. The best results are marked bold and the
second best results are marked italics

Simple: “Following the questions and give
directly the answers. Do not include any
additional information or outputs.”
Detailed:“You are skilled in interpreting
knowledge graphs. Your task is to trans-
form a series of triplets, each consisting of
a subject, predicate, and object, into a well-
written, coherent paragraph. These triplets
are formatted as ’subject | predicate | object’
and are separated by lines. Please provide
only the transformed text as your output.
Do not include any additional information
or outputs.”

A:“{triplets} || Text: ”
B:“Graph: {triplets} || Text: ”
C:“Graph: {triplets} || Convert the graph
into text: ”
D:“Following is a set of knowledge graph
triplets delimited by triplet backticks, each
on a separate line, in the format: subject |
predicate | object.
‘
‘ {triplets}
‘
‘ Only use information from the provided
triplets and convert the graph into a coherent
piece of text:”
D*:“Following is a set of knowledge graph
triplets delimited by triplet backticks, each
on a separate line, in the format: subject |
predicate | object.
‘
‘ {triplets}
‘
‘ Only use information from the provided
triplets and generate a coherent piece of text
that contains all of the information in the
triplets. After you finish writing the piece
of text, write triplet dollar signs (i.e.: $$$).”

From the results in Table 11, we can draw the
following conclusions: (1) When the user prompt
is less detailed, giving detailed system prompts in-



Dataset Linearization B-4 ME CF BS

WebNLG17_all

RS 28.39 28.61 52.21 -2.56
ORI 28.55 28.70 52.15 -2.54
BFS 28.61 28.74 52.37 -2.54
DFS 28.59 28.65 52.20 -2.54
GPT 28.89 28.34 51.64 -2.56

WebNLG20_all

RS 31.64 30.22 54.93 -2.42
ORI 32.37 30.60 55.60 -2.37
BFS 32.44 30.64 55.62 -2.36
DFS 32.34 30.55 55.47 -2.37
GPT 30.58 32.13 57.66 -2.26

DART

RS 22.45 27.83 51.79 -2.99
ORI 20.32 27.69 51.72 -3.01
BFS 20.35 27.72 51.80 -3.02
DFS 20.32 27.70 51.76 -3.02
GPT 20.93 27.40 51.04 -3.02

Table 12: Comparison between different linearizations

stead helps the quality of the generation, especially
for the semantics level since a significant improve-
ment is observed on CHRF++ and Bart score. This
suggests that a detailed description of the task may
hint the model to generate more fluent and human-
preferred answers. (2) More detailed user prompts
may result in better generations as stable improve-
ments for all metrics are obtained for prompts of
type A to D. We also observe a sudden growth in
the performance for both system settings for types
C to D in all datasets. (3) Including a controlled
text generation task (user prompt D*) may harm the
quality of the generation since a significant drop
in all metrics is observed. This is possibly due
to the weaker capabilities of smaller LLMs such
as LLaMA-7b, where multiple tasks may interfere
with each other. Based on the above findings, we
therefore choose the prompt settings with the best
performance (a detailed system prompt with the
template D and the third triplet format) as the input
in the other experiments.

triplet representation We also want to explore
the influence of different verbalizations of triplets
within the graphs. To this end, we experiment with
three popular verbalizations of triplets. Table 10
presents the results, where a close performance
of each verbalization is observed. This suggests
that LLMs have a good understanding of triplet
expressions.

Influence of Linearization Massive works have
demonstrated the impact of various linearization
techniques on graph-to-text tasks (Yang et al., 2020;
Hoyle et al., 2021; Li et al., 2021). Here we inves-
tigated how different linearizations may affect the
results of LLMs. Beyond the original lineariza-
tion (ORI) provided in a dataset, we explored al-

ternative arrangements by reordering the triplets
according to fixed tree traversal methods, including
breadth-first search (BFS), depth-first search (DFS),
and a random sequence (RS). Additionally, we em-
ployed GPT to generate a ‘silver’ linearization de-
rived from the ground truth text, detailed prompts
can be found in the Fig 11. The results of exper-
iments performed on the Mistral-7b-instruct-v0.2
are shown in Table 12. They reveal marginal differ-
ences among the linearizations, with BFS and DFS
exhibiting slightly enhanced performance. The dis-
crepancy between random and silver linearizations
is also minimal, indicating that LLMs demonstrate
robustness to the variety of input graph lineariza-
tions. Consequently, we opt for the ORI lineariza-
tion for subsequent experiments in our study.

