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Abstract: This paper explores the applications and impacts of artificial intelligence (AI) in
building envelopes and interior space design. The relevant literature was searched using
databases such as Science Direct, Web of Science, Scopus, and CNKI, and 89 studies were
selected for analysis based on the PRISMA protocol. This paper first analyzes the role
of AI in transforming architectural design methods, particularly its different roles in the
auxiliary, collaborative, and leading design processes. It then discusses AI’s applications
in the energy-efficient renovation of building envelopes, smart façade design for cold
climate buildings, and thermal imaging detection. Furthermore, this paper summarizes
AI-based interior space environment design methods, covering the current state of research,
applications, impacts, and challenges both domestically and internationally. Finally, this
paper looks ahead to the broad prospects for AI technology in the architecture and interior
design fields while addressing the challenges related to the integration of personalized
design and environmental sustainability concepts.

Keywords: artificial intelligence; architectural design; energy-saving renovations; building
envelopes; adaptive architecture; sustainable building design

1. Introduction
Since ancient times, humans have aspired to create technologies that mimic the func-

tions of the brain. With the development of fields such as mathematical logic, physics,
philosophy, and the rapid progress of computer technology, artificial intelligence (AI) has
gradually moved from theory to practice. In 1956, John McCarthy first introduced the
term “artificial intelligence” at the Dartmouth Conference, marking the birth of AI as an
independent academic discipline [1].

Artificial intelligence is widely defined as the theory, methods, technologies, and
applications aimed at simulating and extending human intelligence. After more than
six decades of development, AI technology has continually advanced and is now widely
applied across various fields, particularly in architectural design. AI has not only become
an auxiliary tool in architectural design but has also gradually evolved into a collaborative
partner with architects and may eventually become a leading force in design (Figure 1) [2,3].
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Figure 1. Computer-aided design process. 

In architectural design, the primary uses of AI include classification, decision-mak-
ing, and optimization. Through classification tasks, AI can identify and categorize differ-
ent types of design elements, such as architectural styles and spatial layouts. Decision-
making tasks involve recommending design solutions through algorithms, helping archi-
tects make the most appropriate design choices. Optimization tasks use intelligent algo-
rithms to optimize architectural plans, such as the spatial layout and energy use, improv-
ing design efficiency and quality [4]. 

The application of AI is not limited to the design phase but extends across various 
stages of construction and operation. During the design process, AI can assist with style 
transfer, the automatic generation of building facades, and spatial optimization. In the 
construction and operation stages, AI can perform intelligent building simulations and 
optimizations through Building Information Modeling (BIM) [5]. 

In terms of usage, AI mainly relies on techniques such as deep learning, generative 
adversarial networks (GANs), expert systems, and optimization algorithms. For instance, 
deep learning can generate preliminary design plans in collaborative design, GANs are 
used for generating building facades, while expert systems assist architects in the deci-
sion-making process by providing recommendations and solutions. 

As time has progressed, architectural design has become more complex, imposing 
higher demands on architects [6,7]. Powerful computing capabilities are the key to achiev-
ing complex designs. While the early computer-aided design did not reach the level of AI, 
it laid the foundation for AI applications in architectural design [8,9]. 

Architects such as Frank Gehry and Zaha Hadid used advanced software to explore 
nonlinear design [10] and simplified the design process through parametric methods [11]. 
The introduction of digital technology has brought a revolutionary change to architectural 
design. In the late 1960s, academia began exploring AI applications in design, with shape 
grammar providing new logical possibilities for architectural design [12,13]. In the early 
1980s, a leap in computing power and increased funding fueled AI research, making ex-
pert systems and reasoning mechanisms a hot topic, which promoted their application in 
design [14]. 

Initially, AI assisted design through expert systems and case-based reasoning, sim-
plifying design tasks (Figure 2). However, due to the high programming requirements, its 
application was limited. As technology advanced, AI became more widespread and accu-
rate, supporting various types of projects and design conditions. Today, AI plays a role in 
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In architectural design, the primary uses of AI include classification, decision-making,
and optimization. Through classification tasks, AI can identify and categorize different
types of design elements, such as architectural styles and spatial layouts. Decision-making
tasks involve recommending design solutions through algorithms, helping architects make
the most appropriate design choices. Optimization tasks use intelligent algorithms to
optimize architectural plans, such as the spatial layout and energy use, improving design
efficiency and quality [4].

The application of AI is not limited to the design phase but extends across various
stages of construction and operation. During the design process, AI can assist with style
transfer, the automatic generation of building facades, and spatial optimization. In the
construction and operation stages, AI can perform intelligent building simulations and
optimizations through Building Information Modeling (BIM) [5].

In terms of usage, AI mainly relies on techniques such as deep learning, generative
adversarial networks (GANs), expert systems, and optimization algorithms. For instance,
deep learning can generate preliminary design plans in collaborative design, GANs are
used for generating building facades, while expert systems assist architects in the decision-
making process by providing recommendations and solutions.

As time has progressed, architectural design has become more complex, imposing
higher demands on architects [6,7]. Powerful computing capabilities are the key to achiev-
ing complex designs. While the early computer-aided design did not reach the level of AI,
it laid the foundation for AI applications in architectural design [8,9].

Architects such as Frank Gehry and Zaha Hadid used advanced software to explore
nonlinear design [10] and simplified the design process through parametric methods [11].
The introduction of digital technology has brought a revolutionary change to architectural
design. In the late 1960s, academia began exploring AI applications in design, with shape
grammar providing new logical possibilities for architectural design [12,13]. In the early
1980s, a leap in computing power and increased funding fueled AI research, making
expert systems and reasoning mechanisms a hot topic, which promoted their application
in design [14].

Initially, AI assisted design through expert systems and case-based reasoning, sim-
plifying design tasks (Figure 2). However, due to the high programming requirements,
its application was limited. As technology advanced, AI became more widespread and
accurate, supporting various types of projects and design conditions. Today, AI plays a role
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in all stages of architectural design, construction, and operation, including style transfer,
automated generation, spatial optimization, and intelligent building simulation.
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abled AI to evolve from basic automation to applications in swarm intelligence and neural 
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tects to improve the design quality and innovation. For example, Sun Cheng used deep 
learning models to integrate design intentions; Zheng Hao and others demonstrated the 
application of GANs in human–AI collaborative design, indicating the broad potential of 
AI collaboration in architectural design [20]. In advance, the integration of metaverse and 
generative AI in participatory building design (PBD) represents a significant advance-
ment in human-centric architecture, enabling the automated collection and analysis of 
user requirements through immersive virtual environments while bridging the gap be-
tween designers and end users through automated visualization and feedback mecha-
nisms [21]. 

