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Abstract 

Background 
Telomere length has emerged as a prognostic marker in several cancers, including breast and 
chronic lymphocytic leukaemia (CLL). Telomere dysfunction has also been implicated in the 
formation of complex genome rearrangement patterns including chromothripsis, and in the 
progressive evolution of cancer genome architecture. This thesis explores the relationship 
between telomere length and genomic complexity across multiple cancer cohorts. 
Methods 
A novel software tool call teltool was developed that outperformed existing methods in 
predicting telomere length from Whole Genome Sequencing (WGS) data. Methods for 
assessing Structural Variants (SVs), Copy Number Alterations (CNAs) and genomic 
complexity in WGS data were developed, and applied to a breast cancer cohort (n=44), 
before expanding analysis to publicly available datasets of breast cancer (n=1591+80) and 
CLL (n=98). 
Results 
Across all cohorts, samples with shorter telomeres consistently exhibited increased genomic 
complexity. In breast cancer cohorts, the number of CNAs was increased (p < 0.05) when 
stratifying by measured and estimated telomere lengths. Similarly, in CLL, losses and total 
CNAs were higher (p < 0.05) in samples with shorter telomeres. All types of SVs showed 
increased frequencies (p < 0.05) in breast cancer cohorts with shorter telomeres, except for 
duplications in the ICGC cohort. Patterns of genome complexity were increased in short-
telomere groups with increased numbers chained SVs (p < 0.01) and complex joining profiles 
identified. Importantly, we observed a threshold effect where samples could be segregated 
into "short" and "long" telomere groups, associated with distinct levels of genomic 
complexity, and this phenomenon was most pronounced in cohorts with accurate telomere 
length measurements. The optimal threshold for partitioning was remarkably similar to the 
previously identified 'fusogenic' telomere length threshold that defined prognosis across 
several tumour types. 
Conclusion 
The findings of this thesis further establish the relationship between telomere length and 
cancer genome complexity. The results imply that telomere dysfunction plays a key role in 
generating large-scale genomic rearrangements and patterns of complexity. This work 
contributes to our understanding of the role of telomere dysfunction in cancer genomics and 
may have implications for diagnostics and prognosis. 
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Chapter 1 Introduction 

1.1 Telomeres 

1.1.1 Function and biology 

Telomeres are structures found at the ends of linear eukaryotic chromosomes. In mammals 

telomeres are comprised of the hexameric sequence TTAGGG tandemly repeated into 

variable length arrays, that together with Shelterin protein complex confer primary function 

of telomere, which is to prevent recognition by DNA damage response (DDR) mechanisms of 

the natural chromosomal terminus as double-strand DNA breaks (Lange 2005). They have 

also been shown to contribute to the organisation of chromosomes within the nucleus and 

participate in gene expression regulation (Chuang et al. 2004; Kim and Shay 2018). The main 

function of preventing the DDR is achieved through the formation of a T-loop structure, 

which are a composition of chromatin structures that work in conjuncture with shelterin 

(Srinivas et al. 2020). Telomeres do not terminate as a blunt end but rather contain a single 

stranded 200-400nt G-rich overhang, which gives rise to the end replication problem. The 

end-replication problem arises because synthesis is unable to replicate the last section of the 

telomere, leading to shortening of the genome every cell cycle (Olovnikov 1973). In stem and 

cancer cells telomerase with its internal RNA template solves this problem by synthesising 

single-stranded TTAGGG repeats to the telomere end, enabling complete replication whilst 

maintaining or elongating telomere length (Collins 2011). Generally, this problem is solved in 

lagging strand synthesis by Okazaki fragments inability to be initiated at the telomere ends, 

and in leading strand synthesis via the resection of the 5’ end from Exo1 and Apollo. In both 
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cases POT1b associated CST (CTC1, STN1, and TEN1 complex) is recruited to fill in the C-

rich strand to correct excessive 3’ overhangs (Wu et al. 2012). Due to the end replication 

problem, telomeres also act as an indicator for how many times a cell has divided, with the 

maximum number of divisions being referred to as the Hayflick limit (Hayflick 1965; 

Kailashiya et al. 2017). Sufficient telomere shortening can trigger DDR to enter an arrested 

state of senescence, delaying its advancement in the cell cycle (figure 1.1) (Rossiello et al. 

2022). This replicative limit acts as a tumour suppressive mechanism in long lived species by 

providing an intrinsic capacity for replacement to facilitate normal growth, development, and 

tissue homeostasis, but not to permit the many divisions seen in oncogenesis (Shay and 

Wright 2000; Schmutz et al. 2020).  

 

 

Figure 1.1 Graph to show telomere length (y-axis) against the number of cell divisions (x-axis) for various 
cell lines. (A) Hayflick limit reached, (B) crisis with the following cell death and transformation of 
surviving cells into cancer cells, (C) transfection of cells by the hTERT gene. Figure reproduced and 
altered under Creative Commons Attribution License from: Skvortzov DA, Rubzova MP, Zvereva ME, 
Kiselev FL, Donzova OA. The regulation of telomerase in oncogenesis. Acta Naturae. 2009 Apr;1(1):51-
67. PMID: 22649586; PMCID: PMC3347505 (figure 2). 
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1.1.1.1 Telomerase and Alternative lengthening of telomeres (ALT pathway)  

Telomerase activity is absent in the majority of human somatic cells, yet is present in around 

90% of cancers (Shay 2016). Telomerase consists of two core components, a functional 

telomerase RNA (hTR/hTERC) that provides the telomere repeat template, and the enzymatic 

reverse transcriptase hTERT. Interestingly hTR is highly expressed in all tissues regardless of 

telomerase activity, but is expressed at five times higher levels in cancer (Yi et al. 1999). The 

structure of hTR varies between species, but in humans takes the form of a 451nt non-coding 

RNA containing 4 conserved domains. These 4 domains conform themselves into secondary 

structures composed of conserved regions (CR): pseudoknot CR2/3, CR4/5, H/ACA box 

(CR6/8), and CR7. The 5’-CUAACCCU-3’ template (CR1) for the hTERT reverse 

transcription is located near (45nt away from) the 5’ end of the hTR (Chen et al. 2000). Due 

to the ubiquity of hTR, the expression of hTERT determines telomerase activity and is up-

regulated in cancer and stem cell lines compare to normal differentiated cells (Zinn et al. 

2007; Leão et al. 2018). The protein component of telomerase hTERT has four domains, 

telomerase essential N-terminal domain (TEN), RNA-binding domain (RBD), reverse 

transcriptase (RT) which holds a telomerase RAP motif (TRAP) motif near the middle of the 

domain, and the C-terminal extension (CTE). The catalytic core is composed of the CR2/3 of 

hTR, along with the RBD, RT, and CTE hTERT domains which form ring. A complex above 

the ring made of the TEN and TRAP is what is responsible for binding to TPP1 (at its OB 

domain) of shelterin (Liu et al. 2022). Telomerase is also known to have several interactions 

with other proteins which are thought to aid activation and enzymatic activity, either through 

mediating the assembly process, or regulation of access to the substrate. Some examples of 

these are interactions between hTERT and P23 which aids assembly, and 14-3-3 which aids 

nuclear localisation. The RNA element hTR has more interactions with: hGAR1, Dyskerin, 

hNOP1, hNHP2 are all known to interact with the H/ACA domain on hTR, and TCAB1 
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which binds to the CR7 domain. These are all thought to play a role in the stability, 

maturation, and localisation of telomerase, however the full list of interactions and functions 

are still unclear (Cong et al. 2002). Telomerase is recruited by shelterin to the 3’ overhang, 

where it uses the hTR RNA template to append telomeric repeats to extend the single 

stranded DNA. CST then recruits Pol a which fills in the C rich strand (figure 1.2) (Chen and 

Podlevsky 2016).  

The alternative lengthening of telomeres (ALT) serves to prevent telomere shortening 

that occurs during proliferation and is observed in ~10% of all cancers (Rosso et al. 2023). 

ALT positive cells exhibit extrachromosomal telomeric sequences in both linear and circular 

(t-circles) forms. The t-circle forms can be double stranded or partially single stranded which 

Figure 1.2 Diagram to show how telomerase elongates telomeres. Telomerase is recruited by shelterin to the 
G-rich strand containing the 3’ overhang. A portion of the RNA template anneals to the overhang, and 
telomerase synthesises new single stranded DNA to extend the overhang. Telomerase is shifted over and this 
process repeats to continue elongation. CST complex then recruits Pol a to fill in the C rich strand. Figure 
reproduced and adapted under the Creative Commons license from: Rye, C. Wise, R. Jurukovski, V. DeSaix, 
J. Choi, J Avissar, Y. Biology (Chapter 14.5). OpenStax 2016  https://openstax.org/books/biology/pages/1-
introduction (Figure 14.15) 
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either favour the C or G rich strand (C/G-circles) (Nabetani and Ishikawa 2011). Abundance 

of C-circles in particular correlate well with ALT activity (Henson et al. 2009). The pathway 

for elongation of telomeres in the absence of telomerase relies on homologous recombination 

of overhanging 3’ ends invading either a part of the same telomere, a sister chromatid/another 

chromosome’s telomere, or extrachromosomal telomeric sequence (Hou et al. 2022). More 

details on homologous recombination are explored in a later section of this chapter. TERRA 

R-loops are present in higher levels for telomerase-negative cancer cells compared to their 

telomerase-positive counterparts. R-loop formation at telomeres is thought to regulate 

telomere maintenance and encourage genomic stability by regulating chromatin, priming 

DNA replication, or promoting homologous recombination amongst telomeres (Hou et al. 

2022). Maintenance of telomere length alone is not enough to perform their protective 

function, which requires DNA to be complexed with shelterin. 

1.1.1.2 Shelterin 

Shelterin is a six-subunit protein containing: TRF1, TRF2, POT1, RAP1, TIN2 and TPP1 

(Lange 2005; Zinder et al. 2022). Telomeric repeat-binding factor 1 and 2 (TRF1 and TRF2) 

are both homodimeric proteins responsible for binding to the TTAGGG sequences (through 

the Myb subdomains contained on both proteins) (Ilicheva et al. 2015). Combined they form 

a core by which the other four proteins are recruited (Diotti and Loayza 2011). TERF1-

interacting nuclear factor 2 (TIN2) acts as a stabiliser where its TRF-binding motif (TBM) 

subdomain binds to the TFR1/2 TRF-homology (TRFH) subdomains (Ye et al. 2004; 

Storchova et al. 2023). TIN2 also accommodates binding of the tripeptidyl peptidase 1 and 

protection of telomeres protein 1 (TPP1-POT1) complex (from a TRFH subdomain within 

TIN2 to a TBM subdomain on TPP1) (Kalathiya et al. 2018). The activity of POT1 is to bind 

to single stranded DNA at the 3ʹ end of the telomeres, which has its binding affinity increased 
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when bound to TPP1 (aiding the formation of a displacement-loop) (figure 1.3) (Wu et al. 

2020). The last subunit of shelterin Repressor/Activator Protein 1 (RAP1) is another 

stabilising protein that inhibits the DDR process (Cai et al. 2017). Altogether shelterin with 

this conformation prevents the activation of the DDR at the capped chromosome via the 

formation of a T-loop, it also plays a role in telomerase (reverse transcriptase TERT) activity 

regulation. 

 

Figure 1.3 . Diagram showing the secondary structure of the T-loop and D-loop with the shelterin 
complex. TRF1 and TRF2 bind to double stranded telomeric repeats, bridged by TIN2 which also interacts 
with TPP1. TPP1 further interacts with POT1 which binds the single strand DNA displaced by the 3’ 
overhang. RAP1 binds to TRF2. The top of the figure displays the ribonucleoprotein complex of telomerase 
containing: the retro-transcriptase hTERT, RNA component (hTERC or hTR), dyskerin (DKC1), NHP2, 
NOP10, and GAR.  Figure reproduced under the Creative Commons Attribution 4.0 International License 
from: Muoio, D., Laspata, N. & Fouquerel, E. Functions of ADP-ribose transferases in the maintenance of 
telomere integrity. Cell. Mol. Life Sci. 79, 215 (2022). https://doi.org/10.1007/s00018-022-04235-z (figure 
1) 

 

https://doi.org/10.1007/s00018-022-04235-z
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1.1.1.3 T-/D-loops and replicative stress 

The majority of the telomeric DNA in conjunction with shelterin forms higher order 

structures referred to as T-loops. At the 3’ ends there is a single stranded portion of G-rich 

telomeric sequence (~200bp) that invades near the beginning of the T-loop to form a 

displacement loop (D-loop) (figure 1.2) (Greider 1999). As mentioned previously, the 

structure and components of the T- and D-loops function to prevent DDR mechanisms from 

activating, maintaining the stability of the end of the chromosome. However, they also create 

a replication problem, in tandem with heterochromatin, G-quadruplexes (G4), and telomere 

repeat containing RNAs (TERRAs) obstacles to replication forks and regular DNA helicases 

are created. A combination of these factors leads to increased stress during replication as 

detailed below (Maestroni et al. 2017). 

 G4 structures can occur at the D-loop and require unwinding before a replication 

fork can pass without stalling or collapsing. It is possible that POT1 is involved in inhibiting 

the formation of G4 structures, but it is likely that helicases are also involved in unwinding 

them (Nandakumar and Cech 2013). Helicases implicated in this function include Werner 

syndrome RecQ like helicase (WRN), Bloom syndrome RecQ like helicase (BLM), and 

regulator of telomere elongation helicase 1 (RTEL1). It is theorised that the recruitment of 

WRN at G4 sites is arbitrated through interactions with replisome cofactors such as 

replication protein A complex (RPA), proliferating cell nuclear antigen (PCNA), and DNA 

polymerase delta catalytic subunit (DPOLD1), as well as TRF2 (Shen and Loeb 2001; 

Machwe et al. 2004). TRF2 has also been shown to recruit and stimulate G4 helicase BLM 

whilst TRF1 inhibits BLM activity, but is more likely utilised in telomerase negative cells 

(Lillard-Wetherell et al. 2004). RTEL1 also has the capacity to unwind 5’-3’ G4 structures 

and can be recruited in the replisome by PCNA, and to TRF2 (Hourvitz et al. 2024). 

This ability to bind to TRF2 also facilitates RTEL1’s other role to be responsible for 
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unwinding of the T- and D-loop to allow a smooth passage of the replisome. It is suggested 

that dephosphorylation of TRF2 (at Ser365 by PP6R3) during S-phase opens a RTEL1 

interaction site which facilitates opening of the T/D-loop. Phosphorylation of TRF2 outside 

of the S-phase is likely performed by cyclin A-CDK2 (Sarek et al. 2019). Whilst it is not 

known whether RTEL1 is the only helicase involved in T-loop disassembly, in the absence of 

RTEL1, structure-specific endonuclease subunit (SLX) 1 and 4 are used as a last resort to 

resolve the T-loop (Uringa et al. 2012; Vannier et al. 2012).  

Another factor involved in the maintenance of the telomeric structure are telomeric 

repeat containing RNAs (TERRAs) are G-rich products from transcription of telomeres. They 

may play an essential role in maintaining telomere length along with shelterin, telomerase, 

and the CST (related to the RPA) complex (Giraud-Panis et al. 2010). Their expression is cell 

cycle mediated with its highest transcription rate being early in the S-phase (G1-S transition) 

and declining towards the transition to the G2 stage (Arnoult et al. 2012; Flynn et al. 2015). 

TERRAs can anneal to their C-rich DNA counterparts either during or post transcription 

forming an R-loop structure. R-loops formed at loci of non-G4 and G4 structures can create 

another source of replicative stress (or even DSBs) with the latter being more severe (Rippe 

and Luke 2015). Therefore, it is important R-loops must be cleared before replication. RNA 

endonuclease H (RNase H), Up-frameshift 1 (UPF1), ATP-dependent helicase (ATRX) 

(which is also required for deposition of histone H3.3 at telomeres and other repeat loci), and 

flap structure-specific endonuclease 1 (FEN1) are all candidates for resolving R-loop 

structures (Costantino and Koshland 2015; Flynn et al. 2015; Chib et al. 2016; Maestroni et 

al. 2017; Ngo et al. 2021).  

Despite being a cause of stress, T-loops still prevent telomeres being mistaken for 

DNA damage sites which is crucial for maintaining genomic stability and a cell’s ability to 

proliferate. Due to semiconservative replication of DNA and exonucleolytic processing, 
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telomeres shorten with every replicative cycle, which compromises their function (Artandi 

and DePinho 2010). 

1.1.2 Telomere Dysfunction 

Attrition of telomeres can have two opposing effects during carcinogenesis. Normally 

telomere shortening leads to the loss of their end-protection function, which leads to them 

being mistaken as a double strand break (DSB). This causes a partial DNA damage response 

(DDR), where cells exit the cell cycle at the p53 checkpoint during G1/S (Vodicka et al. 

2021). This further initiates a tumour suppressive function via activating ATM and ATR 

kinase signalling at unprotected chromosome ends causing cell cycle arrest, senescence, or 

apoptosis (Hill et al. 2024). However, when the telomeres are not repaired the cell remains in 

a permanent state of arrest. This is thought to contribute to the ageing process and age-related 

diseases (Baird et al. 2003). There is a negative correlation between the rate of telomere 

erosion and organism life-span (Haussmann et al. 2003). Telomere length and telomerase 

activity have evolved to be as they are in long-live species like humans, compared to short 

lived species such as birds due to life-history and selective trade-offs in longevity and 

reproduction (Haussmann and Mauck 2008). 

In the absence of the p53 and Rb pathways, cell cycle transitions are unaffected by the 

normal mechanisms of inhibition through ATM and ATR signalling, and the senescence 

barrier can be bypassed, thus cells develop into crisis (Jacobs and de Lange 2004; Mijit et al. 

2020). In tissue culture, telomere crisis is typified by high rates of cell death, cell-

morphological changes and large-scale genomic instability triggered by telomere dysfunction, 

and fusion (Greenberg 2005). This occurs because ongoing cell division leads to further 

telomere erosion, even to the point where telomeres are completely denuded of their repeats 

and are fully processed as a DSB,  creating fusion events (Capper et al. 2007). As will be 
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discussed further in the next section, phenomena such as telomere fusions can occur at 

multiple inter and intra-chromosomal loci, creating dicentric chromosomes and initiating 

breakage-fusion-bridge (BFB) cycles and large-scale genomic rearrangements (Letsolo et al. 

2010; Jones et al. 2014). During BFB cycles, fused chromosomes break at sites distant from 

the initial fusion, leading to the gain of DNA for one chromosomes, and loss of another 

(Murnane 2012).  

To restore telomere function and escape crisis cells must establish a telomere 

maintenance mechanism, either via the reactivation of telomerase (90% of cancers) or 

through the alternative lengthening of telomeres (ALT) pathway (10% of cancers), both of 

which allow cells to regain the ability to proliferate (Chang et al. 2003). Genomic 

rearrangements are one of the mechanisms for the reactivation of telomerase activity through 

disruption of telomerase silencing, or activation and expression of telomerase mainly through 

hTERT promoter region mutations or epigenetic means (Sui et al. 2013; Chiba et al. 2015). 

ALT is a telomerase independent mechanism utilised by neoplasms for maintaining telomere 

length, and  permits continued cell replication (Lawlor et al. 2019). Stabilization of the 

telomeres by ALT may prolong genome instability. This may be because ALT relies on 

recombination events involving telomeres which may be prone to rearrangements with other 

genomic loci. This is shown by telomeric motifs (TTAGGG) being present within 

chromosome in interstitial telomeric sequences (ITSs) (Aksenova and Mirkin 2019). Prior to 

regaining stability, the genome may undergo severe rearrangements via the formation of 

dicentric chromosomes or other processes. During these rearrangement processes, the cell 

may also acquire other de novo and potentially tumorigenic/oncogenic SNVs through, for 

example APOBEC mutagenesis (Maciejowski and de Lange 2017). Previous research in 

adenomatous colorectal polyps and chronic lymphocytic leukaemia has identified a 

correlation between telomere shortening (despite detectable telomerase activity insufficient to 
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maintain or elongate),  and large-scale genomic rearrangements and likely play a role in early 

in malignant progression of many cancer types (Lin et al. 2010; Roger et al. 2013). 

1.2 Telomeres and genomic complexity 

The initial definition of telomere (Greek ‘telos’ meaning end and ‘meros’ part) came from 

Hermann Miller who discovered telomeres in Drosophila, which was also found later from 

Barber McClintock in maize (Muller 1938; McClintock 1939). McClintock would then 

observe variegation of chromosomes with broken ends, providing evidence for the function 

of the telomere that their function is to distinguish between chromosomes and double strand 

breaks (McClintock 1941). Both Muller and McClintock were awarded Nobel prizes for their 

discoveries (Varela and Blasco 2010).  

1.2.1 Telomere fusions 

Telomere fusions arise as a protection mechanism to protect against excessive degradation 

of exposed telomere ends (Stroik and Hendrickson 2020). One study of telomere fusions 

showed that approximately half did not contain any telomeric repeats, and the longest repeat 

observed in those that did was only ~13 repeats long (~78bp). They also found telomere 

fusion was often complemented by the deletion of one or both telomeres, which extends 

several kilobases into the telomere-adjacent DNA, with observable microhomology at the 

fusion points. (Capper et al. 2007). This feature of deletion of telomeres several kilobases 

was shared in a further study, which also found that a preference (60% of cases) of fusion 

sites containing short homologous DNA patches with GC biases (Letsolo et al. 2010). 

Shelterin typically protects from telomere fusions, however, over or under-expression of 

shelterin components can lead to increased fusion events (Lisaingo et al. 2014; de Lange 



  Chapter 1: Introduction 

 12 

2018). Shortened telomeres can affect the mutations and occupancy of shelterin; therefore 

cells with shorter telomeres have a higher chance of forming telomere fusions which can 

leading to an increase frequency of genomic instability from fragmentation (chromothripsis) 

(Counter et al. 1992; Capper et al. 2007; Cleal et al. 2019). Fragmentation can occur by 

shattering of dicentric chromosomes (formed by telomere fusions) by mechanical force 

exerted by microtubules during mitosis.  

More commonly dicentric chromosomes are not resolved in this manner, instead 

chromatin bridges are formed between the two daughter cells that persist into the next G1 

phase. Resolution of chromatin bridges happens by simple breaks forming fold-back 

inversions or large terminal deletions, or complex breaks leading to chromothripsis. 

Chromatin bridges also contain nuclear envelopes connected to both cells (Rodriguez-

Muñoz et al. 2022). Resolving them involves rupturing of the envelope causing the blending 

of nucleic and cytoplasmic contents. Three prime repair exonuclease 1 (TREX1), an 

abundant component of cytoplasm, leads to the resolution of bridges by degrading the DNA 

into single strands along the bridge (Jiang and Chan 2024). 

This mechanism with TREX1 is not the only mechanism for chromatin bridge 

resolution. Polymorphisms in the non-coding regions of Ankle1 have been associated with 

heightened susceptibility to breast and ovarian cancer, affecting both the general population 

and individuals carrying the BRCA1 mutation. Notably research on the nematode C. elegans 

has revealed that its LEM-3 orthologue localizes to the midbody cleavage plane, facilitating 

the processing of chromatin bridges (Chan and West 2018). Additionally, LEM-3 cooperates 

with BRC-1 (the C. elegans homologue of BRCA1) to uphold genomic stability  (Hong et 

al. 2018). Further study is required to fully understand the implications and mechanisms in 

human cancer. Fragmented chromosomes and damaged chromosome-ends stemming from 

complex breaks, or the resolution of chromatin bridges are susceptible to various DNA 
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repair mechanisms, potentially resulting in chromothripsis (and kataegis) (Maciejowski et 

al. 2015).  

1.2.2 Breakage-fusion-bridges (BFB) cycles 

An alternative outcome of dicentric chromosome formation is breakage-fusion-bridge (BFB) 

cycles. Breaking of dicentric chromosomes leads to creation of more exposed DNA ends 

that can produce further fusions within daughter cells. BFB cycles are only terminated when 

either a telomere from another chromosome is translocated to the affected dicentric 

chromosome, or a new telomere is seeded at the free end (McClintock 1941). During these 

BFB cycles, genomic instability can be both generated and transferred between 

chromosomes (Bailey and Murnane 2006). Amplifications, loss of heterozygosity (LOH), 

and non-reciprocal translocations are all ways this instability can manifest (Maciejowski and 

de Lange 2017). Gene dosage variations are a substantial driver in cancer, particularly 

amplification, which can activate dominantly acting cancer genes (Stratton et al. 2009).  

Amplification of genes occurs by asymmetrical breaking of fused sister chromatids, and the 

broken chromosomes being replicated during S phase which persists into G2 phase. Fusion 

of the four telomere deficient ends can then either join symmetrically and form stabilised 

chromosomes, or asymmetrically to create large palindromes. These palindromes can either 

be contained in dicentric or centromere lacking chromosomes (Narayanan et al. 2006). 

Deletions or duplications can occur when the dicentric structure breaks during chromosome 

segregation, the daughter cells can then inherit broken chromosomes with alterations in 

copies of the regions. This broken ends can participate in further BFB cycles leading to 

palindromic gene amplification (high copy number states) (Tanaka and Yao 2009) .  

Conversely loss of heterozygosity can occur if a daughter cell inherits a terminal 

deletion following a dicentric chromosome break and is common at cancer related loci 



  Chapter 1: Introduction 

 14 

(Maciejowski and de Lange 2017). Following a chromosome break, it is possible for DNA 

from the broken end to join with another chromosome, leading to non-reciprocal 

translocations facilitated by break-induced replication (Anand et al. 2013; Malkova and Ira 

2013). Fusions between chromosome ends lacking telomeres with internal genomic loci can 

occur, even in an otherwise stable genome (Liddiard et al. 2016; Cleal et al. 2018). This 

fusion propensity notably increases in cells lacking TP53-mediated mitotic checkpoint 

control. Moreover, the frequency of fusion events is heavily influenced by the cellular 

proficiency in classical (C-) and alternative (A-) non-homologous end joining (C-/A-NHEJ), 

the latter also known as theta-mediated end joining (TMEJ). Intra-chromosomal joining, in 

contrast to inter-chromosomal joining, exhibits less dependence on LIG4 and instead 

involves both LIG4 and LIG3 (Liddiard et al. 2016). Further explanations of NHEJ and 

other end joining mechanism will be given in the later Recombination Pathways section. 

1.2.3 Micronuclei pathway 

Micronuclei are another potential product formed during telomere crisis, resulting from 

acentric chromosome fragments which are prone to mis segregation (Hoffelder et al. 2004).  

Replicative stress applied to the micronuclei can cause DNA damage and substantial 

chromosome fragmentation which when coupled with non-homologous end joining results 

in chromothripsis (Hatch and Hetzer 2015; Ye et al. 2019). Spatial segregation from the 

main nucleus offers a plausible explanation for why this process produces the localised 

nature of chromothripsis (Dewhurst 2020). Aberrant nuclear envelop assembly can also lead 

to defective DNA replication and loss of envelop integrity leading to large DNA damage via 

unknown mechanisms (Liu et al. 2018). It has been shown through live-cell imaging that 

whilst micronuclei do not form immediately after bridge breakage, the frequency of 

micronuclei formation after the following mitosis was observed in between 52% and 65% of 
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cells with chromatin bridges. Cells without chromosome bridge division within the same 

imaging dish treated identically did not produce micronuclei (Umbreit et al. 2020). 

Additionally, depletion of TRF2 using siRNA and mitotic checkpoint barriers (Mps1 

inhibited with reversine and hesperadine) combined can also cause chromothripsis (Mardin 

et al. 2015). The complete mechanism and pathway involved in chromothripsis are not fully 

understood (Cleal et al. 2019). Recently, Engel et al have shown through CRISPR-Cas9 

screening that inactivation of the Fanconi anaemia (FA) pathway inhibits chromosome 

shattering within micronuclei during mitosis without affecting interphase-associated defects. 

This occurs due to engagement of the FANCI-FANCD2 with under replicated micronuclear 

chromosomes via the FA core complex during mitosis, leading to increased SLX4-XPF-

ERCC1 endonuclease activity that induces large-scale cleavage of intermediaries made 

during DNA replication. This cleavage subsequently encourages POLD3-dependent DNA 

synthesis to prepare the resulting shattered fragments for reassembly in the following cell 

cycle (Engel et al. 2024).  

1.2.4 Recombination pathways 

Double stranded DNA breaks (DSBs) occur involuntarily as the result of exposure of cells to 

exogenous agents like radiation or some chemicals, as well as endogenous processes such as 

DNA replication (and to a lesser extent repair), factors like oxidative stress, and as mentioned 

previously through telomere erosion leading to the loss of the end-protection function. It is 

worth noting DSBs also occur deliberately during meiosis, however as this does not relate to 

cancer or their complex genomic rearrangements will not be discussed further (Murakami and 

Keeney 2008). During replication, if a replicative fork encounters a single stranded DNA 

break (SSB), the polymerase can stall leading to the fork collapsing which results in a DSB. 

Aberrant secondary structures, bulky or oxidative lesions, abasic sites, inter-strand crosslinks, 
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or transcription machinery can also act as obstacles for the replication fork resulting in 

stalling (Mirkin and Mirkin 2007). It is possible for a stalled fork to regress, which can cause 

displacement of the strands, leading to 3’ ends of the leading strand to anneal to the 5’ end of 

the lagging strand. This creates a “chicken foot” shaped Holliday junction which when 

cleaved results in a DBS (Cannan and Pederson 2016). 

 The DNA damage response (DDR) upon detecting DSBs depending on severity will 

arrest the cell cycle to allow time for damage to be repaired, or trigger apoptosis or arrest 

preventing severely damaged cells from proliferating further. Arrest of the cell cycle is also 

known as senescence or M1 phase, and widespread cell death by apoptosis is also called 

crisis or telomere crisis (M2 phase) (Cong et al. 2002). Repair of damage can take the form 

of homologous recombination (preferred if damage encountered in S/G2 phase) or non-

homologous end joining (G0/1 phase) (Shrivastav et al. 2008). 

1.2.4.1 Homologous recombination (HR) 

Homologous recombination (HR) is a method by which cells can exchange genetic material 

between similar double stranded (ds) or single stranded (ss) DNA sequences. It plays a role in 

accurate repair of sites of DSBs, although is also responsible for creating new combinations 

of DNA in meiosis in eukaryotes, and horizontal gene transfer in bacteria generating genetic 

variation (Alberts et al. 2002; Murakami and Keeney 2008; Blakely 2015). Firstly, the MRN 

complex binds to both sides of the DSB, where CtBP (C-terminal binding protein) interacting 

protein (CtIP) is recruited to initiate resection of the 5’ ends. Bloom syndrome protein (BLM) 

is then recruited to open the dsDNA so exonuclease 1 (EXO1) and DNA2-like helicase 

(DNA2L) can continue the trimming (Mimitou and Symington 2009; Stracker and Petrini 

2011). The ssDNA of the remaining 3’ end is then bound by replication protein A (RPA) and 

in a process mediated by several proteins including DNA repair protein RAD51 homolog 1 
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(RAD51) able to invade loci of similar DNA sequence where a break has not occurred 

forming a displacement loop. Upregulation of HR during the S and G2 phases of the cell 

cycle allows utilisation of sister chromatids for the template strand (Fugger and West 2016). 

Extension of the 3’ end converts the displacement loop into a Holliday junction and DNA 

synthesis continues on the invading strand to restore the strand of the displaced homologous 

chromosome. From here either the double strand break repair (DSBR), synthesis dependant 

strand annealing (SDSA), break induced replication (BIR), or single strand annealing (SSA) 

pathways can resolve the process (Krejci et al. 2012).  

In DSBR, the second 3’ overhang that was not involved in invasion also forms two 

Holliday junctions (dHJ) with the homologous chromosome. The two junctions are then 

either cut on one DNA strand by nicking endonucleases which can result in both a crossover 

and non-crossover end product, or the dHJ are resolved via dissolution where they migrate 

towards each other and fuse or collapse (Bizard and Hickson 2014). SDSA in contrast always 

results in a non-crossover product, as the newly synthesised 3’ end anneals to the other 3’ 

overhang of the damaged chromosome and ligated together (Li and Heyer 2008).  

 Break induced replication (BIR) is distinct from the previous two pathways in its 

formation of a replication fork, leading to unidirectional synthesis (~6x slower than S-phase 

replication) from the break point (Malkova and Ira 2013). The exact mechanism is not 

known for humans, although it is shown minichromosome maintenance protein complex 

(MCM2-7) acts as the main helicase (with RPA, POLD1, and PCNA undertaking synthesis). 

BIR plays a role in repairing broken replication forks and contributes to the lengthening of 

telomeres in the absence of telomerase (Liu and Malkova 2022). It is also a source of 

chromosomal rearrangements, as BIR invasions of non-homologous chromosomes can lead 

to non-reciprocal translocations. Initiation of BIR at sites of microhomology (MMBIR) can 

also lead to copy number variations and insertions (Hastings et al. 2009). It has been 
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demonstrated that BIR can also engage in template switching, where multiple rounds of 

strand invasion, synthesis, and dissociation occur (Smith et al. 2007).  

SSA repairs DSBs between two repeats, not involving another DNA molecule, 

instead annealing to itself. RAD52 homolog (RAD52) binds to the flanking repeat 

sequences of a break enabling the two single stranded complimentary repeats to anneal 

following resection by CtIP. This process can create overhanging 3’ ssDNA tails which 

require removing in a process mediated by a ERCC1/XPF complex bound and moderated by 

RAD52 (Bhargava et al. 2016). 

The common cancer biomarkers tumour supressor BReast CAncer genes (BRCA) 1 

and 2 products have also been shown to play a role in homologous recombination (Stewart 

et al. 2022). BRCA1 interacts with BARD1 through a RING domain that is present at the N-

terminus of both proteins. A coil near the C-terminus of BRCA1 also enables an interaction 

with PALB2, and a BRCT domain also at the C-terminus interacts with proteins like CtIP. 

PALB2 has a WD40 domain at the C-terminus that interacts with an N-terminal domain on 

BRCA2 which also contains BRC repeats that has activity with RAD51 which mediates 

loading with RPA-coated ssDNA. BRCA2 also contains DNA-binding domains that are not 

necessary for HR but likely play a role in optimising HR activity (Prakash et al. 2015). 

1.2.4.2 Non-homologous end joining (NHEJ) 

Non-homologous end joining (NHEJ) is another pathway responsible for repairing double 

strand breaks in DNA (Stinson and Loparo 2021). Instead of using a template, NHEJ directly 

ligates broken ends together. Due to lacking the need for a template, NHEJ can occur in both 

proliferating and non-proliferating cells. Accurate repair via NHEJ occurs if 

microhomologies of small single stranded (ss) overhangs on the ends are complimentary and 

guide the ligation of the break. However, there are several other sub-pathways that cover 
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cases where DSBs are not as accommodating. DSBs can result in: blunt ends, resection-

dependant compatible ends, incompatible 5’ and 3’ ends, and 3’-phosphoglycolated ends, 

each configuration being dealt with in an iterative manor allowing a flexible pathway to 

resolution, but each having a preferred most efficient method (Chang et al. 2017). For all sub-

pathways, NHEJ is initiated by the binding of the Ku70/80 heterodimer (Ku) to the DSB 

sites, which encircles a 3-4bp region by connecting to the sugar-phosphate backbone (Walker 

et al. 2001). Ku acts as a recruitment/loading point for other proteins involved in the end 

joining process. DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is one such 

protein that has a high affinity for Ku–DNA ends which binds with a C-terminal portion of 

Ku80 to form the DNA-PK complex (Yin et al. 2017).  

 In the simplest case of two blunt ends, no end processing is required, therefore only 

the ligase complex is recruited. A region near the C-terminus of DNA ligase IV (LIG4) 

interacts with Ku, where LIG4 also binds to X-ray repair cross-complementing protein 4 

(XRCC4). The role of XRCC4 is to stimulate the catalytic activity of LIG4 to ligate the 

broken DNA ends (Grawunder et al. 1997). XRCC4 also interacts with XRCC4-like factor 

(XLF) which is thought to steady the positions of the DNA ends pre ligation (Pannunzio et 

al. 2018). Paralog Of XRCC4 And XLF (PAXX) also interacts with Ku70 in this complex 

and is thought to act as a stabiliser for Ku (Tang et al. 2022).  

 For every other sub-pathway, the nuclease complex is also recruited to deal with 

excess incompatible ssDNA ends. ARTEMIS is one of the nucleases that performs this 

function as it has intrinsic 5’ exonuclease activity on ssDNA, and in complex with DNA-

PKcs additionally has endonuclease activity for 3’ overhangs (Li et al. 2014). Aprataxin and 

PNKP-like factor (APLF) is also suggested as another nuclease that can participate in NHEJ 

(Macrae et al. 2008; Cherry et al. 2015). Resection for NHEJ is much shorter than for HR. 

For incompatible 5’ end and resection-dependant microhomology, ARTEMIS or APLF is 
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recruited to resect the overhanging flaps that are incompatible to create either blunt ends or 

overhangs with microhomology which are then ligated by LIG4. A similar process is done 

for 3’-phosphoglycolated ends, however tyrosyl-DNA phosphodiesterase 1 (TDP1) is 

recruited first to remove glycolate from the 3’ end (Li et al. 2017). 

 The last complex involved in the NHEJ process is the polymerase complex. This 

involves incorporating of a PolX family member (mu or lambda) directly to Ku though their 

N-terminal BRCA1C terminus (BRCT) domains (Ma et al. 2004). Both types exhibit the 

ability to add nucleotides with and without a template, however, mu seems better in template 

independent situations (McElhinny et al. 2005). 

Microhomology-mediated end joining (MMEJ) also known as alternative (non-

homologous) end joining (ALT-EJ/A-NHEJ/T-NHEJ), is similar yet distinct to single strand 

annealing in HR and NHEJ. There is evidence that suggests MMEJ is both plays a dedicated 

and back-up role as a DNA repair (Patterson-Fortin and D’Andrea 2020). What is clearer 

however is that mutagenic repair MMEJ likely contributes to genomic plasticity and driver 

of carcinogenesis. Differences between MMEJ and other mechanisms is the involvement of 

LIG3, POLQ, and PARP1 which are not required in HR or NHEJ (Sfeir and Symington 

2015). Studies have shown that MMEJ may in some cases be responsible for repair and 

fusion of uncapped telomeres (Maser et al. 2007; Letsolo et al. 2010).  There is evidence 

that suggests that MMEJ occurs within the G2 stage of the cell cycle and is regulated by the 

9–1-1 complex (RAD9A-HUS1-RAD1) alongside RHINO (Brambati et al. 2023). 

Recombination in all its forms are implicated in generating genomic complexity. 
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1.3 Genomic complexity analysis methods 

1.3.1 Cytogenetic assays 

Cytogenics has a rich history stemming back to the 1870s, where Walther Flemming was the 

first person to use aniline dye to visualise chromosomes during mitosis. His observation of  

thread-like structures in nuclei was the first observation of what he named chromatin (n.b. the 

term chromosome was later coined in 1888 by Waldeyer-Hartz using a similar technique) 

(Paweletz 2001). Grigorii Levitsky later in the early 20th century was responsible for defining 

karyotype as the appearance of chromosomes, as well as the term ideogram (Rodionov 2009). 

However, it took until 1956 for Tijo and Levan to formalise the process by: treating cells with 

a hypotonic solution (to swell cells and spread out the chromosome), using colchicine to 

arrest cells during metaphase, then squashing the cells to release the chromosomes (Tjio and 

Levan 1956). Only three years later, Lejeune found that down syndrome was caused by 

trisomy 21 (Lejeune et al. 1959). 

 Since then, several techniques for studying the karyotypes of cells have been 

established. The first involves karyotyping with a stain to create bands within the 

chromosome, these include: Quinacrine (Q-banding, the first), Giemsa (G-banding, most 

common, adenine-thymine binding), Reverse banding (R-banding, opposite of G), 

Constitutive heterochromatin (C-banding, centromere binding), and silver Nuclear 

Organising Region staining (NOR, rDNA binding). Distinct bands allow chromosomes to be 

identified, easily allowing detection of aneuploidy. Less obviously, karyotyping with stains 

can also reveal structural variants such as deletions, duplications, and translocations 

(Sumner 2001; Clare O’Connor 2008b; Spinner 2013; Spinner et al. 2013; Ozkan and 

Lacerda 2024). 
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 Another form of cytogenetic analysis is fluorescent in situ hybridisation (FISH). 

FISH is a more targeted approach for cytogenetic analysis, using a fluorescent probe which 

is used by denaturing and annealing to target DNA, which can then be observed using a 

fluorescent microscope (Shakoori 2017). One form of FISH uses multiple colours 

(multiflour/chromosome painting) where a collection of hybridisation probes relating to a 

chromosome are labelled with corresponding colours (Lauter et al. 2011) . However, due to 

relatively low resolution, chromosome painting allows identification of translocations and 

only large duplications and deletions (Clare O’Connor 2008). 

 Comparative genomic hybridisation (CGH) is another technique that utilises 

fluorescence. It is used to detect copy number variations (CNV) by mixing green labelled 

tumour DNA with red labelled normal DNA in a 1:1 ratio with a normal metaphase 

reference (from healthy patient) (Nair and Gonzalez-Angulo 2015). The competition to 

hybridise with the reference creates a profile of green and red along the chromosomal axis, 

where the ratios can then be analysed with imaging processing software to generate a copy 

number profile (where green:red ratios < 1 shows losses, > 1 gains). Theoretically a gain or 

loss of a single chromosome should be 2 and 0.5 respectively, but these values have not 

been seen experimentally. Sensitivity of CGH can be an issue, especially if the tumour DNA 

has normal contaminants. The resolution is also somewhat limited, with +50% CNVs 

requiring a 2mb region, and total loss (-100%) a 1-2mb region to be detected (Weiss et al. 

1999). A related methodology is used in microarrays. 

 Microarrays are microscope slides that contain many fixed DNA sequences (often 

genes) in set positions. Messenger RNA (mRNA) from a tumour and normal sample are 

collected and converted into complimentary DNA (cDNA) and labelled with two fluorescent 

probes. Similar to CGH, the ratios of the two colours can then be analysed to determine 

whether the genes expression is higher or lower in the tumour sample compared to the 
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normal (Shaffer et al. 2007). 

Patterns of genomic complexity started to emerge when using these techniques in 

analysing cancer samples. Specifically, when looking at aneuploidies, commonalities were 

seen across a range of cancer types such as gains in chromosomes 1q, 3q, 8q, 20, (5p, 7, 

11q, 12p, 13, 17q, 21 less commonly) and losses in 3p, 8p, 17p, (1p, 4, 5q, 6, 9p, 13, 16q, 

18, 19, 22 less commonly) (Cai et al. 2012). A worthy note that breast cancer in particular 

has characteristics of gains in 1q, 8q, 17q, 20, and losses in 8p, 16q, 17p (Nicholson and 

Cimini 2013). The effects of aneuploidy in the context of cancer appear to be granting 

resistance to apoptosis through changes in gene expressions and causing mis-segregation of 

chromosomes to create new karyotypes which generate selective advantages during 

chemotherapy (Replogle et al. 2020). 

Outside of aneuploidies, a common translocation found across several cancer types 

such as Ewing sarcoma, leukaemia, prostate, and breast cancer involves Erythroblast 

Transformation Specific (ETS) coding domains. The ETS family involves proteins 

responsible for regulating cellular differentiation, cell cycle control, cell migration, 

proliferation, apoptosis, and angiogenesis, explaining why it might be frequently mutated in 

cancer cells. A more specific example of this is the t(12;15)(p13;q25) translocation that 

results in the ETV6-NTRK3 (EN) fusion oncoprotein found in breast cancer (Li et al. 2007). 