C.2 Few-shot Sample Selection

Few-shot demonstrations have widely been shown
to be crucial on the performance of generations
(Luo et al., 2023; Drozdov et al., 2023). We con-
ducted experiments on how different example se-
lection strategies influence the performance of the
graph-to-text generation, focusing on criteria such
as difficulty and diversity. Experiment results in-
spire us to propose an optimal strategy for demon-
stration selection.

C.2.1 Demonstration Selection Methods
To measure the diversity and difficulty, we first map
the graph into continuous vectors using a state-of-
the-art sentence encoder3 and then use the embed-
dings to achieve the difficulty and diversity-based
demonstration selection.

We assess difficulty by computing the cosine
similarity between examples and input. It is based
on the assumption that following similar demon-
strations facilitates graph-to-text generation. Con-
sistent patterns in similar demonstrations enable
LLMs to produce coherent text that fits the norms
of the demonstrated examples. We categorize dif-
ficulty into five levels based on cosine similarity
scores between input embeddings and all embed-
dings in the training sets. For experimentation, we
uniformly select examples ranging from the easiest
(Difficulty level 0) to the most challenging (Diffi-
culty level 4) and conducted one-shot inference.

Inspired by Liu et al. (2022a), we measure the
diversity of examples based on different k-means
clusters and conducted a 3-shot experiment. We

3We used the SoTA sentence embedding encoder UAE (Li
and Li, 2023) on the MTEB leader board.



WebNLG17_all WebNLG20_all DART

Models B-4 ME CF BS B-4 ME CF BS B-4 ME CF BS

Instruct-Models
ChatGLM3-6b 12.69 26.28 45.27 -2.53 17.16 29.03 49.75 -2.34 17.21 30.61 50.27 -2.30
Vicuna-7b-v1.5 13.89 30.70 47.45 -2.34 17.20 30.86 49.04 -2.21 14.23 31.03 47.87 -2.36
Zephyr-7b-beta 17.05 34.74 53.74 -2.08 21.51 36.01 56.83 -1.95 12.27 31.50 47.49 -2.28
Falcon-7b-instruct 13.77 26.65 43.87 -2.96 15.35 26.79 44.42 -2.86 10.95 22.10 38.06 -3.33
LLaMA2-7b-chat-hf 21.51 35.67 56.38 -2.04 24.68 35.84 57.82 -1.96 15.47 31.94 49.70 -2.27
Gemma-1.1-7b-it 19.77 30.30 50.40 -2.72 18.10 27.08 45.48 -3.01 12.36 25.56 42.33 -3.09
Mistral-7b-Instruct-v0.2 27.09 27.29 45.43 -2.73 31.12 29.35 49.12 -2.54 21.48 24.22 41.00 -3.07
LLaMA2-13b-chat-hf 22.51 36.31 57.62 -1.95 27.70 37.63 60.47 -1.83 17.47 33.37 52.04 -2.14
Vicuna-13b-v1.5 25.19 35.24 56.95 -2.06 30.82 35.60 57.88 -1.91 22.42 32.35 51.96 -2.28
Falcon-40b-instruct 21.02 34.17 55.03 -2.20 26.80 35.40 58.00 -2.07 20.78 33.31 53.68 -2.25
Mixtral-8 × 7b 26.42 38.06 60.70 -1.84 30.49 38.41 62.07 -1.78 22.89 35.42 56.04 -2.00

Base-Models
Falcon-7b-base 3.82 15.93 26.17 -2.26 3.48 15.15 26.03 -2.36 3.36 16.27 25.16 -2.44
Gemma-7b 0.08 1.73 3.93 -5.25 0.05 1.44 3.56 -5.33 0.09 1.57 3.85 -5.18
LLaMA2-7b-hf 4.57 16.61 27.94 -2.83 4.42 16.13 28.64 -2.98 3.98 16.87 26.37 -2.82
LLaMA2-13b-hf 3.83 14.57 26.35 -3.02 4.20 15.11 27.51 -3.15 3.25 14.52 24.25 -3.11

Table 13: Graph-to-text generation performance of the tested LLMs. The best results are bold and the second best
results are underlined.

