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Abstract 31 

Despite the prevalence of ADHD, efforts to develop a detailed understanding of the 32 

neuropsychology of this neurodevelopmental condition are complicated by the diversity of 33 

interindividual presentations and the inability of current clinical tests to distinguish between its 34 

sensory, attentional, arousal or motoric contributions. Identifying objective methods that can 35 

explain the diverse performance profiles across individuals diagnosed with ADHD has been a 36 

long-held goal. Achieving this could significantly advance our understanding of etiological 37 

processes and potentially inform the development of personalized treatment approaches. 38 

Here, we examine key neuropsychological components of ADHD within an 39 

electrophysiological (EEG) perceptual decision-making paradigm that is capable of isolating 40 

distinct neural signals of several key information processing stages necessary for sensory-41 

guided actions from attentional selection to motor responses. Using a perceptual decision-42 

making task (random dot motion), we evaluated the performance of 79 children (aged 8 to 17 43 

years) and found slower and less accurate responses, along with a reduced rate of evidence 44 

accumulation (drift rate parameter of drift diffusion model), in children with ADHD (n = 37; 13 45 

female) compared to typically developing peers (n = 42; 18 female). This was driven by the 46 

atypical dynamics of discrete electrophysiological signatures of attentional selection, the 47 

accumulation of sensory evidence, and strategic adjustments reflecting urgency of response. 48 

These findings offer an integrated account of decision-making in ADHD and establish discrete 49 

neural signals that might be used to understand the wide range of neuropsychological 50 

performance variations in individuals with ADHD. 51 

 52 

Significance Statement 53 

The efficacy of diagnostic and therapeutic pathways in ADHD is limited by our incomplete 54 

understanding of its neurological basis. One promising avenue of research is the search for 55 

basic neural mechanisms that may contribute to the variety of cognitive challenges associated 56 

with ADHD. We developed a mechanistic account of differences in a fundamental cognitive 57 

process by integrating across neurocognitive, neurophysiological (i.e., EEG), and 58 

computational levels of analysis. We detected distinct neural changes in ADHD that explained 59 

altered performance (e.g., slowed and less accurate responses). These included changes in 60 

neural patterns of attentional selection, sensory information processing, and response 61 

preparation. These findings enhance our understanding of the neurophysiological profile of 62 

ADHD and may offer potential targets for more effective, personalized interventions. 63 

 64 
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Introduction 65 

Attention-Deficit/Hyperactivity Disorder (ADHD) is a prevalent childhood-onset 66 

condition characterized by persistent inattentive, hyperactive and/or impulsive symptoms that 67 

significantly impact social relationships and quality of life (Barkley, 1997; Nigg, 2013; Sciberras 68 

et al., 2022). Early attempts to identify the neuropsychological characteristics of ADHD 69 

focused primarily on differences in higher-level cognitive processes associated with executive 70 

functioning such as response inhibition, working memory and cognitive flexibility (Pennington 71 

and Ozonoff, 1996; Barkley, 1997; Sergeant et al., 2002). However, ADHD is now recognised 72 

as a complex, heterogeneous, and multifactorial condition with contributions spanning multiple 73 

levels of processing (Sergeant et al., 2003; Willcutt et al., 2005; Coghill et al., 2014), including 74 

basic perceptual (Kim et al., 2014; Gonen-Yaacovi et al., 2016; Mihali et al., 2018; Panagiotidi 75 

et al., 2018) and neuromotor processes (Hurks et al., 2005; Rommelse et al., 2008; Kaiser et 76 

al., 2015; Goulardins et al., 2017). This raises the possibility that differences in higher-level 77 

processes may actually be the consequence of changes in more basic mechanisms that 78 

support downstream functions (Rommelse et al., 2007). Many of these component processes 79 

have been identified based on hallmark differences in performance on reaction time tasks, 80 

where ADHD participants typically exhibit reduced accuracy and slower, more variable 81 

reaction times (Bellgrove et al., 2005; Johnson et al., 2007; Karalunas and Huang-Pollock, 82 

2013). However, since these behavioural outputs are the product of multiple processes (e.g., 83 

sensory encoding, evidence accumulation, motor preparation, urgency, decision bias and 84 

strategy), it is difficult to develop mechanistic accounts based on behavioural differences 85 

alone. 86 

Sequential sampling models, like the Drift-Diffusion Model (DDM) (Ratcliff and McKoon, 2008), 87 

provide a powerful theoretical framework that can help to disentangle these influences by 88 

recovering latent psychological processes from their behavioural output (Forstmann et al., 89 