A modern technique utilising optical genome mapping (OGM) developed by 

BioNano Genomics has improved on previous methods touting 10,000X higher resolution 

than karyotyping. Investigations in haematological cancers using OGM have suggested this 

technology is powerful enough to replace cases where a combinations of karyotyping, FISH, 

and CNV microarrays were previously required for analysis (Neveling et al. 2021). 
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1.3.2 High-Throughput Sequencing 

Large technological advances lead to the creation of what is now known as next generation 

sequencing (NGS), which can sequence whole genomes (WGS) in parallel with a high depth 

in a relatively short time (Goodwin et al. 2016). There are two forms of NGS, long and short 

read sequencing. Short read sequencing all generally involves a similar process of 

fragmenting DNA (using sonication or enzymes) pieces and attaching adapters to the 

fragments to create reads that are typically 100-150bp (although can be between 50-700bp). 

These sequences are then sequenced in parallel, with quality control measures to discard low 

quality reads (to generate fasta/fastq files). These sequenced reads are then aligned (mapped) 

to a reference genome (to create a bam file). This form of sequencing has the advantage of 

being widely available, low cost (depending on sequencing depth), and accurate. However, 

they are prone to errors in mapping created by highly repetitive regions. 

 Examples of short read sequencing technologies include: Illumina (MiniSeq, 

NextSeq, MiSeq, HiSeq 2500/3000/4000/X), BGI (BGISEQ-50, MGISEQ 200, BGISEQ-

500), which are the two most common due to their cost per sequencing run. Other less 

common types of short read sequencing include Ion torrent, GenapSys, and pyrosequencing, 

but due to them being outdated and their low adoption rate will not be discussed further 

(Ronaghi et al. 1996; Rothberg et al. 2011). Illumina is the dominating short-read 

sequencing platform, it works off a sequencing by synthesis (SBS) principal, with two 

variants of single and paired end sequencing (Kircher and Kelso 2010; Goodwin et al. 

2016). It works by first attaching purified DNA fragments to a flow cell using adaptors 

(containing a terminal sequence, adapter, index, and primer) which bind to their 

compliments attached to nanowells on the flow cell. Once attached, bridge amplification 

PCR is used to make copies of each fragment. Using a cycle of washes, reversible 
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fluorescent blocking nucleotides are incorporated one at a time, where a camera determines 

the colour (and therefore the “letter”) of the added base, before the block is removed to 

allow the polymerase to add the next base, and so on in a cycle (figure 1.4) (Clark et al. 

2019). As their name implies, single read sequence involves sequencing from only one end, 

whereas paired end sequencing sequences from both. Paired end sequencing is used for 

WGS due to its enhanced ability to detect genomic rearrangements, insertions-deletions 

(indels), gene fusions, and novel transcripts 

(https://emea.illumina.com/science/technology/next-generation-sequencing/plan-

experiments/paired-end-vs-single-

read.html#:~:text=Single%2Dread%20sequencing%20involves%20sequencing,%2Dquality

%2C%20alignable%20sequence%20data.). 

 

  

 

Figure 1.4 Diagram to show the four stages of Illumina sequencing: (A) Library Preparation – adapters 
ligated to fragmented DNA, (B) Cluster Amplification – amplification used to increase amount of DNA in 
each cluster, (C) Sequencing – cycles of base incorporations, imaging and base recording, and washing, 
(D) Alignment and Data Analysis – recorded reads are aligned to reference genome. Figure from “An 
introduction to Next-Generation Sequencing Technology” by  Illumina available at: 
https://www.illumina.com/content/dam/illumina-
marketing/documents/products/illumina_sequencing_introduction.pdf 
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By contrast, BGI(/MGI) sequencing utilises DNA nanoball technology (Xu et al. 2019). 

Small fragments (100-350bp) are ligated with an adapter sequence that circularise them. 

High-fidelity Phi 29 DNA polymerase is then used to create extremely low error rate, and 

GC unbiased copies through rolling circle replication to create a long-concatenated strand. 

These long strands are compacted into DNA nanoballs (DNBs) (figure 1.5), which are 

loaded into the sequencer and are attached to flow cells with evenly spaced positively 

charged sections that hold the negatively charged DNBs (Drmanac et al. 2010). Like 

Illumina sequencing, fluorescently labelled dNTPs are incorporated one at a time in a cycle 

of washes whilst a laser and camera records the type of the incorporated base in between 

each cycle. Following the first round of sequencing, paired end sequencing is achieved by 

producing a second strand by introducing a second primer, and a polymerase with stand 

displacement activity. This process is optimised to make the longest possible strand that 

stays attached to the original DNB (https://en.mgi-tech.com/products/resources). Both 

Illumina and BGI sequencing utilise the Phred 33 standard, which uses the signal intensity 

form the dNTP incorporation to determine the quality of the base called which is added as 

the last line of a read call in the fastq file format (Ewing et al. 1998).  

  Figure 1.5 Figure displaying three methods of library preparation for BGI sequencing including: (a) 
Standard PCR-based, (b) PCR-free, (c) Two-step PCR. The end product of each method is labelled 
DNA nanoballs (DNBs) which are later attached to a flow cell and sequenced. Figure reused under 
the Creative Commons Attribution 4.0 International License from: Li, Q., Zhao, X., Zhang, W. et 
al. Reliable multiplex sequencing with rare index mis-assignment on DNB-based NGS platform. BMC 
Genomics 20, 215 (2019). https://doi.org/10.1186/s12864-019-5569-5 (figure 2). 

https://doi.org/10.1186/s12864-019-5569-5
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More recently long read sequencing is becoming more popular due to its capability of 

detecting previously inaccessible structural variants (as well as drop in cost and increase 

base calling accuracy). Issues in structural variants will be discussed in more detail in the 

next section. Long read sequencing also permits more complete assembly of genomes. 

Examples of long read sequencing technologies include those available from PacBio, 

Oxford Nanopore, although Illumina also have developed a synthetic long-read technology 

(Marx 2023). 

 PacBio HiFi sequencing uses DNA fragments that are up to 100kb in length and 

utilises single-molecule real-time (SMRT) technology. Fragments are converted into 

topologically circular DNA (termed SMRTbell) templates by shearing, removing single 

stranded (ss) overhangs, repairing DNA damage, A’ end tailing, and ligation of an adapter 

(figure 1.6.1) (Travers et al. 2010). Sequencing is performed by binding a DNA polymerase 

and loading the SMRTbells onto an SMRT cell into millions of zero-mode waveguides 

(ZMWs), where once again fluorescent dNTPs are incorporated and the wavelengths of light 

emitted are measured to call bases (figure 1.6.2) (Logsdon et al. 2020).  

 

 

 

Figure 1.6 (1) SMRTbell structure – Double stranded DNA (yellow and purple) are manipulated into a 
closed circle by the ligation of hairpin adaptors (green). The polymerase (grey) is anchored to the bottom 
of a ZMW where it integrates fluorescent bases (orange). (2.A.) Visual representation of a zero-mode 
waveguides (ZMW), with a SMRTbell anchored by the polymerase at the base. (2.B.)  The cycle of 
fluorescent dye incorporation displayed (1-5) with the output signal shown below. Figures adapted under 
the Creative Commons Licence from: Rhoads, A., Fai AU, K. PacBio Sequencing and Its Applications. 
Genomics, Proteomics & Bioinformatics 13(5) p. 278-289 (2015) 
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Unlike PacBio and other methods, Oxford Nanopore sequencing does not use 

fluorescence. Oxford Nanopore sequencers are composed of a synthetic membrane that 

holds a DNA pore. The pore protein along with an electric current feeds DNA through the 

poor as a single strand. The DNA bases resident in the pore at a given time, cause a distinct 

disruption to the current across the membrane, allowing real time-analysis of the current to 

infer the sequence during transit (figure 1.7) (Wang et al. 2021). This technology can 

sequence reads that are megabases long (https://nanoporetech.com/platform/technology).  

 

Figure 1.7 Diagram to show the process of nanopore sequencing. A motor protein pushes a single strand 
from a double stranded DNA molecule through a nanopore reader which measures the current as each 
nucleotide passes through. Bases can then be called as the structure of each nucleotide is distinct. Figure 
reused under the Creative Commons Licence from: Lin B, Hui J, Mao H. Nanopore Technology and Its 
Applications in Gene Sequencing. Biosensors (Basel). 2021 Jun 30;11(7):214. Doi: 
10.3390/bios11070214. PMID: 34208844; PMCID: PMC8301755. (figure 2) 

 
 

https://nanoporetech.com/platform/technology
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1.3.3 Public repositories 

Another technological advancement in recent years that has contributed to discoveries in 

genomic complexity (as well as many other areas of biological/genetic studies) is the more 

widespread adoption of public repositories. They offer a platform where researchers can 

access and collaborate in processing larger and more diverse datasets in addition to 

promoting re-use and re-analysis of datasets to drive further discoveries. Cohorts containing 

a wide range of analyses such as WGS and microarray data are accessible and can have 

clinical data from the original trial accompanying them. Perhaps the most famous of these 

are the ensemble genome databases from the European Bioinformatics Institute, and the 

NCBI associated databases, which contain a wide range of genetic data including high-

quality reference genomes and their annotations for a diverse collection of organisms from 

yeast to drosophila to mice to humans and many in between (Birney et al. 2004; Yates et al. 

2020). Vast amounts of genomic data from patients are also available in public repositories 

such as The Cancer Genome Atlas (TCGA) which contains more than 2.5 petabytes of data 

from many different types of analysis such as somatic mutation, RNA and proteins express, 

and DNA methylation data (The Cancer Genome Atlas Program (TCGA) - NCI 2022). 

However, due to General Data Protection Regulation (GDPR) (and the U.S. Privacy Act) 

many databases containing sensitive information like WGS such as the International Cancer 

Genome Consortium, Genomics England, and GenBank employ strict restrictions requiring 

an application before accessing and publishing of data. To condense the useful information 

from these large WGS data sets, several methods are employed to analyse them. 

1.3.4 Analysis of high throughput sequencing 

Structural variants (SV) are defined as genomic rearrangements like insertions, deletions, 
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duplications, inversions and translocations (over arbitrarily 50bp in size). SV calling is the 

analysis of reads from WGS data in the form of a binary alignment (bam) to create a set of 

structural variants for a sample, and is usually presented using as a variant call format (vcf) 

file (Li et al. 2009; Danecek et al. 2011). There are several programs that are used for SV 

calling including for short read data: manta, gatk, strelka, delly, lumpy, dysgu, and long read 

data: nanovar, svim, sniffles, and again dysgu (Rausch et al. 2012; Saunders et al. 2012; 

Layer et al. 2014; Chen et al. 2016; Cleal and Baird 2022; Structural variant (SV) discovery 

2024). Short read data presents additional challenges when attempting to call structural 

variants. Due to their limited read length, it is only possible for SVs to be called from 

discordant mappings, changes in read-depth, and split reads around breaksites (or through 

more computationally expensive assembly). Repetitive sequences also provide a challenge 

when mapping short reads which compounds onto these issues for SV callers. Additionally 

library preparation issues can also hinder SV calling. An example of this is PCR-free short 

read data show up to a twofold reduction of coverage of loci exceeding a GC% higher than 

45% (Logsdon et al. 2020). This limits SV discovery in regions such as telomeres, 

centromeres, and acrocentric genomic areas which commonly exhibit large tandem repeats. 

 Aside from SV calling, WGS data can be used to create a copy number profile with a 

higher resolution than karyotyping methods. This is achieved through extracting and 

analysing the read depth across the genome. However, this type of analysis is also hindered 

in repetitive regions where mapping is difficult such as telomeres and centromeres. There 

are a diverse range of tools for carrying out such analysis that provide different levels of 

insight. The staple WGS tool samtools has its own inbuilt function to simply create a copy 

number table displaying the depth across each position in the reference (Li et al. 2009; 

Danecek et al. 2021). Other software such as CNVnator apply statistical techniques like 

correcting GC-biases, mean shifting, and partitioning to take read mapped data (bam file) to 
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detect copy number variations (Abyzov et al. 2011).  

1.3.5 Chromoanagenesis and other complex patterns  

The advent of NGS and the resulting methods of analysing WGS data opened the door to new 

discoveries about the previously unseeable level of complexity of cancer genomes, and 

patterns in these complexities emerged. Chromoanagenesis is the umbrella term for the 

phenomena of chromothripsis, chromoplexy, and chromoanasynthesis which describe 

complex patterns of structural variants/genomic rearrangements (figure 1.8) (Ostapińska et al. 

2022; Pellestor et al. 2022).  

 

Figure 1.8 Graphic representation of the complex patterns: chromothripsis, chromoanasynthesis, and 
chromoplexy under the umbrella name Chromoanagenesis. Figure resused under the Creative Commons 
Licence from: Ostapińska K, Styka B, Lejman M. Insight into the Molecular Basis Underlying 
Chromothripsis. Int J Mol Sci. 2022 Mar 19;23(6):3318. Doi: 10.3390/ijms23063318. PMID: 35328739; 
PMCID: PMC8948871. (figure 1) 

 

1.3.5.1 Chromothripsis 

Chromothripsis is a chromosomal rearrangement pattern that is thought to result from a single 

catastrophic chromosomal shattering event, followed by disorderly repair of the resulting 

fragments within a cell. It often occurs early in tumour development and can lead to segments 

of chromosomes being affected by multiple mutations and rearrangements that encourages 
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carcinogenesis (Forment et al. 2012). Chromothripsis is present in a diverse range of tumour 

types (commonly in cells lacking p53) and has been linked with poorer prognosis in cancer 

patients (Jones and Jallepalli 2012; Hayashi et al. 2015; Cortés-Ciriano et al. 2020). 

Chromothripsis is also observed in germline cells, and normal somatic tissues, however 

generally its contributions to the phenotypes of individuals is unknown (Middelkamp et al. 

2017). It is speculated that asymptomatic carriers experience infertility when two or more 

chromosomes are involved (Nazaryan-Petersen et al. 2020). 

Chromothripsis is thought to occur through chromosome shattering and random 

recombination. However, a complete understanding of mechanisms that lead to 

chromothriptic rearrangements is lacking. Several potential pathways have been implicated. 

As mentioned in a previous section, one proposed origin of chromothripsis proposed by 

Pellman et al involves erroneous segregation of chromosomes that create lagging 

chromosomes can lead to formation of micronuclei (figure 1.9G) (Crasta et al. 2012). DNA 

replication stress within micronuclei can result in DNA damage and substantial chromosome 

fragmentation coupled with non-homologous end joining results in chromothripsis (Hatch 

and Hetzer 2015; Ye et al. 2019). Aberrant nuclear envelop assembly can also lead to 

defective DNA replication and loss of envelop integrity leading to large DNA damage via 

unknown mechanisms (Liu et al. 2018). Pellman et al have shown through live-cell imaging 

that though micronuclei do not form immediately after bridge breakage, frequency of 

micronuclei formation was seen between 52% and 65% in cells with bridges. This contrasts 

with cells without bridge division within the same imaging dish treated identically not 

producing micronuclei (Umbreit et al. 2020). 

The original report of chromothripsis also implicated the role that telomere 

dysfunction and the resulting breakage-fusion-bridge (BFB) cycles play in the generation of 

chromothripsis (Stephens et al. 2011). Additionally, De Lange et al have explored the 
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impact of telomere crisis on chromothripsis development. They simulated crisis through 

using dox-inducible dominant negative allele of TRF2, which prevents the protection 

function of telomeres therefore stimulating telomere fusions. This created chromatin bridges 

that persisted throughout mitosis, suggesting TREX1-mediated fragmentation of dicentric 

chromosomes formed in telomere crisis followed by DNA damage repair mechanism is a 

potential origin of chromothripsis in cancer (figure 1.9Ciii) (Maciejowski et al. 2015). 

Depletion of TRF2 using siRNA and mitotic checkpoint barriers (Mps1 inhibited with 

reversine and hesperadine) combined can also cause chromothripsis. The complete 

mechanism and pathway involved is not fully understood (Mardin et al. 2015; Cleal et al. 

2019). 

A review of these various mechanisms for chromothripsis generation from Cleal and 

Baird et al 2020 paints a clearer holistic picture of how telomere dysfunction potentially 

drives genomic instability from simple large deletions and insertions to complex 

Chromothriptic patterns. It was highlighted that a single dysfunctional telomere is sufficient 

to trigger a cascade of events that leads to chromothripsis, through micronuclei-dependent 

and -independent pathways that utilize alternative and non-homologous end-joining or 

replicative repair pathways (Cleal and Baird 2020). They also emphasise there is growing 

evidence from multiple sources that complex patterns which are difficult to explain by 

chromosome shattering alone, likely points to replicative repair playing a key role in 

generation of complex events that resemble chromothripsis (Umbreit et al. 2020). 
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1.3.5.2 Chromoplexy 

Chromoplexy is similar to chromothripsis, with both displaying breaks and fusions suspected 

to be caused primarily by non-homologous end joining (NHEJ), although also has been 

shown to result from alternative end joining (alt-EJ). The distinction is chromoplexy involves 

less breakpoints (<100) which are not locally clustered on one or two chromosomes, instead 

involving multiple chromosomes (Shen 2013). Fusion breakpoints of chromoplexy are 

predominantly precisely joined or contain a ~2bp microhomology which create chimeric 

chromosomes with minimal gains or losses likely attributable to C-NHEJ or alt-EJ repair of 

DSBs, but can also feature large deletions between chain fusion junctions (Berger et al. 2011; 

Figure 1.9 Mechanisms proposed which implicate telomere dysfunction and its’ resulting telomere fusions 
in chromothripsis development (F). (A) Mitotic errors from telomere fusion can produce a variety of 
aberrant outcomes such as dicentric and lagging chromosomes. (B) Dicentric chromosomes for chromatin 
bridges between daughter cells which can be resolved by (Ci) a simple break, (Cii) a complex break, (Ciii) 
complex break involving TREX1 breakdown of the nuclear envelope. (D) Simple breaks can lead to fold 
back inversions or large terminal deletions. I Complex breaks can leave fragmented chromosomes. (G) 
Dicentric chromosomes or lagging chromosomes can also be enveloped in micronuclei. (H) Micronuclei 
can cause fragmentation through premature compaction of DNA during mitosis, or defective DNA 
replication and repair. Fates of broken chromosomes within micronuclei include subsequent rounds of 
micronuclei entrapment and DNA breakage in granddaughter cells. (I) Another fate involves 
reintroduction to the main nucleus. (J) Alternatively, its possible for envelope breakdown to cause cGAS 
localization which leads to autophagy or apoptosis. Figure reused with permission by the authors from: 
Cleal, K,. Baird, D. Catastrophic Endgames: Emerging Mechanisms of Telomere-Driven Genomic 
Instability. Trends in Genetics 36(5) p. 347-359 (2020). (figure 3) 
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Zepeda-Mendoza and Morton 2019).  

Originally described in prostate cancer by Baca et al, chromoplexy exhibits a 

correlation to tumours containing oncogenic ETS fusion and functionally appears to 

dysregulate cancer genes in early carcinogenesis. Mutations that occur early within 

carcinogenesis such as deletions of tumour suppressor genes TP53, PTEN, ETV6, NKX3-1, 

CDKN1B, RB1, and CHEK2 were found at different frequencies in chromoplexy chains 

(Shen and Abate-Shen 2010; De and Michor 2011; Goodman 2021; Liu et al. 2022b). Due to 

this observation, it is speculated that rearrangements and deletions across the genome present 

in chromoplexy simultaneously deactivate tumour suppressor genes from multiple 

chromosomes. It is also possible that chromoplexy also contributes to carcinogenesis via 

creation of oncogenic fusions and mutations leading to overexpression of oncogenes, but no 

recurrent gene fusions were found in the analysis. Evidence also suggests that multiple 

rounds of chromoplexy occur in tumour subclones implying it also plays a role in late 

oncogenic progression (Baca et al. 2013). The underlying mechanism that generates 

chromoplexy is unknown but is suspected to be distinct from that of chromothripsis, as the 

process is restricted to deletions and chained chromosomal rearrangements as opposed to 

copy number alterations (Shen 2013; Ostapińska et al. 2022). 

1.3.5.3 Chromoanasynthesis 

Chromoanasynthesis is defined as a complex rearrangement process of chromosomal 

duplications and triplications clustered on typically one (up to a few) chromosomes, with 

associations of various other types of structural rearrangements. The discovery of 

chromoanasynthesis was made through a combination of CGH, FISH and G-band 

karyotyping analysis which exhibited fluctuations of regions between duplications, 

triplications, normal, and deletions in a variety of permutations which exposed complex 
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clusters of structural variants (Liu et al. 2011). Unlike chromothripsis and chromoplexy, 

chromoanasynthesis is thought to arise via a replicative origin that involves serial fork 

stalling and template switching (FoSTeS) or microhomology mediated break-induced 

replication (MMBIR) mechanisms (Pellestor and Gatinois 2018). Despite its mechanistic 

origin differing from that of chromothripsis, the rapid formation and outcome of complex 

rearranged chromosomes is similar. Replicative fork stalling and collapse can be caused by a 

multitude of endogenous and exogenous events such as tRNA genes, protein-mediated fork 

barriers, replication “slow zones”, inverted repeats, secondary DNA structures, DNA breaks, 

tightly bound proteins (Branzei and Foiani 2005). Following a stall, the lagging strand 

disengages and anneals due to microhomology of another replication fork (which could be 

linearly megabases apart but close in proximity in 3D space) where it is copied. Multiple 

rounds of disengagement and strand invasion may occur leading to complex clusters of 

structural variations before replication of the original strand is resumed (Lee et al. 2007; 

Pellestor 2019). Alongside structural variants, mutations in single nucleotides are also 

associated with the complex genomic patters. 

1.3.5.4 Kataegis 

Kataegis is the clustering of localised hypermutations and is often co-localised with somatic 

rearrangements. Single nucleotide polymorphisms (SNPs) within these regions are almost 

entirely comprised of CT mutations at TpC dinucleotides or TpCpW (W denoting A or T) 

trinucleotides, and also, less commonly C>G (and C>A). The mechanism for C>T mutations 

is caused from the deamination of cytosine to form uracil, which during DNA replication 

results in the base being read as a thymine (Seplyarskiy et al. 2016). Deamination is proposed 

to be the results of a family of apolipoprotein B mRNA editing enzyme, catalytic 

polypeptide-like (APOBEC) activity. APOBEC normally functions as a viral protecting agent 
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but is also a major factor in carcinogenesis, especially of breast cancers (Nik-Zainal et al. 

2012). Telomere crisis and APOBEC activity have been shown to be linked in the process of 

carcinogenesis. Two members of the APOBEC family APOBEC3A/B are inferred to act upon 

ssDNA generated by TREX1 activity in dicentric chromosome resolution leading to Kataegis 

(Maciejowski et al. 2015). Most notably, APOBEC has been shown to be the aetiology 

(cause) of COSMIC mutational signature 2 (majoritively C>T) and 13 (majoritively C>G) 

(Jarvis et al. 2018). It has been shown the foci of kataegis often occur around genomic 

rearrangement (Alexandrov et al. 2013). These patterns have been observed using generalised 

conventional analysis methods, further patterns have been observed using unique approaches. 

1.3.5.5 Pyrgo, Rigma, and Tyfonas 

Analysis from Hadi et al using a novel genome graph model to investigate junction copy 

number (JCN) across a large cohort of whole genome sequence data was used to discover 

new genomic complexity phenomena (Hadi et al. 2020). This approach combines the analysis 

of CN junctions (determined from read depth) with variant data (determined from breakpoint 

data), arguing they are intrinsically coupled. By constructing a graph of neighbours with 

junctions being the nodes and edges based on the adjacency in the reference (REF) or 

introduced though a rearrangement (ALT) (with loose ends also being added to the graph). 

From this analysis 3 types of patterns emerged. Pyrgo are increased regions of low-JCN 

duplications correlating with early replicating and super-enhancer regions, most prevalent in 

breast and ovarian cancers. Rigma exhibit decreases of low-JCN deletions at late-replicating 

fragile sites, enriched in gastrointestinal carcinomas. Tyfonas are “typhoons” of high-JCN 

junctions and fold-back inversions enriched in expressed protein-coding fusions and breakend 

hypermutation, frequently found in acral melanomas (Hadi et al. 2020). It’s worth noting that 

there are no known mechanisms that underly these proposed patterns or whether they are 
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distinct from other complex genomic rearrangements. This is in contrast to for example 

chromothripsis, where telomeres have been connected to their origins in cancer. 

1.4 Telomere length in cancer 

1.4.1 Telomere length and cancer prognosis 

Initially discovered in chronic lymphocytic leukaemia (CLL), fusogenic telomere length 

thresholds have been shown to be a highly significant and useful prognostic tool (Lin et al. 

2014; Strefford et al. 2015). Telomere fusion assays were conducted using Sothern blotting 

with XpYp, 17p, and 21q telomere adjacent probes. This was combined with single XpYp 

telomere length data obtained through the single telomere length analysis (STELA) assay, 

which utilises a linker or ‘telorette’ containing seven bases of TTAGGG homology followed 

by a 20-nucleotide non-complementary tail to the G-rich 3′ overhang of the telomere. The 

telorette is annealed and ligated to the 5’ end of the complementary C-rich strand of the 

chromosome such that primers for the telorette tail and allele specific subtelomeric regions 

can be used for PCR amplification and subsequent southern blotting to determine the length 

(Baird et al. 2003).  A fusogenic threshold was then calculated by creating a range of telomere 

lengths extending the upper limit (3.81kb) to where telomere fusions occur and taking the 

mean of the range (2.26kb). It was found that telomere length was the dominant variable in 

multivariant analysis with respect to time to first treatment and progression-free survival (Lin 

et al. 2014). In later studies these same thresholds were used to predict patient responses to 

chemotherapy and FCR-based treatment, suggesting that telomere length could be taken into 

account for risk management of clinical trials surrounding CLL (Strefford et al. 2015; Norris 

et al. 2019). A similar study was then conducted in breast cancer which showed similar 

results in the stratification of patients by prognosis using telomere length. This analysis 
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showed that higher values (2.6kb) within the fusogenic range were also significantly 

(p<0.0001) predictive of prognosis. It was also shown that patients in this study with 

telomere lengths <3kb were also observed in previously established prognostic subsets like 

estrogen receptor, progesterone receptor, human epidermal growth factor receptor 2 status, 

histological grades, and NPI score (Simpson et al. 2015). These studies suggest that telomere 

shortening and dysfunction occurs prior to clinical progression. This is congruent with 

previous analysis in colorectal polyps which show a correlation with telomere shortening and 

aneuploidy, and another study in CLL correlating telomere length and Binet stages (Lin et al. 

2010; Roger et al. 2013). 

 Previous analysis has also been carried out to examine the link between telomere 

length and genomic complexity. Santos et al determined through FISH and other cytogenetic 

assays that in CLL shorter telomeres (with cases of del11q/17p compared to 13q14 deltions) 

were associated with abnormal karyotypes (Dos Santos et al. 2015). Titia de Lange and John 

Maciejowski have also revealed that telomere crisis can lead to phenomena like 

chromothripsis, kataegis, and tetraploidisation. They argue that dysfunctional telomeres 

during this stage generates dicentric chromosomes that harbour many genomic 

rearrangements from processes such as breaking of dicentric chromosomes and BIR being 

used to repair them, and anaphase bridge resolution creating fragmentation followed by 

haphazard repair. These findings were from inducing telomere crisis through inactivation of 

TRF2 in p53 and RB deficient cells and suggest telomerase and ALT as mechanisms for 

escaping crisis (Maciejowski and de Lange 2017). 

1.4.2 Aims and Hypothesis 

It is known through WGS analysis of breast cancer that increasing genomic complexity 

gives rise to poorer prognosis (Curtis et al. 2012). Previous research has clearly shown there 
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is great potential in using telomere length as part of the prognostic arsenal. Other 

investigations have also been conducted into the correlation between telomere length and 

genomic complexity. However, these are much less common, and findings have sparked 

debate whether the correlation is a cause via mechanism such as BFB cycles, or 

consequence of increased proliferation of these severe cancers. Even within the parties that 

argue shorter telomere length is a cause of genomic complexity, questions are being asked 

about the mechanism by which the complexity arises. This thesis aims to take a combination 

of bioinformatics approaches to interrogate the complexity of cancers using WGS data 

paired with measured and predicted telomere length to uncover potential correlations. The 

aim is to elucidate patterns and correlations in the data and relate these to biological 

processes. The main hypothesis is that decreasing telomere length will correlate with 

increasing genomic complexity, most likely not continuously, but rather that there will be TL 

values where patients can be stratified according to genomic complexity. This building upon 

previous research mentioned in the previous section (1.4.1) where patient prognosis could 

be stratified by fusogenic thresholds. Evidence for correlations between telomere length and 

genomic complexity may hint at the underlying mechanisms behind large rearrangements 

are and might further aid understanding why this prognostic stratification by telomere length 

is possible.  
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Chapter 2 Methods 

2.1 Datasets 

All datasets used for analysis consisted of (n) WGS tumour-normal pairs. The dataset 

explored in chapters 3 and 4 is a local breast cancer cohort (n=44) sequenced with BGISeq 

500 at ~15x coverage which had accompanying STELA data. Datasets used in chapter 5 were 

all sequenced using Illumina HiSeq (X/5000) include breast cancer cohorts (n=1591) from 

Genomics England (GEL)  (~30-80x for the germline samples, and ~80-150x for cancer 

samples) and the International Cancer Genome Consortium (ICGC) (n=80) (~30-80x), as 

well as a chronic lymphocytic leukemia (CLL) cohort (n=98) (~30-80x germline/~80-150x 

cancer) with associated STELA data.  

2.2 Common requirements 

Multiple tools, pipelines, and bash scripts throughout this chapter including the copy number 

and structural variant analysis will be using similar input files which are required for the 

software to run correctly. The most frequently referred to input file is a csv called 

“sample_pairs.csv” which contains three columns: the basename (file name without extension 

or path) of the cancer and normal samples, and an index column describing how a sample 

will be ordered for display during analysis. For this analysis the index is the telomere length 

(TL) in kilobases, unless stated otherwise. This file is used by teltool, the “pipeline” scripts, 

as well as several bash scripts to pair the cancer files to their normal counterpart to perform 

various functions, such as normalisation which will be discussed later.  
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Another common file that will be referred to is named “run_list.csv”. This file has 

columns that contain the basename for a cancer sample, read length of bam file, coverage of 

the bam file, and optionally, the reference type (hg38 or hg19). The coverage of samples is 

used to generate a further variable which will be named “frac” (short-hand for fraction) which 

is used for subsampling of bam files in various later sections via samtools 

(github.com/samtools/samtools). For readability, anytime the variable frac has been used 

without being defined, at the start of looping samples it was set using `frac=$(awk –

vcov=${cov} ‘BEGIN { print 40 / cov }’)`. This file can be created quickly with: 

while IFS=, read -r line; do 
   readlen=$(samtools view ${line} | head -n 10000 | gawk ‘{ print 
length($10)}’ | sort | uniq -x | perl -ane ‘$_ =~ s/^[]+//g;print $_’ | 
sort -k lnr,lnr | head -1 | cut -f2 -d “”) 
   cov=$(samtools idxstats ${line} | awk -vreadlen=${readlen} ‘ { len += 
$2; nreads += £3 } END  { print nreads * readlen / len { ‘) 
   echo “$(basename ${line} .bam),${readlen},${cov}” >> run_list.csv 
done < list_of_file_paths.txt 

 

Where “list_of_file_paths.txt” could be the output of `ls bam_directory > 

list_of_file_paths.txt` or a cut of a single column from a pre-existing file containing 

the paths. 

The “run_list.csv” file may also be modified in some analysis to contain both the tumour and 

normal names, as well as both bam files with full path, and in cases where sample names 

need to be obscured for general data protection rights (GDPR) the new names for both the 

tumour and normal pair. Note, for users that sed will have to be used to change the original 

name to the obscured name in the header of the vcf files in this case.  

2.3 Common High-Performance Computing practices 

When working within a high-performance computing (HPC) environment, jobs are run using 

a job manager, which is most often LSF job manager (which uses sbatch) or slurm. Jobs are 

submitted to the job queue using Bash scripts that also includes a header that provides 
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information to the job manager about requirements such as number of cores, amount of 

memory required, how long the job should take, etc. Typically,  HPCs are set up in a way that 

certain programs such as samtools need to be added to path, usually via a command such as: 

`module load samtools`. This allows system administrators to provide and manage 

multiple software and library versions to the user through modifying environment variables. 

For this analysis, the version and environment control within HPCs was managed using 

containers. Docker was used to build an image (standalone executable container) that 

contains all the code, dependencies, and runtime environment for teltool and pipeline scripts 

used in this analysis. This was done as allows a simple and convenient transfer of everything 

required and ensure reliable execution. Frequently HPCs will use singularity in place of 

docker as their method for loading and running containers. Singularity can still be used to run 

docker images by converting them to “.sif” files. These can be downloaded using 

`singularity pull repo.sif docker://user/repo`. Singularity requires mounting of 

locations for example (“--bind path1:target1:rw, path2:target2:ro”) where rw and 

ro refer to the permissions to read and write files to path1 and read only files in path2 

respectively. Assume the correct paths have been mounted following any appearance of 

“singularity exec”. 

Whilst most tools can accept an input directory, with larger datasets it is faster to 

process many samples individually in parallel. This can be achieved by procedurally 

generating scripts for each sample, then submitting the individual scripts to the job manager 

(eg. `for i in scripts/*.sh; do bsub < ${i}; done`). For readability, the shorthand 

“while iterating file:” will be used in place of displaying the full bash code: 

while IFS=, read -r variable1 variable2; do 
   # define s variable as sample name (file name without suffix) 
   s=$(basename ${path_variable} .suffix) 
   # define script variable as path in scripts dir 
   script=”scripts/${s}.sh” 
   # write (>) header to script 
   echo ${header} > ${script} 
   # append (>>) to script 
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   echo “module load requirements” >> ${script} 
   echo “code under shorthand” >> ${script} 
   # make script executable 
   chmod +x ${script} 
done < file.csv 
 

Note, other cases of the bash variable “s” (standing for sample) will also refer to the 

basename of a bam file. There were also cases locally where this same effect could be 

achieved with: 

while IFS=, read -r cancer normal length 
do 
   (command) & 
   while [ "$(jobs | wc -l | xargs)" -mt 8 ]; do 
         sleep 10 
   done 
done < sample_pairs.csv 
 

2.4 Teltool 

Teltool is a python package that uses machine learning (ML) to predict telomere length (TL) 

or categorise samples into short or long TL groups (https://github.com/kearseya/teltool). It is 

installed using the Python package management tool pip by first installing dependencies with 

`pip3 install -r requirements.txt` then using `pip3 install .` whilst within the 

teltool directory.  

Teltool uses two stages for creating a prediction: trimming, and testing. Trimming creates 

intermediary files that comprise of reads containing kmers that are in a predefined list. These 

files are placed in a directory and have the suffix “_tel.bam” along with their accompanying 

“.bai” indexes (bam file index). The second step “testing” uses these files to create a 

dataframe containing information that is passed into a pre-trained ML model to classify TL. 

For local cohorts (in this analysis the initial breast cancer samples with accompanying 

STELA data), teltool was run using:  

teltool trim -i /path/to/bam_direcory -o /path/to/trim_direcory 
teltool test -i /path/to/trim_direcory -o output_predictions 
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However, large datasets are often contained on supercomputers where this method might not 

be suitable. On HPC it may be more convenient to use the docker container version for 

reasons explained in the previous section. Samples with higher coverage (>40X) may also be 

down-sampled before trimming. 

while iterating run_list.csv: 
 # make empty files (${s} = sample basename variable) 

touch ${trim_direcotry}/${s}_tel1.fq 
touch ${trim_direcotry}/${s}_tel2.fq 
# subsample bamfile (which will output to stdout) and pipe this to teltool 
samtools view -h -s ${frac} --subsample-seed 123 ${path} | singularity exec 
teltool.sif teltool trim -i - -n ${s} -o ${trim_directory} 
 

As a side note, it is recommended that empty fastq files (teltool intermediaries) are created 

using the Linux utility “touch”, as this can mitigate certain errors with container write 

permissions arising from mounting interactions. As the bam file is being piped in, teltool also 

requires the “-n” flag to provide the sample name. Setting a subsample seed with samtools 

(using --subsample-seed) also allows for reproducibility of the analysis. 

2.5 Variant Calling 

Variant calling was performed using dysgu (v1.5-1.6.2), a structural variant caller developed 

by Kez Cleal that uses machine learning to identify and score likely variants (Cleal, K. 

2022). The parameters used were min support 3 for the lower coverage (~15-20x) BGISeq 

breast cancer samples, and min support 5 for the higher coverage (~30-150x) Illumina 

HiSeq breast cancer samples from the International Cancer Genome Consortium (ICGC), 

and Illumina HiSeq breast cancer and Chronic Lymphocyte Leukemia (CLL) samples from 

Genomics England (GEL). These parameters were chosen to capture the greatest number of 

likely true positive structural variants whilst ignoring the most likely false positives (before 

later filtering stages), accommodating for the lowest coverage samples in each cohort. The 

output from running this analysis was a vcf file, and a bed file with binned coverage values 
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(for copy number analysis) for each sample. Local structural variant calling was performed 

using the command (with local parallelisation shown in previous section): 

for i in bams/*.bam; do 
   # run the first dysgu stage of fetching 
   dysgu fetch /tmp/${s} ${i} 
   # create coverage bed files from temporary files from fetching 
   dysgu/coverage2bed.py –out-bin-size 10000 -w /tmp/${s} > 
${coverage_dir}/${s}_cov.bed 
   # run dysgu call stage 
   dysgu call --ibam ${i} ${reference} /tmp/${s} -o vcfs/${s}.vcf 
   # remove temporary files generated from fetch stage 
   rm -rf /tmp/${s} 
done 

 

ICGC used the combined run function instead of splitting into stages. It also made use of 

several additional flags such as --low-mem, --exclude bed, and --search bed file to 

accommodate for the lower RAM size of the instances, speed up the process by not 

processing known regions to cause issues with SV calling, and only process only the main 

chromosome contigs (ignore ALTs). Additionally reasonable values were set for mapping 

quality (15), clip length (30), minimum support (5), and max coverage was set to -1 to 

denote no limit: 

dysgu run -v2 --metrics --low-mem --exclude /home/ubuntu/hg19-
blacklist.v2.bed --mq 15 --max-cov -1 -x --clip-length 30 --min-support 5 -
-search /home/ubuntu/chromosome.bed ${ref} tmp_${b} ${i} -o ${b}.vcf 2> 
${b}.log ; ${cov} --out-bin-size 1000 -w tmp_${b} > ${b}_cov.bed ; rm -rf 
tmp_${b} 
 

Within genomics England, samples were very high coverage (100-150X), to save on compute 

time, teltool and dysgu were run together on subsampled versions of the bam files. The 

version of dysgu used in this analysis (1.6.2) added an auto minimum support feature so this 

value did not to be set. The higher coverage also justified increasing the mapping quality 

(mq) variable to 30 and setting a limit on the maximum coverage value to 5000. This was 

achieved with: 

while iterating run_list.csv: 
 # subsample bam file to stdout 

samtools view -h -s ${frac} --subsample-seed xxx ${path} |  
# split stdout to teltool, but also pipe to… 
tee >(singularity exec teltool.sif teltool trim -i -n ${s} -o /home) | 
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# stdout of subsample bam to dysgu fetch 
singularity exec dysgu.sif dysgu fetch --mq 30 --max-cov 5000 --clip-length 
30 /tmp/tmp_${s} – 2> ${logdir}/${s}.log &&  
# && denoting once command complete continue to coverage bed generation 
singularity exec dysgu.sif coverage2bed.py --out-bin-size 10000 -w 
/tmp/tmp_${s} > ${coverage_dir}/${s}_cov.bed &&  
# finally run dysgu call 
singularity exec dysgu.sif dysgu call --ibam /data/${s}.bam -v2 --metrics -
-low-mem -x ${reference} /tmp/tmp_${c} -o /out/${s}.vcf 2>> 
${logdir}/${s}.log;  
# delete teporary files 
rm -rf /tmp/tmp_${s}  
 

It was shown in the paper released alongside dysgu that higher coverage samples can lead to 

lower precision of SV calling, but potentially higher recall (Cleal and Baird 2022). 

Combining these findings with the fact it was possible to save on compute time further 

justified the decision to use subsampling in this case. 

2.6 Variant Filtering 

Several filtering strategies were investigated, including using previously published tools 

such as giggle and jasmine, as well as custom python scripts, before eventually the final 

method of using the dysgu in-built function “filter”. Filtering was performed to remove 

germline variants (those common between the cancer and normal samples), to generate a set 

of structural variants that were only relevant to the cancer.  

The first attempted method was using giggle, a genomic search engine that identifies 

shared genomic loci between multiple genomic interval files (github.com/ryanlayer/giggle 

v0.6.3). However, due to unresolved compilation issues involving multiple definitions 

(perhaps relating to the gcc version v11.2.0), it was not possible to test this method.  

Another method that was tried was using jasmine to merge the SVs to find common 

variants (github.com/mkirsche/Jasmine v1.1.5). 

#!/bin/bash 
 
# create directories for analysis 
mkdir -p list_dir 
mkdir -p log_dir 
mkdir -p jasmine_filtered 
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mkdir -p merged_dir 
 
# for each tumour vcf file 
for i in /path/to/project/variants/bgi/tumour/*.vcf; 
do 
    # create variable of sample basename 
    b=$(basename ${i} .vcf) 
    echo "Processing ${b}" 
    # write file containing paths to normal sample pool 
    cat normals.txt > list_dir/${b}.txt 
    # add tumour sample to pool 
    echo ${i} >> list_dir/${b}.txt 
    # run jasmine 
    jasmine --mark_specific file_list=list_dir/${b}.txt 
out_file=${b}_merge.vcf > log_dir/${b}.log 
    # move files to new direcory 
    mv output/${b}_markedSpec.vcf jasmine_filtered/ 
    mv ${b}_merge.vcf merged_dir 
done 

 

For each tumour sample, the tumour vcf file name is added to a text file along with a pool of 

all the normal samples. The mark specific flag was used to mark calls that were present in 

only one sample.  

Similarly to jasmine, survivor (v1.0.7 github.com/fritzsedlazeck/SURVIVOR) is 

another tool that can merge multiple vcf files (Jeffares et al. 2017). SURVIVOR takes several 

integers as input that relate to the maximum distance between breakpoints (1kb), minimum 

number of supporting calls (2), take the type into account Boolean (1 = true), take the strands 

into account Boolean (true), placeholder (0), minimum size of SV (30bp): 

SURVIVOUR merge ${infile} 1000 2 1 1 0 30 merged.vcf  
  

A similar method was also attempted using dysgu merge with output set to csv, and 

using awk to filter for common variants (The pandas development team 2020). However, 

there were issues with conversions between the csv and vcf file types involved in files 

containing multiple samples (see: https://github.com/kearseya/Telomere-Genome-

Complexity-Scripts/tree/main/Processing_vcfs/Filtering).  

