
Software Issue Reports

Classification using Association

Mining

Mohd Syafiq Bin Zolkeply

A dissertation submitted for the partial fulfilment

for the degree of Doctor of Philosophy

in Computer Science

School of Computer Science and Informatics

Cardiff University

September 2023

iii

Abstract

When a software system transitions into the maintenance phase, users often raise

a significant number of issues pertaining to the system. These issues encompass

a wide range of topics, including software bug reports, user experience sharing,

and feature improvement requests. Therefore, it is necessary to classify them

before they can be given to the appropriate developers for resolution. However,

the process of manually categorising these issue reports is characterised by a

significant amount of labour, a substantial investment of time, and a suscepti-

bility to errors. Although there have been studies conducted on the automation

of this process, they primarily depend on prevalent or recurring patterns found

within the datasets. In instances where reports diverge from prevailing patterns,

there is a higher likelihood of misclassification occurring. This thesis is driven by

the motivation to present a novel approach for classifying software issue reports,

drawing inspiration from the technique of classification using association mining.

In contrast to the conventional approach of just mining dominant patterns from

the data, the thesis revealed the efficacy of mining both dominant and weak pat-

terns from the data. Furthermore, it demonstrated the potential of using these

patterns collectively in order to categorise issue reports. The experimental re-

sults demonstrate that our novel approach, which was evaluated on benchmark

datasets derived from four open source software systems, has comparable accu-

racy to the current state-of-the-art methods. Furthermore, our method possesses

unique advantages over the existing approaches.

iv Abstract

v

Contents

Abstract iii

Contents v

List of Figures ix

List of Tables xiii

List of Algorithms xv

Acknowledgements xvii

1 Introduction 1

1.1 Introduction . 1

1.2 Research Motivation . 3

1.3 Research Problem . 4

1.4 Research Hypothesis and Contributions 8

1.5 Thesis Organisation . 10

vi LIST OF ALGORITHMS

2 Background 11

2.1 Overview of Software Maintenance 11

2.2 Issue Report and Its Life-cycle . 14

2.2.1 Software Maintenance in Open Source Software Perspective 16

2.2.2 Issues and Challenges in Classifying Issue Reports 18

2.3 Analysis of Existing Approaches 19

2.3.1 Works Related to Issue Reports Classification 19

2.3.2 Works Related to Automated Classification 24

2.3.3 Summary of Related Works 27

3 Majority Vote Classification using Association Rule Mining 29

3.1 Association Rules Mining . 29

3.1.1 Apriori Algorithm . 30

3.1.2 Antecedent and Consequent 30

3.1.3 Support . 31

3.1.4 Confidence . 32

3.1.5 Significance and Utility . 33

3.1.6 Summary of Association Rules Mining 34

3.2 Proposed Approach . 34

3.2.1 Minimal Credibility . 36

3.2.2 Consequent Restricted Rules Generation 40

3.2.3 Report Classification . 43

3.3 Summary . 45

LIST OF ALGORITHMS vii

4 Support Based Voting Classification 49

4.1 Support Count in rules formation 50

4.1.1 Explanation of the Modified Algorithm 50

4.2 Support based Voting . 53

4.2.1 Explanation of Algorithm 5 - Using Support as Weight . . 53

4.3 Summary . 56

5 Experiments and Results 59

5.1 Data Description . 59

5.2 Data Preparation . 61

5.2.1 Text Normalisation . 62

5.2.2 Feature Selection . 68

5.3 Performance Measures . 74

5.4 Evaluation Approach . 75

5.5 Classification Experiment using Method 1 76

5.5.1 The Effect of Minimal Rules Credibility 76

5.5.2 Discussion . 85

5.6 Classification Experiment - Method 2 86

5.6.1 Minimal Credibility Thresholds 86

5.6.2 Discussion . 89

5.7 Experiment Summary - Method 1 & 2 89

5.8 Comparative Analysis . 90

viii LIST OF ALGORITHMS

5.8.1 Discussion . 93

5.9 Unable to classify . 94

5.9.1 Unknown Classification . 94

5.9.2 Possible Causes of Unknown 95

5.9.3 Advantages and Disadvantages 103

5.10 Summary . 106

6 Conclusion & Future Works 107

6.1 Conclusion . 107

6.2 Future Works . 110

6.2.1 Possible solutions to Unknown Cases 110

6.2.2 New Research Directions 113

References 115

Appendix 129

.1 Hold Out Evaluation . 129

.1.1 Http Client Project . 129

.1.2 Lucene Project . 132

.1.3 Jackrabbit Project . 135

.2 Cross Validation . 138

.2.1 Lucene Project . 141

.2.2 Jackrabbit Project . 144

ix

List of Figures

1.1 Example of Issue Report . 2

1.2 Example software issue reports 6

2.1 Issue Report Management . 14

5.1 Example Issue Report Before Text Normalization 62

5.2 Text Normalization Framework 63

5.3 Word stem and inflections . 67

5.4 Http Project - Hold Out . 78

5.5 Jackrabbit Project - Hold Out . 79

5.6 Lucene Project - Hold Out . 80

5.7 Cross Project - Hold Out . 81

5.8 Http Project - Cross Validation 82

5.9 Jackrabbit Project - Cross Validation 83

5.10 Lucene Project - Cross Validation 84

5.11 Cross Project - Cross Validation 85

5.12 Method 2 Hold Out Evaluation 87

x List of Figures

5.13 Method 2 Cross Validation . 88

5.14 Method 2 Hold Out vs Others . 91

5.15 Method 2 Cross Validation vs Others 92

5.16 Issue Report mostly with Code Snippet 99

1 Http-Client Project . 129

2 Http-Client Project . 130

3 Http-Client Project . 130

4 Http-Client Project . 130

5 Http-Client Project . 131

6 Http-Client Project . 131

7 Http-Client Project . 131

8 Http-Client Project . 132

9 Lucene Project . 132

10 Lucene Project . 133

11 Lucene Project . 133

12 Lucene Project . 133

13 Lucene Project . 134

14 Lucene Project . 134

15 Lucene Project . 134

16 Lucene Project . 135

17 Jackrabbit Project . 135

List of Figures xi

18 Jackrabbit Project . 136

19 Jackrabbit Project . 136

20 Jackrabbit Project . 136

21 Jackrabbit Project . 137

22 Jackrabbit Project . 137

23 Jackrabbit Project . 137

24 Jackrabbit Project . 138

25 Http-Client Project . 138

26 Http-Client Project . 139

27 Http-Client Project . 139

28 Http-Client Project . 139

29 Http-Client Project . 140

30 Http-Client Project . 140

31 Http-Client Project . 140

32 Http-Client Project . 141

33 Lucene Project . 141

34 Lucene Project . 142

35 Lucene Project . 142

36 Lucene Project . 142

37 Lucene Project . 143

38 Lucene Project . 143

39 Lucene Project . 143

xii List of Figures

40 Lucene Project . 144

41 Jackrabbit Project . 144

42 Jackrabbit Project . 145

43 Jackrabbit Project . 145

44 Jackrabbit Project . 145

45 Jackrabbit Project . 146

46 Jackrabbit Project . 146

47 Jackrabbit Project . 146

48 Jackrabbit Project . 147

xiii

List of Tables

1.1 Average F-Score of Previous Studies (10-fold CV Setup) 5

2.1 Issues Reports Categories [25] . 17

3.1 Issue Reports as Vectors of Terms 36

5.1 Dataset . 60

5.2 Issue Reports used for training and testing bug reports 60

5.3 Issue Reports used for training and testing other reports 60

5.4 Frequency Table . 69

5.5 Term Frequency Table . 71

5.6 Document Frequency Table . 71

5.7 Inverse Document Frequency Table 71

5.8 TF-IDF Table (Without Normalisation) 72

5.9 Normalisation by Euclidean Distribution 72

5.10 TF-IDF Table . 73

5.11 Http-Client “Unknown” Classification - Method 1 94

xiv List of Tables

5.12 Short Report . 96

5.13 Multiple Issues in one Report . 101

xv

List of Algorithms

1 Naive method for finding credible rules 37

2 Finding Consequent Restricted Rules 40

3 Majority Vote Classification . 43

4 Finding Consequent Restricted Rules with Support count 50

5 Using Support as Weight . 54

6 Text Normalisation . 68

xvi LIST OF ALGORITHMS

xvii

Acknowledgements

Thank You, Almighty God, Allah SWT, for all the blessings that You have show-

ered on me throughout my PhD journey and for making it a success.

Dr. Jianhua Shao, my advisor, whose advice, encouragement, and insight have

been priceless to me, has my eternal gratitude. Thank you for being such a

wonderful mentor to me; your patience and commitment to my work have been

a great source of motivation.

I want to thank everyone in my family for their thoughts and prayers, as well as

their unwavering love, support, and words of encouragement. Their faith in me

has been a constant source of inspiration, keeping me going during tough times.

In addition, I’d like to thank my friends Drs. Helmi, Haziq, Sharih, Wan Mohd

Asyraf, Noyu, Hizal, Bassam, Fikry, Fahad, and Wafi, who have been there for

me when I’ve needed them the most with words of encouragement, laughter, and

diversion.

I owe a great deal of gratitude to the School of Computer Science and Informatics

at Cardiff University for providing an excellent learning environment and unend-

ing support throughout my PhD studies, as well as to Majlis Amanah Rakyat

(MARA) for providing the financial resources that made my studies possible.

Finally, I want to thank everyone who has helped me get to this point in my

education and who has contributed in any way to my work.

xviii Acknowledgements

1

Chapter 1

Introduction

1.1 Introduction

Maintaining an operational software system is an essential phase in software life-

cycle. As claimed by Lehman’s well-known Law of Continuing Change, software

in a real world environment must evolve and it is inevitable or it will become less

useful and end up obsolete [40]. It was reported, that 67% of the cost in software

life-cycle was consumed by software maintenance [69]. Thus, it is essential that

we are able to maintain a software system effectively. Well-managed software

maintenance activities will ensure a software system’s longevity and to stay fit

for its purpose [6].

Generally, the software maintenance and evolution phase begins when a software

system has completed its development cycle and may be handed over to the client

or may be released directly. [75]. During the operational period, the software will

be used by the intended users. As the users become more experienced with the

software, they may suggest extra functionality or features [71] to be added to

the system, but they may also encounter circumstances where the software does

not perform as expected according to its specifications. When this happens, we

say that the software has bugs, defects or is faulty [4]. Some researchers have

observed that deviation from specification can also be caused by the changing of

operating environment which requires the software to be upgraded so that it will

2 1.1 Introduction

continue to operate as expected. [6, 71, 20].

Software maintenance activities generally begin with user requests for example,

users suggesting new feature to be incorporated into the system or bugs fixing

or upgrades to be carried out. These requests are typically recorded as an issue

report in an Issue Tracking System (ITS). After an issue report is received, it needs

to be classified according to its type and category [44]. A series of activities are

then carried out to address the issue raised by the user [20]. Figure 1.1 depicts

an example of issue report classified as bug extracted from the HttpClient open

source project.

Figure 1.1: Example of Issue Report

As can be seen from this example, issue reports are typically written in free text.

This makes classifying issue reports difficult and error prone. For example, some

may assume that having code snippet is a strong indicator that an issue report

is bug, but this is not always the case.

1.2 Research Motivation 3

1.2 Research Motivation

In this research, we study how issue reports may be classified automatically. The

reporters may also carry out the classifications, depending on the ITS. During

classification, they attempt to identify the type of issue to be dealt with and to

have an initial assessment of which component in the source code is likely to be

impacted when the issue is implemented [81]. The classification task may also

involve identifying which developer/team are most appropriate to review and

address it. This is not an easy task. Studies have shown that, there can be

more than 1000 reports received for an Open Source Software (OSS) system 1

daily. In addition, issue reports are presented in a natural language which adds

to the challenge to classify into their respective categories correctly [40, 20, 76].

Therefore, classifying issue reports is time-consuming, labour intensive and error-

prone when it is performed manually.

It was reported that, it took 90 days to manually classify 7000 issue reports from

an Open Source Software system [25]. As discovered by Herzig et al [25] in their

study, 39% of the issue reports submitted have been misclassified and among

issue reports that were marked as bug, more than 30% were non-bug report.

Previous study by Cavalcanti et al [12] reported that more than 10 minutes is

spent on average to make a decision on its type when classifying an issue report on

Open Source projects and, in private projects, this time can exceed 20 minutes.

Runeson et al [66] further reported that approximately 30 minutes were spent

on average to analyse a single issue report in Sony Ericsson. This is clearly too

costly, especially modern software systems are getting larger and for this task is

1Open-source software (OSS) is computer software with its source code made available with

a license in which the copyright holder provides the rights to study, change, and distribute

the software to anyone and for any purpose. Open-source software may be developed in a

collaborative public manner. According to scientists who studied it, open-source software is a

prominent example of open collaboration. The term is often written without a hyphen as ”open

source software”. Example of OSS, Apache Tomcat and Eclipse Plugin.

4 1.3 Research Problem

desirable.

In an ideal world, software project teams should be spending more time to collect

information on which source files or component in the software that needs to be

fixed or augmented to rectify the issue [34, 39] rather than spending time with the

classification task. Furthermore, misclassification of issue report can happen and

this can lead to late software release due to issue reports tossing (reassignment

of report to different developers). Thus, classifying issue reports efficiently and

effectively is a challenging task. This is because issue reports can contain mixture

of natural language, code snippet, stack traces, or links [9, 53]. As a result, wrong

decisions are made, resulting in delays or less issue reports being implemented

[41].

1.3 Research Problem

To address the issues discussed above, some attempts have been made to classify

issue reports automatically. For example, Antoniol et al. [4] experimented the

use of standard machine learning techniques such as Näıve Bayes to classify issue

reports extracted from several open source issue tracking systems into bug or non-

bug reports. They answered a question whether or not the information contained

in an issue report can be used to classify it into bugs or non-bug (other types of

request). Zhou et al [86] and Q. Fan et al [19] used a combination of text and data

mining techniques for classification, but they made use of additional information

such as severity, priority and component that may be found in an issue report.

The same approach used by Natthakul et al [62], where they made use of title,

description and discussion information found in an issue report and incorporate

topic modeling technique to derive set of topics used as features when training the

classifier. Patil et al. [60] proposed a concept-based classification by training a

large corpus of wikipedia pages to find semantic similarity between terms found in

1.3 Research Problem 5

issue reports and wikipedia pages. However, their study requires a large amount

of training data for the classifier to build a good model where training time would

be significant.

While moderate success has been reported in these studies, there is a strong

correspondence between the level of accuracy that all of the studies achieved.

Table 1.1 shows the Average F-Score reported by three studies in this area. These

studies are selected since they were using the same benchmark dataset provided

by Herzig et al [25].

Table 1.1: Average F-Score of Previous Studies (10-fold CV Setup)

Studies / Projects Http-Client Lucene Jackrabbit

S1-Natthakul et al [62] (2013) 0.729 0.797 0.738

S2-Nitish et al [59] (2016) 0.744 0.834 0.837

S3-Pannavat et al [77] (2017) 0.809 0.853 0.788

As can be observed from the table, we can see that the range of average F-Score

achieved falls between 0.7 - 0.85 for all studies. This has led us to conjecture

that some issue reports are naturally difficult to classify, for example due to the

imbalance distribution of bug and non-bug reports within the dataset or due to

ambiguous reports such those containing both bug and non-bug issues in one

report.

Consider the imbalance problem, for example when an imbalance dataset is used

to train a classifier, the learning tends to be biased towards the data that has more

instances compared to the one with less instances. That is, a conventional learning

algorithm typically looks for some “dominant” patterns from issue reports to build

a classifier. To illustrate this, let us examine the three different issue reports

presented below. In Figure 1.2 the first reporting a bug whilst the second and

third requesting a new feature.

6 1.3 Research Problem

R1, Type: Bug

Error releasing chunked connections with no response

body. http method base release connection does

not successfully release the connection if closing the

response stream throws an exception.

R2, Type: Feature Request

Allow declare error and declare warning to support

type expressions.

R3, Type: Feature Request

Request to include error message when debugging is

failed.

Figure 1.2: Example software issue reports

In Figure 1.2, error appears in all three reports. As such, error is not discrimina-

tive enough, thus is likely to be ignored and more dominant terms or combination

of terms will be sought to build a classifier by the existing approaches.

We argue that non-dominant patterns are also important to building an effective

classifier for issue reports. In some situation, rules generated by dominant pattern

might not capture enough useful patterns to build an effective classifier. Thus,

we raise a question, does dominant pattern provide enough coverage of

rules when building a classifier?

To illustrate and support our argument on why dominant patterns are not suf-

ficient to build an effective classifier, we use the following example. Let R be

a set of issue reports with 130 reports in total and the number of reports in R

1.3 Research Problem 7

containing the term error is 100 occurrences. Of the 100 occurrences, 67 were

extracted from the reports known as bug. We write this as a rule in the form

of error → bug. While other 33 occurrences constitute a rule that represents

the non-bug reports, error → nonbug. As mentioned earlier, existing approach

usually sought for dominant pattern to build classifier. As a result, the rule that

is more dominant, will be kept to use for classification of any unseen report later,

in this case error → bug since it has more than 50% occurrences. The rule

error → nonbug will be discarded as otherwise the classifier will no longer be

consistent. Now let us assume that we the following two unseen reports R1 and

R2 to be classified as bug or non-bug for the type and we will use error → bug

as the rule for classification.

R1 = ⟨ An error is received with unknown warning when executing classEx-

ception() method, type? ⟩

R2 = ⟨ Improve error handling message in API class, type? ⟩

From the reports, we can conclude that R1 is reporting a bug since the reporter is

receiving an error when executing the classException() method. Whereas

R2 is an improvement request to handle error message for the API class. In this

example, the term error appears in both report but in a different context. If we

use error → bug as classification rule, both reports will be classified as bug. As

a result R2 will be misclassified. This is the situation where dominant patterns

become less useful for building a classifier.

We argue that not just dominant rules, but some other rules, as long as they occur

frequently enough in a dataset should be kept in order to build an effective classi-

fier for software issue reports. We call such rules credible. Basically, credible

rules are the result of considering weak rules that are omitted by conventional

classification algorithm due to classifier consistency requirements.

8 1.4 Research Hypothesis and Contributions

1.4 Research Hypothesis and Contributions

We hypothesise that dominant patterns may not provide adequate coverage to

build an effective classifier. Thus, instead of looking for dominant patterns, our

approach looks for any credible patterns. That is, when a pattern occurs fre-

quently enough, even if it is not dominant, we consider it to be useful.

For example, suppose that error appeared in 20 issue reports, 10 in bug reports

and 10 in feature request reports. If 10 occurrences of a term are deemed to be

significant (hence credible), then we will extract both patterns (in the form of

rules error → bug report and error → feature request) and use them collectively

to classify a report through a majority vote. Our method is inspired by the

classification association rule mining methodology [45, 42].

We decided to build our solution on top of the Classification based on Association

Rule Mining (CARM) methodology, as it allows for flexibility in the generation

of rules by relaxing the thresholds for support and confidence. This relaxation

permits the inclusion of a greater variety of patterns, including both dominant

and less frequent (credible) rules. By not limiting the classifier solely to dominant

patterns, this approach is especially beneficial in contexts where issue reports

are highly varied, such as open-source software projects or complex enterprise

environments where reports may cover a diverse set of functionalities and features.

