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MRI signatures of cortical microstructure in
human development align with
oligodendrocyte cell-type expression

Sila Genc 1,2,3 , Gareth Ball 2,4, Maxime Chamberland 1,5,
Erika P. Raven 1,6,7, Chantal M. W. Tax 1,8, Isobel Ward 1,9,
Joseph Y. M. Yang 2,3,4,10, Marco Palombo 1,11 & Derek K. Jones 1

Neuroanatomical changes to the cortex during adolescence have been well
documented using MRI, revealing ongoing cortical thinning and volume loss.
Recent advances in MRI hardware and biophysical models of tissue informed
by diffusionMRI data hold promise for identifying the cellular changes driving
these morphological observations. Using ultra-strong gradient MRI, this study
quantifies cortical neurite and soma microstructure in typically developing
youth. Across domain-specific networks, cortical neurite signal fraction,
attributed to neuronal and glial processes, increases with age. The apparent
soma radius, attributed to the apparent radius of glial andneuronal cell bodies,
decreases with age. Analyses of two independent post-mortem datasets reveal
that genes increasing in expression through adolescence are significantly
enriched in cortical oligodendrocytes and Layer 5–6 neurons. In our study, we
show spatial and temporal alignment of oligodendrocyte cell-type gene
expression with neurite and soma microstructural changes, suggesting that
ongoing cortical myelination processes drive adolescent cortical
development.

Over the last two decades, magnetic resonance imaging (MRI) has
provided invaluable insights into the developing brain, revealing
ongoing cortical thinning and cortical volume loss throughout
adolescence1,2. However, theunderlying cellular processesdriving these
changes are less understood. Cortical cytoarchitecture can be broadly
categorised into neurites (e.g., axons, dendrites, and glial processes)
and soma (e.g., neuronal, and glial cell bodies). Traditionally, synaptic
pruning has been considered the primary driver of developmental
changes in cortical morphology3. Recent evidence, however, suggests

that myelin encroachment into the grey/white matter boundary may
also contribute to changes in MR contrast typically used for volu-
metrics, such as T1

4. Developmental patterns of cortical myelination
have been elucidated using magnetisation transfer (MT) imaging5, and
indirectly using T1w/T2w ratio6. Despite these advances, how micro-
structural changes – specifically neurite and soma properties – con-
tribute to these distinct morphological changes remains unclear.

Diffusion-weighted MRI (dMRI) is the main non-invasive MRI
technique capable of probing the tissue microstructure, orders of
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magnitude smaller than the typical millimetre image resolution of
structural MRI7. This microstructural imaging method is highly sensi-
tive to the magnitude and direction of water diffusing within brain
tissue. By employing biophysical models, it is possible to infer micro-
scopic properties of different tissues, such as neurite signal fraction in
the brain’s white matter8,9. In comparison with white matter, grey
matter cytoarchitecture, broadly categorised into neurites (e.g., elon-
gated structures such as axons, dendrites and glial processes) and
soma (e.g., spherical structures such as neuronal and glial cell-bodies)
is more locally complex, requiring extensions of the standard models
of microstructure developed for studying the white matter. Recent
hardware10,11 and biophysical modelling12–14 developments have
enabled diffusion-weighted microstructural quantification of soma
and neurite components in the cortex in vivo. The Soma and Neurite
Density Imaging (SANDI; Palombo, Ianus13), is robust, reliable15, clini-
cally feasible for sufficiently short diffusion times16 and has been vali-
dated in ex vivo data17.

SANDI is a biophysical tissue model that estimates the diffusion-
weighted signal contribution from three distinct compartments: intra-
neurite, intra-soma, and extracellular space. For each imaging voxel, a
signal fraction will be estimated for each of the three compartments,
such that they sum to 1. In the cortical grey matter, there is a higher
proportion of soma (neuronal and glial cell bodies) to neurites, leading
to a higher soma signal fraction. These signal fractions vary around
tissue boundaries, with higher extracellular signal fraction around the
cortical surface due to partial voluming with CSF. Overall, these
compartment-specific signal fractions are relative, and comparing
these trends over age are potentially meaningful to deduce the com-
partments that are contributingmost to age-related changes in cortical
development.

Here, we examine cortical microstructural development in a
sample of children and adolescents using ultra-strong gradient dMRI
to identify specific changes in neurite and soma properties with age.
To identify potential cellular substrates, we analyse developmental
patterns of neurite and soma microstructure alongside con-
temporaneous trajectories of cortical cell-type specific gene

expression measured in the developing cortex using data from two
independent, post-mortem databases. We reveal key developmental
patterns in cortical neurite and soma architecture, highlighting the
contribution of active and ongoing cortical myelination processes to
the macroscale changes observed in the cortex during adolescence.

Results
We apply a framework for cortical microstructure and cell-type spe-
cific gene expression analysis (Fig. 1) to evaluate the cellular properties
underpinning human cortical microstructural development.

Cortical microstructure and morphology in domain-specific
networks
First, we studied the repeatability of cortical microstructural estimates
from the SANDI model in a sample of 6 healthy adults scanned over 5
sessions. Intra-class coefficients (ICCs) for neurite signal fraction
(fneurite;mean ICC =0.97), soma signal fraction (fsoma;mean ICC =0.98)
and extracellular signal fraction (fextracellular; mean ICC =0.98) were
very high (Fig. 2c) across seven domain-specific networks. Apparent
soma radius (Rsoma, in µm) showed lower repeatability on average
(mean ICC =0.94) with lower mean repeatability driven by the limbic
network.