The next attempted method to attempt removing germline variants form the cancer 

vcfs was a custom python script. The first stage of filtering involves removing duplicate and 

variants with close loci present in both the normal and cancer vcf files. The second stage 
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involves iterating over a pool of the normal samples in the dataset and iterating over reads 

(aln variable in following code) from the loci (±1250bp padding) of the remaining variants, 

then checking for several conditions. Variants are not considered unique if reads in the pool 

of the normal samples met the conditions for an SV reported in a tumour sample: 

For larger variants (³ 2500bp) that are not translocations or insertions all the conditions of 

the read and its mate/next read are on the same chromosome, bam flag 2 (indicating read 

mapped in proper pair), the position of the mate/next read is within a bound, and there is 

overlap between the current and next/mate read: 

 
all([cram_f.getrname(aln.rnext) == chr2,  # Same chrom (not translocation) 
     not aln.flag & 2,  # Is discordant 
     pos2 - pad[0] < aln.pnext < pos2 + pad[1],  # Pnext is the same 
     reciprocal_overlap((pos1, pos2), (aln.pos, aln.pnext)) > 0, # overlap 
     reciprocal_overlap((pos1, pos2), (aln.pos, aln.pnext)) / 
float(abs(pos1 - pos2)) > 0.8]) 

 

For smaller (300-2500bp) variants, if all the conditions of the read and the position of the 

next/mate read is at least 90% of the reported SV length (gap),  the orientation of the read is 

the same as the join type, and the next read is less than 3000bp away: 

all([abs(aln.pos - aln.pnext) / gap > 0.90, 
     orientation_most_common == pair_orientation(aln), 
     abs(aln.pos - aln.pnext) < 3000]) 

 

For <300bp variants, the cigar string is analysed for if any reads in the area exhibit 

insertions (I=1), deletions (D=2), or soft clips (S=4) longer than 15 base pairs: 

cigartuples = [aln.cigartuples for aln in cram_f.fetch(chr1, 0 if pos1 - 
1000 < 0 else pos1 - 1000, pos1 + 1000) if aln.cigartuples != None]  
for ctt in cigartuples: 
    seen = any( (0 < ct[0] <= 2 and ct[1] >= 15) or (ct[0] == 4 and ct[1] 
>= 15) for ct in ctt) 

 

For translocations, if there is an alignment mate that appears in the reported translocation 

second chromosome at the loci (allowing for a padded area around the breakpoint): 

cram_f.getrname(aln.rnext) == chr2 and pos2 - pad[0] < aln.pnext < pos2 + 
pad[1] 
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For insertions Striped Smith Waterman alignment (using v0.6 scikit-bio) is used (local 

pairwise-alignment) to test if the insertion sequence from the vcf is present in reads from the 

normal samples are present at the same loci, and the optimal alignment score is above a 

threshold (Rideout et al. 2024). 

2.7 Variant Validation by manual curation 

Dysgu vcf files contain an extra field in the FORMAT column called “PROB”. This is a 

probability score the dysgu model assigns each variant that indicates how confident its’ 

model is that the called variant is real and not a sequencing artifact or general noise. For each 

dataset, a subset of ~N samples were inspected with the gw genome viewer 

(github.com/kcleal/gw v0.8.2) at ~X loci for each different variant type called (Cleal et al. 

2024). Using the filtering function of bcftools (github.com/samtools/bcftools v.1.17) and 

piping results to gw, the thresholds of the “PROB” and supporting reads (“SU”) were 

tweaked until the value of each were found to maximize the number of true variants kept and 

false positives removed (Danecek et al. 2021). 

#!/bin/bash 
 
# define file paths 
vcfdir="/path/to/vcfs" 
bamdir="/path/to/bams" 
refpath="/path/to/reference.fa" 
 
# convert command line variable to path 
i=$(ls ${vcfdir}/$1*) 
b=$(basename $i .vcf) 
 
# filter vcf to variants between upper and lower PROB bound 
bcftools filter -i'INFO/SVTYPE == "DEL" && FORMAT/PROB >= 0.1 && 
FORMAT/PROB <= 0.2' ${vcfdir}/${b}.vcf |  
# gw opens the bam file at the regions of piped in vcf 
gw --link sv --labels yes,no,maybe --out-labels ${i}_del.tsv ${refpath} -b 
${bamdir}/${b}.bam -v - --track ${i} 
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2.8 International Cancer Genome Consortium (ICGC) cloud analysis 

Data contained within the ICGC is accessed either via Amazon Web Services (AWS) or the 

Collaboratory (now sunsetted). AWS was initially attempted as a method for analysing the 

cohort, however the “score client” software (the means of accessing the data) was not 

working reliably despite the EC2 instances being based in Virginia per instructions. The AWS 

route of accessing the data was subsequently abandoned in favour of the Collabatory hosted 

by Google.  

This section will focus on the Collaboratory route which is similar to AWS but with 

extra steps. Once enrolled into the program, the first step was setting up a network and an 

initial instance. By default, the network was not accessible outside of itself, so the Classless 

Inter-Domain Routing (CIDR) of the initial instance had to be opened by setting it to 

“0.0.0.0/0”. The last step before accessing the instance was to set up ssh keys, these are 

encrypted strings of text that afford a higher level of security than regular passwords. Keys 

are downloaded and are usually stored in “~/.ssh”. They are then used to access the remote 

host by providing the path in the ssh command, or more commonly added to the host alias in 

“~/.ssh/config”. Additionally, the line “IdentitiesOnly yes” is also added to this config file 

(could also be provided in ssh command).  Whilst the score client has an option for mounting 

the “bucket” (data repository) containing the bam files, throughput when accessing the files is 

very slow at around 1Mb/s, obviously less than ideal when working with 100+GB files.  

Similarly to how AWS instances can be specced with (given) extra drives, a 200GB NVMe 

drive was mounted to the Collabatory instance at the path /mnt/nvme0. A setup script was 

developed to install all the dependencies and tools required for the analysis (score-client, 

dysgu, teltool, htslib, etc), configure the score client, set up environment variables, and mount 

the drive (full script available at: https://github.com/kearseya/Telomere-Genome-Complexity-
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Scripts/blob/main/ICGC/Setup/setup.sh). The script takes care of downloading the data, 

analyses, and sending the output data outside of the cloud compute instance.  

# create an array or bam file object ids 
readarray -t s < /home/ubuntu/nomini_object_ids 
 
echo -e "--------------------\n\tLIST (${#s[@]})\n\n${s[*]}\n" 
echo -e "--------------------\n\n\tSTART\n\n--------------------" 
# for each object id (s) 
for s in ${s[*]} 
   do 
   # move to the attached nvme storage 
   cd /mnt/nvme0n1/ 
   # download bam file 
   ${scli} download --object-id ${s} --output-dir /mnt/nvme0n1 
   # assign bam file path and basename to variables 
   i="/mnt/nvme0n1/*.bam" 
   b=$(basename ${i} .bam) 
   echo "Running dysgu ${b}" 
   # run dysgu (command shown earlier in variant calling section) 
   /home/ubuntu/.local/bin/dysgu run -v2 --metrics --low-mem --exclude 
/home/ubuntu/hg19-blacklist.v2.bed --mq 15 --max-cov -1 -x --clip-length 30 
--min-support 5 --search /home/ubuntu/chromosome.bed ${ref} tmp_${b} ${i} -
o ${b}.vcf 2> ${b}.log ; ${cov} --out-bin-size 1000 -w tmp_${b} > 
${b}_cov.bed ; rm -rf tmp_${b} 
 
   # move output to new directory 
   mv ${b}.vcf /mnt/nvme0n1/dysgu_out/ 
   mv ${b}.log /mnt/nvme0n1/dysgu_out/ 
   mv ${b}_cov.bed /mnt/nvme0n1/dysgu_out/ 
   # transfer contents of output directory to new computer 
   sshpass -f "/home/ubuntu/pw.txt" scp -r /mnt/nvme0n1/dysgu_out/* 
User@Host:/scratch/User/icgc/dysgu 
   # if teltool output does not exist 
   if grep -Fxq ${b} noteltool 
   then 
      echo "Trimming ${b}" 
      # run teltool trim function 
      teltool trim -i ${i} -o teltool_out 
      # move outputs 
      mv coverages.csv teltool_out/${b}_cov.csv 
      mv *_tel.bam teltool_out/${b}_tel.bam 
      mv *_tel.bam.bai teltool_out/${b}_tel.bam.bai 
      # transfer outputs to new computer  
      sshpass -f "/home/ubuntu/pw.txt" scp -r /mnt/nvme0n1/teltool_out/* 
User@Host:/scratch/User/icgc/teltool 
   else 
      echo "Already done teltool ${b}" 
   fi 
    
   # delete bam file (and index) to regain storage space 
   rm *.bam* 
done 

 

Once it was confirmed this script could be used on a fresh instance, seven other instances 

were created. From there, the analyses were started on the whole cohort by setting up aliases 

for each instance, and then performing the following actions: 
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1. scp requirements/* ec2:/home/ubuntu/ 
2. ssh ec2 
3. chmod +x setup.sh 
4. ssh whereToSendData 
5. edit nomini_object_ids 
6. tmux 
7. ./setup.sh 
(8. hit y enter ~4x) # yes prompts for installations 
(9. ctrl+b - d) # detatch from tmux session 
 

The requirements directory was copied via scp into the instances in step 1. This directory 

contained an application.properties file (contains access token required for score client), a 

chromosome bed file, a blacklist file (used in the dysgu command), nomini_object_ids which 

contains the object IDs for the score client to download the bam files, a list of IDs where 

teltool had not been run during the testing of the script, and pw.txt which contained the 

password for the destination the output was sent to. Logging into the instance then allows the 

executable permissions to be set on this script. Additionally logging into location data is 

being sent to adds the public key to the “~/.ssh/authorized_keys” file which avoids issues 

later down the pipeline. The list of object ids (related to the bam files) could then be edited so 

each instance could work on a unique subset of the cohort at the same time. Finally, tmux 

(github.com/tmux/tmux v.3.2) was used as it is able to keep the processes running whilst not 

logged into the instances, as it runs and stores its state in a background tmux server. 

As there was not an established vcf filtering method before running this first batch of 

analysis, a separate script was used to obtain a crop of the bam files to the regions dysgu 

needs for filtering. This ensured that the relevant sections of the bam files could be analysed 

more efficiently at a later date. 

# create array of object ids 
readarray -t s < /home/ubuntu/normal_ids.txt 
# set variable for path of score-client executable 
sc=/home/ubuntu/score-client/bin/score-client 
# for object id in array (i) 
for i in ${s[*]} 
do 
   echo "attempting download" 
   # download bam file, if the download failed, print failure and skip 
   ${sc} download --object-id ${i} --output-dir /home/ubuntu || echo "${i} 
failed"; continue  
   echo "download successful" 
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   # create variables for bam file and basename 
   bam_file=*.bam 
   b=$(basename ${bam_file} .bam) 
   # create bam file containing only regions in tumours.vde 
   samtools view -hb --region-file tumours.bed ${bam_file} -o 
trimmed_normal/${b}.bam 
   # index newly created bam file 
   samtools index trimmed_normal/${b}.bam 
   # remove bam file and index to create space for next file 
   rm *.bam* 
done  
 

The “tumours.bed” file was generated by first merging all the tumour vcf outputs (with 

`dysgu merge`) to a merged vcf. A script was then used to read each SV in the merged file 

and apply a padding of 1kb to their loci to generate a region in bed file format with `python3 

vcf_to_bed.py tumour_merged.vcf –out tumours.bed` (script found at 

github.com/kearseya/Telomere-Genome-Complexity-

Scripts/blob/main/Processing_vcfs/Filtering/vcf_to_bed.py). 

Clinical data and other auxiliary data was downloaded from the ICGC data portal 

which was retired on the 15th of June 2024. As there was no easy “download all” button, a 

web scraper was written using the selenium webdriver. By iterating the fids, URLs could be 

generated to point to the webpage for each sample, then the download button can be located 

and clicked using the find_element_by_css_selector command. Unfortunately, some of this 

data was in pdf format, perhaps the most unusable file type for extracting data for individual 

samples when contained in individual files for each sample. In this case data was attempted to 

be extracted by cropping the pdf with ghostscript, then extracting the information with optical 

character recognition (OCR) with tesseract, and aggregating with R.  

2.9 Pipeline scripts 

Please note that when using the container for these scripts, setting the bash variable 

“OPENPLAS_NUM_THREADS=1” is requited to prevent an ambiguous python “Memory 

error” (comment # 1 below) possibly caused from compiling of the container on a CPU with 
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more threads than the final run destination. The following commands for the containerised 

version are wrapped in: 

singularity exec pipelines.sif bash -c “export OPENBLAS_NUM_THREADS=1; # 1 
cd /app/pipeline_name; 
command;                                                               # 2 
mv out out                                                             # 3 
 

As mentioned in the common HPC practices section, the mounting binds have been omitted 

from the singularity command (comment #1) for clarity. It is also worth noting and not cases 

is the final move command required to get the data to the correct path (comment #3 above).  

The pipeline scripts below that take a vcf input contain an input parameter for the probability 

threshold for including variants in the subsequent analysis. This is a string which takes the 

form of a python dictionary, with each variant type (DEL, DUP, INV etc) being the key, and 

value being the desired threshold For the BGI dataset, the default “PASS” filter values for 

each variant type were used (“INS: 0.45, DEL: 0.45, INV: 0.45, DUP: 0.45, TRA: 0.45”), and 

for the higher coverage ICGC and GEL datasets the values were increased to “INS: 0.85, 

DEL: 0.85, INV: 0.45, DUP: 0.25, TRA: 0.35”. The full code for each described analysis can 

be found at: github.com/kearseya/dysgu-pipelines under their respective directories. 

2.10 Copy Number Analysis 

The copy number analysis utilised binning of reads within non-overlapping windows, with a 

size for this analysis was chosen to be 10kb as used in previous analyses by Cleal et al 

(Cleal et al. 2019). Before the analysis, bed files for the GC percentage and mappability 

were generated with: 

# open file buffer to write to 
with open(f"{ref}_prep.bed", "w") as f: 
   # for each chromosome 
   for c in chrom_lengths_dict: 
 # for each window size, add window to bed file 
       for i in np.arange(0, chrom_lengths_dict[c], winsize)[:-1]: 
           f.write(f"{c}\t{i}\t{i+winsize}\n") 
 # write last window (last window interval and chromosome length) 
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       f.write(f"{c}\t{np.arange(0, chrom_lengths_dict[c], winsize)[-
1]}\t{chrom_lengths_dict[c]}\n") 

 
# count gc percentage of each window from reference and write to file 
bedtools nuc -fi ${ref}.fa --bed ${ref}_prep.bed | cut -f1,2,3,5 > 
${ref}.${newwin}${winunit}_windows.gc_pct.bed 
 
# convert bigwig to bed file 
bigWigToBedGraph ${ref}.k100.Umap.MultiTrackMappability.bw ${ref}_map.bed 
# this step reads the bed to generate median mappability for each window 
python3 copy_number_pipeline.py preprocess -r ${ref} -w ${winsize} -m 
${ref}_map.bed 
 

Tools used for this step are bedtools (v2.30.0 github.com/arq5x/bedtools2) and 

bigWigToBedGraph (v398 available as part of the UCSC Genome Browser's utilities: 

https://hgdownload.soe.ucsc.edu/downloads.html#utilities_downloads) (Quinlan and Hall 

2010). The mappability files were obtained through the UCSC genome track browser (full 

files can be found at hg19: http://genome.ucsc.edu/cgi-

bin/hgTables?db=hg19&hgta_group=hub_67117&hgta_track=hub_67117_Umap_100_quanti

tative&hgta_table=hub_67117_Umap.100.quantitative&hgta_doSchema=describe+table+sch

ema and hg38: https://genome.ucsc.edu/cgi-

bin/hgTables?db=hg38&hgta_group=map&hgta_track=umap&hgta_table=umap100Quantitat

ive&hgta_doSchema=describe+table+schema ). These were generated by Hoffman et al by 

generating all possible kmers of differing lengths (24, 36, 50, and 100 bp) and mapping them 

to the references using bowtie (Langmead et al. 2009). They then merged data from unique 

mappings to create a score for how “mappable” each region of the reference genome is (i.e. 

how unique each region is). This is useful as regions with lower scores are more susceptibile 

to incorrect mapping from reads from other loci with sequencing errors or unexpected genetic 

variation (Karimzadeh et al. 2018). 

https://hgdownload.soe.ucsc.edu/downloads.html#utilities_downloads
http://genome.ucsc.edu/cgi-bin/hgTables?db=hg19&hgta_group=hub_67117&hgta_track=hub_67117_Umap_100_quantitative&hgta_table=hub_67117_Umap.100.quantitative&hgta_doSchema=describe+table+schema
http://genome.ucsc.edu/cgi-bin/hgTables?db=hg19&hgta_group=hub_67117&hgta_track=hub_67117_Umap_100_quantitative&hgta_table=hub_67117_Umap.100.quantitative&hgta_doSchema=describe+table+schema
http://genome.ucsc.edu/cgi-bin/hgTables?db=hg19&hgta_group=hub_67117&hgta_track=hub_67117_Umap_100_quantitative&hgta_table=hub_67117_Umap.100.quantitative&hgta_doSchema=describe+table+schema
http://genome.ucsc.edu/cgi-bin/hgTables?db=hg19&hgta_group=hub_67117&hgta_track=hub_67117_Umap_100_quantitative&hgta_table=hub_67117_Umap.100.quantitative&hgta_doSchema=describe+table+schema
https://genome.ucsc.edu/cgi-bin/hgTables?db=hg38&hgta_group=map&hgta_track=umap&hgta_table=umap100Quantitative&hgta_doSchema=describe+table+schema
https://genome.ucsc.edu/cgi-bin/hgTables?db=hg38&hgta_group=map&hgta_track=umap&hgta_table=umap100Quantitative&hgta_doSchema=describe+table+schema
https://genome.ucsc.edu/cgi-bin/hgTables?db=hg38&hgta_group=map&hgta_track=umap&hgta_table=umap100Quantitative&hgta_doSchema=describe+table+schema
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2.10.1 Normalisation 

2.10.1.1 GC and mappability normalisation 

Raw coverage was normalised to the GC percentage and average mappability score based on 

the method used by Cleal et al (Cleal et al. 2019). This is achieved by creating a matrix of 

coverage values for all combinations of GC% between 30 and 60, and mappability between 

60 and 101, and taking the median of the matrix as the genomic median” (examples in 

appendix 1).  

# for coverage, gc%, and mappability for each window 
for c, g, m in zip(list(s["coverage"]), list(df["GC"]), list(df["map"])): 
    # if coverage is more than 500 ignore 
    if c > 500: 
        continue 
    # if gc% is between 30 and 60 non inclusive 
    if 30 < g < 60: 
        # if mappability if between 60 and 101 non inclusive 
        if 60 < m < 101: 
            # add coverage value to array 
            norm_array[(g, m)].append(c) 
# for s in raw coverage directory, load coverage bed as datafame 
# limit dataframe to contain windows that fit above criteria 
s = s[(s["GC"].between(30, 60)) & (s["map"].between(70, 101))] 
# calculate median coverage of new dataframe 
median = np.median(s["coverage"]) 

2.10.1.2 Interpolation 

The genomic median is subtracted from all the coverage values within the matrix using 

NumPy (np v1.26.4) data types, which is then interpolated with the scipy (v1.13.1) function 

RFBInterpolator (with a smooth value of 5) (Harris et al. 2020; Virtanen et al. 2020).  

# convert array from above code into dictionary 
norm_array = {k: np.median(np.array(v)) for k, v in norm_array.items()} 
 
# initialise arrays 
x, y, z = [], [], [] 
arr = np.zeros((101, 101)) 
# iterate norm_array (dictionary) 
for (i, j), v in norm_array.items(): 
    if v < 1000: 
        # subtract median value from original coverage value 
        sub = v - median 
        # add values to arrays 
        x.append(j), y.append(i), z.append(sub) 
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# calculate eplison value 
xi = np.stack([x, y]) 
ximax = np.amax(xi, axis=1) 
ximin = np.amin(xi, axis=1) 
edges = ximax - ximin 
edges = edges[np.nonzero(edges)] 
epsilon = np.power(np.prod(edges)/len(x), 1.0/len(edges)) 
 
# create interpolator 
rbf = RBFInterpolator(np.column_stack([x, y]), np.array(z), smoothing=5, 
kernel="multiquadric", epsilon=epsilon) 
# evaluate interpolant 
z = rbf(np.column_stack([x, y])) 

 

RFBInterpolator from scipy is a python implementation of radial basis function 

interpolation, a method used in approximation theory (approximation of functions with 

simpler functions) where the output is a weighted sum. 

𝑓(𝑥) = 𝐾(𝑥, 𝑦)𝑎 + 𝑃(𝑥)𝑏												s. t	

(𝐾(𝑦, 𝑦) + 𝜆𝐼)𝑎 + 𝑃(𝑦)𝑏 = 𝑑	

𝑃(𝑦)!𝑎 = 0	

Where d is an input vector, y the locations, K(x,y) is a matrix of radial basis functions 

(centres at y for points x), P(x) describes a matrix of monomials spanning polynomials, and 

λ a non-negative smoothing parameter (5). The default type of RBF r2 × log(r) was used 

(where r = ||x - c|| and x is a point in a scalar valued function in N-dimensional space, and c 

the centre of the RBF) (Wahba 1990; Fasshauer 2007). 

With the interpolated coverage values, the coverage across the sample can then be 

normalised to these new values. 

# convert loose arrays into dictionary 
norm_value = {(int(xx), int(yy)): zz for xx, yy, zz in zip(x, y, z)} 
normed_counts = [] 
# for gc%, mappability, and raw coverage in oringal array 
for g, m, v in zip(list(s["GC"]), list(s["map"]), list(s["coverage"])): 
       # if within bounds for mappability and gc% 

if (m, g) in norm_value: 
       # add normal coverage – normalised value to array 

normed_counts.append(v - norm_value[(m, g)]) 
      # else add 0 to array 
      else: 

normed_counts.append(0) 
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2.10.1.3 Denoising 

Penultimately, a signal denoising step is applied to the data in the form of a Haar wavelet 

transformation from the PyWavelet library (pywt v1.6.0) (Haar 1910; Lee et al. 2019). The 

principal behind wavelet transformation use in denoising is they create a sparse 

representation for signals (and images), concentrating the signal features into a smaller 

number of large-magnitude wavelet coefficients (i.e. removing low amplitude noise). This is 

performed twice, the first acting as a stop gap for denoising (somewhat analogous to 

“smoothing”). Initially a “level” value of 2 is used, this lowers the value of the frequency 

divider (as fout = fin / N), to generate a noisy set of coefficients. From this set, the mean 

absolute deviation and “sqtwolog” were calculated and multiplied together to create a 

“universal threshold” (uthresh). This threshold is then used in soft thresholding of the data to 

denoise it. 

# convert previously python array to numpy array 
d = np.array(normed_counts) 
 
# apply first round of haar wavelet transform denoising 
noisy_coefs = pywt.wavedec(d, 'haar', level=2, mode='per') 
# calculate the mean absolute deviate (statsmodels.robust function) 
sigma = mad(noisy_coefs[-1]) 
# calculate universal threahold 
uthresh = sigma * np.sqrt(2 * np.log(len(d))) 
 
denoised = noisy_coefs[:] 
# apply soft thresholding using previously calculated value 
denoised[1:] = (pywt.threshold(i, value=uthresh) for i in denoised[1:]) 
# apply second round of denoising 
sig = pywt.waverec(denoised, 'haar', mode='per') 
 
if len(sig) > len(s["GC"]): 
    sig = sig[:-1] 
 
# write results to dataframe 
s["normed"] = [sig[i] if i not in bad_indexes else np.NAN for i in 
range(len(sig))] 
 

The Haar wavelet function is defined as: 

𝜑(𝑥) = 6
1
−1
0
		
if	0	 ≤ 𝑥 < 0.5
if	0.5	 ≤ 𝑥 < 1

𝑒𝑙𝑠𝑒
 



Chapter 2: Methods 
 

 60 

Which represents a simple oscillation between positive and negative values which captures 

changes in a signal. The Haar wavelet transformation can then be described as: 

𝑊",$ = B 𝑓(𝑥)𝜑",$(𝑥)𝑑𝑥
%

&%
 

Where φj,k (x) is the Haar wavelet function scaled by 2 j and shifted by k: 

𝜑",$ = 2
"
'𝜑(2"𝑥 − 𝑘) 

Wj,k represents the wavelet coefficient (weight) at scale j, at position k of the input signal f(x) 

being transformed (integrating for all values of x).  

Soft thresholding is the application of a function to the wavelet coefficients Wj,k to 

shrink them towards zero if they are below a threshold which reduces the effect of noise 

(hence denoising). The equation for soft thresholding the coefficients: 

𝜂((𝑊) = sign(𝑊)(|𝑊| − 𝜆))∙ 

Where 𝜂((𝑊) denotes the soft threshold value of the wavelet coefficient W, sign(W) a 

function returning the sign of W coefficients, |W| the modulus of the W, 𝜆 a threshold 

parameter, and +• showing that if the results is negative then set the value to 0. 

In this instance, the “universal threshold” was used, calculated as the median 

absolute deviation multiplied by the “sqrwolog”: 

𝜆 = 	median(|𝑋+ − 𝑋N|) × P2 × log	(length(𝑓(𝑥))) 

2.10.1.4 Background removal 

Finally, the values produced from all the normalisation processes for the normal samples are 

subtracted from the cancer samples to remove the background. The end result is a dataframe 

containing the copy number alternations generated during carcinogenesis.  
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2.10.2 Piecewise Constant Fitting (PCF) 

These background removed dataframes are used as an input for an R script that uses the 

copynumber library (v1.34.0) (Nilson, G 2018). A couple of the functions from the 

copynumber library were modified to allow inputting of cytoband files that are not within 

the package. This R script winsorizes the input dataframe to reduce the affect off the outliers 

for the next step (ref). Winsorizing is similar to trimming or clipping values, but instead of 

removing them completely, they are replaced by percentiles 𝑦" = 	𝜓(𝑦") where:  

 

𝜓(𝑦) = 	𝜓(𝑦|𝜃) = 6
−𝜃,
𝜃,
𝑦,
		
𝑦 < −𝜃
𝑦 > 𝜃
else

 

The copynumber package defines theta as: 𝜃 = 𝜏𝑠 where 𝜏 in this analysis was 2.5 (variable 

input to function), and s is median absolute deviation. Piecewise constant fitting (PCF) is 

then used to generate a file containing the chromosome, start, end, and mean (𝐼,̅) for each 

segment (Sm). Such that: 𝑆 ⊆ 𝐼 where 𝐼 ⊆ 𝑦, for example for the nth segment Sn = In = {yj of 

nth breakpoint, … ,yj of n+1 breakpoint} (so start and end are the j×windowSize (10kb) of n and n+1 

breakpoint respectively). Due to the size of the genomes being analysed, the copynumber 

package defaults to the “fast” implementation of PCF. The fast PCF function applies a 

heuristic approach for identifying the number of break points, plus a few techniques for 

reducing the order of the algorithm (quadratic). The likelihood of observing the set of break 

points S given the set of observed copy number values y using a penalty value of gamma (𝛾) 

is: 

𝐿(𝑆|𝑦, 𝛾) =]](𝑦" − 𝑦N-)' + 𝛾 × length(𝑆)
"∈--∈/

 

And its derivative: 
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𝐿0(𝑆|𝑦, 𝛾) = −]^]𝑦"
"∈-

_

'

-∈/

÷ 𝑛- + 𝛾 × length(𝑆) 

By using a lower value of gamma, the segmentation is more relaxed. The most likely 

number of segments is calculated by minimising the least squares criterion of this derivative 

function. This is achieved through dynamic programming (condensing to simpler 

subproblems) to reduce the order of operations to 𝑂(𝑞') where q is the number of potential 

breakpoints. Due to the optimal segmentations of both sides of a breakpoint being mutually 

independent, it is possible to iterate values of k to find the cost term for the last segment: 

𝑑"$ =
1

𝑗 − 𝑘 − 1^]𝑦1

$

12"

_

'

 

Which can then be used to find the total error for the optimal solution of this last segment by 

iterating the possible start positions (j) for this segment: 

𝑒$ = min
"∈{4,…,$}

(𝑑"$ + 𝑒"&4 + 𝛾)						(where	𝑒7 = 0) 

By iterating over the possible breakpoints 𝑟7(= 1), … , 𝑟8(= 𝑝 + 1) and aggregating with 

𝑢$ = ∑ 𝑦"
1!&4
"21!"#  where k is kmin (5 in this analysis) to q, it possible to find the optimal 

segments going backwards ([… 0] indicates initialised as an empty vector): 

! 𝑎$ = [𝑎$%&	0] + 𝑢$ ,
'

$($)*+

𝑒$ = [𝑒$%&	0] + 𝑟$ − 𝑟$%&, 𝑑$ = 𝑎$ ×
𝑎$
𝑒$
, 𝑒$ = 0𝑒$%&min(𝑑,$ + 𝑒,%& + 𝛾)7 

When the minimum in the last step is stored, the index tk is stored so the start indices of the 

segments can be found. The kmin value determines the minimum number of points that can 

be used in a segment, so by using a value of 5 and multiplying by the window size, the 

smallest segments in this analysis are 50kb. Individual chromosomes, as well as whole 

genomes are then plotted with the winsorized coverage values overlaid with the segments 

(genome relative coverage and heatmap plots). 
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2.10.2.1 Complexity score 

 A ”complexity score” can be constructed with the absolute sum of PCF segments relative 

copy numbers. Using the sum promotes samples with a larger number of segments to have 

higher scores than stable samples maintaining a consistent copy number.  

2.10.3 Low pass filtering 

A low-pass filter is a one that only passes signals below a specified cutoff frequency while 

diminishing all signals above it. It was also used separately to pcf as a method for analysing 

the relative copy numbers of regions. This method is less computationally expensive and 

more sensitive to shorter regions with higher variance, with the trade-off being more 

affected by noise. The “complexity score” was calculated as the sum of distances between 

concurrent peaks and troughs that were more than 0.5 in value. This threshold is arbitrary 

but was set this high as to combat the effect of noise in the end score. 

2.11 Circos Plotting 

Circos plots were generated using the pycircos library (v0.3.0 

github.com/ponnhide/pyCircos). The length values from the vcf header are extracted using 

regex to create a dictionary of the lengths which can then be used to create the “Garc” 

objects which are added to a “Gcircle” object.  

# define Gcircle object with a figure size of 5, 5 
circle = pycircos.Gcircle(figsize=(5, 5)) 
nl = {} 
# open vcf file and iterate over each line 
with open(fp) as f: 
    f.readline() 
    for line in f: 
        if line.startswith("##contig"): 
            # extract the string after ID (chromosome name) and remove 
            # chr prefix if one is present 
            name    = re.search("ID=([a-zA-Z0-9_]*)", 
line).group(1).replace("chr", "") 
            # extract the length of the chromosome 
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            length  = int(re.search("length=(\d+)", line).group(1)) 
            # if an underscore is not present in the name indicating 
            # not an alt contig, set the chromosome length in dictionary 
            if "_" not in name:  
                nl[name] = length 
# create an array with the desired order to plot chromosomes 
order_of_chr = [f"{i}" for i in range (1, 23)] + ["X", "Y"] 
# for eaach chromosome 
for i in order_of_chr: 

name    = i 
length  = nl[i] 
# add the chromosome to the Gcircle object 
arc     = pycircos.Garc(arc_id=name, size=length, interspace=2, 

raxis_range=(low_size, up_size), labelposition=100, label_visible=True, 
facecolor="white", labelsize=17) 

circle.add_garc(arc) 
circle.set_garcs() 

 

A cytoband file is then parsed (if provided) to add banding information to the outer edges of 

the plot. This is done with the circle.barplot() function. Optionally the output from the 

previous copy number analysis can also be added as a ring and is plotted with 

circle.lineplot(), with highlighting of chromosomes (barplot) that have 3 tiers of “complexity 

score”: yellow 10-30, orange 30-50, red >50, and light orange for those with 9 or more 

segments. Pysam (v0.22.1 github.com/pysam-developers/pysam) is used to parse the vcf files 

to provide the arc plotting information. 

# initialise reading of vcf file 
f = pysam.VariantFile(fp) 
tra_list = [] 
ins_dict = collections.defaultdict(dict) 
# initialise arrays for plotting insertions 
for i in arcdata_dict.keys(): 
    ins_dict[i]["positions"] = [] 
    ins_dict[i]["widths"] = [] 
# for line in vcf 
for l in f.fetch(): 
    # set chromosome name variable with “chr” prefix removed 
    name = l.chrom.replace("chr", "") 
    # get sv type (for colouring) 
    sv_type = l.info["SVTYPE"] 
    # get name of sample to access the filtering variables 
    sample_name = list(l.samples.keys())[0] 
    # if PROB and SU value from dysgu are below threshold skip 
    if l.samples[sample_name]["PROB"] < prob_thresholds[sv_type]: 
        if l.samples[sample_name]["SU"] < su_thresholds[sv_type]: 
            continue 
    # get the start and end position of SV 
    start = l.pos 
    end = l.stop #info["END"] 
    # if the variant is below size threshold skip 
    if sv_type in {"DEL", "INV"}: #, "INS"}: 
        if abs(end-start) <= size_threshold: 
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            continue 
    # remove chr prefix for chr1 and chr2 of SV 
    chr1 = l.contig.replace("chr", "") 
    chr2 = l.info["CHR2"].replace("chr", "") 
    # if not a translocation and within main chromosomes 
    if chr1 == chr2 and name in order_of_chr: 
        source = (name, start, start, low_size-aof) 
        destination = (name, end, end, low_size-aof) 
        if abs(end-start) < 50000: # required for line to show 
            destination = (name, end+50000, end+50000, low_size-aof)  
        # if not insertion plot the arc of the SV 
        if sv_type != "INS": 
            circle.chord_plot(source, destination, 
facecolor=type_cols[sv_type], edgecolor=type_cols[sv_type], linewidth=0.4) 
        else: 
            ins_dict[str(name)]["positions"].append(start) 
        # if translocation append details to list 
        elif chr1 != chr2 and name in order_of_chr and chr2 in 
order_of_chr:  
            name2 = l.info["CHR2"].replace("chr", "") 
            start2 = l.info["CHR2_POS"] 
            end2 = start2 
        tra_list.append(((name, start, start, low_size-aof), (name2, 
start2, end2, low_size-aof))) 
    else: 
        continue 
# plot translocations 
for t in tra_list: 
    circle.chord_plot(t[0], t[1], edgecolor=type_cols[“TRA”]", 
linewidth=0.4) 
# plot insertions 
for key in ins_dict: 
    if len(ins_dict[key]["positions"]) == 0: 
        continue 
    circle.scatterplot(key, data=[1]*len(ins_dict[key]["positions"]), 
            positions=ins_dict[key]["positions"],  

raxis_range=(low_size-aof, low_size-dof), facecolor="green", 
edgecolor="green",  markershape=".", markersize=20) 
 

To overcome rendering issues of some arcs not being displayed when converting the resulting 

svg to png, it is first rendered at twice the size, before being scaled back down to the original 

size.  

2.12 Chain link finding 

This method is based on the ChainFinder algorithm developed by Baca et al with some 

adaptations (Baca et al. 2013; Cleal et al. 2019). The first stage is to calculate the frequency 

of breakpoints across the cohort: 

# create dictionary entry for each chromosome 
ps = {str(k): 0.0 for k in cl.keys()} 
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for key, value in breaks_list.items(): 
    break_n_per_chrom = defaultdict(int) 
    # for each chromosome increment the breakpoint counter 
    for chrom, b in value.items(): 
        break_n_per_chrom[str(chrom)] += len(b) 
    # cacluate average “expected” distance of breakpoints across each  
      chromosome 
    avg = {str(k): v / cl[str(k)] for k, v in break_n_per_chrom.items()} 
    for k, v in break_n_per_chrom.items(): 
        ps[k] += v 
ps = {k: (v/len(breaks_list) / cl[k]) for k, v in ps.items()} 

 

The frequency of observed breaksites across the cohort is used as an “expected” distribution 

as generating an expected distribution could unintentionally introduce artifacts from 

assumptions made. Next a nearest neighbour tree is made using scikit-learn (sklearn v1.5.0) 

(Pedregosa et al. 2011; Buitinck et al. 2013): 

# initialise dictionary containing a dictionary 
nn = defaultdict(lambda: defaultdict(list))  # {sample: {chromosome: 
[neighbour trees]}} 
for samp, value in breaks_list.items(): 
    for chrom, bs in value.items(): 
        X = np.array(bs)[:, np.newaxis] 
        # create tree using sklearn.neighbors.KDETree 
        tree = KDTree(X) 
        nn[samp][chrom] = tree 
 

The p-value is calculated with: pval = 1-stats.binom.pmf(0, fails, 

prob_success) such that 1 or more breaksites are observed within this given distance 

(using scipy.stats.binom function) (Virtanen et al. 2020). The distance in bp is the number of 

fails i.e. the number of bp without a break, success is 0, and the probability that no breaks are 

observed. The list of breakpoints for each sample is then iterated over such that for each 

breakpoint look at up- and downstream of SV sites, and if the p-value is less than threshold 

(i.e. closer than “expected” for the cohort distribution), then make an edge on the graph. 

def find_connected(tree, data, chrom, pos, p_val): 
    """Return a set of edges from tree that meet P-value threshold.""" 
    # get distance and indicies of tree 
    dist, ind = tree.query([[pos]], k=len(data)) 
    # calculate p-values for each breakpoint to array 
    pvals = [get_pval(i, ps[chrom]) for i in dist[0]] 
    dist, ind = dist.flatten(), ind.flatten() 
    c = set([]) 
    # iterate p-value array and save edges to set 
    for i, p in enumerate(pvals[1:]): 
        if p < p_val: 
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            c.add(("{}:{}".format(chrom, int(pos)), "{}:{}".format(chrom, 
int(data[ind[i + 1]])))) 
    return c 

The output of the above function is used to create a set of connected structural variants i.e. 

chains of SVs: 

def neigh(s, samp, nn, prob): 
    """Return a set of edges from tree that meet P-value threshold for both  
       breakpoints.""" 
    # create tree objects and reformat 
    tree1 = nn[samp][s[0]]  # Tree for chromosome 1 
    tree2 = nn[samp][s[3]]  # Tree for chromosome 2, (intra or inter) 
    data1 = np.array(tree1.data).flatten() 
    data2 = np.array(tree2.data).flatten() 
    # call find connected (shown above) 
    c1 = find_connected(tree1, data1, s[0], s[1], prob) 
    c2 = find_connected(tree2, data2, s[3], s[5], prob) 
    # |= ior results to set 
    connected = set([]) 
    connected |= c1 
    connected |= c2 
    return connected 

The connected and all breakpoint edges are added to a networkx (v3.3) Graph (n) with 

colours (clr) to act as an id to distinguish them (Hagberg et al. 2008). Identified clusters of 

SVs are then written to a file: 

def get_clusters(n, clr, count, samp): 
    """Return a set of clustered edges from tree.""" 
    # extract connected edges using the colour id 
    cluster_edges = [i for i, j in zip(n, clr) if j == "lightgrey"] 
 
    # Make a new graph to isolate the clusters 
    G = nx.Graph() 
    G.add_edges_from(cluster_edges) 
 
    # create new file 
    with open("{}/{}/{}_{}_clusters.csv".format(OUTDIR, samp, samp, count), 
"w") as out: 
        # write header to file 
        out.write("Chrom\tBreak_number\tSize(bp)\tMedian_spacing(bp)\tBreak
_pos\n") 
        # iterate subgraphs 
        for k in [G.subgraph(c).copy() for c in 
nx.connected_components(G)]: 
            # extract sorted clusters 

                  cluster = sorted([(i.split(":")[0], int(i.split(":")[1])) for i 
in k.nodes()], key=lambda x: x[1]) 

 
            # calculate cluster size 
            c_size = cluster[-1][1] - cluster[0][1] 
            # calculate success, failure, probability success 
            success = len(cluster) 
            faliure = c_size - success 
            prob_success = ps[cluster[0][0]] 
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            # calculate a negative binomial discrete random variable 
            neg_b = stats.nbinom.pmf(k=faliure, n=success, p=prob_success) 
 
            clust_size = cluster[-1][1] - cluster[0][1] 
            clust_len = len(cluster) 
            # calculate spacing and median spacing 
            spacing = np.array([cluster[i+1][1] - cluster[i][1] for i in 
range(len(cluster)-1)]) 
            median_spacing = np.median(spacing) 
            pos = ",".join([str(i[1]) for i in cluster]) 
 
            chrom = cluster[0][0] 
 
            # write information to file 
            out.write("{c}\t{n}\t{s}\t{m}\t{p}\t{nb}\n".format(c=chrom, 
n=clust_len, s=clust_size, m=median_spacing, p=pos, nb=neg_b)) 

 

2.13 Contig assembly 

Contigs were assembled from reads collected recursive from breakpoint sites deemed to be 

close together from the chain linking analysis, which are then aligned to a reference 

genome. This method is an adaptation of the method used by Cleal et al (Cleal et al. 2019). 

Loci from the output of the chain linking analysis was used to scan the raw alignment files 

for discordant reads.  

# iterate chain linked file output of clusters 
for sample, df in data.groupby("Sample") 
    # find sample bam path and open using pysam 
    sample_bam = bam_paths[sample] 
    bam = pysam.AlignmentFile(sample_bam, "rb") 
    # create new bam files for single and paired reads 
    out_singles = 
pysam.AlignmentFile("./{o}/{s}/{s}_singles.bam".format(o=OUT, s=sample), 
"wb", template=bam) 
    out_pairs = 
pysam.AlignmentFile("./{o}/{s}/{s}_paired.bam".format(o=OUT, s=sample), 
"wb", template=bam) 
    # create array for discordant reads and iterate over the chained df 
    discordants = [] 
    for idx, r in df.iterrows(): 
        # recursively find reads over first and second breakpoint 
        d1 = recursive_find.recurive_find(bam, r.chrom1, r.chr1_start, 
r.chr1_end, pad, max_depth=3) 
        d2 = recursive_find.recurive_find(bam, r.chrom2, r.chr2_start, 
r.chr2_end, pad, max_depth=3) 
        # append found reads with duplicates filitered out to array 
        discordants += recursive_find.filter_duplicates(d1+d2) 
    # filter duplicate reads from discordant array 
    unique = recursive_find.filter_duplicates(discordants) 
    # split reads into singles and pairs and write to respecitve files 
    singles, pairs = recursive_find.sort_disc(unique) 
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    with out_singles, out_pairs: 
        for read in unique: 
            out_singles.write(read) 
        for read in pairs: 
            out_pairs.write(read) 

 

The output bam files were then processed samtools sort, so they could then be converted to 

fastq using “bedtools bamtofastq” (v2.30.0). These fastq files were then downsampled using 

the normalise-by-median python script (from github.com/dib-lab/khmer) which removes 

surplus reads with a median kmer abundance more than coverage 20 for kmers size 21 

(Crusoe et al. 2015). Connected reads were then passed to the SPADEs aligner (v3.15.5) 

(Prjibelski et al. 2020).  