In such settings, relaxing the rule thresholds can enable the classifier to capture

nuanced and context-specific patterns that more rigid classification methods may

otherwise overlook. This can lead to more adaptable and accurate classification

outcomes, particularly in projects where certain categories or issues occur less

frequently but are nonetheless critical to efficient software maintenance. Thus,

leveraging CARM allows our approach to accommodate a broader spectrum of

issue types, enhancing classification accuracy and reducing misclassification risks

across diverse software projects. The main contributions of the thesis are as

1.4 Research Hypothesis and Contributions 9

follows:

• We propose a CARM based method to learn a classifier from issue report

data. We have designed two voting methods: one majority based and one

support augmented. With our method, we only need to extract title and

summary from an issue report. This is in contrast to other studies on

classifying issue reports where combination of other features extracted from

issue reports like priority, severity etc are used to enhance accuracy. Thus,

our classification method has a wider applicability and can still function

when other feature such as priority and severity are not available from issue

reports. Our experiment revealed promising results in classification when

compared to existing techniques.

• Our method relies on the extraction of keywords from issue reports. In

this research we have considered and combined various feature selection

techniques to achieve improved classification performance when comparing

to the state of the art methods, as demonstrated through our experiments.

• We empirically evaluate our proposed approach using three different open

source software systems through experiments with different settings to offer

insight into our proposed methods.

• We engineered an ’unknown’ classification category to capture issue reports

that do not strongly align with either the bug or non-bug categories. This in-

tentional design choice illustrates a limitation of binary classification, which

often forces all reports into predefined classes, even when they do not fit

well. By introducing an ’unknown’ classification, we address this issue by

allowing reports that lack clear classification indicators to remain unclassi-

fied, reducing the likelihood of misclassification and highlighting the need

for a more flexible, multi-class approach in complex software issue reporting.

10 1.5 Thesis Organisation

1.5 Thesis Organisation

Chapter 2 reviews the existing work relevant to our problem of software issue

reports classification. We briefly discuss the existing software issue report classi-

fication methods, and review different techniques used to address software issue

report classification.

Chapter 3 gives the details of our proposed approach. We define relevant concepts

and introduce some necessary notions. Then, we provide an overview of two main

steps in our method namely Rules Generation and Reports Classification.

In Chapter 4 we introduced an Augmented based Voting algorithm for classifica-

tion as an enhancement of our proposed approach presented in Chapter 3.

In Chapter 5 we describe the characteristics of chosen datasets used in the exper-

iments and the measurement employed in evaluation. We present the necessary

Natural Language Processing steps taken to prepare the data before building our

classifier with the data. The steps are presented in our Text Normalization

procedure. Then, we empirically evaluate and compare the methods that we

have proposed with the state-of-the-art. This chapter demonstrates the imple-

mentation of our proposed approach described in Chapter 3 and the enhancement

version of our baseline presented in Chapter 4.

Chapter 6 summarises, concludes and provide some pointers for future direction

of the research.

11

Chapter 2

Background

This section examines software maintenance, which serves as a background for

the studies. Essentially, we focus on introducing general concepts and ideas about

software maintenance. We will focus on a specific issue that we wish to investigate

as we move along the broad topic of software maintenance. In this discussion, we

have established our research context, and our research will go in that direction

from here on out. Additionally, we consider current issues and difficulties as well

as software maintenance issues that stand in the way of software lifecycle success.

2.1 Overview of Software Maintenance

There are several stages in the software engineering life cycle. Generally, require-

ments engineering is the first step. It is the initial phase, which entails activi-

ties aimed at eliciting stakeholders’ requirements for development [63]. Once an

agreement has been reached, the process of designing, implementing, testing, and

deploying the solution begins. These phases are collectively referred to as the

Software Development Life Cycle (SDLC). It may take months to develop soft-

ware, but as long as the software is capable of serving the intended users, it will

be put into operation [75].

In general, as defined by IEEE Standards for Software Maintenance [20], software

maintenance means

12 2.1 Overview of Software Maintenance

“Modification of a software product after delivery to correct faults, to improve per-

formance or other attributes or to adapt the product to a modified environment”

Once the software had been handed over to stakeholder or its real users, the

software will be used as it was intended. During its operational lifetime, the

software will be undergoing series of software maintenance activities [6].

In contrast to other phases in software process life-cycle, software maintenance

incurs the largest amount of cost, time and effort to realize. This is due to

the fact that, during software maintenance the activity implementing bug fixing,

executing new feature request and adapting the software to new environment are

typically to carry out [6, 71, 20].

Software maintenance involves a couple of stages. It begins when users or stake-

holders fill in a modification request form (issue report here after), requesting

for changes or modification to the software that is currently being used. The

changes required are triggered from new features request, bug fixing, change of

organization or business policy and migration to modern technologies in order to

acquire better performance of software [71, 13].

The classification of reported issues is typically undertaken by specific roles within

a software development team. In smaller teams, this task often falls to project

managers; team leads, or dedicated triage engineers with significant domain

knowledge. They manually review incoming issue reports, analyzing their tex-

tual descriptions, code snippets, and additional metadata to assign appropriate

categories, such as bugs, feature requests, or improvements. In larger or open-

source projects, community contributors or junior developers may assist in pre-

classification, but the final decision often lies with core team members who vali-

date and refine the classification to maintain consistency. This manual approach

is time-consuming and error-prone, particularly as the volume and ambiguity of

reports increase.

2.1 Overview of Software Maintenance 13

Once the reported issue is accepted, the software project team will perform a

classification task to determine to which software maintenance activity the issue

belongs. This is a crucial task to perform as wrong classification will affect the

cost, time and manpower for the implementation of a reported issue [6].

14 2.2 Issue Report and Its Life-cycle

2.2 Issue Report and Its Life-cycle

When an issue is reported to the Issue Tracking System (ITS). It will go through

multiple phases to complete a life-cycle until the developer who is assigned to

it declares the report resolved. Figure 2.1 illustrates the life-cycle of an issue in

different phases.

Figure 2.1: Issue Report Management

First, in the Untreated Phase , a new Issue is created in the Issue repository.

Each Issue contains different information fields, which are essential for the issue

to be properly understood and implemented. For instance, it contains a short and

long description of the requested change, the type of the change (e.g. defect or

enhancement), the target component impacted by the change, and the software

version. Depending on the Issue repository being used, it is possible to define

more informational fields when configuring the repository. Some studies [44, 85]

suggested that Untreated Phase is also known as the Classification Phase

where the type of issue reported is identified (e.g bug or non-bug).

In the Modification Phase , the Issue can either be accepted for implementa-

tion or rejected, and discussion concerning the Issue aspects takes place. Such a

2.2 Issue Report and Its Life-cycle 15

discussion is carried out through comments that can be inserted directly into the

Issue. Note that it is neither necessary to have a discussion before accepting an

Issue nor for accepting it. There are many reasons for not accepting an Issue such

as: poor descriptions, redundancy, that is, whenever the reported issue refers to

an existing Issue, or it is not planned to fix the reported Issue, etc. Although

discussion on every Issue proposed is not a requirement, it is often useful to have

discussion on whether an Issue should be accepted or not. However, if an Issue

is accepted, then it must be assigned to a developer who will perform the modifi-

cations per request, as shown in Figure 2.1. Assigning an Issue starts by finding

a suitable developer to deal with the issue. This step is very important because

finding the appropriate developer is crucial for obtaining the lowest, economically

feasible fix time [48]. This developer should be one who has sufficient knowledge

in the relevant aspects reported in the Issue [3]. The assignment also needs to

comply with the developer’s workload and the priority of the Issue [28]. Thus, due

to these characteristics, assigning Issue is a labour intensive and time-consuming

task mainly because it is performed manually [5, 29]. In fact, in many projects

the number of Issues that are reported and need to be assigned can vary from

dozens to hundreds per day [12]. As a result, if assignments are not properly

performed, the project schedule can be affected the cost.

After the developer has implemented the Issue, it proceeds to the Verification

Phase , as shown in Figure 2.1. This phase encompasses of verification that the

Issue has been properly implemented, which is commonly done by the quality as-

surance team. If the implementation carried out for the Issue needs an additional

repair, it returns to the developer who performed the implementation earlier. It

is worth mentioning that if a developer was not able to fix an Issue, it can be

reassigned to others until an appropriate developer is found. When the Issue has

been fixed properly, this work-flow reaches its end, and the change can be released

for production.

16 2.2 Issue Report and Its Life-cycle

The aforementioned procedures will continue running iteratively basis since soft-

ware maintenance is a process of continuous change of the needs in a particular

direction and it happens during the entire software life-cycle [51].

2.2.1 Software Maintenance in Open Source Software Per-

spective

This section further discusses the issues of performing maintenance activity in

open source software. An open source software is a software that is freely available

for use by any users across the globe. Due to its distributed nature, with a

large number of users around the world, it is challenging to perform software

maintenance since it receives all sorts of issue reports from its users.

The classification task encounters significant challenges due to the variety of issue

report content. For instance, reports may include ambiguous descriptions (e.g.,

’the system crashed unexpectedly’ without specifics), inconsistent terminology

(e.g., ’bug’, ’issue’, ’defect’ used interchangeably), or a mix of natural language

and code snippets that complicates automated processing. Additionally, incom-

plete reports, such as missing steps to reproduce the issue, further hinder accurate

categorization.

Typically, users of open source software submit issue reports via a Bug Tracking

System (BTS). The maintainer can make BTS available to accept any type of

report and it will perform a classification process to categorise each report in

terms of maintenance activities. Due to the fact that the BTS is open to all

users, users can request anything by logging their issue reports. Typically, a user

must categorise the type of issue report they wish to log. There are numerous

subcategories for an issue report. In their study, Herzig et al. [25] identified

13 categories that are frequently mentioned by users when submitting an issue

report to BTS. Table 2.1 outlines the categories defined by Herzig et al. in their

2.2 Issue Report and Its Life-cycle 17

study.

Category Description

Bug Issue reports documenting a problem which impairs or prevents the

correct functioning of a software and causes deviation from expected

results. A bug can be an error, defect, failure or fault.

RFE Issue reports which document request for enhancement (RFE) such

as the addition of new functionality or a new feature.

Improvement Issue reports specifying perfective maintenance task to improve the

overall performance of software, e.g., to change a piece of code to

produce results from a database faster.

Documentation Issue reports which refer to updating external links or documentation

related to code, e.g., to update API documentation in HTML format.

Task Issue reports which specify a task that needs to be done.

Build System Issue reports related to problems in build systems, which are used to

automate several software build activities such as compiling the code

and running test cases.

Refactoring Issue reports specifying refactoring of source code, i.e., changing the

non-functional attributes of a piece of code which improves its main-

tainability.

Design Defect Issue reports about problems in the design of software, e.g., code

smells.

Test Issue reports which are related to test cases.

Cleanup Issue reports about code cleanup, e.g., to clean unwanted code such

as redundant code, dead code, etc

Backport Issue reports related to backporting where a fix or patch of any flaw

on the current version is applied to an older version of a system.

Specification Issue reports related to changes in the requirement specification doc-

uments.

Others Issue reports that cannot be classified to any of the above categories.

Table 2.1: Issues Reports Categories [25]

Classification at a fine resolution enables the software maintenance team to gain

a better grasp of the issues being reported by the users. Despite its capacity to

18 2.2 Issue Report and Its Life-cycle

facilitate comprehension, fine-grain classification may result in misclassification.

Cavalcanti et al. noted in their study that issue reports are not always about

software maintenance operations and that some are frequently about requests for

assistance, architectural discussions, and legal and licencing difficulties (a com-

mon case for open source projects). Due to the range of issue report categories,

misclassifications are inevitable. For instance, a novice developer may misclas-

sify an issue report as a new feature. This type of misclassification can result

in project delays, as misclassified issue reports may be assigned to the incorrect

developers or receive less attention than they should.

2.2.2 Issues and Challenges in Classifying Issue Reports

When dealing with a large volume of issue reports we must consider the problem

of misclassification. Herzig et al. [25] did a study in which they manually labelled

over 7000 issue reports and discovered that 39% were misclassified. Additionally,

they reported that a full analysis of a single issue report took an average of

four minutes. This instance demonstrates how difficult it is to deal with natural

language. This could result in ambiguity, increased processing time, and possibly

uncertainty. These factors can lead to misclassification.

A few other studies related to misclassification were conducted to show the conse-

quences of misclassification. Falessi et al. [18] in their study focused on the impact

of misclassification of bug reports toward verification and validation (V&V) in a

software project. They argue that misclassifying bug report will affect the ef-

fectiveness of V&V activity. Zeller et al. [83, 26] formed a standard operating

procedure on how to make use of bug reports extracted from an issue manage-

ment system for code quality analysis. This effort was to show that there should

be a linkage between bugs reported in the system with source code and if mis-

classification incurred it is hard to trace which bugs report should be related to

which source code.

2.3 Analysis of Existing Approaches 19

As a summary for this sub-section, we believe misclassification is the root problem

that will lead to varieties of adverse side effects. From project delay to increment

of cost. Since maintenance work contributes 67% of total cost in software process

life cycle, we, need to address this misclassification problem as early as possible

during software maintenance life cycle to avoid any difficulties in future.

2.3 Analysis of Existing Approaches

In this section, we present works that are related to our research context. We

divide our explanation of related works into three subsections. The first section

discusses works related to the study of issue or bugs report in supporting software

maintenance activity. The second subsection discusses works or studies related

to automated classification involving text data in software engineering field. The

last subsection summarizes the related works and how our research differs from

those practices that have been conducted by previous researcher.

The need for improving automated classification arises due to the inefficiencies and

limitations of manual approaches. Manual classification is highly labor-intensive,

requiring significant time and expertise from developers or project managers.

Additionally, inconsistencies in report categorization occur due to human error,

varying levels of domain knowledge, and subjective interpretations of report con-

tent. Automating this process not only reduces human effort but also enhances

scalability and consistency in classification, particularly as the volume of issue

reports grows in large-scale software projects.

2.3.1 Works Related to Issue Reports Classification

Constructing an automated solution for issue report classification adopting tech-

niques from natural language processing and machine learning has been receiving

20 2.3 Analysis of Existing Approaches

an increased attention from software maintenance research community recently.

It is worth mentioning that classifying issue reports is an essential sub-task of the

overall bug triage process. The primary goal of bug triage is to classify unsolved

issue reports into their categories and assigning them to appropriate developers

for further action. There is a large body of work on bug triage using machine

learning and text mining techniques over the past decade [87, 56]

To the best of our knowledge, an automated solution for issue report classification

was first introduced by Antoniol et al. [4] in 2008 using textual corpus from

the open source BTS (Moziila, Eclipse and Jboss). They conducted a study to

explore the possibility to classify corrective maintenance request known as bug

fixing from large corpus extracted from Bug Tracking Systems (BTS). In the

study, they aimed to answer the following research questions:

• To what extent the information contained in issues posted on bug tracking

systems can be used to classify such issues, distinguishing bugs (i.e., correc-

tive maintenance) from other activities (i.e, enhancement, refactoring)?

• What are the terms/fields that machine learning techniques use to discern

bugs from other issues?

• Do machine learning techniques perform better than grep and regular ex-

pression matching, in general, techniques often used to analyse CVS/SVN

logs and classify commits between bugs and other activities?

Although the result shows data in BTS are relevant to identify bugs, the main

drawback of this study is that, it is only capable of distinguishing between bugs

and non-bugs, not other types of issues encountered in software evolution and

maintenance. A more detailed classification will be useful for a software developer.

The work by Antoniol et al was further enhanced by Hindle et al [27] in 2009.

Their approach was slightly different by considering a few more classification

2.3 Analysis of Existing Approaches 21

classes. Instead of solely focusing on bug and non-bug categorization they ex-

tend the Swansons Taxonomy [76] by introducing few more categories related

to their study purposes. They produced classification classes such as Feature

Addition, Maintenance, Module Management, Legal, Non-functional source code

changes, Source Control System (SCS) Management and Meta-Program. Their

study mainly focuses on large commit dataset. The data that is usually generated

when programmer makes changes on the particular source code. There is a few

log files that will be generated once a programmer has performed such commit

changes. The proposed approach used a supervised machine learning technique

and validated with seven different projects. Although automation technique is

achieved in this case, this study is exposed to some validity threat. The ex-

tension of categorization that has been performed is not usable by other study

since it is tailored to work with large commit dataset. In fact, the validity of the

classification is questionable.

In 2013 Herzig et al. [25] conducted a novel study by performing manual labelling

of more than 7000 issue reports extracted from five different open source projects.

The reason for investing such effort is because they wanted to show that the

issue report contained in any open source Bug Tracking System (BTS) cannot be

directly used for mining to find insight. This is because the data contains noise

that leads to inaccuracy of any automated effort of classification. From their

finding, it was reported 39% of the studied data were misclassified and 16% to

42% of the misclassified data do not belong to its category after reclassification.

This study had an impact on the previous studies that simply used the data

contained in BTS for automated classification.

Motivated by this effort, in 2014 Pavneet et al. [35] proposed an automated tech-

nique that was capable of performing reclassification of an issue report into an

appropriate category. The approach worked by extracting various feature values

from a bug report and predicts if a bug report needs to be reclassified and its re-

22 2.3 Analysis of Existing Approaches

classified category. The approach was evaluated by reclassifying more than 7,000

bug reports from HTTP Client, Jackrabbit, Lucene-Java, Rhino, and Tomcat 5

into 1 out of 13 categories. The results of the experiments show achievement of

weighted precision, recall, and F1 (F-measure) scores in the ranges of 0.58-0.71,

0.61-0.72, and 0.57-0.71 respectively. Regarding F1, which is the harmonic mean

of precision and recall, the approach can substantially outperform several other

techniques by 28.88%-416.66%.

The same researchers conducted another study to investigate the potential bi-

ases in bug localization [36]. This study examines to what extent these potential

biases affect the results of a bug localization technique and whether bug local-

ization researchers need to consider these potential biases when evaluating their

solutions. They analyzed issue reports from three different projects: HTTP-

Client, Jackrabbit, and Lucene-Java to examine the impact of high three biases

on bug localization. The results show that one of these biases significantly and

substantially affects bug localization results, while the other two biases have a

negligible or minor impact.

Other related studies conducted by Rodŕıguez-Pérez et al. [65] In their study

they developed a tool to solve the problem by providing all relevant information

required for decision making to determine an issue corresponds to a bug report

or not. The tool works by automatically extracting information from project’s

repositories. It offers a web-based interface which allows collaboration, traceabil-

ity, and transparency in the identification of bug reports. These available features

make the identification easier, faster, and more reliable.

Nam et al. [57] proposed a novel unsupervised learning approach to label the

unlabeled data to perform prediction. CLA and CLAMI, that illustrates the po-

tential capability to predict defective files on unlabeled datasets in an automated

manner without requiring the manual effort. The fundamental idea of both ap-

proaches is to label an unlabeled dataset by using the magnitude of metric values.

2.3 Analysis of Existing Approaches 23

The approach was validated on seven open-source projects, and the outcome of

CLAMI approach led to the promising prediction performances, 0.636 and 0.723

in average f-measure and AUC, that are comparable to those of defect prediction

based on supervised learning.

Chawla et al. [14] conducted a study to automatically label an issue to be iden-

tified as bug or other request using the fuzzy set theory. Three open source

software systems namely HTTPClient, Jackrabbit and Lucene were selected for

experiments purposes. The outcome of experiments managed to achieve an ac-

curacy of 87%, 83.5% and 90.8% and F- Measure score of 0.83, 0.79 and 0.84

respectively. This is a considerable improvement as compared to the earlier re-

ported work on these three datasets-using topic modeling approach to tackle the

similar problem domain.

Shi et al. [72] proposed a prediction approach to predict which requirements

are likely to evolve by learning from its evolution history. The defined a series

of metrics to characterize historic evolution information to be used as attributes

for prediction. They validated the approach through a case study and managed

to obtain promising results. The results indicate that the defined metrics are

sensitive to the history of requirements evolution, and the prediction method can

reach a valuable outcome for requirement engineers to balance their workload and

risks.