We then studied age-related patterns of cortical microstructure
and morphology in a sample of 88 typically developing children and
adolescents aged 8–19 years (Table S2). Cortical fneurite and intracel-
lular volume fraction (vic; derived from the NODDI model, Zhang,
Schneider8) increased with age across all cortical networks (mean
R2

fneurite = 0.53, all networks p < 3.3e-11; mean R2
vic = 0.46, all networks

p < 1.6e-9) (Fig. 2d, Fig S1). Orientation dispersion index (ODI; derived
from the NODDI model, Zhang, Schneider8) also increased with age
across all studied networks (mean R2

odi = 0.42, all networks p < 1.9e-5).
In contrast, we observed decreasing Rsoma with age across all networks
(mean R2

Rsoma = 0.48, all networks p < 4.4e-10) and fsoma decreased
with age in the dorsal attention (R2

fsoma = 0.12), limbic (R2
fsoma = 0.09)

and somatomotor (R2
fsoma = 0.23), networks (all p <0.002). fextracellular

decreased in the default mode (R2
fe = 0.12), limbic (R2

fe = 0.21) and

Fig. 1 | Framework for cortical microstructure and gene expression analysis.
This study employs a biophysical model of cortical neurite and soma micro-
structure using ultra-strong gradient dMRI10 data collected from 88 children and
adolescents aged 8–19 years. Representative maps of neurite signal fraction
(fneurite), soma signal fraction (fsoma), apparent soma radius (Rsoma, µm) and extra-
cellular signal fraction (fextracellular) are shown for one 8-year-old female participant.
We also analyse two human gene expression datasets20,21 to estimate cell-type

specific and spatial (where arrows on brain render indicate a subset of regions
sampled) gene expression profiles and examine their concordance with develop-
mental patterns of cortical microstructure. Created in BioRender. Genc, S. (2025)
https://BioRender.com/q33l208. Abbreviations: dMRI: diffusion magnetic reso-
nance imaging; fextracellular: extracellular signal fraction; fneurite: neurite signal frac-
tion; fsoma: soma signal fraction; RPKM: rates per kilobase of transcript per million
mapped; Rsoma: apparent soma radius, in µm.

Article https://doi.org/10.1038/s41467-025-58604-w

Nature Communications |         (2025) 16:3317 2

https://BioRender.com/q33l208
www.nature.com/naturecommunications


Fig. 2 | Developmental patterns of MRI-derived cortical morphology and
microstructure. a regions in atlas used to derive domain-specific networks81

overlaid on a representative participant; b developmental patterns of cortical
morphology and microstructure averaged across the cortical ribbon; c network-
wide patterns of microstructure and morphology, indicating age-related increases
in neurite fraction and reductions in cortical thickness, apparent soma radius, soma
fraction and extracellular fraction; d demonstration of high repeatability of SANDI
measures in six adults scanned over 5 time-points within two weeks; e spatial

representation of networks. Significant age relationships determined with a linear
regression (p <0.005) are annotated (*) and exactp values are reported in Table S2.
Curves in (b, c) represented as mean trajectory with 95% confidence interval
bounds. Abbreviations: CTh cortical thickness, in mm, fextracellular extracellular sig-
nal fraction, fneurite neurite signal fraction, fsoma soma signal fraction, GM grey
matter, ICC intra-class coefficient, Rsoma apparent soma radius, in µm. Colour
coding in (a, e) corresponds to regions in (c, d). Source data for (d) are provided as
a Source Data file.
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visual (R2
fe = 0.09) networks (all p <0.004). DTI metrics revealed

decreasing FA with age across all networks apart from the limbic net-
work (mean R2 = 0.27, p < 2.1e-5), decreasingMD in the limbic network,
β = −0.42, [−0.62, −0.22], p = 8.8e-5, and increasing MD in the soma-
tomotor network, β =0.34, [0.13, 0.55], p = 0.002.

Consistent with established developmental patterns, cortical
thickness and grey matter volume decreased with age (Fig. 2b). The
strength of these associations varied across brain networks (see Fig S1
and Table S2). Specifically, cortical thickness exhibited age-related
decline in the default mode, β = −0.59 [−0.77, −0.41], dorsal attention,
β = −0.40 [−0.61, −0.19], somatomotor, β = −0.40 [−0.60, −0.19], and
visual, β = −0.61 [−0.78, −0.43], networks (all p < 0.001). Similarly, grey
matter volume decreased with age in the default mode, β = −0.37
[−0.55, −0.20], dorsal attention, β = −0.34 [−0.54, −0.15], and visual
β = −0.29 [−0.47, −0.11], networks (all p <0.002). Cortical surface area
did not show significant age-related differences. The magnitude and
direction of age effects across all microstructural and morphological
measures are shown in Fig. S1.

Sex differences in brain structure have been well reported, with
pubertal onset playing a critical role in initiating developmental
changes to morphology18 and microstructure19. We found that grey
matter volume and surface area were higher in males than females
(p < .005) across all brain networks (Fig. S2), following known patterns
of larger brain volume in males. We observed sex differences in only
two microstructural measures, Rsoma and fractional anisotropy (FA;
derived from the diffusion tensor at b = 1200 s/mm2), in the visual
network (Fig. S2, S3). Females had higher Rsoma, β = −0.57 [−0.91,
−0.24], p = 0.001, and lower FA, β =0.55, [0.18, 0.92], p = 0.004, com-
pared to males. We observed a pubertal stage by sex interaction on
fsoma, where males had lower soma signal fraction in early puberty,
β = 0.73 [0.28, 1.18], p =0.002, which stabilised in late puberty. Males
had lower fextracellular throughout puberty β = −0.74 [−1.18, −0.31],
p =0.001. To further demonstrate developmental differences in the
visual network we built an age prediction model (see supplementary
section 8.3.2 and Fig. S10) which showed that Rsoma provided themost
accurate age-prediction (cross-validated R2 = 0.58). Feature impor-
tance revealed top-ranking regions represent cortical endpoints of
developmentally sensitive tracts, identified through tractography,
such as the posterior corpus callosum, cingulum, and inferior long-
itudinal fasciculus (Fig. S10d).