Dataset Method Shot BLE MET CHR+ BRT

DART

Difficulty 1 19.30 33.14 54.01 -2.39
DDD 1 21.33 33.69 55.10 -2.36
Diversity 3 21.31 33.71 55.00 -2.35
DDD 3 21.30 33.78 55.17 -2.33

WebNLG17

Difficulty 1 22.46 35.27 57.20 -1.96
DDD 1 23.48 35.49 57.66 -1.92
Diversity 3 25.19 35.61 58.30 -1.93
DDD 3 25.07 35.98 58.60 -1.91

WebNLG20

Difficulty 1 24.92 35.81 57.76 -1.98
DDD 1 26.07 38.01 58.64 -1.97
Diversity 3 26.65 35.92 58.32 -2.02
DDD 3 27.54 36.09 58.93 -2.00

Table 14: Comparison between different samplings on
DART, WebNLG17 unseen and WebNLG20 unseen
datasets.

introduced a four-tier diversity-based sampling
framework designed to enhance example selection.
Initially, we identify the least diverse examples by
selecting the nearest n points to the input embed-
dings (Level 0). For Level 1, we sample n points
within the same cluster as the input. At Level 2,
we select the centers of the n closest clusters to the
input’s cluster. Finally, Level 3 involves a uniform
selection of cluster centers based on their proximity
to the input, specifically choosing the centers of the
first, fifth, and tenth nearest clusters from a total of
ten in our evaluation.

For each strategy, different verbalization of
demonstrations are also considered. we calculate
the similarity or k-means not only between graphs
of the demonstration-input pairs, but also between
the text of the input obtained by a zero-shot infer-
ence. Furthermore, a standardized graph, where en-
tities are replaced with “anonymous” entities ⟨ent⟩,

is constructed to study whether it is the semantic in-
formation in the graph or its topology that primarily
influences graph verbalization.

C.2.2 Difficulty-based Sampling

From the results in Figure 6, we observe that: (1)
Sampling by text similarity shows good perfor-
mance in the BLEU metric across all samples. This
suggests that it could be a good strategy when pri-
oritizing n-gram accuracy and being provided addi-
tional inference for zero-shot text from input graphs
is feasible; (2) There is no significant difference on
the performance of standardized graphs and origi-
nal graphs, suggesting that LLMs learn more from
the structure of graphs than from the semantic infor-
mation in entities; (3) When comparing the difficul-
ties between selected demonstrations, we observe
that while an easy demonstration works better on
the datasets where the triplets have appeared in
the training sets (e.g. DART), this trend does not
hold for datasets with unseen samples in the test
set (e.g., WebNLG). Instead, optimal performance
typically peaks with samples of moderate difficulty
(levels 1-3), indicating that selecting moderately
challenging samples may be the optimal strategy

C.2.3 Diversity-based Sampling

From Figure 7, two main findings are: Firstly, text
embedding-based demonstrations generally outper-
form others, indicating that diversity has limited
impact when using text similarity as the selecting
criteria. This suggests that zero-shot learning of-
fers a more straightforward and efficient method



for accessing detailed information than relying on
graph embeddings. Secondly, the selection of ex-
amples based on graph embeddings underscores
the significance of diversity. Contrary to the low-
est diversity level (level 0), optimal performance
is typically achieved at moderate diversity levels
(levels 1 or 2). This emphasizes the effectiveness
of a balanced approach to select examples, favor-
ing samples from nearby clusters rather than those
within the same cluster or from distant clusters.

C.2.4 DDD Selection
The full comparison results of DDD selection
against difficulty-based selection and diversity-
based selection are shown in Table 14.