2016). These models conceptualise decision-making as a dynamic process of the 90 

accumulation of noisy sensory evidence over time until a decision threshold is reached, and a 91 

response is initiated. Studies that have applied these models to the data of children with ADHD 92 

have identified slower accumulation of sensory evidence (reflected in a reduced drift rate 93 

parameter) (Mowinckel et al., 2015), no differences in bound adjustments (Mulder et al., 2010) 94 

and mixed evidence for differences in the non-decision time parameter which incorporates 95 

delays associated with stimulus encoding and motor execution (Huang-Pollock et al., 2012, 96 

2017; Karalunas et al., 2012, 2014, 2018). Although these models highlight distinct decision-97 

making mechanisms that are potentially altered in ADHD, they offer little insight into the 98 

underlying neurophysiological mechanisms.  99 
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Building on foundational work in monkey neurophysiology (Gold and Shadlen, 2007; Hanks 100 

and Summerfield, 2017), human research now capitalises on EEG paradigms to decompose 101 

simple decisions into their neural components, non-invasively mapping key information 102 

processing stages in decision-making (O’Connell and Kelly, 2021). These neural signals index 103 

processes representing candidate differences in decision-making in ADHD, including pre-104 

target attentional engagement (alpha power) (Kelly and O’Connell, 2013), early attentional 105 

selection (N2c) (Loughnane et al., 2016), dynamic urgency (contingent negative variation; 106 

CNV) (Devine et al., 2019), and evidence accumulation (centroparietal positivity; CPP). As the 107 

neural marker of the evidence accumulation process, the behaviour of CPP is consistent with 108 

the predictions of sequential sampling models. Specifically, its build-up rate scales with 109 

evidence strength and predicts reaction time, while its peak amplitude, occurring at response, 110 

varies with prior knowledge and time pressure (Kelly and O’Connell, 2015; O’Connell et al., 111 

2018). There is also compelling evidence linking CPP onset to non-decision time (Loughnane 112 

et al., 2016). 113 

Here, we sought to develop an integrated account of the neurophysiology of ADHD by linking 114 

these distinct EEG signals to mechanisms associated with performance of a perceptual 115 

decision-making task. We first aimed to establish linkages between EEG metrics of decision-116 

making with behaviour and DDM parameters in children with and without ADHD. Second, we 117 

aimed to characterise the dynamics of decision-making signals in ADHD, developing a 118 

mechanistic account that captures individual variations in performance. This comprehensive 119 

analysis allowed us to explore the neural, cognitive, and computational factors that govern 120 

decision-making in the context of ADHD. 121 

 122 

Materials and Methods 123 

Participants. The study included a total of 79 right-handed individuals with normal or 124 

corrected-to-normal vision who were aged between 8 and 17 years, comprising 37 participants 125 

with ADHD (13 female; Meanage = 13.45 years ± SDage = 2.026) and 42 typically developing 126 

controls (18 female; Meanage = 13.46 years ± SDage = 1.93). Data were collected at the 127 

University of Queensland (UQ) (n = 58) and Monash University (n = 21) in Australia following 128 

identical experimental protocols. Ethical approval was obtained from the human research 129 

ethics committees of both universities, and the study was conducted in accordance with 130 

approved guidelines. For the ADHD group, inclusion criteria required previous diagnosis by a 131 

specialist (e.g., psychiatrist or paediatrician), confirmed using the Anxiety Disorders Interview 132 

Schedule for DSM-IV (A-DISC child version for UQ participants) or The Development and 133 

Well-being Assessment (DAWBA, for Monash participants) and the Global Index on the 134 
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Conners’ Parent Rating Scale-Revised: Long Version (CPRS-R: L; T-Score > 65 from the 135 

mean). The participants with ADHD completed a 48-hour washout of ADHD-related 136 

medications before testing. Typically developing children were free of clinical diagnoses and 137 

had Conners’ Global Index T-Scores < 65. Informed consent from parents or guardians and 138 

assent was obtained from the participant prior to testing. This study originally recruited 85 139 

individuals but six were excluded from the analyses: three due to the lack of research-standard 140 

clinical evaluations (e.g., semi-structured interview) to confirm their group allocation and three 141 

