
 ORCA – Online Research @
Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional
repository:https://orca.cardiff.ac.uk/id/eprint/176298/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

Zakarya, Muhammad, Gillam, Lee, Qazani, Mohammad Reza Chalak, Khan, Ayaz Ali, Salah, Khaled and
Rana, Omer 2025. BackFillMe: An energy and performance efficient virtual machine scheduler for IaaS

datacenters. IEEE Transactions on Services Computing 10.1109/tsc.2025.3539190 

Publishers page: https://doi.org/10.1109/tsc.2025.3539190 

Please note: 
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may
not be reflected in this version. For the definitive version of this publication, please refer to the published

source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See 
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made

available in ORCA are retained by the copyright holders.



1

BACKFILLME: An Energy and Performance Efficient Virtual
Machine Scheduler for IaaS Datacenters

Muhammad Zakarya, Lee Gillam, Mohammad Reza Chalak Qazani, Ayaz Ali Khan, Khaled Salah, Omer Rana

Abstract—Backfilling refers to the practice of allowing small jobs to be completed ahead of schedule as long as they do not cause the first
job in the line to wait. Users are expected to offer estimates of how long jobs will take to complete in order to make these decisions possible,
and these projections are often based on historical data. However, predictions are very hard and may not be accurate, particularly in cloud
computing scenarios where jobs or applications run on Virtual Machines (VMs). In addition, scheduling and consolidation techniques can
improve the energy efficiency and performance of applications. Consolidation involves VM migrations that can have a negative impact on
workload performance and users’ costs. Backfilling can be used as an alternative technique for consolidation (short-term) and/or can be used
along with consolidation (long-term). Backfilling methods are well-utilised in single computing systems, but are relatively unexplored in cloud
resource allocation. A backfilling-based resource allocation and consolidation technique is proposed. Using real workloads from the Google
cluster traces, we investigate the impact of backfilling on infrastructure energy efficiency and performance. For 12583 heterogeneous servers
and approximately three million jobs that belong to three different applications, we observed that approximately 19% energy savings and 6%
workload performance improvements are achievable using the backfilling approach. Furthermore, our evaluation suggests that using VM runtime
as a criterion for the backfilling approach is approximately 3.56% – 7.78% more energy and 1.91% – 3.38% more performance efficient than
using priority as a backfilling criterion.

Index Terms—Clouds, resource allocation, backfilling, service migration, energy efficiency, performance

✦

1 INTRODUCTION

The energy crisis has led to a need for solutions to address
increased energy usage, particularly due to the growing num-

ber of ICT devices and the depletion of non-renewable energy
sources like coal and fossil fuels. Cloud computing has shown
potential as an energy-efficient solution, providing on-demand,
expanded network access, and quick elastic services to businesses
and IT sectors [1], [2]. Experts have predicted that cloud computing
could reduce global GHG emissions by 5.5% by 2025, with the
Lawrence Berkeley National Laboratory’s model suggesting an 87%
reduction in energy use [3]. Google’s recent report suggests that
cloud computing could contribute to energy savings of 68% to
87% [4]. However, the energy consumption of cloud datacenters
is still increasing, with an expected increase from 460TWh in 2022
to 1050TWh in 2026 due to the increase in mobile devices and the
demand for the Internet. The Internet of Things (IoT), big data,
artificial intelligence (AI), cryptocurrency, and the global pandemic
have significantly increased data production and processing re-
quirements [5]. Large energy consumption also reduces the profit
that can be achieved from various datacenter services, especially
with increasing energy prices. Techniques like resource allocation,
scheduling, and consolidation can help overcome these problems,
but consolidation of virtual machines (VMs) may be costly due
to extra energy consumption, decreased workload performance,
and increased user-related costs. Despite numerous VM placement
techniques suggested in the literature, there is still a gap to further
optimize datacenters in terms of energy consumption, workload
performance, and users’ costs [6].

• M. Zakarya and M. Qazani are with the Faculty of Computing and
Information Technology, Sohar University, Sultanate of Oman. M. Zakarya
is with the Department of Computer Science, Abdul Wali Khan University,
Pakistan. L. Gillam is with the Department of Computer Science, University
of Surrey, UK. A.A. Khan is with the Department of Computer Science,
University of Lakki Marwat, Pakistan. K. Salah is with Kahlifa University,
UAE. O. Rana is with Cardiff University, UK.
E-mail(s): MZakarya@su.edu.om, mohd.zakarya@awkum.edu.pk,
l.gillam@surrey.ac.uk, MQazani@su.edu.om, ayazkhan@ulm.edu.pk,
khaled.salah@ku.ac.ae, ranaof@cardiff.ac.uk

∗Corresponding authors: M. Zakarya

Backfilling is the methodology for running jobs out of order, even
if sufficient resources are not available for some particular jobs
[7], [8]. The scheduler continues monitoring the queue and selects
certain jobs that can be accommodated with the available resources.
However, in essence, these jobs must not affect the running jobs
on the servers. Such decisions are taken while accounting for the
jobs’ execution time (either provided by the users or predicted
from historical data). There are three major types of the back-
filling approach: (i) EASY-backfilling; (ii) Conservative backfilling;
and (iii) fattened backfilling [9], [10]. Conservative backfilling and
EASY-backfilling vary primarily in how they handle resource limits,
choose jobs, use preemption and suspension tactics, and prior-
itize tasks. Conservative backfilling adopts a reservation-based
strategy, prioritizes higher-priority tasks, and seeks to cause the
least amount of interruption to longer-running projects. The EASY-
backfilling method, on the other hand, promotes early task exe-
cution, permits resource overbooking (resource over-subscription),
and is more tolerant of work priorities, even if they are lower [11].
If short tasks do not cause the first job in the queue to wait longer
than the average wait time for the jobs that have previously been
completed, the fattened backfilling permits them to advance. The
VM allocation system’s unique objectives, needs, and restrictions
determine which of these methods should be used [12]. At a system
level, the backfilling approach has been evaluated, but in terms of
VM resource allocation and clouds, its effectiveness has not yet
been evaluated. Moreover, besides runtimes, other aspects of the
VMs and applications, such as priorities, should be considered in
VM placement decisions.
Despite the fact that there are algorithms that, in theory, provide
the best performance, in practice, these algorithms are too com-
plicated to be used in actual production systems. Most of these
algorithms, as discussed in Sec. 6, are focused on VM placement
and consolidation that involve migrations. From simple heuris-
tics to more advanced placement algorithms, using evolutionary
methods and predictive models, migrations affect the performance
of workloads [4], [5], [13], [14]. Backfilling is the most direct and
practical method for achieving efficient and equitable scheduling
without VM migrations. In fact, a lot of actual production systems
employ backfilling [15]. Due to the performance-driven nature of



2

the majority of scheduling algorithms, scheduling rules have been
extensively examined in the literature (Sec. 6), but there is still
more study to be done in this area to improve energy efficiency
and workload performance. In this paper, we propose a backfilling-
based VM allocation and consolidation technique that accounts for
the immediate placement of certain types of VMs based on their
runtimes and priorities, such that energy consumption is reduced
while the performance of other running applications is not affected.
We observed an existing trade-off between energy consumption
and performance; however, for certain types of VMs (applications),
the backfilling approach can reduce energy consumption and im-
prove performance. Furthermore, we also noted that backfilling can
significantly reduce the total number of migrations and, therefore,
the performance of the applications is not negatively affected. The
major contributions and findings of our research are:

• we propose an energy and performance aware VM place-
ment algorithm that accounts for VMs or applications’ pre-
vious runtimes and priorities;

• an energy and performance aware consolidation technique
is suggested that uses the notion of backfilling scheduler for
certain types of VMs or workloads; and

• a backfilling strategy is suggested that chooses the most
appropriate VMs for placement.

The rest of the paper is organized as follows: In Sec. 2, we model
the problem. In Sec. 3, we discuss the methodology and propose
several algorithms for VM allocation and consolidation. Further-
more, several statistical models are discussed to model the energy
and performance of cloud resources. In Sec. 4, we deliberate the
proposed backfilling technique that allocates VMs when there are
enough resources available to run them. We validate the proposed
scheme using real workload traces from Azure clusters in Sec. 5.
We offer an overview of the related work in Sec. 6. Finally, Sec.
7 concludes the paper and describes several directions for future
research.

2 PROBLEM DESCRIPTION

Today’s batch work schedulers for parallel supercomputers all em-
ploy default algorithms that are somewhat interchangeable. Basi-
cally, they run each task until it is finished and choose which ones to
execute in first come, first served (FCFS) order. Because workloads
do not pack optimally and processors are not being used, this too-
simplified technique results in substantial fragmentation [16], [17].
Furthermore, the rate at which applications’ requests arrive α and
the rate at which the application execution finishes π are strongly
correlated with each other and affect the allocation. Most sched-
ulers employ backfilling, which requires monitoring the queue for
smaller jobs that can use the available resources if the next queued
job cannot be executed owing to an absence of available processors
[18]. The backfilling strategy was tested for task scheduling while
taking runtimes into consideration. However, its efficacy in VM
allocation has not yet been investigated. Furthermore, its efficacy
is measured in terms of execution times, but other factors, such as
priorities, and criteria to backfill, remain mostly ignored.
The optimization problem of packing VMs to minimum servers
can be seen as a bin-packing issue, where VMs are items and
servers are bins. It is possible to conceptualise VM allocation and
consolidation as bin-packing problems that are NP-hard [19]. For
NP-hard problems, there are no optimal solutions and different
heuristic approaches such as first fit, worst fit, etc. are considered
suitable [20]. Therefore, we also assume the VM allocation as an
NP-hard optimization problem. Bin-packing, as used in the context
of virtualisation, describes the effective distribution of VMs among
physical hosts while taking into account resource limitations. The
objective is to reduce the number of physical hosts needed while
making sure that the allocated VMs do not use more resources than

the hosts can provide. In general, resources such as CPU, memory,
storage, and network bandwidth are taken into account. Assume
that we have m VMs and n physical hosts. To express whether a
VM is assigned to a given physical host, we can use binary decision
variables. Suppose xij is a binary variable such that Eq. 1 satisfies:

xij =

{
1 if virtual machine i is allocated to physical host j
0 otherwise

(1)