Zhang et al. [85] in their survey study highlighted an exhaustive survey on the

existing work on bug-report analysis. They also claimed that bug reports are

significance software artifacts that describe software bugs, especially in open-

source software. Due to the increasing number of bug reports, more researches

are insterested to venture into research that used bug report for analysis. Some

of them conduct an automated inspection to discover duplication of bug reports

and localizing bugs based on bug reports. This scenario shows that study on

bug reports are worth pursuing and will bring an impactful contribution towards

24 2.3 Analysis of Existing Approaches

body of knowledge.

In summary, while several studies have explored manual and rule-based ap-

proaches for classifying issue reports, these methods are often limited by their

reliance on human intervention and predefined rules. Such approaches lack the

flexibility to adapt to the variability and complexity of real-world datasets.

2.3.2 Works Related to Automated Classification

The automated classification of non-functional requirements (NFRs) has been an

area of growing interest due to the labour-intensive nature of manually classi-

fying requirements expressed in natural language. Early foundational work by

Cleland-Huang et al. [15, 16] explored the use of information retrieval techniques

to detect and classify NFRs. Their approach focused on extracting features from

natural language requirements to reduce the manual effort required for classifica-

tion, especially when handling large volumes of requirements. They argued that

early detection of NFRs plays a critical role in enabling system-level constraints

to be integrated into the architectural design phase, preventing costly refactoring

later in the development process. The study demonstrated the potential of their

automated approach across a diverse set of structured and unstructured doc-

uments, such as requirements specifications, meeting minutes, and stakeholder

notes, which often contain scattered and non-categorised NFRs. Their evalua-

tion, conducted using requirements specifications developed by MS students at

DePaul University, showcased the feasibility of automating this task, although

challenges such as accuracy and scalability persisted.

Building on this foundational work, subsequent research has sought to enhance

the efficiency and accuracy of automated classification methods. One notable

contribution is the semi-supervised learning approach introduced by Casamayor

et al. [11], which aimed to address some of the limitations inherent in fully su-

2.3 Analysis of Existing Approaches 25

pervised methods. Using the same data set used in the study by Cleland-Huang

et al., Casamayor et al. proposed a classification method that utilised a small

set of labelled requirements to train an initial classifier while also incorporating

the knowledge provided by the unlabelled requirements. This semi-supervised

technique exploited textual properties and iterative feedback from analysts to

progressively improve classification accuracy. Their results showed that the semi-

supervised approach achieved accuracy rates exceeding 70%, outperforming su-

pervised methods in terms of both accuracy and the amount of manual labelling

required.

While the semi-supervised approach introduced by Casamayor et al. demon-

strated a significant reduction in human effort compared to fully supervised meth-

ods, their study also highlighted the inevitability of human intervention in the

evaluation process. Analysts were still required to validate the accuracy of the

classification results after each iteration of the learning process, emphasising the

ongoing need for a balance between automation and manual oversight in such

tasks. Despite these limitations, the integration of feedback mechanisms into the

classification process marked a notable step forward, demonstrating the poten-

tial for iterative, user-driven learning to enhance automated classification perfor-

mance.

Chawla et al. [14] developed a new automatic severity classification model to

classify the bugs into two classes i.e. bug and other request. Authors adopt term

frequency (TF-IDF) and latent semantic indexing (LSI) algorithms for selecting

relevant features. Further, fuzzy logic based classifier is used for classification

task. Three well known datasets are considered to validate the performance of

fuzzy classifier. The simulation results are assessed using accuracy performance

metric. The simulation results of fuzzy classifier are compared with LR, NB

and ADTree classifiers. The experimental results indicated that fuzzy classifier

obtains higher accuracy rate than LR, NB and ADTree classifiers and average

26 2.3 Analysis of Existing Approaches

accuracy ranges in between 82-84% for all three datasets.

Anas et al. (2016) [49] proposed a novel unsupervised and computationally effi-

cient approach for detecting, classifying, and tracking NFRs. The research anal-

ysis is predicated on the premise that NFRs are frequently implicitly enforced

by FRs. This knowledge is critical for capturing, modelling, and identifying spe-

cific NFRs. To summarise, the semantic similarity technique is used to identify

NFRs within FRs. The research is motivated by the fact that current NFR de-

tection and classification methods require supervision because the model must be

well-trained using classified manual data in order to classify previously unseen

instances. Such data are not always accessible. Indeed, experts from diverse

fields employ a variety of terminologies. A classifier that has been trained on a

particular application may not necessarily work in another area. The research’s

strength is in its unsupervised approach to conducting automated classification,

detection, and tracing of NFRs using FRs documents. The methods used to com-

plete the aforementioned task are well-explained, and the outcome demonstrates

a high precision percentage. The following limitations apply to this study. Ex-

ternal validity is the first. Because the dataset consisted of only three midsize

software systems with limited functional requirements, the results generated were

not generalizable beyond the specific experimental settings. These midsize sys-

tems may exhibit characteristics that differ from those of large scale systems from

a different domain. Additionally, all selected systems are object-oriented (OO)

Java-based. Thus, systems written in structured or other programming languages

may not be compatible with the approach. Apart from that, the algorithm for se-

lecting clusters and similarity measures are not holistic. Other techniques are not

considered in order to ascertain their applicability in this context. The number

of NFRs categories is extremely limited, as ISO defines more fine-grained NFRs

categories. Internal validity is also debatable due to the human judgement used to

create the classification and traceability answer set. Humans have a tendency to

create bias, and dealing with personnel from various projects may also contribute

2.3 Analysis of Existing Approaches 27

to misunderstanding. Additionally, the results indicate that this approach has a

low precision percentage of 53 percent on average.

Several additional studies used a similar technique [64, 74, 33, 32] to detect and

classify textual documents into appropriate classes or categories.

To address the limitations of manual and rule-based methods, machine learning-

based approaches have been proposed. However, these studies often focus on

highly supported patterns, overlooking less frequent but contextually significant

features, and struggle with handling unstructured content, such as code snippets

and ambiguous terminology.

2.3.3 Summary of Related Works

We identified a range of related works closely aligned with our study, which focuses

on solving the classification problem of issue reports in Open-Source Software

(OSS). Our selection is based on the availability of datasets widely used by other

researchers in this area. To promote empirical research value, we utilize the

same datasets used by [25, 36, 38] and demonstrate their reproducibility and

applicability within our research context.

Our findings are comparable to those of Zhou et al. [86], Pandey et al. [59], and

Antoniol et al. [4], but our approach is distinct in several key ways. Pandey et al.

[59] emphasised the use of a single supervised machine learning approach, which

can improve precision by leveraging large amounts of labelled data. However,

this method relies on a labour-intensive manual labelling process. Zhou et al.

[86] and Antoniol et al. [4] focused on binary classification, determining whether

an issue report represents a bug or not. While these studies provided valuable

contributions, they predominantly relied on dominant patterns, such as highly

frequent terms, often neglecting less frequent but contextually significant features.

This limitation reduces their ability to handle ambiguous cases and edge scenarios

28 2.3 Analysis of Existing Approaches

effectively.

Our work addresses these gaps by introducing the concept of credible patterns,

which incorporates less frequent but meaningful features into the classification

process. By integrating association rule mining with a support-based mechanism,

our approach enhances the robustness and adaptability of binary classification.

Unlike prior works that solely determine whether an issue report is a bug, our

method improves the granularity of classification by leveraging features extracted

from both textual and non-textual descriptions. This distinction offers a novel

framework for refining issue report categorization, overcoming key limitations of

prior studies.

As discussed in Sections 2.3.1 and 2.3.2, existing approaches face several chal-

lenges, including reliance on human intervention, difficulty in handling unstruc-

tured data, and neglect of less frequent yet credible patterns. This thesis proposes

a hybrid approach that combines both dominant and credible patterns to improve

classification accuracy while addressing these limitations.

The research in this thesis is motivated by the challenges identified in previous

studies and aims to address key gaps in issue report classification. The following

research question guides the study:

Primary Research Question

How can the inclusion of credible patterns (less frequent but meaningful features)

may improve the accuracy and robustness of automated issue report classification?

The following section will detail our strategy for resolving the issue.

29

Chapter 3

Majority Vote Classification

using Association Rule Mining

A classification rule mining method is evaluated based on several factors. The

objective is to derive from the data a set of rules that, when applied to the

prediction of newly acquired datasets, may achieve a high degree of accuracy in

classification.

Hence, this section presents our method in detail, which is inspired by classifica-

tion based on association rule mining. We first introduce some necessary concepts

and then describe the two key steps of our method: rule generation and report

classification.

3.1 Association Rules Mining

Association Rule Mining (ARM) is a crucial and widely implemented technique in

the fields of data mining and machine learning, providing profound insights into

relationships within large datasets. The primary focus is to explore how different

items relate and interact, primarily used in market basket analysis to understand

the relationships between different purchased products. The two fundamental

metrics, “support” and “confidence,” serve as pillars in assessing the strength

and reliability of the inferred association rules. This section offers an in-depth

30 3.1 Association Rules Mining

exploration of these concepts, their applications, implications, and significance in

various domains.

ARM is a method for discovering intriguing and significant patterns, correlations,

and relationships between elements in a collection. It is a critical component of

knowledge discovery in databases (KDD), assisting academics and professionals

from a wide range of fields in extracting important insights and comprehending

intrinsic linkages inside complicated, enormous information.

ARM is versatile, with its applications extending beyond the realms of market

basket analysis. It plays a pivotal role in healthcare for predicting disease patterns

and occurrences, in finance for analyzing customer spending behavior, and in e-

commerce for optimizing product recommendations, thus spanning a range of

industries and contributing significantly to advancements in these domains.

3.1.1 Apriori Algorithm

The Apriori algorithm is a seminal approach for mining frequent itemsets and

generating association rules. It utilizes the principle that all non-empty subsets

of a frequent itemset must also be frequent. The algorithm operates in two main

steps:

1. Identification of the frequent itemsets.

2. Generation of association rules from the identified frequent itemsets.

3.1.2 Antecedent and Consequent

In an association rule X ⇒ Y , X is the Antecedent, and Y is the Consequent.

The antecedent is the condition of the rule, while the consequent is the result.

Understanding these components is crucial for interpreting the implications of

the derived association rules accurately.

3.1 Association Rules Mining 31

3.1.3 Support

The prevalence or frequency of an itemset within the dataset is represented by

support. It is a metric that shows how frequently things appear together in the

dataset, showing the general prevalence and influence of certain item combina-

tions.

The mathematical representation of support is expressed as follows:

Support(X) =
Number of Transactions containing X

Total Number of Transactions

This implies that support, by providing a relative frequency of the occurrence

of the itemset in the dataset, offers a quantitative insight into the prevalence of

specific item combinations in the overall dataset.

Consider a practical scenario where a dataset consists of 100 transactions in a

retail store, and in 15 of those transactions, customers purchased both milk and

bread together. In this scenario, the support for the itemset {milk, bread} would

be calculated as follows:

Support({milk, bread}) = 15

100
= 0.15

This implies that the combination of milk and bread occurs in 15% of all trans-

actions, showcasing a moderate frequency of this itemset, serving as a basis for

further analysis and rule generation.

A high support value indicates that the itemset is common, and the rules gener-

ated from such itemsets are more likely to be significant. It is crucial for filtering

out infrequent itemsets and focusing on the ones that have a meaningful presence

in the dataset, providing a foundational basis for generating reliable and robust

association rules.

While support is indispensable for identifying prevalent itemsets, it is crucial

to carefully choose the support threshold. A very high threshold may result in

32 3.1 Association Rules Mining

missing out on potentially meaningful, albeit less frequent, itemsets. Conversely,

a very low threshold may yield an overwhelming number of itemsets, including

many that are not meaningful, complicating the analysis.

3.1.4 Confidence

Confidence is another pivotal metric, representing the conditional probability that

a transaction containing item X also contains item Y . It serves as an indicator of

the reliability and strength of the inferred association rules and helps in assessing

how frequently the rules are proven true.

The mathematical representation of confidence is expressed as follows:

Confidence(X ⇒ Y) =
Support(X ∩ Y)

Support(X)

It provides a quantitative measure, a probability, depicting how likely item Y is

purchased when item X is purchased, enabling analysts to draw inferences about

purchasing behaviors and potential product associations.

Extending the previous example, if in 8 out of the 10 transactions where customers

bought milk, they also bought bread, the confidence for the rule {milk}⇒ {bread}

would be calculated as follows:

Confidence({milk} ⇒ {bread}) = Support({milk, bread})
Support({milk})

Confidence({milk} ⇒ {bread}) = 0.1

Support({milk})

Assuming the support for milk is 0.2:

Confidence =
0.1

0.2
= 0.5

So, the confidence that a customer will buy bread given they have bought milk

is 0.5.

3.1 Association Rules Mining 33

Confidence is paramount for evaluating the robustness and reliability of the associ-

ation rules generated. It allows analysts to gauge the strength of the implications

made by the association rules and filter out rules that do not meet the reliability

threshold, focusing on the ones that are more likely to hold true.

While high confidence values are indicative of strong associations, relying solely

on confidence can lead to misleading conclusions as it does not take into account

the base prevalence of the itemset. Consequently, it is pivotal to consider both

support and confidence to derive meaningful and reliable insights and to avoid

the pitfalls of relying on a singular metric.

3.1.5 Significance and Utility

Support aids in identifying substantial itemsets, eliminating infrequent and po-

tentially irrelevant associations, and providing a ground truth basis for further

analysis. In contrast, confidence assists in delineating rules with sufficient relia-

bility, acting as a filter to discern the strength of the implications made by the

rules discovered through the mining process.

By configuring thresholds for support and confidence, one can streamline the gen-

erated rules, focusing on those with higher reliability and relevance, thus enabling

data-driven, precise, and impactful decision-making.

Balancing support and confidence is paramount. High support and high confi-

dence imply a strong, frequent rule, but having too stringent a threshold might

result in missed opportunities to uncover less obvious, yet valuable insights. Con-

versely, low thresholds may yield too many rules, complicating the analysis and

leading to potentially spurious and irrelevant conclusions.

34 3.2 Proposed Approach

3.1.6 Summary of Association Rules Mining

Association Rule Mining, underlined by metrics such as support and confidence,

is indispensable in unearthing valuable insights and correlations in large datasets.

The interplay between support and confidence enables the extraction of meaning-

ful patterns, which can be pivotal for various industries to optimize their strategies

and operations.

While support offers insights into the prevalence of itemsets, enabling the identifi-

cation of prevalent patterns and trends, confidence provides a reliability measure

for the generated rules, allowing for the assessment of the implications and pre-

dictions made by the rules.

3.2 Proposed Approach

Without loss of generality we assume that an issue report R is represented as

a vector of terms R = ⟨t1, t2, . . . , tn, C⟩, where each ti, 1 ≤ i ≤ n is a distinct

term extracted from the issue report text and C is its category. For example, the

report given in Example 1.2 is represented as

R = ⟨error, warning, type, exception, feature⟩

Here, R is represented, rather arbitrarily, by a vector that contains the nouns

appeared in the issue report and a category term feature. We note that dif-

ferent vectorization of an issue report is possible. In this section, however, we

concentrate on how a classifier may be derived from vectorised reports, rather

than how a report may be best vectorised.

From a set of vectorised reports R = {V1, V2, . . . , Vm}, we wish to find rules of

the form

r : a1, a2, . . . , ak → c

3.2 Proposed Approach 35

where a1, a2, . . . , ak are an association of terms and c is a report category. For

example, error, warning → feature is one such rule and suggests that “if error

and warning are present in an issue report, then its category will be feature

request”. Our goal is to derive a set of such rules that can be used to classify

issue reports accurately.

Given a set of vectorised reports, it is easy to see many rules can be derived from

it and some of the rules may not be sound enough. To ensure that the rules

that we derive from a corpus of issue reports have some “minimal credibility”, we

employ two commonly used measures [2]:

• support. This is a count of how many times the association of terms

(a1, a2, . . . , ak) of a rule (r : a1, a2, . . . , ak → c) has occurred in a set of

reports (R). Support indicates the strength of a rule.

• confidence. This is the ratio of the number of times a rule (r : a1, a2, . . . , ak →

c) has occurred to the number of times the association of terms of the rule

(a1, a2, . . . , ak) has occurred by itself in a set of reports (R). Confidence

indicates the accuracy of a rule.

To illustrate these two measures, consider the dataset given in Table 3.1, where

each row represents a vectorised issue report. For simplicity of presentation, we

consider two categories only: bug and non-bug here.

Suppose that we have a rule support, allow → non-bug. The support for this rule

is 2, as the number of times support and allow occur together in Table 3.1 is 2.

The confidence of this rule is 2
2
=100% as in both occurrences of the association,

the category is non-bug. On the other hand, if we have rule support → non-bug,

then its support is 4 and confidence 80%.

We assume that two parameters, minimum support (minSupp) and minimum con-

fidence (minConf), are specified, typically by the users of our method and tuned

36 3.2 Proposed Approach

Table 3.1: Issue Reports as Vectors of Terms

ID Terms Category

1 error, bug, break, compile, support bug

2 except bug

3 error, warn, allow, support, declare non-bug

4 error, support, good, declare non-bug

5 null, except bug

6 except, compile bug

7 except, problem, compile bug

8 warn, support, nice non-bug

9 add non-bug

10 allow, support non-bug

for particular datasets, and we search for all the rules from a set of vectorised re-

ports that have the minimum support and confidence. We call these rules credible

rules.

3.2.1 Minimal Credibility

One obvious class of rules of interest are those with support and confidence levels

that exceed a given minimum. That is, we want to search for the rules with the

”minimum credibility” in a particular set of data. Because the actual thresholds

for these metrics vary depending on the dataset, the challenge is to design an

algorithm that allows a user to specify these values and alter them as needed.

A rule r is said to be credible if it satisfies the following criteria:

• support(r) ≥ minSupport

3.2 Proposed Approach 37

• confidence(r) ≥ minconfidence

where minSupport and minconfidence are user specified thresholds. One possi-

ble approach to identifying all ”credible” rules by varying the minSupport and

minconfidence from a given set of report vectors is to systematically evaluate

all potential combinations of terms across the vectors. By assessing the support

and, confidence of each combination, it is feasible to determine if they meet the

required thresholds. However, this approach can be considered naive due to its

exhaustive nature. This is demonstrated in Algorithm 1.

Algorithm 1 Naive method for finding credible rules

input: report vectors R and class values C

the user defined thresholds minSupp, minConf

output: a set of credible rules R

1. R← ∅;

2. for each c in C do

3. for each distinct r : a1, a2, . . . , ak → c do

4. if minSupp(r) ≥ minSupp AND minConf(r) ≥ minConf

5. R← R ∪ r

6. return R

Algorithm Steps

Step 1: [Initialize Rules Set] Initialize an empty set R to store the credible

rules found.

Step 2: [Iterate over Class Values] For each class value c in C, process the

following steps.

38 3.2 Proposed Approach

Step 3: [Iterate over Distinct Rules] For each distinct rule r : a1, a2, . . . , ak →

c in the report vectors R, where a1, a2, . . . , ak are the antecedents of the rule and

c is the consequent, process the following steps.

Step 4: [Check Minimum Support and Confidence] If the rule r has a

minimum support greater than or equal to the user-defined minimum support

and minimum confidence greater than or equal to the user-defined minimum con-

fidence, proceed to the next step. Otherwise, continue to the next distinct rule

r.

Step 5: [Add Credible Rule to Set] If the rule r meets the criteria estab-

lished in step 4, then add the rule r to the set R of credible rules.

Step 6: [Return Credible Rules] After processing all class values in C and

their associated rules in R, return the set R of credible rules found.

Summary of Algorithm 1

This algorithm is straightforward and easy to understand. It goes through each

distinct rule associated with each class value, validates them against user-defined

thresholds for minimum support and confidence, and consolidates the credible

ones into a set which is returned at the end. This method is considered “näıve”

as it does not optimize for efficiency, and it checks each rule independently without

leveraging any possible optimizations or prior knowledge.