due to recording issues (i.e., frequent pauses during the task, highly artefactual EEG 142 

recordings and/or excessive cap movement). Figure 1 presents the clinical characteristics of 143 

the individuals in the two groups. 144 

 145 

Experimental Protocol 146 

Participants were seated in a darkened sound-attenuated room positioned at a viewing 147 

distance of approximately 56 cm from a 21-inch CRT monitor (resolution: 1024 x 768, refresh 148 

rate: 85 Hz) and instructed to perform a bilateral random dot motion perceptual decision-149 

making task. The task was run through MATLAB’s psychophysics toolbox extension on a 32-150 

bit Windows XP computer (Brainard and Vision, 1997). A chin rest was employed to stabilise 151 

participants' heads and maintain a constant visual angle throughout the task. An Eyelink 1000 152 

eye tracking system (SR Research, Ottawa, ON, Canada) was used to monitor gaze at 153 

fixation. 154 

In this task (Figure 2), participants fixated on a centrally presented 5x5-pixel square dot while 155 

simultaneously monitoring two circular patches, one per hemifield. These peripheral patches 156 

were eight degrees in diameter and contained 150 randomly moving 6x6-pixel dots. The centre 157 

of each patch was situated 4º below and 10º to the left or right of the central fixation dot to 158 

maintain an optimum visual angle for both hemifields. At pseudo-random inter-target intervals 159 

of either 3.06, 5.17 or 7.29 seconds, during which the incoherent motion was continuously 160 

displayed, a subset of the dots transitioned to coherent downward motion for 1.88 seconds 161 

(Stefanac et al., 2021). These dots were randomly selected to move downwards by 0.282 162 

degrees per frame (6 degrees per second). Trials were marked by each occurrence of 163 

coherent (target) motion within the continuous incoherent background. The coherent 164 

downward motion occurred with equal probability in either the left or right hemifield patch. 165 

Participants were instructed to respond promptly by pressing both mouse buttons 166 

simultaneously with their thumbs upon detecting the downward motion, employing a double 167 

thumb click. The stimulus was displayed for the entire duration of 1.88 seconds, regardless of 168 

when the response occurred. To capture robust accuracy and reaction time contrasts between 169 
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groups, a relatively low coherence level of 30% was chosen for this task, deviating from 170 

previous studies using the same paradigm (Loughnane et al., 2016; Stefanac et al., 2021). 171 

Participants completed 200 trials of the task, divided into 10 blocks of 20 coherent motion trials 172 

each, with intermittent breaks to reduce fatigue.  173 

 174 

EEG acquisition and pre-processing 175 

Continuous EEG data were acquired from 64 scalp electrodes (10-10 layout) using BioSemi 176 

Active II (Neurospec, Switzerland) digitised at 1024 Hz (at the University of Queensland) or a 177 

BrainAmp DC system (BrainProducts, Germany) digitised at 500 Hz (at Monash University). 178 

Data were analysed using custom scripts in MATLAB (The MathWorks, Inc.) and EEGLAB 179 

toolbox (Delorme and Makeig, 2004). EEG recordings from the two locations were combined 180 

by down-sampling the data collected in Queensland to 500 Hz. Signals were low-pass filtered 181 

up to a 35 Hz cut-off using Hamming windowed-sinc FIR filter and no high pass filter was 182 

applied. Noisy channels were then interpolated using spherical spline interpolation and the 183 

data were re-referenced to the common average. Target epochs were extracted using a 184 

window of -800 ms to 1880 ms around the onset of the target stimulus (coherent motion) and 185 

baseline corrected at -100 to 0 ms. The behavioural measures of reaction time (RT) and 186 

accuracy were extracted as the average time to respond to a target in milliseconds (ms) and 187 

the percentage of correctly identified targets, respectively. Trials were rejected if any of the 188 

following occurred: 1) the central gaze fixation was broken by blinking or vertical/horizontal 189 

eye movement greater than three degrees; 2) recordings from any electrode exceeded ±100 190 

μV; 3) RTs were faster than 200 ms (pre-emptive responses) or slower than 1880 ms 191 