The aforementioned allocation problem is constrained in that the
overall resource utilisation of the allotted VMs on a particular host
must not be greater than the host’s capacity. In this paper, we
account for two resources i.e. CPU and memory (M ). Other host’s
resources such as storage and network may also be considered. The
following Eq. 2 describes the capacity restrictions for each physical
host denoted by j:∑

i

(xij · CPUi) ≤ CPUj and
∑
i

(xij ·Mi) ≤ Mj (2)

where, CPUi and Memoryi represent the respective resource re-
quirements of VMi. Furthermore, there must be precisely one
physical host assigned to each VM. This allocation restriction can
be written mathematically as follows in Eq. 3:∑

j

xij = 1 for all i (3)

Additional limitations can be imposed to guarantee compatibility
if some VMs have particular needs or dependencies that must be
met by compatible hosts. The goal is to employ the fewest possible
physical hosts for VM allocation. Therefore, the objective function
is what we may define as given in Eq. 4:

Minimize
∑
j

yj (4)

In this case, the binary variable yj represents the usage of the
physical host j, or the allocation of at least one VM to it. The
objective function sums up all physical hosts’ yj variables and
ensures reduced energy consumption by running all VMs on
minimum resources. This is important to remember that the bin
packing issue is NP-hard, which means that finding the best and
optimal solution for complicated situations may be computation-
ally very difficult or even impossible. Heuristics and approximation
algorithms are therefore frequently employed to efficiently identify
close-to-optimum solutions. By defining VM allocation as a bin
packing issue and using proper algorithms, we may maximise
the use of physical resources or reduce the total number of hosts,
which subsequently increases the energy efficiency of virtualised
environments.
The above mathematical model can be extended for accounting the
backfilling approach in resource allocation. The goal is to allocate
limited resources to different VMs in such a way that the total cost
(in terms of energy consumption, performance, users’ monetary
costs) or number of resources is minimized while considering
the possibility of periodically accounting for resource over-usage
through the concept of backfilling approach. Let us suppose that
we have N number of VMs and a set of available resources denoted
by R. Each resource r ∈ R has a certain user’s cost from the
provider which is denoted by Cr . Furthermore, Ci denotes the
user’s cost (in terms of all offered resources) associated with VMi

and Uir represents the amount of resource r that are used by
VMi without considering the backfilling approach. Similarly, Oir

characterizes the over-usage of resource r by VMi subject to the
backfilling approach and Bir denotes the backfilling cost (in terms
of performance lost) associated with the over-usage of resource r
by VMi . Then, the amount of resources r that are allocated to a
particular VMi are denoted by xir . Therefore, the objective function



3

users
Applications

Placement Algorithm

Backfilling Algorithm

Switched On Servers

Switched Off Servers

Applications to VMs mapping

Failed VMs

VMs pool

Datacenter
manager

α

π

Fig. 1: Allocation and Migration of VMs – The rate at which applications requests arrive is denoted with α and the rate at which the
application execution finish is denoted by π (Backfilling increases utilisation, migrations, and number of switched on and off hosts)

of the allocation problem can be mathematically expressed as given
in Eq. 5.

Minimize
N∑
i=1

(
Ci +

∑
r∈R

(xir ·Bir)

)
(5)

subject to three different constraints: (i) each task must receive a
certain amount of required resources as given by Eq. 6, where Ui is
the required amount of resources for VMi ; (ii) resource allocation
must not exceed the availability of resources as given by Eq. 7; and
(iii) resource allocation and over-usage must be non-negative as
given by Eq. 8. ∑

r∈R

xir = Ui ∀i = 1, . . . , N (6)

xir ≤ Uir +Oir ∀i = 1, . . . , N, ∀r ∈ R (7)

xir, Oir ≥ 0 ∀i = 1, . . . , N, ∀r ∈ R (8)

These constraints can be updated to make advanced VM placement
accounting for colocation, performance, and workloads [13].

3 METHODOLOGY

In conventional cloud datacenters, VM consolidation is often car-
ried out using static policies or heuristics that have been specified.
These methods, however, frequently fall short in their ability to
adjust to the dynamic nature of cloud workloads, leading to ineffi-
cient resource allocation and utilisation. In [21], VM consolidation
is approached probabilistically, allowing for more informed and
flexible VM placement choices. This section describes our adapted
research methodology from [21] in detail. In Sec. 3.2, we discuss
the VM placement, migration, and consolidation techniques. In Ap-
pendix. A, we deliberate statistical models to measure the energy
consumption of resources and the performance of the workloads.
The proposed backfilling technique is discussed in Sec. 4.1.

3.1 Implementation
In this paper, we assume that the scheduler is responsible for
both initial placement and backfilling decisions and is working
in a centralised way. For initial placement, when there is a VM
request the scheduler finds out a suitable host. In the case of
backfilling, the scheduler runs periodically to optimize the current
status of the cluster. To overcome the limited scalability and single
point of failure, this implementation methodology can easily be
extended to a decentralised approach where the entire cluster of
resources is divided into subclusters where each cluster has its local
scheduler [22], [4]. The initial placement can be done on a local
scheduler (for each cluster) while backfilling can be implemented
by a global scheduler (working on top of all local schedulers)

as it has the information of all clusters and their resources. In-
dependent optimization of VM placement in different clusters,
without coordination among local and global schedulers, may lead
to missed synergies and therefore to sub-optimal outcomes [22].
Usually, decentralised approaches have additional costs in terms of
communication overhead, inefficient resource utilisation, increased
delay in decision-making, and complexity of resource manage-
ment. Furthermore, service providers prefer quickness in decision-
making over optimal results [23]. Therefore, we use a centralised
approach for the implementation of the proposed algorithms.

3.2 Allocation and Migration of VMs
The statistical methods used to assign VMs to hosts in the data-
centers and the respective dynamic migration are discussed in this
section. The scenario of VM assignment and migration is shown in
Fig. 1. In the figure, initially, the application request is submitted
by the client to the datacenter manager [24], [25]. Afterward, a
VM is selected relevant to the application in terms of properties
like resources required, i.e. memory, CPU, storage, etc., and the
nature of the operating system as per the client’s request. Once
this is done, the assignment procedure assigns the VM to the host
available in the pool of multi-core hosts (that are usually virtualised
through hypervisors). The nature of the workload is dynamic for
the application, i.e., resource requirements keep changing over
time, therefore, keeping the maximum capacity of the VM intact
[26], [27]. It is evident from the example where we have Web
servers. The CPU requirement is dependent on the generation of
workloads from Web users. On a periodic update, CPU usage at
each host (server) is analyzed to remain within the upper and lower
threshold values. If it diffracts from the given threshold values, the
migration procedure is invoked, where the current VM is assigned
to a new host. The parameters α and π, as provided in Fig. 1,
define a request for application and rate of service for the host’s
resources, respectively. They are further used in Sec. 3 to analyze
the performance of the allocation techniques.

3.2.1 The Allocation Algorithm
As soon as the client application is connected to a relevant VM, it
is forwarded for execution on a host. The following points must be
taken into consideration: (i) assignment of the VM is preferred to
a host with the highest CPU usage so that consolidation may be
achieved of VMs to switch off the idle hosts; (ii) the maximum host
capacity may not reach demanded CPU usage where SLA viola-
tions will occur due to increased workload; and (iii) if switching a
host back on is mandatory for a VM, it may be allowed under strict
requirements, but it eventually reduces host consolidation and will
increase power usage [21].
Based on the objectives defined above, the VM assignment proce-
dure is described as follows: A broadcast by the datacenter manager



4

is beaconed for requests to be assigned to hosts. The active host
in the pool performs the Bernoulli trial where the probability of
success is dependent on current CPU usage, π (ranging from 0 to
1), and maximum use allowed Tn [18]. The function assignment
probabilistic function, fassign(π), will have a null value if π > Tn,
on the contrary, it will be determined as given in Eq. 9:

fassign(π) =
1

Mp
· up · (Ta − π) (9)

The above Eq. 9 illustrates specific values of integer parameter
q using function graph and Ta = 0.9. The maximum value of 1
is achieved by normalization using factor 1/Mp. The CPU usage
is restricted using the defined function. It is made that threshold
Ta value is not exceeding (as no further VMs are assigned if the
value of π is reaching the threshold value) and favor consolidation,
preferably VMs assignment is on a high loaded host. The function
touches maximum using the value of π, i.e. assignment attempt
is successful at this value with higher probability – as given by
q/(q + 1). The Ta value gradually increases with an increase in
the q value. So, the q value modulates the function shape, and as
a result, the consolidation process is tuned. Further details of this
method can be found in [18], [21].
If Bernoulli trials succeed for a particular host, it replies to the
beaconed broadcast message by showing its willingness to accom-
modate the VM. Then, the datacenter manager performs a selection
of a host from the available hosts. This selection is based on the
energy efficiency of the host and runtimes of the VMs running
on it [23]. The host with minimum relative runtimes of VMs is
selected for allocation as described in Alg. 3. On the other hand,
if hosts are unavailable due to their utilisation reaching out the
threshold value Ta, or simply Bernoulli trials are not successful,
then idle hosts are switched on and will accommodate all required
VMs. Suppose the option of the idle host is not available, which
means all the hosts are active. In that case, VMs are accommodated,
using resource over-subscription, forcibly to any of the hosts with
a fraction of CPU available (this host is selected in the second
round of broadcast requests), contrarily, will be placed in a waiting
queue: gives a clue that host numbers are too low to hold the load.
However, over-subscription can degrade the host performance for
all running VMS, therefore these VMs are stored in a waiting queue
for backfilling.
The significant advantage of the methodology is realized by the
fact that it is self-organizing with decentralised in nature as the
decisions are primarily taken locally. To accommodate incoming
VMs randomly, the datacenter manager should know about active
hosts and/or switch them off. However, it is not required by the
manager to decide how VMs are placed onto the host or keep
updated state information of the host.