Contemporaneous gene expression trajectories
Using n = 214 post-mortem tissue samples from the dorsolateral pre-
frontal cortex (DLFPC; BrainCloud; Colantuoni, Lipska20), we identified
n = 2057 genes with differential expression over the lifespan (0.5–72
years; pFDR < 0.05). We validated this selection in an independent RNA-
seq dataset (PsychENCODE; Li, Santpere21; n = 20), identifying n = 467
(22.7%) genes with significant age-associations in both datasets (age-
genes; Supp Info).

We identified sets of differentially expressed genes across 7 cor-
tical cell-types (see Methods). Mean trajectories of gene expression
across ages 0 and 30 years, averaged within each cell-type, are shown
as standardised curves in Fig. 3 for PsychENCODE (Fig. 3a) and Brain-
Cloud (Fig. 3b) datasets. Developmental profiles from the DLPFC were
visualised, to allow for clearer comparisons of cell-type specific trends
over age between cohorts. Non-normalised gene expression curves for
PsychENCODE are presented in Fig. S4 to aid in interpreting relative
differences in gene expressionmagnitudes. Amonggenes expressed in
excitatory neuronal populations and oligodendrocytes, mean expres-
sion levels increased with age. In contrast, genes expressed in inhibi-
tory neurons showed no age-related variation. Genes expressed in
endothelial cells, astrocytes, microglia and OPCs, exhibited a decrease
in mean gene expression with age. Overall, microglial gene expression
(mean log2RPKM= 1.96) was lower compared to astrocytes (mean
log2RPKM=3.70), oligodendrocytes (mean log2RPKM=3.11), OPCs

(mean log2RPKM=3.01), excitatory neurons (mean log2RPKM=4.15)
and inhibitory neurons (mean log2RPKM= 2.94). To validate our bulk-
tissue findings in an independent dataset, we took advantage of a
recent single-cell RNA atlas of pre- and postnatal brain development22.
Using these data, we identified a set of cell-specific genes with an onset
of expression in childhood (>4 years) followed by a rapid increase
through adolescence and into adulthood (n = 534 genes). Most of
these genes were expressed by oligodendrocytes (n = 349; Fig. S12),
confirming our findings from bulk-tissue data.

We confirmed the enrichment of cell-types identified in the age-
related genes identified using bulk-tissue data using an independent
cell-type specific expression analysis (CSEA). Significant enrichment of
age-genes (n = 467) was observed in cortical oligodendrocytes, oligo-
dendrocyte progenitors, and Layer 5–6 neurons (Fig. S5). These genes
were prominently expressed across developmental stages in child-
hood adolescence, and young adulthood (Fig. S6, Table S3, Fig. 3c).
The number (Fig. 3d) and proportion (Fig. 3e) of age-related genes
expressed by oligodendrocytes increased significantly in adolescence
and young adulthood (Fig. 3d, e). These included genes associated
with CNS (re)myelination, RCAN223, GRIA324, and the differentiation of
OPCs and oligodendrocytes, PLEHA1/TAPP125; AATK/AATYK26.

For each cell-type, we quantified the spatiotemporal patterns of
gene expression using PsychENCODE data by identifying the peak
growth of expression in cell-specific genes. Oligodendrocyte gene
expression peaked earliest in primary motor (M1), primary visual (V1)
cortices, and latest in the medial frontal (MFC) cortex (Fig S8). A
notable pattern emerged in which the peak expression of oligoden-
drocyte genes coincided with a shift in oligodendrocyte-to-astrocyte
specific expression ratio. This shift, indicating a relative increase in
oligodendrocyte over astrocyte cell-type gene expression, occurred
around 20years of age inM1 andV1, and after age 25 inDLPFC, ITC and
MFC (Fig. 3g, h). This sequence aligns with the known earlier myeli-
nation timing in sensorimotor cortices followed by prolonged myeli-
nation in the pre-frontal cortex into the third decade of life5,6,27.

Concordant profiles of microstructure and gene expression
indicate developmental cortical myelination
To elucidate the cell-specific basis of our imaging findings, we exam-
ined neurite and soma microstructural measures in the same four
frontal regions sampled in the PsychENCODE data (MFC, IFC, DLPFC,
VLPFC; see Fig. 4a, b) using a fine-grained parcellation of the frontal
lobe. Microstructural MRI revealed regional increases in fneurite and
decreases in Rsoma (Fig. 4c). This pattern corresponded with increased
regional oligodendrocyte cell-type gene expression profiles in the
same regions over the same age period (Fig. 4d, e). The spatial dis-
tribution of oligodendrocyte cell-type expression was aligned with
regional differences in peak growth of the neurite fraction (Fig. S7).
Thus, the dMRI-derived neurite signal fraction likely reflects spatio-
temporal patterns of cortical myelination, matching the peak expres-
sion of oligodendrocyte-genes.