By integrating AI, a breakthrough came with the application of machine learning al-
gorithms for calibrating building simulation models, enabling more accurate predictions 
of thermal behavior and energy consumption patterns. By visualizing thermal images 
with RGB, the system can now effectively analyze complex thermal behaviors, optimize 
envelope designs, and evaluate different material combinations simultaneously [22]. Re-
cent studies have demonstrated that deep learning methods, particularly YOLOv7, can 
achieve high precision in detecting thermal anomalies in building envelopes, processing 
up to 141 frames per second2 [23]. Recent research has demonstrated a new method for 
detecting thermal anomalies in building envelopes through an AI-driven prediction of 
thermal distributions from color images, employing pix2pix generative adversarial net-
work (GAN) architecture. It effectively performed as a one-class classifier to identify 
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For example, through generative adversarial networks (GANs) and style transfer
techniques, architects can quickly generate building facades [15]. AI is capable of learning
design data, generating plans, optimizing layouts, and simulating building performance.
However, the output of AI is still one way, lacking feedback, and primarily serves as an
auxiliary tool for architects [16].

In the early 1980s, with increases in computing power and funding, AI research gained
new momentum, and the development of expert systems and reasoning mechanisms
promoted the growth of assisted design systems. Technological advancements enabled AI
to evolve from basic automation to applications in swarm intelligence and neural networks,
fundamentally transforming architectural design.

Since the revival of deep learning technology in 2006, deep neural networks and
convolutional neural networks have been widely applied in AI collaboration within ar-
chitectural design. This revival stemmed from the introduction of Deep Belief Networks
(DBN) and Deep Autoencoders by Geoffrey Hinton and others, which solved the vanishing
gradient problem in deep networks and laid the foundation for AI applications across
various fields [17,18]. In the collaborative design phase, AI becomes a partner to archi-
tects [19], generating preliminary design schemes, which are then refined and optimized
by architects to improve the design quality and innovation. For example, Sun Cheng used
deep learning models to integrate design intentions; Zheng Hao and others demonstrated
the application of GANs in human–AI collaborative design, indicating the broad potential
of AI collaboration in architectural design [20]. In advance, the integration of metaverse
and generative AI in participatory building design (PBD) represents a significant advance-
ment in human-centric architecture, enabling the automated collection and analysis of user
requirements through immersive virtual environments while bridging the gap between
designers and end users through automated visualization and feedback mechanisms [21].

By integrating AI, a breakthrough came with the application of machine learning
algorithms for calibrating building simulation models, enabling more accurate predictions
of thermal behavior and energy consumption patterns. By visualizing thermal images
with RGB, the system can now effectively analyze complex thermal behaviors, optimize
envelope designs, and evaluate different material combinations simultaneously [22]. Recent
studies have demonstrated that deep learning methods, particularly YOLOv7, can achieve
high precision in detecting thermal anomalies in building envelopes, processing up to 141
frames per second2 [23]. Recent research has demonstrated a new method for detecting
thermal anomalies in building envelopes through an AI-driven prediction of thermal
distributions from color images, employing pix2pix generative adversarial network (GAN)
architecture. It effectively performed as a one-class classifier to identify regions with
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significant mismatches between the predicted and actual thermal distributions without
requiring extensive labelled datasets, achieving reliable predictions with mean absolute
errors of 0.5 degrees Celsius under optimal conditions [24].

AI is shifting from an auxiliary role in the field of architectural design to a dominant
one. While current machine learning has not yet reached true intelligence, research is
focused on causal reasoning. In the dominant stage, AI may mimic the thinking of architects
and autonomously optimize designs through big data and evaluation systems, but it still
cannot fully replace architects. Despite AI’s roles in design and evaluation, achieving full
dominance in design still requires further innovation and integration [25].

This paper conducts a systematic review of the application of AI technology in building
envelope design, with a focus on its potential for energy-saving transformations and
improving thermal comfort. This study identifies practical frameworks for applying
existing technologies, aiming to bridge the gap between AI innovation and its real-world
implementation in architectural design. Currently, even when conditions allow, the industry
often lacks sufficient utilization of AI technology, especially in extreme climate regions.
This paper encourages greater adoption and optimization of AI in these areas to ensure
that existing technologies are more highly and effectively utilized, particularly in building
envelope design, where they can significantly enhance energy efficiency. These findings aim
to raise awareness among stakeholders about the transformative potential of AI in building
envelopes and to drive further development and refinement of these technologies. This
research not only contributes to academic discourse but also provides valuable insights for
policymaking, professional practices, and future research, fostering the broader application
of AI in addressing the challenges of sustainable building environments.

As shown in Figure 3, this study focuses on the application of artificial intelligence
(AI) in the energy-saving renovation of building envelopes, exploring the background and
demands of such renovations. This research includes multi-objective optimization design
for energy-saving renovation of existing building envelopes and methods for optimizing
renovation parameters. For example, integrating photovoltaic thermal (BIPV/T) systems
with AI algorithms enhances insulation performance, reduces energy consumption, and in-
creases economic feasibility. In the study by Javadijan et al., the use of NSGA-II optimization
significantly improved energy, thermal, and economic performance while also providing
environmental benefits, establishing it as a multifunctional green energy solution.

This study further identifies three key challenges in designing intelligent building
envelopes for cold regions. First, there is a need for advanced AI frameworks to support
adaptive building envelope designs that can respond to varying environmental conditions.
Second, the use of thermal imaging technology for detecting building envelope issues
requires further refinement, especially in cold climates where insulation and energy loss are
critical. Lastly, the integration of AI into these designs must address the balance between a
personalized, user-centric design and environmental sustainability. Moving forward, AI
will need to bridge these challenges by advancing design methodologies and improving
detection technologies.

In addition to optimizing building envelopes, this research also explores AI’s role in
interior design, particularly in enhancing indoor environmental perception. AI optimizes
lighting, air quality, and temperature control, improving both user comfort and energy
efficiency. However, future research must continue to innovate and address challenges to
apply AI more effectively in creating sustainable, energy-efficient interior spaces.
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2. Methodology
This study conducted a review to explore the applications and impacts of artificial

intelligence (AI) on architectural design, focusing specifically on building envelope design,
interior environmental performance, and energy-saving transformations. This review
examines research and review articles published over the past 15 years in two languages,
English and Chinese, during a period marked by the increasing diversification of AI
integration in architecture. Four primary academic databases—ScienceDirect, Web of
Science, Scopus, and the China National Knowledge Network (CNKI)—were used to
identify high-quality studies. The inclusion of CNKI ensured the representation of relevant
Chinese research alongside international studies.