3.2.2 The Migration Algorithm
The assignment process helps VMs to be placed over a smaller
possible number of hosts, as given in the performance analysis
section. On the other hand, though, there is a possibility that a
few hosts may be underutilised and could be turned off to save
energy [23]. Therefore, if VMs are allocated efficiently to hosts i.e.
they finish their execution on a particular host or possibly their
request for the host resources is reduced. Additionally, the host may
become overloaded. Truthfully, VM allocation to a host is based on
the requested need of CPU, but an increase in workload is seen for
the same host for other VMs [4]. The scenario creates SLA violations
where the extent of dependability for a datacenter along with QoS
offered to end-users is affected. In both cases, to gain profits, VMs
are migrated to other hosts to either switch off a host or distribute
its workload.
Live migration is carried out by migration procedure for VMs
[28]. On the contrary, various other methods for VM migration
(as discussed in Sec. 6) compared to [21], the technique in [21] is

Algorithm 1: The VM Allocation Algorithm

Input: VM list, Host list, Failed VMs Queue Q
1 X← Range from 0 – 1 relative resource usage ;
2 T←Maximum allowed usage ;
3 P← Shape parameter ;
4 Mp ← Factors to normalize maximum value to 0 - 1 ;

Output: Allocate VMs
5 if Q ̸= NULL then
6 Use Alg. 3 to backfill VMs ∈ Q ;
7 end if
8 for every VM ∈ VM list do
9 for every host ∈ Host list do

10 if host utilisation ∈ X and can accommodate the VM
then

11 Perform Bernouli Trial using Eq. 9 ;
12 if Bernouli Trial← Success then
13 host← VM ;
14 else
15 add VM to Q ;
16 end if
17 end if
18 end if
19 if host capacity > max(X) then
20 hostidle ← VM ;
21 else
22 add VM to Q ;
23 end if
24 end if
25 end for
26 Use Alg. 3 to backfill VMs ∈ Q ;
27 end for

self-organized and guarantees a steady and continual migration
process. Randomly, at every interval, all the hosts look for under-
utilisation and over-utilisation. If it takes place, then it computes the
respective migration probability functions, as given in Eq. 10 and
Eq. 11, and denoted by f low

migrate(π) and/or fup
migrate(π), respectively

[18], [21]:

f low
migrate(π) = (1− π/Tlow)

γ (10)

fup
migrate(π) = (1 +

π − 1

1− Tup
)δ (11)

In both cases, the host executes a Bernoulli trial, and a migration
decision is taken on local VMs. Fig. 1 demonstrates the function’s
definition, where VMs migration initiation is done if CPU utili-
sation lies below the lower threshold Tlow or it is exceeding the
upper threshold Tup. The migration process is withdrawn if the
CPU utilisation lies between both thresholds.
The function shape is modulated using parameters γ and δ that
are latterly used to decide whether to perform the migration or
not [18], [21]. A complete demonstration is detailed in Sec. 3.2 for
the successful migration process of VMs through the assignment
procedure. If a host is overloaded (90%), the threshold value of
Ta for the assignment function is 0.9 times the CPU usage of
the current host. It makes sure that migration of VMs is done
to hosts having less load and restricts VMs from being migrated
from overloaded hosts to new hosts. The updated value of Ta is
broadcasted to all hosts with a potential migration request, and the
VM is allocated to an available host. If there is more than one host,
then the most energy-efficient host with minimum relative runtimes
of VMs is selected, as described in Alg. 3. In case there are no hosts
available, then the VM is retained at the originating host.



5

Algorithm 2: The VM Consolidation Algorithm

Input: Allocated VM list, Host list
1 Tlow ← lower threshold value ;
2 Tup ← upper threshold value ;
3 ListV M

host ← List of VMs running on host ;
4 Migrationmap ← List of suitable VMs to migrate ;

Output: Migrationmap

5 for each optimization round do
6 for every host ∈ Host list do
7 Use Eq. 10 and Eq. 11 to analyze host ;
8 if host← available then
9 Evaluate α and β ;

10 end if
11 if Ta > Tup or Ta < Tlow then
12 for each VM ∈ ListV M

host do
13 Compute the relative resources of VM using

Eq. 12 ;
14 VM ← Choose VM with high relative

resources ;
15 Migrationmap ← VM ;
16 end for
17 end if
18 end for
19 Use Alg. 1 to allocate VMs ∈ migration map ;
20 end for

4 PROPOSED SOLUTION

4.1 The Backfilling Algorithm

The backfilling mechanism is illustrated in Fig. 2. The traditional
FCFS algorithm assigns VMs resources in a first come, first served
fashion; therefore, creating stranded resources [29]. Furthermore,
the first queued VM in FCFS may starve as a result of succeeding
VMs continuously jumping over it. The workaround is to reserve
this VM and only allow it to be executed again if the other
VMs respect it [7]. The key distinction between backfilling and
consolidation strategies is that backfilling seeks for VMs in the
queue, whereas consolidation operates on a regular basis to balance
the load across all servers depending on predetermined utilisation
levels. The backfilling approach is an effective method for allocating
VMs to hosts that helps to maximise resource utilisation and overall
effectiveness of virtualised environments. Furthermore, backfilling
enables the placement algorithm to make use of idle resources
that are present in the system when a high-priority VM request
is received, as opposed to having to wait for the full allocation
of resources. It locates underused resources or partially populated
nodes and assigns the high-priority VM to them in order to prevent
any resources from sitting idle for an extended length of time. With
this method, the system’s total throughput is increased and the
waiting time for VM allocation is significantly decreased.

Fig. 2: The Backfilling Approach using FCFS – the shaded area
denotes host resources such as CPU (cores) and memory (size)
and the colored area with numbers denotes VMs and the required
host’s resources – If VM 4 had needed more than 2 CPU cores,
the reservation for VM 3 would have been breached, making it
impossible to backfill VM 4 [7]

The proposed backfilling mechanism is illustrated in Alg. 3. The
technique will backfill all the VMs based on either their runtimes
or priorities. We assume that task priorities or application types
are defined by users. We can also use various statistical methods

to guess the type of applications from VMs usage activity [6].
Similarly, the runtimes of the applications are based on a probabilis-
tic technique rather than actual prediction or user-defined values.
Google trace data shows that long-running jobs are those that run
for more than an hour [29]. In other words, the investigation shows
that the jobs run for more than an hour (past runtime) and continue
to run for a day (future runtime). Therefore, we assume that VMS
with longer previous runtimes would be more likely to run for a
longer duration in the future. In this way, we will be able to allocate
long-running VMs to hosts that already have VMs running with
similar runtimes.

Algorithm 3: The VM Backfilling Algorithm

Input: Q← Alg. 1, Host list
1 Estimate priorities and runtimes of all VMs ∈ Q ;
2 Sort Q in increasing order of their runtimes ;
3 Sort Q in decreasing order of their priorities ;
4 for each VM ∈ Q do
5 Compute the VM previous runtime Rpast or R;
6 for each host ∈ active hosts do
7 if host has enough capacity to accommodate VM then
8 L← List of all VMs on host ;
9 H ← Compute relative runtimes for all VMs ∈ L

using Eq. 12 ;
10 else
11 exit and pick the next VM ∈ Q ;
12 end if
13 end for
14 host← min(H) ;
15 host← VM ;
16 end for

Output: Allocate VMs

In fact, the past runtimes of VMs, denoted by Rpast, on a particular
host are known to us, therefore, we can statistically derive relative
runtimes, denoted by Rrel that can guide us to a most suitable
host for the placement. For example, suppose we have n VMs
running on a certain host (H), and we designate their individual
runtimes as H = {RV M1

past , RV M2
past , ..., RV Mn

past }. We determine the
relative execution timings for each VM in order to compare the
runtimes of various VMs running on different hosts. To do this, one
method is to divide the execution time (Rpast) of each VM by the
minimum runtime of the VM among all VMs, denoted by set (H).
There may be alternative statistical ways to calculate the relative
runtime duration, however, we believe this method is the easiest.
The following Eq. 12 is used to determine the relative runtime
duration for each VM:

RV Mi
rel =

RV Mi
past

min(H)
(12)

where min(H) denotes the VM that has the minimum Rpast. We
do the above computation for all available hosts and then select the
one that has a VM with the shortest duration (for short-running
workloads) or a VM with the longest duration (for long-running
workloads). This process ensures that resources of an appropriate
host are provisioned to the VM or application, therefore, leading to
the possibility of switching off hosts to reduce energy consumption.
For example, if there are four VMs out of which two are short-
running (suppose 2 hours) and the other two are long-running
(suppose 10 hours). If short-running VMs are placed on a separate
host and long-running VMs are placed on another host, it means
that after two hours, one host can be switched off. However, if these
VMs are placed randomly, then both hosts will run for at least ten
hours consuming large energy. To see whether there are backfilling
chances, the backfilling strategy may either be performed on a
regular basis or once a work is finished or withdrawn from the
system.



6

4.2 Computational Complexity

The computational complexity of the VM allocation algorithm (Alg.
1) depends on the total number of VMs (m) and total number of
servers (m). The worst case occurs when a VM is not allocated to
all available hosts. The worst-case complexity is, therefore, O(mn).
For the consolidation technique (Alg. 2), the worst case occurs when
all migratable VMs (m′) are not allocated to the available resources
(n′). The worst-case complexity of Alg. 2 is, therefore, given by
O(m′n′). Since, m′ and n′ belong to subsets of m and n; therefore,
the overall complexity can be described as O(mn). The backfilling
approach (Alg. 3) comprises the sorting steps, which generally
increases its worst-case time complexity to O(mn.log(mn)).

5 PERFORMANCE EVALUATION

Our simulated datacenter comprises 12583 heterogeneous servers
that belong to five different CPU architectures in an equal amount.
The CPU architecture represents heterogeneity in terms of perfor-
mance and energy consumption, as shown in Table 1. Moreover,
we implemented five different scheduling policies, i.e., FCFS, FF
(first fit), BRS (best resource selection) [30], ecoCloud [21], and
FillUp, and then extended the FCFS and FillUp policies with the
backfilling mechanism leading to two other scheduling policies,
i.e., FCFS+Backfill and FillUp+Backfill. We also provide a com-
parison with recent techniques: (i) SAF+Backfill technique which
sorts all jobs according to their “area” or “geometry” [31]; and (ii)
Shortest Gap - Priority-Based Fair Scheduling (SG-PBFS) which is
a backfilling technique that attempts to manipulate the gaps in
the schedule of cloud jobs [32]. We assume that migrations are
enabled in the datacenter, and the consolidation policy migrates
VMs when certain servers either exceed or fall behind predefined
threshold values for their resource (CPU) utilisation. Moreover, we
assume five different types of VMs that mimic instances of Amazon
Web Services (AWS), as shown in Table 2. We also assume three
different types of application or workload, i.e., W1, W2, and W3.
Note that each workload comprises more than a million tasks,
each of which has specific needs for hosts’ resources such as CPU
cores, memory, and runtime, among other things. Additionally,
we assume that every task makes use of the stochastic utilisation
model that is part of the classical CloudSim simulation toolkit
[33]. We use PerficientCloudSim [34] which is an extended version
of CloudSim [33] to run all the experiments. PerficientCloudSim
provides support to model the performance degradation due to co-
located VMs on a particular, as well as, resource contention. These
tasks and their characteristics, such as arrival time, schedule time,
and run times, are related to the Google cluster dataset [29], [35]. We
treat a workload as a whole, treating all tasks as a single application
whose total execution duration equals the workload runtime. The
execution time is then used to compare the performance of various
scheduling policies. The price of each application is then measured
based on the execution time of the application and the type of VMs
that were allocated to run the workload.