# create array for spades aligner kmer sizes and set it backwards ([::-1]) 
kmers = [21, 33, 55, 77, 111][::-1] 
# for each kmer size 
for k in [",".join(map(str, kmers[:j])) for j in range(len(kmers), 0, -1)]: 
    print("Assembling with", k) 
    # define paths and basename to variables 
    s = "./{o}/{s}/{s}_singles.fastq".format(o=OUT, s=sample) 
    pe = "./{o}/{s}/{s}_paired.fastq".format(o=OUT,s=sample) 
    base = "./{o}/{s}/{s}".format(o=OUT, s=sample) 
    # call script with input variables from above definitions 
    out = Popen("bash ./assemble_and_map.sh {s}.keep.fastq {base} {pfix} 
{k} {pe} ${ref}".format(s=s, pe=pe, pfix=pfix, k=k, base=base,ref=ref), 
shell=True, stderr=PIPE, stdout=PIPE) 
    c = out.communicate() 
 
assemble_and_map.sh: 
# assemble contigs with spades 
spades.py -k $4 -o assembly/$3 -s $1 –careful 
# map paired reads to assembled contigs with bwa mem 
bwa mem -a $5 assembly/$3/contigs.fasta > $2.sam 
# convert mappings to bam, sort and index bam file 
samtools view -bF4 $2.sam | samtools sort -o $2.bam - 
samtools index $2.bam 

 

These contigs were then used as a “reference” to which all the input reads (single and 

paired-end) were mapped to. Unmapped reads were then removed along with high coverage 

(>45) contigs. Tantan (v26 gitlab.com/mcfrith/tantan) was then used to filter out contigs that 

contain ³80% tandem repeats, resulting in a fasta file of filtered contigs for further analysis 

(Frith 2011).  A similar process is then repeated with the contigs in the vcf INFO (generated 

by dysgu) field to create a dataframe of reads mapped to contigs. Then dodi 
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(github.com/kcleal/dodi) was used to select the optimal set of alignments from mapping of 

the contigs to a reference genome.  

... ref=command line input (eg. /path/to/hg38.fa) 
# define file paths 
all_contigs_file = os.path.join(outdir, "all_contigs."+pfix+".fq") 
dodi_bam_file = os.path.join(outdir, pfix+".bwa_dodi.bam") 
dodi_psl_file = os.path.join(outdir, pfix+".bwa_dodi.psl") 
file_path = os.path.dirname(os.path.realpath(__file__)) 
# run dodi_pipe script 
call(f"{file_path}/./dodi_pipe.sh {all_contigs_file} {ref} 
{dodi_bam_file}", shell=True) 
 
dodi_pipe.sh: 
# align contigs to reference, pipe output to dodi, convert output to bam 
bwa mem -c 1000 -A2 -B3 -O5 -E2 -T0 -L0 -D 0.25 -r 1.25 -d 200 -k 11 -a -
t12 ${2} ${1} | dodi --paired False -c 1 -u 21 --ol-cost 2 --max-overlap 
50000 --min-aln 50 - | samtools view -bh - | samtools sort -o ${3}; 
samtools index ${3} 
 

The maximum mapping score is used to find the optimal path, iterating to find the highest 

value of: node_scores[j] - (micro_h * hom_cost) - (ins * ins_cost) - 

jump_cost + next_score (where costs are defined as constants: ins_cost=2, 

hom_cost=1.5, inter_cost=20, intra_cost=10, and micro_h and ins are calculated from the 

difference between the current end and next start point) (see full algorithm at 

github.com/kearseya/dysgu-pipelines/tree/main/RRAssembler). This process is used in 

creating a dataframe of the best alignments. Directional graphs are then used to find 

common sites so that they can be removed. The mapping information is then extracted to be 

used for visualisation. 

2.14 Telomere prediction software 

TelSeq (v0.0.1/2 github.com/zd1/telseq) appeared to be the most commonly used telomere 

prediction tool based on citation counts and github stars. They define reads as telomeric if 

they contain 7 or more TTAGGG repeats, and estimate telomere length using a count of 

telomeric reads, a size factor, and genome size (Ding et al. 2014). For the local BGI data 

cohort it was called with the file list option: 
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telseq -f testlist.txt > ${out_path}/telseq_hap1.csv 
 

However, in the genomics England research environment it was run individually for each 

sample, allowing it to be run in parallel with the following command: 

while iterating sample_pairs.csv: # see common requirements  
 telseq 
 

Telomerecat (v4.0.1 github.com/cancerit/telomerecat) normalises telomeric content to 

subtelomeric regions, rather than against the whole genome like telseq to create an estimate. 

They also use the assumption that the number reads for 3’ TTAGGG like Interstitial telomeric 

repeats (ITRs) is approximately equal to the number of 5’ reads to correct for their (ITR) 

contribution (Farmery et al. 2018). It was run using a loop to run the analysis for each 

sample: 

for i in $(basename -s .bam ${data_path}*.bam | uniq); do  
   ${telcat_path}/telomerecat bam2length -p 10 --output ${out_path} 
${i}.bam --temp_dir /scratch/ProjectDir/tmp  
done 
 

Computel (v1.3 github.com/lilit-nersisyan/computel) utilises a telomeric index (created with 

bowtie2-build) designed so that any read containing telomeric sequence can be uniquely 

mapped to it. The length of this index, and its mapped coverage is then used in conjuncture 

with number of telomeres and mean base coverage from the reference to create an estimate 

(Nersisyan and Arakelyan 2015). The same loop was also used for running: 

for i in $(basename -s .bam ${data_path}*.bam | uniq); do  
   bedtools bamtofastq -i ${i}.bam -fq ${i}.fq1 -fq2 ${i}.fq2 
   ${computel_path}/telomerecat -1 ${i}.fq1 -2 ${i}.fq2 -o ${out_path} 
   rm ${i}.fq* 
done 
 

Whilst qmotif (v1.2 github.com/AdamaJava/adamajava/tree/master/qmotif) isn’t necessarily a 

telomere prediction tool, it can be used to make a prediction using the following code: 

for i in $(basename -s .bam ${data_path}*.bam | uniq); do  
   java -Xmx20g -jar ${qmotif_path}qmotif.jar\ 
      -n 8 \ 
      -bam ${data_path}${i}.bam \ 
      -bai ${data_path}${i}.bam.bai \ 
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      --log ${out_path}${i}.qmotif.log \ 
      -ini /home/User/tools/adamajava/qmotif/qmotif.ini \ 
      -o ${out_path}${i}.qmotif.xml \ 
      -o ${out_path}${i}.telomere.bam;  
done 

 

2.15 Other software 

2.15.1 Kmer analysis 

Counts for kmers were gathered to try a reference agnostic approach for discovering 

sequencing depth discrepancies between different sequencing technologies. Kmer counting 

was done using jellyfish (v2.3.0 github.com/gmarcais/Jellyfish) (Marçais and Kingsford 

2011). 

# for each bam file 
for i in /scratch/ProjectDir/aligns/*.bam;  
    do b=$(basename ${i} .bam);  
    # if analysis not been performed on file 
    if [ ! -f /scratch/ProjectDir/jellyfish/done/${b}.bin.done ]; 
    then 
        # run jellyfish on bam file 
        jellyfish count -m 21 -s 3G -t 8 --if filter.fa -o 
/scratch/ProjectDir/jellyfish/${b}.jf <(samtools fasta ${i});  
        # convert jellyfish file format to binary array 
        jellyfish dump -c ${b}.jf | python convert.py ${b}.bin; 
    fi 
    rm ${b}.jf; 
done 
 

Where convert.py was a simple python script to convert the binary jellyfish file to readable 

text: 

import sys 
import array 
# take command line argument (${b}.bin) 
outf = sys.argv[1] 
# initialise binary array 
a = array.array("B", []) 
# for line piped from jellyfish dump 
for line in sys.stdin: 
    # strip whitespace and take value from 2nd col as an integer 
    v = int(line.strip().split(" ")[1]) 
    # replace value above 255 with 255 
    if v > 255: 
        v = 255 
    # add to array 
    a.append(v) 
# write array to binary file 
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a.tofile(open(outf, "wb")) 
 

This data was then analysed by an MSc student Laurie Fabian who was supervised by myself 

and Kez Cleal. 

2.15.2 Low coverage copy-number testing 

To simulate low coverage sequencing data for testing the lower limit of the copy number 

pipeline, bam files were subsampled with samtools and a new coverage profile generated for 

these subsampled reads. 

# iterate sample_list.csv with columns as path, readlen, cov 
while IFS=, read -r path readlen cov; do 
    # define basename and sample name through removing stirng after . 
    b=$(basename ${path}) 
    s=${b%%.*} 
    # calculate fraction of coverage to achieve desired coverage 
    frac=$(awk -vcov=${cov} 'BEGIN { print 1 / cov }') 
    echo "${s}" 
    # if file does not exist 
    if [ ! -f coverage/${s}_cov.bed ]; then 
        # subsample bam, measure depth, and bin depth to windows 
        (samtools view -hb --region-file hg38_chroms.bed -s ${frac} --
subsample-seed 123 ${path} | samtools depth - | python3 windows.py ${s}) & 
    else 
        echo "${s} already done" 
    fi 
    # run 8 jobs in paralell 
    jobs=($(jobs -p)) 
    while (( ${#jobs[*]} >= 8 )) 
    do 
        sleep 30 
        jobs=($(jobs -p)) 
    done 
done < sample_list.csv 
 

Here is one example where the while jobs loop was used to parallelise a process to speed up 

run time. It is however not exactly 8x faster with this method, due to the I/O limitations of the 

hard drive they are stored on. The output of the depth calculation script is piped into 

“windows.py”, a script that collects the depth values and averages them over a window pre-

specified in a bed file. 

import pandas as pd 
import sys 
from rich.progress import Progress 
import fileinput 
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# read predefined 10kb windows for hg38 as dataframe (df) 
df = pd.read_csv("hg38_prep_10k.bed", sep="\t", header=None) 
# add column names 
df.columns = ["chrom", "start", "end"] 
# add new column depth withh value 0 for all rows 
df["depth"] = 0 
 
# take sample name from command line input 
sample = sys.argv[1] 
 
# create d (depth) dictionary and chroms set 
d = {} 
chroms = set() 
 
# for the chromosomes in window df, add key chromosome with value array 
for i in df.groupby("chrom"): 
    d[i[0]] = [] 
    chroms.add(i[0]) 
    # for each window in chromosome, add list to previously made array 
    for r in i[1].itertuples(index=False, name=None): 
        d[i[0]].append(list(r)[1:]) 
 
# make total value for progress bar 
total_spaces = 0 
for c in d: 
    total_spaces += int(d[c][-1][1]) 
print(total_spaces) 
total_spaces = total_spaces/100 
 
# make the progress bar 
with Progress() as progress: 
    task = progress.add_task("Getting coverage: ", total=total_spaces) 
    # for line piped into program (from jellyfish dump) add depth to window 
    for line in fileinput.input("-", encoding="utf-8"): 
        l = line.split() 
        if len(l) > 0: 
            if l[0] in chroms: 
                d[l[0]][int(l[1])//10000][-1] += int(l[2]) 
                progress.update(task, advance=0.01) 
 
# divide total depth of each position by window size 
for c in d: 
    for i, _ in enumerate(d[c]): 
        d[c][i][-1] = d[c][i][-1]/(int(d[c][i][1])-int(d[c][i][0])) 
 
# convert into dataframe and write to csv 
rec = [] 
for c in d: 
    for i in d[c]: 
        rec.append([c]+i) 
 
df = pd.DataFrame.from_records(rec) 
df.to_csv(f"coverage/{sample}_cov.bed", sep="\t", index=False, 
quoting=None) 
 

This method was quicker than writing the subsampled bam to an intermediate file and 

measuring the coverage using any other tool. There is a command within bedtools which 
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should be able to achieve the same output (coverage bed from piped bam without index), 

however this did not work. 

2.15.3 WGS type conversion 

Due to the size of the local bam file dataset, some of the dataset was converted to cram 

format to save on disk space. 

for i in $(ls /scratch/ProjectDir/aligns/*.bam); do  
    name=$(basename $i .bam); 
    samtools view -C -T /scratch/ProjectDir/hg38.fa ${i} > 
/scratch/ProjectDir/aligns/${name}.cram; 
    rm ${i}; 
done 
 

This process was stopped early to retain some bam files for software development to ensure 

that processes work on both formats. The split between bam and cram is why separate loops 

for bam and cram may be seen in code, as well as the s=${b%%.*} method (as seen in the 

start of the low coverage test loop) for extracting sample names in the previous section. 

2.16 Contributions to other projects 

Minor bug fixes were contributed to the dysgu repository throughout its development, 

including in the structural variant filtering, and Linux installation related scripts 

(github.com/kcleal/dysgu). Functions related to the parsing of vcf information (specifically 

that of INFO and SAMPLE column fields) were contributed to the gw genome browser, 

allowing for the printing of the currently viewed SV vcf information to terminal, and 

filename modification of snapshots. Several contributions were also made regarding the 

installation process, including Windows OS (and android) proof of concepts (with 

accompanying Visual Basic install script), alongside Debian packaging build process 

(github.com/kcleal/gw). 
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Chapter 3 Prediction of telomere length 

from WGS data using machine learning 

3.1 Abstract 

Telomeres are the structures at the ends of chromosomes that protect the terminal DNA from 

being recognised by the DNA damage response pathways. Due to semiconservative 

replication, telomeres shorten with every cell cycle, and can become dysfunctional if they 

become too short leading to complex chromosomal rearrangements such as chromothripsis. 

To investigate the relationship between telomere length and genomic complexity, a software 

called teltool has been developed to predict telomere length. Teltool has two methods for 

predicting telomere length, one based on coverage analysis in defined genomic regions, while 

the second assessed substring (kmer) abundance. In both methods, reads containing telomeric 

repeats (telmers) are analysed to create a series of variables that are then passed to a machine 

learning model. Samples with telomeres above and below 3.81kbp are classified using the 

model, and we show that teltool outperforms previous software tools for predicting telomere 

length, with a 0.2 increase in F1 score (~0.7 compared to ~0.5), and two-fold improvement in 

precision (0.67 compared to 0.33). Development of an accurate telomere length prediction 

tool was a prerequisite for analysis of population cohorts of the International Cancer Genome 

Consortium, and Genomics England databases to investigate the relationship between 

telomere length, prognosis, and genomic complexity 

.
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3.1.1 Aims 

The aim of this project was to develop a method for accurately predicting or classifying 

telomere length from Whole Genome Sequence (WGS) samples. Telomere length can be 

accurately measured using the Single TElomere Length Analysis (STELA) protocol; 

however, this is not commonly performed alongside genome sequencing (Baird et al. 2003). 

Beyond developing a software package for predicting telomere length, the output from this 

tool was analysed alongside genomic complexity to investigate their relationship. 

3.1.2 Data 

The whole genome sequencing datasets used for training the machine learning models 

consists of 44 tumour-normal pairs from a breast cancer cohort, and 11 samples from 

experimental cell cultures (ATRX knockouts). All samples have been sequenced at a depth of 

approximately 15-20 fold coverage, aligned to human reference hg38, and include 

accompanying clinical and STELA data. 

3.2 Introduction 

As described at the beginning of the first chapter, telomeres are located at the end of 

chromosomes and are comprised of TTAGGG repeats which together with shelterin form 

structures which primarily function to protect DNA from DNA damage response (DDR) 

mechanisms. Due to semiconservative replications, they shorten with every cell division in 

differentiated somatic tissues, and excessive shortening can lead to the loss of their protective 

function. Normally, in the presence of tumour suppressive mechanisms such as p53 and Rb 

mediated pathways, cells with short telomeres enter a stage of replicative arrest (senescence). 
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However, bypassing of these pathways can lead to continued shortening where cells then 

enter telomere crisis. Dysfunctional telomeres in crisis are prone to initiating periods of 

genomic instability through fusions which through various resolutions (breakage-fusion-

bridge cycling, or micronuclei formation) create large-scale genomic rearrangements. This 

process is thought to occur during early carcinogenesis, and telomere length has also been 

shown to be predictive of treatment response in chronic lymphocytic leukaemia (CLL), as 

well as prognostic in both CLL and breast cancer. In this chapter, we utilised a breast cancer 

cohort of local samples and develop bioinformatics tools and methods, in preparation for 

analysis of larger cohorts available within public repositories which do not contain assay 

measured telomere lengths. 

3.2.1 Breast cancer 

Breast cancer is the most common malignant cancer among women and has a heterogeneous 

origin (Guo et al. 2023). Frequent molecular attributes of breast cancer include activation of 

human epidermal growth factor 2, hormone receptors (oestrogen and progesterone), and 

BRCA mutations (Harbeck et al. 2019). However, this knowledge of cancerous features is 

still incomplete. Currently patients are diagnosed and stratified for treatment by a limited set 

of factors such as biomarkers or driver mutations (Schick et al. 2021). There is a great interest 

in utilizing whole genome sequencing (WGS) data to better inform prognosis and clinical 

treatment (Rossing et al. 2019). It has come to light that breast tumours exhibit specific 

mutational signatures which are attributable to the underlying mutational processes (Nik-

Zainal et al. 2012). In addition, rearrangement signatures have been identified that are 

indicative of deficiencies in homologous recombination activity that arise as a consequence 

of mutations in BRCA1 and/or BRCA2 and other as yet undefined mechanisms (Morganella 

et al. 2016). Telomere dysfunction has been identified as a key mechanism responsible for 
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genomic instability in breast cancer (Simpson et al. 2015). The aim of this chapter is to 

investigate whether it is possible to use machine learning with WGS data to predict telomere 

length.  

3.2.1 Telomere length prediction methods 

There are several previously released programs that aim to tackle the approach of telomere 

length prediction from whole genome sequence data which were briefly discussed in the 

previous chapter. In this section we will discuss their methodologies in more detail. 

3.2.1 Telseq 

Telseq is first and perhaps the most regularly used telomere prediction tool, based on the 

number of citations. Using the TwinUK dataset, they measured the frequency of reads 

containing varying numbers of TTAGGG (and its frame shifted permutations) repeats. The 

data showed an overall decline in frequency for each permutation as number of repeats (k) 

increased, except for TTAGGG which began to increase after 7. This data was plotted against 

mean length of terminal restriction fragments (mTRFs), which revealed a correlation of ~0.6 

for read frequency at k=7. This is the justification they use to classify a read containing k>=7 

as telomeric. Using the abundance of telomeric reads, they construct an estimate for telomere 

length by multiplication with the fraction of all reads with GC% between 48 and 52 (s), and 

length of the genome divided by number of telomeres (46). The results of their telomere 

length estimate correlates well with mTRF and age. Technical repeats also showed its reliable 

replication of results, with standard deviations not leaving expected ranges for experimental 

error (Ding et al. 2014). As pointed out by the authors of the next tool, the assumption of a 

fixed number of chromosomes leads telseq to overestimate the length in cases of aneuploidy. 
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3.2.2 Telomerecat 

Telomerecat utilises a few methods to avoid assumptions made by telseq. The first is to use 

the ratio of read pairs on the telomere/sub-telomere boundary to estimate the number of 

telomeres. Second, they avoid the inclusion of interstitial telomeric repeats (ITRs) by 

assuming they contain approximately the same number of reads at the 3’ end as the 5’ end. 

With this assumption, they estimate and correct for ITRs, whilst avoiding the challenge 

presented in mapping these reads. The last is a method for accounting for sequencing errors 

of telomere and subtelomeric reads, with a model that “automatically adapts to differing error 

across sequencing preparations”. Number of reads are segregated into reads that are 

completely telomeric (F1), one end of read contains CCCTAA (F2), and one end of read 

contains TTAGGG (F4). They then estimate the number of reads covering a boundary using 

(F2a=F2-F4), with the assumption any F4 read will have an F2 companion. Across the cohort, 

they then define the set of parameters for the distribution q as F2a/(F2+F4). The insert means 

(µ) and standard deviations (s) is also calculated for the cohort, which is then used to 

calculate the fidelity (y = µ / s). This is then used for error correction, using the formula F2a 

=  qcorr • (F2 + F4).  (Farmery et al. 2018). 

3.2.3 TelomereHunter 

TelomereHunter is takes a far simpler approach, they approximate the telomere content of an 

input bam file instead of estimating telomere length. They achieve this by extracting reads 

with (floor(read length x 0.06)) telomeric repeats, then sorting them into bam files for four 

categories: chromosomal, subtelomeric, junction spanning, and telomeric. Whilst scanning 

the input bam file, read GC content is also collected, and the number of reads where the GC% 

is between 48 and 52% is counted. Sorting is performed by classification of regions of the 
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reference into bands of: chromosome, first/last (subtelomeric), and telomere. Reads are 

placed in the telomeric category, if both the read and its mate have a mapping quality below a 

threshold (default 8). The rest of the categories depend on which band they are mapped to. 

The junction spanning group includes pairs of reads where one mate is has a mapping quality 

< 8 and the other is mapped to the first or last band of a chromosome. Subtelomeric category 

holds reads where both mates are aligned to a first or last chromosome band. Lastly, 

intrachromosomal read pairs include those with one mate mapped to a band that is not the 

first or last band of a chromosome. They then estimate telomere content per million reads as 

the number of intratelomeric reads * 1,000,000 / total reads with telomeric GC content 

(Feuerbach et al. 2019). 

3.2.4 Computel 

Computel is unique in the fact it uses fastq as input rather than bam (used by all other 

prediction software). It makes use of a telomere index which is built with the bowtie-build2 

program and can be altered by the user to consider the telomeric repeat pattern and read 

length. The fastq is aligned to this telomere index using bowtie2-align, and the coverage is 

taken across each point of the mapped region using samtools depth. This telomeric coverage 

is converted into relative coverage which is done by dividing it by an estimate of the base 

coverage (n total reads * read length / total genome length). The mean of the relative 

coverage (MRC) is then used to calculate an average telomere length estimate using: MRC * 

(read length + repeat pattern length – 1) / (2 * number of chromosomes) (Nersisyan and 

Arakelyan 2015).  
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3.2.5 qMotif 

This tool was not developed solely for the purpose of telomere length prediction; however, 

they do provide the parameters required for this task. It uses a two-stage approach to filter 

reads into four categories: include (telomeric), exclude (centromere/ITR), genomic, and 

unmapped. The first stage involves a string (faster) match, which if passed leads to 

determining the region the read is mapped to. If the region of the read is within the include or 

exclude bounds, reads are passed into stage two which uses regex matching (slower) to 

determine the number of defined motifs were seen in reads from that region. Data is then 

output in xml format which includes a summary of input parameters and raw counts of motifs 

and reads per region, motifs which shows the counts of each motif for a given region Stage 1 

and 2 coverage is also recorded along the process, and values from the output file can be used 

to generate an estimate for the telomere length or content 

(github.com/AdamaJava/adamajava/tree/master/qmotif) (Holmes et al. 2022). 

3.3 Methods and Results 

3.3.1 Contextual work 

As mentioned above, several software packages for estimating telomere length from genomic 

data are available. The most prominent of these tools are TelSeq, TelomereCat, and 

CompuTel (Ding et al. 2014; Farmery et al. 2018). However, CompuTel was not initially 

investigated (due to requiring fastq as an input creating issues with storage space). Whilst not 

directly used for telomere length estimation, qmotif could be adapted with its parameters to 

estimate the telomere lengths of WGS data (Holmes et al. 2022). Details on how these tools 

were run are shown in Chapter 2 Telomere prediction software section. Unfortunately, as we 
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show below, these tools are not accurate in their predictions when benchmarked against the 

STELA method of telomere length measurement. Performance can be measured using mean 

absolute error (MAE), which is calculated with: 

𝛴|𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛|
𝑛9:,;<=9

 

The mean average error for TelomereCat was 2140bp, TelSeq 2310bp, and qmotif 1917bp. 

Absolute errors for each tool were also plotted (figure 3.1). To put these numbers into 

context, the telomere lengths in the breast cancer samples in this dataset range between 2kb 

and 7kb. On average, a sample with a mean telomere length could be predicted to be on the 

outer edges of the real distribution. 

 

 

Previous analysis performed by Michalis Mylonas, an MSc student who worked at the Baird 

laboratory, showed that supervised machine learning can be used to improve the predictions 

of telomere length from TelSeq and TelomereCat. Initially the approach from Michalis’ 

work was used as the basis for creating a pipeline that would analyse telomere length. A 

python module was written that could combine the results output by TelSeq, TelomereCat, 

and qmotif to create the input for a random forest regression model from the scikit-learn 

Figure 3.1 Histograms of absolute errors for TelomereCat (A), TelSeq (B), and qmotif (C). Mean absolute 
errors shown as blue vertical lines (A) 2140, (B) 2310, (C) 1917. 
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library (Pedregosa et al. 2011). This considerably reduced the mean absolute error from 

around 2000bp to between 883 and 682bp depending on the percentage contamination 

removal. 

For percentage contamination removal, Isolation Forest modelling was used by 

iterating through contamination values (0 to 20%) to selectively remove samples from 

training to see how it improved regression results. Isolation forest is an unsupervised 

learning algorithm for anomaly detection, it utilises separation of sub-samples and fitting 

then comparing tree lengths to identify anomalies (Liu et al. 2008). Utilising an Isolation 

Forest was problematic however, as the best performing model used a contamination value 

of 19%. This removed all samples with telomere lengths, as determined by STELA above 

6.2kbp and below 3.2kbp significantly narrowing the input range. As a result, the model 

would tend to predict all samples between 4 and 6kbp (figure 3.2). Since the main interest of 

the project is investigating short telomeres, this was deemed unsuitable for further 

development.  

 

 

Figure 3.2: Scatter plots of prediction against STELA (in kbp) for the model using contamination 
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This method also presented some other issues, including a large number of 

dependencies (software required to be installed on the system) which hinders the ease of 

use. Setting up of TelomereCat was especially difficult, requiring the use of several package 

managers pip and conda, downloading an executable binary, and testing/building of several 

docker containers were attempted and were unsuccessful. Analysis for large number of 

samples was also computationally expensive with long run times for two of the tools used 

(40 minutes/sample telseq, 6+ hours telomerecat). This would also potentially cause an issue 

when analysing cohorts containing larger numbers of samples which was planned later in 

the project (Chapter 5). Qmotif was significantly faster as it is a region-based method, 

taking around 2 seconds per file. Also depending on tools that others had written meant it 

would be difficult to improve the performance much further. It was decided that a new 

approach that could analyse the raw data directly should be investigated. 

3.3.2 Region-based method 

The issues faced above lead to developing a new software called teltool in attempt to more 

accurately predict telomere length. Teltool extracted reads that had been aligned to telomeric 

regions, which has the benefit of being a fast method for finding and extracting reads 

containing telomeric sequence. However, it can unintentionally miss reads of interest which 

could mapped to other loci due to sequencing variance and mapping complications.  Features 

are extracted from these reads corresponding to properties that were considered to potentially 

be useful for predicting telomere length. For example, each region would have the average 

GC%, mapping quality, telmer (telomeric substring e.g. blue CCCTTAGGGCCC) length, and 

number of separated telmer sets (“fragments"). The resulting data along with the STELA 

measurements could be passed to a supervised machine learning algorithm. 

Extracting of the reads from raw files is handled by pysam, a python wrapper for the 
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htslib C-API, the library that powers samtools (github.com/pysam-developers/pysam) (Li et 

al. 2009). Telomere regions were initially gathered from the UCSC genome browser table 

browser, with a filter for ’CCCTAAn’ kmer (substring) repeats using the repeat masker 

annotation table. Later these regions were checked with a brute force search to find all the 

telmer (telomeric kmer) containing regions in the hg38 reference genome. This search was 

performed using a python script to perform a sliding window search of chromosome contigs. 

Each region had all the included reads analysed and processed together for that region 

(figure 3.3). Regions shown in Figure 3.3 are not located at the telomere ends, closer instead 

to the centromeres, which are interstitial telomeric repeats (ITRs). They were included as its 

possible for telomeric reads to be mis-mapped to these repetitive regions. 

3.3.3 Coverage 

Coverage was considered a useful feature for telomere prediction as a higher coverage in 

telomeric regions would theoretically be predictive of longer telomeres. Collecting the 

average coverage for each sample was initially included (but removed later) as a variable for 

the model. The first method for estimating whole genome coverage was to measure the 

coverage of 1000 1kbp random regions from each sample and take the median. This 

Figure 3.3. Genomic locations on hg38 containing CCCTAAn substrings as found by brute force search 
visualised by UCSC genome browser  
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subsampling method was chosen as it was appreciably faster than parsing the whole bam file. 

Based on the TelSeq methodology, random regions were changed to the same number of 

positions on the genome instead that had a 48-52% GC% as it improves performance  as PCR 

can exhibit GC biases inflating coverage in areas of higher GC (affirmed by appendix 2) 

(Dohm et al. 2008; Ding et al. 2014). To save time these regions were calculated prior 

measuring from the reference genome, but new sets of regions could also be calculated and 

measured at run time. This approach was subsequently considered inaccurate after measuring 

the true coverage value with samtools depth, one sample estimated at 15x with the sampling 

method was measured to be 18x using samtools (Li et al. 2009). This was likely because there 

is so much variance of coverage over a whole sample that either not enough samples of 

coverage were taken or the region sizes for sampling from were too short.  

The whole sample coverage average was also attempted to be measured using both a 

cython and C++ implimentation of Indexcov, a tool written in the go language which gives a 

close approximation of the coverage of a sample using the index of a bam file. This tool reads 

the number of bytes within the index over 16,384bp tiles to determine a “proxy” coverage 

value (Pedersen et al. 2017). Although the method was much faster than the previous 

methods, there were some issues with cython objects reading and storing the bam index files . 

The coverage problem was solved with an equally fast method which uses the index to get the 

number of mapped reads in the sample and multiply by the read length, then divide by the 

total reference length. The number of mapped reads was read from the index with the pysam 

get_index_stats function. With a fixed 0.98x multiplier to account for not all reads being 

exactly 100bp, this yielded coverage predictions within 0.1 (±0.7%) of the samtools depth 

values, although the effect on different sequencing runs and read lengths is unknown and 

might require adjusting. 

Coverage values for individual regions were measured with an implementation of the 
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mosdepth algorithm. Mosdepth utilises an elegant algorithm that processes cigar strings 

from aligned reads to cumulatively add where new alignment blocks begin and subtract 

where alignment blocks ends (Pedersen and Quinlan 2018). Using the cigar strings also 

allows accounting for INDELs, as Pedersen and Quinlan in Figure 3.4. 

3.3.4 Feature selection 

Feature selection is the selection of a subset of the most relevant variables (features) for 

construction of a model. It is an important part of machine learning as it reduces noise and 

complexity (dimensions) of a model, generally improving its performance (Guyon and 

Elisseeff 2003). The feature selection functions explored during teltool development include, 

performing removal of low variance features, univariate, sequential, and feature selection 

from model, recursive feature elimination, and removal of correlated features. The best 

combination was found to be feature selection from model then recursive feature selection. 

Features with low variance will most likely not have any predictive power as there 

will be little distinction between samples. Univariate feature selection involves individually 

examining the strength of each feature’s relationship with the different outcomes. Sequential 

feature selection adds or removes features in a greedy fashion (i.e. creates the local optimal 

Figure 3.4 Figure from the mosdepth paper explaining the method. The value at the start of each read is 
incremented and each stop is decremented. As the CIGAR string is used, deletions (D in figure) can be 
taken into account as an “stop”. The left most read also has the mate stored in hash table so if the mate is 
encountered, the identifier is removed from the hash table, and the read is not counted twice (*) to prevent 
double counting. Once all reads in the specified region have been encountered, the per-base coverage can 
be calculated as the cumulative sum of the positions measured. Reused under the Creative Commons 
licence form: Pedersen BS, Quinlan AR. Mosdepth: quick coverage calculation for genomes and exomes. 
Bioinformatics. 2018 Mar 1;34(5):867-868. doi: 10.1093/bioinformatics/btx699. PMID: 29096012; 
PMCID: PMC6030888. 
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with the hope of finding the global optima) and uses cross-validation to determine when the 

best set of features has been selected. “From model” feature selection is when the model is 

fit to all the provided data, and only features with feature importance value above a 

threshold are kept. Feature importance is a weight the model gives a variable to describe its 

predictive power. Recursive feature elimination is a similar process to feature selection from 

model, except that the least important feature is eliminated, the model is refit, and the 

process is repeated until a specified number of features is selected (Pedregosa et al. 2011). 

Removing correlated features allows simplification of the model by condensing a pair of 

features into a single variable. 

3.3.4 Feature modifications 

Unmapped reads composed of >50% telmer were also included at one stage of development. 

However, it was found that including these significantly increased run time (+10 

minutes/sample) but not the prediction power of the model. Small regions (<100bp) were also 

found to not increase prediction power so were removed. All regions between 100-700bp 

were also grouped into their own category named “short" instead of giving them their own 

region. It is suspected this improved performance due to variance introducing noise that could 

potentially confuse the model from multiple features providing limited information being 

condensed whilst retaining the information and denoised into one variable. 

3.3.5 Normalisation 

Data to be analysed may not have similar sequencing depth (eg. ICGC 30-80x coverage 

compared to the breast cancer cohort 15-20x), therefore normalisation is required to allow the 

model to work accurately on new data. Average coverage was not included as a feature as the 

model would not have seen values much beyond 20 (due to training on the breast cancer 
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cohort only). Number of reads, read and telmer lengths all needed to be normalised for 

coverage and read length values. Normalising by coverage involves dividing values of the 

coverage of regions of interest by the sample’s average coverage. Whilst not a significant 

variable and eventually not being used, it is worth mentioning that read length was also 

normalised to length 100bp. 

3.3.6 Regression performance 

The end performance for regression analysis using the region-based method was an 

improvement over the previous method using the pre-existing software. It was found that 

random forest regression was the best model type with recursive and “from model” feature 

selection. Other regressors such as: lasso, ridge, linear regression, ransac, elastic net, multi-

layered perception from scikit-learn and lightGBM’s light gradient boosting machine were 

also tried (Pedregosa et al. 2011; Zhang et al. 2017). Using a random forest model, the mean 

average error was 771, with the largest over prediction being +2761bp away, and furthest 

under prediction being -1777bp (figure 3.5a). These values are close to the average errors 

seen by the previous tools (~2000bp). The R squared was 0.332, and the root-mean square 

error was 959. This method was also able to overcome the issue with the previous method 

(combining the results from pre-existing software and passing values to a machine learning 

model), and had a wider predictive range with predictions between 3.2kbp to 5.9kbp 

(compared to 4kbp to 6kbp). Plotting of the predicted value divided by the real value shows 

that in most cases the predictions are within 10% either side of the real values (figure 3.5b). 

As the predictions from this regression model are going to be used to stratify samples by an 

already known value, the question was asked if a classifier would be able to be more accurate 
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at this task. 

 

3.3.7 Changing from regression to classification 

As the telomere length predictions were likely going to be categorised in further analysis, it 

was suitable to change focus from predicting the absolute telomere length with a regression 

model to a classification system. Using a classifier based method would remove any form of 

ranking label, but could potentially be more accurate than segregation through a regression 

predicted value. The fusion threshold of 3.81kbp (upper TL telomere fusions were found to 

occur, see 1.4.1) discovered previously by Duncan Baird et al was used to categorise samples 

into long and short (Capper et al. 2007). These labels were then used in the supervised 

learning of classification models. 

The Light Gradient Boosting Machine Classification from the python module 

LightGBM proved to have the best performance. Other classifiers from the sklearn module 

were also experimented with such as: K nearest neighbours, C-support vector, gaussian 

process, decision tree, random forest, multi-layered perception, ada boost, and quadratic 

discrimination analysis (Pedregosa et al 2011). The metrics for the lightGBM classifer were 

Figure 3.5: Difference plot for regression analysis (A) and prediction 
divided by real (B) 

a. b. 
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an F1 score of 0.6 (accuracy 86%), precision 0.75, recall 0.5, and specificity of 0.96 for 

predictions using leave one out cross validation (table 3.1, figure 3.6). 

The telomere length predictions from the previous software were also used to classify 

samples into long and short using a threshold of above and below 3.81kbp (figure 3.7). 

 

The classification metrics of these software are also shown in Table 1. Overall, there is a 

trend with these software to have underestimated the telomere lengths across the cohort, as 

seen by the majority of the samples with true long labels being predicted as short (figure 

3.7), and the high recall (>0.78) with very low precision (<0.33) (table 3.1). 

 

 F1 score Specificity Precision Recall 
telomerecat 0.410 0.294 0.261 0.944 
telseq 0.301 0.103 0.187 0.778 
qmotif 0.486 0.485 0.327 0.944 

Figure 3.7: Confusion matrices for telomerecat (left), telseq (centre) and qmotif (right) using length prediction 

TelomereCat TelSeq qMotif 

Figure 3.6 Confusion matrix for region-
based method classification 
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Metrics were calculated from the confusion matrices to evaluate the performance of the 

classification. 

𝐹1 = 2 ×
𝑡𝑝 × 𝑡𝑛

𝑡𝑝 + 0.5(𝑓𝑝 + 𝑓𝑛) , 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑡𝑛

𝑡𝑛 + 𝑓𝑝 , 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑝 , 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑛 

 In the equations above, t = true, f = false, p = positive (short), n = negative (long). F1 

score is a harmonic mean of precision and recall, and is being used as the groups have 

unequal weighting (68 long, 18 short). Specificity is also known as the true negative rate. 

Precision is also known as the positive predictive value, the fraction of relevant results. 

Recall is also known as sensitivity or the true positive rate. 

 Whilst the recall for all the methods appears high, the F1 scores, specificity, and 

precision values are all under 50%. This shows that the previous software tools tend to overly 

predict samples as short (also shown in figure 3.2), whereas the region-based teltool method 

is much more balanced. Teltool using the region-based method also runs much faster than two 

of the other methods, with a run time of about 1 second per file (~1.5X faster than qmotif). 

3.3.8 Reference issues 

Unfortunately, throughout the majority of the region-based method development, data to be 

analysed with the tool was not available, so some assumptions had to be made. One of these 

assumptions was data would be aligned to the hg38 reference genome, and if not, the UCSC 

LiftOver tool would be sufficient to convert coordinates between hg38 and other references. 

Upon gaining access to the ICGC database, it was discovered the data was aligned to hg19. 

Using LiftOver to convert the coordinates used on hg38 to hg19, the compatibility of the 

 F1 score Specificity Precision Recall 
teltool (R) 0.600 0.956 0.750 0.500 

Table 3.1 F1 score, specificity, precision, and recall for each software (R) indicating the region based 
teltool method 
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model with the hg19 regions was tested (example of data drift shown in appendix 3). After 

discovering that performance was heavily impacted by the change (as all samples were 

predicted to be short which seemed unlikely), it became apparent a new approach had to be 

considered. 

3.3.9 Kmer-based method 

Whilst the region-based method remains a function available in the tool, a separate kmer-

based method was developed to tackle the issues encountered when dealing with input files 

that were aligned to different reference genome builds. This method involves extracting 

kmers of length k from all the telomeric regions from hg38 reference genome, as during the 

time of development the telomere-to-telomere T2T reference was not available (Nurk et al. 

2022). Each read in an input bam file is then checked for the occurrence of this target list of 

kmers. This is performed using a sliding window approach, and if a matching kmer is found, 

the candidate read is saved to a fastq file. The resulting fastq files could then be aligned to a 

standardised reference genome, thus harmonising data analysis for files aligned to different 

references. In particular, this also controls for any variance caused by different alignment 

tools or other intermediate tools. A more detailed explanation is given in the overview of the 

next section. 

It was decided that this method should be written in cython, a compiled language 

that allows interfacing between C/C++ and python. As python is a dynamic interpreted 

language, the performance benefit from reducing the overhead using a static compiled 

language adds up significantly over millions of reads per file. A pure-python version of the 

kmer method was written to compare the speed. Performing a similar process without 

manually hashing kmers (instead checking if strings are in a set), the pure python version 

performed 3.2x slower than the cython implementation. Not only is this a general 
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convenience, but import as time is money when processing massive online dataset using 

cloud infrastructure. For a sample with an average coverage of 17, the average run time is 

around 38 minutes and 30 seconds. This is comparable to the run time of TelSeq, but 

significantly faster than TelomereCat.  

3.3.10 Detailed workflow 

3.3.10.1 Pre-processing and Overview 

A more detailed description of the process described on the previous page is provided here. 

Pre-analysis, a set of sub-strings (k=32) is collected from a reference fasta file at given 

coordinates. The coordinates used in the default are the regions from the region-based 

method, but where appropriate extended ±32bp to accommodate for sequences flanking these 

regions. Each sub-string is hashed using the rolling hash function (discussed below) and 

saved to a default python set. This set is then saved to a file using the dump function from the 

joblib library. Upon analysis, before files are scanned, this set is loaded from the file, and all 

hashes are added to an unordered set from the robinhood library, a C++ hashmap/set library 

written by Martin Ankerl, and was considered the fastest C++ hashmap available at the time 

(github.com/martinus/robin-hood-hashing). 

All files within the directory supplied to the input flag are then listed using the listdir 

function from the python os library. Relevant file formats (bam, cram, and fastq) are then 

sent to respective scanning function. The scanning function will iterate over all the reads in 

the file. In the case of bam and cram files, when a suitable read pair (primary paired 

alignment) is found, the pysam_bam_get_seq(AlignedSegment._delegate) function is 

used to retrieve a pointer to the binary representation (nibble array) of the alignment 

sequence. The nibble (4 bits) array represents each base in a 4-bit format. This binary 
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representation can also be read as an integer, the key for each base can be seen below in the 

table below (table 3.2). 

Base Binary Integer 

A 0001 1 

C 0010 2 

G 0100 4 

T 1000 8 

N 1111 15 

Table 3.2: Binary and integer representations for each base in the nibble array format used in 
bam 
 This binary representation is then passed to the rolling hash function (discussed below 

in Scan read and rolling hash functions section), which hashes each kmer then checks if it is 

in the unordered set of permitted kmers (previously filled out), and returns a binary integer 

(bint) 1 (true) if hash is in the set and 0 (false) if it is not. If the function returns true, a Python 

f-string is used to generate the fastq format of the read, and write it to the appropriate file. 

The process for fastq files is similar, except instead of a retrieving a pointer to the nibble 

array, the string is converted into a nibble array through a separate function. As previously 

mentioned, the “scan bam” function starts this process by extracting reads from a bam file.  

3.3.10.2 Scan bam function 

This function is responsible for iterating over all reads within a bam file to extract telomeric 

reads by scanning each one for telmers. The scan file function takes in the variables of the 

input file path, the output directory path, kmer hash set to check, reference path, and an 

optional Boolean (flag) keep fastq variable. The variable file is defined as a pysam 

AlignmentFile structure and reads in the input file with the read binary (code 1 “rb" line 2) 
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option using the AlignmentFile function (the read option is changed to “rc” in the read cram 

version of this function). Per the suggestion in the pysam documentation, AlignedSegments a 

and b are defined as this can improve efficiency. Total reads, matched reads are defined as 

integers with value of 0, and n_reads is defined as an integer with a value from the 

get_n_reads function (reads index to get total reads in file). The basename of the input file 

is also stored as a variable using the os.path.basename function, and is used in generating 

the names of the output fastq files. A telomere reference (contigs of regions from hg38 and 

pure TTAGGGn/CCCTAAn repeats) is also read in (as an Aligner object code 1 line 12) 

using the mappy module, a convenient python interface for minimap2 

(pypi.org/project/mappy/) (Li 2018; Li 2021). For the bam function a progressbar from the 

progressbar2 module is also displayed, however, in the cram version this is absent (as number 

of reads can’t be extracted from index file). 