C.3 Scaling Evaluations

We evaluate popular LLMs with the chosen prompt
settings (necessary modifications are made to adapt
the templates for different models) and default con-
figs from the HuggingFace text generation pipeline
for experiments. We set the maximum token limit
for each model to ensure that we obtain complete
results. For models around 7 billion parameters, we
test ChatGLM-6b (Zeng et al., 2023), LLaMA2-7b
(Touvron et al., 2023), Vicuna-7b (Chiang et al.,
2023), Zephyr-7b (Tunstall et al., 2023), Mistral-
7b (Jiang et al., 2023) and Falcon-7b (Almazrouei
et al., 2023). For larger LLMs, we test, falcon-40b
and Mixtral-45b (the official 8*7b mixture of ex-
perts version).The results are presented in Table 13.
We also evaluate 4 base models. However, since
we found that all base models suffer from follow-
ing instructions and only generate the reference,
we draw our conclusion mainly based on instruct
models.

Our key findings are as follows. Firstly, 13b
models outperform almost all 7b models, indi-
cating a positive correlation between the scaling
of LLMs and the graph-to-text generation perfor-
mance. However, the increasing trend becomes
slower when we keep scaling up the parameters.
We hypothesize that this is because 13b models
are already capable of understanding and reason-
ing well over graphs, scaling parameters may help
LLMs to memorize more facts, but this is not help-
ful for graph-to-text verbalization. Additionally,
we observe that a fine-tuned version of LLMs usu-
ally performs worse than the vanilla ones, as seen
from Zephyr-7b to Mistral-7b and Vicuna-7b to
LLaMA2-7b. This suggests that task-specific fine-
tuning may compromise the graph verbalization

Dataset #triplets (#samples) B-4 ME CF BS

DART

1 (848) 23.36 38.93 61.22 -1.92
2 (797) 17.55 32.98 53.59 -2.36
3 (821) 17.09 32.57 53.24 -2.22
4 (869) 17.21 31.68 52.89 -2.29
5+ (1762) 11.79 29.59 47.08 -2.63

WebNLG17

1 (454) 30.73 41.65 70.16 -1.61
2 (349) 29.82 30.93 55.14 -2.63
3 (386) 26.54 27.41 50.51 -2.97
4 (363) 25.07 24.99 46.75 -3.05
5+ (310) 19.87 21.71 41.34 -3.32

WebNLG20

1 (369) 30.64 41.51 69.18 -1.66
2 (349) 32.76 32.72 57.10 -2.44
3 (350) 30.92 30.18 54.51 -2.60
4 (305) 28.61 26.93 49.81 -2.79
5+ (406) 28.88 26.94 51.38 -2.85

Table 15: Comparison between different graph triplet
numbers on DART, WebNLG17_all, WebNLG20_all.

capabilities of LLMs, which further motivates the
design of tasks aimed at instruction-tuning LLMs
to enhance their graph-to-text capabilities.

C.4 Influence of Graph Complexity

We also investigated the impact of graph complex-
ity on the performance of graph-to-text generation
by LLMs. Conducted in a zero-shot framework
using Mistral-7b-instruct-v0.2, our experiments in
Table 15 reveal a consistent decline in performance
across all metrics as the number of triplets in a
graph increases. This shows the difficulties that
LLMs face in text generation from complex graphs.
Additionally, we examine the effect of graph diam-
eters (the longest-shortest path between any two
vertices) on LLM performance. The results pre-
sented in Table 16 show that for WebNLG20 the
variance in performance across different graph di-
ameters is minimal, potentially suggesting model
stability across various structures. However, the
results for WebNLG17 exhibit a clear negative cor-
relation between performance metrics and graph
diameters, highlighting the current limitations of
LLMs in handling diverse graph structures. This
inconsistency underscores the necessity for further
research to enhance LLM stability across different
graph configurations.

D PlanGTG Details

D.1 Details for prompts in PlanGTG

The used prompts are shown in Fig. 9, Fig. 10, Fig.
8 respectively.



1 2 3 4 5 6 7 8 9 10
Number of triples

2500

2600

2700

2800

2900

3000
Nu

m
be

r o
f s

am
pl

es
Distribution of number of triples
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Figure 5: Bar chart of the distribution of the length of
text in PlanGTG

D.2 Details for the distribution in PlanGTG
The distribution of number of triplets, graph diam-
eters and text length of PlanGTG are shown in Fig.
3, Fig. 4 and Fig. 5 respectively.