(responses after the offset of coherent motion). Missed targets were defined as either 192 

responses that took longer than 1880 ms or complete absence of responses. Hit rate was 193 

measured as the percentage of trials with valid responses. 194 

ERPs for each individual were extracted from the average of single-trial epochs. For each 195 

individual, we isolated four distinct and previously validated EEG signatures of decision-196 

making processes (Brosnan et al., 2020): pre-target attentional engagement (alpha power), 197 

early target selection (N2c peak latency and amplitude (Loughnane et al., 2016), evidence 198 

accumulation (CPP onset latency, slope, and amplitude (O’connell et al., 2012; McGovern et 199 

al., 2018; Steinemann et al., 2018), and dynamic urgency (CNV slope and amplitude (Devine 200 

et al., 2019). Pre-target alpha power was computed using the temporal spectral evolution 201 

approach, in which all epochs (-1000 ms to 2080 ms) were bandpass filtered at 8–13 Hz, 202 

rectified, and trimmed by 200 ms at both ends of the epoch (target epoch: -800:1880 ms) to 203 

eliminate filter warm-up artefacts. Subsequently, the data were smoothed by averaging within 204 
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a 100-ms moving window shifting forward in 50-ms steps throughout each epoch. Mean alpha 205 

power was extracted bilaterally at peak electrodes - PO3/PO7 (left hemisphere) and PO4/PO8 206 

(right hemisphere) - from 400 to 0 ms prior to the target onset and was baseline-corrected 207 

using the period of 700 to 400 ms before the target onset (Brosnan et al., 2020). For N2c 208 

components, peak negative amplitude was measured contralateral to the target hemifield, 209 

from electrodes P7 and P8 between 150 ms and 400 ms post target onset (Stefanac et al., 210 

2021). CPP was extracted from the average of the potentials recorded at the peak electrodes 211 

- Pz and POz - and CNV was measured at FCz. The amplitude of CPP and CNV was 212 

determined by calculating the mean signal amplitude within the same 100-ms window 213 

preceding the response. The slope of CNV was estimated using the same time window. The 214 

maximum increase in negativity was detected using the second derivative method (ADHD = -215 

84 ms, Control = -56 ms, averaging at -70 ms), and the slope of a line fitted to this window (-216 

70 ms to response) was defined as the CNV slope. CPP onset latency, marking the beginning 217 

of neural evidence accumulation, was derived by performing point-by-point one-sample t-tests 218 

against zero over the stimulus-locked trials for each individual. The onset was defined as the 219 

first point in time when the amplitude reached the significance level of 0.05 for 25 consecutive 220 

samples (Foxe and Simpson, 2002). The build-up rate of the CPP was measured as the slope 221 

of a straight line fitted to the response-locked signal at -450ms to -50ms (Loughnane et al., 222 

2016; Zhou et al., 2021). The variation of the task used in this study, involving double thumb 223 

clicks, did not allow us to extract motoric signals, such as lateralized beta activity. 224 

 225 

Drift Diffusion Modelling 226 

The drift diffusion model was fitted to the behaviour of all participants (both ADHD and typically 227 

developing children) at an individual level (Ratcliff et al., 2018). The response time data for 228 

each individual was first split into six equal speed bins defined by five quantiles (0.1, 0.3, 0.5, 229 

0.7 and 0.9), resulting in four 20% bins and two 10% bins. Together with a single bin containing 230 

the number of missed responses, these seven bins were then used to fit the drift diffusion 231 

model using the G-square method of the hDDM package (Wiecki et al., 2013; Ratcliff et al., 232 

2016; de Gee et al., 2020). This method is a variant of the chi-squared method and was chosen 233 

for its efficiency, the availability of significant trial data for each individual, its robustness to 234 

outliers and its success in previous similar experiments (Ratcliff et al., 2016; Myers et al., 235 

2022). The G-square statistics is defined as: 236 

𝐺2 = 2∑𝑂𝑖 ln (
𝑂𝑖
𝐸𝑖
)