For each read in the file (in AlignedSegment format), the flag is checked with the & 

operator to remove reads with the following bitwise flags set: “not primary alignment", PCR 

duplicate, or a supplementary alignment, and that the read is paired. The AND operation is 

used to check the flags as it uses less operations than getting the values from memory and 

comparing individually the AlignedSegment .is_type variables. When these conditions are 

met, the query name of the read is checked to see if it has been seen before. If the read has 

not been seen before, the AlignedSegment structure is added as a value in a dictionary with 

the key as the query name. When the read has been seen before, the previously seen read is 

assigned to the b variable, and the pair is passed to the scan_read_pair function, and if this 

returns true, a list of alignments to the telomeric reference is created. This alignment list is 

created with the mappy  reference_object.map function for fast and accurate alignments. An 

alignment filtering stage is employed to remove reads that contain flanking kmers from the 

collection stage that do not contain telomeric sequence. If the reads do not align to the 
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telomere reference (i.e. alignment list is empty), then the loop will continue to the next read. 

If at least one of the reads do align, the for loop will allow them to be appended to their 

respective files (dictionary also maintains the read order). The fastq format is constructed 

with an format (f-)string. The break at the end of the for loop prevents the reads being 

written to the files multiple times, and the next read is processed (code 3.1 line 29). 

 

 1  cdef scan_bam_no_bar(in_file, out_dir, l, robin_set[uint64_t]& kmers, reference, 
keep_fq): 
 2      cdef AlignmentFile file = AlignmentFile(in_file, "rb") 
 3      cdef AlignedSegment a 
 4      cdef AlignedSegment b 
 5      cdef int total_reads = 0 
 6      cdef int match_reads = 0 
 7      read_pairs = dict() 
 8      basename = os.path.basename(in_file) 
 9      fastq_prefix = os.path.splitext(basename)[0] 
10      first_file = os.path.join(out_dir, fastq_prefix+"_tel1.fq") 
11      second_file = os.path.join(out_dir, fastq_prefix+"_tel2.fq") 
12      reference_check = mappy.Aligner(os.path.join(os.path.dirname(__file__), 
"reference", "hg38_cutout_edit.fa"),   preset="sr") 
13      for a in file: 
14          total_reads += 1 
15          if not a.flag & 3328 and a.flag & 1: 
16              if a.qname not in read_pairs: 
17                  read_pairs[a.qname] = a 
18              else: 
19                  b = read_pairs[a.qname] 
20                  del read_pairs[a.qname] 
21                  if scan_read_pair(a, b, l, kmers): 
22                      align = reference_check.map(a.query_sequence, b.query_sequence) 
23                      for hit in align: 
24                          match_reads += 2 
25                          with open(first_file, "a") as paired1: 
26                         
paired1.write(f"@{a.qname}\n{a.query_sequence}\n+\n{''.join([chr(i+33) for i in 
a.query_qualities])}\n") 
27                          with open(second_file, "a") as paired2: 
28                              
paired2.write(f"@{b.qname}\n{b.query_sequence}\n+\n{''.join([chr(i+33) for i in 
b.query_qualities])}\n") 
29                          break 
30      if reference != None: 
31          run_alignment(out_dir, fastq_prefix, reference, keep_fq) 
32      return (total_reads, match_reads) 
Code 3.1 Scan bam file function 

Once the fastq files have been generated, if a reference is provided, they will be 

aligned using minimap2 and converted from sam to bam format using samtools. Minimap2 

is used because it is consistent with the mapping step used to filter the reads in the scan bam 

function. BWA also has a python binding (bwapy), but it is no longer maintained. The 

“keep_fastq” variable can be used in this function also to prevent the fastq files from being 
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deleted (code 3.1 and 3.2, line 1), this can be useful for debugging purposes. 

 

1  def run_alignment(file_directory, file_prefix, reference, keep_fq=False): 
 2      ## align command to run 
 3      align_command = f"minimap2 -ax sr {reference} {file_prefix}_tel1.fq 
{file_prefix}_tel2.fq -o {file_prefix}_tel.sam" 
 4      ## run command (outputs aligned SAM file) 
 5      align = subprocess.run(align_command.split(), cwd=file_directory) 
 6      ## remove fastq files if not wanted (trim -k) 
 7      if keep_fq == False: 
 8        os.remove(os.path.join(file_directory, file_prefix+"_tel1.fq")) 
 9        os.remove(os.path.join(file_directory, file_prefix+"_tel2.fq")) 
10      ## convert to bam file 
11      con_command = f"samtools view -hbS {file_prefix}_tel.sam -o {file_prefix}_tel.bam" 
12      con = subprocess.run(con_command.split(), cwd=file_directory) 
13      # pysam.view("-hbS", os.path.join(file_directory, file_prefix+".sam"), "-o", 
os.path.join(file_directory, file_prefix+".bam")) 
14      ## remove sam file 
15      os.remove(os.path.join(file_directory, file_prefix+"_tel.sam")) 

 

Sorting and indexing of bam files is handled outside of this process in the trim class of 

teltool.py as the region-based method also requires these after trimming files by region. 

3.3.10.3 Scan read and rolling hash functions 

Read pairs are passed to the scan read pairs function after both have been seen in the file. 

Along with both reads, the integer variable denoting the length of kmer to search, and the 

hash set kmers are passed into the function. For read variable a, an unsigned char pointer is 

defined and given its value from the pysam function pysam_bam_get_seq. The bam1_t 

structure for the read is also retrieved, as nested within it contains the bam1_core_t structure 

which holds all the information about the reads (position, name, sequence, etc). The pointer 

to the binary sequence, length of the query sequence from the bam1_core_t struct, and the 

kmer set are then passed to the rolling_nibble_hash_ptr function. If this returns a 1 (true) 

value meaning the read contains a kmer in the hash set, then the scan read function returns a 

value of true, resulting in the read being saved for further analysis. If the hash function does 

not return true, the process is repeated for the second read. If the second read also does not 

Code 3.2: Alignment command for converting fastq to bam files 
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return true, the function returns a 0 (false) value (code 3.3), and the read-pair is dropped from 

further analysis. 

 

1  cdef bint scan_read_pair(AlignedSegment r1, AlignedSegment r2, int l, 
robin_set[uint64_t]& kmers): 
 2      ## Rolling hash method 
 3      cdef uint8_t* uint_ptr_rseq1 = pysam_bam_get_seq(r1._delegate) 
 4      cdef bam1_t * src1 = r1._delegate 
 5   
 6      if rolling_nibble_hash_ptr(uint_ptr_rseq1, l, src1.core.l_qseq, kmers): 
 7          return 1 
 8   
 9      cdef uint8_t* uint_ptr_rseq2 = pysam_bam_get_seq(r2._delegate) 
10      cdef bam1_t * src2 = r2._delegate 
11   
12      if rolling_nibble_hash_ptr(uint_ptr_rseq2, l, src2.core.l_qseq, kmers): 
13          return 1

 
The rolling hash function creates a hash for all kmers in their binary form in a sliding 

window fashion. An empty hash value is initialised as an empty 64-bit wide unsiged integer 

block of memory (figure 3.8A). The hash is filled from right to left adding one base at a time 

until it is filled (figure 3.8B). Bit-shifting by two steps is used to move each value right-

wards. Once the hash is filled the hash value is simply the number of the 64bit integer 

memory space. If this hash value is  contained within the desired hash set then return 1 (True) 

(figure 3.8C). If the first hash is not in the set, the hash function iteratively checks each hash 

along the string (figure 3.8D).  

Code 3.3: Scan read pair function 
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The format bam files store sequences in is known as a nibble array, where each base 

of the sequence is encoded in 4 bits which can also be interpreted as an integer (see table 3.3). 

A nib array is defined before the function which is used for encoding the 4-bit nibble base 

representations into 2-bit (row 3 in table 3.3). The index of each bases nibble (4-bit) integer 

value contains a new integer value, all which can be encoded in 2 bits. One limitation of this 

method is that N values are encoded as A values, as 2 bits can only encode 4 bases, however 

this is a rare occurrence due to the low error rate of paired-end sequencing data (table 3.3). 

 

Table 3.3: Table to demonstrate the relationship between the integer values of original base nibbles 

  

The rolling hash function first defines some variables: i which is used for iterating 

over sequence, h which is the hash being written to, and a mask which is used in the second 

loop to prevent the hash from overflowing from size k. Also, v the sequence bytes, 

base  A C  G    T      N 
base nibble  0001 0010  0100    1000      1111 
base 4-bit int  1 2  4    8      15 
nib (2-bit int)  0 1  2    3      0 
nib (2-bit bin)  00 01  10    11      00 

Figure 3.8. Rolling hash function workflow 
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first_2bit, and second_2bit which are, first nibble and second nibble of v in 2-bit form 

respectively. The global interpreter lock (GIL) is released (code 3.4 line 6), preventing python 

pausing operation occasionally and potentially in future allowing parallel execution of code 

over multiple threads. A mask is created to limit the hash size. It is generated with a bitwise 

NOT operation comparing h to 0 setting all the bits to value 1. The string of 1s is then right 

shifted so they only occupy the last 2x k (length of kmer) bits. All bit-wise operations used 

here are described in appendix 4. 

A while loop is used when i is less than half of the kmer length to recursively 

perform the following to fill the hash (code 4 line 11). The nibble array is assigned to the 

unsigned char v by de-referencing the pointer provided in the function input to the first byte 

(8 bits) of the nibble array. The second_2bit variable is assigned by getting the value in the 

nib array at an index equal to the integer returned by performing the bitwise AND operation 

of v with 15. The number 15 has the binary representation 00001111, so the AND operation 

returns the byte with the first nibble set to 0s. The first_2bit variable is retrieved in the 

same way, but variable v is right shifted by a nibble before performing the AND operation 

with 15. 

The first 2 bits of the hash are then written by left shifting the bits of h by 2 and 

using the OR operator. The second 2 bits is written the same way, the bits in h are left 

shifted by 2 and it is OR-ed with the second_2bit variable. As both the first and second 2-

bit variables can only have the values 0, 1, 2, and 3, the first 6 bits of these variables will 

always be 0. Left shifting h by 2 each time, the new 2-bit base encodings can be written to 

create a hash one by one. By incrementing the pointer and the i value inside the while loop, 

the first kmer of the sequence can be hashed as each byte of the kmer until length of the 

kmer is reached. After the first hash is created, it is checked to see if it is in the hash set and 

returns true if it is. 
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If the first hash is not in the set, a second while loop is used to hash and the 

remaining kmers in a sliding window fashion (when i is less than length of sequence) 

(figure 3.7D). These hashes are generated in a similar fashion, except h is bitwise AND 

operated with the mask to prevent the hash (h) from extending beyond the set kmer length. 

After each hash has been generated, it is checked against the kmer set. Any match will result 

in the function returning 1 (binary integer value for true), if none of the hashed kmers are 

present the function returns 0 (false) (code 3.4). 

 

 

 1  cdef uint8_t[16] nib = [0, 0, 1, 0, 2, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0] 
 2   
 3  ## Takes pointer to binary sequence and performs rolling hash until in set or end of 
sequence 
 4  cdef bint rolling_nibble_hash_ptr(uint8_t* t, int kmer_length, int arr_len, 
robin_set[uint64_t]& kmers): 
 5      cdef int i = 0 
 6      cdef uint64_t h = 0 
 7      cdef uint64_t mask 
 8      cdef uint8_t v, first_2bit, second_2bit 
 9      with nogil: 
10          mask = ~(h & 0) >> (64 - (kmer_length * 2)) 
11          while i < kmer_length / 2: 
12              v = dereference(t) 
13              second_2bit = nib[v & 15] 
14              first_2bit = nib[(v >> 4) & 15] 
15              h = h << 2 | first_2bit 
16              h = h << 2 | second_2bit 
17              i += 1 
18              t += 1 
19          if kmers.find(h) != kmers.end(): 
20              return 1 
21          while i < arr_len: 
22              v = dereference(t) 
23              second_2bit = nib[v & 15] 
24              first_2bit = nib[(v >> 4) & 15] 
25              h = (h << 2 | first_2bit) & mask 
26              if kmers.find(h) != kmers.end(): 
27                  return 1 
28              h = (h << 2 | second_2bit) & mask 
29              if kmers.find(h) != kmers.end(): 
30                  return 1 
31              i += 1 
32              t += 1 
33      return 0 

 The speed from the rolling hash function was compared against that of the xxhash 

function from the xxhash64 C library by Stephan Brumme (github.com/stbrumme/xxhash), 

Code 3.4: Rolling hash function 
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an implementation of Yann Collet's algorithm which is widely regarded as one of the fastest 

high-quality hashing functions for short strings (benchmarks available at: 

github.com/Cyan4973/xxHash/wiki/Performance-comparison#benchmarks-concentrating-

on-small-data-). This was done by sampling 1000 random times for reads that did not 

contain a kmer in the hash set and taking the mean time for the functions to hash all kmers 

length 32 for the forward and reverse sequence. The rolling hash function developed here 

was 1.5x faster with a mean time of 1.622 × 10&> seconds compared to xxhash mean time 

of 2.453 × 10&> seconds. The hashing function is one of the main bottle necks for 

computation, apart from the IO. xxhash is often the fastest known non-cryptography hash 

function, and usually is only limited by RAM speed. This method is so fast due to its small 

number of simple operations, once a mask is made, only 14 total operations (1 dereference, 

2 array indexes, 3 AND operations, 2 OR operations, 2 bit shifts, 4 assign to variables) are 

required to generate the hash for a window. Additionally, outside of the N base case there are 

no collisions for this hashing method. On top of this optimised hashing function, other 

methods were attempted for further performance improvements.  

3.3.11 Attempted optimisations 

The function that iterates through the reads of a file uses several checks before writing the 

read to a fastq file. To test the speed of the various implementations, a trimmed version (first 

10Mbp containing 43,782,139 reads) of one of the bam files was used. Simply iterating 

through all reads in this file takes 1 minute 17 seconds using pysam. Including “if not 

a.flag & 3328 and a.flag & 1:" which filters reads by primary alignment, not PCR or 

optical duplicate, not supplementary alignment, and to only paired reads increased this time 

by 3 seconds (+4%). The next filter uses a dictionary to check the query name to test read 

pairs increases this runtime by a further 25 seconds (+31%). Finally, the “scan_read_pairs" 
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function which checks if the read contains any kmers within the set adds an additional 35 

seconds (+33%). To attempt optimising this process, both a bloom filter, and minimization 

approach was attempted before the scan_read_pairs function. 

3.3.11.1 Bloom Filter 

Bloom filters are probabilistic data structures used to assess if a value is part of a set. It 

allows for false positives but not false negatives (Bloom 1970). In this way, an if statement 

that returns true to value being in a bloom filter can be passed to a check if that value is in a 

hash set. If the check is more efficient for a bloom filter, a speed benefit would be seen. This 

was not the case however, as using a bloom filter was 5.6 times slower than just checking the 

hash set alone, with a 13 minute run time for the test file. It’s worth noting, the python 

version from the module pybloomfilter was used, and not interacting with the cython bloom 

filter objects directly which is expected to be faster. However, the efficiency benefits from 

doing so were not expected to be faster than just checking the hash set, so this option was not 

considered further. 

3.3.11.2 Minimization 

A sliding window minimum function was written in cython and used before the scan read pair 

function (checks hashed kmers in hash set). A window size of 12, and a kmer size of 6 was 

used, then if a count of more than 15 minimizers was returned, the read pair would be passed 

to scan read pairs. The minimization approach added an extra 1 minute 10 seconds (1.5x 

slower) compute time on top of the base run speed. 

3.3.11.3 Modified reference 

A cut-out of the hg38 reference at the telomeric regions was generated. This was done so that 
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the entire reference could be included within the package, and a set of locations to analyse 

could be pre-determined without needing the user to specify them on the command line. This 

cut-out was also modified by consolidating multiple near-identical TTAGGG and CCCTAA 

repeat regions into one region. Compacting these multiple regions into one contig improved 

the performance of the model, possibly through reducing the noise created by the original 

alignment. A cut-out from the telomere to telomere reference was also tested, but 

unfortunately performed much worse with an F1 score of 0.105. Decrease in F1 score was 

likely due to the T2T reference containing generic non-telomeric repeats such as long pure C 

repeats. The cut-out version of the reference also allowed for another optimisation step using 

mappy to filter reads being written to the fastq file (code 1 line 22). 

3.3.11.4 Mappy alignment 

Writing all the reads that contained one of the kmers length 32 would result in a large number 

of reads in the resulting fastq files that were not aligned (e.g. 300,586 for DB143). This 

significantly inflated the size of the intermediate files from between 17MB to 83MB each. 

File sizes would increase for samples with higher coverage. A further step was added, where 

after a read had been identified to contain a relevant kmer, the read would be checked using 

the mappy modules map command to see if it could be aligned to the modified reference. The 

speed of mapping was comparable to that of writing the read to a file so speed was not 

impacted. This step significantly reduced the size of the intermediary fastq files, with DB143 

being reduced from 37MB down to 2MB. 

3.3.12 Model performance 

The kmer-based method for classification slightly outperformed the region-based method. 

The difference between the kmer and region method is that the kmer region predicted 5 more 
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true positives with 3 more false negatives (figure 3.9). The F1 score and recall is slightly 

higher (0.13 and 0.27 respectively), with slightly lower values for specificity and precision 

(~0.05 each) (table 3.4). This performance increase likely comes from the consolidation of 

multiple reads into a single feature making it easier and less noisy than when they were 

spread across multiple in the region-based method. 

 
 

 

Table 3.4: F1 score, specificity, precision, and recall for teltool in region (R) and kmer (K) 
modes 

3.3.13 Sequencing technologies 

One unknown aspect of remapping reads to a custom reference method was whether it would 

be sequencing technology agnostic. Initial analysis from the International Cancer Genome 

Consortium (ICGC) which was sequenced using Illumina HiSeq (details on how this data was 

collected provided in chapters 1 and 5), and colorectal polyps sequenced with a different BGI 

protocol (DNBSEQ PE150 compared to BGISEQ500 from the training set) showed 

unexpected differences between the technologies (figure 3.10). These differences are notable 

as from the model’s perspective, the predictions will not be accurate when given values it has 

 F1 score Specificity Precision Recall 
teltool (R) 0.600 0.956 0.750 0.500 
teltool (K) 0.736 0.911 0.700 0.778 

 
Figure 3.9: Confusion matrix for kmer-
based classification method 
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previously not encountered. 

For GC percentage, the general trend was Illumina sequencing exhibits a higher value 

than BGI for the majority of regions (figure 3.10a and appendix 2). Mapping quality shows 

more overlap with BGI data than GC percentage, however the distributions are skewed to 

either the higher or lower end on average (figure 3.10b). Both datasets were aligned with bwa 

mem (illumina v0.6.2, BGI v0.7.17-r1188). The soft clip quality correlation displays much 

tighter (narrower range) in its distribution for the Illumina sequencing over BGI (figure 

3.10c). The “fragments” variable has a similar issue to mapping quality where some overlap 

is present, but the distribution is shifted either higher or lower depending on the region 

(figure 3.10d). Similar behaviour is also present in the “kc percentage” (percentage of telmer 

sequence in reads) variable except with some narrower distributions also found in some 

regions (figure 3.10e). Coverage also showed little overlap between the sequencing 

technologies (figure 3.10f). Comparative analysis has previously been performed between 

BGI and Illumina sequencing platforms, however they focused on their ability to detect single 

nucleotide polymorphisms (SNPs), gene quantification, and bacterial genome assembly, and 

do not report on the differences in coverage of regions with similar GC% content (Zhu et al. 

2018; Senabouth et al. 2020; Hu et al. 2024). 



Chapter 3: Prediction of telomere length from WGS data using machine learning 
 

 110 

 

 

 

3.3.13.1 Coverage 

Alongside the sequencing technology used for samples, the coverage at which they were 

sequenced was the other main difference between the training and test sets. The initial testing 

also provided insight that the basic normalisation that was being used was insufficient (as 

shown in Figure 3.10f with little overlap between the technologies). Various methods for 

transforming the values were attempted (figure 3.11).  

Figure 3.10: Metrics measured by teltool for both BGISEQ500 (blue) and Illumina HiSeq (orange) 
samples for the forward region. GC% (a), mapping quality (b), soft clip quality correlation (c), 
fragments (d), kc percentage (e), coverage (f). 

a b c 

d e f 



Chapter 3: Prediction of telomere length from WGS data using machine learning 
 

 111 

 

 

3.3.14 Updated approach 

Without a robust and reliable coverage normalisation method, a new approach for the 

coverage variable was implemented. Instead of using a transformation of the coverage, the 

coverage was summed, and a percentage for each region was generated. Due to the 

dominant number of reads within the “forward” and “reverse” regions, the remaining 

regions were pooled together to create the “other” (or “rest”) region. A model was trained 

using only these three values. This model was then tested on the training set, and the three 

values were plotted on a graph with the outcome labelled in colour to understand if this was 

a viable method (figure 3.12). 

 

Figure 3.11: Raw coverage (a), coverage normalized by mean (b), median (c), mean times median (d), 
mean squared (e), median squared (f). 

a. 

b. 

c. 

d. 

e. 

f. 
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 The graph shows a surprising trend, generally the shorter telomeres showed a higher 

percentage coverage reads in the “other” regions. Despite using less variables compared to 

the previous iteration of the model, the performance is similar with only a 5%, ~3%, and 

~7% reduction in F1 score, precision, and recall respectively (table 3.5). 

 

Despite the model performing slightly worse, due to the simplicity (containing only three 

variables) it is arguably better for the application of testing new data as it might generalise 

better to new data. However, there was still an issue with the values from samples outside 

the training set not conforming to the limits of the training data (figure 3.13). This graph 

shows there is a difference between the strand biases of the sequencing technologies. 

 F1 score Specificity Precision Recall 
Previous 0.736 0.911 0.700 0.778 
Updated 0.686 0.912 0.667 0.706 

Table 3.5: Table showing the model performance metrics of the percentage coverage (updated) model, 
compared to the previous iteration. 

Figure 3.12: 3D graph showing the percentage coverage for the forward, reverse, and "other" 
regions, with true positive (tp) (blue), false positive (fp) (orange), true negative (tn) (green), and 
false negative (fn) (red) labels. 
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3.3.14.1 Strand bias correction  

A simple strand bias correction was introduced to try account for the difference between 

sequencing technology values in coverage. For reads mapped to the forward and reverse 

“pure telomeric repeat” regions, a count was kept for the number of reads with and without 

the “is_reverse” flag. The coverage value for the forward region was then divided by 

?-
?-)?.

  and the reverse region was divided by ?.
?-)?.

 where n is the number of reads in the 

forward region with subscript f and r denoting false and true for the value of the 

“is_reverse” flag. This improved the distribution of the data (from the model’s 

perspective) with some overlap in the values for the training and test set (figure 3.14). 

 

 

 

 

Figure 3.13: Values for both BGISEQ500 (blue) and Illumina HiSeq (orange) samples for the percentage 
coverage of the forward region, plotted against the percentage coverage of reverse region. 
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Other methods for strand bias correction were also attempted such as using the strand bias 

scores from various publications. For the following equations: a denotes the number of 

reads on the forward strand flagged forward, b forward strand flagged reverse, c reverse 

strand flagged forward, d reverse strand flagged reverse. A method used in a mitochondria 

heteroplasmy study used the formula (Guo et al. 2012): 

t
𝑏

𝑎 + 𝑏 −
𝑑

𝑐 + 𝑑t /(
𝑏 + 𝑑

𝑎 + 𝑏 + 𝑐 + 𝑑)				(1) 

The Genome Analysis Toolkit (GATK) method of using (McKenna et al. 2010): 

𝑀𝑎𝑥 w
𝑏

𝑎 + 𝑏 ∗
𝑐

𝑐 + 𝑑
𝑎 + 𝑐

𝑎 + 𝑏 + 𝑐 + 𝑑
,

𝑑
𝑐 + 𝑑 ∗

𝑎
𝑎 + 𝑏

𝑎 + 𝑐
𝑎 + 𝑏 + 𝑐 + 𝑑

y			(2) 

Using the 1-p-value of the fisher score of the 2 by 2 table (ca db) was also tried (Guo et al. 

2012). As these methods are originally supposed to provide a score for the strand bias 

instead of a correction, various modifications were made in an attempt to create more 

suitable correction values. The most successful (resulting in most overlap between 

sequencing groups) of these variations for the mitochondria method was multiplying the 

coverage for the reverse region by the equation (1) above. The forward region was 

multiplied by the equation by substituting the numerators b and d for a and c values 

respectively (figure 3.15a). For the GATK metric, the forward region was divided by the 

Figure 3.14: Percentage coverage for both the BGISEQ500 (blue) and Illumina HiSeq (orange) samples 
normalised by the strand bias metric for the forward against reverse (a), forward against other (b), and reverse 
against other (c). 

a. b. c. 
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maximum value in the array, and the reverse the minimum (figure 3.15b). Both methods 

increase the overlap between the datasets for these variables, with the first causing a stricter 

correlative relationship between the two and more overlap, and the second closing the 

previously present gap. 

 

These were however less successful than the simple method presented above (figure 3.14). 

The fisher score was also not a viable method as the p-values were almost always 1, 

resulting in a division by 0 error. There was another method that was subsequently tested in 

an attempt to solve this problem. 

3.3.14.2 Optimal Transport 

Optimal transport uses geodesics to find the most efficient (shortest) path for transforming 

data with one distribution to another (Peyré and Cuturi 2019). One of its many uses is that of 

domain adaptation, a process of aligning a source domain to a target domain. This is 

extremely useful in the case of machine learning, as models can be trained on one specific 

dataset, and if the input represents the same class of information, a model should be able to 

make a reasonable prediction (reference). 

Figure 3.15: Percentage coverage of forward plotted against reverse region for both BGISEQ500 (blue) and 
Illumina HiSeq (orange) when normalised by modifications of strand bias scores from Guo et al 2012 
mitochondria heteroplasmy study (a) and the Genomic Analysis Toolkit (b). 

a. b. 
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The python optimal transport (POT) library was used to test if the strand bias 

corrected Illumina data could be transformed to look more like the BGI training set 

(Flamary et al. 2021). This yielded results that were considered more helpful (from the 

models perspective, as training and test data values are overlapping) than the previous 

methods using just the strand bias correction/normalisation alone (figure 3.16).  

 

Whilst optimal transport could be used on the variables (such as GC% etc), relying on the 

transformations of many more variables would add some complexity and doubt to the 

validity of results for untested data. Therefore it was important to validate this method using 

a dataset sequenced with Illumina technology with accompanying STELA determined 

telomere length. 

3.3.15 Validation from Genomics England Dataset 

A second dataset of Chronic Lymphocytic Leukemia (CLL) cancer samples with matched 

telomere lengths from STELA was analysed with teltool inside the Genomics England 

research environment. These patients were selected for sequencing due to their short telomere 

lengths and were sequenced with mainly Illumina HiSeq X with a couple with HiSeq 4000. 

The raw values from the length, coverage, and telmer length metrics show a considerable 

Figure 3.16: Percentage coverage for both the BGISEQ500 (blue) and Illumina HiSeq (orange) normalised by 
strand bias, with transformation using optimal transport used on the Illumina samples for the forward against 
reverse (a), forward against other (b), and reverse against other (c). 

a. b. c. 
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difference between the BGI and Illumina datasets due to Illumina being sequenced at a higher 

genomic coverage (~30-80) compared to BGI (~15-20). Therefore, these variables were 

normalised to their respective sum across all groups (regions). These raw and normalized 

variables were then plotted against telomere length for each dataset to determine whether 

they would be appropriate for use in a predictive model. The ICGC dataset was also plotted 

in these graphs with all telomere lengths set to 4kb to display the general distribution and 

provide a visualisation of overlap between each dataset (figure 3.17).  
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Figure 3.17. Raw and normalised values for the length (a), telmer length (b), and coverage (c) variables across each 
teltool region (TTAGGGn, CCCTAAn, TTAGGGn+CCCTAAn, short, other, mapq<=1). Each graphs shows the 
distribution for the BGISeq breast cancer dataset (blue), CLL dataset (HiSeq X orange, HiSeq 4000 red), and ICGC 
breast cancer dataset (Illumina HiSeq) with all stela values set to 4kb (grey), with lines of best fit and R2 for datasets 
with stela values, and BGISeq breast cancer combined with CLL data (green). 
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The criteria for the most suitable machine learning variables are overlapping distributions 

between all datasets, uniformity between best fit lines between each and combined 

sequencing technologies, and similar R2 values for each line. For this reason, normalised: 

length of “other”, telmer length and coverage of “TTAGGGn+CCCTAAn” regions (figure 

3.17) were selected for training of a new linear regression telomere prediction model (figure 

3.18). 

 

This model outperformed all other previous telomere prediction tools (figure 3.19). Some 

data for the Illumina tests are missing due to issues with running the software in the 

environment the data was stored. TelomereHunter is also missing for BGISeq data as there 

were errors which despite attempts to patch could not be resolved. 

 

 

Figure 3.18. Teltool linear regression model using the features common between both datasets with telomere 
lengths, BGISeq breast cancer (blue), HiSeq CLL (orange). 

Figure 3.19. Predictions for telomerecat, telomerehunter, telseq, computel, qmotif, and random assignment for 
BGISeq 500 (blue) and Illimina HiSeq X (orange), with mean absolute errors (MAE) displayed in the legend for 
each tool. 
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A surprising result of comparing the results from previous tools shows how accuracy differs 

between the different sequencing technologies. For example, telomerecat tends to 

overestimate telomere lengths for Illumina HiSeq samples, but underestimate when 

analysing BGISeq samples. Whilst the R2 of randomly assigning telomere lengths to 

samples uniformly between the datasets respective minimum and maximum values is poor, 

the mean absolute error is lower than most of the predictive tools. This indicates that most 

telomere prediction tools are best used for ranking a cohort by telomere length, rather than 

prediction of an absolute telomere length. This highlights the importance of taking into 

consideration a combination of metrics to evaluate the estimated telomere length values. 

3.4 Conclusion and future work 

In this chapter we explored and benchmarked various methods for predicting telomere length 

from whole genome sequence (WGS) data. Two machine learning based methods developed 

here outperform previous software for absolute telomere length prediction in the case of 

regression, and segregation of samples by telomere length thresholding by classification, 

whilst in most instances being faster to run. In the case of regression, the mean absolute error 

(MAE) for teltool was between 782bp and 646bp depending on the sequencing technology. 

This is an improvement on the next best telomere length predictors telomerecat which had a 

MAE of 1064bp and telomerehunter with a MAE of 1444bp both exclusively using Illumina 

input. This improvement in MAE was accompanied by an increase in R2 with values of 0.6 

(BGI) and 0.7 (Illumina) higher than any other predictor.  Most notably the performance 

increases seen for classification were shown in both the F1 score (~0.67 from ~0.49 next best 

qmotif) and precision increase by two-fold (~0.67 from ~0.33 next best qmotif).  

 During the development of this software, we observed differences in the 

characteristics of data from BGI and Illumina sequencing data. This extends to the 
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performance of previously released software as shown in Figure 3.19 where telomerecat 

performs noticeably differently depending on the type of sequencing used. This likely extends 

to the other software, which unfortunately was unable to be tested. Whilst previous analyses 

comparing the two technologies found no significant differences in use cases of SNP 

detection, gene quantification, and bacterial genome assembly; the results here indicate that 

there are underlying characteristics that should be considered when developing and 

employing software that uses certain metrics in their algorithms (Zhu et al. 2018; Senabouth 

et al. 2020; Hu et al. 2024). It is suspected that variance in for example the strand bias shown 

to occur between these two sequencing platforms is a result of the type of polymerases used.  

There is a possibility with further development the methods presented here, results 

could be improved and increase the scope of what its capable of. There is also potential merit 

in incorporating a new method for telomere length prediction utilising adjacency graphs 

which was also considered (see appendix ). This new method was initially conceived as it has 

the potential to classify by ALT and telomerase positives samples. However, this would 

require a larger training dataset than was available at the time. Adaptations for use with long 

read sequencing data would also potentially lead to better performance in this area. As it 

stands though, the software teltool developed in this chapter has also been packaged into a 

python module that can be installed in one line (pip install setup.py). This method will 

be used in chapter 5 to investigate breast cancer samples from the International Cancer 

Genome Consortium, to predict the order of shortest to longest telomeres in the cohort so the 

correlation between telomere length and genomic complexity can be explored. 
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Chapter 4 Telomere length and genome 

complexity 

4.1 Abstract 

Previous research has shown links between telomere length and genomic complexity. 

Genomes with shorter telomeres have been suggested to be more prone to phenomena such 

as chromothripsis and other processes that generate genomic complexity. In this chapter, 

methods are developed for analysing and characterising genomic complexity using WGS 

data. The correlation between telomere length and genomic complexity through various 

analyses of structural variants, relative copy number changes, and assembled contigs are 

presented. 

4.1.1 Data 

The whole genome sequencing datasets used in this chapter consists of 44 tumour-normal 

pairs from a breast cancer cohort. All samples were sequenced at a depth of around 15-fold 

coverage with BGISeq 500 sequencing, read length 100, aligned to human reference hg38, 

and include accompanying STELA data. 

4.2 Introduction 

As discussed in chapter 1, telomeres are structures located at the chromosome ends 

comprised of hexameric TTAGGGn repeats and shelterin complex which together function to 
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protect the end of the chromosome from being mistaken as a double strand break (Lange 

2005). With every cell division, telomeres shorten due to semiconservative replication and the 

end replication problem. Eventually shortening will lead to the DNA damage response 

arresting the cell cycle in a stage known as senescence (Rossiello et al. 2022). In the absence 

of tumour suppressive pathways such as p53 and Rb, cells can bypass senescence and enter 

crisis (Jacobs and de Lange 2004). Cells in telomere crisis are typified by large-scale genomic 

instability, caused by telomere fusions (Greenberg 2005).  

4.2.1 Telomere fusions 

Telomere fusions occur as a backup protection mechanism to protect telomere ends that 

have lost their function against excessive degradation (Stroik and Hendrickson 2020). 

Normally shelterin is responsible for protecting the telomeric ends and prevents telomere 

fusions. However, over or under-expression of shelterin can lead to increased fusion events 

(Lisaingo et al. 2014; de Lange 2018). Shortened telomeres can influence the mutations and 

occupancy of shelterin (Mir et al. 2020). Consequently, cells with shorter telomeres have a 

higher chance of forming telomere fusions leading to the formation of dicentric 

chromosomes, and subsequently exhibit an increase in genomic instability from 

fragmentation (chromothripsis) (Cleal et al. 2019; Dewhurst 2020). 

 Fragmentation occurs in some cases due to dicentric chromosomes being shattered by 

mechanical force exerted during mitosis (Guérin et al. 2019). More frequently though, 

dicentric chromosomes are instead resolved via chromatin bridges that form between 

daughter cells that persist into the next G1 phase. Chromatin bridges can be resolved in 

simple breaks which form fold-back inversions or large terminal deletions, or complex 

breaks leading to chromothripsis (Maciejowski et al. 2015). It is possible as these bridges 

contain nuclear envelopes connected to both cells, their resolution can lead to the envelope 
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rupturing causing the mixing of nucleic and cytoplasmic contents (Hatch 2018). Three prime 

repair exonuclease 1 (TREX1) which is abundant within the cytoplasm could then resolve 

bridges by degrading the DNA into single strands along the bridge (Jiang and Chan 2024).  

TREX1 is not the only mechanism involved in chromatin bridge resolution. 

Polymorphisms in non-coding regions of Ankle1 have been associated with increased 

susceptibility to breast and ovarian cancer, affecting both the general population and 

individuals carrying the BRCA1 mutation. Research on the nematode C. elegans has shown 

that its LEM-3 orthologue localizes to the midbody cleavage plane, facilitating the 

processing of chromatin bridges (Chan and West 2018). Additionally, LEM-3 cooperates 

with the C. elegans homologue of BRCA1 to uphold genomic stability (Hong et al. 2018). 

Further study is required to fully understand the implications and mechanisms in human 

cancer. Fragmented chromosomes and damaged chromosome-ends generated from complex 

breaks, or the resolution of chromatin bridges are prone to various DNA repair mechanisms, 

potentially resulting in complex rearrangements seen in chromothripsis (and kataegis) 

(Maciejowski et al. 2015). It is also possible this process can result on other complex 

genomic patters such as chromoplexy (via NHEJ) which is similar to chromothripsis but 

involves more chromosomes, and chromoanasynthesis where chromosomes are duplicated 

or triplicated when MMBIR and FoSTeS are involved (Pellestor 2019). 

4.2.2 Breakage-fusion-bridges (BFB) cycles 

Another consequence of dicentric chromosome formation is breakage-fusion-bridge cycles. 

Breakage of the dicentric chromosomes creates more exposed ends which can produce 

further fusions within the daughter cells (McClintock 1938; Gisselsson et al. 2000). This 

cycle is frequently broken when a telomere from another chromosome is translocated to the 

affected dicentric chromosome. During these cycles, genomic instability can be generated 
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and transferred between chromosomes (Bailey and Murnane 2006). This instability can lead 

to: gene amplification, loss of heterozygosity (LOH), and non-reciprocal translocations 

(Maciejowski and de Lange 2017). Gene dosage variations are a important driver in cancer, 

especially amplifications which can activate dominantly acting cancer genes (Stratton et al. 

2009).  

Gene amplification occurs when fused sister chromatids break asymmetrically, and the 

broken chromosomes are then replicated during S phase and persist into G2 phase. The four 

telomere deficient ends can then either fuse symmetrically and form repaired chromosomes, 

or asymmetrically to create large palindromes (Kinsella and Bafna 2012). These 

palindromes can be encompassed in both dicentric and centromere lacking chromosomes. 

Deletions or duplications can occur from dicentric chromosomes through breakage during 

chromosome segregation, leading to daughter cells inheriting broken chromosomes with 

copy number alterations. Broken DNA ends can also participate in further BFB cycles 

leading to palindromic gene amplification (Tanaka and Yao 2009).  

Conversely loss of heterozygosity can occur when a daughter cell inherits a terminal 

deletion post dicentric chromosome breakage and is common at cancer related loci 

(Maciejowski and de Lange 2017). Following a chromosome break, DNA from the broken 

end may invade another chromosome, leading to non-reciprocal translocations facilitated by 

break-induced replication, primarily through homologous recombination (Anand et al. 2013; 

Malkova and Ira 2013). Chromosomes without telomere caps can fuse with various internal 

genomic loci, even in an otherwise stable genome (Cleal et al. 2018). Cells lacking p53-

mediated mitotic checkpoint control are particularly more prone to these telomere fusions. 

Additionally, the frequency of fusion events is also heavily influenced by the cellular 

proficiency in classical (C-) and alternative (A-) non-homologous end joining (C-/A-NHEJ), 

the latter also known as theta-mediated end joining (TMEJ). Intra-chromosomal joining, in 
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contrast to inter-chromosomal joining, exhibits less dependence on LIG4 and instead 

involves both LIG4 and LIG3 (Liddiard et al. 2016). 

4.2.3 Micronuclei pathway 

Another origin of chromothripsis is via the formation of micronuclei which can arise from 

the erroneous segregation of dicentric chromosomes or from other segregation errors via so 

called lagging chromosomes (Zhang et al. 2015). Micronuclei are thought to be defective in 

various ways, and entrapped DNA is thought to be liable to undergo replication stress 

followed by fragmentation and re-joining by non-homologous end joining, resulting in 

chromothripsis (Hatch and Hetzer 2015; Ye et al. 2019). Aberrant nuclear envelope 

assembly can also lead to defective DNA replication and loss of micronuclei envelope 

integrity leading to large DNA damage via unknown mechanisms (Liu et al. 2018). Live-cell 

imaging has shown that though micronuclei do not form immediately after bridge breakage, 

rather the frequency of micronuclei formation after the next mitosis was observed in 

between 52% and 65% in cells with bridges. Cells without chromosome bridge division 

within the same imaging dish treated identically did not producing micronuclei (Umbreit et 

al. 2020). Additionally, depletion of TRF2 using siRNA and mitotic checkpoint barriers 

(Mps1 inhibited with reversine and hesperadine) combined can also cause chromothripsis. 

The complete mechanism and pathway involved is not fully understood (Mardin et al. 2015; 

Cleal et al. 2019). 

Previous research has implicated telomere shortening in the process of generating 

genomic complexity (Rampazzo et al. 2010). Cells that are undergoing telomere crisis are 

subject to large genomic rearrangements (Dewhurst 2020). In this chapter, results from a 

local cohort of breast cancer samples was used in the development of methods for 

interrogating the relationship between genomic complexity and telomere length. Using 
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WGS data, copy number profiles and different facets of structural variants are explored. We 

expected to see a trend from previous analyses which examine this same cohort, where there 

is a hard threshold value that can be used to divide the cohort into distinct complexity 

profiles (Dos Santos et al. 2015). 

4.3 Methods 

4.3.1 Structural variant calling and filtering 

The first stage in investigating the genomic complexity of the dataset was to create a set of 

unique somatic structural variants (SVs) using dysgu. Dysgu is a suite of tools including an 

SV caller, merger, and SV filter. Whilst SV calling can be performed in one command 

(`dysgu run input bam > output.vcf`) this analysis used the “fetch” and “call” method 

to generate coverage bed files using the fetch output (Cleal and Baird 2022). 

for i in bams/*.bam; do 
   dysgu fetch /tmp/${s} ${i} 
   dysgu/coverage2bed.py –out-bin-size 10000 -w /tmp/${s} > 
${coverage_dir}/${s}_cov.bed 
   dysgu call --ibam ${i} ${reference} /tmp/${s} -o vcfs/${s}.vcf 
   rm -rf /tmp/${s} 
done 

 

The output vcf files were then filtered against the germline using the dysgu filtering method: 

while IFS=, read -r t n l; do 
dysgu filter -o /home/out/${t} --normal-vcf 

/home/vcfs/merged_normal.vcf /home/vcf/${t}.vcf /home/bam/${n}.bam 
done < sample_pairs.csv 
 

Further filtering was achieved by investigating the PROB variable in the genotype field. This 

refers to the machine learning confidence value given to the called SV by the dysgu model. 

Manual investigation of the SVs was done using bcftools and gw, a terminal based genome 

browser (Danecek et al. 2021; Cleal et al. 2024).  
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bcftools filter -i'INFO/SVTYPE == "DEL" && FORMAT/PROB >= 0.4 && 
FORMAT/PROB <= 1.0' ${vcfdir}/${b}.vcf | gw --link sv --labels yes,no,maybe 
--out-labels ${i}_del.tsv ${refpath} -b ${bamdir}/${b}.bam -v - --track 
${i} 
 

After establishing a suitable filtering methodology and filtering threshold, the precision and 

recall were then calculated by separating variants above and below the threshold. A random 

selection of 50 variants from above and below the threshold were used to estimate 

performance metrics including true/false positive/negative rates. 

4.3.2 Copy Number Analysis 

The first pipeline to be run was the copy number analysis as a prerequisite for downstream 

analysis pipelines.  

 

python3 copy_number_pipeline.py -i raw_cov -r hg38 -w 10000 –subsets 1 –
threshold 3.81 --bg sample_pairs.csv tumour length normal 
 

The -i specifies the input directory, -r is the genome type, -w specifies a window size of 

10000 base pairs, --threshold is  the telomere length to split the groups by, and –-bg is the 

telomere length file with the tumour, telomere length, and normal file names. This script 

takes the raw coverage bed files for both the tumour and normal and normalises the values 

based on the GC percentage and map-ability of the region, based on the methods used by 

Cleal et al (Cleal et al. 2019). A matrix for coverage for each combination of GC% between 

30 and 60, and mappability values between 60 and 101 is calculated. The median of all these 

values is then used as the “genomic median” which is then subtracted from the matrix 

coverage values. This is then interpolated with RBFInterpolator from scipy before using these 

normalised values to subtract from the raw coverage values (Virtanen et al. 2020). A Haar 

wavelet transformation is then applied (using the PyWavelets package) to normalised 

coverage values (Lee et al. 2019). Finally, the normal coverage can be subtracted from the 
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tumour coverage to create a relative copy number profile displaying the gains and losses of 

the tumour sample. The tumour values which have now been normalised by their normal 

counterparts are winsorized (similar to clipped) before performing piecewise constant 

segmentation (pcf) (Nilsen et al. 2012).  