E Details for our training experiments

We mainly used two popular LLMs to conduct the
experiments: LLaMA2-7b-chat4 and Mistral-7b-
chat5. To optimize memory usage and acceler-
ate training, we applied DeepSpeed Zero Stage 3
(Rasley et al., 2020) and bfloat16 mixed precision
techniques. The learning rate was set at 2e-4 for all
experiments with a batch size of 8, and the maxi-

4https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
5https://huggingface.co/mistralai/Mistral-7B-Instruct-

v0.2

Dataset #D (#samples) B-4 ME CF BS

DART

0 (575) 23.29 38.92 61.19 -1.93
1 (3463) 14.18 30.30 48.65 -2.53
2 (850) 18.60 33.20 55.09 -2.00
3 (201) 17.75 32.37 54.41 -2.02
4 (8) 20.57 33.96 59.36 -2.24

WebNLG17

0 (454) 30.73 41.65 70.16 -1.61
1 (930) 27.92 27.57 50.58 -2.84
2 (337) 22.07 23.37 44.03 -3.18
3 (136) 16.66 20.23 38.81 -3.44
4 (5) 12.38 17.99 38.17 -3.64

WebNLG20

0 (369) 30.77 41.42 69.08 -1.66
1 (1042) 29.84 28.47 51.86 -2.63
2 (280) 30.60 27.71 52.66 -2.88
3 (88) 30.80 29.29 55.57 -2.64

Table 16: Comparison between graph diameters (D).

mum length was 1024. All models were trained on
2 Tesla A100-80G GPUs.

When fine-tuning on our PlanGTG dataset, given
that we involve two tasks, namely reorder and attri-
bution, our instructions are set as follows:

The following is a set of knowledge graph
triplets delimited by triplet backticks, each
on a separate line, in the format: subject
| predicate | object. (number). The “num-
ber” indicates the sequence number of each
triplet. “ triplets ” The task involves two
steps: First, output the correct order of these
knowledge triplets. Then, generate a coher-
ent piece of text that incorporates all the in-
formation from the triplets. The generated
text should include corresponding sequence
numbers. Only the information provided in
the triplets should be used. After you fin-
ish these two tasks, write triplet dollar signs
(i.e.: $$$).

The input to the model follows the format: sub-
ject | predicate | object (number). And The model’s
gold output format is: The correct triplet order is:
subject | predicate | object (number). The generated
text is: ... . Below is an example:
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Input:
Twitter | users | 330 million (1) Twitter |
founding year | 2006 (2) Twitter | category |
Internet forum (3) Internet forum | commu-
nication platform | online discussion plat-
form (4)
Output:
The correct triplet order is: Twitter | users
| 330 million (1) Internet forum | communi-
cation platform | online discussion platform
(4) Twitter | category | Internet forum (3)
Twitter | founding year | 2006 (2) Then The
generated text is: Twitter has 330 million
users (1), serving as an online communi-
cation platform for discussions (4), is cat-
egorized as an internet forum (3), and was
founded in 2006 (2).

We finetune the model on our constructed
PlanGTG instruction dataset, enabling the model
to automatically learn to first output the correct
order of the graph, and then generate text based
on the reordered triplets. During inference, we ex-

tract the text following “Then the generated text is:”
and remove the indices (e.g., (1)) before evaluating
against the gold text. The fine-tuning loss we adopt
is the commonly used cross-entropy loss for gener-
ation tasks, which measures the difference between
the predicted probability distribution and the true
distribution (i.e., the gold text). Specifically, the
cross-entropy loss is defined as:

L = −
N∑
i=1

V∑
j=1

yij log(pij)

where N is the sequence length, V is the vocab-
ulary size, yij is the one-hot encoded vector for the
gold token at position i, and pij is the predicted
probability for token j at position i. The model
is trained to minimize this loss, encouraging it to
generate text that closely matches the gold output.