The main issue discovered in Algorithm 1 is that every association between

a1, a2, . . . , ak will derive a set of rules in the form of r1 : a1, a3 → a2 or r2 :

a1, c, a2 → a3 where in r1, a1 and a3 are the antecedant and a2 is the consequent.

As for r2, a1, c and a2 are the antecedant and a3 is the consequent.

3.2 Proposed Approach 39

Using the example data presented in Table 3.1, if Algorithm 1 was implemented

to derive set of credible rules, we might end up getting rules in the following

format:

r1: bug, break → break

r2: except, non− bug → bug

r3: compile, except→ bug

r4: error → problem

r5: support, non− bug → add

r6: declare→ non-bug

r7: allow → nice

Some the generated rules are not desirable for classification task especially rules

r1, r4, r5 and r7. Those rules are derived since any association discovered in

report vector R and class values C as long as the association meets the user

defined thresholds of minSupp and minConf .

In order to enhance the efficiency of Algorithm 1, we propose the incorporation of

certain “more constrained” classes of rules. In contrast, rather than only identify-

ing rules that meet minimal prerequisites, we will additionally construct criteria

that differentiate certain rules as more preferable than others. This approach

will assist in reducing the search space during computational processes. The sub-

sequent sections delineate various categories of rules and diverse heuristics that

have been formulated for their derivation.

40 3.2 Proposed Approach

3.2.2 Consequent Restricted Rules Generation

To derive a set of all credible consequent restricted rules, we use the consequent

restricted rules generation algorithm shown in Algorithm 2 which is inspired by

the CARM methodology [45, 42]. By using this method only rules with the

consequent of class values C will be generated used for classification of issue

reports.

Algorithm 2 Finding Consequent Restricted Rules

input: report vectors R and class values C

the user defined thresholds minSupp, minConf

output: a set of consequent restricted rules R

1. R ← ∅;

2. for each cj in C do

3. Tcj ← Select(R, cj])

4. L1 ← { v | minSupp ≤ |v|, v in the domain of Tcj}

5. for (i = 1, Li ̸= ∅, i++) do

6. for each t1, t2, . . . , ti in Li do

7. if conf((t1, t2, . . . , ti → cj) ≥ minConf

8. R ← R∪ t1, t2, . . . , ti → cj

9. Li+1 ← Generate(Li)

10. return R

The algorithm works as follows. Each distinct category cj is considered in turn

(step 2). For each cj, we select the subset of vectors Tcj from R that contain cj

as a category (step 3). We then extract single terms from Tcj that have sufficient

support (step 4), and we denote this set as L1 and call it large single terms. Note

that while we calculate support for each term in Tcj only, the support calculation

itself is based on the entire dataset R, not Tcj .

3.2 Proposed Approach 41

The algorithm then goes into iteration (step 5). Each association of i terms in

Li (t1, t2, . . . , ti) is paired with category cj to form a rule (t1, t2, . . . , ti → cj)

and we check if the rule has sufficient confidence (steps 6-7). Note that this

confidence calculation needs no further scan of the dataset R, as the support for

t1, t2, . . . , ti is already available, first from step 4 then from step 9 (see below),

and the occurrence of t1, t2, . . . , ti → cj can be obtained by a scan of Tcj . Rules

with sufficient confidence are retained and others are discarded (step 8).

Once rule generation is done for associations of i terms, the Generate function

attempts to generate associations of i + 1 terms from the i terms, following the

well-known apriori principle [2] (step 9). We shall briefly illustrate this principle

here with an example, and the reader is referred to [2] for details. Suppose

that we have a set of terms {a, b, c, d, e} and a, b, d each is found to have sufficient

support (following step 4), then the apriori principle guarantees that any superset

containing c or e will not have sufficient support, hence can safely be ignored in

the next round of computation and we only need to examine if (a, b), (a, d) and

(b, d) will have sufficient support in the second round. This “bottom-up” rule

generation is continued until no more associations of terms may be generated,

and the set of derived rules is returned (step 10).

To show how our algorithm works, consider the reports given in Table 3.1 again.

We consider two categories, bug and non-bug, in turn. For bug, we extract the

following subset as Tcj :

ID Report Category

1 error, bug, break, compile, support bug

2 except bug

5 null, except bug

6 except, compile bug

7 except, problem, compile bug

42 3.2 Proposed Approach

We then count the support for each term in Tcj . Suppose that the minimum

support is 2. We obtain L1 = {error, compile, support, except}. These terms are

then used to form rules {error → bug, compile→ bug, support→ bug, except→

bug}, and we check if they have the required confidence. Suppose that minimum

confidence is 50%. We derive {compile→ bug, except→ bug}. Note that support

must be calculated over the entire dataset, not just those in Tcj .

After this, the algorithm goes into the second round, attempting to find associa-

tions having two terms to form rules. Only ((compile, except)) and ((error, support))

has sufficient support and by checking confidence the rule compile, except→ bug

also has the minimum confidence. So the rule is retained in R. No more associa-

tions of terms may be generated, and computation involving the bug category is

complete.

Apply the same to the non-bug category, we derive additional rules. At the end

of the computation we obtain the following set of rules:

r1: compile→ bug

r2: except→ bug

r3: compile, except→ bug

r4: error → non-bug

r5: support→ non-bug

r6: declare→ non-bug

r7: allow → non-bug

r8: allow, support→ non-bug

r9: declare, support→ non-bug

r10: error, support→ non-bug

r11: error, support, declare→ non-bug

3.2 Proposed Approach 43

3.2.3 Report Classification

We now consider how the derived rules may be used to classify issue reports.

Different from decision trees or classification rules derived by traditional meth-

ods [79], multiple rules generated by our association mining may be fired dur-

ing the classification process. For example, suppose that we have a report V =

⟨compile, except, error, ?⟩ to classify. It is easy to see that rules r1, r2, r3, r4 would

apply, thus may assign multiple categories to a single report. To deal with this

situation, we resort to majority vote. This is shown in Algorithm 3.

Algorithm 3 Majority Vote Classification

input: a set of restricted consequent credible rules R and

a vectorised issue report V = ⟨t1, t2, . . . , tk⟩

output: the category of V

1. for each rule r : t1, t2, . . . , tk → cj in R do

2. if V covers r

3. Countcj++

4. S ← max∀cj(Countcj)

5. if |S| > 1

6. return “unable to classify”

7. else

8. return cj associated with S

We take each derived rule r : t1, t2, . . . , tk → cj in turn (step 1). If the vector

to be classified (V) covers r, i.e. every term in the antecedent of r appears in V

(step 2), then r is fired and we increase the counter for category cj by 1 (step 3).

Once all the rules are checked, we consider the categories that have the largest

counts (step 4). When there is a clear winner (i.e. there is a single largest count),

this category will be returned as the category for the report. If there is a tie,

44 3.2 Proposed Approach

then our method will report that it is unable to classify the vector. This point is

important and we will explain further in the experiment section in the thesis.

To illustrate how our majority vote based classification works, consider the fol-

lowing 3 rules, where ? indicates the category to be determined:

V1: ⟨compile, ?⟩

V2: ⟨compile, except, error, ?⟩

V3: ⟨compile, declare, ?⟩

For vector V1, only rule r1 will fire, so Countbug = 1 and Countnon-bug = 0 and

the report is classified as a bug report. For Vector V2, rules r1, r2, r3, r4 will fire

and we have Countbug = 3 and Countnon-bug = 1. Our majority vote will select

bug as the category for this report. Finally for V3, rules r1, r6 will fire, so we end

up with Countbug = 1 and Countnon-bug = 1. Since we have a tie between two

categories, our method will return “unable to classify” as a result.

Rather than seeking dominant patterns, as is commonly done in existing method-

ologies, our methodology involves identifying all plausible patterns in the form of

term associations from issue reports. These patterns are then used to generate

several rules. Although individual rules may not exhibit significant ”strength,”

particularly when the minimum support is set to a low value, their cumulative

application aids in accurately classifying issue reports, as demonstrated by the

examples given.

Our approach can be interpreted as constructing an ensemble classifier. In the

context of classifying a given report, each fired rule can be viewed as an individ-

ual classifier. The collective decision-making process is then achieved through a

majority vote, effectively functioning as an ensemble.

In this approach, the extent of disagreement—meaning the specific degree or

frequency with which certain rules support opposing classifications—is not con-

sidered significant. This is because the method relies on the presence of a majority

3.3 Summary 45

classification rule rather than weighting or quantifying each individual rule’s con-

tribution to the classification. By focusing on the final count of rules supporting

each category, we simplify the decision-making process, ensuring consistency and

interpretability without the added complexity of measuring partial disagreement

levels. This design choice also aligns with the goal of reducing ambiguity in clas-

sification, where only a clear majority, rather than nuanced disagreement levels,

determines the final category.

Our approach can also be classified as a form of deep learning. In our method-

ology, it can be inferred that each rule generated can be interpreted as encapsu-

lating certain bits of information. Subsequently, our majority voting mechanism

combines these pertinent fragments at a more comprehensive level. The present

study asserts that our proposed methodology possesses considerable importance

and originality. Moreover, it demonstrates exceptional efficacy in addressing sce-

narios wherein some keywords may be linked to various meanings or when one

issue report encompasses multiple distinct problems.

3.3 Summary

In this chapter, we present a novel approach to generating credible rules for

classification tasks. We have defined measures for discovering rules and other

essential notions in this study.

A ggeneral-to-specificsolution and the difficulties of implementing it have been

defined. Furthermore, the concept of consequent restricted rules has been defined

as a way to lower the general solution’s complexity.

The majority vote approach was ultimately implemented for classifying issue re-

ports. Our method is intentionally designed to return an ‘unable to classify’

outcome in cases where the number of rules fired for each category is equal. This

decision was made to avoid arbitrary classification when evidence for multiple

46 3.3 Summary

categories is balanced, thus prioritising classification accuracy and reducing the

risk of misclassification.

This approach differs from existing classification methods, such as Naive Bayes

and Decision Tree algorithms, in its reliance on association rule mining to ex-

tract both frequent and less frequent (credible) patterns, rather than focusing

solely on dominant, highly supported cases. Unlike conventional algorithms that

prioritize highly supported patterns, our method intentionally incorporates lower-

support rules to capture nuanced relationships in the data that may be missed by

purely frequency-based classifiers. Furthermore, unlike standard rule-based meth-

ods that require manually defined rules, this approach leverages a data-driven rule

generation process, making it adaptable to the dynamic nature of software issue

reports without extensive manual input.

Although the algorithms presented in this chapter offer the advantage of captur-

ing both dominant and credible patterns, they are limited since the algorithms

presented treat every rule fired during classification as equally important, rather

than weighing each rule based on its support count or strength level. This ap-

proach means that all rules, regardless of their frequency in the dataset, con-

tribute equally to the classification decision. Consequently, lower-support rules,

which may represent less common but significant patterns, can have the same

influence on classification outcomes as higher-support (stronger) rules. This can

lead to cases where the classifier is overly sensitive to less representative patterns,

reducing overall accuracy and potentially causing misclassification.

This limitation shapes the scope of Chapter 4, where we explore approaches to

address it by introducing rule-weighting mechanisms that factor in each rule’s

support count. These modifications aim to improve classification reliability by

prioritising rules with higher support counts. They ensure that the classifier can

better differentiate between common and uncommon patterns while reducing the

risk of misclassification in ambiguous cases.

3.3 Summary 47

The subsequent chapter presents various heuristics developed to mitigate the

constraints identified in our initial proposed methodology, which employed the

majority vote technique.

48 3.3 Summary

49

Chapter 4

Support Based Voting

Classification

In the preceding chapter, we presented our proposed methodology for classify-

ing software issue reports using a method based on association rules mining,

specifically inspired by the concept of majority vote. Based on our preliminary

assessment, our approach will classify any report that receives an equal number

of votes from the rules as “unclassifiable” or “unknown” in subsequent analysis.

This phenomenon occurs as a result of the approach we engineered, in which

each rule that is fired is considered independently, without consideration to its

level of strength determined by its support measure and confidence measure which

determines rule accuracy. This situation is considered undesirable since it may

result in a significant proportion of reports being classed as “unknown.”

In certain instances, the classification of certain items as “unknown” may be left

to human judgement. However, when a large number of items are classified as

“unknown” the process might become burdensome.

As elaborated in Section 3.1.3, Support indicates the strength of a given rule.

Hence, it is essential to treat every rule with different level of “weight” depending

on the level its support. Therefore, this chapter presents an enhance version of

Algorithm 2 - Restricted Consequent Rules Generation explained in Section 3.2.2

by including support count as part of the rules formation. Later, we introduced

50 4.1 Support Count in rules formation

a modified classification algorithm based on Algorithm 3 - Majority Vote Clas-

sification presented in Section 3.2.3 by incorporating support as part of decision

factor and count them collectively during classification task.

4.1 Support Count in rules formation

This section presents the modified algorithm, which includes support count in the

generated rules. The algorithm is as follows.

Algorithm 4 Finding Consequent Restricted Rules with Support count

input: report vectors R and class values C

the user defined thresholds minSupp, minConf

output: a set of consequent restricted rules R and the SupportCount of every rule

1. R ← ∅;

2. for each cj in C do

3. Tcj ← Select(R, cj])

4. L1 ← { v | minSupp ≤ |v|, v in the domain of Tcj}

5. for (i = 1, Li ̸= ∅, i++) do

6. for each t1, t2, . . . , ti in Li do

7. if conf((t1, t2, . . . , ti → cj) ≥ minConf

8. R ← R∪ t1, t2, . . . , ti → cj

9. Li+1 ← Generate(Li)

10. return R, SupportCount

4.1.1 Explanation of the Modified Algorithm

This algorithm targets to discover a set of consequent restricted rules, R, based

on given report vectors, R, class values, C, and user-defined thresholds, minSupp

4.1 Support Count in rules formation 51

and minConf .

Inputs:

• Report vectors, R, representing the dataset.

• Class values, C.

• User-defined thresholds, minSupp and minConf , representing the mini-

mum support and the minimum confidence, respectively.

Outputs:

• A set of consequent restricted rules, R.

• The SupportCount.

Steps:

1. Initialization: The set R is initialized to an empty set.

2. Iteration over Class Values: For each class value cj in C:

(a) Select Reports: Tcj ← reports from R where the class is cj.

(b) Initialize Level-1 Set: L1 is initialized with items that have a sup-

port ≥ minSupp in the domain of Tcj .

(c) Generation of Itemsets: For each level i, where Li ̸= ∅, increment

i and do:

i. Iteration over Itemsets: For each itemset in Li, represented by

t1, t2, . . . , ti:

ii. Check Confidence: If the confidence of (t1, t2, . . . , ti → cj) is

≥ minConf , then:

52 4.1 Support Count in rules formation

iii. Update Rule Set: R is updated by adding the new rule t1, t2, . . . , ti →

cj.

(d) Generate Next Level Itemsets: Li+1 is generated from Li.

3. Return Results: Return the set R and the SupportCount.

Conclusion:

The algorithm generates rules by iteratively increasing itemset levels and checking

them against user-defined thresholds for support and confidence. Only the rules

that satisfy these thresholds are added to R. Finally, R and SupportCount are

returned.

Implementing the Algorithm 4 with the same set of vectorised reports in Table 3.1

from Section 3.2, will derive the following set of rules. Please note that we set the

minimum support to 2 and minimum confidence to 50%. The rules are represented

in the form of r : t1, t2 . . . , tk → cj, SupportCount. Where SupportCount is a

numerical value indicate the strength of a given rule.

r1: compile→ bug, 3

r2: except→ bug, 4

r3: compile, except→ bug, 2

r4: error → non-bug, 2

r5: support→ non-bug, 4

r6: declare→ non-bug, , 2

r7: allow → non-bug, 2

r8: allow, support→ non-bug, 2

r9: declare, support→ non-bug, 2

r10: error, support→ non-bug, 2

r11: error, support, declare→ non-bug, 2

4.2 Support based Voting 53

4.2 Support based Voting

Support based voting incorporate support count of every rule generated in Algo-

rithm 4. The support count refers to the number of times a particular rule or

pattern appears within the dataset, indicating its frequency. In this context, a

higher support count means the rule is based on a pattern that occurs frequently

across issue reports, while a lower support count indicates a less common but

potentially significant pattern.

Hence, this section presents the modification of Algorithm 3 - Majority Vote

Classification Algorithm where we count the vote based on support count a given

rule as opposed to treat the rule individually. The modified algorithm is as follows.

4.2.1 Explanation of Algorithm 5 - Using Support as Weight

This algorithm classifies elements of a given vectorized issue report V into one

of three categories: “b” (bug), “nb” (non-bug), or “unknown”, based on a set of

provided rules R. Each rule r in R consists of a set of elements and an associated

category (“b” or “nb”), and also has a support value indicating the strength or

frequency of the rule.

1. Input:

• R: A set of rules, where each rule r : r1, r2, . . . , rm → cj is associated

with a category cj (“b” or “nb”) and has a support value.

• V : A vectorized issue report, represented as a list V = ⟨t1, t2, . . . , tk⟩

where each t is a transaction.

2. Initialization: For each transaction t in V , initialize counters cBug and

cNonBug to 0. These counters will be used to accumulate the support of

rules that are covered by t.

54 4.2 Support based Voting

Algorithm 5 Using Support as Weight

input: a set of restricted consequent credible rules R with SupportCount s value and

a vectorised issue report V = ⟨t1, t2, . . . , tk⟩

output: the category of V

1. for each t ∈ V do

2. Initialize cBug and cNonBug to 0

3. for each rule r : r1, r2, . . . , rm → cj in R do

4. if r − {cj} ⊆ t

5. if cj is “b”

6. cBug = cBug+ SupportCount s

7. else

8. cNonBug = cNonBug+ SupportCount s

9. if cBug = cNonBug

10. Append “unknown” to t

11. else if cNonBug > cBug

12. Append “nb” to t

13. else

14. Append “b” to t

15. return V

3. Processing Each Rule in R: For each rule r : r1, r2, . . . , rm → cj in

R, check whether the left-hand side of r (i.e., r − {cj}) is a subset of the

transaction t. If it is, and if the associated category cj of the rule is “b”,

then add the support of the rule to cBug. If the associated category cj of

the rule is not “b” (i.e., it is “nb”), then add the support of the rule to

cNonBug.

4. Classifying Each Transaction: After processing all the rules for a given

transaction t, compare the accumulated support in cBug and cNonBug. If

4.2 Support based Voting 55

cBug = cNonBug, then the classification is inconclusive, and “unknown” is

appended to t. If cNonBug > cBug, then “nb” is appended to t, classifying

it as a non-bug. If cBug > cNonBug, then “b” is appended to t, classifying

it as a bug.

5. Output: The algorithm returns the modified vectorized issue report V ,

where each transaction t has been appended with its classification (“b”,

“nb”, or “unknown”).

Example: Suppose we have a vectorized issue report V = ⟨t1, t2⟩ and a set of

rules R = {r1 : {a, b} → “b”, r2 : {c} → “nb”} with the support of r1 as 2 and

the support of r2 as 1. If t1 = {a, b, c} and t2 = {c}, then for t1, cBug would

be 2, and cNonBug would be 1, classifying it as a bug. For t2, only cNonBug

would be incremented, classifying it as a non-bug. The returned V would be

V = ⟨“b”, “nb”⟩.

Using the previous example explained in Section 3.2.3 we attempt to classify the

following reports using Algorithm 5.

V1: ⟨compile, ?⟩

V2: ⟨compile, except, error, ?⟩

V3: ⟨compile, declare, ?⟩

From our previous attempt using Majority Vote Algorithm for classifying the

aforementioned reports, we managed to classify V1 as bug, V2 as bug and V3 as

“unable to classify” or “unknown”.