4.3.2.1 Complexity score 

Copy number segments identified using the the copy number calling pipeline were used to 

calculate a “complexity score”, which is the sum of the absolute relative copy number of all 

segments. This method of scoring gives higher values to samples with more segments, whilst 

minimising the effect of a copy number gain of a chromosome arm, for example. Another 

more experimental form of analysis is also performed by the script, that uses a low pass filter 

over relative copy number values. In this case, the score is calculated by gathering all peaks 

and troughs of the processed signal and measuring the absolute sum of all deviations, where 

the peak and trough are separated by a relative step in the signal equivalent to >0.5 A 

simulation of low coverage samples was also achieved by using samtools view -s $fraction to 

create subsampled bam files that were then used in the copy number pipeline (Li et al. 2009). 

4.3.3 Circos Plotting 

Following copy number analysis, copy number profiles were used in conjunction with SV 

calls to produce circos plots. 

python3 circos.py -l sample_pairs.csv -c stela -r hg38 --cnp 
cnp/segmented.copynumber.csv --var-size 10000 --ncols 8 
filtered_vcf_directory 
 

Pycircos is the python library used to generate the circos plots within this script 

(github.com/ponnhide/pyCircos). The length for each chromosome is extracted from the vcf 

header using regex to create a dictionary which was then used to create the “Garc” and 
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“Gcircle” objects. Optionally at this stage, a cytoband file (-r hg38 alias) can be used to add 

banding in the outer chromosome arcs and reading of a copy number profile from the 

previous pipeline to add copy number data around the inner edge of each chromosome 

(highlighting chromosomes with high scores or number of segments). Pysam is then used to 

iterate over the variants within the vcf to extract the SV type, loci, length data and excluding 

variants that do not meet the filtering criteria, which included filtering by probability, size SV 

length, and number of supporting reads (github.com/pysam-developers/pysam) (Li et al. 

2009). Variants that are not classed as insertions are plotted as chord plots, and insertions as a 

scatter around the edge. The plots are then saved in SVG format and stitched together using 

svgutils transform commands (github.com/btel/svg_utils). Plots are arranged in order of 

telomere length, using the (-c) stela columns in (-l) sample_pairs, with (--ncols) 8 columns in 

the stitched plot. 

4.3.4 Chain Linking 

The chain linking method is an adaptation on the approach used by ChainFinder algorithm 

developed by Baca et al, it find SVs which are closer than expected using a binomial 

distribution and therefore likely related (Baca et al. 2013; Cleal et al. 2019). This step was 

performed using different variables for each dataset. Generally, the command below was used 

to gain a rough estimate for the end probability value using the elbow/knee plot, then the 

search was narrowed from there.   

python3 chain_link_finder.py -b 20 -l 0.05 -u 0.5 -n 10 -p 2 -t 
chain_link/sample_pairs.csv -s 3.81 -e tumor_db -a tumor_stela -c 
hg38_cytoBand.txt --size-thresh 10000 vcfs 
 

A description of the flags is as follows: -b indicates the min number of breaks, -l lower bound 

limit for probability, -u upper bound limit for probability, -n number of steps between upper 

and lower bound, -p is set to 2 to activate the bound search method, -t is sample pairs list, -s 



Chapter 4: Telomere length and genome complexity 
 

 131 

threshold to split groups, -e tumour name column, -a tumour length column, -c cytoband file, 

a size threshold for minimum SV length, and finally the input vcf directory. 

For each chromosome, the frequency of break-sites is calculated across all samples, 

then for each sample and each chromosome, a K-nearest neighbour tree is made. Then all 

breakpoints are iterated over checking for links where a binomial probability mass function 

gives a p-value less than a threshold. If the probability falls below a threshold then an edge is 

added to a graph. Connected components in the graph are then processed as chains of SVs, 

only keeping those chains that have a minimum number of breakpoints.  

4.3.5 Contig Assembly 

Output from the chain linking method is used to scan for discordant reads that are assembled 

into contigs to analyse the rearrangement patterns in more detail. The contig assembly script 

simply takes an input bam/cram file glob pattern “*.*am”, an input vcf pattern “vcfs/*.vcf”, 

and the output file from the chain link pipeline “all_svs.unique.chains.csv”. 

python3 RRAssembler.py -b '/mnt/breast/*.*am' -v vcfs/*.vcf -c 
chain_link_output/all_svs.unique.chains.csv 
 

This pipeline runs through several steps: fetching, mapping, analysing, removing, collection 

then plotting. In summary, fetching involves iteratively collecting regions from input csv or 

vcf files with some padding (650bp) and collecting discordant reads in those regions (Cleal et 

al. 2019). The discordant reads are saved to a fasta files for both single and paired reads. 

These are passed to the spades assembler, before output contigs are aligned using bwa mem 

(Li 2013; Prjibelski et al. 2020). Realignment of reads to these assembled contigs is 

performed to filter unmapped reads which are then sorted and indexed.. Coverage arrays 

(calculated from cigar strings) and the percentage of repetition (calculated with tantan) are 

then analysed in these new mappings, and contigs with a max coverage more than 45 and 
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repetition more than 80 percent are filtered out (Frith 2011). The filtered reads are saved to a 

fasta file with a new name including the length and mean coverage data. Contigs from the 

dysgu vcf files are then gathered and mapped the same way with a temporary reference as 

before.  

The StripedSmithWaterman function from skbio is then used to map the dysgu contigs 

to the assembled contigs (Rideout et al. 2024). Dodi (github.com/kcleal/dodi) is then used to 

analyse the contigs as it chooses an optimal set of alignments from a list. A directed graph is 

created for each sample where the central nodes are the contigs and peripheral nodes point to 

break points. Multiple graphs can be merged to find common breakpoints across samples and 

contigs. These are removed to create a set of unique contigs. The mapping information is 

collected, and written to a bed file where the primary alignment contains the sequence. This 

bed file is then plotted as a broken horizontal bar graph with the chromosome indicated by 

the colour of the bar, and additional information with the proximity to telomere ends is also 

added. 

4.4 Results 

Previous findings have reported an inverse association between telomere length and genome 

complexity (Letsolo et al. 2010; Jones et al. 2014; Dos Santos et al. 2015; Cleal et al. 2019). 

In this study, the relationship between telomere length and large-scale structural changes in 

the genome was investigated in detail using a local cohort of 44 breast cancer tumour-normal 

pairs.  

4.4.1 Copy Number 

Copy number variants were first identified using the copy number pipeline and visualised in 
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Figure 4.1, displaying the normalised and denoised relative copy number changes, with the 

segmentation overlain. Segmentation plots such as this give a relatively high-resolution 

display of the complexity of a sample by visualizing the gains and losses across the genome. 

Figure 4.1 shows an example of a relatively stable and simple copy number profile (top), 

with the copy number usually not deviating far from the 0 value. This shows within the 

sample there are few gains and losses across the gnome. In contrast, the bottom sample 

shows numerous fluctuations in the copy number profile showing large amounts of gains 

and losses sporadically throughout the sample, with notably large fragmentations in 6q, 8, 

11, 12, 17 and 20p. Chromosome 8 and 17 in particular, are common sites of CNVs in breast 

cancer found by Choschzick et al and Hyun et al which will be discussed in more detail 

later.  

 

 

However, this form of visualization is inefficient when trying to display the complexity 

throughout the whole cohort. The heatmap shown in Figure 4.2 is an alternative display of 

the data that can convey equivalent information in a dense format. Relative copy number 

Figure 4.1 Relative copy number after denoising and winsorization for 10kb windows (alternating yellow and 
blue) with pcf segments overlayed (red). Here are two examples with the top being a relatively stable copy 
number plot exhibiting little variance (Sample DB150 3.9kb telomere length) and bottom a more complex 
genome showing large regions with significant variance in relative copy number (sample DB219 2.3kb 
telomere length). 
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values of the segments were clipped at -1.5 and +1.5, so whilst some of the extreme values 

(such as the short segment at a RCN 11 in chromosome 8) is lost, displaying data using a 

heatmap allows the genomic complexity of the entire cohort to be visualized in a semi-

quantitative manner. Samples are ordered by telomere length with the longest at top, and 

shortest at the bottom. Visually a distinction can be made between roughly the top two 

thirds, and the bottom third. Generally, the top of this divide appears “flat” with modest or 

no gains and losses (indicated by the fainter colours), whilst below the divide, sporadic 

gains and losses can be seen across many chromosomes. These gains and losses appear to 

show no bias for any chromosomes outside of common features found in both groups. 

Despite the division, there are also some common features seen across both groups. 

These include gains of 1q, 8q, 16p, 20q, 21q and losses of 8p, 16q. Chromosome 7 shows a 

general trend to have gains in both arms, with a few exceptions showing losses in the long 

arm. Chromosome 17 also shows some level of complexity with varying states of copy 

number across the cohort. Less frequently gains can also be seen across some samples in 5p 

accompanied by a mix of weak gains and losses in 5q.  



Chapter 4: Telomere length and genome complexity 
 

 135 

 

 

This division in the cohort is confirmed by recursive partitioning, the results of which are 

shown in the bar graph displaying the number of gains and losses for each sample (n 

segments that are greater or less than ±0.05) (figure 4.3). The green line shows the optimal 

split where the p-value is lowest when performing a Mann Whitney U test. Results for this 

split is shown on the right with significant test p-values for gains (3x10-4), losses (10-4), and 

combined total of both (2.4x10-4). The spearman’s rank test also indicates there is an inverse 

Figure 4.2 Heatmap showing relative copy number segments from pcf analysis (input of 10kb coverage 
windows) clipped between -1.5 and 1.5 with the Y-axis displaying ordered from longest telomeres (top) to 
shortest (bottom). 

long 

short 
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correlation between telomere length and copy number gains and losses which implies 

samples with longer telomere lengths have fewer gains and losses. The correlation 

coefficients for gains -0.35, losses -0.37, and total -0.35 all had significant p-values for the 

test at 0.026, 0.016, and 0.027 respectively. This is in line with expectations and previous 

findings from Brown et al in leukocytes (Brown et al. 2020). 

 

Whilst the heatmap is useful for giving an overall picture of the RCN gains and losses for 

the cohort, information on gains or losses of shorter chromosomal regions can be harder to 

read. To combat this, the “squiggle plot” show in Figure 4.4A scales each chromosome to 

the same size and uses the log of the length for each segment in base-pairs. In contrast to the 

copy number heat plot (figure 4.2), the squiggle plot avoids issues in displaying amplitude 

as when the clipping limit (-2, +3) via height is reached, colour values are used to represent 

the RCN (figure 4.4A). However, the trade-off with this visualisation method, is that when 

scaling of segments on a log scale, it is not possible to infer loci (x-coordinates for each 

sample do not linearly refer to the same chromosome position). What is clearer in this plot 

however, is the presence of oscillations that are indicative of chromothripsis (sample 199 

chromosome X, figure 4.4A). The common complexity of gains in chromosome 8 is once 

again highlighted, but here it is more evident, rather than one large consistent gain of the q 

arm. Using the squiggle plot, chromosomes frequently displayed a fragmented pattern 

Figure 4.3 Gains and losses sorted by sample telomere length (float after name). The general trend of the 
data shows higher numbers of gains and losses the lower the telomere length with spearman’s rank 
correlation of: 0.027 for combined gains and losses. The Mann Whitney U (greater than) values are 
showing the lowest p-value from recursively partitioning from left to right of the gains, losses and totals 
with telomere length lowest value appears in brackets. 
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involving multiple large gains. 

More evidence for the division in copy number profiles between samples above and 

below TL 3.81kb is shown in the complexity score box plots and recursive partitioning 

graph (figure 4.4B/C). Generally, the bottom third of samples display a higher median (red 

line) and mean (green diamond) complexity score. The optimal partitioning also occurs in a 

similar position to that shown in the number of gains and losses method. Smaller p-values 

for the Mann Whitney U testing of the complexity score (1x10-40 chromosome orange, 9x10-

4 genomic blue) suggests that the gains and losses are larger in amplitude between the two 

partitions. As the complexity score is a sum of all the absolute values, the two factors 

influencing it are the number of gains and losses and their amplitude. A similar spearman’s 

rank correlation coefficient of -0.38 (with a p-value of 0.013) is also seen to the number of 

gains and losses. The low pass version of this analysis is shown in appendix 
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A B C 

Figure 4.4 The coverage graph (A) shows the relative copy number (RCN) segments scaled so each 
chromosome is uniformly sized, with the length of each segment on the x-axis being logged. Segnent 
amplitude is displayed in height between -2 and +3, where colour is used to display higher gains 
(yellow highest). The complexity score boxplots (B) show the distribution of the complexity scores 
across all chromosomes for each sample. The recursive partition line graph (C) shows the smallest p-
value for the Mann Whitney U test for x > y is 3.6x10-4 for the sum (genome) and 6x10-38 individual 
chromosome array pools. 
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To visualise the difference between the complexity scores of the cohort split by the optimal 

partition, the complexity scores (on a logarithmic scale) for both the PCF and low pass 

methods was visualised (figure 4.5). Both methods displayed a significantly higher 

complexity score in the shorter telomere group across individual chromosomes (Figure 

5A/C) and the genome as a whole (figure 4.5B/D). 

 

To highlight the difference in visualisation methods, the same sample (DB195 with TL 

2.9kb) is displayed using the standard copy number plot (figure 4.6A) along with the 

transformed copy number plot (figure 4.6B). The standard plot is useful for displaying the 

loci of RCN changes; however, it is harder to distinguish the finer detail especially in the 

smaller chromosomes. For example, the complex RCN changes in chromosome 20, the 

oscillations are somewhat visible but are much more apparent in the transformed plot (figure 

4.6B). Copy number variations are only able to give insight into part of difference in 

genomic complexity between shorter and longer telomere samples, so structural variants 

A 

C 

B 

D 

Figure 4.5 . Box plot displaying the complexity scores for both chromosomes and genomes (sum of 
chromosomes) for both the PCF and low pass methods for calculating scores for samples above (long) and 
below (short) the 3.81kb telomere length threshold. The PCF complexity score is calculated as the sum of 
RCN for all segments across each chromosome. The low pass complexity score is calculated as the sum of 
all differences between peaks and troughs of the RCN signal after being passed through a low pass filter. 
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were analysed next to uncover more of the story. 

 

4.4.2 Structural variants 

Following from the copy number analysis, which found that telomere length was able to 

segregate samples with a high complexity score (p<0.001), structural variants were 

investigated to see if a similar trend could be found. A random selection of structural variants 

identified by dysgu were first manually curated using the gw genome browser to determine 

suitable PROB thresholds for filtering, followed by narrowing of the PROB threshold to 

minimise false positives and maximise sensitivity. The end result of this interrogation are 

shown in Table 4.1 which shows the approximate values for true positive rate and 1-FNR 

(similar to recall). 

 

 

 

A 

B 

Figure 4.6 A comparison of the visualisation methods of plotting the processed RCN values. The top (A) shows 
RCN (y-axis) of 10kb windows (yellow and blue) across the genome (loci x-axis) with PCF segments 
overlayed (red). The bottom (B) shows the same PCF segments with their lengths scaled by logging, and the 
y-axis is clipped to +3 and -2. RCN is displayed beyond the clipping using colour (with yellow indicating 
higher RCN values). 
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SV Type 
(PROB 
threshold) 

DEL (0.15) INV (0.15) DUP (0.15) TRA (0.45) INS (0.2) 

TPR 0.86 1.00 0.98 0.9 0.94 
1-FNR 0.90 0.79 0.82 0.88 0.51 

Table 4.1 Table displaying the True Positive Rate (TPR=Ntp/Ntotal positive) and 1 minus False Negative 
Rate (1 – Nfn/Ntotal negative) for each structural variant type when filtering using the dysgu PROB value 
(shown in brackets). Manual classification was performed on a random subset of 50 variants above and 50 
below the PROB threshold. 

Probability values used for threshold filtering appeared to be low compared to the default 

threshold of 0.45 using for germline calling. However, this is partially explainable as the 

dysgu pipeline was trained on single germline samples, whereas this pipeline uses a tumour-

normal subtraction, so a lower threshold appeared to be suitable for this cohort. 

Following a similar trend as the copy number complexity scores, the data displayed in 

Figure 4.7 shows that the overall number of structural variants appeared to be higher in the 

shorter telomere category of samples (p<0.05). Most significant is the difference in the 

number of deletions and duplications (p<0.005), whilst duplications and translocations also 

show an increase (p<0.01). Whilst the filter confidence value remains consistent across 

variant types, only translocations and insertions are not subjected to the size filter of 10kb as 

translocations do not have an length by definition, and insertion length is not possible to 

determine using short paired-end reads in an accurate manner. This value of 10kb was chosen 

to eliminate smaller SVs, and instead aim to focus on large-scale genomic rearrangements 

that are thought to be prevalent in complex genome rearrangements. Insertions, whilst 

following a similar trend are not included in Figure 4.7 due to not being amenable to filtering 

by size (present in Appendix).  
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The circos plots in Figure 4.8 show the distribution of structural variants across the genomes 

in order of telomere length (displayed top right of each plot). A red line drawn across the plot 

indicates that sample above are below the 3.81kb threshold, and below plots are samples 

above the 3.81kb threshold. Samples above the line generally exhibit more SVs distributed 

across chromosomes. There are some samples with complex patterns below the line such as 

the last sample with a telomere length of 7kb, however they tend to be less frequent. An 

expected yet notable characteristic of all the samples is that SVs are aligned with the 

chromosomes that exhibit large copy number changes. Loci that appear more than others 

include: 1q23.3, 1q44, 3q26.33-28, 6q22.1-27, 8p12-11.21, 8q13.1-24.23, 10q23.31-26.3 

(with translocations in 10q26.13-26.2), 12p13.11-24.23, 17q21.31-25.3 (close to BRCA1), 

20q13.13-13.33 (lots of translocations 13.31).  

A B 

Figure 4.7 . Stacked bar plot displaying the number of each type of structural variant, with the gradient 
bar showing the telomere length of sample in kb (A). Box plot showing the distributions of each SV type in 
the short (<3.81kb TL) and long (>3.81kb TL) groups with * displaying the 0.05, 0.01 and 0.005 
confidence level of Mann Whitney U short greater than long (B) 
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Structural variant counts in isolation give us a clue as to the levels of genomic complexity, 

but to investigate how these genomic rearrangements have occurred, we need to investigate 

the proximity and contents of these variants. This was done through chain linking and contig 

assembly analysis. 

4.4.3 Chain link 

The aim of the chain linking analysis is to gather insight into how structural variants are 

related and arranged across the genome. Through statistical testing of the proximity of 

Figure 4.8 Circos plots showing structural variants by - black: translocation, red: deletions, green dots: 
insertions, blue: inversions, magenta: duplications. Copy number segments are plotted around the 
circumference with highlighting showing chromosomes that reach different complexity score thresholds 
10-30 yellow, 30-50 orange, and > 50 red. Chromosomes with more than 8 segments are also highlighted 
in light orange. Red line across plot indicating split between 3.81kb threshold. 
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breakpoints, clusters of SVs that potentially occur during a complex genome rearrangement 

event can be isolated and characterised. Elbow plots displayed in Figure 4.9 were used to 

determine which p-value to use as a cut-off for the binomial distribution, testing for whether 

SVs are closer than expected by chance alone. The left plot shows a clear dip between 0.1 

and 0.15, with a slower decrease until 0.45 before the p-value starts increasing (figure 4.9A). 

The right plot displaying the results for p-values between 0.01 and 0.05 shows the first 

significant difference (p<0.05) between the partition occurs at 0.04 (figure 4.9B). Ultimately 

the value of 0.4 was decided to be the value for this dataset for calling SVs as being closer 

than expected (and therefore possibly linked) as it exhibited the clearest difference between 

the shorter and longer categories of telomere length. A possible explanation for the high 

values of p-value thresholds (0.3-0.45) where the optimal split lies, is that the majority of 

the SVs within the shorter telomere length group were in fact chained SVs. As a result, a 

higher p-value is needed to account for these SVs being used to calculate the expected 

breakpoint distribution being tested against is needed to include these variants. 

 

 

Clusters of chain linked structural variants appear at higher frequencies in the shorter 

telomere category of samples. Only 4 out of 16 (25%) samples above the line (figure 4.10A) 

have no obvious clusters, whereas 18 out of 26 (~61%) below are without clusters (figure 
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Figure 4.9 Elbow plots displaying the p-value for split in groups by the binomial p-value used to test 
whether a cluster of SVs is closer than expected with two different ranges (A 0.05-0.5 left), (B 0.01-0.05 
right). Together they display an increase in significance in difference of number of linked SVs above and 
below the partition of TL 3.81kb between 0.01 and 0.45 except for a small increase between 0.05 and 0.1  
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10B, p-value 0.01 Fisher exact test). Clusters of chain-linked SVs in the shorter category of 

telomere length also appear to be larger, consisting of more SVs than the longer category. As 

well as being larger, clusters on samples with shorter telomere lengths appear to involve SVs 

on more chromosomes (figure 4.10A). This pattern of clusters of SVs on multiple (>3) 

chromosomes is consistent with the characteristics of chromoplexy (Baca et al. 2013).  

 

Performing the linking with a much smaller p-value such as 0.04 shows some of the larger 

(red) clusters as seen in the first (DB219) and 5th from the left on the second row (DB148) 

may be comprised of smaller subclusters (red and blue) (figure 4.11). Long read sequencing 

may aid in the process of resolving the complexity shown in these plots. With longer reads it 

A. 

B. 

* 

* 

Figure 4.10 . Circos plots displaying the clusters of chain-linked variants. Each colour (red, blue, green) 
depicts a different chain, while non-clustered variants are shown in grey. Examples given in Figure 4.11 
are marked by an asterisk. 
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would be possible to assemble individual genomes (contigs), or more accurately call SVs, 

more definitely defining the links between the SVs. 

 

 

Plotting the number of chained and unchained SVs as a stacked bar plot in order of telomere 

length reinforces the trend shown in the circos plots that the SVs tend to be closer in shorter 

telomere samples (figure 4.12). The overall shape of the stacked bar graph displaying the 

number of chained and unchained SVs is also similar to Figure 4.3 which shows the number 

of gains and losses as defined in the copy number analysis, with a tendency for shorter 

telomeres samples to have higher numbers of chained and non-chained SVs. 

 

Figure 4.11 Circos plots from two examples: DB219 left two circus plots and DB148 right, displaying 
clustering of structural variants using two different p-value thresholds (0.4 left, 0.04 right)  
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Figure 4.12 Stacked bar plot showing the number of chained and non-chained SVs ordered by sample 
telomere length. 
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Interestingly, this difference was statistically significant for both chained and non-chained 

SVs (figure 4.13). The p-values from Mann Whitney U (is greater than) testing were 0.008 

for number of chained, and 0.023 for non-chained.  

 

To verify the validity of the clustering, the assortativity and modularity of the clusters were 

compared to that of a randomly generated graph (figure 4.14). As explained in the methods 

chapter, the algorithm constructs a graph, using breakpoints as nodes, with linking nodes if 

they are closer in distance than expected by chance (Baca et al. 2013; Cleal et al. 2019).  

Assortativity in this case measures the tendency for nodes to be connected to neighbouring 

nodes with a similar degree (number of out-edges), where high-degree nodes tend to be 

joined with other high-degree nodes, and vice versa. Modularity is another way of 

measuring the strength of division of a graph into modules (groups of chained SVs). The 

assortativity and modularity of graphs generated from the breast cancer cohort were 

compared to those measured from equivalent but randomly joined graphs, permitting an 

analysis of the randomness of joining within the identified chains of SVs. For both metrics, 

when comparing the distribution of the coefficients compared to those from the randomly 
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Figure 4.13 Box plot showing the distribution in number of chained and non-chained SVs for samples 
above (blue) and below (orange) a telomere length threshold of 3.81kb. The Mann Whitney U p-value for 
testing if shorter is greater than longer above the bars (p=0.008 for chained, p=0.02 for non-chained). 
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generated graphs a significant difference is shown with assortativity at 2.7x10-8 and 

modularity 1.4x10-7. The figure displays this information as a histogram overlayed with a 

KDE fit for the distributions in the values. This data is in line with previous findings, that 

reported SV chains identified in samples that had undergone a telomere crisis, showed 

important deviations from randomness (Cleal et al., 2019). These findings argue against a 

completely random end joining process which is often presumed to occur in chromothripsis-

like events, and instead suggest a multi-step process with multiple rearrangement events 

occurring over time, or being spatially confined on the genome in some way. However, more 

experiments using model systems will be needed to confirm this hypothesis. 

To investigate chain linked (clustered) SVs further, the output from this analysis was used as 

input for contig assembly analysis. 

 

 

4.4.4 Contig assembly 

Assembly of chain linked SVs into contigs was performed to find phenomena that would 

explain potential mechanistic origins. As the goal of this analysis was less about comparing 

subgroups of the cohort split by telomere length, the efforts to interrogate this data was 
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Figure 4.14 Assortativity coefficient values for random (blue) and SV clusters (red) left. Modularity 
of random (yellow) and SV clusters (purple).  
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focused on a per sample basis. An example of the visual output is shown in Figure 4.15 for 

the sample DB229 with a telomere length of 2.79kb. This figure shows the mappings of 

each contig with the chromosome denoted by the larger coloured rectangle, and unmapped 

insertion sequences as a line that joins them. The bar displayed across the top of the 

rectangle shows the proximity to the of the region to the telomere end through a gradient, 

with black indicating the mapped loci being ≥1mb away, reds ~600kb, orange ~400kb, 

yellow ~200kb (key shown to right of plot). Although difficult to distinguish, the colour of 

each rectangle is slightly transparent to show cases where mappings overlap which suggest 

microhomologies. 

 Figure 4.15 shows multiple complex contigs that include regions from several 

chromosomes. Of these, multiple contigs are observed with microhomologies (e.g. third 

from the top middle two regions), suggesting NHEJ or MMEJ as potential mechanism for 

repair that led to the rearrangement. These regions of microhomology are mostly ~4-8bp 

except for a larger overlap between breakpoints  seen in the second to top and bottom 

contigs (~10-20bp). It is also shown it is not uncommon for regions relatively close to 

telomeres to be involved in these rearrangement events, with several mappings being within 

1mb of the telomere.  
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4.4.5 Low coverage copy number testing 

Aside from investigating the correlation between telomere length and genomic complexity, 

we wanted to test whether the copy number pipeline was viable as a means of investigating 

complexity in extremely low coverage sequencing runs. The method for simulating this is 

Figure 4.15 Visual representation of assembled chain linked SV contigs for sample DB219. The x-axis 
indicates the bp length of each contig, with chromosome of each region of the contig is mapped to by 
the large, coloured rectangle, and unmapped insertions as a line connecting them. The colour of the 
bar at the top of each rectangle indicates the proximity of the region in the chromosome to the telomere 
end with the key shown as the white, yellow (~200kb), orange (~400kb), red (~600kb), black (≥1mb) 
gradient bar to the right of the plot. The histogram located at the bottom right of the plot shows the 
total count (y-axis) of contigs containing for each number of distinct regions that are mapped in the 
contig (x-axis).  
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outlined in the methods chapter under the low coverage copy number testing section, but in 

summation utilises samtools to subsample bam files to a coverage of 1x for each sample.  It 

was expected this input would generate a far lower resolution version of the full coverage 

analysis, compared to the ~15x coverage of the cohort alignment files. What was observed 

however, was a considerable similarity between the relative copy number analysis of the full 

~15x coverage and subsampled 1x coverage datasets as shown in the Figure 4.16 heatmap. 

As expected, there are differences, such as the finer detail of chromosome 1q in sample 

DB159, 2p in DB195 being lost in the subsampled version.  

 

Similar differences in the complexity scores between the longer and shorter cohorts can also 

be seen with the subsampled RCN analysis. P-values for Mann Whitney U (short > long)  

tests are comparable with the low coverage PCF method being 8.5x10-45 (~15x 10x10-40) for 

chromosomes, and genomes 2.9x10-4 (8.9x10-4), and low pass chromosomes 1.4x10-26 

(9x10-27), and genomes 2.9x10-4 (5x10-4). 

 

Figure 4.16 Heatmaps showing relative copy number of the full ~15x coverage cohort (left) and subsampled ~1x 
cohort (right) segments from pcf analysis (input of 10kb coverage windows) clipped between -1.5 and 1.5 with the 
Y-axis displaying ordered from longest telomeres (top) to shortest (bottom). 
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These results show that it is possible to use much lower coverage sequencing in analysis of 

genomic complexity, albeit restricted to copy number profiling. However, more importantly 

the results pertaining to telomere length and genomic complexity, it has been shown there is a 

correlation between the two. 

4.5 Discussion 

4.5.1 Copy Number Variation 

CNVs can be responsible for the aberrant expression of RNA, which are potential driver in 

the development and progression of many types of cancer when involving onco and tumour-

suppressor genes (Shao et al. 2019). Common CNVs presented here in Figure 4.2 heatmap 

have also been identified by Courjal and Theillet as frequent sites of CNV, and correlate 

well with the findings of Beroukhim et al looking at CNVs across multiple cancer types 

(Courjal and Theillet 1997; Beroukhim et al. 2010). For example, Figure 1b from 

Figure 4.17 Box plot displaying the complexity scores for both chromosomes and genomes (sum of 
chromosomes) for both the PCF and low pass methods for calculating scores for samples above (long) 
and below (short) the 3.81kb telomere length threshold in the subsampled to ~1x coverage dataset. 
The PCF complexity score is calculated as the sum of RCN for all segments across each chromosome. 
The low pass complexity score is calculated as the sum of all differences between peaks and troughs of 
the RCN signal after being passed through a low pass filter that is greater than 0.5. 
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Beroukhim et al. 2010 shows 5p having a significant z-score for gains, whilst 5q is 0 for 

gains and losses correlating with the low amplitude mix of both seen in the cohort. The 

clinical significance of 5p gains relates to the alteration of telomerase reverse transcriptase 

(TERT) gene expression, which Gay-Bellile et al linked to a poorer prognosis with a hazard 

ratio of 3 (Gay-Bellile et al. 2017). 

Orsetti et al note that 50-60% of breast tumours exhibit abnormalities of CNV in 

chromosome 1 in the form of mainly 1p losses and 1q gains (Orsetti et al. 2006). Both 

features seem to be present in this cohort alongside their finding that high magnitude 

amplification is infrequence as shown in Figure 4.2. They also found that 20 out of 28 

candidate oncogenes present on the 1q arm were overexpressed. Ideally our data would be 

accompanied by RNAseq analysis so this could be tested for in this cohort. 

Chromosome 8 also shows a similar pattern where losses in the short arm and gains 

of the long arm have previously been recorded. Choschzick et al showed a strong correlation 

between 8q21 amplification and the expression of multiple oncogenes such as HER2, 

CCND1, MDM2, and MYC (Choschzick et al. 2010). Yaremko et al report that roughly half 

of breast cancers show a LOH in 8p and suggest that it occurs early in carcinogenesis 

(Yarernko et al. 1995; Yaremko et al. 1996).  

Inversely, chromosome 16 shows gains of the p and losses of the q arm. A study by 

Rakha et al., 2006 highlights LOH of chromosome arm 16q as one of the most regular 

events in breast cancer being present in 30-75% of breast cancers depending on the type 

(Rakha et al. 2006). 

It is possible that the large magnitude of CN gains seen in chromosome 17 in Figure 

4.4 could be the result of polysomy (>2 copies of the chromosome), which is present in 

~32% of breast cancers (Hyun et al. 2008). It is unclear as to how polysomy 17 affects 

cancer development, with one study showing that it is not related to HER-2 overexpression 
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or has any effect on clinicopathological outcome (Vanden Bempt et al. 2008). 

Chromosome 20q gains are present within a wide range of solid cancer types, and its 

been implicated in early cancer development. Cells with spontaneous 20q amplifications 

have been shown to exhibit deregulation in several specific cancer-related pathways 

including the MAPK, p53, and Polycomb group factors, as well as activations in several 

cancer initiation hallmarks such as Myc and ETS family transcription factors (Tabach et al. 

2011; Gabay et al. 2014). 

Outside of these previous observations, the low coverage simulation shows a 

remarkably similar output compared to the 15-20x coverage analysis. This is promising as 

large-scale low coverage sequencing (such as Illumina multiplexing) could be used as a 

cheap method for performing this kind of investigation. Theoretically, it is possible that 

Oxford Nanopore sequencing technologies such as the MinION or Flongle flow cells could 

provide sufficient coverage for such analysis as well. It is untested whether this low 

coverage long read approach would also work for analysis of structural variants. 

4.5.2 Structural variants 

Structural variants (SVs) are a common feature in cancers that cause alterations of gene copy 

numbers, gene regulations, protein sequences, epigenetic signalling, and 3D genomic 

structure. The increased frequency of large (>10kb) deletions, inversions, duplications, and 

translocations shows that by raw count the shorter telomere group is more complex in the 

structure of their genomes. This increase was seen in Figure 4.7 with the boxplot displaying 

the distributions, and Figure 4.8 where it was seen with the location contexts (and often 

harmonising with the copy number analysis displayed in the outer rings). Gene Set 

Enrichment Analysis (GSEA) of chromosome bands that exhibited most frequent SVs and 

follow up RNAseq would be interesting to carry out. Cursory glances were made at these 
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regions using the UCSC genome browser, which found that the band 17q21.31-25.3 where 

increased SVs overlaps with the loci of BRCA1. 

Whilst dysgu is an effective structural variant caller, the underlying short read 

sequencing technology is not ideal for identifying SVs. Measures were taken during the 

filtering stages to improve the end set of SV calls. These provided to be effective as shown by 

the lowest true positive rate being 86%, and (outside of insertions which were excluded) the 

“inverse” (one minus) false negative rate of 79% showing that even in the worst cases, the 

majority of SVs are likely to be real. To effectively include insertions in this type of analysis, 

ideally long read sequencing data such as that from oxford nanopore should be investigated. 

Long read data would also aid in the following chain linking analysis. 

4.5.3 Chain linking 

Chain linking analysis was performed to identify clusters of SVs that more likely than not 

came from the same event due to their proximity. The original authors of the ChainFinder 

algorithm (which was implemented and adapted here), used this approach to define these 

interdependent SVs chromoplexy (Baca et al. 2013). We expected to find larger and higher 

numbers of chain linked clusters within the shorter telomere side of the cohort as we 

suspected the chromoplexy phenomena (similarly to chromothripsis) is related to telomere 

shortening and dysfunction.  

 Unfortunately, there is no concrete way to determine a suitable or optimum p-value 

threshold for classifying whether SVs should be classed as linked. However, the fact there is 

a large window between 0.04 and 0.45 where significance is shown and generally increases 

between the two groups of telomere length suggests there is a difference. Further evidence for 

the validity of this observation is shown in the assortativity coefficients and modularity. 

Assortativity can be thought to be the correlation between linked nodes, and modularity as 
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the strength of (confidence nodes belong within) clusters. The increased number and 

frequency of structural variants in close proximity suggests that SVs in shorter telomere 

patients are likely to be related to a common event(s).  

In other words, there appears to be a correlation between telomere length and the 

phenomena of chromoplexy. The original paper in which chromoplexy was observed shows a 

commonality between the occurrences of chromoplexy and ERG gene fusions (located on 

chromosome 21). Their dataset was working with prostate cancer, whereas this analysis is 

based on breast cancer. Whilst some SV chains are found to interact with chromosome 21, it 

was not found at the same frequency as Baca et al., which may be due to the difference in 

cancer types. A study conducted in multiple myeloma found a correlation between instances 

of chromoplexy and the deletion of 8p (Ashby et al. 2022). In this analysis however, 8p 

deletions were common regardless of telomere length, but chromoplexy was exhibited more 

frequently in shorter telomere samples. This suggests that the underpinning mechanism of 

chromoplexy is more dependent on telomere fusions and phenomena such as BFB cycling 

similar to that of chromothripsis. 

4.6 Conclusion 

Results from each analysis in this chapter demonstrate a clear relationship between telomere 

length and genomic complexity. This correlates with results found from Santos et al. 2015  

which used florescent in situ hybridisation (FISH) and microarray based cytogenetic 

analysis (Dos Santos et al. 2015). Whilst the relationship between telomere length and 

genomic complexity is not linear, partitioning of these 44 breast cancer patients based on 

telomere length provides evidence for the hypothesis that cancer cells with telomeres below 

a “fusogenic” threshold exhibit significantly more complexity in their karyotypes. Visible in 

all aspects of this analysis, there is a clear divide between samples with “longer” (>3.81kb) 
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and “shorter” (<3.81kb) telomeres with regards to the levels of genomic complexity. This 

divide is shown in patterns of relative copy number variation, increased amount and 

proximity of large structural variants. The significant differences in complexity when 

partitioning by telomere length suggests that the mechanism behind the increased 

complexity is one by which chromothripsis and chromoplexy are caused by telomere fusion 

events of critically shortened and dysfunctional telomeres. Shorter and therefore 

dysfunctional telomeres are more prone to fusions, which are then processed through 

mechanisms such as BFB cycling (or micronuclei) to generate the complex patterns that 

have been observed. Similar analysis will be conducted on more samples in the next chapter; 

however, this analysis will be conducted with telomere length predictions instead of 

absolute telomere length as determined with STELA analysis as in this chapter (Baird et al. 

2003). Ideally a dataset for further investigation would be composed of more samples 

sequenced with a long-read method with accompanying absolute telomere length from 

STELA. Long read data would provide a suitable platform to further investigate insertions 

(missing from this analysis) with additional benefits in contig assembly being easier and 

more accurate.



 

 158 

 

Chapter 5 Using publicly available 
genomic data to analyse the 

relationship between telomere length 
and genome complexity 

5.1 Abstract 

Previous research and data from the previous chapter have shown links between telomere 

length and genomic complexity (Dos Santos et al. 2015). In this chapter we expect to see 

similar results from the previous chapter where cohorts are divided in their level of genomic 

complexity clearly by a telomere length threshold. This chapter aims to analyse cancer 

cohorts from public repositories to explore their complexity in relation to their predicted 

telomere length. This exploration utilises the methods outlined in the previous and methods 

chapter exploring copy number variation and structural variant analysis. In the largest cohort 

(Genomics England breast cancer) a telomere length threshold established through analysis of 

the relative copy number profiles significantly segregates the cohort in all analysis types. 

Similar but less clear differences are also found in the ICGC breast cancer and Genomics 

England chronic lymphocytic leukaemia cohorts. In all cases, the relationship is one by which 

there is classification into above and below a threshold rather than a direct linear correlation. 

These results indicate that telomere length is correlated with genomic complexity, supporting 

the theory that telomeres reach a critical length and generate fusions which leads to the 

observed increased genomic instability through the pathways outlined in the introduction 

(e.g. breakage-fusion-bridge cycling and micronuclei formation)
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5.2 Introduction 

5.2.1 Breast cancer 

Breast cancer is the most frequent cancer in women (second most in combination of both 

sexes) and is heterogeneous with diverse genetic origins (Akar and Oktay 2005; Łukasiewicz 

et al. 2021). The previous chapter and other research have implicated telomere length in 

being a key driver in genomic instability, a big part of tumorigenesis. Currently patients are 

diagnosed and stratified for treatment by a limited set of factors such as biomarkers or driver 

mutations (Neves Rebello Alves et al. 2023). There has been a growing interest and shift to 

utilising whole genome sequencing (WGS) data to better inform prognosis and clinical 

treatment (Rossing et al. 2019). Breast tumours exhibit specific mutational signatures which 

are attributable to the underlying mutational processes. In addition, rearrangement signatures 

have been identified that are indicative of deficiencies in homologous recombination activity 

that arise because of mutations in BRCA1 and/or BRCA2 and other yet undefined 

mechanisms (Nik-Zainal and Morganella 2017). Telomere dysfunction has been identified as 

a key mechanism responsible for genomic instability in breast cancer (Maciejowski and de 

Lange 2017). Additionally, this chapter will also investigate a cohort of chronic lymphocytic 

leukaemia patients. 

5.2.2 Chronic lymphocytic leukaemia (CLL) 

CLL is the most common type of leukaemia found in adults, characterised by a build-up of 

dysfunctional lymphocytes (Mukkamalla et al. 2024). CLL was one of the original cancer 

types where fusogenic telomere-length thresholds were identified and has been well 

established that telomere length is a prognostic factor when in this disease (Lin et al. 2014). 
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Previous research has also hinted at the correlation between telomere length and genomic 

complexity being negative, with patients exhibiting shorter telomeres having more complex 

genomes. Alongside poor prognosis significant correlation of CLL samples with short 

telomeres and deletions of 17p and 11q have also been found (Britt-Compton et al. 2012). 

Cell cycle checkpoint genes TP53 and ATM which trigger upon telomere shortening and 

dysfunction are located in 17p and 11q respectively. Suggesting that this may be one 

mechanism by which CLL is able to undergo continued telomere shortening (compared to 

those without deletions) whilst avoiding apoptosis (Jebaraj and Stilgenbauer 2021). 

5.2.3 Public repositories 

Public repositories take many different forms but share the same goal of making biological 

data available for researchers around the world.  

5.2.3.1 Genomics England 

Genomics England provides a contained environment to access and process their wide range 

of data, which includes over one hundred thousand sequenced genomes from various cancers 

and rare disease patients. The system is broken into two main parts. The outer layer is a 

desktop “research environment” (RE), a remote desktop originally accessed via a webpage, 

now through amazon “WorkSpaces”. Due to security reasons, this environment does not have 

access to the wider internet, with only internal IPs being accessible. From the RE the second 

layer can be reached, their HPC “Double Helix” (its predecessor “Helix”). Data is accessible 

from both the RE and Double Helix, but only limited analysis can be run from the RE due to 

the resource restraints.  
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5.2.3.2 International Cancer Genome Consortium (ICGC) 

The ICGC takes a different approach to Genomics England by not providing an environment 

to process data, instead only a means for accessing it. At the core of ICGC is the “score 

client” which is the method for downloading or mounting data from an AWS “bucket”. This 

bucket is only accessible through EC2 instance from specified regions (West-Virginia), or 

through their now sunsetted platform for creating cloud compute instances “collaboratory”. 

Sample IDs are extracted from a separate data portal, which facilitates the filtering of a cohort 

down to the cancer type and file types desired to be processed. These encoded names are 

what is given to the score client to download the chosen files. 

 

Previous work has identified telomere length thresholds defined by assays detecting the 

presence of telomere fusions, which provide powerful prognostic information. In the previous 

chapter we showed that similar telomere length thresholds defined threshold for genomic 

complexity. In this chapter we aim to validate these findings by undertaking a similar analysis 

in large publicly available genomic data repositories. 

5.3 Methods 

5.3.1 Data 

The majority of data in this analysis is Illumina whole genome sequenced breast cancer data 

with ~1550 samples from Genomics England (GEL) and 98 samples from the International 

Cancer Genome Consortium (ICGC) repository. There are also ~70 chronic lymphocytic 

leukaemia samples also from Genomics England with real telomere length data from STELA. 