7

𝑖=1

 237 
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where 𝑖 ∈ 𝑁 represents the quantile number. The variable 𝑂𝑖 ∈ 𝑅 represents the number of 238 

observations in each bin (in this case: 0.1, 0.2, 0.2, 0.2, 0.2 and 0.1 of the total number of 239 

observations), and 𝐸𝑖 ∈ 𝑅 represents the expected number of observations in each bin, as 240 

predicted by the drift diffusion model. The expected number of observations is determined by 241 

first inserting the simulated response times into a drift diffusion model cumulative probability 242 

function to obtain the expected cumulative probability up to the five quantiles. Then, the 243 

proportion of simulated responses between each quantile is calculated by subtracting the 244 

cumulative probabilities for each successive quantile from the next highest quantile. This 245 

proportion is then multiplied by the total number of observations to obtain the expected 246 

frequencies. The drift-diffusion model parameters 𝑎, 𝑣 and 𝑡 were determined by minimising 247 

the G-square statistic using the modified Powell method (Powell, 1964). To obtain the best 248 

fitting model, 1000 different runs of the optimisation were performed with starting points 249 

chosen from a normal distribution with a mean of the best parameter value and a standard 250 

deviation of 0.5. The fitted DDM assumed that the decision threshold (a), drift rate (v), and 251 

non-decision time (t) varied between subjects. A chi-squared statistical procedure was then 252 

done to assess the goodness of fit for the model on each individual subject. The identified 253 

model for each subject was used to generate 1000 samples of response times and accuracy. 254 

Histograms of the simulated and experimental data were then constructed across 20 equal 255 

bins. Since there were 3 DDM parameters fitted through the model, the resulting comparison 256 

means that there are 26 degrees of freedom resulting in a critical chi-squared statistic of ~38.8. 257 

The obtained chi-square values were lower than the critical value (range: 1.16 to 7.01), 258 

resulting in a p-value of approximately 1 for all individuals. This suggests that the model 259 

produces data that are very good fits with the experimental data. Further details can be found 260 

in (de Gee et al., 2020; Ratcliff et al., 2018). 261 

 262 

Statistical Analysis 263 

Significant outliers were winsorised to the 5th percentile (for the lower outliers) and the 95th 264 

percentile (for the upper outliers) in each participant group to improve normality of 265 

distributions. CPP onset could not be detected for five individuals in each group due to noisy 266 

signals, so the missing values were replaced with the group median.  267 

First, we adopted a hierarchical regression approach to investigate the association between 268 

the EEG signals (alpha power, N2c, CPP, and CNV), and both behavioural (RT, Miss Rate 269 

and Hit Rate) and DDM (drift rate, decision threshold, non-decision time) outcomes. Separate 270 

hierarchical linear regression models were applied for each behavioural and DDM measure 271 

as a function of the EEG signals using data from all individuals, combining both groups. 272 
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Diagnostic analyses confirmed that key assumptions for linear regression modeling were 273 

satisfied. The residuals did not exhibit skewness, as indicated by the normal P-P plots, 274 

confirming normality. Additionally, scatter plots of standardized residuals confirmed 275 

homoscedasticity. Multicollinearity was not present, with tolerance values above 0.1, VIFs 276 

below 10, and Pearson’s correlation coefficients among predictors (EEG signals) less than 277 

0.9. EEG components were sequentially entered into the regression models, following the 278 

temporal order of the perceptual decision-making processes: pre-target attentional 279 

engagement (alpha power), early target selection (N2c peak latency and amplitude), evidence 280 

accumulation (CPP onset, slope and amplitude) and dynamic urgency (CNV slope and 281 

amplitude). This hierarchical entry method allowed us to evaluate whether each individual 282 

neurophysiological signal contributed to the model fit for behavioural performance or DDM 283 

parameters beyond the preceding signals in the temporal sequence. The independent power 284 

of each neurophysiological signal to predict behaviour was also evaluated. Next, Spearman's 285 

partial correlation analyses were employed, controlling for the effects of group (ADHD, 286 

control), age and recruitment site (Monash, UQ), to evaluate the magnitude and orientation of 287 

the relationship between EEG components and both behavioural outcomes and DDM 288 

parameters. 289 

To determine any differences in decision-making processes in ADHD versus typically 290 

developing children, a multivariate analysis of covariance (MANCOVA) was conducted to 291 

compare the two groups on behavioural measures (RT, Miss Rate and Hit Rate), EEG 292 

signatures including alpha (power), N2c (peak latency, amplitude), CPP (onset, amplitude, 293 

slope) and CNV (amplitude, slope), and the DDM parameters (drift rate, decision threshold, 294 

non-decision time), while controlling for the effect of age and recruitment site. We also 295 

examined whether the EEG signals were related to ADHD symptom scores while accounting 296 

for the effects of group, age and site. For this analysis we employed five separate linear 297 

regression models, followed by false discovery rate (FDR) adjustment, each with one ADHD 298 

symptom domain as the dependent variable (i.e., DSM-IV hyperactivity/impulsivity score, 299 