The systematic review followed the Preferred Reporting Items for Reviews and Meta-
Analyses (PRISMA) protocol, encompassing stages such as defining the inclusion and
exclusion criteria, shown as Figure 4. The search query was constructed based on keywords
derived from the titles of relevant studies and divided into four categories, architectural
design, energy-saving renovations, adaptive building envelopes, and artificial intelligence,
as shown in Table 1. An initial search using terms like “artificial intelligence”, “envelope
structure”, “indoor environment”, “energy-saving transformation”, and “smart skin” iden-
tified 529 articles: 52 from ScienceDirect, 212 from Web of Science, 197 from Scopus, and 68
from CNKI. After removing 171 duplicate articles, the dataset was reduced to 358 articles.
Further filtering excluded studies unrelated to architectural design applications, such as
those focusing on building equipment details, later utilization of AI in building mainte-
nance, and the effects of AI on the development of society. This refinement prioritized the
literature addressing AI-driven energy-saving design methods, narrowing the dataset to
207 articles.
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Table 1. Search query.

S/N Search Category Search Query

1. Architectural Design
“architectural design” OR “building design” OR
“architecture engineering” OR
“architectural innovations”

2. Energy-Saving Renovations
“energy-saving renovations” OR “energy-efficient
buildings” OR “sustainable building renovations” OR
“low-energy architecture”

3. Adaptive Building
Envelopes

“adaptive building envelope” OR “dynamic building
facades” OR “smart facades” OR “building envelope
optimization” OR “kinetic façade” OR “dynamic
facade systems”

4. Artificial Intelligence
“artificial intelligence” OR “AI” OR “machine
learning” OR “deep learning” OR “AI applications
in architecture”

5. Combined 1 AND (2 OR 3) AND 4

To ensure the highest quality of analysis, an additional eligibility screen was conducted
based on journal rankings, limiting the selection to Q1 and Q2 publications. This process
excluded 62 articles, leaving 89 studies for the detailed examination. These selected articles
were deeply analyzed and categorized, forming the foundation of this review paper.
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The paper classification reveals that the research methods for the influence of AI
on building envelope and interior environment design include field measurements and
numerical simulations, and most of the papers use them simultaneously. Some studies
focus solely on numerical simulations, such as energy-saving transformations, intelligent
building skins in cold areas, and thermal imaging detection. This review also assessed
the impact of AI on the indoor environment and discussed the indoor environment of
buildings, AI and indoor environment perception, and indoor environment design methods
based on the AI era, emphasizing its potential in improving building performance and
indoor environment comfort [26].

3. Application of AI to Building Envelopes
The application of AI to building envelopes represents a significant advancement

in architectural design, particularly in addressing energy efficiency and environmental
adaptations. This section explores three key aspects: energy-saving renovations, intelligent
building skin design for cold climates, and thermal imaging detection. These applications
demonstrate how AI technologies are transforming traditional building envelope design
and management, leading to more sustainable and efficient building solutions.

3.1. Energy-Saving Transformation of the Building Envelope

China is striving to achieve a carbon peak by 2030 and carbon neutrality by 2060,
which is a critical goal in its socio-economic development. The construction sector is the
key sector responsible for about 40% of global energy consumption and up to one-quarter
of global greenhouse gas emissions. According to the China Building Energy Consumption
Research Report (2020), building energy consumption accounts for 21.7% of China’s total
energy consumption, with public buildings being particularly energy-intensive [27,28].
Energy-saving renovations of public buildings are thus essential.

In the practice of building energy-saving transformation, researchers have optimized
the design of different insulation materials, external walls of different thicknesses, and
building parameters through simulation analyses, energy consumption simulations, pa-
rameter sensitivity analyses, and other methods, effectively reducing energy consumption
and improving indoor thermal comfort. For example, incorporating phase change mate-
rials in walls significantly improves thermal comfort and reduces the heating demand in
indoor spaces. In addition, by taking measures such as window shading, changing glass
types, and increasing enclosure materials, we carry out the energy-saving transformation
of residential buildings and explore the investment payback period of different levels of
transformation measures.

Building Information Modeling (BIM) technology [29] aids in predicting energy con-
sumption, optimizing designs, and analyzing performance, helping architects identify key
factors and propose renovations. However, the use of BIM to obtain performance data
requires simulated parameter setting and calculation, which is inefficient in the design opti-
mization of a large number of renovation schemes. Therefore, researchers have explored
more efficient and intelligent ways to clarify the correlations between design parameters
and building performance.

An artificial neural network (ANN) [30] is widely used in building energy consump-
tion research to provide a decision basis. A multi-objective optimization method and
genetic algorithm are used in building design optimization. The reference-point-based
non-dominated sorting genetic algorithm (NSGA-III) can solve the problem of a traditional
genetic algorithm in multi-objective optimization. Moreover, determining the probability
of cross and variation behavior in genetic algorithm is crucial to analyze uncertainty.
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Ding Zhikun et al. [31] proposed a multi-objective optimization method for the pa-
rameter design of an energy-saving renovation of an existing building envelope, uti-
lizing EnergyPlus-based DesignBuilder software. This tool, with its real-time simula-
tion and graphical interface, provides actionable data to bridge academic research and
practical applications.

In the system of factors influencing building energy consumption, the envelope struc-
ture plays a decisive role [32]. Therefore, relevant research focuses on the U-value of exter-
nal walls, roofs, and external windows, which are three design parameters closely related
to energy consumption. After setting building and environmental parameters according
to the actual requirements of the project, a simulation analysis is carried out to obtain
building performance datasets under different design schemes. These serve two purposes:
providing samples for training BP neural network prediction models to enhance accuracy
and laying the groundwork for multi-objective optimization in energy-saving renovations.

Furthermore, BP neural network models are used to predict building performance, in-
cluding normalization, ensuring fair treatment of input variables with varying dimensions
and ranges. The BP neural network is propagated forward and back, and the weight and
threshold are adjusted to obtain the ideal result.

In the process of model training, parameter optimization is the key to improve the
prediction accuracy. The random search method automates hyperparameter selection,
reducing the reliance on manual design [33]. In addition, evaluation indicators such as the
coefficient of determination (R2), root mean square error (RMSE), and mean absolute error
(MAE) are used to measure the prediction accuracy of the model to ensure that the model
can accurately reflect the building performance.

In the stage of multi-objective optimization, the prediction model is based on the BP
neural network. The random search method automates hyperparameter selection, reducing
the reliance on manual design, which can hardly be expressed by traditional methods. At
the same time, constraints on the design parameters ensure the feasibility of the solution.
The NSGA-III algorithm improves diversity using reference points. Performance evaluation
indicators such as the hypervolume (HV) are used to measure the convergence and diversity
of algorithms and guide the optimization direction of algorithms [34].