When fine-tuning on the WebNLG17 dataset, our
instructions are set as follows because this dataset
only provides annotations for graphs and their cor-
responding text:



The following is a set of knowledge graph
triplets delimited by triplet backticks, each
on a separate line, in the format: subject |
predicate | object. “ {triplets} ” Generate
a coherent piece of text that contains all of
the information in the triplets. Only use in-
formation from the provided triplets. After
you finish writing the piece of text, write
triplet dollar signs (i.e.: $$$).

F Case study

Our model’s superior performance is attributed
to its ability to better align generated knowledge
graph sequences with the target text, as demon-
strated in Table 17. This alignment is achieved
through the sequence reordering task, which guides
the model to produce sequences that closely match
the intended narrative structure, such as reordering
from (1)→(2)→(3) to (3)→(2)→(1). This task also
enables accurate annotation of sequence numbers
within the generated text, enhancing coherence and
fidelity.

In contrast, the outputs from the model without
fine-tuning fail in both aspects, and their sequence
annotations are disordered. Furthermore, these out-
puts sometimes include hallucinated information.
In the first example, the second and third triplets do
not exist, yet the model generates two unrelated and
even hallucinated triplets, thus introducing errors
into the generated text.

G Three Curriculum Algorithms

1) One-pass algorithm (Bengio et al., 2009): The
training data D is sorted by graph difficulty and
distributed into k number of buckets. We train
the model from the simplest buckets to the most
complex.
2) Baby-steps curriculum (Spitkovsky et al.,
2010): which first distributes the sorted data into
buckets (or shards/bins) from easy to hard and starts
training with the easiest bucket. After a fixed num-
ber of training epochs or convergence, the next
bucket is merged into the training subset. Finally,
after all the buckets are merged and used, we also
fine-tune on it once.
3) Annealing scheduler proposed by Xu et al.
(2020): as with (1) and (2), we start training from
the easiest bucket, but for the next training bucket,
we randomly add 1/k examples from the current
and previous bucket.



Input instruction and gold reference Sentence generated by LLaMA2-7b-chat Sentence generated by our trained
model

Input: (Texas, LargestCity, Houston) 1
Reference: Houston is the largest city in
Texas

Order: (Texas, LargestCity, Houston) 1 , (Texas, capital,
Austin) 2 , (Houston, LargestCity, Texas) 3 ✗
Text: In the state of Texas, the largest city is Houston, which is
also the capital of Texas. 1 , 2 , 3 ✗

Order: (Texas, LargestCity, Houston)
1 ,

Text: Houston is the largest city in Texas
1 . ✓

Input: (Albert Jennings Fountain, Death-
Place, New Mexico Territory) 1 , (Albert
Jennings Fountain, BirthPlace, New York
City) 2 , (Albert Jennings Fountain, Birth-
Place, Staten Island) 3
Reference: Albert Jennings Fountain was
born in Staten Island, New York City and
died in the New Mexico Territory.

Order: (Albert Jennings Fountain, DeathPlace, New Mexico
Territory) 0 , (Albert Jennings Fountain, BirthPlace, New York
City) 1 , (Albert Jennings Fountain, BirthPlace, Staten Island)
2

Text: Albert Jennings Fountain was born in New York City 1 ,
and later moved to New Mexico Territory 0 where he passed
away. According to the knowledge triplets, he was born on
Staten Island 2 ✗

Order: (Albert Jennings Fountain, Birth-
Place, Staten Island) 3 (Albert Jennings
Fountain, BirthPlace, New York City) 2 ,
(Albert Jennings Fountain, deathPlace,
New Mexico Territory) 1
Text: Albert Jennings Fountain, born in
Staten Island 3 , New York City 2 , died
in the New Mexico Territory 1 . ✓

Table 17: Two sample texts generated by LLaMA2-7b-chat baseline and our trained model. The wrong outputs
are marked red and the hallucinated outputs are marked purple. The first example shows that LLMs suffer less
from hallucination after being tuned by the attribution sub-task. The second example shows that LLMs can better
understand relations between triplets and generate more fluent text after unlocking the planning capability.