When classifying V1 using the Augmented based Vote algorithm only one rule will

be fired which is r1. With total support of 4, we classify V1 as bug. As for V2, the

following rules will be fired and used for classification of V2.

56 4.3 Summary

r1: compile→ bug, 3

r2: except→ bug, 4

r3: compile, except→ bug, 2

r4: error → non-bug, 2

From the rules fired, r1, r2, and r3 are all bug rules with with support count of

3, 4, and 2 respectively. On the contrary, r4 constitutes 2 support count. Hence,

Countbug = 9 and Countnon-bug = 2. Our support based vote will select bug as the

category for this report.

Finally for V3, rules r1, and r6 will fire, so we end up with Countbug = 3 and

Countnon-bug = 2. Hence, V3 will be classified as bug where the same report was

classified as “unknown” using our Algorithm 3 - Majority Vote in the previous

chapter. since we have a tie between two categories.

4.3 Summary

This chapter has presented modified algorithms which were initially presented in

Chapter 3. The first modified algorithms include support count as part of the

output for generating restricted consequent rules described in Section 4.1. Later,

these rules then serve as input for classification by accumulating the support

count explained in Section 4.2.

The approach presented in this chapter differs from conventional classification

methods, such as Naive Bayes, Decision Trees, and Support Vector Machines

(SVM), in several key ways. Unlike traditional methods that rely primarily on

highly supported patterns, this approach incorporates both dominant and credi-

ble rules. This inclusion allows the classifier to handle more complex cases accu-

rately, as it can recognise patterns that occur less frequently but still have strong

predictive value. Additionally, while Naive Bayes and Decision Trees require well-

defined, pre-selected features, our method’s use of association rule mining with

4.3 Summary 57

a support-based approach enables flexible, adaptive rule generation directly from

the dataset’s unique patterns.

Furthermore, this approach offers greater interpretability through its use of asso-

ciation rules, which are human-readable and provide clear insight into the classi-

fication logic. This contrasts with the less transparent decision boundaries found

in methods like SVMs. By combining both dominant and credible patterns and

integrating a support-based mechanism, this method seeks to balance classifica-

tion accuracy with interpretability, making it especially applicable for issue report

classification where understanding the basis of decisions is essential.

The following chapter evaluates the impact of implementing our initial proposed

approach described in Chapter 3 and 4 through series of experiments using bench-

mark datasets.

58 4.3 Summary

59

Chapter 5

Experiments and Results

This chapter presents a sequence of empirical investigations conducted to assess

the efficacy of the methodology proposed herein for resolving the issue discussed in

this thesis. The experimental design scrutinizes the impact of rule generation with

varying thresholds of minSupport and minConfidence, as elaborated in Chapters

3 and 4.

The following section describes the experimental data we used. Later, we elabo-

rate in details the steps taken to pre-process our data by applying feature selec-

tion. We proceed by conducting a series of experiments to assess the suggested

method’s quality, by comparing our method to those used by Terdchanakul et al

[77] and Pingclasai et al [62] in their investigations.

5.1 Data Description

We used datasets from Herzig et al [25] in our experiments. These datasets were

extracted from an Issue Tracking System1, and comprise of three Open Source

Software (OSS) projects, Http-Client, Jackrabbit and Lucene. In total, there are

5590 issue reports and their distribution are shown in Table 5.1.

We adopted the same strategy practiced by Terdchanakul et al [77] and Ping-

clasai et al [62] by selecting 90% of oldest issue reports as training set and used

1https://www.atlassian.com/software/jira

60 5.1 Data Description

Table 5.1: Dataset

Project # of Reports # of Bugs # of Other Request

Http-Client 745 305 440

Jackrabbit 2402 938 1464

Lucene 2443 697 1746

Cross Project 5590 1940 3651

the remaining 10% newest issue reports for testing. We chose to use this hold-

out testing strategy as our dataset is relatively large. The distribution between

training and testing set are illustrated in Table 5.2 and 5.3.

Table 5.2: Issue Reports used for training and testing bug reports

Project/Type # of Bugs Report # Training Bugs # Test Bugs

Http-Client 305 275 30

Jackrabbit 938 844 94

Lucene 697 627 70

Cross Project 1940 1746 194

Table 5.3: Issue Reports used for training and testing other reports

Project/Type # of Other Reports # Training Other # Test Other

Http-Client 440 396 44

Jackrabbit 1464 1318 146

Lucene 1746 1571 175

Cross Project 3650 3285 365

In addition to Hold-Out evaluation [78, 70], we also used 10-fold Cross Validation

to make sure every single data point in the dataset is tested. Cross-validation

was implemented by splitting the data set into k folds, where each fold respects

the temporal sequence of the issue reports. This ensured that reports from earlier

5.2 Data Preparation 61

periods were used in training, while later reports were reserved for testing, sim-

ulating real-world scenarios where classifiers encounter new data chronologically

[37, 7].

5.2 Data Preparation

The initial step involves data preprocessing. The significance of this matter lies in

the fact that software issue reports are typically composed in unstructured text

format and necessitate vectorisation prior to being processed by our proposed

solution. There exist a multitude of natural language processing (NLP) techniques

that can be utilised for the purpose of vectorising issue reports.. This approach

is in line with earlier research [4, 86, 59, 19], we employ the NLTK toolkit [47]

and Scikit-learn package [61].

Without loss of generality, we assume that a software issue report R is repre-

sented as a sequence of terms separated by spaces and a manually annotated

category: R = ⟨t1 t2 . . . tn, C⟩, where term ti, 1 ≤ i ≤ n. The terms ti in R

include words extracted from the text of the issue reports, which can also include

code-related terms such as variable names, function calls, and code fragments.

Furthermore, numbers and special characters attached to words (e.g., variable1,

func call()) are retained as part of the tokenised terms, reflecting their impor-

tance in identifying patterns and C is the category. For example, the following

represents an issue report that has 9 terms and a category bug:

R = ⟨ I got errors and warning when executed classException() method, bug⟩

Not all terms in a report are relevant or appropriate for developing our classi-

fier. Consequently, data cleaning and preprocessing are imperative to ensure the

quality and suitability of the data. The subsequent subsections will provide a

comprehensive explanation of the procedures used to preprocess the data for the

proposed methodology.

62 5.2 Data Preparation

5.2.1 Text Normalisation

Text normalisation is a process of wrangling, cleaning, and standardising textual

data into a form that could be consumed by machine learning (ML) algorithms

as input. Text normalisation involves a variety of tasks such as tokenisation,

case conversion, spelling correction, stopwords and special character removal,

stemming, and lemmatization. To illustrate, the stopwords process is carried out

in the preparation of our data; we use the example given in Figure 5.1.

Figure 5.1: Example Issue Report Before Text Normalization

We focus on the Title and Description elements of the report as they contain

most useful information. However, both contain terms that are unsuitable for our

method to process, for example, special characters, words written in camelCase

(e.g. setLevel, LogSource and ClassCastException), code snippet, words with

little semantic content for our intended analysis (e.g. The, from, that, you etc),

and words written in contraction form (e.g. I’d and error’s). So they need to be

dealt with in text normalization.

The splitting of reports into individual words was carried out to simplify the repre-

5.2 Data Preparation 63

sentation of text data, allowing efficient pattern detection and feature extraction.

Maintaining longer entities, such as phrases or complete sentences, would increase

dimensionality and computational complexity without necessarily improving clas-

sification accuracy, given the unstructured nature of issue reports.[84, 30, 70]

Figure 5.2 shows the steps we take in our work to normalise the free text in issue

reports. In the following we will introduce these steps conceptually first, and

then describe a Python implementation of these steps later. We will use the issue

report in Figure 5.1 to illustrate how an issue report is transformed using the

proposed text normalization process.

Figure 5.2: Text Normalization Framework

Contraction Mapping

Contractions are created by removing certain letters from words. Most of the

English contractions are created by eliminating some vowels from a word, for ex-

ample, are not is shortened to aren’t and shall not to shan’t where an apostrophe

is used to denote the contraction and some letters are removed. Various forms

of contraction exist and they pose problems for text analytics because we have

an apostrophe character in a word, and as we have two words represented by a

contraction, tokenization will not be done correct, that is words like won’t will be

treated as single token instead of two (will not).

Therefore, contractions need to be pre-processed before other text processing

being carried out. To do so, we have used a contraction mapping program in

Python to remove contractions. Using this tool, we can transform I’d and error’s

64 5.2 Data Preparation

found in our example issue report given in Figure 5.1 into ’I’ ’would’ and ’error’

’is’ as required.

Removing Special Characters

The next task to perform is to remove special characters. Quite often and in

any text corpora, symbols, numbers and punctuation occur in sentences. It is

useful and necessary to remove these special characters, since they do not much

use for text analysis. As can be seen in Figure 5.1, our example report contains

a lot of unnecessary symbols. This is because code snippets and log messages are

typically present in a software issue report, hence symbols such as $, semicolon,

braces, parentheses and arithmetic are commonly found in our dataset.

We use a regular expression package RegEx available in Python to remove all these

special characters. In addition to symbols, we also remove numbers found in our

data since they do not provide any useful information either to our proposed

method.

camelCase Split

One special characteristic of our text data is that they can include code snippets

which are typically written in Java. It is customary that method names in Java

are written in the form of camelCase, for example, setLevel, ClassCastException

and HashMapEntry in our example. These method names need to split in order to

obtain more meaningful terms from the reports. We have implemented a camel-

Case splitting tool using the regular expression package RegEx available in Python,

which when applied to our example report, the following camelCase expressions

were successfully converted into normal text.

• LogSource converted into Log and Source.

5.2 Data Preparation 65

• setLevel converted into set and Level.

• ClassCastException converted into Class, Cast and Exception.

• hasNext converted into has and Next.

• entrySet converted into entry and Set.

Tokenisation

Tokenisation is a step that splits longer strings of text into smaller pieces, or

tokens. Larger chunks of text can be tokenised into sentences, sentences can

be tokenised into words, etc. Text analysis is normally performed on a piece of

text has been appropriately tokenized. Tokenisation is also referred to as text

segmentation or lexical analysis. While segmentation is sometimes used to refer

to the breakdown of a large chunk of text into pieces larger than words (e.g.

paragraphs or sentences), tokenisation is reserved for the breakdown process that

will result in words. We have chosen to conduct tokenisation after dealing with

other text normalisation issues described in the previous subsections, and we have

used a package available in Scikit-learn [61] to tokenise issue reports in our study.

Case Conversion

Once the text is tokenized we perform case conversions. This is done in order to

make text analysis easier, for example, when performing word matching. We have

chosen to convert all text to lowercase, similar to most research in text analytics.

Stopwords Removal

Stopwords are words that carry little semantic meaning. Having these words in

text data will create bias in analysis since the frequency of their appearance in a

66 5.2 Data Preparation

corpus can be very high. Therefore, stopwords are usually removed during text

pre-processing so that only words that are significant to and provide context for

the intended analysis are retained. In our example, for instance, words like I,

call, is, believe, is, it and not will be removed from the data. However, it is useful

to note that we should not over-removing stopwords since words like can and

cannot can imply two different meanings depending on the context of sentences.

For our experiments, we create our own list of stopwords since we do not want to

reduce too many words that will impact the performance our classifier later. The

stopword exception list was curated by manually reviewing high-frequency terms

in the dataset to identify domain-specific words critical for classification, such as

error, bug, and fix. These terms were retained despite their frequent occurrence,

as they carried significant semantic weight. The final list of exceptions included

technical terms such as function, module, and patch, which were relevant for the

classification of software issues. The rest of the stopwords list were taken from

the Natural Language Tool Kit [47].

Stemming

Understanding stemming necessitates an understanding of what word stems are.

This requires understanding of morphemes, the smallest independent unit in any

natural language. Morphemes are composed of stems and affixes. Affixes, like

prefixes and suffixes, are units that are attached to a word stem to change its

meaning or create a new word entirely. Word stems are also known as a word’s

base form, and they can be used to create new words by attaching affixes to them

in a process known as inflection. The opposite of this is known as stemming, which

is the process of obtaining the base form of a word from its inflected form.

Take a look at the word FOLLOW. We can add affixes to it to create new words

like FOLLOWS, FOLLOWED and FOLLOWING. The word stem in this case is

the base word FOLLOW. We can get back to the base form by stemming any of

5.2 Data Preparation 67

its three inflected forms, as shown in Figure 5.3.

Figure 5.3: Word stem and inflections

The diagram depicts how the word stem is represented in all of its inflections

because it serves as the foundation upon which each inflection is built using affixes.

Stemming helps standardise words to their base stem regardless of inflections,

which aids many applications such as text classification and clustering, where

frequency of word occurrence is important. We used Porter stemmer as our

stemming technique for our dataset, which has been widely used in previous

studies [4, 77, 59, 14, 43].

Summary of Text Normalization

In this section we have described our text normalisation process. We summarise

this process in Algorithm 6, which has been implemented in Python.

Applying our text normalisation algorithm to the example issue report given in

Figure 5.1, we obtain the following vector:

⟨ apach, believ, call, cast, class, code, common, descript, entri, error, except,

follow, get, hash, httpclient, incorrectli, int, iter, java, lang, level, log, map, next,

not, off, org, public, set, should, sourc, static, use, util, valu, void ⟩

68 5.2 Data Preparation

Algorithm 6 Text Normalisation

input: a set of reports D = ⟨R1, R2, . . . , Rk⟩ where Ri = ⟨w1, w2, . . . , wk⟩

output: a set of vectorised issue report V = ⟨T1, T2, . . . , Tk⟩

1. V ← ∅

2. for each report R in D do

3. for each term w in R do

4. if w is a contracted word then

5. w ← contraction mapping(w)

6. if w is a special character then

7. R← remove(w,R)

8. if w is a camelCase word then

9. w ← split(w)

10. T ← tokenize(R)

11. for each token t in T do

12. if t is a stopword then

13. T ← remove(t, T)

14. t← stemming(t)

15. V = V ∪ T

16. return V

5.2.2 Feature Selection

Once the issue reports have been pre-processed by text normalisation described

in Section 5.2.1, we carry out dimension reduction or feature extraction on the

resulting vectors. That is, we select a fixed number of terms (features) to represent

the vectors and use the reduced data as a training set.

Feature selection was necessary to eliminate irrelevant or redundant terms from

the dataset, ensuring that the classification model focused on the most informative

5.2 Data Preparation 69

features. This step reduces noise in the data, enhances model interpretability, and

minimises the risk of overfitting, particularly when working with high-dimensional

text data.[24, 46, 80, 21]

We define a training set as the subset of issue reports used to generate rules

and train the classification model. This dataset provides labelled examples that

enable the model to learn patterns and associations relevant to the classification

task.

In our experiments, we have considered three feature selection methods.

Selection by frequency

With this method, we choose terms based on the frequency of their occurrence

in the given set of reports or corpus. That is, we set a frequency threshold and

discard any terms whose occurring frequency are less than that threshold, and

represent the dimension-reduced vectors as shown below.

Table 5.4: Frequency Table

ID add error exception import modify null remove warn Category

1 0 2 3 0 0 3 1 1 bug

2 0 1 1 0 0 3 0 0 bug

3 0 3 4 1 0 0 0 0 bug

4 2 0 0 1 1 0 4 2 non-bug

5 4 0 0 1 3 0 0 2 non-bug

6 3 0 1 0 3 0 3 0 non-bug

Note, if we want to select the four most frequent terms based on the frequency

table above, we will end up selecting add, exception, modify and remove. This

dimension reduction should help efficiency without compromising classification

70 5.2 Data Preparation

accuracy, as it is well established that not all terms, especially those occurring

not frequently, will have little impact on filtration [73, 58, 54].

Selection by TF-IDF

Feature selection based on terms frequency will lead to some potential threats.

Some terms might occur frequently but less significant and it will overshadow

other terms in the feature set. Especially terms that do not occur frequently

enough, but might be more interesting and effective to be identified as feature.

Therefore, we employ TF-IDF (term frequency-inverse document frequency) as

introduced by Salton et al [68]. It is a numerical statistic which reflects how

important a feature is to a document in a corpus and widely employed to deal

with text analysis and information retrieval [82].

Let R represents a collection of issue reports, and dr ∈ R is an issue in R. The

term frequency tf(ti, dr), is the occurrences of term ti appeared in document dr.

However, in some cases a term would appear more frequently in long documents

compared to a shorter one. Thus, TF is normalised as [50]:

TF =
f(ti, dr)∑

t, dr
(5.1)

where

• fwD
is the frequency of term w in document D

•
∑

ti, dr is the total of terms in document dr

Hence, once Equation(5.1) applied to Table 5.4, the following Term Frequency

table will be derived.

Next, let Rti represents a set of issue reports in R that contain the term ti. Table

5.6 shows the total number of documents contained term ti

5.2 Data Preparation 71

Table 5.5: Term Frequency Table

ID add error exception import modify null remove warn Category

1 0 0.2 0.3 0 0 0.3 0.1 0.1 bug

2 0 0.2 0.2 0 0 0.6 0 0 bug

3 0 0.375 0.5 0.125 0 0 0 0 bug

4 0.2 0 0 0.1 0.1 0 0.4 0.2 non-bug

5 0.4 0 0 0.1 0.3 0 0 0.2 non-bug

6 0.3 0 0.1 0 0.3 0 0.3 0 non-bug

Table 5.6: Document Frequency Table

terms add error exception import modify null remove warn

DF 3 3 4 3 3 2 3 3

and D denotes the total number of documents in R which is 6. Hence, the inverse

document frequency idf of term ti in R is calculated as

idf(d, t) = log

[
(1 +D)

(1 + df(d, t))

]
+ 1 (5.2)

Note that, the constant 1 is added to the numerator and denominator of the idf

as if an extra document was seen containing every term in the collection exactly

once, which prevents zero divisions [50, 8]. When Equation(5.2) is applied on

Table 5.6, the following result will derive as depicted in Table 5.7

Table 5.7: Inverse Document Frequency Table

terms add error exception import modify null remove warn

IDF 1.5596 1.5596 1.3365 1.5596 1.5596 1.8473 1.5596 1.5596

The complete equation of TF-IDF is depicted in Equation(5.3) below.

72 5.2 Data Preparation

TF − IDF (ti, dc) = tf(ti, dc)× log

[
(1 +D)

(1 + df(d, t))

]
+ 1 (5.3)

Once applied, the following table will derive:

Table 5.8: TF-IDF Table (Without Normalisation)

ID add error exception import modify null remove warn Category

1 0 0.3119 0.4009 0 0 0.5542 0.1560 0.1560 bug

2 0 0.3119 0.2673 0 0 1.1084 0 0 bug

3 0 0.5849 0.6682 0.1950 0 0 0 0 bug

4 0.3119 0 0 0.1560 0.1560 0 0.6238 0.3119 non-bug

5 0.6238 0 0 0.1560 0.4679 0 0 0.3119 non-bug

6 0.4679 0 0.1336 0 0.4679 0 0.4679 0 non-bug

As suggested by [8] an Euclidean normalisation is needed to smoothen the weighted

score. Hence, the following equation must be applied for every report in the cor-

pus.

vnorm =
v

∥v∥
=

v√
v21 + v22 + . . .+ v2n

(5.4)

First, we will calculate the Euclidean distance using this equation
√
v21 + v22 +

. . .+ v2n and the following normalisation for each document will derive.