The Monte Carlo method simulates random processes in a genetic algorithm to de-
termine crossover and mutation probabilities, avoiding local optimality. The ideal point
method deals with the Pareto optimal solution set by calculating the distance to the ideal
point, balancing multi-objective optimization with practical applications.

In summary, through the simulation analysis of DesignBuilder software, the BP neural
network prediction model, NSGA-III algorithm multi-objective optimization, Monte Carlo
method and ideal point method, a comprehensive building performance optimization
process was constructed to enhance the design efficiency and accuracy, supporting building
energy conservation and sustainable development goals.

3.2. Intelligent Building Skins in Cold Areas

Figure 5 shows the evolution of intelligent building skins, highlighting key develop-
ments from the 1960s to the present. It illustrates the progression from early explorations
of dynamic urban spaces to the application of advanced design elements such as form,
transmission, and control in modern architecture.

Since the 1960s, the intelligent development of building skins has undergone a signifi-
cant evolution, gradually becoming a multidisciplinary research field focused on meeting
the multiple green performance optimization needs of buildings.



Energies 2025, 18, 918 9 of 24
Energies 2025, 18, x FOR PEER REVIEW 9 of 24 
 

 

 

Figure 5. Some key nodes of the intelligent evolution of the building skin [35]. 

In the 1980s, Mike Davis proposed the “multi-wall” design theory to address energy 
issues without compromising the smooth aesthetics of curtain walls, creating climate-re-
sponsive building skins [36]. Jean Nouvel, in the Center for the Study of the Arab World 
project, used a complex system of mechanical diaphragms that automatically adjust sun-
light entry and regulate indoor lighting [37]. 

In cold regions, buildings face the challenge of more extreme climatic conditions, 
which not only increase energy demands for indoor adjustments but also lead to an in-
crease in energy consumption. Over the past decade, the heating area in northern China's 
cities and towns has increased significantly, and with it, the heating energy consumption, 
which accounts for a considerable proportion of building energy consumption. In re-
sponse to this challenge, the Chinese government has introduced a series of green build-
ing standards [38], such as Green Building Evaluation Standards, Near-Zero Energy 
Building Technical Standards, and Healthy Building Evaluation Standards, to promote 
energy conservation and ecological urban development. As depicted in Figure 6, the his-
tory of the development of building energy efficiency standards in China shows a clear 
progression from initial energy-saving design standards in the 1980s to more comprehen-
sive and stringent standards in recent years [35]. 

 

Figure 5. Some key nodes of the intelligent evolution of the building skin [35].

In the 1980s, Mike Davis proposed the “multi-wall” design theory to address energy
issues without compromising the smooth aesthetics of curtain walls, creating climate-
responsive building skins [36]. Jean Nouvel, in the Center for the Study of the Arab
World project, used a complex system of mechanical diaphragms that automatically adjust
sunlight entry and regulate indoor lighting [37].

In cold regions, buildings face the challenge of more extreme climatic conditions, which
not only increase energy demands for indoor adjustments but also lead to an increase in energy
consumption. Over the past decade, the heating area in northern China’s cities and towns
has increased significantly, and with it, the heating energy consumption, which accounts for
a considerable proportion of building energy consumption. In response to this challenge,
the Chinese government has introduced a series of green building standards [38], such as
Green Building Evaluation Standards, Near-Zero Energy Building Technical Standards, and
Healthy Building Evaluation Standards, to promote energy conservation and ecological urban
development. As depicted in Figure 6, the history of the development of building energy
efficiency standards in China shows a clear progression from initial energy-saving design
standards in the 1980s to more comprehensive and stringent standards in recent years [35].

The building envelope in cold areas plays a crucial role in regulating material and
energy transfer between the indoors and outdoors, significantly influencing green perfor-
mance factors such as natural lighting, thermal comfort, and energy efficiency. To achieve
low energy consumption and high comfort, the building skin needs to be able to intel-
ligently respond to changes in the external environment, such as sunlight, temperature,
and humidity, and adopt effective shading and ventilation. This design can reduce energy
consumption while keeping the indoor environment healthy and comfortable.

However, improving the performance of a building envelope in cold areas is chal-
lenging due to the need to balance energy consumption, lighting, and thermal comfort,
which often conflict. Therefore, the design of the building skin must carefully balance
these properties. Secondly, the interaction between indoor and outdoor environments is
complex, involving the coupling of a variety of physical fields, such as the interaction
between fluids and solids, further complicating the design. However, it also provides an
industrial demand and innovation impetus for the intelligent development of building
skins in cold areas. By applying intelligent technology, these relationships can be better
coordinated, leading to optimized building performance and advancing the construction
industry toward greener, more sustainable solutions.
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In modern architectural design, intelligent skin form design is related to the architec-
tural aesthetic expression, regional characteristics, and environmental interaction perfor-
mance. The dynamic skin adjusts the indoor and outdoor environments to optimize the
green performance of the building. As technology advances, building envelope design has
become a four-dimensional space–time problem, requiring the creation of intelligent skins
that adapt to environmental changes through “dynamic shape finding”.

In cold regions, the dynamic response of a building skin is very important [39], but
some current designs have not considered the climate characteristics of cold regions enough.
For example, research shows that in cold regions, the preheated air from PV-DSF integrated
with air source heat pumps could achieve temperature increases of 4–10 ◦C and cover
over 65% of the building air demands, demonstrating an effective dynamic response to the
environmental conditions. To improve responsiveness, scholars have explored intelligent
skin designs that account for the elasticity of spatial structures, enabling an adaptation
to environmental changes while emphasizing dynamic characteristics and realizing the
efficient adjustment of indoor and outdoor environments through innovation.

In architectural design in cold areas, the "efficient transmission" of an intelligent
skin is the key problem, which involves dynamically adjusting the building form for
environmental adaptability. Transmission systems are categorized into mechanical and
material types. Mechanical transmission relies on physical mechanical devices, which
may face the problems of a large space occupation and freezing in cold environment. The
design should consider weather resistance, reliability, and the challenge of snow freezing.
Material transmission allows a dynamic adjustment of the skin through a change in the
material’s properties, with smart materials such as phase change materials [40] having the
potential to optimize indoor light, thermal comfort, and energy efficiency. The advantages
are compact equipment and high controllability, but the weather resistance, reliability, and
cost effectiveness should be considered.