To further evaluate the concordance between in vivo MRI and
ex vivo gene expressionpatterns,weperformednumerical simulations
using realistic cell counts to explain age-related patterns of the
apparent soma radius. Assuming that the observed age-related slope
of gene expression was proportional to the number of cells of each
cell-type within an MRI voxel, we modelled cell-type composition
changes based on the actual expected distribution of cell body radii
within a voxel based on realistic cell counts and sizes. Our results
revealed close correspondence between simulated and in vivo mod-
elling results of Rsoma (Fig. S9), showing a 1% age-related decrease in
both simulated and dMRI-derived data across 8–19 years.

Discussion
We combined in vivo ultra-strong gradient dMRI with independent
ex vivo gene expression analyses to map tissue microstructural
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Fig. 3 | Developmental trajectories of cell-type specific gene expression. Data
shown for samples aged 0-30 years from: (a) BrainCloud (Z-score), and (b) Psy-
chENCODE (expressed in log2-reads-per-kilobase of transcript per million
(log2RPKM)) datasets, demeaned to account for overall higher expression in some
cell-types. Age effects were modelled in all postnatal samples to maximise sample
size. Grey shaded areas highlight the age range of the microstructural imaging
cohort (8–19 years) for visual comparison of developmental profiles. c SEA results89

showing significant enrichment of age-related genes through adolescence and
adulthood, where hexagon size scales with enrichment (overlap) of age-related
genes in genes expressed by each cell type determined using the Fisher’s exact
test91, and darker rings indicate significant associations at pFDR < .001 with inner
rings indicating high cell specificity. Falsediscovery rate (FDC)was controlled using
Benjamini-Hochberg multiple testing correction for the number of cell types and
regions assayed92. Age-related genes overlapping postnatal developmental stages
are shown as (d) total number of genes, and (e) proportion of genes, indicating an

increase in neuronal, glial and oligodendrocyte-specific genes. fTrajectories of glial
genes overlapping the SEA and our age-genes. gRegional shifts in the glial cell-type
expression ratio (log2RPKM) across development, with the astrocyte-to-
oligodendrocyte expression ratio crossing earliest at age 20 years in primarymotor
and visual cortices. h Timing of this cross-over, with darker values indicating
regions with an earlier crossing point. Note that white coloured regions are not
represented in the data set. Curves in (a, b, g) represented as mean trajectory with
95% confidence interval bounds. Abbreviations: A1C Primary auditory cortex,
DLPFC Dorsolateral pre-frontal cortex, IPC Inferior parietal cortex, ITC Inferior
temporal cortex,M1 Primarymotor cortex, MFCMedial frontal cortex, OFCOrbito-
frontal cortex, OPC oligodendrocyte precursor cell, RPKM rates per kilobase of
transcript per million mapped, S1 Primary somatosensory cortex, STC Superior
temporal cortex, V1 Primary visual cortex, VLPFC Ventrolateral pre-frontal cortex.
Colour coding in (a) corresponds to cell-types in (b, d–f). Source data are provided
as a Source Data file.
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architecture during human development. We now discuss each of the
key findings and their implications, before summarising the strengths
and limitations of our study.

Neurite signal fraction increases from childhood to adolescence
The neurite signal fraction, fneurite, attributed to elongated cortical
structures (e.g., axons, processes), increasedwith age across thewhole
cortex, but peaked earliest in the visual and somatomotor networks,
mirroring previous findings28. Intracorticalmyelination continues over
adolescence4,6,29–31, following a stereotyped sensorimotor-to-
association (S-A) axis of development32. Although dMRI is relatively
insensitive towaterwithin themyelin sheath itself, due to its short T2

33,
the observed increase in fneurite may nevertheless reflect intra-cortical
myelination. In dMRI, myelin thickening can decrease the extracellular
signal fraction, due to less physical space in the extracellularmatrix33,34.
Age-related decreases in fextracellular were confined to the visual net-
work and orbito-frontal and inferior frontal cortices. Ex vivo macaque
data support developmental increases in glial process length and
complexity35, and an increase in the number of myelinated axons and
dendrites36, which limits water exchange and leads to a greater signal
contribution from inside the neurite14,37. Comprehensive evaluation of
the myelin content is warranted to confirm the contributions of
intracortical myelination to developmental changes in cortical
morphology38.

Oligodendrocyte-specific gene expression increases from
childhood to adolescence
Supporting our in vivo MRI findings, oligodendrocyte-specific gene
expression increased with age (Fig. 3a, b), aligning with previous
observations in independent data5. Age-related genes were also enri-
ched in cortical neurons (layers 5 and 6) and OPCs (Fig. S5). The con-
cordance between the human bulk-tissue gene expression analysis
(Fig. S5), human single-cell RNA analysis (Fig. S12), and the CSEA ana-
lysis based on mouse transcriptomic profiling (Fig. S5) indicates

conservation of myelination processes via cortical oligodendrocytes.
Oligodendrocyte cell turnover in the frontal cortex is dynamic, espe-
cially in adulthood, and 10 times higher in the cortex than in the white
matter39. OPCs can generate myelinating oligodendrocytes in adult-
hood, even in fully myelinated regions40,41. Importantly, oligoden-
drocyte function is not restricted to myelination, rather, they also
perform many critical neuronal support functions beyond
myelination42. Together our microstructural MRI and gene-expression
findings converge towards increased cortical myelination through
adolescence.