Table 5.9: Normalisation by Euclidean Distribution

Rep 1 2 3 4 5 6

L2 Value 0.7835 1.1821 0.9092 0.7953 0.8542 0.8213

Next, we will divide every weighted score in Table 5.8 with the Euclidean nor-

malisation value as in Table 5.9. Our final TF-IDF vector table will be as follow:

5.2 Data Preparation 73

Table 5.10: TF-IDF Table

ID add error exception import modify null remove warn Category

1 0 0.3981 0.5118 0 0 0.7074 0.1991 0.1991 bug

2 0 0.2639 0.2261 0 0 0.9377 0 0 bug

3 0 0.6433 0.7350 0.2144 0 0 0 0 bug

4 0.3922 0 0 0.1961 0.1961 0 0.7845 0.3922 non-bug

5 0.7303 0 0 0.1826 0.5477 0 0 0.3651 non-bug

6 0.5697 0 0.1627 0 0.5697 0 0.5697 0 non-bug

Chi-square(X2)

Chi2 is widely used on text data [52]. It is a measure for modelling the dependency

between the features and the classes. More formally, for a given vectorised issue

report R = {T1, T2, . . . , Tm}, we estimate the following quantity of each term

T1, T2 . . . , Tm and rank them by their score. Chi2 weighs the score with the

following Equation(5.5):

X2(D, t, c) =
∑

et∈[0,1]

∑
ec∈[0,1]

(Netec)(Eetec)
2

(Eetec)
(5.5)

where

• D is an issue report, t terms appear in the issue report, and c is the category

of the report.

• N is the observed frequency and E the expected frequency.

• et takes the value 1 if the document contains term t and 0 otherwise.

• ec takes the value 1 if the document is in class c and 0 otherwise.

74 5.3 Performance Measures

For each term ti, a corresponding of low Chi2 score indicates the null hypothesis

H0 of independence. Which means, the document class has no influence over

the term’s frequency, thus should be rejected. Whilst should the score is high,

it indicates the occurrence of the term and class are dependent. In this case, we

should select the term as feature for classification.

5.3 Performance Measures

To evaluate our proposed method, we apply the standard Precision, Recall,

F measures, where TP stands for True Positive, FP False Positive, FN False

Negative and TN True Negative:

Precision =
TP

TP + FP
(5.6)

Recall =
TP

TP + FN
(5.7)

F = 2× Recall × Precision

Recall + Precision
(5.8)

While these measures are commonly used in evaluating classification of software

issue reports [4, 5], their application in our study needs to adjusted. This is due

to a unique feature of our method: when a tie is produced following the vote, our

method has an option to report the case as unclassified or its class is unknown.

We will explain how we adapt these standard measure to take unknown cases into

account in the following sections when we analyse the experiment results.

5.4 Evaluation Approach 75

5.4 Evaluation Approach

We conduct two sets of tests to evaluate our proposed method:

1. Hold-out Evaluation. With this method, a dataset is randomly split into

two parts: the Training set and the Testing set. We vary the Training and

Testing ratio in our experiments.

2. Cross-Validation Evaluation. With this method, a dataset is randomly

partitioned into k equal parts, one used as the Testing set and the remaining

parts as the Training set. The testing is then repeated k times, with each

of the k parts used as the Testing set exactly once, and the k results will

be averaged to produce one single estimation.

76 5.5 Classification Experiment using Method 1

In evaluating our approach using these two methods, we use the following datasets:

1. Individual Project. We test our algorithm using individual project data

only. That is, we train on data from one project and test the algorithm on

the same project.

2. Cross Projects. We test our algorithm using a mixture of data from all

three projects. As each project is likely to use some specific terms, using

cross-project data would test the robustness of our method.

5.5 Classification Experiment using Method 1

This Section presents the results of a series of experiments to evaluate the perfor-

mance of the developed methods in a classification task. For the purpose of this

study it is a binary classification to determine whether or not a given issue report

is a bug or non-bug. The dataset described in Section 5.1 are used for predictions.

This section presents the results of our experiments . We will vary the results

by using Precision, Recall and F-Score as the main measurement. The results

outlined the performance of our approach based on different algorithm compared

with the improvements of its own by tailoring the original algorithm.

After that, we compare our method with the state of the arts to show some useful

points of how our approach can be useful.

5.5.1 The Effect of Minimal Rules Credibility

Description

As elaborated in Chapter 3 under Section 3.2.1, our method highly reliant on

varying the measure of support counts and confidence percentage, to produce set

5.5 Classification Experiment using Method 1 77

of credible rules to use for classifying issue reports. The user defines threshold

values for each one of these measures which must be met by all rules. The

experiments presented in this section study the effect of varying threshold value

for given minSupport and minConfidence values. The best pair of values for the

minSupport and minConfidence thresholds have been experimentally determined.

In order to examine how the different values of minSupport affect the prediction

accuracy of the generated rules a series of prediction experiments are performed

for each dataset described in Section 5.1. To evaluate the performance of our

method we used the following variation.

1. Minimum support - Ranging from 3% to 10%

2. Minimum confidence - Ranging from 40% - 100%

As for feature engineering we are using Term Frequency Inverse Document Fre-

quency and apply Chi-square(X2) statistical test to select only 150 most signif-

icance features found in the date set. The reason being, when mining the rules

using apriori algorithm [2, 31, 1], more features will lead more computational

time.

Based on the aforementioned variation we ended up having 64 results for each

project and 256 in total for all projects in our dataset. Hence, the following sec-

tion presents the results that illustrate stability of our initial proposed method

discussed in Section 3.2.2 and 3.2.3 for minimal credibility. We include the com-

plete experiment results in Appendix section.

In section 5.6, we presents the results using the minSupport and minConfidence

settings in this section for the second method discussed in Section 4.1 and 4.2.

78 5.5 Classification Experiment using Method 1

Hold-out Evaluation Results

Figure 5.4: Http Project - Hold Out

5.5 Classification Experiment using Method 1 79

Figure 5.5: Jackrabbit Project - Hold Out

80 5.5 Classification Experiment using Method 1

Figure 5.6: Lucene Project - Hold Out

5.5 Classification Experiment using Method 1 81

Figure 5.7: Cross Project - Hold Out

82 5.5 Classification Experiment using Method 1

Experiment Results 10-Fold Cross Validation

Figure 5.8: Http Project - Cross Validation

5.5 Classification Experiment using Method 1 83

Figure 5.9: Jackrabbit Project - Cross Validation

84 5.5 Classification Experiment using Method 1

Figure 5.10: Lucene Project - Cross Validation

5.5 Classification Experiment using Method 1 85

Figure 5.11: Cross Project - Cross Validation

5.5.2 Discussion

As illustrated in Figures 5.4, 5.5, 5.6, and 5.7 illustrate the result based on Hold

Out evaluation while Figures 5.8, 5.9, 5.10, and 5.11 illustrate result for Cross

86 5.6 Classification Experiment - Method 2

Validation evaluation. It is apparent for both types of evaluation when increasing

the minConfidence threshold reduces the number of rules that can be generated.

For some data sets this means that the prediction accuracy is reduced due to the

reduced number of generated rules that can be used for prediction. We varied

minSupport to 3% as the lower bound, 7% as the mid bound and 10% as the

higher bound to investigate the stability of minimal credibility.

It can be observed that the classifier perform quite stably when the minSupport is

set to 3% across three projects. The F-Measure rate dropped significantly when

the minConf enter 80%. This is obvious since more accurate rules are sought and

less rules will be discovered.

5.6 Classification Experiment - Method 2

This Section presents the results of a series of experiments to evaluate the per-

formance of the developed methods in a classification task by using our enhanced

method described in Section 4 and 5.

5.6.1 Minimal Credibility Thresholds

As presented in Section 5.5, we decided with minSupport count of 3% as the

minimal credibility threshold since this number promised stability in our method

in term of precision, recall, and fscore. The experiments are divided into two

evaluation known as Hold Out and Cross Validation following the same strategy

applied in Section 5.5. Unlike the preceding section, every rules discovered in this

experiment will be treated differently depending on their support value.

5.6 Classification Experiment - Method 2 87

Figure 5.12: Method 2 Hold Out Evaluation

88 5.6 Classification Experiment - Method 2

Figure 5.13: Method 2 Cross Validation

5.7 Experiment Summary - Method 1 & 2 89

5.6.2 Discussion

As can be seen in Figures 5.12, and 5.13, raising the minConf threshold results

in a reduction in the possible number of rules to be generated. This indicates

that the accuracy of the prediction is going to suffer as a result of the decreased

number of generated rules that may be used to the classification process.

It is plain to see that the results of Method 2 are not significantly different from

those of Method 1. We hypothesise that the occurrence of this phenomena is

related to the fact that we count occurrences of “unknown” classification as being

erroneous. Because of this, our classifier’s performance is substantially impacted

due to the fact that when higher thresholds are applied, more correct rules will

be sought after, which will result in fewer rules being generated. When that

event occurred, none of the rules that are specifically designed to classify reports

containing fewer than five vectorised phrases were activated. As a result, the

reports are going to be categorised as “unknown”.

5.7 Experiment Summary - Method 1 & 2

Concluding our experiments with Methods 1 and 2, we posit that the classifier’s

performance was notably influenced by adjustments in minSup and minConf pa-

rameters. The efficacy of the classifier in both methodologies was influenced upon

the quantity of generated rules and the frequency of ”unknown” classifications.

A noteworthy pattern observed across both methods was that elevating the thresh-

old led to an increase in “unknown” classifications and a subsequent reduction in

accuracy.

90 5.8 Comparative Analysis

5.8 Comparative Analysis

This section presents the performance of our proposed method with the state of

the art solutions. Here, we present different variations that illustrate our result.

We introduce two different variations. The first one to include “unknown” as

a correct classification and to include “unknown” as the majority class in the

classification.

The baseline methods for comparison included the studies that have been con-

ducted by Natthakul et al. [62] and Pannavat [77], which rely on predefined

features and frequency-based patterns. These were chosen to evaluate the ef-

fectiveness of the proposed approach in capturing less frequent but meaningful

patterns that traditional methods may overlook.

5.8 Comparative Analysis 91

Figure 5.14: Method 2 Hold Out vs Others

92 5.8 Comparative Analysis

Figure 5.15: Method 2 Cross Validation vs Others

5.8 Comparative Analysis 93

5.8.1 Discussion

The findings depicted in Figures 5.14 and 5.15 exhibit a similar trend as dis-

cussed in the preceding section. When the values of minSupp and minConfidence

are increased, a noticeable decrease in the prediction accuracy of our baseline ap-

proach is noticed. It is important to acknowledge that in this context, the term

“Baseline” pertains to Method 2 as outlined in Section 5. The performance of

the state-of-the-art methods remains consistent as they do not depend on adjust-

ing the values of minSupp and minConfidence during the classification of issue

reports.

Irrespective of whether Cross Validation or Hold-Out evaluation was employed,

our classifier consistently demonstrated a comparable level of F-Score, ranging

from 60% to 70%, across all projects. When the minimum support is set to 3%

and the minimum confidence is set at 60%. The thresholds presented in this

section are derived from the experimental results obtained in Section 5.5.

A noteworthy pattern becomes evident when reports labelled as “unknown” are

categorised as correctly classified, since it demonstrates a substantial level of

accuracy across three projects. In contrast, the performance of the F-Score metric

experienced a notable decline when reports labelled as ”unknown” were regarded

as inaccurate classifications.

In summary, our technique exhibited limited prediction accuracy due to our treat-

ment of “unknown” cases as erroneous, hence impacting the performance of our

classifier. We argue that reports classified as “unknown” should be approached

separately due to the presence of uncertainty, necessitating more clarification on

how to address them.

94 5.9 Unable to classify

5.9 Unable to classify

Our classification method, as previously stated, is based on majority votes. In

this case, we may run into an issue voted as a “tie”. That is, when the number

of rules fired is equal, we may have the same number of votes in both categories

(bug and non-bug). In Section 5.9.1, we report the total number of reports

classified as “unknown” based on experiment using Method 1 and 2 discussed

in Chapter 3 and 4 respectively. The reports are presented based on individual

projects by comparing both Method and how many “unknown” reports discovered

as we increase the minSupport and minConfidence thresholds. In section 5.9.3,

we present the possible causes of an unknown classification by extracting some of

the reports that have been classified as “unknwon” using our method. We studied

the characteristics of the reports and present the findings accordingly.

5.9.1 Unknown Classification

This section reports the number of “unknown” classification discovered in our ex-

periment using Method 1 which was elaborated in Chapter 3. The data presented

in the table were extracted based on Hold-Out evaluation where we are training

90% of the data and left the remaining 10% for testing purposes for Http Client

Project only.

Minimum Support

3% 4% 5% 6% 7% 8% 9% 10%

Minumum Confidence

40% 1 2 3 3 6 9 9 14

50% 2 3 4 2 5 4 5 11

60% 1 1 2 3 4 9 15 15

70% 3 5 9 10 15 18 20 28

80% 7 10 15 17 30 40 42 44

Table 5.11: Http-Client “Unknown” Classification - Method 1

5.9 Unable to classify 95

Discussion

It is evident from the tables presented that as we increased the minSupport and

minConfidence thresholds, more reports will be classified as “unknown”. This is

because the number of rules fired, will be decreasing as higher demand of support

and confidence are required.

Please note that ratio of “unknown” report in project individually are varied

since the training and testing proportions are different. For example, for Http-

Client project the total number of issue report are 741. Whereas for Lucene and

Jackrabbit, both are having 2443 and 2402 respectively.

For Http-Client using Method 1, we observed that the number of “unknown”

reports fairly stable when we set the minConfidence to 60%. We believe when

60% is used as minConfidence, the method still can produce quite number of rules

of classification task. And by setting the threshold at this value we are deriving

set of credible rules by maintaining the their strength and accuracy level.

5.9.2 Possible Causes of Unknown

These possible causes are only our initial conjecture and further analysis is re-

quired to have more concrete evidence.

1. Short Report:

Definition: any vectorised report that is less than 3 i.e R = ⟨t1, t2, t3⟩, with

all the stop words have been eliminated. These vectorised reports will only

contain all the useful keywords to be used for classification. Initially, our

conjecture said that short report is one of the cause of unknown when no

rules are fired and ended up with zero-zero phenomenon where zero rules

counted for bud and also for non-bug. Below, we manage to extract two

reports that are deemed as short report.

96 5.9 Unable to classify

Table 5.12: Short Report

Item Content

Project Lucene

Issue ID Lucene-238

Category Non Bug

Title [PATCH] import cleanup

Description This patch just removes useless imports so you get less warnings in Eclipse.

Item Content

Project Lucene

Issue ID Lucene-240

Category Non Bug

Title bug form doesn’t list latest version

Description

As be be seen from the given reports, the amount of useful keywords that

can be extracted are quite limited. When these report went through pre-

processing stage as described in Section 5.2.1, these two reports were ended

with few keywords and might not be able to be classified with generated

rules the minSupport and minConfidence are increased.

2. Missing keywords:

Definition: any report contained useful keywords but cannot be classified

since no rules generated contain such keywords. We assumed some of the

reports might be ended up being classified as unknown but do contain useful

keywords which would be very helpful to classify them into specific category.

For example, let us assume the following the vectorised report below which

has been classified as unknown.

V1 : ⟨ appear, bottom, check, code, comment, complet, document, fals, give,

go, happen, javadoc, like, list, mention, not, often, otherwis, page, print,

read, rest, without, nb ⟩

5.9 Unable to classify 97

from the vectorised report, let us assume the following rules were fired

during classification phase.

r1: check → bug

r2: code→ bug

r3: not→ bug

r4: read→ bug

r5: code, not→ bug

r6: not, read→ bug

r7: code→ non-bug

r8: document→ non-bug

r9: like→ non-bug

r10: not→ non-bug

r11: code, not→ non-bug

r12: not, like→ non-bug

based on the rules listed, there are six rules classify the report as bug and

another six rules identify the report as non-bug. Having analysed the vec-

torised report and rules fired, there are some meaningful keywords (mostly

verbs) found in the vectorised report that could be useful for classification.

For example keywords like comment, print, list, mention, read, and false.

These keyword may appear below the threshold of minSupp and minConf

which ended up not counted as rules. This is how the situation of missing

important keywords in the rules but appeared in the unseen dataset.

3. Contain code snippet etc

Definition: Report contained non-textual information i.e code snippet, stack

trace, url, directory etc. These elements will affect the classifier as will also

be pre-processed and treated as vectorised reports. In our initital algorithm,

we treated code snippet as normal text. We transform any code snippet

found in the report by using camelCase split. Any words in the form of

98 5.9 Unable to classify

camelCase found in the report will split accordingly. However, this did not

help to produce good or relevant features to generate rules. Since normal

text and code snippet should not be treated equally. Figure 5.16 depicts an

issue report that heavily contain code snippet.

5.9 Unable to classify 99

Figure 5.16: Issue Report mostly with Code Snippet

4. Multi-issue:

100 5.9 Unable to classify

Definition: One single report that contained multiple issues addressed by

the reporter. To show how this would actually happen, in Table 5.13 below,

we give a report that was classified as unknown by our method. Here we can

see that the report was actually addressing two issues. The first half, high-

lighted in red, outlined a problem that the reporter has encountered, and

therefore the report could potentially be classified as a bug report. In the

second half, highlighted in blue, the reporter mainly offered a suggestion, so

the report could be considered as a non-bug one. Lastly, text highlighted

in olive suggests that the reporter gave an opinion whihc also can be con-

sidered as a non-bug category. Looking into the rules we generated, the

presence of keywords such as problem, warning and error typically lead

to bug category, and the keywords such as change, option and would in

the second half typically lead to non-bug, hence a tie in the end. Obviously

in this given example it may reasonable for the report to be classified as a

bug report overall, and the suggestion contained in the second half would

simply be useful by the software engineer who addresses the issue as a pos-

sible solution. But in other cases, it may be desirable to leave the report

unclassified and leave its category to a human decision.

5.9 Unable to classify 101

Table 5.13: Multiple Issues in one Report
Item Content

Project Jackrabbit

Issue ID JCR-9

Category Bug

Title Version.isSame(Object) not working

Description

Version interface is implemented (on the frontend) by the VersionImpl class (extending NodeWrapper),

which delegates to an internal NodeImpl class, which in turn extends ItemImpl.

Say you have :

Node node = // at Version 1.0

Version version = // retrieved as 1.0 for the node

Version baseVersion = node.getBaseVersion()

You now expect

baseVersion.isSame(version)

even if

baseVersion != version

This fails, because VersionImpl delegates the isSame call to its delegatee, thus above call becomes

((VersionImpl) baseVersion).delegatee.isSame(version)

where this method is implemented by the ItemImpl class from which the delegatee NodeImpl extends.

That latter implementation ItemImpl.isSame() only returns true if the other is an ItemImpl, too.

But this is not the case because VersionImpl is a Version, NodeWrapper, Node but not an ItemImpl.

Probably the best solution would be for NodeImpl.isSame() to check whether the otherItem is a

NodeWrapper and use ((NodeWrapper) otherItem).delegatee as the otherItem for the delegatee call.

On another track: ItemImpl.isSame() should probably do a fast check whether the

otherItem is actually the same instance to prevent type checks...

102 5.9 Unable to classify

Item Content

Project Jackrabbit

Issue ID JCR-14

Category Bug

Title {XML—Object}PersistenceManager.destroy(*) may fail

Description

The destroy methods of the ObjectPersistenceManager class try to delete their files without checking for their existence.

This may result in a FileSystemException being thrown because according to the specification of

FileSystem.deleteFile() a FileSystemException is thrown ”if this path does not denote a file or if another error occurs.”

While the Jackrabbit LocalFileSystem implementation silently ignores a request to delete a non-existing file,

our internal implementation of the interface throws a FileSystemException in this case, which cause destroy to fail.

I suggest all destroy methods should be extended to first check for the existence of the file to prevent from being thrown.

Note: This not only applies to ObjectPersistenceManager but also to XMLPersistenceManager.

5. Overlapping Rules

Definition:

(a) During classification phase, most of the rules fired are overlapping

ended up the majority vote to be a tie. This is because when weak

rules but not credible are used for classification.

(b) i.e R1 : ⟨t1, c, supp⟩ where t1 is the term exist in the rule set. C

represent the class value and supp is the occurrence of such rules in

the entire training dataset.