The exploration of material transmission in some non-cold region building projects
provides valuable insights for the intelligent skin design of buildings in cold regions. For
example, the intelligent skin of a French art museum was designed based on the principle
of material hygroscopic expansion and can automatically open and close according to
changes in air humidity [41].
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Overall, the efficient transmission design of an intelligent skin in cold buildings
requires a balance between mechanical and material transmission, considering the system
reliability, adaptability, cost, and ease of maintenance. Future designs can explore new
smart materials and innovative drive mechanisms to achieve more efficiency, economy, and
environmental sustainability.

In addition, the application of intelligent control technology is crucial to improve
building performance and indoor environmental comfort by accurately adjusting the build-
ing skin shape and structure to adapt to changes in the external environment, optimizing
light and thermal comfort.

In practical applications, researchers have explored intelligent control methods to
adjust the indoor light and thermal environment in cold climates. For example, through
an analysis of measured data, it was found that a dynamic adjustment of the skin unit’s
angle can improve indoor lighting and reduce glare, while controlling natural ventilation
boosts thermal comfort. For example, the adaptive exterior wall of the near-zero energy
office building in Helsinki, Finland, adjusts the indoor thermal environment, and similar
intelligent responses to solar radiation improve comfort [42], as seen in the dynamic facade
system of the Keling Campus project [43]. They applied AI-driven facade control with
1600 sensor-equipped aluminum panels that adjust the angles (30–60◦) based on the light
and heat levels. This system achieves energy consumption as low as 38 kWh/m2/year,
making it one of the world’s first low-energy universities. These methods enhance indoor
comfort and boost building energy efficiency.

However, there are complex interaction effects among the multiple performance ob-
jectives of buildings in cold regions, and balancing multiple performance objectives in
cold-region buildings is a key challenge in intelligent control design. Some studies improve
indoor photothermal comfort performance and energy efficiency by dynamically adjusting
shutters [44], while others enhance photothermal comfort and ventilation through dy-
namic shading and louver rotation, demonstrating the diversity and flexibility of building
intelligent control technologies [45].

3.3. Thermal Imaging Detection of the Building Envelope

The synergies in high-performance architectural design are conceptually explained,
and these effects have crucial impacts on the quality of the final project [46].

With the global push for Sustainable Development Goals, the focus has shifted
from new building standards to renovating existing structures to enhance energy effi-
ciency [47,48]. For example, a study of an educational building in Benevento, Italy, showed
that utilizing a high-performance building envelope while preserving its historical char-
acter achieved a 15-year payback period, proving that sustainable upgrades are feasible.
Assessing energy efficiency is challenging due to the lack of detailed evaluations in older
buildings and maintenance issues in new ones. Energy management agencies and renova-
tion companies need efficient, fast ways to evaluate buildings and identify inefficient or
malfunctioning components.

Passive infrared thermal imaging (PIRT) is a common tool for civil engineering and
building inspections [49], effectively detecting energy efficiency anomalies by reconstruct-
ing target temperatures. However, PIRT image interpretation requires domain knowledge
and an understanding of the complex interactions of multiple factors [50], and despite
advances in algorithms, building inspections using PIRT are still labor-intensive and
time-consuming [51].
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Traditional algorithms are commonly used to process and enhance thermal images, but
have limited success in automated interpretation, especially in cases of high variability [52].
Despite rapid advances in AI, the field of thermal imaging inspection in buildings has yet
to fully leverage these opportunities [53].

The current state-of-the-art research focuses on supervised learning methods that
rely on the meticulous annotation of RGB and thermal images and acquisition of large
datasets covering variability. While studies have explored deep learning models for ther-
mal imaging, these models often fail to generalize effectively to real-world commercial
building inspections.

To fill the knowledge gap, Polina Kurtser et al. [24] proposed a depth-based method for
a normality representation applied to RGB–thermal image pairs. The technology is designed
to improve the generalization and applicability of building inspections, supporting manual
inspections or integration with mobile platforms for automated large-scale assessments.

Among generative models, GANs have attracted much attention due to their unique
training mechanism [54]. GANs consist of generators and discriminators that compete
with each other in training to improve performance. The generator learns the statistical
distribution of the training dataset and generates new composite data, and the discriminator
determines the source of the test sample. Through competition, the generator produces
increasingly realistic data while the discriminator refines its detection ability. Currently,
GANs are essential for applications requiring high-quality data generation.

In addition to GANs, an image-to-image translation network is an important branch
in the field of deep learning, which can realize image style conversion and domain migra-
tion. For example, CycleGAN [55] performs image translation across domains without
paired training samples, utilizing architectures such as ResNet or U-Net. Some Trans-
former based GANs utilize a self-attention mechanism to improve the image-to-image
translation performance [56].

In the field of deep learning, color-to-thermal imaging networks, a subset of image-
to-image conversion networks, specialize in translating color images into heat profiles.
Kniaz et al. [57] demonstrated the method to predict the heat distribution of objects through
ThermalGAN, and Mizginov [58] tested and compared the performance of different GAN
architectures in terms of color and thermal imaging. Both studies focused on buildings as
generative categories, highlighting their potential for analyzing building exteriors.

Single-class classification, a paradigm for identifying positive (target) or negative
(outlier) samples [59], is particularly useful when negative samples are unavailable. The
objective of this paper is to detect heat leakage in RGB–thermal imaging pairs with a single
class classification. The model leverages normal RGB–thermal image pairs to identify a
standard distribution, relying on loosely supervised training that only requires single-class
labeling for color-to-thermal imaging networks and normal thermal images, eliminating
the need for abnormal instance labeling.

Summarized in Table 2, the integration of AI in building envelope applications has
demonstrated significant potential in improving building performance across multiple
dimensions. From energy-saving renovations to intelligent building skins and thermal
imaging detection, AI technologies have enabled more precise, efficient, and adaptive build-
ing envelope solutions. These advancements not only contribute to energy conservation
but also enhance building functionality and occupant comfort, setting new standards for
sustainable architecture.
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Table 2. Applications of different AI technologies in the thermal imaging detection of the building
envelope.

Author Year AI Technology Advantages Limitations Conclusions

Khan, S.S.
and

Madden,
M.G. [59]

2014

Support Vector
Machine (SVM)

ANN
Decision tree

algorithm
Nearest neighbor

algorithm

• Simple and easy
to use.

• Works well with
small datasets.

• Limited for
complex data.

• Needs manual
tuning.

Single-class classification
(OCC) algorithms are

reviewed, with a method
proposed based on the data

and applications. Despite the
challenges, OCC holds

potential in various fields.

Zhu, J.-Y.
et al. [55] 2017

GANs
Cyclic consistent

adversarial
network

(CycleGAN)

• Handles
unpaired image
conversion.