TABLE 1: Various characteristics of simulated servers

CPU Speed No of No of Memory Pidle Pmax

model (MHz) cores ECUs (GB) (Wh) (Wh)
E5430 2,830 8 22.4 16 166 265

E5-2620 2,000 12 24 32 70 300
E5645 2,400 12 28.8 16 63.1 200

E5-2650 2,000 16 32 24 52.9 215
E5-2670 2,600 16 41.6 24 54.1 243

5.1 Evaluation Metrics

We consider the total number of migrations, energy consumption
(KWh), and workload execution time (in minutes) as performance
metrics to evaluate various resource allocation, consolidation, and

management techniques. In addition to this, we also study the VM
waiting time and the overall throughput of the system. The waiting
time is the duration between the submission time and schedule
time of a VM request, while throughput is the total number of VMs
that completed their workloads’ execution within a specific time.
In order to present the trade-off between several metrics, such as
energy consumption, performance, and the number of migrations,
we use a composite measure, denoted by NT , which is computed
using the weighted sum approach, that integrates these data in a
way that makes the trade-off easy to assess. A lower value for NT

indicates better performance in terms of the combined criteria. The
formula is given in Eq. 13:

NEP = Ew × En +Rw ×Rn +Mw ×Mn (13)

where Ew, Rw, and Mw denote the weights while En, Rn, and
Mn characterises the normalized values for energy consumption,
performance (in terms of runtimes), and the number of migrations,
respectively. The weights can be adjusted by the IaaS to give
priority to one objective over others and vice versa.

5.2 Experimental Results

Table 3 shows the outcomes that were obtained for various resource
allocation, consolidation, and backfilling techniques. For W1 and
W2 workloads, the FCFS and FillUp techniques have a trade-off
for workload performance and energy consumption that has been
balanced with the backfilling policy. For the W1 workload, the FCFS
consumed 3290.04KWh and performance was 449.68; however,
FCFS+Backfill consumed 2978.32KWh and performance was 452.73.
Similarly, the FillUp consumed 3253.3KWh and the performance
was 450.78; however, FillUp+Backfill consumed 2824.89KWh and
performance was 450.87. The FillUp approach performs better than
the classical FCFS, FF, ecoCloud, SAF+Backfill, SG-PBFS, and BRS
techniques. The backfilling ensures that hosts are always within
their utilisation levels, which significantly reduces the total number
of migration occurrences. The BRS approach always tries to migrate
and results in high energy consumption and performance loss.
This means that consolidation is expensive in terms of energy
consumption and application performance. The severity of these
impacts and trade-offs varied for various workloads and schedul-
ing practices used. For long-running workloads (W3), approxi-
mately 19.23% energy consumption and 2.97% performance gains
were achieved using the backfilling policy. However, the backfilling
did not produce any significant reductions in energy consumption
and workload performance when the datacenter was kept highly
utilised. For example, when utilisation levels were between 70%
and 80%, the FillUp and FillUp+backfill produced almost similar
outcomes. Furthermore, ecoCloud, SAF+Backfill, SG-PBFS, and
FillUp+backfill produced comparable outcomes when the data-
center resources were utilised between 30% – 45%. Despite these
outcomes, due to random resource utilisation of VMs, FCFS, eco-
Cloud, SAF+Backfill, BRS, and FF algorithms were also observed
to overlap their achieved energy consumption savings, migrations,
and performance outcomes. As shown in Table 3 (bolded), the
trade-off between energy consumption, performance, and number
of migrations is well balanced using the proposed FillUp + Fill
algorithm.
In Table 4, experimental outcomes are shown for various work-
loads when they are assumed to run simultaneously. The results
are mostly in line with the previous outcomes in terms of the
existing trade-off between energy consumption and performance;
however, mixed workloads create large migration opportunities.
The backfilling strategy achieves the appropriate balance based
on real-time workload needs by dynamically modifying resource
allocation to optimize application performance and energy con-
sumption. We also observed that the criteria used to backfill VMs
have a significant impact on the energy savings and performance



7

TABLE 2: Amazon different instance types and their characteristics

Instance No of No of Speed MEMORY Storage Reserved price (1 year)
type vCPUs ECUs (MHz) (GB) (GB) ($/hour)

MIPS US East - N. Virginia
t2.nano 1 1 1,000 0.5 1 0.006
t1.micro 1 1 1,000 0.613 1 0.02
m1.small 1 1 1,000 1.7 160 0.044

m1.medium 1 2 2,000 3.75 410 0.087
m3.medium 1 3 3,000 3.75 4 0.067

TABLE 3: Experimental results in terms of energy consumption (E), performance (P), and total number of migrations (M) for three different
types of workloads [Energy is measured in KWh and lower values are better than high, Performance is the inverse of the execution time
expressed in minutes and lower values are better than high] – approaches with the lowest values for NT metric are best in balancing the
trade-off between various objectives

Scheduling W1 W2 W3
technique E P M NT E P M NT E P M NT

FCFS 3290.04 449.68 437 0.94 5308.47 779.2 231 0.967 7116.79 993.56 201 0.985
FF 3253.82 451.33 431 0.933 5274.01 768.1 245 0.964 7008.96 1002.56 193 0.975

BRS 3341.01 491.32 512 0.989 5327.54 799.8 300 1 7078.72 1012.43 221 0.997
FillUp 3253.3 450.78 401 0.942 4919.37 781.6 191 0.904 6991.88 927.9 167 0.94

ecoCloud [21] 3176.65 451.46 502 0.941 4998.6 792.48 203 0.933 6893.6 977.59 109 0.92
SG-PBFS [32] 3338.55 476.1 477 0.987 5002.7 789.26 188 0.927 6903.66 986.79 179 0.956

SAF+Backfill [31] 3301.69 461.33 399 0.948 5281.06 777.21 289 0.981 7101.7 985.79 219 0.988
FCFS+Backfill 2978.32 452.73 223 0.828 4992.45 780.3 125 0.897 6810.2 952.57 88 0.896
FillUp+Backfill 2824.89 450.87 202 0.792 4627.07 781.8 99 0.84 6772.63 911.89 67 0.872

of the workloads. For example, when the runtime of VMs is
used as a criterion to backfill VMs; then the energy savings and
performance values are more than those which are achievable
when VMs priorities are considered to backfill VMs. For example,
the FillUp+Backfill approach using priority consumed 5722.12KWh
and the performance was approximately 499.45. The same approach
with runtime backfilling criteria consumed 5401.96KWh and the
performance was approximately 438.67. Similarly, for mixed work-
loads the SG-PBFS approach using priority consumed 8236.7KWh
and the performance is approximately 1107.32. The same approach
with runtime backfilling criteria consumed 6967.88KWh and the
performance is approximately 1018.99. Other methods including
ecoCloud, In fact, workloads with the same priorities have the
same demands for CPU and other resources, which lead to resource
contention and performance degradation. This should be noted that
we modelled resource contention and its performance impact in our
simulator PerficientCloudSim. Further details on various statistical
models for servers and workloads performance impacts can be
found in [34]. This means that the order of VMs in which they are
scheduled affects the infrastructure energy efficiency, total number
of migrations, as well as, the workloads’ performance. As shown
in Table 4 (bolded), for both priority and runtime-based backfill-
ing, the trade-off between energy consumption, performance, and
the number of migrations is balanced well using the proposed
FillUp+Backfill algorithm (having the least values for NT ).
Migrations are expensive, and they have costs in terms of energy
consumption and performance loss, in particular, when VMs have
similar workloads and compete for similar resources i.e. co-located
on the same physical hosts. Therefore, resource allocation policies
should be used to replace the consolidation of VMs. To study
this scenario, we compared FF and FillUp scheduling techniques
while accounting for consolidation, no-consolidation, and backfill-
ing mechanisms as shown in Fig. 3 and Fig. 4. For short-running
workloads, consolidation degrades performance, leading to high
energy consumption, and increases users’ costs. For short-running
workloads, we believe that the number of migrations is signifi-
cantly high due to frequent termination of VMs and making oppor-
tunities for consolidation. However, for long-running workloads,
consolidation saves a significant amount of energy consumption
with trivial performance impacts. However, in a heterogeneous
environment, if longer workloads are assigned to servers that

consume high energy; then, the energy savings may not be high.
Our investigation suggests that the backfilling approach has trivial
performance impacts, and a significant amount of energy can also
be saved. Therefore, the decision between consolidation and alloca-
tion rules ultimately comes down to the workload characteristics,
performance needs, resource utilisation goals, cost considerations,
and system or infrastructure goals at large. This should be noted
that prior to choosing a choice, it is essential to thoroughly evaluate
these variables and weigh the trade-offs. The backfilling mechanism
may improve system performance and lower VMs’ waiting times
by dynamically changing the scheduling order and effectively
using available resources for resource provisioning.