(c) R1 : ⟨error, b, 30⟩ and R2 : ⟨error, nb, 4⟩ where R1 has stronger sup-

port which is 30 as compared to R2 which only has 4 as its support.

Given a vectorised issue report as follow V 1 : ⟨error, null, ?⟩. If this

is happening both R1 and R2 will be fired and will end up as a tie

although R2 is considered as weak rule and possibly not useful for

classification.

It is revealed that 15% of the “unknown” class labels were attributed to short

vectors with fewer than three tokens, while 25% were due to reports missing key

5.9 Unable to classify 103

classification terms. Code snippets accounted for 30% of the ‘unknown’ classifi-

cations, as they lacked sufficient linguistic context for accurate categorisation.

5.9.3 Advantages and Disadvantages

In this section we argue the advantages and disadvantages that an “unknown”

classification can contribute to the body of knowledge.

Advantages

Incorporating “unknown” as one of the category in binary or multi-class classifi-

cation will open a new avenue in software issue reports classification. Below are

some of the benefits.

Handling Ambiguity: Some issues may not clearly be a bug or a non-bug

based on the provided information. An “unknown” class allows for the repre-

sentation of such ambiguous cases, preventing misclassification.

Improving Model Accuracy: Forcing ambiguous or unclear issues into “bug”

or “non-bug” categories could lead to inaccurate classifications and, consequently,

a less effective model. An “unknown” class can act as a safety net, improving

overall model accuracy. It avoids the model from making a definitive conclusion

on issues where there is not enough information or context, reducing the risks

associated with acting on incorrect classifications.

Enhanced Prioritisation and Triage: Issues classified as “unknown” can be

flagged for manual review, allowing human experts to decide whether it’s a bug

or not, ensuring more accurate categorization and appropriate prioritization and

assignment.

104 5.9 Unable to classify

Training Data Quality: The “unknown” class can be beneficial when dealing

with noisy or incomplete training data. It helps to segregate instances where

the model has low confidence due to inadequate or conflicting information, thus

maintaining the integrity of the training data.

Enhancing Learning: An “unknown” class can encourage further investigation

and learning. Insights derived from reviewing “unknown” cases could contribute

to refining and improving the classification model over time.

User Trust and Model Interpretability: The provision of an “unknown”

classification can enhance user trust as it transparently reflects the model’s un-

certainty, rather than forcing a possibly incorrect binary classification.

In conclusion, an “unknown” class in software issue classification can act as a

mechanism to manage uncertainty and ambiguity, improving the robustness and

reliability of the classification system.

Disadvantages

This section presents the disadvatages of incorporating “unknwown” as the addi-

tional class in binary or multi-class classification.

Increased Complexity: Adding an additional class can complicate the model,

making it more challenging to develop, maintain, and interpret. The added

complexity might require more sophisticated methods to accurately classify in-

stances.

Resource Allocation: Issues classified as “unknown” will likely need manual

review and resolution, which can be resource-intensive and may slow down the

overall resolution process.

5.9 Unable to classify 105

Inconclusive Results: Having a considerable number of issues falling into the

“unknown” category may lead to inconclusive or non-actionable insights, which

might not be helpful for stakeholders looking for clear answers.

Imprecision: The “unknown” class can sometimes become a catch-all category

for instances that are difficult to classify, leading to less precision in the model’s

outputs.

Training Challenges: Training a model with an “unknown” class can be chal-

lenging, as it may require labeled examples of “unknown” instances, which might

not be readily available.

Potential for Neglect: There is a risk that issues categorized as “unknown”

may be overlooked or deprioritized, potentially leading to significant issues being

left unaddressed.

User Frustration: Users might find an “unknown” classification unhelpful

or frustrating, as it does not provide a clear resolution or direction, and may

prolong the time to reach a conclusive decision.

Dilution of Focus: The model might end up allocating substantial focus and

resources on resolving the ambiguity in “unknown” classes, potentially detract-

ing from the primary goal of accurately classifying clear-cut instances.

Delay in Remediation: The introduction of an “unknown” class might slow

down the process of addressing and remedying legitimate bugs as they are stuck

in limbo awaiting classification.

Model Performance Metrics: Introduction of an “unknown” class could com-

plicate the evaluation of model performance, as traditional binary classification

metrics may no longer be straightforwardly applicable.

Balancing the advantages and disadvantages is crucial. The introduction of an

106 5.10 Summary

“unknown” class can be beneficial in managing uncertainty but requires careful

consideration and implementation to avoid the potential downsides.

5.10 Summary

This chapter introduced the data preparation stage, during which the data set

was pre-processed before to conducting the experiments. Extensive experiments

have been carried out to assess the efficacy of the developed algorithm for a

classification task, utilising benchmark datasets sourced from three distinct open

source software projects.

In the context of classification, the algorithm presented in this study demon-

strated favourable outcomes that are equivalent to the approach put out by other

researchers. Additionally, it exhibited slightly better results on specific datasets.

Furthermore, we engaged in a comprehensive discussion over the identification of

a “unknown” phenomenon, attributing it to the inherent characteristics of our

methodology. This was substantiated by presenting illustrative cases of issue

reports extracted from the dataset.

107

Chapter 6

Conclusion & Future Works

6.1 Conclusion

Classifying software issue reports can present challenges, particularly when deal-

ing with reports that include code snippets and are written in lengthy sentences.

The process of manual classification often results in a significant expenditure

of time and laborious. The overall contribution of the thesis has been centred

around a methodology for classifying issues reported in the context of software

maintenance. Our method was driven by the methodology of Classification Asso-

ciation Rule Mining. Instead of seeking dominant patterns in issue reports for the

purpose of constructing a classifier, our approach involves identifying all credible

patterns in order to develop a set of collectively robust rules for classifying issue

reports. This practise is valuable and significant in situations where there are

several semantic interpretations linked to particular phrases or when an issue re-

port encompasses multiple problems. The experimental results demonstrate that

our proposed methodology exhibits a promising level of accuracy in classifying

issue reports obtained from diverse projects. The contribution of the thesis can

be summarised as follow:

108 6.1 Conclusion

• Majority Vote Classification:

We introduced a classification technique was implemented using the ma-

jority vote approach. Chapter 3 was dedicated to elaborate our initial ap-

proach in classifying software issue reports. The original hypothesis was

based on the generation of “credible” rules through the manipulation of the

minSupport and minConfidence.

By lowering the threshold values, a substantial increase in the number of

rules available for classification was seen. While many rules may be consid-

ered weak, they are nonetheless utilised jointly in constructing a proficient

classifier as long as they occur with sufficient frequency in our complete

dataset.

The procedure will afterwards determine the number of rules that pertain

to bugs and non-bugs. The class value for the report classification will be

determined by selecting the rules that have the highest count representing

a specific class. The methodology employed in this approach diverges sig-

nificantly from the existing classifier models that were constructed using a

“dominant” pattern. By employing such a methodology, certain rules that

are deemed “credible” may be omitted and not utilised for the purpose of

classification.

• Support based Voting:

We conducted additional investigations into the potential for improving our

technique by using support count as a component of the selection crite-

rion for rule counting during classification. In Chapter 4, a comprehensive

description is provided on improving our methodology, which is achieved

through Algorithms 4 and 5. In contrast to our previous methods, which

viewed each rule as equal regardless of its support count, the Support-

based Voting strategy assigns a value to each rules based on its support. It

utilises these values combined to classify an unseen issue report. This strat-

6.1 Conclusion 109

egy presents a more equitable voting technique by assigning varying levels

of weight to each rule based on their respective “strength” or “support”

count.

• “Unknown” Classification The methodology employed in our study is

based on calculating the number of rules that have identified a particu-

lar report as either a bug or a non-bug. If there is a situation where both

rules receive an equal number of votes, our method will classify the report

as “unknown”. Chapter 5, specifically Section 5.9, provides a comprehen-

sive analysis of the classification finding pertaining to entities labelled as

“unknown”.

We presented an analysis of the major characteristics of a report that is

likely to be classified as “unknown”. We used samples from issue reports

within our dataset to support our findings. Based on our discussion, us-

ing the “unknown” classification can introduce a novel approach in the field

of classification, particularly in scenarios where reports exhibit a significant

degree of uncertainty. The reports often encompassed multiple issues ad-

dressed inside a single report or were heavily intertwined with code snip-

pets, making pre-processing challenging. The “Unknown” classification dif-

fers from typical classifiers in that it does not require reports to be classed as

a definitive class value. This will impact the overall precision of the model.

Nevertheless, if the inclusion of unknown variables is to be integrated into

the measurement process, it is imperative to be executed suitably. The

excessive classification of reports as ”unknown” does not serve as a reliable

performance measure for our methodology. Therefore, in Section 6.2.1, we

present guidelines on how to address the issue of “unknown” classification

in order to preserve the efficacy of our approach.

110 6.2 Future Works

6.2 Future Works

In Section 6.2.1 we present potential solutions to overcome with “unknown” clas-

sification should the number of reports classified as “unknown” are relatively

high. Please note that we do not view “unknown” as an issue or new problem to

solve. However, we view it as an opportunity to improve the performance of our

method. We divide our potential solutions into two main ideas. One in which

require modification of our existing method. Secondly, to include human in the

loop as expert view when dealing with certain types of “unknown” report based

on the findings presented in Section 5.9.3.

In Section 6.2.2 we provide some pointers on new research directions based on

our proposed method.

6.2.1 Possible solutions to Unknown Cases

As stated earlier, an unforeseen outcome of our methodology was observed when

the total number of votes reached a state of equality that leads to “unknown”

classification. Upon thoroughly analysing the issue at hand, we propose a range

of potential solutions, considering the possible causes outlined in Section 5.9.3.

Solution 1 and 2 below require modification of our method. Whereas Solution

3 requires human expert to classify the “unknown” report manually and update

the classifier for future classification.

Solution #1: Missing Keywords & Short Reports

Missing keywords occurred in our interpretation when a report contained desir-

able keywords but was unable to be classified due to the absence of rules fired

during the classification phase. To anticipate and handle such an event, it is rec-

ommended to implement a reclassification procedure. This approach is inspired

6.2 Future Works 111

by the semantic approach to find any existing rules that are comparable to the

keywords in the unknown report by way of calculating the cosine similarity be-

tween each keyword and the set of all possible rules. The procedure is presented

below.

1. Scan the vectorised report find any keywords that have no match with rules

fired during classification.

(a) Find any keywords that fall under the following category noun, verb

and adjective.

2. The identified keyword will then be categorised into verb taxonomy as de-

signed in WordNet.

3. Scan all rules that fall under the same categorization group of identified

keywords.

4. Match all keywords discovered with rules that have been grouped accord-

ingly.

(a) For each keyword find the match rules in the same category.

(b) Calculate the cosine similarity between keyword and rule.

(c) repeat until all keywords and rules have been covered and calculated.

5. Rank all the matching keywords and rules and find the highest value.

(a) Select the rules that have closest to the keyword which indicate strong

semantic similarity.

(b) Use the rules to reclassify the Unknown report by adding the vote

counting of the initial classification.

6. Present reclassification result.

112 6.2 Future Works

Solution #2: Report Contained Code Snippet

One of the complications associated with the classification of issue reports is the

presence of extensive code snippets within some of the reports. The presence of

extraneous symbols frequently observed in a code snippet poses a hurdle during

the pre-processing phase. Previously, we employed the camelCase split method to

handle a code snippet. Nevertheless, this methodology ultimately resulted in the

extraction of numerous specialised terminologies present inside the code snippet.

Therefore, in order to facilitate future enhancements, it is suggested that every

word written in camelCase style be replaced with the term Code’ to signify that

the report contains a code snippet.

By implementing this approach, the frequency of specialised terminology present

in the code snippets is diminished and substituted with the phrase Code’. This

development warrants additional exploration in the field of issue report classi-

fication, specifically in the incorporation of code snippets as a feature selection

technique.

Based on our empirical observations, it has been noted that a significant propor-

tion of reports including code snippets are predominantly classified as instances

of software bugs. By employing this methodology, it is postulated that there will

be an improvement in the efficacy of the classification process.

Solution #3: Multi Issues Report

One of the findings from our investigation of the attributes of reports categorised

as ”unknown” is that a singular report encompassed numerous topics being exam-

ined. Based on the example provided in Table 5.13, it is evident that the majority

of reports that address many issues extensively employ lengthy sentence struc-

tures. Therefore, the identical number of votes across bug and non-bug instances

presented a challenge to our classification algorithm.

6.2 Future Works 113

To enhance future enhancements, it is advisable to refer to any reports that sur-

pass a specific number of vectorised terms and have been classified as “unknown”

for manual assessment and clarification. Once the human expert has verified that

a report has multiple issues, it is necessary to update the classifier accordingly.

6.2.2 New Research Directions

Further research endeavours can encompass exploring the potential applicability

of the findings presented in this thesis across many domains, as well as soliciting

feedback from practical implementations.

• Multi-Class Classification:

One potential avenue for investigating the feasibility of our approach is

by doing a multi-class classification task. At present, we only employ the

method for binary classification, which presents a constraint. In order to ef-

fectively apply the methodology for multi-class classification, it is advisable

to select a substantial dataset, as the efficacy of our technique relies on the

“credibility” of the rules derived via the process of rule mining.The presence

of imbalanced data could cause a difficulty in effectively implementing our

approach.

• Feature Selection Technique:

Alternatively, this is also one potential avenue for exploration. Currently,

we only employ Term Frequency - Inverse Document Frequency and Chi-

square(X2) as our feature selection. Although these two techniques have

proven to be effective [67], it is recommended in explore the possibility of

other techniques such as word embedding [55, 22, 81] to improve the feature

selection in text classification.

• Incorporation of Language Model:

One promising avenue for future research involves exploring the utility of

114 6.2 Future Works

modern language models (e.g., BERT, GPT) for feature engineering [23]

and automatic labelling [10, 17] tasks in software issue reports. These mod-

els excel at capturing contextual and semantic relationships within text,

which could enhance feature extraction processes by identifying domain-

specific terms and subtle linguistic patterns. Additionally, language models

could assist in automating the labelling process by providing preliminary

classifications or suggesting likely categories based on report content. This

could significantly reduce the reliance on manual intervention and further

streamline the issue classification process. Examining how language models

perform in conjunction with the proposed approach could offer insights into

the scalability and adaptability of intelligent bug tracking systems.

115

References

[1] Firas Abuzaid, Peter Kraft, Sahaana Suri, Edward Gan, Eric Xu, Atul

Shenoy, Asvin Ananthanarayan, John Sheu, Erik Meijer, Xi Wu, Jeff

Naughton, Peter Bailis, and Matei Zaharia. Diff: A relational interface for

large-scale data explanation. Proc. VLDB Endow., 12(4):419–432, dec 2018.

[2] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining as-

sociation rules in large databases. In Proceedings of the 20th International

Conference on Very Large Data Bases, VLDB ’94, pages 487–499, San Fran-

cisco, CA, USA, 1994. Morgan Kaufmann Publishers Inc.

[3] Ibrahim Aljarah, Shadi Banitaan, Sameer Abufardeh, Wei Jin, and Saeed

Salem. Selecting discriminating terms for bug assignment: A formal analysis.

In Proceedings of the 7th International Conference on Predictive Models in

Software Engineering, Promise ’11, pages 12:1–12:7, New York, NY, USA,

2011. ACM.

[4] Giuliano Antoniol, Kamel Ayari, Massimiliano Di Penta, Foutse Khomh,

and Yann-Gaël Guéhéneuc. Is it a bug or an enhancement?: A text-based

approach to classify change requests. In Proceedings of the 2008 Confer-

ence of the Center for Advanced Studies on Collaborative Research: Meeting

of Minds, CASCON ’08, pages 23:304–23:318, New York, NY, USA, 2008.

ACM.

116 References

[5] John Anvik, Lyndon Hiew, and Gail C. Murphy. Who should fix this bug? In

Proceedings of the 28th International Conference on Software Engineering,

ICSE ’06, pages 361–370, New York, NY, USA, 2006. ACM.

[6] Alain April and Alain Abran. Software maintenance management: evalua-

tion and continuous improvement, volume 67. John Wiley & Sons, 2012.

[7] Sylvain Arlot and Alain Celisse. A survey of cross-validation procedures for

model selection. Statistics Surveys, 4(none):40 – 79, 2010.

[8] Ricardo A. Baeza-Yates and Berthier Ribeiro-Neto. Modern Information

Retrieval. Addison-Wesley Longman Publishing Co., Inc., USA, 1999.

[9] G. Bavota. Mining unstructured data in software repositories: Current and

future trends. In 2016 IEEE 23rd International Conference on Software

Analysis, Evolution, and Reengineering (SANER), volume 5, pages 1–12,

March 2016.

[10] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Ka-

plan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry,

Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger,

Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu,

Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott

Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish,

Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-

shot learners. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and

H. Lin, editors, Advances in Neural Information Processing Systems, vol-

ume 33, pages 1877–1901. Curran Associates, Inc., 2020.

[11] Agustin Casamayor, Daniela Godoy, and Marcelo Campo. Identification

of non-functional requirements in textual specifications: A semi-supervised

learning approach. Information and Software Technology, 52(4):436 – 445,

2010.

References 117

[12] Yguaratã Cerqueira Cavalcanti, Paulo Anselmo da Mota Silveira Neto,

Daniel Lucrédio, Tassio Vale, Eduardo Santana de Almeida, and Sil-

vio Romero de Lemos Meira. The bug report duplication problem: an ex-

ploratory study. Software Quality Journal, 21(1):39–66, Mar 2013.

[13] Ned Chapin, Joanne E. Hale, Khaled Md. Khan, Juan F. Ramil, and Wui-

Gee Tan. Types of software evolution and software maintenance. Journal

of Software Maintenance and Evolution: Research and Practice, 13(1):3–30,

2001.

[14] Indu Chawla and Sandeep K. Singh. An automated approach for bug cat-

egorization using fuzzy logic. In Proceedings of the 8th India Software En-

gineering Conference, ISEC ’15, pages 90–99, New York, NY, USA, 2015.

ACM.

[15] J. Cleland-Huang, R. Settimi, X. Zou, and P. Solc. The detection and clas-

sification of non-functional requirements with application to early aspects.

In 14th IEEE International Requirements Engineering Conference (RE’06),

pages 39–48, Sept 2006.

[16] Jane Cleland-Huang, Raffaella Settimi, Xuchang Zou, and Peter Solc. Auto-

mated classification of non-functional requirements. Requirements Engineer-

ing, 12(2):103–120, Apr 2007.

[17] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.

BERT: Pre-training of deep bidirectional transformers for language under-

standing. In Jill Burstein, Christy Doran, and Thamar Solorio, editors,

Proceedings of the 2019 Conference of the North American Chapter of the

Association for Computational Linguistics: Human Language Technologies,

Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis, Min-

nesota, June 2019. Association for Computational Linguistics.

118 References

[18] Davide Falessi, Bill Kidwell, Jane Huffman Hayes, and Forrest Shull. On

failure classification: The impact of ”getting it wrong”. In Companion Pro-

ceedings of the 36th International Conference on Software Engineering, ICSE

Companion 2014, pages 512–515, New York, NY, USA, 2014. ACM.

[19] Q. Fan, Y. Yu, G. Yin, T. Wang, and H. Wang. Where is the road for issue

reports classification based on text mining? In 2017 ACM/IEEE Inter-

national Symposium on Empirical Software Engineering and Measurement

(ESEM), pages 121–130, Nov 2017.

[20] IEEE for Software Engineering. Ieee standard for software maintenance.

IEEE Std 1219-1998, pages i–, 1998.

[21] George Forman. An extensive empirical study of feature selection metrics

for text classification. J. Mach. Learn. Res., 3(null):1289–1305, March 2003.