Apparent soma radius decreases fromchildhood to adolescence
The dMRI-derived apparent soma radius, Rsoma, decreased cortex-wide
from childhood to adolescence. Neuronal soma are much larger than
glial soma, measuring ~16 µm in diameter in layers 5–6 of the adult
human prefrontal cortex, whereas glial soma range in diameter from 1
to 11 µm43. Our gene expression analysis suggests specific changes in
the cellular composition of the cortex with age: decreasing expression
levels for astrocyte, microglia and endothelial cell-types, and (much
larger) increasing expression levels for oligodendrocyte cell-types.
Glial composition in the neocortex is mostly comprised of oligoden-
drocytes (~75%), followed by astrocytes (~20%) and a smaller pre-
valence of microglia (~5%)44. Assuming gene expression levels are
proportional to cell number/density, our observations suggest a
decrease in large-soma cells (e.g., endothelial), outweighed by a larger
increase in small-soma cells (e.g., oligodendrocytes).

The estimated Rsoma is dependent on the higher order moments
of the soma radii distribution (i.e., skewdness and tailedness) within an
MRI voxel37. Our own simulations of Rsoma based on known cell com-
position in the human brain45 revealed a decrease in apparent soma
radii with age matching our in vivo imaging observations (i.e., a 1%
decrease). Thiswould in turn lead to a reduction in themeasured dMRI
signal coming from water molecules fully restricted in soma, aligning
with our in vivo observations of decreasing fsoma with age in the limbic,

Fig. 4 | Regional variation ofmicrostructure and gene expression in the frontal
cortex. a Structural MRI-based segmentation of four frontal regions: medial pre-
frontal cortex (mPFC); dorsolateral prefrontal cortex (DLPFC); orbito and polar
frontal cortex (OPFC), and inferior frontal cortex (IF); b Sub-regions from the HCP-
MMP1 atlas82, which comprised the regions in (a); c Age-related patterns of
microstructural measures with significant age relationships determined with a
linear regression: fextracellular (mPFC: p = ; OPFC: p =0.000194; DLPFC: p = ; IF:
p = 3.2e-7); fneurite (mPFC: p =0.00169; OPFC: p = 1.09e-6; IF: p = 4.8e-11); Rsoma

(mPFC: p =0.000173; DLPFC: p =0.00828; OPFC: p = 5.81e-06; IF: p = 1.66e-09);
Oligodendrocyte cell-type gene expression in (d) PsychENCODE data sampled in
the same 4 frontal cortical regions as (a, e) BrainCloud data sampled in the DLPFC.
Curves represented as mean trajectory with 95% confidence interval bounds.
Abbreviations: fextracellular extracellular signal fraction, fneurite neurite signal fraction,
fsoma soma signal fraction, Rsoma apparent soma radius, in µm. Colour coding in (a)
corresponds to regions in (b–e). Source data for (d, e) are provided as a Source
Data file.
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somatomotor, and dorsal attention networks. It is plausible that an
increase in oligodendrocyte46, not astrocyte or microglial35, composi-
tion could concomitantly result in a smaller average soma radii and
lower soma signal fraction in the cortex through adolescence to early
adulthood.

Females have larger apparent soma radii thanmales, and fsoma and
fextracellular varies with pubertal stage in the visual network (Fig. S10a).
Pubertal hormones can stimulate apoptosis (seen in female rat visual
cortex; Nunez, Sodhi47), which could explain the lower fsoma as puberty
progresses in females. Selective neuronal cell death with unchanged
glial cell number can also occur during puberty in the medial pre-
frontal cortex48,49, however we did not observe any sex or pubertal
differences in microstructure of the frontal cortex.

Spatiotemporal patterns of gene expression
Peak oligodendrocyte cell-type gene expression progressed along the
S-A axis, with earliest peaks in M1 and V1, and latest in MFC (Fig. S8),
mirroring spatial patterns of peak fneurite (Fig. S7). This also coincided
with a relative age-related decrease in astrocyte cell-type gene
expression (Fig. 4g) consistent with early-life maturation of
astrocytes50,51. The S-A developmental axis describes a maturation
process from lower-order, primary sensory and motor (unimodal)
cortices to higher-order transmodal association cortices, which sup-
port complex neurocognitive, and socioemotional functions27,52. Pro-
longed maturation of the pre-frontal cortex has been reported with
lower myelin content in fronto-polar cortex compared with visual or
somatomotor regions from childhood to adulthood53 indicating later
myelination timing. Within the frontal cortex, age-related patterns of
microstructural neurite signal fraction and soma radius were pro-
longed in the MFC and DLPFC (Fig. 4c–e). This reflects the value of
estimating in vivo neurite signal fraction as these developmental
hierarchies have been reproduced across various modalities27,54–58,
particularly when considering the regions reaching peak maturation
earliest and latest. Overall, our combined imaging genetic analyses
supports the evidence of an orderly and hierarchical progression of
intracortical myelination.

Potential applications
The findings of our work has implications for the study of cortical
thinning. A recent study showed that cortical thinning during devel-
opment is associated with genes expressed predominantly in astro-
cytes, microglia, excitatory and inhibitory neurons59. We observed
faster cortical thinning of default-mode and visual networks, con-
sistent with previous studies59,60. Apparent thinning may be a result of
the macrostructural shift in the boundary between grey matter and
white matter, in this scenario due to myelin encroachment into the
cortex4,61. The microstructural composition of the grey matter itself
may be better studied by the biophysical models used here.