• Effective for the
RGB-to-thermal
conversion.

• Struggles with
geometric
accuracy.

• Needs large
datasets.

Proposes CycleGAN for
unpaired image-to-image

conversion. Outperforms the
baseline but has limitations in

handling geometric
transformations. Advances

unsupervised image
conversion technology.

Kniaz, V.V.
et al. [57] 2018

GANs
ThermalGAN

framework

• Accurate
color-to-thermal
conversion.

• Produces
high-quality
images.

• Time-consuming.
• Needs labeled

data.

Proposes ThermalGAN for
cross-modal pedestrian

re-recognition, achieving
color-to-thermal conversion.

ThermalWorld outperforms in
this field and provides

valuable data for research.

Shariq, M.H.
and Hughes,

B.R. [53]
2020

ANN
Convolutional

neural networks
(CNNs)

• Extracts complex
features.

• Works with 5G
for a real-time
analysis.

• Risk of
overfitting.

• Time-consuming.

Building energy detection
research has gaps but identifies

promising technologies like
monocular photogrammetry
and UAV with IRT. The 5G
technology is highlighted to

address challenges and guide
future research.

Mizginov,
V.A., Kniaz,

V.V. and
Fomin,

N.A. [58]

2021 GANs

• Creates realistic
thermal images.

• Helps with data
training.

• Hard to evaluate
quality.

• Needs careful
tuning.

Proposes a GAN-based
method for generating

synthetic thermal images. An
FID evaluation shows high

similarity to real models,
improving training datasets

and related technologies.

Chai, P.
et al. [54] 2024 GANs

• Reviews
applications and
challenges.

• Suggests
improvements.

• Training
instability.

• Hard to apply
practically.

Reviews GAN applications in
construction, covering

principles, uses, limitations, and
future directions. While applied
in design generation, issues like

unstable training remain.
Future integration with new
technologies could improve
efficiency and sustainability.

Dubey, S.R.
and Singh,
S.K. [56]

2024
GANs

Transformer
network

• Improves vision
tasks.

• Useful for
architecture.

• Needs a lot of
computing
power.

• Long training
times.

Reviews Transformer-based
GANs in computer vision,

highlighting their impacts on
vision methods and

applications. Discusses the
model architecture and

performance, and suggests
future improvements in

architecture, feature
integration, and pre-training.
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Table 2. Cont.

Author Year AI Technology Advantages Limitations Conclusions

Kurtser, P.
et al. [24] 2025

GANs
Image-to-image

translation
network (pix2pix

architecture)

• Detects thermal
issues well.

• Learns from
diverse data.

• May create image
errors.

• Data variety
affects the results.

Proposes a label-free AI method
for building envelope anomaly
detection using color images to
predict heat distribution. The

pix2pix model detects
anomalies like thermal bridges
after training on diverse data,

advancing automated building
thermal detection.

4. The Impact of AI on the Indoor Environment
As buildings become increasingly complex and user expectations evolve, the role of

AI in indoor environmental design has become crucial. This section examines how AI
technologies are reshaping the understanding and management of indoor environments,
from basic environmental parameters to sophisticated design applications. The integration
of AI in indoor environments represents a paradigm shift in how designers conceptualize
and create comfortable, efficient, and sustainable indoor spaces

4.1. Indoor Environment of the Building

The human sensory interpretation of the surrounding environment begins with the
human sensory system receiving environmental impulses, which are processed by the
brain as environmental attributes. The indoor environment can be divided into five sub-
environments, with automatic control fields defined during architectural design and BAS
implementation. The problem of the proposed method lies in its complexity and many
interactions. Factors beyond traditional technology should be prioritized for control based
on user comfort, such as active noise reduction systems [60] or the automatic control of
mobile absorbers for indoor reverberation. The dynamic changes in thermal, visual, and
olfactory factors present both a risk of user dissatisfaction and a significant potential for
energy savings. As illustrated in Figure 7, these factors encompass various elements that
influence the thermal, visual, and olfactory aspects of the indoor environment [61]. The
control of thermal energy, vision, and indoor air quality will be further discussed.
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4.1.1. Thermal Sub-Environment

The indoor thermal environment primarily reflects the external climate characteristics
of the building location. In most modern buildings, solar radiation significantly impacts
indoor thermal conditions [62], and the thermal environment also depends on the heat
exchange with the exterior and building usage. For example, scholars have utilized solar
radiation simulations to analyze and optimize building orientation decisions, revealing that
different orientations significantly impact energy consumption and indoor comfort. For
instance, east-facing zones experienced excessive solar radiation, leading to high cooling
demands, while north-facing zones have minimal direct solar exposure. South-facing
zones consume a moderate amount of energy, benefiting from steeper solar angles that
limited heat gain compared to east and west orientations. It highlights the importance of
tailored design strategies to achieve energy efficiency while maintaining indoor comfort.
The thermal comfort of the human body in an indoor environment is influenced by various
factors, but all of these factors are related to the control mechanism of human blood vessel
movement [63]. For designers, the main problem is to correlate influencing factors to
affect the satisfaction of the human thermal environment. Among various measurement
systems, Fanger’s PMV index [64], developed in the 1970s, is the most complex, linking
multiple factors to human thermal sensation but with limitations [65] that complicate its
use in building automation. Simpler metrics, such as the concept of thermal neutrality [66],
which is relevant to a specific region and culture, and a simple measurement of dry bulb
temperature can be used for BMS applications if the building radiation environment is
uniform and the air flow is limited.

4.1.2. Visual Sub-Environment

In building activities, the full implementation of visual tasks is one of the main needs
of occupants, and the reasonable design of indoor visual sub-environment is crucial in
architectural design and can be divided into visual and non-visual effects, where daylight
is the key factor.

Studies show that classrooms with ample daylight improve student performance
by 20% in math and 26% in reading compared to those without daylight [67]. Similar
results were found for office environments [68] and retail sales environments. For most
visual tasks, the amount and uniformity of the horizontal illuminance of the working plane
are important.

On the other hand, glare is a common problem in daylighting. The design and control
of transparent parts are crucial for visual comfort, the shading control level is critical,
daylight and artificial lighting coordination can save energy, and visual sub-environmental
parameters are difficult to adjust with BAS but most promising for long-term dividends [69].