DSM-IV inattention score, DSM-IV total score, CPRS ADHD Index, CPRS Global Index), while 300 

EEG signatures were entered into the model hierarchically.  301 

 302 

Results 303 

We first examined the relationship between each EEG signal (alpha, N2c, CPP and CNV) and 304 

variations in behaviour using a hierarchical regression model. In the initial step of the model, 305 

group, site and age were entered as nuisance variables. In the subsequent steps, we 306 

sequentially incorporated the neural markers of attentional engagement (alpha power), target 307 
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selection (N2c: peak latency and amplitude), evidence accumulation (CPP: onset, amplitude, 308 

and slope), and dynamic urgency (CNV: amplitude and slope) into the model. This hierarchical 309 

methodology allowed us to control for the chronological order of neural processes in 310 

perceptual decision-making and examine the incremental predictive power of different signals. 311 

Although the existing literature suggests connections between certain EEG signals and 312 

behavioural/DDM measures (Yau et al., 2021), we avoided making a-priori assumptions about 313 

these relationships in our analysis. Instead, we systematically examined each component to 314 

evaluate their impact and uncover any latent patterns and interactions. In a similar study with 315 

a comparable design and analytical framework, a sample size of 72 participants was sufficient 316 

to detect meaningful effects across similar predictors (Cohen’s f2=.29; Power = 88.86% 317 

(G*Power 3.1))(Brosnan et al., 2023). Building on this previous work, we determined that a 318 

sample size of 79 participants would ensure robust power for the current study. 319 

 320 

Neural signals predicting variations in reaction time 321 

The  neural signatures of the decision process collectively accounted for a substantial 52% of 322 

the variance in RT. Adding each of the neural components resulted in a significant 323 

improvement in the model fit (alpha power: R2
adj = 0.21, F (4,74) = 6.33, p < 0.001; N2c latency: 324 

R2
adj = 0.21, F (5,73) = 5.26, p < 0.001; N2c amplitude: R2

adj = 0.21, F (6,72) = 4.37, p < 0.001; 325 

CPP onset: R2
adj = 0.32, F (7,71) = 6.36, p <0.001; CPP slope: R2

adj = 0.46, F (8,70) = 9.32, p 326 

< 0.001; CPP amplitude: R2
adj = 0.53, F (9,69) = 10.76, p <0.001; CNV slope: R2

adj = 0.53, F 327 

(10,68) = 9.71, p < 0.001; CNV amplitude: R2
adj = 0.52, F (11,67) = 8.69, p < 0.001). The 328 

analysis of coefficients revealed that alpha power (stand. β = 0.18, t = 2.17, p = 0.034) and all 329 

CPP components (onset: stand. β = 0.45, t = 4.94, p < 0.001; slope: stand. β = -0.84, t = -4.67, 330 

p < 0.001; amplitude: stand. β = 0.56, t = 2.87, p = 0.007) had independent predictive power 331 

for RT, highlighting their potential as robust markers of changes in decision-making processes.  332 

 333 

Neural signals predicting variations in Miss Rate 334 

The second model examined the neural predictors of Miss Rate and yielded comparable 335 

outcomes to those of RT. The EEG signals collectively accounted for 30% of variations in Miss 336 

Rate. All neural components significantly improved model fit (alpha power: R2
adj = 0.17, F 337 

(4,74) = 5.14, p = 0.001; N2c latency: R2
adj = 0.16, F (5,73) = 4.08, p = 0.003; N2c amplitude: 338 

R2
adj = 0.16, F (6,72) = 3.54, p = 0.004; CPP onset: R2

adj = 0.28, F (7,71) = 5.26, p < 0.001; 339 

CPP slope: R2
adj = 0.27, F (8,70) = 4.69, p < 0.001; CPP amplitude: R2

adj = 0.26, F (9,69) = 340 

4.11, p < 0.001; CNV slope: R2
adj = 0.27, F (10,68) = 3.86, p < 0.001; CNV amplitude: R2

adj = 341 

0.30, F (11,67) = 3.99, p < 0.001) but only CPP onset demonstrated independent predictive 342 
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power for Miss Rate (stand. β = 0.44, t = 3.96, p < 0.001), underlying its significance in 343 

determining performance on this particular task.  344 

 345 

Neural signals predicting variations in Hit Rate 346 

In the third model we explored the neural predictors of Hit Rate. The examined EEG metrics 347 

collectively accounted for 34% of the variance in Hit Rate. In line with the results from RT and 348 