Cortical morphology and myelination abnormalities are linked to
various neuropsychiatric disorders62 including schizophrenia63,64

which is characterised by deficiencies in myelination and oligoden-
drocyte production65,66. One potential future application is to quantify
cortical microstructure in such clinical cohorts, especially with adap-
tations towards clinically feasible acquisition protocols using current
state-of-the-art clinical grade 3 T systems16,67,68, and with the recent
advent of commercial systems with ultra-strong gradients (e.g., Sie-
mens 3 T Cima.X; GE 3 T MAGNUS). Further strengthening this
potential application, schizophrenia patients exhibit downregulation
of myelination-related genes69 and post-mortem studies have shown
reduced oligodendrocyte density in layer 5 of dorsolateral prefrontal
cortex compared to healthy controls70. Additionally, young children
with autism show age-related deficits in cortical T1w/T2w ratios71.
Future studies exploring these neuroimaging measures may provide
valuable insights into cortical based abnormalities.

Strengths and limitations
Several methodological advancements have advanced the under-
standing of underlying compositional changes to cortical micro-
structure across development in our study. Our repeatability results
show that SANDI-derived biophysical signal fractions are highly stable
(mean ICC =0.97) in a young adult population, and these values are
highly concordant with recently reported cortex-wide measurements
in a subset of younger adults72. Using in vivo microstructural imaging
with ultra-strong gradients (Gmax= 300mT/m; Jones, Alexander10), we
achieved sensitivity to micrometre-level imaging contrast by max-
imising SNR and minimising the effect of water exchange73. Although
we used a specialised system, recent advancements have enabled
these measurements on more accessible, lower-gradient strength MRI
systems (e.g., Gmax ≥ 80mT/m; Schiavi, Palombo16).Combinedwith two
ex vivo gene expression data sets sampled from the human brain, we
provide compelling evidence in favour of a framework for monitoring
intra-cortical cellular composition in vivo. Further work should evalu-
ate in vivo imaging acquisition techniques andmodels that account for
water exchange, which can influence biophysical modelling of grey
matter compartments.

Our observation of oligodendrocyte-specific gene expression
increasing towards adulthood indicates the value of imaging a broader
age range of young adults to fully assess trajectories of in vivo
microstructural properties. It is also important to recognise that gene
expression patterns do not necessarily correlate with cellular density.
Histopathological confirmation is needed to verify cell size and density
with biophysical signal fractions, as well as their relevancy to func-
tional gene expression patterns.

Overall, our study provides in vivo evidence of distinct develop-
mental differences in neurite and soma architecture, aligning with cell-
type specific gene expressionpatternsobserved in ex vivohumandata.
This provides a window into the role of intracortical myelination
through adolescence, andhow it shapes the developmental patterns of
cortical microstructure in vivo.

Methods
Ethics
Imaging data acquisition was performed as part of the Cardiff Uni-
versity Brain Research Imaging Centre (CUBRIC) Kids study approved
by the School of Psychology ethics committee at Cardiff University. All
procedures were completed in accordance with the Declaration of
Helsinki.

Imaging set
Participant characteristics. We included a sample of 88 typically
developing children aged 8–19 years (42males) recruited as part of the
Cardiff University BrainResearch ImagingCentre (CUBRIC) Kids study.
Participants and their parents/guardians were recruited via public
outreach events. Written informed consent was obtained from the
primary caregiver of each child participating in the study, and ado-
lescents aged 16–19 years also provided written consent. Verbal assent
was obtained for participants younger than 16 years. Children were
excluded from the study if they had non-removable metal implants or
reported history of a major head injury or epilepsy. Participants and
their families were reimbursed with a £20 gift voucher for their time
and participation.

We administered a survey to parents of all participants, and to
children aged 11–19 years. The Strengths andDifficultiesQuestionnaire
(SDQ) was used to assess emotional/behavioural difficulties (Good-
man, 1997). The PubertalDevelopment Scale74 was administeredwhich
asks questions specific to female andmale sex characteristics and used
to determine pubertal stage (PDSS; Shirtcliff, Dahl75). Additionally, we
measured each child’s height and weight to calculate their Body-Mass
index (BMI) (kg/m2). Table 1 summarises the cohort characteristics.
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All children and adolescents underwent in-person training to
prepare them for the MRI procedure using a dedicated mock MRI
scanner. This protocol was 15–30min. long, and designed to familiar-
ise them to the scanner environment, tominimise headmotion during
the scan.

Acquisition and processing. Discovery data: Participants aged 8–19
years (N = 88, mean age = 12.6 years, 46 female) underwent MRI on a
3 T Siemens Connectom system with ultra-strong (300mT/m) gra-
dients. Structural T1-weighted (voxel-size = 1 × 1 × 1mm3; TE/TR = 2/
2300ms) and multi-shell dMRI (TE/TR= 59/3000ms; voxel-
size = 2 × 2 × 2mm3; Δ = 23.3ms, δ = 7ms, b-values = 0 (14 vols), 500,
1200 (30dirs), 2400, 4000, 6000 (60dirs) s/mm2) datawere acquired.
Data were acquired in an anterior–posterior (AP) phase-encoding
direction, with one additional PA volume. The total acquisition time
(across four acquisition blocks) was 16min 14 s.

Repeatability data: Six healthy adults aged 24–30 years (3 female)
were scanned five times in the span of two weeks76 on the same Sie-
mens Connectom system. Multi-shell dMRI data were collected as
above, with an additional 20 diffusion directions acquired at
b = 200 s/mm2. One participant hadmissing T1 data in oneMRI session
so the data fromthat single sessionwas excludeddue to the inability to
perform cortical parcellation.