Fig. 3: Energy consumption for various scheduling and consolida-
tion techniques using three different workload types [W1, W2, W3
– from left to right]

Fig. 4: Performance of various scheduling and consolidation tech-
niques using three different workload types [W1, W2, W3 – from
left to right]

As shown in Fig. 5 (left), backfilling improves the datacenter’s
throughput and reduces the VMs’ waiting times. In our experi-
ments, we used the submission and scheduling times of VMs as



8

TABLE 4: Experimental results in terms of energy consumption (E), performance (P), and the total number of migrations (M) for different
workloads running simultaneously using various scheduling and backfilling methods [Energy is measured in KWh and lower values
are better than high, Performance is the inverse of the execution time expressed in minutes and lower values are better than high] –
approaches with the lowest values for NT metric are best in balancing the trade-off between various objectives

Scheduling Backfill W1+W2 W2+W3 W1+W2+W3
technique method E P M NT E P M NT E P M NT

FCFS 6598.51 528.88 568 0.987 6302.03 726.98 332 0.99 8593.17 1076.36 787 0.986
FF 6527.83 519.43 576 0.978 6276.57 713.43 338 0.984 8531.33 1064.71 769 0.976

BRS 6668.55 521.12 612 0.997 6339.97 739.12 321 0.995 8680.78 1081.44 833 1
FillUp 6322.67 495.38 492 0.938 5847.27 708.28 258 0.917 8261.17 1056.06 659 0.939

ecoCloud [21] Runtime 6269.75 472.56 338 0.901 5821.42 708.55 180 0.892 7445.7 1038.56 574 0.939
SG-PBFS [32] 5697.52 473.21 202 0.828 5594.4 725.1 108 0.856 6967.88 1018.99 343 0.868

SAF+Backfill [31] 5910.9 508.55 287 0.872 5813.01 708.05 312 0.93 6482.41 1061.06 368 0.845
FCFS+Backfill 5970.77 505.03 248 0.87 5945.02 727.06 113 0.891 7925.31 1050.79 336 0.873
FillUp+Backfill 5401.96 438.67 201 0.79 5504.96 707.47 66 0.825 7163.45 1013.34 268 0.795

FCFS 6399.99 536.34 608 0.941 6867.22 741.76 378 0.984 8897.87 1102.26 814 0.984
FF 6347.47 525.87 599 0.929 6654.76 737.77 349 0.956 8869.54 1089.34 803 0.978

BRS 6983.6 539.33 655 1 6983.56 738.98 402 0.998 9042.53 1111.86 843 1
FillUp 6635.32 502.76 503 0.927 6239.21 742.32 321 0.916 8778.33 1087.67 798 0.971

ecoCloud [21] Priority 6702.2 507.31 291 0.902 6481.78 743.43 374 0.95 8642.89 1092.7 518 0.93
SG-PBFS [32] 6470.56 511.09 559 0.926 6229.92 738.55 382 0.928 8236.7 1107.32 353 0.887

SAF+Backfill [31] 5841.33 516.53 338 0.841 6507.43 742.78 342 0.944 8795.06 1093.92 529 0.941
FCFS+Backfill 6274.93 537.53 297 0.883 6492.86 741.65 276 0.926 8267.79 1103.74 566 0.914
FillUp+Backfill 5722.12 499.45 245 0.807 6154.75 743.02 149 0.866 7988.87 1086.12 308 0.86

they are given in the Google traces [29], [36]. In our datasets,
23.41% of VMs wait for 1 second before the requested resources
are provisioned, according to the distribution of workloads wait
times. In 44.6% of cases, the waiting time is less than 30 seconds.
Unexpectedly, 27 VMs (0.03% of the VMs) wait for more than 2
hours. These were observed using the FillUp approach with no
consolidation or backfilling. With FillUp+Backfill approach using
priority as a criterion, the percentage of VMs that were waiting for
1 second was reduced to 2.88% while the percentage of VMs that
were waiting for 30 seconds was dropped to 13.82%. Furthermore,
22 VMs (0.026% of the VMs) were observed to be waiting for more
than 2 hours. With the FillUp+Backfill approach using runtime as a
criterion, the percentage of VMs that were waiting for 1 second was
reduced to 2.23% while the percentage of VMs that were waiting
for 30 seconds was dropped to 8.94%. Furthermore, 7 VMs (0.01%
of the VMs) were observed to have waited more than 2 hours.
If customers pay per second for their provisioned resources, then
these improvements in scheduling delays can significantly decrease
users’ monetary costs. Subsequently, the throughput of the system,
in terms of the number of VMs that completed their workloads’
execution, is increased as shown in Fig. 5 (right). Most of the
VMs were running for less than an hour, and, with consolidation,
there was a significant increase in throughput per hour. However,
consolidation decreases the performance of VMs and, therefore,
increases users’ costs. The backfill approach has resulted in an
increase of the overall system throughput.

1	Second 30	Seconds 2	Hours
10-2

100

102

P
er

ce
nt

ag
e	

(%
)

FillUp
FillUp+Backfill	(Priority)
FillUp+Backfill	(Runtime)

0 4 8 12 16 20 24
Time	(hour)

102

104

T
hr

ou
gh

pu
t

NO
CONSOL
BACKFILL

Fig. 5: Ratio of VMs wait times using Backfilling techniques (left)
and Number of VMs per hour that completed their workloads’
execution i.e. throughput (right)

Over-subscription is when consumers are given access to more
resources than the datacenter can physically handle. Over-
subscription may increase energy usage owing to an increase in
workload and cooling needs, even while it permits greater re-

source utilisation and expanded user capacity. Moreover, depend-
ing on the degree of resource overuse, it may affect datacenter
performance. For certain kinds of workloads, performance may be
maintained or even increased when resources are oversubscribed
in a responsible manner. However, extreme over-subscription can
cause resource conflict, increased latency, and poor performance.
Therefore, it is essential to account for workload types when over-
subscription is needed. To prevent performance degradation due
to over-subscription levels, it is essential to properly monitor and
control resource allocation. Finally, we studied different criteria of
VMs that are used to backfill particular VMs such as priority, work-
load type, runtimes, and their impacts on the obtained findings. The
results are shown in Fig. 6 when priority and runtimes are assumed
to backfill VMs. Our evaluation suggests that using VMs runtimes
as a criterion for backfilling is approximately 3.56% – 7.78% more
energy and 1.91% – 3.38% more performance efficient than using
priority as a backfilling criterion.

W1 W2 W3
-2

0

2

4

6

8

10

Im
pr
ov
em

en
ts
	(
%
)

Energy	Consumption
Performance

W1 W2 W3
0

2

4

6

8

10

12

Im
pr
ov

em
en

ts
	(
%
)

Energy	Consumption
Performance

Fig. 6: Overall improvements in energy consumption and
performance when using FCFS+Backfill+Runtime (left) and
FillUp+Backfill+Runtime (right) instead of FCFS+Backfill+Priority
(left) and FillUp+Backfill+Priority (right)

5.3 Results Discussion
We observed a trade-off between increasing system usage and
completing tasks by the deadline. Backfilling increases resource use,
however it has the potential to slow down some specific workloads’
response times. Furthermore, which type of workloads (VMs)
should be considered for backfilling that has a great impact on
energy consumption and performance. For example, our evaluation
suggests that using VMs runtimes as a criterion for backfilling is
approximately 3.56% – 7.78% more energy and 1.91% – 3.38% more
performance efficient than using priority as a backfilling criteria.



9

Priority-based backfilling approaches may be used to prioritize
high-priority tasks and guarantee that they get scheduled quickly,
even if doing so implies preempting lower-priority tasks, in order
to overcome this issue. Priority-based backfilling creates a balance
between resource utilisation and completing work deadlines by
dynamically altering job priorities depending on their urgency and
relevance. The system may make ineffective scheduling decisions
and perform worse overall if it is unable to predict when resources
will become available.
While consolidation may help with resource optimization, cer-
tain workloads, such as those that are latency-sensitive, resource-
intensive, or have bursty or unpredictable resource needs, may
not be good candidates for consolidation. These workloads often
have particular needs or traits that make it difficult for them to
share physical resources. To maximise efficiency while catering
to the various demands of various workloads, it is crucial to
strike the ideal balance between consolidation and the provision of
specialized resources. Backfilling decreases the wait time for these
VMs by enabling shorter or failed VMs to start during the backfill
window. This decrease in turnaround time for VMs’ workloads
improves system performance as a whole and tenant satisfaction.
Furthermore, backfilling allows for the faster execution of addi-
tional VMs, thereby increasing the total system throughput. Sub-
sequently, utilising resources effectively allows for the processing
of more workloads, increasing the productivity of the datacenter.
Backfilling can increase the effectiveness and throughput of the
cloud datacenter by efficiently using the resources that are already
available and decreasing idle time.
Backfilling might cause problems with resource contention if it
is not done appropriately. Performance problems or conflicts can
arise when VMs with workloads using varying priorities use the
same resources. The scheduling method becomes more sophisti-
cated and complex during backfilling, since it needs to estimate
resource availability and take different priorities and workloads
into account. Therefore, it can be quite difficult to implement
an effective backfilling method, in particular, which accounts for
various objectives. To avoid resource conflict, it could occasionally
be essential to set aside and reserve resources for VMs running
high-priority workloads. This makes sure that enough resources
are there when the high-priority workloads need them. Therefore,
effective backfilling is possible without endangering the availability
or accomplishment of high-priority VMs by setting aside resources.
The qualities of the workload and the accessibility of idle resources
determine how successful backfilling is. Backfilling can be espe-
cially useful in effectively utilising the available resources during
such idle intervals if the workload displays bursts of activity with
sporadic slack periods.
The scheduler keeps track of a “backfill window” that denotes the
window of time during which VMs can be backfilled into the voids
created by short-running VMs. The datacenter load, workload pri-
ority, and any particular scheduler-implemented policies all affect
the backfill window’s size, subsequently, affecting the outcomes.
The scheduler uses an algorithm to find appropriate backfill VMs
during the backfill window. This algorithm looks for gaps in the
schedule caused by VMs that have been assigned resources but
have not yet begun their workloads’ execution. To identify the top
backfill candidates, it assesses VM attributes, including runtime, re-
source needs, and priority. These attributes have significant impacts
on the obtained outcomes [37].