4.1.3. Olfactory Sub-Environment

Despite indications that indoor air quality is linked to occupant health and comfort,
indoor air conditions are poorly understood and often overlooked. Environmental fac-
tors influencing olfaction include organic substances in air [70] and occupants’ metabolic
byproducts. Poor air quality can stem from the building location [71], and indoor air qual-
ity usually maintained by natural, mechanical, or combined ventilation. Some buildings
prioritize energy conservation with minimal ventilation rates [70], compromising occupant
comfort. From the perspective of BAS design, the most practical control strategy is side
ventilation according to the demand of the CO2 concentration [72]. Studies indicate that
users prefer natural ventilation, and BAS can optimize heating, cooling, and ventilation for
enhanced building performance.
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4.2. AI and Indoor Environment Perception

With accelerating scientific and industrial advancements, intelligent manufacturing
has become a global trend and has been actively adopted by Chinese industry [73]. Re-
searchers are committed to developing more intelligent service robots [74], which need to
have advanced perception capabilities. Perceptual intelligence is the basis of the interaction
between robots and environmental information. Research on environmental perception
technology is of great significance to robot indoor operation, involving core technologies
such as target detection and ranging.

Environment perception technology is an important bridge connecting robots with
the real world, and it is crucial for the application of augmented reality (AR) and virtual
reality (VR) technology [75]. With AI advancements and the growing service robot market,
environmental perception holds significant potential and practical value [76,77]. Despite
significant progress in deep learning-based approaches to environment awareness, there
are still many challenges and issues that need to be addressed.

At present, research on indoor environment perception mainly relies on LiDAR and
visual image technology [78]. LiDAR excels at mapping, but it has limitations. Visual image
technology, by reducing hardware dependence and computational needs, enhances object
detection and localization, advancing robotic intelligence and efficiency.

4.2.1. LiDAR Environment Awareness Method

Visual environment perception technology plays a vital role in a robot’s interaction
with the real world, particularly in augmented reality (AR) and virtual reality (VR) applica-
tions. As a key sensor, LiDAR is mainly used for three-dimensional target detection [79]
by collecting point cloud data through laser reflection, and is valued for its stability and
anti-interference properties. LiDAR is widely used in digital city construction, terrain
mapping, cultural relic reconstruction, and other fields [80].

There are three methods to process LiDAR data: direct, indirect, and fusion. The
direct processing method utilizes the characteristics of point cloud data to analyze and
process them using deep neural networks, such as PointNet, PointNet++, and SpiderCNN
algorithms. The indirect processing method uses sampled point cloud data combined with
deep neural networks for target detection, such as BirdNet and RT3D algorithms [81]. The
fusion processing method combines 3D point cloud data and image data to improve the
accuracy of environment perception through multi-sensor data fusion, such as AVOD and
KPP3D object detection models based on key point information fusion.

Despite LiDAR’s strong performance, its high costs and equipment requirements limit
its application in certain scenarios. In cost-sensitive contexts, visual environment awareness
technology offers a more economical alternative.

4.2.2. Visual Environment Perception Method

Visual environment perception technology recognizes the surrounding environment
through image analysis and recognition technology, while deep learning has revolutionized
image processing since 2012 [82]. Target detection technology determines the target location
and category in images, but traditional methods cannot meet the requirements [83]. Deep
learning, with its robustness, generalization ability [84], and automatic feature extraction,
has become the mainstream algorithm, offering broad application prospects in target
detection and supporting automation and intelligence.

Object detection technology has been developed since 2001. It initially relied on
manual feature extraction and a sliding window method combined with a classifier to
process images [85], and a representative algorithm was used for pedestrian, vehicle, and
animal detection [86].
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The Scale Invariant Feature Transform (SIFT) algorithm, proposed for detecting and
describing local features, is robust to illumination changes and noise [87,88], but suffers
from a high computational cost and slow matching speed. However, in some cases, inte-
grating different algorithms can improve computational efficiency. For example, combining
Histogram of Oriented Gradient (HOG) features with Support Vector Machines (SVMs)
can enhance performance.

The Histogram of Oriented Gradients (HOG) can capture local shape information
and is invariant to geometric deformation, performing well in pedestrian detection [89].
Despite early successes, traditional methods have been largely replaced by more efficient
and accurate deep learning algorithms.

Two-stage target detection algorithms rely on a regional candidate network and neural
network classification theory [90]. The regional convolutional neural network (R-CNN)
algorithm, proposed by Ross Girshick in 2014 [91], marked a breakthrough in applying
deep learning to target detection. Subsequently, LiJi et al. [92] proposed the Fast R-CNN
algorithm to improve detection performance, and He Keming et al. [93] proposed the
space pyramid pool network. ChenXi et al. [94] studied non-maximum inhibition, and in
2017, He Keming et al. proposed the Mask R-CNN algorithm. In practice, Faster R-CNN
has demonstrated competitive accuracy and speed, particularly in pedestrian detection.
For example, For example, the method proposed by Zhang Hui et al. [95] showcased its
effectiveness, and Zhang Li et al. achieved an improved accuracy on INRIA datasets using
Faster R-CNN. These algorithms promote the progress of object detection technology and
provide tools for visual recognition tasks.

A one-stage object detection algorithm combines classification and regression prob-
lems. The YOLO algorithm, a milestone in the field of deep learning object detection, treats
detection tasks as regression problems to achieve end-to-end optimization [96]. The SSD
algorithm introduces multi-scale prediction, and YOLOv2 improves the basic model for
better speed and accuracy [97]. YOLOv3 introduces multi-scale training and testing, and
YOLOv4 and YOLOv5 further enhance the detection performance.

Overall, traditional target detection methods are effective in the early stage. With the
development of deep learning, target detection has become more efficient and accurate.
The combination of deep learning and practical application scenarios has become the
mainstream trend, promoting the widespread use of target detection technology.

4.3. Application of AI Technology in Interior Space Design

Smart home systems have become integral to indoor space design by integrating
sensors and intelligent algorithms for comprehensive environmental management. These
systems teach user behavior patterns and automatically adjust lighting, temperature, and
security, such as smart thermostats and smart lighting systems. They also offer remote
control and scheduling to provide a convenient life experience. They improve energy
efficiency and reduce environmental impacts through data analysis.

The application of 3D modeling technology in the field of interior design enhances the
design accuracy and efficiency by allowing designers to preview and modify schemes in
virtual environments. Three-dimensional models visually represent interior spaces and
simulate effects such as lighting, aiding both designers and clients in understanding the
design intent. With advancement of VR and AR technology, 3D modeling offers immersive
virtual tours, enabling users to experience design spaces interactively and realistically
before implementation.

The application of big data analytics into interior design allows designers to align
spaces with market trends and user expectations. By analyzing extensive data, designers
can predict design trends, optimize solutions, improve market competitiveness, identify
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potential problems early in the project, and conduct risk assessments to minimizes design
changes and cost overruns while enabling real-time tracking of design implementation to
refine strategies.