All data was sequenced with paired-end Illumina (majority HiSeq X), with GEL having a 
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read depths around 30 to 80X for the germline samples, and 80 to 150X for cancer samples 

(all read length 150). ICGC was sequenced at a read depth of 30 to 80X for all samples. 

5.3.2 Data access 

Both Genomics England (GEL) and the International Cancer Genome Consortium (ICGC) 

require the submission of an application that requires approval before being able to use their 

respective methods of accessing data.  

Genomics England (GEL) provides a “research environment” (RE, accessed via 

amazon workspaces) with access to a High Performance Compute (HPC) cluster. This HPC 

uses the LSF job scheduler, which uses bsub for the submission of jobs. Whilst there is a 

restrictive “airlock” system for importing scripts into the RE, due to dependency and path 

issues it is more convenient to utilise containerisation. Each tool was added to a docker 

container which can then be downloaded as a sif file by singularity (using the old “helix” 

cluster as the newer “double helix” cluster doesn’t have the Docker hub IP whitelisted). 

Whilst this is easier for getting runnable code into the RE, it does however mean even a 

single line edit in a script does require recompilation and uploading of a container each time a 

bug is encountered. This is still probably faster however than getting past the initial airlock 

and dependency importation pains, as vim can take upwards of 45 minutes to close when not 

writing files. Labkey was then used to download a csv of file paths and germline pairs, which 

after heavy manipulation was converted to a sample pairs csv.  

The International Cancer Genome Consortium (ICGC) requires setting up your own 

compute cluster using amazon EC2 instances or as used in this analysis their sunsetted 

collaboratory instance service. A successful project application grants you access tokens for 

the score-client, their proprietary method of being able to interact with the data. Whilst 

possible to mount the dataset as a bucket to an instance, the throughput of reading these files 
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is very slow at <1mbps, so downloading is required for analysis to be done in a timely 

fashion. Using the ICGC data portal a cohort of suitable files was generated for download 

across 8 machines for parallel processing.  

5.3.3 Structural variant calling 

Genomics England breast cancer and CLL cohorts were analysed with the same method. This 

involved piping a subsampled bam (using variable frac to set to a coverage of 40) file into 

dysgu. 

 

samtools view -h -s ${frac} --subsample-seed xxx ${path} | tee 
>(singularity exec teltool.sif teltool trim -i -n ${s} -o /home) | 
singularity exec dysgu.sif dysgu fetch --mq 30 --max-cov 5000 --clip-length 
30 /tmp/tmp_${s} – 2> ${logdir}/${s}.log && singularity exec dysgu.sif 
coverage2bed.py --out-bin-size 10000 -w /tmp/tmp_${s} > 
${coverage_dir}/${s}_cov.bed && singularity exec dysgu.sif dysgu call --
ibam /data/${s}.bam -v2 --metrics --low-mem -x ${reference} /tmp/tmp_${c} -
o /out/${s}.vcf 2>> ${logdir}/${s}.log; rm -rf /real/tmp/dir/tmp_${s}  

 

Both subsampling and using tee to also pass the output into teltool was to save processing 

time by saving a second pass and in some cases reducing the number of reads both programs 

were reading by more than half. Dysgu fetch was given the parameters of mapping quality 

30, a max coverage of 5000, and clip length of 30 as these are suitable values for processing a 

40x coverage sample. After dysgu fetch, the coverage2bed script was also used to create a 

coverage profile for each sample using a window size of 10kb for later copy number analysis. 

Finally dysgu call is then used passing the necessary inputs as well as the v2, metrics, and 

low mem flags, that last of which was to minimise the memory usage to decrease the required 

reserved memory for each job, increasing the number of jobs that could be run at the same 

time. The v2 flag was used in case it was required to merge vcfs downstream, and metrics 

would make it more convenient for running a newer model if one was made during the 

analysis. 
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 The ICGC cohort was analysed using the dysgu run method instead of fetch and call, 

then also calling the coverage2bed script (${cov}) to retrieve the coverage profile. Due to 

there being a range in the coverage each bam file in the cohort (~30-100x), dysgu was given 

the parameters for analysing the lower end of the coverages. This involved using a mapping 

quality of 15, unlimited max coverage, clip length of 30, and a min support of 5. This version 

of dysgu did not yet have the support fraction option, which would have been more suitable 

for this kind of analysis with varying amounts of coverage. 

dysgu run -v2 --metrics --low-mem --exclude /home/ubuntu/hg19-
blacklist.v2.bed --mq 15 --max-cov -1 -x --clip-length 30 --min-support 5 -
-search /home/ubuntu/chromosome.bed ${ref} tmp_${b} ${i} -o ${b}.vcf 2> 
${b}.log ; ${cov} --out-bin-size 1000 -w tmp_${b} > ${b}_cov.bed ; rm -rf 
tmp_${b} 

 

For filtering the vcf files, as GEL has all data available on the HPC (Helix/Double Helix, it is 

possible to simply loop over a csv file containing the names of the tumour normal pairs and 

pass these into dysgu filter. For practicality, it was decided to only use the paired normal 

instead of a pool of normals as both container mounting of a random set of samples, and 

processing time were both hurdles not worth jumping. However, for the ICGC data as a 

machine can only hold one sample at a time a different method had to be used. The first step 

was to create a bed file containing all the loci of all SVs across all the tumour vcf files. This 

bed file was then used to create “cropped” normal bam files, from which dysgu filter could 

search for the relevant reads 

 

While iterating normal list, download normal bam: 
samtools view -hb --region-file tumours.bed ${bam_file} -o 
trimmed_normal/${b}.bam 
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5.3.4 Telomere prediction 

The Genomics England CLL samples had accompanying telomere length data generated 

using STELA for the ARTIC and ADMIRE clinical trials (Norris et al. 2019). GEL breast 

cancer data had telomere length data predicted using telseq using the command below. 

while iterating sample_pairs.csv: 
    bsub < ${s}.sh 
${s}.sh = (singularity exec telseq.sif telseq /path/*.bam -o /path/${s}.tsv) 
 

The outputs of the individual telseq files were then combined using python and pandas to 

create a dataframe where each sample could be concatenated and written to a csv file. 

Additionally, all telomere length estimates from telseq were incremented by a size of 1kb as 

the telseq authors note a constant underprediction by approximately this amount (compared to 

mTRF) (Ding et al. 2014). For the ICGC breast cancer data, teltool was used to predict the 

telomere lengths. This involved creating the precursor trimmed teltool file on the remote 

machine, then processing these locally once transferred.  

On remote machine: 
teltool trim -i ${i} -o teltool_out 

On local machine: 
teltool test teltool_out 
 

5.4 Results 

For each form of analysis, the results will be displayed for each cohort separately. All 

analyses used in the previous chapter besides contig assembly are repeated here, where we 

expected to find similar results in the breast cancer cohorts. Due to the differences between 

the cancer types, CLL was not anticipated to follow the previously observed complexity 

profiles, rather that it would follow the same general trend in differences between the levels 

of genomic complexity for samples above and below a telomere length threshold. 
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5.4.1 Copy Number 

5.4.1.1 Genomics England breast cancer 

A plot showing the relative copy number of the GEL breast cancer cohort (n=1591) as a 

heatmap with gains as red and losses as blue, where the amplitude is indicated by colour 

intensity (clipped at values ±1.5) ordered based on telomere length prediction is displayed in 

Figure 5.1. It shows there was a trend where the ~1/3 of predicted shortest telomere length 

patients (indicated by the arrow) exhibit a darker (thus more complex) relative copy number 

profile. Despite the distinction however, there are still expected commonalities between all 

the samples. Notably gains of 1q, 8q, 16p, 20q, 21q and losses of 8p, 13q, 16q. Most of these 

were also observed in the previous chapter, and as mentioned in the discussion have been 

previously noted as features common in breast cancer. 
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This divide between the complexity profiles seen in samples above and below the telomere 

length threshold was also be confirmed by recursive partitioning of the complexity score 

(absolute sum of RCN segment values) across the whole cohort as shown in the “squiggle 

Figure 5.1 Heatmap showing relative copy number segments from pcf analysis (input of 10kb coverage windows) clipped 
between -1.5 (blue loss) and 1.5 (red gain) with the Y-axis displaying ordered from longest telomeres (top) to shortest 
(bottom). Data displayed is breast cancer (n=1591) from Genomics England. The arrow on the right is to display the 
telomere length threshold referenced in text where the samples appear to be more complex below this point. 
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plot” (figure 5.2A). As mentioned previously, this plot scales each chromosome to the same 

size and uses the log of the length for each segment, and uses a higher clipping thresholds (-

2/+3) alongside colour past these limits to display more information about individual (and 

especially smaller) gains and losses than the heatmap. However, with such a large cohort this 

information is difficult to distinguish. Plotted next to this is a box plot with the distribution of 

complexity scores for each chromosome for a sample (figure 5.2B). Once again, due to the 

large sample size, it is difficult to read this information due to the overlapping of green 

diamonds indicating the mean, but has been included for the sake of consistency with other 

plots. Recursive partitioning was performed by taking the telomere length ordered array of 

complexity scores, and performing a Mann Whitney U test for shorter greater than longer and 

plotting the resulting p-values (figure 5.2C). Whilst there was an optimal split shown at 

3.62kb, the recursive partition plot shows a significant peak that extends upwards towards the 

visible partition (as indicated by the arrow) that can be drawn from the heat plot (figure 

5.2C). The correlation between the complexity score and telomere length (telseq predicted) 

was also reflected in the spearman’s rank correlation coefficient albeit small at -0.16 being 

significant with a p-value of 5x10-10.   
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Figure 5.2. The coverage graph (A) shows the relative copy number (RCN) segments scaled so each 
chromosome is uniformly sized, with the length of each segment on the x-axis being logged. The complexity 
score boxplots (B) show the distribution of the complexity scores across all chromosomes for each sample, with 
means indicated by the green diamond. The recursive partition line graph (C) shows the smallest p-value for 
the Mann Whitney U test for x > y is 6.6x10-25 for the sum (genome blue at 3.62kb) and 1.4x10-145 individual 
chromosome (orange) at 3.61kb. The spearman’s rank corelation coefficient is -0.16 with a p-value of 5x10-10. 
The arrow on the right is to display the telomere length threshold referenced in text where the samples appear 
to be more complex below this point. Data displayed is GEL breast cancer cohort (n=1591). 
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The difference in complexity scores (absolute sum for y-values of all segments) between 

shorter and longer partitions was once again be highlighted in Figure 5.3 where the threshold 

for separation between long and short telomeres was 3.81kb the telomere length threshold 

previously established by detection of fusions to significantly predict prognosis in several 

tumour types (Lin et al. 2014). This threshold was close to the optimal splits (3.61kb 

chromosome, 3.62kb genome) as defined by recursive partitioning (figure 5.2C) but still 

show substantially significant differences between “long” and “short” categorised (above and 

below telomere length threshold respectively) sub cohorts. Compared to the optimal 

threshold, it shows p-values for Mann Whitney U tests short greater than long of 8.7x10-100 

(optimal 1.4x10-145) for chromosomes and 6x10-18 (optimal 6.6x10-25) for genome complexity 

scores. 

 

 

Further evidence for there being a significant difference in the RCN profile of shorter 

telomere length breast cancer compared to longer telomere length was shown in the recursive 

partitioning in the counts of gains and losses (figure 5.4). Similar optimal partitions are found 

when examining the gains and losses, with gains sharing a threshold of genomic complexity 

scores of 3.62kb (p-value 2.2x10-23) and losses sharing the chromosome complexity score of 

3.61kb (p-value 6.4x10-10).  

Figure 5.3. Box plot displaying the PCF based complexity scores for both chromosomes and genomes (absolute sum 
of chromosomes) for samples above (long) and below (short) the 3.81kb telomere length threshold. The PCF 
complexity score is calculated as the sum of RCN for all segments across each chromosomes. Data displayed is GEL 
breast cancer cohort (n=1591). 
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Whilst plotting the whole cohort is useful for providing an overview, the large scale of the 

data (n=1591 samples) means that much of the detail is hard to see in the heatmaps. For this 

reason, subsamples were taken where half the samples would be below a TL threshold and 

half above. Examples for one subsampled cohort is shown in the main text, with the rest 

being available in the appendix. 

 The heat map shown in Figure 5.5 shows a distinction between the RCN profiles of 

the top and bottom halves (top above, bottom below 3.81kb indicated by arrow). In general, 

this distinction could be summarised as the top half containing longer and lighter (less severe) 

CN segments compared to the bottom half. Conversely, samples below the TL threshold 

exhibit more frequent and severe sporadic gains and losses throughout the genome. As 

previously shown the commonalities between the two halves of gains of 1q, 8q, 16p, 20q, 21q 

and losses of 8p, 13q, 16q as shown above in Figure 5.1 are also present. 

 

 

 

 

 

Figure 5.4. Gains and losses (n segments more or less than ±0.05) sorted by sample telomere length (ascending left to right). 
The Mann Whitney U (greater than) values are showing the lowest p-value from recursively partitioning from left to right of 
the gains, losses and totals with telomere length lowest value appears in brackets. Dotted lines indicate the telomere length 
of the optimal splits for gains (red which is overlapped by) total (green) and losses (blue). Data displayed is GEL breast 
cancer cohort (n=1591). 
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Figure 5.5. Heatmap showing relative copy number segments from pcf analysis (input of 10kb coverage windows) clipped 
between -1.5 (blue) and 1.5 (red) with the Y-axis displaying ordered from longest predicted (with telseq) telomeres (top) 
to shortest (bottom). Data displayed is a random subset of 100 samples from the Genomics England breast cancer cohort, 
50 selected from 3.81kb or below, and 50 from above 3.81kb (halfway point indicated by arrow). 
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This visual distinction was consistent with the recursive partitioning plot shown in Figure 

5.6C. It shows that variance of RCN changes was higher in smaller length telomeres. This is 

highlighted in the surrounding plots showing significant differences in the complexity score 

distribution recursively partitioning from shortest to longest. Whilst the optimal split for 

chromosomal complexity score was drawn at 3.67kb (p=1.9x10-30), there was a secondary dip 

that occurs at 3.8kb before the Mann Whitney U p-value (for scores below the line being 

greater than the scores above) starts increasing. The dip also occurs for genome complexity 

scores at the same place, however due to a small cluster of samples with short telomeres 

being complex at the shortest end (2.6-2.9kb) the optimal split for this metric was placed at 

2.85kb (p=6.6x10-5). 

 The results of the copy number analysis within this breast cancer cohort closely 

resemble that shown in the previous chapter. The 3.81kb threshold used in the previous 

analysis in the chapter 4 cohort (with STELA measured telomere length) was also able to 

significantly stratify this cohort (telseq predicted telomere length) into more and less complex 

samples with respect to their relative copy number profiles. It is worth noting, that whilst this 

was not the optimal value, it is interesting that 3.81kb was close to the optimal values 

(3.62kb) of segregation from recursively partitioning analysis. This was unexpected as 

telomere length predictions were more for providing a method to rank samples based on 

relative telomere repeat content. 
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Figure 5.6. The coverage graph (A) shows the relative copy number (RCN) segments scaled so each chromosome is 
uniformly sized, with the length of each segment on the x-axis being logged. Red indicates gains, which is indicated by 
the height of the bar until +3, where values between 3 and 10 are then indicated by colour (red to yellow). Losses are 
indicated by the blue bars and are coloured throughout the clip threshold of -2 to aid visibility. The y-axis displays the 
sample name followed by telomere length in kb. The complexity score boxplots (B) show the distribution of the complexity 
scores across all chromosomes for each sample (with means shown as green diamonds). The recursive partition line 
graph (C) shows the smallest p-value for the Mann Whitney U test for x > y is 6.6x10-5 for the sum (genome at 2.85kb) 
and 1.9x10-30 individual chromosome at 3.67kb. The spearman’s rank corelation coefficient is -0.26 with a p-value of 
8.2x10-3. Data displayed is a random subset of 100 samples from the Genomics England breast cancer cohort, 50 
selected from telomere length 3.81kb or below, and 50 from above 3.81kb 
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5.4.1.2 International Cancer Genome Consortium (ICGC) breast cancer 

Further validation of the observed differences in complexity of RCN profiles between 

samples above and below a telomere was shown in the ICGC breast cancer cohort. Telomere 

lengths for this cohort were estimated using teltool (method outlined in chapter 3). As this 

method of prediction was different to the GEL breast cancer cohort (telseq), we did not 

expect that thresholds would be equivalent between the cohorts including the STELA 

measured cohort from chapter 4. Similar to other relative copy number heat plots shown in 

this analysis, the ICGC breast cancer cohorts (n=80) exhibited a comparable visual partition 

with more complex profiles in the bottom third from sample 56c 4.6kb (indicated by arrow)  

(figure 5.7). Unlike other cohorts however, there was a band (indicated by purple line) 

containing some more complex RCN profiles (772-ea4) within the top two thirds. 
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Figure 5.7. Heatmap showing relative copy number segments from pcf analysis (input of 10kb coverage windows) 
clipped between -1.5 (blue loss) and +1.5 (red gain) with the Y-axis displaying ordered from longest predicted 
(with teltool) telomeres (top) to shortest (bottom). Data displayed is the ICGC breast cancer (n=80) cohort. The 
arrow on the right is to display the telomere length threshold referenced in text where the samples appear to be 
more complex below this point. The purple line indicates a band of samples in the upper portion which appear  
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This visual distinction (at sample 56c 4.6kb) was confirmed by recursive partitioning of 

complexity scores. Firstly, the visual partition occurs close to the optimal threshold from 

genomic complexity score recursive partitioning at 4.38kb (p=1.5x10-3) (figure 5.8). 

However, it was also far from the optimal split from recursive partitioning at 4.06kb 

(p=2.5x10-23) from chromosome scores. The use of “close to” and “far from” in this case is 

referring to the number of samples between these two predicted values, as telomere length 

predictions are less important than the ranking of the samples. Despite this, there was a sharp 

increase in p-value after 56c (indicated by arrow) from significant values of <0.001 for 

chromosome and <0.01 for genome, to >0.05 for both 3 samples later. This sharp increase 

reinforced that this may be a more suitable telomere length to partition the cohort by genomic 

complexity. The secondary complex band above the threshold also caused a minor dip in 

significance with it being most obvious at sample b02.  
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Figure 5.8. The coverage graph (A) shows the relative copy number (RCN) segments scaled so each chromosome is 
uniformly sized, with the length of each segment on the x-axis being logged. The complexity score boxplots (B) show the 
distribution of the complexity scores across all chromosomes for each sample. The recursive partition line graph (C) 
shows the smallest p-value for the Mann Whitney U test for x > y is 2.5x10-23 for the sum (genome blue at 4.38kb) and 
1.5x10-3 individual chromosome (orange) at 4.06kb. The spearman’s rank corelation coefficient is -0.26 with a p-value of 
2.1x10-2. Data displayed is the ICGC breast cancer (n=80) cohort. The arrow on the right is to display the telomere 
length threshold referenced in text where the samples appear to be more complex below this point. 
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Plotting the complexity scores as a boxplot for this threshold of 4.55kb (predicted) 

highlighted the significance between the difference in complexity between longer and shorter 

telomere length patients (figure 5.9). All metrics displayed values £0.01 with the Mann 

Whitney U p-values for short greater than long being PCF based evaluations of 1.2x10-18 for 

chromosome, 10-2 for genome, and low pass scores showed p-values 8.3x10-20 for 

chromosome and 2.8x10-3 for genome. 

 

 

The correlation between telomere length and genomic complexity was also reflected when 

looking at the raw gains and losses count. For both gains a losses there was a negative 

spearman’s rank correlation coefficient (-0.23 and -0.29 resp.) with significant p-values (0.04 

and 0.009 resp.) (figure 5.10). Once again, the “true optimal” threshold for segregation for 

this cohort at 4.55kb was reinforced by this being the most significant telomere length to split 

the cohort for number of losses with a p-value of 0.001 that the n losses below the threshold 

was greater than above.  

Figure 5.9. Box plot displaying the complexity scores for both chromosomes and genomes (sum of 
chromosomes) for both the PCF and low pass methods for calculating scores for samples above 
(long) and below (short) the 4.55kb telomere length threshold. The PCF complexity score is 
calculated as the sum of RCN for all segments across each chromosomes. The low pass complexity 
score is calculated as the sum of all differences between peaks and troughs of the RCN signal after 
being passed through a low pass filter that is greater than 0.5. Data displayed is the ICGC breast 
cancer (n=80) cohort. 
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The results of the ICGC copy number analysis confer with those from both the cohort 

examined in chapter 4 and the GEL breast cancer cohorts. Performing recursive partitioning 

ordered by a prediction of telomere length was able to form statistically significant 

differences in the RCN related metrics of complexity. As expected, unlike the GEL breast 

cancer cohort, it was not possible to use the previously established threshold values due to the 

telomere prediction method. The next cohort however, despite being a different type of cancer 

does have accurate measurements of telomere lengths. 

5.4.1.3 Genomics England CLL 

The GEL CLL cohort (n=98) consists of samples from the ARTIC and ADMIRE clinical 

trials which were sequenced and had telomere lengths measured by STELA. These patients 

were deemed to have a poor prognosis which makes them more likely to have shorter 

telomeres, as the research looking at telomere fusions showed. The heatmap of the relative 

copy number profile for chronic lymphocytic leukaemia shows far less gains and losses 

compared to those seen in the breast cancer cohorts (figure 5.11). It was expected that CLL 

would be less complex than breast cancer as literature shows CLL exhibits far less 

chromothripsis than breast cancer, although perhaps not to this extent (Cortés-Ciriano et al. 

Figure 5.10. Gains and losses (n segments more or less than ±0.05) sorted by sample telomere length 
(ascending left to right). The Mann Whitney U (greater than) values are showing the lowest p-value from 
recursively partitioning from left to right of the gains, losses and totals with telomere length lowest value 
appears in brackets. Data displayed is the ICGC breast cancer (n=80) cohort. 
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2020). Visually there appears to be a difference between samples 205 (3.2kb) and below 

(indicated by arrow) which is within the 3.81kb range found in the telomere fusion analysis 

from Lin et al 2014. Notable characteristics displayed by this CLL cohort are the common 

gain seen in chromosome 12, and loss seen in 11q. Small bands of losses in 13q14 were also 

observable in the majority of samples regardless of telomere length. These are consistent with 

findings by others in previous research (Döhner et al. 1997; Abruzzo et al. 2018; Khalid et al. 

2021). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 5.11. Heatmap showing relative copy number segments from pcf analysis (input of 10kb coverage 
windows) clipped between -1.5 (blue loss) and +1.5 (red gain) with the Y-axis displaying ordered from 
long telomeres (top) to shortest (bottom). Data displayed is the Genomics England chronic lymphocytic 
leukaemia cohort (n=98). 
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There was no evidence from the recursive partitioning of complexity scores to support the 

visual threshold seen in Figure 5.11 at 3.2kb, but it is possible this was due to the both the 

sparsity of gains and losses throughout the samples and the limited number of samples above 

this threshold (24). Despite this infrequency in CNVs, there was a significant (p=2.7x10-2 for 

genome and p=2.9x10-4 for chromosome) partition found at 2.89kb (figure 5.12). The only 

other point where both genome and chromosome complexity scores showed a significant 

stratification was at 3.7kb. Both significant thresholds are within the 3.81kb TL range where 

fusions were detected by Lin et al 2014. 
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 Figure 5.12. The coverage graph (A) shows the relative copy number (RCN) segments scaled so each chromosome is 
uniformly sized, with the length of each segment on the x-axis being logged. The complexity score boxplots (B) show the 
distribution of the complexity scores across all chromosomes for each sample. The recursive partition line graph (C) 
shows the smallest p-value for the Mann Whitney U test for x > y is 2.7x10-2 for the sum (genome) and 2.9x10-4 individual 
chromosome both at 2.89kb. The spearman’s rank corelation coefficient is -0.1 with a p-value of 3.1x10-1. Data displayed 
is the Genomics England chronic lymphocytic leukaemia cohort (n=98). 
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Comparing the complexity score distribution of the short compared to long category 

(threshold 2.89kb), the shorter telomere samples had a significantly higher complexity score 

for both chromosome (2.9x10-4) and genome (2.7x10-2) (figure 5.13). Notably whilst this 

characteristic was shared for the breast cancer cohort, overall the complexity scores for the 

CLL cohort were less than those seen in breast cancer (e.g. chromosome max <10 CLL and 

>200 breast cancer). 

 

 

 

Plotting the raw counts instead of the complexity scores, revealed a predominance of losses 

in the shorter category (TL £ 2.87kb) of samples (figure 5.14). Whilst not significant (p=0.2) 

the number of losses showed a negative correlation (-0.12) with telomeres. The number of 

gains on the other hand show no correlation (0.02 p=0.88), with no partition where the cohort 

can be separated with shorter telomere samples having a significant increase in gains. 

However, when combined with losses, there was a partition where the total CNVs was 

significant at 2.87kb with a p-value of 0.043. This corresponds with the same sample (177) 

that the partitioning by complexity score was optimal for both chromosome and genome. 

Figure 5.13. Box plot displaying the PCF based complexity scores for both chromosomes and genomes 
(sum of chromosomes) for samples above (long) and below (short) the 2.89kb telomere length threshold. 
The PCF complexity score is calculated as the absolute sum of RCN for all segments across each 
chromosomes. Data displayed is the GEL CLL cohort (n=98). 
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Despite an overall less complex genome compared to breast cancer, CLL still exhibited 

significant (p < 0.05) differences in complexity score and counts of losses and total CNVs 

when partitioning by telomere length (2.89kb).  

5.4.2 Structural variants 

Copy number analysis provided evidence and values for telomere length thresholds where 

each cohort can significantly be divided by metrics of complexity. The next step of the 

analysis was to test if these thresholds extended to structural variants and whether any type 

was affected more than others. As outlined in the methods chapter and above, structural 

variants were called and filtered using dysgu. Filtering was performed against the match 

normal for both GEL cohorts, and on pools of trimmed normal bam files for the ICGC cohort. 

5.4.2.1 GEL breast cancer 

The counts for each structural variant type and total (excluding insertions due to limitations 

from short read data and resulting inability to filter by size) for SVs >10kb in the GEL breast 

cancer cohort (n=1591) separated into short (TL £ 3.81kb) and long (TL > 3.81kb)  

subgroups were plotted as a box plot  (figure 5.15). When comparing the counts of each type 

Figure 5.14. Gains and losses (n segments more or less than ±0.05) sorted by sample telomere length 
(ascending left to right). The Mann Whitney U (greater than) values are showing the lowest p-value from 
recursively partitioning from left to right of the gains, losses and totals with telomere length lowest value 
appears in brackets. Data displayed is the GEL CLL cohort (n=98). 
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of structural variants (apart from insertions due to limitations from short read data and 

resulting inability to filter by size), the shorter (TL £ 3.81kb) subset exhibited significantly 

more (Mann Whitney U p-value < 0.001) SVs than the longer (TL > 3.81kb) subset. Whilst 

there were outliers within the >3.81kb subset whereby a few samples have a higher number 

of deletions, duplications, and translocations than the maximum £3.81kb sample, overall, it 

was clear the shorter subset generally display larger numbers of each variant type. This was 

clear in within all four categories of SV analysed and for the total SVs. 

 

Whilst box plots are useful for condensing the information regarding counts, they are only 

capable of displaying this one aspect. Circos plots can convey additional information 

regarding the loci of these SVs for each sample. Using the method outlined in chapter 2, 

circos plots were generated for each sample and are then arranged in order of telomere length. 

Due to the large number of samples in the GEL breast cancer cohort, it was not possible (nor 

practical) to plot all circos plots for all samples in the same figure. For this reason, 

Figure 5.15. Box plot showing the count of deletions, inversions, duplications, translocations, and total of 
all listed types, separated by long (>3.81kb blue) and short (£ 3.81kb red) telomeres. Box displays the 
interquartile range, with the 25th percentile (Q1), median, and 75th percentile (Q3) in ascending order. 
Whiskers show the values for Q1-1.5xIQR and Q3+1.5xIQR, with outliers shown as circles. Significance 
of Mann Whitney U short > long displayed by * above, with 1 < 0.05, 2 < 0.01, 3 < 0.0001. Data 
displayed is for the Genomics England breast cancer cohort. Structural variants have been filtered to be 
>10kb in size. Data displayed is GEL breast cancer cohort (n=1591). 
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subsampling of the long and short categories were taken. Figure 5.16 shows one of these 

subsamples, with shorter samples (TL £ 3.81kb) above the red line and longer (TL > 3.81kb) 

below. Complex sets of SVs can be seen on both sides with a slight increase in their 

frequency seen above the line 

 One subjective way of approximating the appearances of samples within this plot is 

dense, complex/clustered, and sparse. The number of “sparse” samples appears much higher 

in the longer half (~41) of the plot compared to the shorter half (~31). Generally, the 

“clustered” samples in the shorter half appear to contain more SVs than their counter parts in 

the longer half. Relatively “dense” samples are also far more frequent in the shorter telomere 

(~16) length subset compared to the long subset (~6).  

 An uncommon characteristic displayed on both sides were samples presented with 

abundant and ubiquitous inversions. It is possible these are as the result of the subsampling of 

the bam files before being passed to the structural variant caller, or perhaps the one size fits 

all SV filtering parameters.  
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5.4.2.2 ICGC breast cancer 

The smaller ICGC breast cancer cohort (n = 77) displayed a different profile to the GEL 

cohort. From figure 5.17, there was a trend where the shorter subgroup of samples displayed 

higher numbers of deletions, inversions, and translocations with some (4-5) anomalous 

samples in the longer category having more SVs. Despite the anomalies, for the deletion, 

inversion, and translocation SV types (and total) there was still a significant (p < 0.05) 

increase in SV numbers. 

 

 

 

Figure 5.16. Circos plots showing structural variants by - purple: translocation, red: deletions, yellow 
dots: insertions, green: inversions, blue: duplications. Copy number segments are plotted around the 
circumference with highlighting showing chromosomes that reach different complexity score thresholds 
10-30 yellow, 30-50 orange, and > 50 red. Chromosomes with more than 8 segments are also highlighted 
in light orange. SVs are filtered to be >10kb for deletions, inversions, and duplications. Data displayed is 
a random subset (n=170) from the Genomics England breast cancer cohort. 
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As a consequence of the reduced significant differences in SVs, the distinction between the 

longer and shorter samples was less obvious from the circos plots in Figure 5.18. Whilst less 

obvious looking at the plot, it is notable the “sparser” samples are more prevalent in the 

longer telomere length samples of the circos plot (as also shown in the left stacked bar plot of 

Figure 5.17).  

 

Figure 5.17. Stacked bar plot displaying the number of each type of structural variant, with the gradient 
bar showing the telomere length of sample in kb (A). Box plot showing the distributions of each SV type in 
the short (£3.81kb TL) and long (>3.81kb TL) groups with * displaying the 0.05, 0.01 and 0.001 
confidence level of Mann Whitney U short greater than long (B). Data displayed is the ICGC breast cancer 
cohort (n=77). 
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Figure 5.18. Circos plots showing structural variants by - purple: translocation, red: deletions, yellow 
dots: insertions, green: inversions, blue: duplications. Copy number segments are plotted around the 
circumference with highlighting showing chromosomes that reach different complexity score thresholds 10-
30 yellow, 30-50 orange, and > 50 red. Chromosomes with more than 8 segments are also highlighted in 
light orange. SVs are filtered to be >10kb for deletions, inversions, and duplications. Data displayed is the 
ICGC breast cancer cohort (n=77). 
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5.4.2.3 GEL CLL 

Splitting the Genomics England chronic lymphocytic leukaemia cohort (n=98) by the 2.87kb 

threshold previously defined by recursive partitioning of RCN complexity scores, a 

significant increase was only seen in the total number of SVs (p < 0.05) (figure 5.19B). A 

couple notable disparities between the GEL CLL cohort and ICGC breast cancer cohort is 

there are fewer of each (and total) SV type overall, and the anomalous samples with longer 

telomeres having more SV is missing in the CLL cohort.  

 

 

 

 

 

 

 

 

 

 

 

However, using a threshold of 2.26kb (identified previously as prognostic in CLL from 

telomere fusion analysis by Lin et al 2014), a significant increase (p < 0.05) in deletions and 

translocations can be observed (as well as total SVs) (figure 5.20B). 

Figure 5.19. Stacked bar plot displaying the number of each type of structural variant, with the gradient bar 
showing the telomere length of sample in kb (left). Box plot showing the distributions of each SV type in the 
short (£3.81kb TL) and long (>3.81kb TL) groups with * displaying the 0.05, 0.01 and 0.001 confidence level 
of Mann Whitney U short greater than long (right). Data displayed is the Genomics England chronic 
lymphocytic leukaemia cohort (n=98). 
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This decrease in each type and overall number of structural variants is also seen in the circos 

plots shown in Figure 5.21. Previously in the breast cancer samples there were very “dense” 

plots showing ubiquitous SVs, which are not seen in the CLL cohort. 

 

For each cohort, the telomere length thresholds defined by the copy number analysis were 

able to significantly (p < 0.05) stratify patients by at least total structural variant count. 

Whilst the largest GEL breast cancer cohort showed increased frequency of all SV types (p < 

0.001), this was not reflected by the ICGC breast cancer and GEL CLL cohorts, neither of 

which displaying a significant increase in duplications. Using the pre-established telomere 

threshold (2.26kb) in the GEL cohort also did not show an increase in inversions. Further 

interrogation of the SVs for each cohort was carried out in the chain linking analysis. 

Figure 5.20. Stacked bar plot displaying the number of each type of structural variant, with the gradient bar 
showing the telomere length of sample in kb (A). Box plot showing the distributions of each SV type in the 
short (£2.26kb TL) and long (>2.26kb TL) groups with * displaying the 0.05, 0.01 and 0.001 confidence 
level of Mann Whitney U short greater than long (B). Data displayed is the Genomics England chronic 
lymphocytic leukaemia cohort (n=98). 
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Chapter 5: Using publicly available genomic data to analyse the relationship between 
telomere length and genome complexity 

 

 193 

 

Figure 5.21. Circos plots showing structural variants by - purple: translocation, red: deletions, yellow dots: insertions, 
green: inversions, blue: duplications. Copy number segments are plotted around the circumference with highlighting 
showing chromosomes that reach different complexity score thresholds 10-30 yellow, 30-50 orange, and > 50 red. 
Chromosomes with more than 8 segments are also highlighted in light orange. SVs are filtered to be >10kb for deletions, 
inversions, and duplications. Data displayed is the Genomics England chronic lymphocytic leukaemia cohort (n=98). 
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5.4.3 Chain link 

The aim of the chain linking analysis was to gather insight into how these structural variants 

are related and identify cases of chromoplexy. Through statistical testing the probability of 

the proximity of breakpoints, clusters of SVs likely the result of the same events can be 

identified. The method is based on the ChainFinder algorithm developed by Baca et al and is 

described in chapter 2. 

5.4.3.1 GEL breast cancer 

As this analysis requires a p-value threshold for the testing of proximity of SVs, it is 

important to establish a suitable threshold to be used. In this case, this threshold was 

determined through precursive analysis across a range of values to create an elbow plot. This 

is a heuristic method where diminishing returns are rejected in favour a smaller cost (in this 

instance p-value). The elbow plot in Figure 5.22 shows that for any p-value used to classify 

whether SVs are linked, there is a significant (p < 0.05) increase in linked variants for 

samples predicted to have telomeres £3.81kb. Ultimately the decision was made to use a 

value of 0.2 due to the elbow formed at this value. 
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A subset of circos plots in Figure 5.23 shows (n=170) samples above and below the 3.81kb 

threshold shows far more chained SVs (coloured) lines for samples below the threshold. In 

addition to overall increased numbers, it is worth noting that the overall complexity of event 

appears to be increased in the tumours with shorter telomeres with circos plots showing 

clusters extending into a larger number of chromosomes. Chains found in the longer telomere 

length subset have a reduced complexity with fewer chromosomes involved.  

Figure 5.22. Elbow plot displaying the Mann Whitney U p-value (y-axis) for chained SV count (shorter TL 
predicted with telseq £ 3.81kb greater than longer > 3.81kb) by the binomial p-value (x-axis) used to test 
whether a cluster of SVs is closer than expected (i.e. classify cluster) ranging between 0.05-0.25. Data relating 
to the GEL breast cancer cohort (n=1591). 
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The overall increase in chained SVs is reflected in Figure 5.24 showing a box plot for the 

distribution in count across the samples above and below the 3.81kb threshold. The Mann 

Whitney U p-value for SV count of chained SVs for shorter samples being larger than longer 

is 8.9x10-4.  The value of 0.0 is displayed above the non-chained count boxplot as the value is 

less than 10-5 and a rounding error having occurred. 

 

 

The validity of these clusters is confirmed by the assortativity, and modularity graphs shown 

in Figure 5.25. As explained in the methods chapter, the algorithm constructs a graph, using 

breakpoints as nodes, and edges between them are created if the p-value is below a threshold 

for how close they are expected to be (Baca et al. 2013; Cleal et al. 2019).  Assortativity can 

be thought of as the correlation between nodes (breakpoints) in a cluster, and modularity as 

the uniqueness of a cluster (group of chained SVs). Comparing the difference between the 

observed data and a randomly generated dataset, the probability these correlations and unique 

clusters are formed through chance are calculated.. Both metrics when compared to a 

Figure 5.24. Box plot showing the number of chained and non-chained SVs for samples above and below 
a predicted (with telseq) telomere length threshold of 3.81kb, with the Mann Whitney U p-value for testing 
if shorter is greater than longer above the boxes. SV clusters determined by the chain linking pipeline 
using a binomial p-value threshold of 0.2. Data displayed is from the GEL breast cancer cohort (n=1591). 
The value of 0.0 is displayed above the non-chained count boxplot as the value is less than 10-5 and a 
rounding error having occurred. 
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randomly generated set show highly significant coefficient p-values at 1.1x10-36 and 1.2x10-42 

with respect to assortativity and modularity. The figure displays this information as a 

histogram overlayed with a KDE fit for the distributions in the values. 

 

 

5.4.3.2 ICGC breast cancer 

Elbow plots in Figure 5.26 show there is an uneven pattern when increasing the binomial p-

value threshold required for cluster classification. Due to the unexpected shape of the plot 

from the range tested in GEL, additionally values between 0.01 and 0.05 were also evaluated 

for a potential elbow. Aside from a general decrease in p-value for the n clustered SVs for 

short greater than long, there are small increases at 0.03, 0.04, and 0.1, with a much larger 

increase at 0.25 (from 0.2). The value of 0.2 for binomial testing was determined as optimal 

as it had the lowest Mann Whitney U p-value.  

Figure 5.25. Assortativity coefficient values for random (blue) and SV clusters (red) left. Modularity of 
random (yellow) and SV clusters (purple). SV clusters determined using a binomial p-value threshold of 0.2. 
Both assortativity and modularity shown as histogram overlayed with a KDE fit for the distributions in the 
values. Data relates to the GEL breast cancer cohort (n=1591). 
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Whilst the number of chained SVs not significant (p = 0.088) between the shorter (TL £ 

4.45kb) and longer (TL > 4.45kb) subsets, the circos plots in Figure 5.27 reveal that the 

frequency of samples containing chained SVs interacting with 2 or more chromosomes was 

higher in the shorter subset. For the shorter subgroup 16 out of 27 (59%) of samples contain 

chains interacting with 2 or more chromosomes compared to the 20 out of 48 (42%) for the 

longer classified samples. This implies that chromoplexy is more common in patients with 

cancers that have shorter telomeres. 
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Figure 5.26. Elbow plot displaying the Mann Whitney U p-value (y-axis) for chained SV count (shorter TL 
predicted with teltool £ 4.45kb greater than longer > 4.45kb) by the binomial p-value (x-axis) used to test 
whether a cluster of SVs is closer than expected (i.e. classify cluster) ranging between 0.01-0.05 (left) and 
0.05-0.25 (right). Data relating to the ICGC breast cancer cohort (n=75). 
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Figure 5.27. Circos plots displaying the clusters of variants in colour (red, blue, green, purple), with non-clustered 
variants in grey as determined by the chain linking pipeline using a binomial p-value threshold of 0.2. Number 
shown top right of each circos plot is the telomere length as predicted by teltool, and samples are separated by the 
red line in the middle by a teltool prediction threshold of 4.45kb. Data displayed relating to ICGC breast cancer 
cohort (n=75).  
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An increase in chained SVs was also apparent from the box plot (figure 5.28), the distribution 

of the number of chained SVs between samples above and below the predicted 4.55kb 

telomere length threshold is higher whilst not significant (p = 0.088). However, if the two 

largest outliers in samples above 4.55kb are discounted this value is then significant at 0.036 

(with removing just the top outlier dropping 0.088 down to 0.058). 

 

 

 

Figure 5.29 confirms these groupings of SVs into chained are valid with assortativity 

coefficient p-value of 2.7x10-4, and modularity p-value 8.3x10-5 when compared to a 

randomly generated set.  
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Figure 5.28. Box plot showing the number of chained and non-chained SVs for samples above and 
below a predicted (with teltool) telomere length threshold of 4.55kb, with the Mann Whitney U p-value 
for testing if shorter is greater than longer above the bars. SV clusters determined using a binomial p-
value threshold of 0.2. Data displayed relating to ICGC breast cancer cohort (n=75).  
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5.4.3.3 GEL CLL 

The “elbow plot” shown in Figure 5.30 does not demonstrate a classic elbow pattern, this 

likely due to the smaller number of structural variants. The graph is striated with bands 

showing the same Mann Whitney U p-value for 0.05 and 0.10 of ~0.100, then decreasing to 

~0.065 for binomial p-values between 0.15 to 0.25. This is not unexpected as the smaller SV 

count to begin with leads to the same smaller groups of SVs being classified as chained 

between varying the binomial classification value. Due to it being the lowest value in the 

band, 0.15 was used for the binomial p-value threshold. 

 

 

 

 

 

 ��
 ��� ��
 ���
���������

�

��

��

	�

��
��
��
��
��
��
�

�����������������	����


Figure 5.29. Assortativity coefficient values for random (blue) and SV clusters (red) left. Modularity of 
random (yellow) and SV clusters (purple). SV clusters determined using a binomial p-value threshold of 
0.2. Both assortativity and modularity shown as histogram overlayed with a KDE fit for the distributions 
in the values. Data relates to the ICGC breast cancer cohort (n=75). 
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The circos plots displayed in Figure 5.31 show that only 5 samples in the cohort have chained 

SVs for the p-value threshold of 0.15, all five of which have telomere lengths below the 

2.87kb threshold (as determined through complexity score partitioning analysis). Out of these 

five, only one sample (2.53kb) has a chain across 2 chromosomes. Two samples have chains 

connected to three chromosomes, with one (2.12kb) containing a separate chain existing 

solely on chromosome 15. Out of the remaining two samples with chained SVs; the shorter 

(0.87kb) has one cluster spanning chromosomes 2, 6, 7, 8, 9, and 11, with the longer (2.73kb) 

having two clusters each spanning more than 3 chromosomes. 