System prompt: Your task is to rewrite prompts to enhance the clarity and accuracy of attributions in
the text for AI systems like ChatGPT and GPT-4. As a Prompt Rewriter specializing in knowledge
graphs, you will transform a provided prompt by incorporating numbered markers. These markers
correspond to specific knowledge triples, clearly indicating the source of each piece of information in
the text.
**Instructions for Rewriting Prompts:**
1. **Identify Knowledge Triples**: Start by numbering each knowledge triple in the #Given Prompt#.
2. **Incorporate Markers into the Text**: Carefully insert these numbered markers into the appropriate
places within the text of #Given Prompt#. Ensure each marker is placed where its corresponding
knowledge is referenced or implied. You MUST insert each marker only ONCE to the text. That means
that you should not repeat using the same numbered marker. Ensure you add all markers. That is,
every numbered marker should be added to the text without being ignored.
3. **Maintain Original Text Integrity**: Add only the numbered markers to the text. Do not alter any other
part of the #Given Prompt#.
4. **Ensure Accurate Attribution**: Place each marker as close as possible to the relevant piece of
information, ensuring clear and correct attribution.
**Example for Guidance:**
#Given Prompt#:
knowledge triples: [["MacGyver (1985 TV series)", "tv", "American Broadcasting Company"],
["American Broadcasting Company", "founded", "1943"], ["American Broadcasting Company",
"headquarters", "New York City"], ["New York City", "nickname", "The Big Apple"]]. Text: The
distinguished 1980s television series "MacGyver" was transmitted by the American Broadcasting
Company, known as a primary network established in The Big Apple, aka New York City, since its
inception in 1943.
#Rewritten Prompt#:
Knowledge triples: (1)["MacGyver (1985 TV series)", "tv", "American Broadcasting Company"],
(2)["American Broadcasting Company", "founded", "1943"], (3)["American Broadcasting Company",
"headquarters", "New York City"], (4)["New York City", "nickname", "The Big Apple"]]. Text: The
distinguished 1980s television series "MacGyver" was transmitted by the American Broadcasting
Company (1), known as a primary network established in The Big Apple (4), aka New York City (3),
since its inception in 1943 (2).
#Given Prompt#:
knowledge triples: [["Association football", "olympics", "Iker Muniain"], ["Athletic Bilbao", "player", "Iker
Muniain"], ["Athletic Bilbao", "sports_team", "Association football"], ["Spain national football team",
"player", "Iker Muniain"], ["Spain national football team", "sport", "Association football"]]. Text: is a
Spanish professional Association football who plays for Athletic Bilbao, where Iker Muniain is Captain
(association football), and the Spain national football team.
#Rewritten Prompt#:
Knowledge triples: (1)["Association football", "olympics", "Iker Muniain"], (2)["Athletic Bilbao", "player",
"Iker Muniain"], (3)["Athletic Bilbao", "sports_team", "Association football"], (4)["Spain national football
team", "player", "Iker Muniain"], (5)["Spain national football team", "sport", "Association football"]. Text:
Iker Muniain is a Spanish professional Association football player who plays for Athletic Bilbao (1)(2)(3),
where he is the Captain (association football), and the Spain national football team (4)(5).
Follow these guidelines to enhance the trustworthiness and accuracy of AI-generated content by
making the sources of information transparent and precise.
User prompt: Think carefully and rewrite the prompt.
#Given Prompt#:
{input}
#Rewritten Prompt#:

Figure 8: Prompt for the parallel attribution annotation



System prompt: You are professional in knowledge graphs. Your task is to simplify and clarify text to
improve AI understanding. Focus on clearly expressing the relationships in knowledge triples without
adding extra information or concepts into the optimized text
Instructions:
Look at the #Knowledge Triple# and #Given Text#. Optimized the text by (1) deleting all concepts that
are in the #Given Text# but not in the #Knowledge Triple# (2) making sure that all entities and relations
in the #Knowledge Triple# are included in the text. It should clearly represent the entities and their
relationship as stated in the triple.
Example:
#Knowledge Triple#:
['Doug Fenske', 'institution', 'Rich South High School']
#Given Text#:
Doug Fenske enrolled at Rich South High School in Richton Park, IL, and was quickly promoted to the
upperclass jazz ensemble, playing second tenor sax, all while performing with Rich South High School.
#Optimized Text#:
Doug Fenske is affiliated with Rich South High School.
User prompt: #Knowledge Triple#:
{input triple}
#Given Text#:
{input text}
#Optimized Text#:

Figure 9: Prompt for the rewrite and annotation



System Prompt: As professional in knowledge graph and prompt engineering, your task is
to increase the complexity of prompts for AI models like GPT, while keeping them
understandable for humans. This involves adding a new knowledge triple with the prefix
$$ to the existing knowledge triples list in the #Given Prompt#, using an entity from the
#Entity Candidates# list. The new triple must logically connect with the existing ones and the
revised text should include this new triple without introducing unrelated concepts with the
triples in the knowledge triple lists. Here's how to proceed:
1. **Select from #Entity Candidates#**: Choose an entity from the list like "James Pain" or
"1700" for the new triple.
2. **Review the #Given Prompt#**: Understand the existing knowledge triples. For instance,
the sample prompt relates to "Adare Manor".
3. **Form a New Knowledge Triple**: In the knowledge triple list, create a triple that includes
an entity from the #Entity Candidates# and integrates well with the existing ones. Add "$$"
before the created triple (e.g., "$$["James Pain", "birth year", "1779"]").
4. **Integrate the New Triple into the Prompt**: Seamlessly add this new triple into the
existing text, keeping the narrative coherent. Ensure that all elements of the given knowledge
triples are included without introducing unrelated entities with the knowledge triple lists.
5. **Limit Word Addition**: Add only 10 to 20 words to the original prompt.
6. **Keep It Coherent and Clear**: Despite increased complexity, the prompt should be
understandable.
Example following these guidelines:
#Entity Candidates#
{"James Pain", "1700", "1862"}
#Given Prompt# Knowledge triples: [["Adare Manor", "architect", "James Pain"], ["Adare
Manor", "building start date", "1700"], ["Adare Manor", "completion date", "1862"]]. Text:
James Pain was the architect of Adare Manor, which started construction in 1700 and was
completed in 1862.
#Rewritten Prompt#
Knowledge triples: [["Adare Manor", "architect", "James Pain"], ["Adare Manor", "building
start date", "1700"], ["Adare Manor", "completion date", "1862"], $$["James Pain", "birth
year", "1779"]]. Text: James Pain, born in 1779, architected Adare Manor, initiated in 1700
and completed in 1862.
User Prompt: Rewrite and Do NOT forget to add "$$" token before your added triple in the
list of Knowledge triples.
#Entity Candidates#
{entities}
#Given Prompt#:
{inputs}
#Rewritten Prompt#:

Figure 10: Prompt for the sequential generation, where the {entities} and {inputs} are the given input



System prompt:
Your task is to enhance the clarity and coherence of prompts for AI systems like ChatGPT and GPT-4.
As a Prompt Enhancer with a focus on knowledge organization, your role is to resequence knowledge
triples in a list to improve their transformation into comprehensible text. This reordering should be
based on the context of the provided reference text. You MUST NOT change or rewrite any provided
knowledge triples.
Guidelines for Prompt Enhancement:
You are required to provide an optimized sequence for the given prompt. Essentially, you need to
rearrange the knowledge triples to align more effectively with the reference text.
llustrative Example:
#Reference Text#:
The iconic 1980s television series "MacGyver" was broadcast by the American Broadcasting Company,
a major network rooted in New York City, known as The Big Apple, since its founding in 1943.
#Original Prompt#:
Knowledge triples: [['MacGyver (1985 TV series)', 'tv', 'American Broadcasting Company'], ['American
Broadcasting Company', 'founded', '1943'], ['American Broadcasting Company', 'headquarters', 'New
York City'], ['New York City', 'nickname', 'The Big Apple']].
#Enhanced Prompt#:
Knowledge triples: [['MacGyver (1985 TV series)', 'tv', 'American Broadcasting Company'], ['American
Broadcasting Company', 'headquarters', 'New York City'], ['New York City', 'nickname', 'The Big
Apple'], ['American Broadcasting Company', 'founded', '1943']].
User prompt: Think carefully and rewrite the prompt.
#Reference Text#:
{ref_text}
#Given Prompt#:
Knowledge triples: {triple}
#Enhanced Prompt#:

Figure 11: Prompt for the linearization annotation
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