5.4 Comparison with State-of-the-art Schedulers
We compared the proposed backfilling approach with six other
backfilling approaches i.e. Easy, conservative, fattened backfilling,
ecoCloud, SG-PBFS, and SAF+Backfill [38]. All these mechanisms
were implemented with the same VM allocation and migration
policies on the same hardware resources. The EASY backfilling
technique just verifies that the subsequent VMs in the queue do not

cause a delay for the first VM in the queue. Estimates of work run-
times serve as the foundation for this idea of backfilling. We use the
previous runtimes of VMs to estimate their future runtimes through
a probabilistic approach [39]. Additionally, the conservative strat-
egy, in which short-running VMs are only advanced if they do not
cause any other VMs in the queue to be delayed. short-running
VMs are permitted to advance by the fattened backfilling algorithm
as long as they do not cause the first VM in the queue to wait longer
than the average runtime for previously completed VMs [10]. The
experimental results are shown in Table 5. The results demonstrate
the EASY backfilling approach is more performance efficient, for
short-running workloads, but that comes at the cost of high energy
consumption. Similarly, for long-running workloads, conservative
backfilling is more energy-efficient (7034.08), but it has affected the
workload performance significantly (1101.67). Other methods, in-
cluding ecoCloud, SG-PBFS, and SAF+Backfill were also observed
to have similar behaviour. As shown in Table 5 (bolded), the trade-
off between energy consumption and performance is balanced well
using the proposed FillUp+Backfill+Runtime algorithm (having the
least values for NT ).
The proposed runtime-based backfill method outperforms the
EASY approach and for various workloads, the energy consump-
tion is reduced with a ratio of 4.8% – 12.78%. However, reduced
performance was observed for short-running workloads, while
approximately 7.17% performance improvements were noted for
long-running workloads. Furthermore, our approach is approxi-
mately 6.8% – 9.77% more performance efficient than the conser-
vative backfilling approach. However, we noticed an overlap in en-
ergy consumption for long-running workloads. Despite the fact that
comparable outcomes were obtained for the proposed and fattened
backfilling, in terms of energy consumption (0.4% – 1.7%) and per-
formance (0.26% – 0.6%), for short-running workloads; however, for
long-running workloads our approach outperformed the fattened
mechanism. The energy consumption is approximately 2.8% more,
while the performance can be up to 5.8% more than the fattened
method. The improvement or deterioration in energy consump-
tion and performance of the proposed FillUp+Backfill+Runtime
approach with respect to the closest rivals are shown in Fig. 7.

1 2 3
-5

0

5

10

15

Im
pr

ov
em

en
ts

	(
%

)

EASY
Conservative
Fattened

1 2 3
-4

-2

0

2

4

6

8

10

Im
pr

ov
em

en
ts

	(
%

)

EASY
Conservative
Fattened

Fig. 7: Comparison of the proposed FillUp+Backfill+Runtime ap-
proach to the closest rivals in terms of energy consumption
(left) and performance (right) – a negative value denotes dis-
improvement [on x-axis 1 denotes workload W1, 2 denotes W2,
and 3 represents W3]

6 RELATED WORK

In [10], the authors propose a technique (fattened backfilling) that
provides more backfilling options and is, thus, more efficient.
Specifically, the proposed algorithm permits short tasks to continue,
provided that they do not result in the first job in the queue waiting
no longer than the average waiting time for tasks that have already
been finished. The results show that fattened backfilling improves
waiting and response times more than conservative and EASY
backfilling. Backfilling may result in the loss of optimal packing
opportunities since it considers each task in the queue indepen-
dently. The popular backfilling techniques—EASY, conservative,
and fattened—have been extensively studied for systems with a



10

TABLE 5: Comparison with other closest rivals in terms of energy consumption (E) and performance (P) for three different types of
workloads [Energy is measured in KWh and lower values are better than high, Performance is the inverse of the execution time expressed
in minutes and lower values are better than high] – approaches with the lowest values for NT metric are best in balancing the trade-off
between various objectives

Scheduling W1 W2 W3
technique E P NT E P NT E P NT

EASY backfilling [7] 5922.1 479.03 0.983 6304.54 699.04 0.97 7532.11 1091.55 0.962
Conservative backfilling [9] 5799.35 500.66 0.988 6100.45 756.3 0.981 7034.08 1101.67 0.928

Fattened backfilling [10] 5423.91 498.83 0.948 5601.9 709.33 0.908 7366.7 1075.76 0.944
ecoCloud [21] 5409.6 497.02 0.945 5542.98 701.5 0.899 7212.9 1024.94 0.914
SG-PBFS [32] 5800.3 500.1 0.987 5990.43 719.3 0.951 7088.32 1018.99 0.902

SAF+Backfill [31] 5501.98 491.05 0.95 5883.94 701.67 0.931 7432.87 1064.86 0.945
FillUp+Backfill+Runtime 5401.96 495.67 0.943 5504.96 707.47 0.898 7163.45 1013.34 0.906
FillUp+Backfill+Priority 5722.12 499.45 0.979 6154.75 743.02 0.979 7988.87 1086.12 0.994

single processor, but the cloud research community has not given
them much attention. In [9], the authors suggest that dynamic
programming may be used to maximise utilisation and choose the
best packing based on the current queue state. Although consoli-
dation and backfilling appear to be comparable strategies, they are
very distinct from an execution standpoint. Migrations required
for consolidation have a major effect on workload performance.
Consolidation is not recommended in actual cloud platforms for
this reason, among others [23]. Although backfilling does not
require migrations, other constraints should be considered, such
as the co-location of VMs and the behavior of the applications that
are currently running on a specific host [13].
The approach in [7] groups all jobs based on their expected speed of
completion. Then it determines whether the jobs can be completed
within the allotted time and whether the available hosts can meet
their demands. Short jobs are given precedence when using the
backfill approach, which demonstrates a noticeable performance
improvement. Numerous actions are carried out simultaneously
through the pipeline system used in the execution technique. The
results indicate that in conventional large systems, backfill results in
a 20% increase in resource usage and a longer turnaround time [7].
About 90% of the small tasks are backfilled. The findings indicate
that, while large tasks may not yield the same return, smaller tasks
have more possibilities to backfill. Moreover, the backfill method
does not demonstrate that carrying out large jobs frequently has
a high priority. The work described in [7] is less concerned with
user costs, performance, and energy usage and more with runtime
forecasts.
In [30], authors proposed methods for VM migrations from over-
loaded servers to underloaded servers where the location of VMs
and users is considered for minimal delay. To achieve energy
efficiency, the algorithm runs in four phases, where two initial
phases determine overloaded and underloaded hosts. In the third
phase, VMs are migrated from overloaded hosts to underloaded
servers with minimal delays (VMs closer to servers). The last phase
determines the remaining overloaded and underloaded servers to
accomplish more VM migrations. The results demonstrate approxi-
mately 13% reduction in energy consumption and 15% reduction in
SLA violations. Furthermore, migrations are reduced by 19% and
resource usage is reduced by approximately 20% in comparison to
existing algorithms. Unfortunately, backfill methods and workload
performance have not been investigated. Considering large-scale
datacenters with diverse resources, the method described in [40]
employs a heuristic technique “MinPR” to minimise energy and
resource usage. This is accomplished by using power-efficient hosts
to their full potential and minimising the number of servers that are
actively in use. In addition, improving utilisation through load bal-
ancing reduces resource waste (migrating workloads and switching
off underutilsed hosts). The placement of VMs under reward or
penalty systems is related to a resource utilisation property. By
ranking them according to their power efficiency, the property facil-
itates the provision of power-efficient hosts [41]. Energy efficiency is

discussed; however, workload performance and backfill techniques
are not examined.
In [42], [43], task-oriented methods for VM placement employing
VMs, heterogeneous tasks, and servers inside cloud infrastructure
are presented. The objective is to assign jobs to VMs, which are
then energy-efficiently assigned to servers. This enables lower task
rejection rates, makespan, and energy consumption. When a dy-
namic variance is seen in service demands for the systems’ resource
requirements, the task-based VM-placement algorithm (ETVMC) is
preferred over the round-robin and FCFS approaches [43]. Unfor-
tunately, these techniques have not employed a backfilling strategy,
and their research is limited to the energy consumption of tasks
or VMs. In resource allocation, a higher number of provisioned
hosts results in lower SLA violation rates, which raises the user’s
price. Therefore, in [44] a method is presented to strike a balance
between SLA violations and user costs to maximise server resource
utilisation. Additionally, cloud workloads need a lot of disk opera-
tions and are data-intensive. As a result, the server’s performance,
disk bandwidth, and CPU consumption all suffer. Performance is
not assured; however, the MMEVMP technique reduces SLAV and
energy consumption [44]. With an emphasis on load balancing and
energy consumption using various constraints, [13] assesses six
VM placement strategies in heterogeneous clusters. The obtained
outcomes demonstrate that load-balancing algorithms like spot
migration could produce a lower CPU utilisation variability, while
energy-saving algorithms like activeness-aware placement could
dramatically decrease the number of active hosts. Furthermore,
system performance and migration overhead are significantly in-
fluenced by constraints like VM-to-VM colocation.
In [45], a multi-criterion decision-making migration algorithm
“TOPSIS” is presented that uses six criteria to perform VM mi-
grations. To reduce energy usage and SLA violations, the algo-
rithm ranks all VMs available for migration and picks the VM
with the highest ranking score. The VM migration focuses on
improving resource utilisation by consolidating VMs onto fewer
hosts while backfilling focuses on maximising resource utilisation
by allocating low-priority/failed VMs before high-priority VMs. In
[32], a priority-based fair scheduling method “PBFS” is presented
to schedule jobs that allow them to access essential resources at the
best possible times. Furthermore, a backfilling technique “Shortest
Gap PBFS” is presented to control durations in tasks’ schedules.
Performance evaluation demonstrates that, in terms of schedule,
makespan, and overall delay, SG-PBFS performs better than its
closest rivals. Unlike our research, the works in [45] and [32]
have not investigated the impacts of the backfilling on workload
performance, energy consumption, and users’ costs. Furthermore,
the criteria used to backfill particular jobs and their impacts on the
findings are also not taken into account.
In [14], authors suggest a hybrid “Interactive PSO-GA” (Particle
Swarm Optimization and Genetic Algorithm) method for allocating
resources in data centers in an energy-efficient manner. To enhance
convergence and optimization, the method executes PSO and GA



11

concurrently, exchanging information. The experimental evaluation
shows that it can reduce the convergence time by 50% and energy
usage by up to 34% compared to other methods. Its significant
speedup and great parallel efficiency (increase to 97.5%) confirm
its suitability for use in actual cloud systems. For diverse cloud
data centers, [46] suggests an enhanced paradigm for resource
provisioning and VM migration. It presents a random perturbation-
enhanced JAYA (RP-JAYA) technique for VM placement and a host
overload detection algorithm based on Z-Score. These techniques
minimize performance deterioration to 0.08%, reduce VM migra-
tions by 32%, and reduce energy usage by up to 49%. Simulations
show notable efficiency gains over more conventional methods like
PSO, GA, and MBFD. The summary of the comparison between our
proposed technique “BackFillMe” and other closely related works
is given in Table 6. We believe the comparison would help readers
to quickly identify gaps for further research.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we design an algorithm that uses the concept of
backfilling to solve the resource allocation problem efficiently, both
in terms of energy and performance. We experimentally evaluated
the proposed backfilling approach, which guarantees effective use
of the underlying infrastructure, maximises the number of VMs
that can be accommodated, and boosts the performance of the
virtualised environment by utilising the idle resources that are
already accessible. To maximise the advantages of backfilling,
precise resource availability estimates, machine learning methods,
and priority-based scheduling algorithms must be taken into ac-
count. Advancements in backfilling techniques will be essential
for establishing effective job scheduling and improving overall
performance as computer systems keep developing and handling
more complicated workloads. If it is anticipated that an overloaded
host won’t be overloaded or underloaded in the near future, then
in that case migrating VMs from these hosts won’t be effective and
essential. Therefore, in order to determine if the migration is really
required, we must consider how the host’s resources will be used
in the future. The probabilistic Bernoulli trial strategy makes the
assumption that every server or VM has the same capacity and
capabilities, therefore, treating each server as equally likely to be
selected for allocation. Because of the homogeneity assumption,
lack of resource awareness, and inefficient use of resources, this
may result in suboptimal placement decisions. In the future, we will
work toward adjusting the probability of selecting a server based
on its capacity, current load, and other factors. When dealing with
large cluster sizes and VMs, centralised scheduling might become
a bottleneck and a single point of failure. In the future, we will
implement the proposed method in a distributed and decentralised
manner.