Figure 5.30. Elbow plot displaying the Mann Whitney U p-value (y-axis) for chained SV count (shorter 
TL measured with STELA £ 2.87kb greater than longer > 2.87kb) by the binomial p-value (x-axis) used to 
test whether a cluster of SVs is closer than expected (i.e. classify cluster) ranging between 0.05-0.25. 
Data relating to the GEL CLL cohort (n=98). 
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Figure 5.31. Circos plots displaying the clusters of variants in colour (red, blue), with non-clustered variants 
in grey as determined by the chain linking pipeline using a binomial p-value threshold of 0.15. Number shown 
top right of each circos plot is the telomere length as measured by STELA, and samples are separated by the 
red line in the middle by a TL threshold of 2.87kb. Data displayed relating to GEL CLL cohort (n=98). 
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Plotting the number of chained and non-chained SVs against telomere length as a stacked bar 

plot, the 5 samples containing chained SVs can be seen clearly (figure 5.32).  

 

 

 

The small number of samples containing SVs are once again highlighted in Figure 5.33. 

Despite the small number of samples containing chained SVs, the Mann Whitney U statistic 

is close to significant with a p-value of 0.065. Generally, the number of non-chained SVs is 

also higher whilst again the Mann Whitney U p-value is not significant at 0.22. 

Figure 5.32. Stacked bar plot showing the number of chained and non-chained SVs (binomial p-value 
threshold 0.15) ordered by sample telomere length. Data displayed relating to GEL CLL cohort (n=98). 
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As expected with the small number of samples containing chained SVs the assortativity and 

modularity coefficients are not significant at 0.16 each (figure 5.34).  

 

 

The observations from this analysis showed that clustered chains of SVs, which are indicative 

of chromoplexy, are more common in cancers with shorter telomere lengths for breast cancer. 

Figure 5.33. Box plot showing the number of chained and non-chained SVs for samples above and below a 
measured (with STELA) telomere length threshold of 2.87kb, with the Mann Whitney U p-value for testing 
if shorter is greater than longer above the boxes. SV clusters determined using a binomial p-value 
threshold of 0.15. Data displayed is from the GEL CLL cohort (n=98). 

Figure 5.34. Assortativity coefficient values for random (blue) and SV clusters (red) left. Modularity of 
random (yellow) and SV clusters (purple). SV clusters determined using a binomial p-value threshold of 0.15. 
Both assortativity and modularity shown as histogram overlayed with a KDE fit for the distributions in the 
values. Data relates to the GEL breast cancer cohort (n=98). 
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A significant increase in chained SVs (p < 0.001) is observed in the GEL breast cancer 

cohort, whereas in the case of the ICGC breast cancer cohort, significance (p < 0.05) is only 

achieved by removal of two anomalous results. In both cases, the validity of these clusters 

was confirmed by testing against the assortativity and modularity of a randomly generated set 

of clusters. Whilst not statistically significant, it is accurate to state that chained SVs (even if 

not fully validated by testing against a randomly generated dataset) only occurred in CLL for 

samples below a telomere length threshold of 2.87kb. 

5.5 Discussion 

It is clear from the relative copy number analysis, there appears to be a difference in the copy 

number profiles of shorter telomere length samples when compared with their longer counter 

parts. This division is most apparent in the largest data set (Genomics England breast cancer), 

but even within the smaller ICGC breast cancer cohort, a similar pattern of the shortest third 

of samples exhibit more complex genomes regarding the copy number profile. Using teltool 

for the telomere length predictions of the ICGC breast cancer cohort was not necessarily 

about getting accurate absolute telomere length predictions, but more so served as a means of 

ordering the samples by predicted telomere length. For this reason, the 4.55kb threshold 

determined should not be taken absolutely. For CLL it appears that whilst less complex and 

with a different proportion of samples (roughly two thirds instead of one), this cohort can be 

separated by recursive partitioning along telomere length to reveal a significant difference 

between a short and long class of samples. Another dissimilarity between CLL and breast 

cancer, is whilst breast cancer sees increases in both gains and losses when decreasing 

telomere length, it is majority losses which are affected in CLL. 
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 Structural variant analysis for the most part corroborates the findings of the relative 

copy number analysis. The GEL breast cancer cohort, once again most likely due to its size, 

displays the most obvious increases in SVs (all types and total at p < 0.001) when using a 

pre-established telomere length threshold (3.81kb). Although the threshold used for the ICGC 

cohort (4.55kb) was at a different, it should not take away from the fact significant increases 

can be seen in all SV types except duplications (p < 0.01 for translocations and 0.05 for 

others) when ranking samples by a prediction of telomere length. On the other hand, there are 

potential issues that must be acknowledged when looking at this dataset. Both the accuracy of 

the telomere length, and “one size fits all” approach to structural variant calling may be 

contributing factors as to why this cohort looks different in both the copy number and 

structural variant analysis. The likely artifact of ubiquitous inversions which arose potentially 

either through the subsampling and/or uniform settings for SV calling across a varied cohort 

which were only apparent in the GEL breast cancer cohort and were relatively uncommon. It 

would have been preferable to find a method to remove these, however because of time and 

the Genomics England (GEL) research environment (RE) restriction this was not carried out. 

Due to their frequency, it is unlikely they skewed results too heavily as they appeared 

randomly across all telomere lengths. 

 These issues should not mean however that these results should be totally 

disregarded. Without absolute telomere length data, which is missing from the vast majority 

of datasets, this is the only method for performing such analysis. However, a case where real 

telomere length data is present in the form of the GEL CLL data, also shows significant 

differences in the number of SVs in short compared to long telomere length samples. In this 

cohort, total SV number increase (p < 0.05) was seen in a threshold generated from copy 

number analysis (2.87kb), and significant (p < 0.05) increases in deletions, translocations, 

and total SV count when using a literature defined telomere length threshold (2.26kb). This 
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threshold (2.26kb) determined through telomere fusion analysis and had the highest hazard 

ratio (HR) score for overall survival out of values below the prognostic value of 3.81kb. The 

value of 2.87kb determined through the copy number analysis was relatively close (~610bp) 

to this value. 

 An important point to consider is the CLL cohort was part of a clinical trial. This is 

relevant to this analysis as selected patients had a poorer prognosis, which has been shown to 

be correlated with telomere length, so it was more likely the cohort would and do have 

shorter telomere lengths. Whilst the trials did not fully exclude patients with deletions of 17p 

(as shown in figure 5.11 and mentioned in the original publications), it was taken into 

consideration as part of the trial (Howard et al. 2017; Munir et al. 2017). This means the 

majority of patients would have intact Tp53, which could lead to more stable genomes (via 

mechanisms outlined in chapter 1).  

 Chain link analysis revealed that significant differences (p < 0.001) were observable 

in the GEL breast cancer dataset. Upon removal of two outlies for the ICGC breast cancer 

cohort, a significant difference (p < 0.05) can also be seen, however in small cohort it is 

questionable whether it is appropriate to remove them. For both cohorts, the classification 

into chains is suitable as revealed by the assortativity and modularity values. Where this is 

not the case though is the CLL data. Despite this, the data does suggest there may be some 

correlation with a p-value close to 0.05 at 0.065, however further analysis is required to 

validate this suspicion. Unfortunately, due to the difficulties of working within the GEL RE, 

it was not possible to experiment further with testing different variables such as the number 

of breakpoints to find potentially improved outcomes of the chain linking analysis. Results 

from the analysis indicated that perhaps with a refined process, which is able to iterate over 

multiple variables, it may be possible to use a recursive partitioning approach to 

independently stratify cohorts from the copy number approach. Alluded to by the CLL 
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results, this would possibly be a more effective method for stratifying (TL threshold 

discovery) in less complex cancers where phenomena such as chromothripsis and 

chromoplexy are less common. 

Chromothriptic oscillations (between 2 or 3 CN states) are more commonly observed 

within the shorter sections of the copy number “squiggle” plots. Whilst not exclusively 

occurring below the recursive partitioning threshold outlined by the complexity score for 

breast cancer, this oscillating pattern is not seen above 2.71kb for CLL. It is worth noting 

even though it was first reported in CLL, it has one of the lowest frequencies of 

chromothripsis; breast cancer on the other hand has one of the highest across all cancer types 

(Cortés-Ciriano et al. 2020). One explanation for the chromothripsis observed in the RCN 

analysis is breakage fusion bridge resolution outlined by Maciejowski et al, however without 

further data it is unclear which mechanism is responsible in each instance.  

The chain linking analysis which is based on the work by Baca et al also displays the 

type of clustered SVs across multiple chromosomes that are indicative of chromoplexy. The 

most likely cause for the observed differences between the shorter and longer predicted 

telomere length samples is of replicative origin following escape of telomere crisis. Two 

models for chromoplexy are presented by Baca et al: the “sequential-dependant” and 

“simultaneous” model, distinguished by multiple and a single cell cycle being involved 

respectively. Without multiple rounds of sequencing over the cancer cells progression it is not 

possible to declare which type can be attributed to each sample. 

Instances of consistent gains across singular (possible chromoanasynthesis) or pairs of 

chromosomes are observable within both cancer types. The gains of chromosome 12 

observed frequently in the CLL cohort is around the expected ~20% for trisomy 12 (Howard 

et al. 2017; Munir et al. 2017; Abruzzo et al. 2018). Along with gains in chromosome 12, the 

deletions in 11q and bands of deletions in 13q (and less commonly deletions in 17p, and 6q) 
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are consistent with previous research from Döhner et al  (Döhner et al. 2000; Hallek et al. 

2018). These common lesions are distinct for different cancer types and are selected for. An 

example of this is the loss of 11q (especially 11q23) in CLL is a frequent event during 

pathogenesis due to its association with the ATM gene loci, heavily involved in the DNA 

damage response (Stankovic and Skowronska 2014). Equally, 13q(14) deletions which were 

also observed are linked to the loss of microRNAs involved in apoptosis related pathways 

(Khalid et al. 2021). Unlike with CLL, it is possible that the gains seen in chromosomes 1, 8, 

17, and 20 are the result of chromoanasynthesis, which is congruent with results shown with 

MPseq of breast cancer found by Vasmatzis et al, as along with gains of copy number, large 

clusters of SVs can also be commonly found within these chromosomes  (Vasmatzis et al. 

2018). 

Taken together the findings from all the different analyses designed to investigate 

various aspects of genomic complexity, a conclusion that telomere length is associated with 

the complexity of cancer genomes can be drawn. Potential biological mechanisms of how 

telomere dysfunction may drive genomic instability and the clinical implications of this 

relating to cancer will be discussed in the next chapter. 
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Chapter 6 Conclusion 

6.1 Telomere length and genomic complexity 

6.1.1 Results 

The data presented in this thesis demonstrates a correlation between telomere length and 

genomic complexity. Overall, the data shows a trend where patients can be separated into a 

shorter and longer group classified by a specific telomere length threshold for each cohort 

that marks a transition in genomic complexity. Chapter 4 which used telomere length data 

generated with a high-resolution molecular assay, showed the clearest distinction between the 

genomic complexity of samples with telomeres above and below a telomere length threshold. 

Across each type of analysis: copy number, counting and chaining of structural variants, there 

was a clear visual distinction between “short” and “long” samples. This distinction was 

further reinforced by the bioinformatic analysis that provided significant p-values in each 

respective analysis. In chapter 5, this phenomena of segregation of complex profiles by 

telomere length was also established, however the clarity in some cases was less well defined. 

It was considered that this difference in clarity may have arisen because less accurate 

bioinformatic based approaches to determine telomere repeat content and infer telomere 

length were employed. The largest cohort (GEL breast cancer n=1591) showed highly 

significant (p<0.001) results across every analysis aimed at investigating different aspects of 

genomic complexity. The ICGC breast cancer cohort (n=~77) also exhibited significant p-

values for differences in the copy number profile (p<0.01), and for counts of all structural 

variant types outside of duplications (p<0.05). The genomes analysed in the CLL cohort 
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(n=98) overall appeared less complex than breast cancer, which is congruent with previous 

research. Although first being uncovered in CLL, it has since been shown that CLL has one 

of the lowest frequencies of chromothripsis of any cancer, whilst breast cancer shows one of 

the highest rates (Stephens et al. 2011; Cortés-Ciriano et al. 2020). Despite not all tests 

showing significant values, there were distinct thresholds that yielded significant (p<0.05) 

results for copy number, deletions, translocations, and total structural variant count. 

The telomere length thresholds defined on the basis of genomic complexity are 

consistent with independently established telomere length thresholds that define both 

prognosis and prediction of response to treatments of patients with cancer (Lin et al. 2010; 

Simpson et al. 2015; Strefford et al. 2015; Hyatt et al. 2017; Williams et al. 2017; Norris et al. 

2019; Pepper et al. 2022). These observations point to a fundamental characteristic of 

telomere length and biology that is clearly important for the progression to malignancy. The 

existence of a telomere length threshold revealed by these data, point to telomere length and 

dysfunction as a biological origin for the increased genomic complexity seen in these 

samples. It is thought that dysfunction of short telomeres arises because of their inability to 

bind sufficient shelterin through the depletion of binding sites for TRF1 and TRF2, and the T-

loop structure is unable to form (de Lange 2009; Zhu et al. 2019; Rossiello et al. 2022). A 

model proposed by Cesare and Karlseder supposes telomeres have three states: closed with 

functional intact T-loop structure, intermediate where excessive shortening has prevented 

protective structure formation, and uncapped with all TRF2 binding sites have been eroded 

(Cesare and Karlseder 2012). If there were a gradient of increasing genomic complexity with 

decreasing telomere length, it could be argued that this correlation is either the result of 

complex cancers increased proliferation causes shortening of telomeres, or that shorter 

telomeres cause the processes that lead to increased complexity. The “hard line” present at the 

threshold is less explainable with the former theory, whereas mechanisms for the latter have 
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been explored previously by Baird et al. Furthermore, the presence of a threshold implies 

there are at least 2 states for telomeres: “long” and stable, or “short” and dysfunctional which 

is in line with the model proposed by Cesare and Karlseder with regards to the outcome of 

the intermediate and uncapped states being similar. Once the short and dysfunctional 

telomeres state is reached, the phenomenon of increased genomic complexity is easier to 

explain mechanistically through events such as telomere fusions. 

Several pathways have the potential to drive genomic complexity in the context of 

short dysfunctional telomeres. When shorter telomeres are processed in vivo as double strand 

breaks, telomere fusions occur, which can then be subjected to a variety of recombination 

pathways are used to stabilise the cell to prevent cell death, or to cycles of anaphase bridging 

breakage and fusion. Telomere to telomere fusions can create dicentric chromosomes, which 

within breakage-fusion-bridge cycles can break simply to form fold-back inversions, or 

complexly from mechanical forces or nuclease attacks to create multiple fragments. These 

fragments can be repaired through replicative repair such as Microhomology-Mediated Break 

Induced Replication (MMBIR), Multi-Invasion-Induced Rearrangements pathway (MIR), or 

Non-Homologous/Theta mediated End Joining (NHEJ/TMEJ) (Cleal et al. 2019; Liddiard et 

al. 2022). Complexity can also be induced through micronuclei formation fragmentation 

through faulty DNA repair mechanisms, and then reincorporated into the main nucleus with 

the alterations (Zhang et al. 2015; Cleal and Baird 2020; Lin et al. 2023).  

The data presented in chapters 4 and 5 relating to chain linking analysis of breast 

cancer cohorts revealed loci of SV chains deviated from randomness. The presence of such 

clusters suggests spatial confinement of the genome or multi-step processes as mechanisms 

behind part of the observed complexity. The mechanisms are not known for how 

chromoplexy is generated, however it can be speculated based on these two characteristics. 

Lagging chromosomes or chromosome fragments that are incorporated into micronuclei 
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offers a plausible method of how these loci are spatially confined. It is also possible that 

replication-based strand invasions of spatially nearby loci within the main nucleus could 

occur. Equally, oscillations characteristic of chromothripsis were observed in the copy 

number analysis in these chapters. Chromothripsis is presumed to occur via mechanisms 

involving random end joining resulting from a single event and has been associated with 

NHEJ and TMEJ. Relative copy number analysis also alluded to the presence of 

chromoanasynthesis with whole chromosomes and chromosome arms exhibiting large gains 

indicative of duplication or triplication. This process has been linked to fork-stalling and 

template switching (FoSTeS) or MMBIR. In aggregate these results imply a plethora of 

mechanisms are responsible in driving a range of complexity, with origins relating to 

dysfunctional telomeres. Further analysis perhaps using long read sequencing of telomere 

fusions could help uncover more specifics and remove the shroud of speculation. 

6.1.2 Clinical Implications and Applications 

It has been documented there is a correlation between increased genomic complexity and 

poorer prognosis (Goergen and Al-Sawaf 2024). In this study, the complex karyotypes of 

CLL were subdivided into 3 groups depending on the number of aberrations (low £ 2, 

intermediate 3-4, and high ³ 5) based on previous analysis that also identified this correlation 

(Leeksma et al. 2020). Goergen and Al-Sawaf in their meta-analysis compared treatment 

outcomes for each category of complexity. They found chemo- and chemoimuno- therapies 

had worse outcomes in complex karyotyped patients than low complexity patients. High 

complex karyotyped patients showed better outcomes in ibrutinib-containing treatment 

regimens compared to those treated with chemo and chemoimmuno therapies. Approaches 

utilising copy number alteration detection of specified regions have also been proven to be 

prognostic. Meta-analysis from Chun et al has shown there are several genomic regions with 
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accompanying candidate genes that range from established markers (13q - miR15a/16–1 and 

17p13 – Tp53), suspected (11q13 - ATM), and recurrent (20q11 and 1p36) which are and 

could be prognostic when loss of heterozygosity occurs (Chun et al. 2018).  

It has previously been shown that the telomere length threshold, defined functionally 

by the presence or absence of telomere fusions, is able to stratify patients in prognostic sub-

groups (Lin et al. 2014). Alongside prognosis, telomere length also has potential power in the 

prediction of patient treatment responses. A study by Norris et al on the ARTIC/ADMIRE 

CLL cohort (also used in Chapter 5) have shown TL as a predictor of both progression free 

survival (PFS) and overall survival (OS) in patients treated with chemoimmunotherapy 

combination of fludarabine, cyclophosphamide, rituximab (FCR) based therapies (Norris et 

al. 2019). Subsequent analysis from Pepper et al on the same cohort showed TL in 

combination with IGHV mutation status and CD49d expression could be used to assess risks 

in assigning treatment. For cases where wild-type Tp53 was present but IGHV was mutated, 

shorter telomeres and cases of longer telomeres but with CD49d mutations it would be 

suggested to use chemo-free treatment options, whereas long telomeres with no CD49d 

mutations would be suitable for FCR based treatment (Pepper et al. 2022). It is possible that 

shorter telomere cancers are so unstable this confers the resistance shown against to 

traditional chemo (and radio) therapies that aim to damage DNA to the point apoptosis is 

induced. 

Telomere fusions are likely mediated through A-NHEJ which is a LIG3 dependant 

pathway as opposed to C-NHEJ requiring LIG4. This was demonstrated by Jones et al who 

showed through gene knockout (KO) experiments that LIG3 is required for escape of 

telomere crisis, whereas LIG4 is not (Jones et al. 2014). Further experiments from Ngo et al 

have also demonstrated PARP inhibitors olaparib and rucaparib were successful in preventing 

cells from escaping crisis as well (Ngo et al. 2018). This suggests cancer cells with shorter 
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telomeres might therefore respond better to PARP (involved in signalling LIG3 to sites of 

DNA damage) and POLQ (polymerase involved in A-NHEJ) inhibitors which act to inhibit 

DNA repair mechanisms. Inhibition of A-NHEJ should prevent stabilisation and subsequent 

escape of telomere crisis, therefore making it more likely the DDR triggers apoptosis. 

Combining the previous observations in CLL with the findings of this investigation, it is 

reasonable to extrapolate the idea that telomere length plays a role in the oncogenesis and 

severity of other cancer types. 

6.2 Challenges  

6.2.1 Sequencing technology di_erences 

During the creation of a machine learning (ML) telomere length prediction tool, unforeseen 

issues were encountered relating to differences in data quality between sequencing 

technologies. For example, with the method outlined in the teltool section, one could 

reasonably assume that reads containing TTAGGG repeats when extracted and aligned to a 

reference sequence containing purely TTAGGGn should yield a GC% value of 50% 

regardless of sequencing technology. However, consistently BGISeq would yield values of 

~52% and Illumina ~48% (figure 3.10A). Although this appears a relatively small deviation, 

ML models can be very sensitive to deviations from training data, known as data drift 

(Rahmani et al. 2022). In an attempt to address this issue methods such as optimal transport 

were investigated to transform data prior to analysis, aiming to improve the alignment 

between the distributions of test data and training data (figure 3.16) (Peyré and Cuturi 2019). 

The difference in even a simple variable such as GC% is likely due to the polymerases used 

in each sequencing technology, or possibly library preparation issues diminishing/enriching 

sequences sensitive to GC content, or even the chemistry determining the annealing to 
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flowcells/ZMWs. The observation of this difference led to the generation of a reference 

agnostic kmer count of BGI and Illumina samples (see Chapter 2.14.1). This was analysed 

with the help of an MSc student Laurie Fabian, who found that BGI data displayed a flatter 

coverage profile across the genome compared to Illumina. These differences are not often 

discussed, accounted, or tested for when considering bioinformatic tools and workflows. As 

Figure 3.19 shows, the same bioinformatic tool can have noticeably different performance in 

accuracy of prediction, depending on which platform is used for sequencing. This thesis 

highlights that this should especially be considered when developing or using a machine 

learning approach for genome data analysis. 

6.2.2 Public repositories 

I expected there to be challenges when working with public repositories, but I was not 

prepared for the reality. Restriction appears to be a trend for GEL (and other repositories), as 

the whitelist of IPs appears to be extremely small. Looking at this is from a security 

perspective this is ideal for minimising malicious traffic, but from a researcher standpoint this 

can create limitations. From their policy it appears as if they want everything in and outbound 

of their system to go through the “airlock” system which requires admin review before 

passage is approved with a strict rubric for what is permitted (even screenshotting the 

environment is a breach of policy which can lead to pursuit of “legal or criminal action 

against both the individual and the institution”). However, the inbound airlock can be 

bypassed through importing files in containers which can be pulled from Docker hub. This 

asks the question what the purpose is for restricting inbound files. As well as limited 

information which could be bypassed outbound in the form of taking a picture of the screen 

which whilst breaking policy, this method would have no way of being detectable in software 

and is based solely on trust. Another issue faced as a researcher is the organisation of data 
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within the Helix HPC. All genomes are stored under one directory ordered by date, so to 

access paths relating to a cohort, researchers go through the LabKey system to find these. The 

data pertaining to the CLL cohort had three fields of information which could be indicators of 

whether a file was sequenced germline or cancer (type column with “gl” or other like “t1”, 

parent directory starting with CANC or other, sample name CancerX_NormalY or X). These 

conflicted in a way that there is no actual correlation between any of these variables, and 

there was a duplication where two unrelated columns had been swapped with each other. 

Even asking a researcher who had previously worked on the cohort confirmed an incorrect 

assumption about which was the correct one, and analysis of samples was under this false 

concept of germline and cancer samples was conducted before a correction was made. 

Storage of this information in a highly esoteric format such as this feels like an unnecessary 

barrier which could lead to incorrect analyses being conducted. There is probably an 

explanation for why it is stored this way, but why does the result of this storage solution 

appear so confusing to people not on the backend? 

 The International Cancer Genome Consortium (ICGC) uses a vastly different 

approach to how researchers access data, storing data within an AWS bucket that can be 

accessed via their proprietary “score-client”. The score-client would regularly provide cryptic 

error messages and frequently refuse to download data on AWS. This prompted as switch to 

using the Collaboratory for analysis. Setting up instances requires configuration of a network 

system before being able to access created instances. The advantage over GEL in this case 

was having full control of most parts of the system. After the time spent to write a script that 

would have a fresh operating system install to the point where it could perform desired 

analysis, speed could be scaled by creating more instances to compute samples in parallel. It 

was tested whether mounting the data instead of downloading it would be viable, which 

would save both on time and cost of not having to give each instance large amounts of 
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storage. Unfortunately, the speed with mounting approach was not viable as transfer speeds 

amounted to kb/s for large, upwards of 100gb files. At the time of analysis (issue was later 

fixed), I could not find the IDs the score client used to download files in the csv downloaded 

from data portal, so I wrote a web scraper to pull them directly from the webpages hosting the 

information about the samples along with all the associated files accessible from the. With 

this approach, it would technically be possible to transfer any file from the repository locally, 

given enough storage space. 

 It’s clear that some of the issues faced were due to systems whose design had good 

intentions. The airlock policy for example, adheres to data protection laws. However, in one 

case, whilst attempting to extract a csv file through the airlock system, I had informed the 

data admin that data outside of the research environment had been provided by a previous 

researcher who had worked on the dataset. Despite this it was cited that the csv in the 

requested format was in breach of criteria 6.8 of the airlock policy, so I was made to 

“anonymise” the names before being allowed to extract the data from GEL. It was made clear 

to them in an online meeting this “anonymisation” process was technically reversible as this 

is the only way the extracted information could be usable. Under a different name this data 

was now acceptable to export. I think this example highlights there are flawed areas in the 

system. To conform to guidelines, the same “anonymisation” process was performed outside 

of the research environment, but this felt unnecessary especially as the original was available. 

 If bioinformatics is meant to be a collaborative effort and reproducibility is taught as 

one of the core tenants, why then are there so many restrictions when using public 

repositories? An argument could be made that sufficient anonymisation at the first link in the 

chain (e.g. assigning random strings to identify patients where a record of this link is kept 

only on paper which is destroyed at the end of a trail) would allow genomic and clinical data 

to be publicly shared through open source means such as torrent networks. Storage has 
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decreased in price in recent years, where a 12TB hard drive can now be purchased for around 

£120, providing a relatively affordable route to store data for processing. Whilst it is true that 

genomic information is highly identifiable, without a reference how likely would it be 

sensitive information is linked back to an individual? What would be gained through doing 

this? Is this information valuable enough to go through the effort? If someone has the 

knowledge on how to do this, would it not already be occurring within these environments if 

it were profitable to exploit? Are there ethical concerns if the benefits and risks are explained 

to patients who voluntarily agree to the open sharing of their data? This model of data sharing 

is similar but more open than the European Genome-Phenome Archive (EGA), who has 

shown its possible for data permission classes to be unrestricted in their use (https://ega-

archive.org/access/data-access-committee/data-use-ontology/). 

6.3 Future research 

If the project were to be continued there would be several changes that could increase the 

quality of the analysis. In an ideal world, there would be a large dataset containing WGS 

sequenced with the same model sequencer along with matched STELA telomere length 

measurements. This would allow for validation of telomere length thresholds alleviating 

variance from prediction-based methods and ensure consistency across methods interrogating 

the data. 

Sequencing multiple cancer types could also help elucidate the genomic complexity 

profiles of different cancers, along with comparing if thresholds are consistent across cancer 

types and whether there is a universal threshold. As previous research from Lin and Simpson 

et al has shown, the fusogenic range of 3.81kb initially defined in CLL is optimal in breast 

cancer, with stratification by the subset mean for CLL of 2.26kb is optimal (Lin et al. 2014; 

Simpson et al. 2015). A speculative explanation of why these are different could be due to the 
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higher purity of CLL compared to solid cancers such as breast cancer which contain varying 

amounts of tumour, stromal, lymphocytic cells. Additionally, telomere length has also been 

shown to be prognostic in Multiple Myeloma and Myelodysplastic syndromes (MDS) (Hyatt 

et al. 2017; Williams et al. 2017). The underlying biology is likely conserved between cancer 

types, so it is plausible the telomere length threshold where genomic complexity is increased 

could be a biological constant.  

It would also be interesting to test for mutations in foci related to DNA repair and 

damage response pathways and explore any correlations. Mutational signatures could also be 

tested for any associations to see more specifically what is contributing to the observed 

complexity. These targets could help explain or hint towards biological assays which could be 

performed to understand underlying mechanisms for what has been observed. Previously 

mentioned moving to a long-read sequencing approach could improve contig assembly and 

help elucidate details of telomere fusions in greater detail. Additionally, clinical data to 

accompany this dataset would be a large bonus. Complementary data from optical genome 

mapping could also verify findings from SV calling. 

A dataset with these improvements could more certainly define mutational signatures 

of cancers that have been through telomere crisis. Overall, these suggestions would further 

aid in establishing the main findings of this thesis. These findings can be summarised 

telomere length thresholds generated from copy number analysis and from the literature are 

able to significantly partition cohorts where below the threshold increased levels of genomic 

complexity in the form of: copy number alterations, raw counts of structural variants across 

multiple types, and proximate clusters of structural variants. 
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Appendices 

 

 
 
 

Appendix 1 Mappability vs GC matrices plotted in 3D space for 5 samples. 
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Appendix 2 Relative coverage plotted against GC%, split by BGI and Illumina 
sequencing as well normal and tumour samples. 
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Appendix 3 Telmer length variable using LiftOver conversion between hg38 and hg19 regions. 

Appendix 4 Model for adjacency graph approach theorised for telomere length prediction. 
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Appendix 6 Table to show the outcome of OR (|), AND (&), and NOT (~) bitwise 
operations 

Appendix 5 GC% histograms for each region split by sequencing technology (blue: Illumina, orange: 
BGISeq)  



 

 227 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A B C 

D 

Appendix 7 Relative copy number after being processed by low pass filtering (A). Box plot to show the 
chromosome complexity score (shown under chromosomes > 4, sum of all instances peak and trough > 0.5 
apart) (B). Recursive analysis of below complexity scores greater than above (orange chromosome, blue 
genome) (C), Box plot to condense all complexity scores for above and below recursive threshold (D). 
Data displayed is a local breast cancer cohort (n=40). 
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Appendix 8 Stacked bar plot to show number of SV types in 
samples with TL indicated by colour from right gradient bar. 
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Appendix 9 Heatmap showing relative copy number segments from pcf analysis (input of 10kb coverage 
windows) clipped between -1.5 (blue loss) and 1.5 (red gain) with the Y-axis displaying ordered from 
longest telomeres (top) to shortest (bottom). Data displayed is a random subsample (n=100) of the GEL 
breast cancer cohort 

 
 

 
 
 
 
 
 
 
 
 
 
 



 

 230 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A B C 

Appendix 10 The coverage graph (A) shows the relative copy number (RCN) segments scaled so each 
chromosome is uniformly sized, with the length of each segment on the x-axis being logged. The complexity 
score boxplots (B) show the distribution of the complexity scores across all chromosomes for each sample, 
with means indicated by the green diamond. The recursive partition line graph (C) shows the t p-value for 
the Mann Whitney U test for complexity score at and below each position > above for the sum (genome 
blue) and individual chromosome (orange). Data displayed is a random subsample (n=100) of the GEL 
breast cancer cohort. 
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Appendix 11 Heatmap showing relative copy number segments from pcf analysis (input of 10kb coverage 
windows) clipped between -1.5 (blue loss) and 1.5 (red gain) with the Y-axis displaying ordered from 
longest telomeres (top) to shortest (bottom). Data displayed is a random subsample (n=100) of the GEL 
breast cancer cohort. 
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Appendix 12 The coverage graph (A) shows the relative copy number (RCN) segments scaled so each 
chromosome is uniformly sized, with the length of each segment on the x-axis being logged. The complexity 
score boxplots (B) show the distribution of the complexity scores across all chromosomes for each sample, 
with means indicated by the green diamond. The recursive partition line graph (C) shows the t p-value for 
the Mann Whitney U test for complexity score at and below each position > above for the sum (genome 
blue) and individual chromosome (orange). Data displayed is a random subsample (n=100) of the GEL 
breast cancer cohort. 



 

 233 

 
Appendix 13 Heatmap showing relative copy number segments from pcf analysis (input of 10kb coverage 
windows) clipped between -1.5 (blue loss) and 1.5 (red gain) with the Y-axis displaying ordered from 
longest telomeres (top) to shortest (bottom). Data displayed is a random subsample (n=100) of the GEL 
breast cancer cohort. 
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Appendix 14 The coverage graph (A) shows the relative copy number (RCN) segments scaled so each 
chromosome is uniformly sized, with the length of each segment on the x-axis being logged. The complexity 
score boxplots (B) show the distribution of the complexity scores across all chromosomes for each sample, 
with means indicated by the green diamond. The recursive partition line graph (C) shows the t p-value for 
the Mann Whitney U test for complexity score at and below each position > above for the sum (genome 
blue) and individual chromosome (orange). Data displayed is a random subsample (n=100) of the GEL 
breast cancer cohort. 
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Appendix 15 Heatmap showing relative copy number segments from pcf analysis (input of 10kb coverage 
windows) clipped between -1.5 (blue loss) and 1.5 (red gain) with the Y-axis displaying ordered from 
longest telomeres (top) to shortest (bottom). Data displayed is a random subsample (n=100) of the GEL 
breast cancer cohort. 
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Appendix 16 The coverage graph (A) shows the relative copy number (RCN) segments scaled so each 
chromosome is uniformly sized, with the length of each segment on the x-axis being logged. The complexity 
score boxplots (B) show the distribution of the complexity scores across all chromosomes for each sample, 
with means indicated by the green diamond. The recursive partition line graph (C) shows the t p-value for 
the Mann Whitney U test for complexity score at and below each position > above for the sum (genome 
blue) and individual chromosome (orange). Data displayed is a random subsample (n=100) of the GEL 
breast cancer cohort. 
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Appendix 17 Heatmap showing relative copy number segments from pcf analysis (input of 10kb coverage 
windows) clipped between -1.5 (blue loss) and 1.5 (red gain) with the Y-axis displaying ordered from 
longest telomeres (top) to shortest (bottom). Data displayed is a random subsample (n=100) of the GEL 
breast cancer cohort. 
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Appendix 18 The coverage graph (A) shows the relative copy number (RCN) segments scaled so each 
chromosome is uniformly sized, with the length of each segment on the x-axis being logged. The complexity 
score boxplots (B) show the distribution of the complexity scores across all chromosomes for each sample, 
with means indicated by the green diamond. The recursive partition line graph (C) shows the t p-value for 
the Mann Whitney U test for complexity score at and below each position > above for the sum (genome 
blue) and individual chromosome (orange). Data displayed is a random subsample (n=100) of the GEL 
breast cancer cohort. 
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Appendix 19 Heatmap showing relative copy number segments from pcf analysis (input of 10kb coverage 
windows) clipped between -1.5 (blue loss) and 1.5 (red gain) with the Y-axis displaying ordered from 
longest telomeres (top) to shortest (bottom). Data displayed is a random subsample (n=100) of the GEL 
breast cancer cohort. 
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Appendix 20 The coverage graph (A) shows the relative copy number (RCN) segments scaled so each 
chromosome is uniformly sized, with the length of each segment on the x-axis being logged. The complexity 
score boxplots (B) show the distribution of the complexity scores across all chromosomes for each sample, 
with means indicated by the green diamond. The recursive partition line graph (C) shows the t p-value for 
the Mann Whitney U test for complexity score at and below each position > above for the sum (genome 
blue) and individual chromosome (orange). Data displayed is a random subsample (n=100) of the GEL 
breast cancer cohort. 
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Appendix 21 Heatmap showing relative copy number segments from pcf analysis (input of 10kb coverage 
windows) clipped between -1.5 (blue loss) and 1.5 (red gain) with the Y-axis displaying ordered from 
longest telomeres (top) to shortest (bottom). Data displayed is a random subsample (n=100) of the GEL 
breast cancer cohort. 
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Appendix 22 The coverage graph (A) shows the relative copy number (RCN) segments scaled so each 
chromosome is uniformly sized, with the length of each segment on the x-axis being logged. The complexity 
score boxplots (B) show the distribution of the complexity scores across all chromosomes for each sample, 
with means indicated by the green diamond. The recursive partition line graph (C) shows the t p-value for 
the Mann Whitney U test for complexity score at and below each position > above for the sum (genome 
blue) and individual chromosome (orange). Data displayed is a random subsample (n=100) of the GEL 
breast cancer cohort. 
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Appendix 23 Heatmap showing relative copy number segments from pcf analysis (input of 10kb coverage 
windows) clipped between -1.5 (blue loss) and 1.5 (red gain) with the Y-axis displaying ordered from 
longest telomeres (top) to shortest (bottom). Data displayed is a random subsample (n=100) of the GEL 
breast cancer cohort 
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Appendix 24 The coverage graph (A) shows the relative copy number (RCN) segments scaled so each 
chromosome is uniformly sized, with the length of each segment on the x-axis being logged. The complexity 
score boxplots (B) show the distribution of the complexity scores across all chromosomes for each sample, 
with means indicated by the green diamond. The recursive partition line graph (C) shows the t p-value for 
the Mann Whitney U test for complexity score at and below each position > above for the sum (genome 
blue) and individual chromosome (orange). Data displayed is a random subsample (n=100) of the GEL 
breast cancer cohort. 
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Appendix 25 Heatmap showing relative copy number segments from pcf analysis (input of 10kb coverage 
windows) clipped between -1.5 (blue loss) and 1.5 (red gain) with the Y-axis displaying ordered from 
longest telomeres (top) to shortest (bottom). Data displayed is a random subsample (n=100) of the GEL 
breast cancer cohort. 
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Appendix 26 The coverage graph (A) shows the relative copy number (RCN) segments scaled so each 
chromosome is uniformly sized, with the length of each segment on the x-axis being logged. The complexity 
score boxplots (B) show the distribution of the complexity scores across all chromosomes for each sample, 
with means indicated by the green diamond. The recursive partition line graph (C) shows the t p-value for 
the Mann Whitney U test for complexity score at and below each position > above for the sum (genome 
blue) and individual chromosome (orange). Data displayed is a random subsample (n=100) of the GEL 
breast cancer cohort. 
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Appendix 27 Heatmap showing relative copy number segments from pcf analysis (input of 10kb coverage 
windows) clipped between -1.5 (blue loss) and 1.5 (red gain) with the Y-axis displaying ordered from 
longest telomeres (top) to shortest (bottom). Data displayed is a random subsample (n=50) of the GEL 
breast cancer cohort. 
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Appendix 28 The coverage graph (A) shows the relative copy number (RCN) segments scaled so each 
chromosome is uniformly sized, with the length of each segment on the x-axis being logged. The complexity 
score boxplots (B) show the distribution of the complexity scores across all chromosomes for each sample, 
with means indicated by the green diamond. The recursive partition line graph (C) shows the t p-value for 
the Mann Whitney U test for complexity score at and below each position > above for the sum (genome 
blue) and individual chromosome (orange). Data displayed is a random subsample (n=50) of the GEL 
breast cancer cohort. 
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Appendix 29 Heatmap showing relative copy number segments from pcf analysis (input of 10kb coverage 
windows) clipped between -1.5 (blue loss) and 1.5 (red gain) with the Y-axis displaying ordered from 
longest telomeres (top) to shortest (bottom). Data displayed is a random subsample (n=50) of the GEL 
breast cancer cohort. 
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Appendix 30 The coverage graph (A) shows the relative copy number (RCN) segments scaled so each 
chromosome is uniformly sized, with the length of each segment on the x-axis being logged. The complexity 
score boxplots (B) show the distribution of the complexity scores across all chromosomes for each sample, 
with means indicated by the green diamond. The recursive partition line graph (C) shows the t p-value for 
the Mann Whitney U test for complexity score at and below each position > above for the sum (genome 
blue) and individual chromosome (orange). Data displayed is a random subsample (n=50) of the GEL 
breast cancer cohort. 
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Appendix 31 Heatmap showing relative copy number segments from pcf analysis (input of 10kb coverage 
windows) clipped between -1.5 (blue loss) and 1.5 (red gain) with the Y-axis displaying ordered from 
longest telomeres (top) to shortest (bottom). Data displayed is a random subsample (n=50) of the GEL 
breast cancer cohort. 
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Appendix 32 The coverage graph (A) shows the relative copy number (RCN) segments scaled so each 
chromosome is uniformly sized, with the length of each segment on the x-axis being logged. The complexity 
score boxplots (B) show the distribution of the complexity scores across all chromosomes for each sample, 
with means indicated by the green diamond. The recursive partition line graph (C) shows the t p-value for 
the Mann Whitney U test for complexity score at and below each position > above for the sum (genome 
blue) and individual chromosome (orange). Data displayed is a random subsample (n=50) of the GEL 
breast cancer cohort. 
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Appendix 33 Heatmap showing relative copy number segments from pcf analysis (input of 10kb coverage 
windows) clipped between -1.5 (blue loss) and 1.5 (red gain) with the Y-axis displaying ordered from 
longest telomeres (top) to shortest (bottom). Data displayed is a random subsample (n=50) of the GEL 
breast cancer cohort. 
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Appendix 34 The coverage graph (A) shows the relative copy number (RCN) segments scaled so each 
chromosome is uniformly sized, with the length of each segment on the x-axis being logged. The complexity 
score boxplots (B) show the distribution of the complexity scores across all chromosomes for each sample, 
with means indicated by the green diamond. The recursive partition line graph (C) shows the t p-value for 
the Mann Whitney U test for complexity score at and below each position > above for the sum (genome 
blue) and individual chromosome (orange). Data displayed is a random subsample (n=50) of the GEL 
breast cancer cohort. 
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Appendix 35 Heatmap showing relative copy number segments from pcf analysis (input of 10kb coverage 
windows) clipped between -1.5 (blue loss) and 1.5 (red gain) with the Y-axis displaying ordered from 
longest telomeres (top) to shortest (bottom). Data displayed is a random subsample (n=50) of the GEL 
breast cancer cohort. 
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Appendix 36 The coverage graph (A) shows the relative copy number (RCN) segments scaled so each 
chromosome is uniformly sized, with the length of each segment on the x-axis being logged. The complexity 
score boxplots (B) show the distribution of the complexity scores across all chromosomes for each sample, 
with means indicated by the green diamond. The recursive partition line graph (C) shows the t p-value for 
the Mann Whitney U test for complexity score at and below each position > above for the sum (genome 
blue) and individual chromosome (orange). Data displayed is a random subsample (n=50) of the GEL 
breast cancer cohort. 



 

 257 

 
Appendix 37 Heatmap showing relative copy number segments from pcf analysis (input of 10kb coverage 
windows) clipped between -1.5 (blue loss) and 1.5 (red gain) with the Y-axis displaying ordered from 
longest telomeres (top) to shortest (bottom). Data displayed is a random subsample (n=50) of the GEL 
breast cancer cohort. 
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Appendix 38 The coverage graph (A) shows the relative copy number (RCN) segments scaled so each 
chromosome is uniformly sized, with the length of each segment on the x-axis being logged. The complexity 
score boxplots (B) show the distribution of the complexity scores across all chromosomes for each sample, 
with means indicated by the green diamond. The recursive partition line graph (C) shows the t p-value for 
the Mann Whitney U test for complexity score at and below each position > above for the sum (genome 
blue) and individual chromosome (orange). Data displayed is a random subsample (n=50) of the GEL 
breast cancer cohort. 
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Appendix 39 Heatmap showing relative copy number segments from pcf analysis (input of 10kb coverage 
windows) clipped between -1.5 (blue loss) and 1.5 (red gain) with the Y-axis displaying ordered from 
longest telomeres (top) to shortest (bottom). Data displayed is a random subsample (n=50) of the GEL 
breast cancer cohort. 
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Appendix 40 The coverage graph (A) shows the relative copy number (RCN) segments scaled so each 
chromosome is uniformly sized, with the length of each segment on the x-axis being logged. The complexity 
score boxplots (B) show the distribution of the complexity scores across all chromosomes for each sample, 
with means indicated by the green diamond. The recursive partition line graph (C) shows the t p-value for 
the Mann Whitney U test for complexity score at and below each position > above for the sum (genome 
blue) and individual chromosome (orange). Data displayed is a random subsample (n=50) of the GEL 
breast cancer cohort. 
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