Pre-processing of dMRI data followed steps interfacing tools such
as FSL (v6.0.5)77, MRtrix3 (v3)78, and ANTS (v2.1.0)79 as reported
previously80. Briefly, this included denoising, and correction for drift,
motion, eddy, and susceptibility-induced distortions, Gibbs ringing
artefact, bias field, and gradient non-uniformities. For each subject,
the soma and neurite density imaging (SANDI) compartment
model was fitted13 to dMRI data using the SANDI Matlab Toolbox v1.0,
publicly available at https://github.com/palombom/SANDI-Matlab-
Toolbox-v1.0, to compute whole brain maps of neurite, soma and
extracellular signal fraction (fneurite, fsoma, fextracellular = 1 - fneurite - fsoma);
the apparent soma radius (Rsoma, in µm); and the extracellular and
intra-neurite axial diffusivities (De and Din, respectively, in µm2/ms)
(Fig. 1, Fig S11). To put our results in context with previous studies, the
neurite orientation dispersion and density imaging (NODDI)
model8 was fitted to all b-values using the NODDI Matlab toolbox,
publicly available at http://mig.cs.ucl.ac.uk/index.php?n=Tutorial.
NODDImatlab, to estimate the intra-cellular volume fraction (vic) and
orientation dispersion (OD) and diffusion tensor imaging (DTI)metrics
were estimated using the b = 1200 s/mm2 shell (Fractional anisotropy
(FA); mean diffusivity (MD, in s/mm2).

T1-weighted data were processed using FreeSurfer (v6.0; http://
surfer.nmr.mgh.harvard.edu) and post-processed to obtain network-
level (N = 7 ROIs; Yeo, Krienen81) and fine-grained cortical parcellations
(N = 360, HCP-MMP182;). The network-level atlas derivation is detailed
in Genc, Schiavi83. Briefly, we co-registered the Yeo functional atlas in
MNI space to each individual subject’s space, to obtain seven

functionally relevant cortical canonical networks (visual, somato-
motor, dorsal attention, ventral attention, limbic, frontoparietal,
default mode network). We chose a functional atlas due to the lim-
itations of structural atlases in capturing fine-grained microstructural
variations, enabling better insights into developmental patterns of
neural activity and connectivity84. Follow-up analyses using fine-
grained HCP-MMP1 parcellations in visual and frontal cortices were
performedbasedon apriori hypotheses of earliermaturationof visual4

and later maturation of frontal35 cortices, as well as for comparison
with gene expressiondata sampled frommultiple regions in the frontal
cortex. Morphological measures including cortical thickness (CTh,
mm), surface area (SA, mm2), and grey matter volume (GMvol, mm3)
were computed at the whole brain, and parcel level. The analysis fra-
mework is detailed in Fig. 1 and networks studied are depicted
in Fig. 2a.

Cortical gene expression set. Pre-processed, batch-corrected and
normalised microarray and bulk RNA-seq data from postmortem
human tissue samples were obtained from the BrainCloud20 (n = 214;
aged 6mo – 78.2 y; 144 male; postmortem interval [PMI] = 29.96
[15.28]; RNA integrity [RIN] = 8.14 [0.83]) and PsychENCODE (n = 20;
6mo–40y; 10 male; PMI = 17.85 [6.75]; RIN = 8.45 [0.79]) projects,
respectively21. The cortical regions sampled are summarised in
Table S1, alongside the approximate concordant Yeo7 parcel. Tissue
processing is detailed elsewhere21,85. Gene expression for Psy-
chENCODEwasmeasured as rates per kilobaseof transcript permillion
mapped (RPKM). Gene expression for Braincloud was preprocessed
and normalised following data cleaning and regressing out technical
variability (see https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE30272).

Genes were initially filtered to include only protein-coding genes
expressed in cortical cell types (n = 3100, Ball, Seidlitz85). Using a
database of single-cell RNA-seq studies, we identified genes differen-
tially expressed across major cortical cell types (excitatory and inhi-
bitory neurons, oligodendrocytes, oligodendrocyte precursor cells
[OPCs], microglia, astrocytes, and endothelial cells60).

Statistical analyses
In vivo imaging. For the repeatability analysis, the intra-class correla-
tion coefficient (ICC; two-way random effects, absolute agreement)
was computed for assessment of test-re-test repeatability for SANDI
and DTI metrics using the ‘psych’ package in R.

We used linear regression to test for main effects of age and sex,
puberty, and sex by puberty interactions. To identify the most parsi-
monious model and to avoid over-fitting, we used the Akaike Infor-
mation Criterion (AIC)86, selecting the model with the lowest AIC.
Individual general linear models were used to determine age-related
differences in cortical thickness and microstructural measures in all
seven Yeo networks. Evidence for an association was deemed statisti-
cally significant when p < 0.00587. Results from linear models are pre-
sented as the normalised coefficient of variation (β) and the
corresponding 95% confidence interval [lower bound, upper bound].
We also report the adjusted correlation coefficient of the full
model (R2).