ACKNOWLEDGMENTS

This work is partially supported by Adul Wali Khan University,
Mardan, Pakistan and, in parts, by the Sohar University, Sultanate
of Oman.

REFERENCES

[1] A. Shehabi, S. J. Smith, E. Masanet, and J. Koomey, “Data center
growth in the united states: decoupling the demand for services from
electricity use,” Environmental Research Letters, vol. 13, no. 12, p. 124030,
2018.

[2] E. Masanet, A. Shehabi, N. Lei, S. Smith, and J. Koomey, “Recalibrating
global data center energy-use estimates,” Science, vol. 367, no. 6481, pp.
984–986, 2020.

[3] R. Buyya, S. Ilager, and P. Arroba, “Energy-efficiency and sustainability
in new generation cloud computing: A vision and directions for inte-
grated management of data centre resources and workloads,” Software:
Practice and Experience, vol. 54, no. 1, pp. 24–38, 2024.

[4] M. Zakarya, L. Gillam, K. Salah, O. F. Rana, S. Tirunagari, and
R. Buyya, “Colocateme: Aggregation-based, energy, performance and
cost aware VM placement and consolidation in heterogeneous iaas
clouds,” IEEE Trans. Serv. Comput., vol. 16, no. 2, pp. 1023–1038, 2023.
[Online]. Available: https://doi.org/10.1109/TSC.2022.3181375

[5] A. A. Khan and M. Zakarya, “Energy, performance and cost efficient
cloud datacentres: A survey,” Computer Science Review, vol. 40, p.
100390, 2021.

[6] A. A. Khan, M. Zakarya, R. Buyya, R. Khan, M. Khan, and O. Rana,
“An energy and performance aware consolidation technique for con-
tainerized datacenters,” IEEE Transactions on Cloud Computing, vol. 9,
no. 4, pp. 1305–1322, 2019.

[7] D. Tsafrir, Y. Etsion, and D. G. Feitelson, “Backfilling using system-
generated predictions rather than user runtime estimates,” IEEE Trans-
actions on Parallel and Distributed Systems, vol. 18, no. 6, pp. 789–803,
2007.

[8] H. Elshazly, J. Ejarque, and R. M. Badia, “Storage-heterogeneity aware
task-based programming models to optimize i/o intensive applica-
tions,” IEEE Transactions on Parallel and Distributed Systems, vol. 33,
no. 12, pp. 3589–3599, 2022.

[9] E. Shmueli and D. G. Feitelson, “Backfilling with lookahead to op-
timize the packing of parallel jobs,” Journal of parallel and distributed
computing, vol. 65, no. 9, pp. 1090–1107, 2005.

[10] C. Gómez-Martı́n, M. A. Vega-Rodrı́guez, and J.-L. González-Sánchez,
“Fattened backfilling: An improved strategy for job scheduling in
parallel systems,” Journal of Parallel and Distributed Computing, vol. 97,
pp. 69–77, 2016.

[11] D. G. Feitelson, “Experimental analysis of the root causes of perfor-
mance evaluation results: a backfilling case study,” IEEE Transactions
on Parallel and Distributed Systems, vol. 16, no. 2, pp. 175–182, 2005.

[12] D. Talby and D. G. Feitelson, “Improving and stabilizing parallel
computer performance using adaptive backfilling,” in 19th IEEE In-
ternational Parallel and Distributed Processing Symposium. IEEE, 2005,
pp. 10–pp.

[13] S. Kim and Y.-r. Choi, “Constraint-aware vm placement in heteroge-
neous computing clusters,” Cluster Computing, vol. 23, no. 1, pp. 71–85,
2020.

[14] V. D. Reddy, G. Gangadharan, G. Rao, and M. Aiello, “Energy-efficient
resource allocation in data centers using a hybrid evolutionary algo-
rithm,” Machine learning for intelligent decision science, pp. 71–92, 2020.

[15] Q. Fang, J. Wang, Q. Gong, and M. Song, “Thermal-aware energy
management of an hpc data center via two-time-scale control,” IEEE
Transactions on Industrial Informatics, vol. 13, no. 5, pp. 2260–2269, 2017.

[16] Y. Etsion and D. Tsafrir, “A short survey of commercial cluster batch
schedulers,” School of Computer Science and Engineering, The Hebrew
University of Jerusalem, vol. 44221, no. 2005, p. 13, 2005.

[17] M. Zakarya, A. A. Khan, M. R. C. Qazani, H. Ali, M. Al-Bahri, A. U. R.
Khan, A. Ali, and R. Khan, “Sustainable computing across datacenters:
A review of enabling models and techniques,” Computer Science Review,
vol. 52, p. 100620, 2024.

[18] C. Mastroianni, M. Meo, and G. Papuzzo, “Self-economy in cloud data
centers: Statistical assignment and migration of virtual machines,” in
European Conference on Parallel Processing. Springer, 2011, pp. 407–418.

[19] M. Zakarya and L. Gillam, “An energy aware cost recovery approach
for virtual machine migration,” in International Conference on Economics
of Grids, Clouds, Systems and Services. Springer, 2016.

[20] T. C. Ferreto, M. A. S. Netto, R. N. Calheiros, and C. A. F. De
Rose, “Server consolidation with migration control for virtualized data
centers,” Future Generation Computer Systems, vol. 27, no. 8, pp. 1027–
1034, 2011.

[21] C. Mastroianni, M. Meo, and G. Papuzzo, “Probabilistic consolidation
of virtual machines in self-organizing cloud data centers,” IEEE Trans-
actions on Cloud Computing, vol. 1, no. 2, pp. 215–228, 2013.

[22] Z. A. Mann, “Decentralized application placement in fog computing,”
IEEE Transactions on Parallel and Distributed Systems, vol. 33, no. 12, pp.
3262–3273, 2022.

[23] M. Zakarya and L. Gillam, “Energy and performance aware resource
management in heterogeneous cloud datacenters.” Ph.D. dissertation,
University of Surrey, 2017.

[24] L. F. Bittencourt, J. Diaz-Montes, R. Buyya, O. F. Rana, and M. Parashar,
“Mobility-aware application scheduling in fog computing,” IEEE Cloud
Computing, vol. 4, no. 2, pp. 26–35, 2017.

[25] K. Kaur, S. Garg, G. Kaddoum, E. Bou-Harb, and K.-K. R. Choo, “A
big data-enabled consolidated framework for energy efficient software
defined data centers in iot setups,” IEEE Transactions on Industrial
Informatics, vol. 16, no. 4, pp. 2687–2697, 2019.

[26] J. O’Loughlin and L. Gillam, “Sibling virtual machine co-location
confirmation and avoidance tactics for public infrastructure clouds,”
The Journal of Supercomputing, vol. 72, no. 3, pp. 961–984, 2016.

https://doi.org/10.1109/TSC.2022.3181375


12

TABLE 6: Summary of the related works [VMP - VM Placement, BF - BackFill, S - Single system, LB - Load balancing, and C - Cloud]
Matching related work BackFillMe

criteria [7] [30] [40] [42] [43] [13] [14] [46] [10] [32] [45]
Placement BF-S VMP+C VMP VMP VMP VMP+LB VMP VMP+C BF-S VMP+BF VMP+C VMP+BF-C
Migrations ✓ ✓ ✓ ✓ ✓

Performance ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Energy efficiency ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Previous runtimes ✓
Priority ✓ ✓ ✓

Predictions ✓
Costs ✓

[27] R. Kavanagh, K. Djemame, J. Ejarque, R. M. Badia, and D. Garcia-
Perez, “Energy-aware self-adaptation for application execution on
heterogeneous parallel architectures,” IEEE Transactions on Sustainable
Computing, vol. 5, no. 1, pp. 81–94, 2019.

[28] R. Mahmud, S. N. Srirama, K. Ramamohanarao, and R. Buyya, “Profit-
aware application placement for integrated fog–cloud computing en-
vironments,” Journal of Parallel and Distributed Computing, vol. 135, pp.
177–190, 2020.

[29] C. Reiss, J. Wilkes, and J. L. Hellerstein, “Google cluster-usage traces:
format+ schema,” Google Inc., Mountain View, CA, USA, Technical Report,
2011.

[30] A. Beloglazov and R. Buyya, “OpenStack Neat: A framework for
dynamic and energy-efficient consolidation of virtual machines in
OpenStack clouds,” Concurrency Computation, vol. 27, no. 5, pp. 1310–
1333, 2015.

[31] D. Carastan-Santos, R. Y. De Camargo, D. Trystram, and S. Zrigui,
“One can only gain by replacing easy backfilling: A simple scheduling
policies case study,” in 2019 19th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGRID). IEEE, 2019, pp. 1–10.

[32] S. A. Murad, Z. R. M. Azmi, A. J. M. Muzahid, M. K. B. Bhuiyan,
M. Saib, N. Rahimi, N. J. Prottasha, and A. K. Bairagi, “Sg-pbfs: Short-
est gap-priority based fair scheduling technique for job scheduling in
cloud environment,” Future Generation Computer Systems, vol. 150, pp.
232–242, 2024.

[33] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, and R. Buyya,
“Cloudsim: a toolkit for modeling and simulation of cloud computing
environments and evaluation of resource provisioning algorithms,”
Software: Practice and experience, vol. 41, no. 1, pp. 23–50, 2011.