[22] J. Guo, J. Cheng, and J. Cleland-Huang. Semantically enhanced software

traceability using deep learning techniques. In 2017 IEEE/ACM 39th In-

ternational Conference on Software Engineering (ICSE), pages 3–14, May

2017.

[23] Suchin Gururangan, Ana Marasović, Swabha Swayamdipta, Kyle Lo, Iz Belt-

agy, Doug Downey, and Noah A. Smith. Don’t stop pretraining: Adapt lan-

guage models to domains and tasks. In Dan Jurafsky, Joyce Chai, Natalie

Schluter, and Joel Tetreault, editors, Proceedings of the 58th Annual Meeting

of the Association for Computational Linguistics, pages 8342–8360, Online,

July 2020. Association for Computational Linguistics.

[24] Isabelle Guyon and André Elisseeff. An introduction to variable and feature

selection. J. Mach. Learn. Res., 3(null):1157–1182, March 2003.

[25] Kim Herzig, Sascha Just, and Andreas Zeller. It's not a bug, it's a feature:

How misclassification impacts bug prediction. In Proceedings of the 2013

References 119

International Conference on Software Engineering, ICSE ’13, pages 392–401,

Piscataway, NJ, USA, 2013. IEEE Press.

[26] Kim Herzig and Andreas Zeller. Mining Bug Data, pages 131–171. Springer

Berlin Heidelberg, Berlin, Heidelberg, 2014.

[27] A. Hindle, D. M. German, M. W. Godfrey, and R. C. Holt. Automatic clas-

sication of large changes into maintenance categories. In 2009 IEEE 17th In-

ternational Conference on Program Comprehension, pages 30–39, May 2009.

[28] H. Hosseini, R. Nguyen, and M. W. Godfrey. A market-based bug allocation

mechanism using predictive bug lifetimes. In 2012 16th European Conference

on Software Maintenance and Reengineering, pages 149–158, March 2012.

[29] Gaeul Jeong, Sunghun Kim, and Thomas Zimmermann. Improving bug

triage with bug tossing graphs. In Proceedings of the the 7th Joint Meeting

of the European Software Engineering Conference and the ACM SIGSOFT

Symposium on The Foundations of Software Engineering, ESEC/FSE ’09,

pages 111–120, New York, NY, USA, 2009. ACM.

[30] Daniel Jurafsky and James H. Martin. Speech and Language Processing:

An Introduction to Natural Language Processing, Computational Linguistics,

and Speech Recognition with Language Models. 3rd edition, 2024. Online

manuscript released August 20, 2024.

[31] R. Uday Kiran, Sourabh Shrivastava, Philippe Fournier-Viger, Koji Zettsu,

Masashi Toyoda, and Masaru Kitsuregawa. Discovering frequent spatial pat-

terns in very large spatiotemporal databases. In Proceedings of the 28th

International Conference on Advances in Geographic Information Systems,

SIGSPATIAL ’20, page 445–448, New York, NY, USA, 2020. Association for

Computing Machinery.

120 References

[32] Eric Knauss, Daniela Damian, Jane Cleland-Huang, and Remko Helms. Pat-

terns of continuous requirements clarification. Requirements Engineering,

20(4):383–403, Nov 2015.

[33] Eric Knauss, Siv Houmb, Kurt Schneider, Shareeful Islam, and Jan Jürjens.

Supporting Requirements Engineers in Recognising Security Issues, pages 4–

18. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[34] Andrew J. Ko, Brad A. Myers, Michael J. Coblenz, and Htet Htet Aung.

An exploratory study of how developers seek, relate, and collect relevant

information during software maintenance tasks. IEEE Trans. Softw. Eng.,

32(12):971–987, December 2006.

[35] P. S. Kochhar, F. Thung, and D. Lo. Automatic fine-grained issue report

reclassification. In 2014 19th International Conference on Engineering of

Complex Computer Systems, pages 126–135, Aug 2014.

[36] Pavneet Singh Kochhar, Yuan Tian, and David Lo. Potential biases in bug

localization: Do they matter? In Proceedings of the 29th ACM/IEEE In-

ternational Conference on Automated Software Engineering, ASE ’14, pages

803–814, New York, NY, USA, 2014. ACM.

[37] Ron Kohavi. A study of cross-validation and bootstrap for accuracy esti-

mation and model selection. In Proceedings of the 14th International Joint

Conference on Artificial Intelligence - Volume 2, IJCAI’95, page 1137–1143,

San Francisco, CA, USA, 1995. Morgan Kaufmann Publishers Inc.

[38] A. N. Lam, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen. Bug lo-

calization with combination of deep learning and information retrieval. In

2017 IEEE/ACM 25th International Conference on Program Comprehension

(ICPC), pages 218–229, May 2017.

[39] Thomas D. LaToza, Gina Venolia, and Robert DeLine. Maintaining mental

models: A study of developer work habits. In Proceedings of the 28th In-

References 121

ternational Conference on Software Engineering, ICSE ’06, pages 492–501,

New York, NY, USA, 2006. ACM.

[40] M. M. Lehman, J. F. Ramil, P. D. Wernick, D. E. Perry, and W. M. Turski.

Metrics and laws of software evolution-the nineties view. In Proceedings

Fourth International Software Metrics Symposium, pages 20–32, Nov 1997.

[41] Laura Lehtola, Marjo Kauppinen, and Sari Kujala. Requirements Prioriti-

zation Challenges in Practice, pages 497–508. Springer Berlin Heidelberg,

Berlin, Heidelberg, 2004.

[42] Wenmin Li, Jiawei Han, and Jian Pei. Cmar: accurate and efficient classifi-

cation based on multiple class-association rules. In Proceedings 2001 IEEE

International Conference on Data Mining, pages 369–376, 2001.

[43] N. Limsettho, H. Hata, A. Monden, and K. Matsumoto. Automatic unsu-

pervised bug report categorization. In 2014 6th International Workshop on

Empirical Software Engineering in Practice, pages 7–12, Nov 2014.

[44] Z. Lin, F. Shu, Y. Yang, C. Hu, and Q. Wang. An empirical study on bug

assignment automation using chinese bug data. In 2009 3rd International

Symposium on Empirical Software Engineering and Measurement, pages 451–

455, Oct 2009.

[45] Bing Liu, Wynne Hsu, and Yiming Ma. Integrating classification and associ-

ation rule mining. In Proceedings of the Fourth International Conference on

Knowledge Discovery and Data Mining, KDD’98, pages 80–86. AAAI Press,

1998.

[46] Huan Liu and Lei Yu. Toward integrating feature selection algorithms

for classification and clustering. IEEE Trans. on Knowl. and Data Eng.,

17(4):491–502, April 2005.

122 References

[47] Edward Loper and Steven Bird. Nltk: The natural language toolkit. In

Proceedings of the ACL-02 Workshop on Effective Tools and Methodologies

for Teaching Natural Language Processing and Computational Linguistics

- Volume 1, ETMTNLP ’02, pages 63–70, Stroudsburg, PA, USA, 2002.

Association for Computational Linguistics.

[48] G. A. Di Lucca, M. Di Penta, and S. Gradara. An approach to classify soft-

ware maintenance requests. In International Conference on Software Main-

tenance, 2002. Proceedings., pages 93–102, Oct 2002.

[49] Anas Mahmoud and Grant Williams. Detecting, classifying, and tracing non-

functional software requirements. Requirements Engineering, 21(3):357–381,

Sep 2016.

[50] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Intro-

duction to Information Retrieval. Cambridge University Press, USA, 2008.

[51] Sharon McGee and Des Greer. Towards an understanding of the causes

and effects of software requirements change: two case studies. Requirements

Engineering, 17(2):133–155, Jun 2012.

[52] Phayung Meesad, Pudsadee Boonrawd, and Vatinee Nuipian. A chi-square-

test for word importance differentiation in text classification. In 2011 Inter-

national Conference on Information and Electronics Engineering, volume 6,

pages 110–114, 2011.

[53] T. Merten, M. Falis, P. Hübner, T. Quirchmayr, S. Bürsner, and B. Paech.

Software feature request detection in issue tracking systems. In 2016 IEEE

24th International Requirements Engineering Conference (RE), pages 166–

175, Sept 2016.

[54] Mahmoud Mhashi, Roy Rada, Hafedh Mili, Geeng-Neng You, Akmal Zeb,

and Antonis Michailidis. Word Frequency Based Indexing and Authoring,

pages 131–148. Springer Netherlands, Dordrecht, 1992.

References 123

[55] Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan Černocký, and San-

jeev Khudanpur. Recurrent neural network based language model. In Proc.

Interspeech 2010, pages 1045–1048, 2010.

[56] Audris Mockus and Lawrence G. Votta. Identifying reasons for software

changes using historic databases. In Proceedings of the International Con-

ference on Software Maintenance (ICSM’00), ICSM ’00, pages 120–, Wash-

ington, DC, USA, 2000. IEEE Computer Society.

[57] J. Nam and S. Kim. Clami: Defect prediction on unlabeled datasets (t).

In 2015 30th IEEE/ACM International Conference on Automated Software

Engineering (ASE), pages 452–463, Nov 2015.

[58] S Niharika, V Sneha Latha, and DR Lavanya. A survey on text categoriza-

tion. International Journal of Computer Trends and Technology, 1(3):39–45,

2006.

[59] Nitish Pandey, Debarshi Kumar Sanyal, Abir Hudait, and Amitava Sen.

Automated classification of software issue reports using machine learning

techniques: an empirical study. Innovations in Systems and Software Engi-

neering, Jul 2017.

[60] Sangameshwar Patil and B. Ravindran. Predicting software defect type using

concept-based classification. Empirical Software Engineering, 25:1341–1378,

Mac 2020.

[61] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-

sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-

learn: Machine learning in Python. Journal of Machine Learning Research,

12:2825–2830, 2011.

124 References

[62] N. Pingclasai, H. Hata, and K. Matsumoto. Classifying bug reports to bugs

and other requests using topic modeling. In 2013 20th Asia-Pacific Software

Engineering Conference (APSEC), volume 2, pages 13–18, Dec 2013.

[63] Klaus Pohl and Chris Rupp. Requirements Engineering Fundamentals: A

Study Guide for the Certified Professional for Requirements Engineering

Exam - Foundation Level - IREB Compliant. Rocky Nook, 2nd edition,

2015.

[64] M. Riaz, J. King, J. Slankas, and L. Williams. Hidden in plain sight:

Automatically identifying security requirements from natural language ar-

tifacts. In 2014 IEEE 22nd International Requirements Engineering Confer-

ence (RE), pages 183–192, Aug 2014.

[65] Gema Rodriguez-Perez, Jesús M. Gonzalez-Barahona, Gregorio Robles, Do-

realda Dalipaj, and Nelson Sekitoleko. BugTracking: A Tool to Assist in the

Identification of Bug Reports, pages 192–198. Springer International Pub-

lishing, Cham, 2016.

[66] P. Runeson, M. Alexandersson, and O. Nyholm. Detection of duplicate defect

reports using natural language processing. In 29th International Conference

on Software Engineering (ICSE’07), pages 499–510, May 2007.

[67] Furqan Rustam, Arif Mehmood, Muhammad Ahmad, Saleem Ullah,

Dost Muhammad Khan, and Gyu Sang Choi. Classification of shopify app

user reviews using novel multi text features. IEEE Access, 8:30234–30244,

2020.

[68] Gerard Salton and Michael J. McGill. Introduction to Modern Information

Retrieval. McGraw-Hill, Inc., USA, 1986.

[69] Stephen R. Schach. Object-Oriented and Classical Software Engineering Vol.

8. McGraw-Hill, Inc., New York, NY, USA, 7 edition, 2011.

References 125

[70] Hinrich Schütze, Christopher D. Manning, and Prabhakar Raghavan. Intro-

duction to Information Retrieval. Cambridge University Press, Cambridge,

UK, 2008.

[71] Carolyn B. Seaman. Software maintenance: Concepts and practice authored

by penny grubb and armstrong a. takang world scientific, new jersey. copy-

right © 2003; 349 pages isbn 981-238-426-x (paperback) us$40.

J. Softw. Maint. Evol., 20(6):463–466, November 2008.

[72] L. Shi, Q. Wang, and M. Li. Learning from evolution history to predict

future requirement changes. In 2013 21st IEEE International Requirements

Engineering Conference (RE), pages 135–144, July 2013.

[73] Vandita Singh, Bhupendra Kumar, and Tushar Patnaik. Feature extraction

techniques for handwritten text in various scripts: a survey. International

Journal of Soft Computing and Engineering, 1(3):238–241, 2013.

[74] J. Slankas and L. Williams. Automated extraction of non-functional re-

quirements in available documentation. In 2013 1st International Workshop

on Natural Language Analysis in Software Engineering (NaturaLiSE), pages

9–16, May 2013.

[75] Ian Sommerville. Software Engineering. Addison-Wesley Publishing Com-

pany, USA, 10th edition, 2015.

[76] E. Burton Swanson. The dimensions of maintenance. In Proceedings of

the 2Nd International Conference on Software Engineering, ICSE ’76, pages

492–497, Los Alamitos, CA, USA, 1976. IEEE Computer Society Press.

[77] P. Terdchanakul, H. Hata, P. Phannachitta, and K. Matsumoto. Bug or

not? bug report classification using n-gram idf. In 2017 IEEE International

Conference on Software Maintenance and Evolution (ICSME), pages 534–

538, Sep. 2017.

126 References

[78] Gary M. Weiss and Foster Provost. Learning when training data are

costly: the effect of class distribution on tree induction. J. Artif. Int. Res.,

19(1):315–354, October 2003.

[79] Ian H. Witten, Eibe Frank, and Mark A. Hall. Data Mining: Practical

Machine Learning Tools and Techniques. Morgan Kaufmann Publishers Inc.,

San Francisco, CA, USA, 3rd edition, 2011.

[80] Yiming Yang and Jan O. Pedersen. A comparative study on feature selec-

tion in text categorization. In Proceedings of the Fourteenth International

Conference on Machine Learning, ICML ’97, page 412–420, San Francisco,

CA, USA, 1997. Morgan Kaufmann Publishers Inc.

[81] X. Ye, H. Shen, X. Ma, R. Bunescu, and C. Liu. From word embeddings

to document similarities for improved information retrieval in software en-

gineering. In 2016 IEEE/ACM 38th International Conference on Software

Engineering (ICSE), pages 404–415, May 2016.

[82] Bei Yu. An Evaluation of Text Classification Methods for Literary Study.

PhD thesis, USA, 2006.

[83] Andreas Zeller. Can We Trust Software Repositories?, pages 209–215.

Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[84] ChengXiang Zhai and Sean Massung. Text Data Management and Anal-

ysis: A Practical Introduction to Information Retrieval and Text Mining,

volume 12. Association for Computing Machinery and Morgan & Claypool,

2016.

[85] Jie Zhang, XiaoYin Wang, Dan Hao, Bing Xie, Lu Zhang, and Hong Mei. A

survey on bug-report analysis. Science China Information Sciences, 58(2):1–

24, Feb 2015.

References 127

[86] Yu Zhou, Yanxiang Tong, Ruihang Gu, and Harald Gall. Combining text

mining and data mining for bug report classification. Journal of Software:

Evolution and Process, 28(3):150–176, 2016. JSME-15-0091.R2.

[87] Davor Čubranić. Automatic bug triage using text categorization. In In SEKE

2004: Proceedings of the Sixteenth International Conference on Software En-

gineering and Knowledge Engineering, pages 92–97. KSI Press, 2004.

128 References

129

Appendix

Appendix

.1 Hold Out Evaluation

.1.1 Http Client Project

Figure 1: Http-Client Project

130 .1 Hold Out Evaluation

Figure 2: Http-Client Project

Figure 3: Http-Client Project

Figure 4: Http-Client Project

.1 Hold Out Evaluation 131

Figure 5: Http-Client Project

Figure 6: Http-Client Project

Figure 7: Http-Client Project

132 .1 Hold Out Evaluation

Figure 8: Http-Client Project

.1.2 Lucene Project

Figure 9: Lucene Project

.1 Hold Out Evaluation 133

Figure 10: Lucene Project

Figure 11: Lucene Project

Figure 12: Lucene Project

134 .1 Hold Out Evaluation

Figure 13: Lucene Project

Figure 14: Lucene Project

Figure 15: Lucene Project

.1 Hold Out Evaluation 135

Figure 16: Lucene Project

.1.3 Jackrabbit Project

Figure 17: Jackrabbit Project

136 .1 Hold Out Evaluation

Figure 18: Jackrabbit Project

Figure 19: Jackrabbit Project

Figure 20: Jackrabbit Project

.1 Hold Out Evaluation 137

Figure 21: Jackrabbit Project

Figure 22: Jackrabbit Project

Figure 23: Jackrabbit Project

138 .2 Cross Validation

Figure 24: Jackrabbit Project

.2 Cross Validation

Http-Client Project

Experiment results using TF-IDF as feature selection

Figure 25: Http-Client Project

.2 Cross Validation 139

Figure 26: Http-Client Project

Figure 27: Http-Client Project

Figure 28: Http-Client Project

140 .2 Cross Validation

Figure 29: Http-Client Project

Figure 30: Http-Client Project

Figure 31: Http-Client Project

.2 Cross Validation 141

Figure 32: Http-Client Project

.2.1 Lucene Project

Figure 33: Lucene Project

142 .2 Cross Validation

Figure 34: Lucene Project

Figure 35: Lucene Project

Figure 36: Lucene Project

.2 Cross Validation 143

Figure 37: Lucene Project

Figure 38: Lucene Project

Figure 39: Lucene Project

144 .2 Cross Validation

Figure 40: Lucene Project

.2.2 Jackrabbit Project

Figure 41: Jackrabbit Project

.2 Cross Validation 145

Figure 42: Jackrabbit Project

Figure 43: Jackrabbit Project

Figure 44: Jackrabbit Project

146 .2 Cross Validation

Figure 45: Jackrabbit Project

Figure 46: Jackrabbit Project

Figure 47: Jackrabbit Project

.2 Cross Validation 147

Figure 48: Jackrabbit Project

	Abstract
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Acknowledgements
	Introduction
	Introduction
	Research Motivation
	Research Problem
	Research Hypothesis and Contributions
	Thesis Organisation

	Background
	Overview of Software Maintenance
	Issue Report and Its Life-cycle
	Software Maintenance in Open Source Software Perspective
	Issues and Challenges in Classifying Issue Reports

	Analysis of Existing Approaches
	Works Related to Issue Reports Classification
	Works Related to Automated Classification
	Summary of Related Works

	Majority Vote Classification using Association Rule Mining
	Association Rules Mining
	Apriori Algorithm
	Antecedent and Consequent
	Support
	Confidence
	Significance and Utility
	Summary of Association Rules Mining

	Proposed Approach
	Minimal Credibility
	Consequent Restricted Rules Generation
	Report Classification

	Summary

	Support Based Voting Classification
	Support Count in rules formation
	Explanation of the Modified Algorithm

	Support based Voting
	Explanation of Algorithm 5 - Using Support as Weight

	Summary

	Experiments and Results
	Data Description
	Data Preparation
	Text Normalisation
	Feature Selection

	Performance Measures
	Evaluation Approach
	Classification Experiment using Method 1
	The Effect of Minimal Rules Credibility
	Discussion

	Classification Experiment - Method 2
	Minimal Credibility Thresholds
	Discussion

	Experiment Summary - Method 1 & 2
	Comparative Analysis
	Discussion

	Unable to classify
	Unknown Classification
	Possible Causes of Unknown
	Advantages and Disadvantages

	Summary

	Conclusion & Future Works
	Conclusion
	Future Works
	Possible solutions to Unknown Cases
	New Research Directions
	References
	Appendix
	Hold Out Evaluation
	Http Client Project
	Lucene Project
	Jackrabbit Project

	Cross Validation
	Lucene Project
	Jackrabbit Project