Intelligent spatial layout design personalizes and optimizes the spatial layout by
analyzing users’ behavioral data and preferences. Using advanced AI algorithms, it creates
functional, humanized spaces that adapt dynamically to users’ needs. Combined with
the Internet of Things (IoT) technology, it enables the interconnection of equipment and
systems, providing a more intelligent and automated living experience.

The intelligent security system uses AI technology to provide all-round security for
the indoor environment. It prevents and addresses security threats through real-time
monitoring and automated alarm mechanisms, such as facial recognition and behavioral
analysis to identify suspicious individuals, while intelligent fire alarm systems detect smoke
and high temperatures, triggering suppression and evacuation protocols. It also works with
other smart home systems. With the advancement of technology, the intelligent security
systems continue to evolve, bringing peace of mind and a convenient life experience
to users.

4.4. Interior Environment Design Methods Based on the AI Era
4.4.1. Development Trends in Interior Design

Virtual reality (VR) technology is increasingly applied in interior design, creating im-
mersive three-dimensional environments through computer graphics and digital processing
technology. Designers can use VR technology for initial layout planning to meet the actual
needs and optimize solutions in real time according to customer feedback. During construc-
tion, VR enables real-time site monitoring, enhancing safety and efficiency, and provides
a new display means for customers to experience the design scheme through panoramic
imaging and virtual simulations, improving communication and design expression.

As a new method of interior design, digital shadow technology deeply integrates the
real environment with computer graphic technology to simulate virtual reality scenes. Its
interactivity enhances users’ experience, improving design efficiency and quality while
reducing noise and pollution through remote control functions and providing a comfortable
and environmentally friendly living environment. With the advancement of AI technology,
digital shadow technology is expected to play a more important role in future interior
design, creating more intelligent and personalized living spaces.

4.4.2. The Impact of AI on Interior Design

Interior design style tends to be intelligent, personalized, and pays more attention to
the harmony between man and nature.

In contemporary interior design, intelligence is a significant trend. Smart home
systems include smart appliances, energy-efficient devices, and home control solutions.
Energy-saving appliances such as smart thermostats and smart lighting promote sustainabil-
ity, while small appliances such as vacuum cleaners and dishwashers enhance convenience
and comfort of life. Micro smart appliances such as smart speakers and electric curtains
enhance the smart home experience through voice control and automation.

People’s demand for personalized interior design is growing, and it is more obvious in
the era of AI. The application of AI technology in the fields of smart homes, transportation,
healthcare, and education brings new possibilities for interior design so that the design can
more accurately reflect the personality and lifestyle of the occupants.

In interior environment design, the harmonious coexistence of man and nature is
the core concept. The interior environment’s design should prioritize living comfort and
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aesthetics, integrating natural elements to create spaces that strengthen the connection to
nature and reflect respect for the environment.

The application of AI in indoor environment design has demonstrated transformative
potential across multiple domains. From environmental perception to practical design
implementation, AI technologies have enabled more sophisticated, user-centered, and
efficient approaches to indoor space design. These developments have not only enhanced
the ability to create more comfortable and sustainable indoor environments but have also
opened new possibilities for personalized and adaptive space solutions. The continued
evolution of AI applications in this field suggests an increasingly intelligent and responsive
future for indoor environment design.

5. Conclusions
With the continuous progress of AI technology, its applications in the fields of ar-

chitecture and interior design have broad prospects, indicating a more intelligent and
personalized future. The integration of AI has enhanced design efficiency and building
performance, and supports the creation of comfortable, healthy, and eco-friendly indoor
environments. The future interior design will pay more attention to the harmonious sym-
biosis between man and nature, and meet the residents’ pursuit of a better living space
through deep customization and personalized design.

This study underscores the role of AI in optimizing building envelope performance,
emphasizing its impact on energy-saving and thermal comfort improvements. By nar-
rowing the focus to this specific architectural component, it bridges gaps in the existing
literature and fosters a deeper understanding of this emerging area. Practically, the find-
ings highlight the importance of leveraging AI to address challenges in energy efficiency,
particularly in extreme climate regions, where the integration of AI into building envelopes
could significantly reduce energy consumption.

In terms of environmental protection, AI will further promote the development of
green buildings and ecological homes and achieve the efficient use of resources and sus-
tainable development of the environment through intelligent design and management.
Additionally, AI technology will improve the safety and controllability of the indoor
environment, providing a safe and healthy living space through accurate monitoring
and regulation.

However, as technology advances, integrating personalized design with environ-
mental protection remains a challenge. Designers need to continuously improve their
professional quality and in-depth understanding of users’ needs while applying intelligent
technologies to balance innovation and users’ requirements. Future interior design will
rely more on data-driven decision-making, using big data and AI algorithms to predict
trends and optimize designs.

In short, AI technology will profoundly change the future of the architecture and
interior design industries and bring a more intelligent, efficient, and environmentally
friendly lifestyle to mankind. With the continuous development and improvement of
technology, we have reason to believe that AI will become a key force driving progress in
these industries and creating better living environments.

6. Research Gaps and Future Directions
The review reveals several significant research gaps in AI applications for architectural

design and building environments. Current AI systems face technical limitations, partic-
ularly in their output mechanisms, which remain primarily one way and lack effective
feedback mechanisms when generating architectural designs, which still require significant
human intervention for optimal performance.
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In cold-region architecture, while progress has been made in modelling building
envelope effectiveness, there is a notable lack of generalization in these studies. Thermal
effect simulation can be utilized for building optimization, enhancing thermal comfort
and energy consumption through thermal imaging analysis, but more research is needed
in developing innovative AI applications for enhanced energy efficiency, expanding AI
integration in material science for improved building insulation, and creating more robust
models that can adapt to extreme climate conditions. The field faces substantial challenges
in environmental control and monitoring, as current AI systems struggle to model the
complex coupling of multiple physical fields between indoor and outdoor environments,
with notable limitations in coordinating various environmental factors simultaneously,
including thermal comfort, visual comfort, and air quality.

Despite technological advances, building inspection capabilities show gaps, particu-
larly in thermal imaging inspection, which has not fully capitalized on the available AI
technologies, while current deep learning models show limited effectiveness in generaliz-
ing to real-world commercial building inspections. Implementation barriers persist, with
high-end technologies like LiDAR remaining cost-prohibitive for widespread adoption,
and the deployment of AI solutions in building design and management requires extensive
computational resources and specialized expertise.

These gaps highlight the pressing need for continued development in AI applications
for architecture, with a particular focus on creating more autonomous, integrated, and
accessible solutions that can address the complex challenges of modern building design
and management.
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