[34] M. Zakarya, L. Gillam, A. A. Khan, and I. U. Rahman, “Perficient-
cloudsim: a tool to simulate large-scale computation in heterogeneous
clouds,” The Journal of Supercomputing, vol. 77, pp. 3959–4013, 2021.

[35] M. Tirmazi, A. Barker, N. Deng, M. E. Haque, Z. G. Qin, S. Hand,
M. Harchol-Balter, and J. Wilkes, “Borg: the next generation,” in
Proceedings of the fifteenth European conference on computer systems, 2020,
pp. 1–14.

[36] P. Minet, E. Renault, I. Khoufi, and S. Boumerdassi, “Analyzing traces
from a google data center,” in 2018 14th International Wireless Commu-
nications & Mobile Computing Conference (IWCMC). IEEE, 2018, pp.
1167–1172.

[37] H. Ali, M. S. Qureshi, M. B. Qureshi, A. A. Khan, M. Zakarya, and
M. Fayaz, “An energy and performance aware scheduler for real-time
tasks in cloud datacentres,” IEEE Access, vol. 8, pp. 161 288–161 303,
2020.

[38] A. W. Mu’alem and D. G. Feitelson, “Utilization, predictability, work-
loads, and user runtime estimates in scheduling the ibm sp2 with
backfilling,” IEEE transactions on parallel and distributed systems, vol. 12,
no. 6, pp. 529–543, 2001.

[39] M. Zakarya, “An extended energy-aware cost recovery approach for
virtual machine migration,” IEEE Systems Journal, vol. 13, no. 2, pp.
1466–1477, 2018.

[40] S. Azizi, M. Zandsalimi, and D. Li, “An energy-efficient algorithm for
virtual machine placement optimization in cloud data centers,” Cluster
Computing, vol. 23, no. 4, pp. 3421–3434, 2020.

[41] Y. Kumar, S. Kaul, and Y.-C. Hu, “Machine learning for energy-
resource allocation, workflow scheduling and live migration in cloud
computing: State-of-the-art survey,” Sustainable Computing: Informatics
and Systems, vol. 36, p. 100780, 2022.

[42] X. Zhu, L. T. Yang, H. Chen, J. Wang, S. Yin, and X. Liu, “Real-time
tasks oriented energy-aware scheduling in virtualized clouds,” IEEE
Transactions on Cloud Computing, vol. 2, no. 2, pp. 168–180, 2014.

[43] S. K. Mishra, D. Puthal, B. Sahoo, P. P. Jayaraman, S. Jun, A. Y. Zomaya,
and R. Ranjan, “Energy-efficient vm-placement in cloud data center,”
Sustainable computing: informatics and systems, vol. 20, pp. 48–55, 2018.

[44] M.-H. Kim, J.-Y. Lee, S. A. R. Shah, T.-H. Kim, and S.-Y. Noh, “Min-max
exclusive virtual machine placement in cloud computing for scientific

data environment,” Journal of Cloud Computing, vol. 10, no. 1, pp. 1–17,
2021.

[45] K. K. Chakravarthi and L. Shyamala, “Topsis inspired budget and
deadline aware multi-workflow scheduling for cloud computing,”
Journal of Systems Architecture, vol. 114, p. 101916, 2021.

[46] D. R. Vemula, M. K. Morampudi, S. Maurya, A. Abdul, M. M. Hussain,
and I. Kavati, “Enhanced resource provisioning and migrating virtual
machines in heterogeneous cloud data center,” Journal of Ambient
Intelligence and Humanized Computing, vol. 14, no. 9, pp. 12 825–12 836,
2023.

[47] H. Liu, H. Jin, C.-Z. Xu, and X. Liao, “Performance and energy
modeling for live migration of virtual machines,” Cluster Computing,
pp. 249–264, 2011.

[48] C. C. Lin, P. Liu, and J. J. Wu, “Energy-aware virtual machine dynamic
provision and scheduling for cloud computing,” in Proceedings - 2011
IEEE 4th International Conference on Cloud Computing, CLOUD 2011,
2011, pp. 736–737.

[49] B. Shi and H. Shen, “Memory/disk operation aware lightweight vm
live migration across data-centers with low performance impact,” in
IEEE INFOCOM 2019-IEEE Conference on Computer Communications.
IEEE, 2019, pp. 334–342.



13

APPENDIX A
MODELLING MIGRATION ENERGY AND PERFORMANCE

In this appendix, we deliberate several statistical models that
are used in simulations to measure the energy consumption and
performance of resources and workloads during migrations.

A.1 Modelling Migration Energy Consumption
In datacenters, migrations are common, and their power consump-
tion overhead must not be ignored. The power consumption of a
migration process is a dynamic portion of the power model that
contains the power usage of numerous hardware, including CPU,
memory, data transmission rate, i.e., R, and network interface card.
At source, the power consumption due to migration rises as R is
increased, while the migration time decreases. In [47], the author
shows that at different R, the average consumption leads to fewer
than six percentiles of disparity, which verifies that the migration
power consumption overhead is mostly free of R. The authors
claim that migration is an I/O-intensive process where the power
is mostly spent on data sending and receiving. The authors have
modelled the power consumption costs, due to migration, based
on the capacity of network traffic. The VM migration contains a
source, a destination host, and a network switch. As switching
fabric is difficult, therefore power is tough to compute. In [48], the
authors stated that live migration does not affect the execution time
of a VM, but it increases the power consumption of source and
destination hosts. On migration starts, the destination host creates
an extra process to copy VM memory contents that will raise the
loading, leading to a rise in total power consumption. The authors
claim that a live migration rises 20% loading on the destination
host, while there is no increase at the source host. Their model for
migration energy overhead is given by Eq. 14:

Emig = Esource + Edest (14)

Considering the power model where Pp is the peak power con-
sumption, the idle power consumption is assumed as half of the
peak power denoted by α, c is the number of cores used, and C
denotes the total number of cores on a host. Then, the total power
consumption of the host is given by Eq. 15:

P = (
c

C
.(1− α) + α)× Pp (15)

We get the source and destination energy consumption overhead
as given in Eq. 16 and Eq. 17, respectively:

Esource = (
c

C
.(1− α) + α)× Pp.Tmig (16)

Edest = (
c◦

+
L)(C.(1− α) + α)× Pp.Tmig (17)

where Tmig is the migration total time, L is the increase in load
at the destination host, c◦ is the number of cores required at the
destination for the VM to be migrated, and c

C
denotes the load

on the host. For offline migration, as the VM is suspended, there
is a strong decrease in power consumption of the source server.
For live migration, the source server will touch a new peak for
power consumption due to the groundwork for sending a VM to
the destination. The destination server will experience a peak in
its power demand due to resource provisioning in a migration ap-
proach independent behavior. The network cost cannot be ignored,
especially for the live migration, where the VM is continuously
writing to memory, and it takes much time to transfer the VM
to the destination. Some studies have ignored this cost, with the
assumption that it will only affect the migration when running
at full utilisation. The authors assume that a VM migration will
never be issued when the bandwidth between the two servers is
fully utilised. Other studies consider this cost as constant, with the
assumption that the power consumption of the network switches
is not proportional to the amount of traffic being moved over some
time.

A.2 Modelling Migration Performance
Modelling the performance of migration includes numerous fac-
tors, including the VM memory size, network transmission rate,
the migration algorithm, and the workload features, i.e., memory
dirtying rate. The key parameters are VM size (Vmem), network traf-
fic (Vmig), total migration time (Tmig), downtime (Tdown), memory
transmission rate (R), memory dirty rate (D), threshold for the last
round (Vth), and writable working set (W ) to transfer hot pages.
To minimize Tdown, live migration copies the dirty pages at the
previous round of transmission iteratively. Consider that there are n
rounds, which completes the pre-copy algorithm; then, the volume
of data at round i is Vi and the elapsed time is Ti for 0 ≤ i ≤ n.
Therefore, the data transmitted and the time during each round are
given by Eq. 18 and Eq. 19, respectively:

Vi =

{
Vmem if i = 0
D.Ti−1 if i > 0

(18)

Ti =
D.Ti−1

R
=

Vmen.D
i

Ri+1
(19)

Consider that D < R on average and ω denotes the ratio of D to R
as given by Eq. 20:

ω =
D

R
(20)

Combining Eq. 18, Eq. 19, and Eq. 20, we get Eq. 21:

Vi = Vmem.ωi (21)

The total network traffic is given by Eq. 22:

Vmig =

n∑
i=0

Vi = Vmem.
1− ωn+1

1− ω
(22)

The total migration time is given by Eq. 23:

Tmig =

n∑
i=0

Ti =
Vmem

R
.
1− ωn+1

1− ω
(23)

The migration downtime contains two different parts: (1) the time
to transfer lasting dirty pages in the stop-and-copy period i.e. Tn;
and (2) the time to resume the VM at the destination host i.e.
Tresume which has slight variation and can be characterized as
a constant value of 20ms [4]. The migration downtime is given by
Eq. 24:

Tdown = Tn + Tresume (24)

The inequality Vn ≤ Vth can be written as Vmem.ωn ≤ Vth to
calculate the total number of rounds for algorithm convergence,
which is given by Eq. 25:

n = logω.
Vth

Vmem
(25)

From the above studies, we determine that a VM having a small
memory image and trivial ω would cause a smaller amount of
network traffic leading to shorter Tmig , therefore is a better nominee
for migration. Note that if ω is smaller, then the pre-copy technique
will converge faster.
If the D is even larger than the R then the amount of data
transmitted in each round i will beat the VM size, which will
increase the total migration time even if the migration will not be
accomplished. We do not consider such situations in our modelling,
but the Xen hypervisor has solved this issue using the writable
working set technique [23]. The pages that are rottenly dirtied i.e.
hot pages are ignored to transfer till the last round of migration.
More details on such type of study can be found in [49].


	Introduction
	Problem Description
	Methodology
	Implementation
	Allocation and Migration of VMs
	The Allocation Algorithm
	The Migration Algorithm


	Proposed Solution
	The Backfilling Algorithm
	Computational Complexity

	Performance Evaluation
	Evaluation Metrics
	Experimental Results
	Results Discussion
	Comparison with State-of-the-art Schedulers

	Related Work
	Conclusions and Future Work
	References
	Appendix A: Modelling Migration Energy and Performance
	Modelling Migration Energy Consumption
	Modelling Migration Performance