To identify important regions that contribute to age-related dif-
ferences in all the studied microstructural measures, we performed
age-prediction using a random forest (RF) regressor (5-fold cross-
validation) for age prediction with PyCaret (www.pycaret.org). We
chose a RF model due their ability to model nonlinear relationships,
reduced risk of overfitting, and interpretability of feature importance.
Specifically, the depth at which a feature appears as a decision node in
a tree provides insight into its relative significance for predicting the
target variable (i.e., age). This allows us to assess the relative con-
tribution of features (i.e., average signal fraction in each HCP-MMP1
parcel) to age prediction. For each microstructural measure, we

Table 1 | Characteristics of in vivo imaging cohort

Summary statistics Age
relationshipd

Measure Mean SD Range R2 p-value

Age, yearsa 12.56 2.94 8.0–19.0

Pubertal stage (PDSS)a 2.89 1.50 1–5 0.72 2e-16

SDQ, total scorea 6.45 3.90 0–19 0.01 0.60

Body mass index, kg/m2b 19.29 3.25 13.7–29.2 0.25 1.6e-6

FSIQc 108 12.6 86–145
aFull sample: N = 88 (42 males, 46 females).
bSubsample: N = 79 (40 males, 39 females).
cSubsample: N = 48 (23 males, 25 females).
dAge relationships determined by linear regression.
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randomly split the data into training and validation sets using an
80–20 ratio (total N = 88: 70 training; 18 testing). Then, we performed
feature scaling to ensure that all input variables (for each HCP-MMP1
ROI) were on a similar scale prior tomodel fitting. The performance of
themodel was evaluated on the validation dataset. Finally, the features
with the largest weight coefficients were extracted to identify specific
cortical regions where variance in cortical microstructure was asso-
ciated with age-related changes.

Gene expression profiles. To identify genes differentially expressed
over age (pFDR < 0.05), wemodelled age-related changes in normalised
expression in all available postnatal tissue samples using nonlinear
generalised additive models with thin plate splines (k = 5)88 in R.

For BrainCloud data, the relationship between normalised gene
expression and age was modelled with a nonlinear general additive
model (GAM) using a penalised thin-plate spline with a maximum
5 knots:

gamðexpression � 1 + sðage, k = 5, bs = ’tp’Þ ð1Þ
Note that the available BrainCloud data are already preprocessed

to remove variance due to batch and sample effects (see https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE30272).

For PsychENCODE data, we repeated the above models, now with
ameasure of RNA integrity (RIN) as a confounder, and gene expression
defined as log2(RPKM). First, we included region as an additional factor
to account for spatial variation across the cortex and included donor
ID as a random effect to account for repeated samples from the same
specimen.

gamðexpression � 1 + sðage, k = 5, bs = ’tp’, by = region, id = 1Þ+RIN
+ sex + region+ sðsample, bs = ’re’Þ, data =dataÞÞ

ð2Þ
Then, we analysed data only in the DLPFC, for comparison with

the BrainCloud geneset.

gamðexpressionðDLPFCÞ � 1 + sðage, k = 5, bs = ’tp’Þ+RIN+ sex

+ sðsample, bs = ’re’Þ, data = dataÞÞ ð3Þ

We calculated measures of goodness of fit using Akaike Infor-
mation Criterion (AIC) and Bayesian Information Criterion (BIC) for all
gene models.

Using a set of independent single-cell RNA studies of the human
cortex (see Ball, Seidlitz et al. (2020) for details), we identified genes
exhibiting differential expression across various cortical cells-types,
including excitatory neurons, inhibitory neurons, oligodendrocytes,
microglia, astrocytes, and endothelial cells. We then compiled gene
lists for each cell-type, comprising genes that are both differentially
expressed by that cell-type, and uniquely expressed by that cell-type.
Mean trajectories across all cortical regions sampled were computed
for each cell-type.

After identifying age-related genes, we entered our list to an
independent cell-type specific expression analysis (CSEA; Xu, Wells89)
to elucidate: (1) if genes were enriched for specific cell-types, and (2) in
which developmental period was gene expression highest.

Simulations
We performed numerical simulations using realistic cell counts to
explain the observed trends in Rsoma derived from in vivo dMRI data.
We modelled the variability in cell body sizes within an MRI voxel by
generating distributions of radii for microglia, astrocytes, oligoden-
drocytes, neurons, and endothelial cells. For each cell-type, we
assumed the observed age-related slope of gene expression was
proportional to the number of cells within an MRI voxel. Based on
realistic cell counts outlined in Keller, Erö45, we set the number of cells

in mm3 as follows: Nmicro = 6500; Nastro = 15,700; Noligo = 12,500;
Nneuro = 92,000; Nendo = Nneuro*.3590. For each cell type, we gener-
ated random samples of radii based on the specified cell counts
assuming a Gaussian distributionwith cell-type specific baselinemean
and standard deviation: microglia = 2.0 ± 0.5 µm; astrocytes and oli-
godendrocytes = 5.5 ± 1.5 µm; neurons = 8.0 ± 2.0 µm for neurons and
9.0 ± 0.5 µm for endothelial. The resulting radii were concatenated to
form a comprehensive distribution and the MR apparent soma radius

Rsoma estimated as R5

R3

� �1=2
as per Olesen, Østergaard37.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Original datasets are accessible through the original publications,
including the MICRA76 neuroimaging repeatability dataset (osf.io/
z3mkn/), PsychENCODE Human mRNA-seq processed data (Gene
expression in RPKM: development.psychencode.org) and BrainCloud
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE30272).
Source data to generate figures from openly available data are pro-
vided with this paper. Due to the inclusion of minors (under 18 parti-
cipants) in the MRI portion of our study, the availability of derived or
identifiable data from our participant cohort is restricted due to
privacy concerns. Derived data supporting the findings of the imaging
analyses are available by contacting the corresponding author in
writing via email (Dr Sila Genc: gencs@cardiff.ac.uk), allowing four
weeks for access requests to begranted. Sourcedata are providedwith
this paper.

Code availability
Code to perform the gene expression analysis are provided as R
scripts.
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