Miss Rate, adding each metric substantially enhanced the model’s overall fit (alpha power: 349 

R2
adj = 0.21, F (4,74) = 6.03, p < 0.001; N2c latency: R2

adj = 0.19, F (5,73) = 4.78, p < 0.001; 350 

N2c amplitude: R2
adj = 0.19, F (6,72) = 4.09, p = 0.001; CPP onset: R2

adj = 0.28, F (7,71) = 351 

5.41, p < 0.001; CPP slope: R2
adj = 0.29, F (8,70) = 4.91, p < 0.001; CPP amplitude: R2

adj = 352 

0.28, F (9,69) = 4.32, p < 0.001; CNV slope: R2
adj = 0.28, F (10,68) = 3.97, p < 0.001; CNV 353 

amplitude: R2
adj = 0.34, F (11,67) = 4.62, p < 0.001). CPP onset (stand. β = -0.43, t = -4.003, 354 

p < 0.001) and CNV measures (slope: stand. β = -0.39, t = -2.27, p = 0.023; amplitude: stand. 355 

β = -0.39, t = -2.72, p = 0.008) made significant individual contributions to the prediction of Hit 356 

Rate.  357 

Together, these results provide compelling evidence that the EEG metrics of target selection 358 

(N2c), evidence accumulation (CPP), and dynamic urgency (CNV) collectively exhibit 359 

predictive power for decision-making performance across the three behavioural measures 360 

(RT, Miss Rate, Hit Rate). This underscores the importance of considering multiple neural 361 

components when investigating and interpreting decision-making processes. Although the 362 

neural signals showed varying contributions to each behavioural measure, CPP onset 363 

emerged as an independent predictor for performance variations across all the three 364 

measures. Figure 3 illustrates the relationships between CPP onset and performance, along 365 

with the Spearman’s correlation coefficients.  366 

 367 

Collective predictive power of neural metrics on DDM parameters 368 

Next, we examined whether the EEG signatures of decision-making processes were 369 

associated with DDM parameters fitted to the behavioural measures by modelling each DDM 370 

parameter as a function of the EEG signals in hierarchical regression analysis. Group, age 371 

and site were entered as nuisance factors at the first stage of each model.  372 

 373 

Neural signals predicting variations in Non-decision Time (t)  374 

Non-decision time refers to the combination of the time taken to encode the stimulus and the 375 

response execution occurring before and after evidence accumulation, respectively. The EEG 376 

JN
eurosci

 Acce
pted M

an
uscr

ipt



signals collectively accounted for 30%  of variations of the non-decision time parameter of the 377 

DDM and the model fit significantly improved by adding each of the neural components into 378 

the model (alpha power: R2
adj = 0.15, F (4,74) = 4.40, p = 0.003; N2c latency: R2

adj = 0.21, F 379 

(5,73) = 5.10, p < 0.001; N2c amplitude: R2
adj = 0.20, F (6,72) = 4.23, p < 0.001; CPP onset: 380 

R2
adj = 0.26, F (7,71) = 4.97, p < 0.001; CPP slope: R2

adj = 0.28, F (8,70) = 4.82, p < 0.001; 381 

CPP amplitude: R2
adj = 0.31, F (9,69) = 4.93, p < 0.001; CNV slope: R2

adj = 0.30, F (10,68) = 382 

4.38, p < 0.001; CNV amplitude: R2
adj = 0.30, F (11,67) = 4.02, p < 0.001). The analysis of 383 

coefficients revealed that all CPP components (onset: stand. β = 0.37, t = 3.33, p = 0.001; 384 

slope: stand. β = -0.58, t = -2.67, p = 0.009; amplitude: stand. β = 0.52, t = 2.14, p = 0.03) had 385 

independent predictive power for non-decision time.  386 

 387 

Neural signals predicting variations in Drift Rate (ν)  388 

Drift rate refers to the speed at which the process of evidence accumulation approaches one 389 

of the two decision boundaries. Similar to the non-decision time, the model fit for the drift rate 390 

parameter was significantly improved when each of the EEG metrics was added into the 391 

model. This model explained 30% of the variance in drift rate (alpha power: R2
adj = 0.20, F 392 

(4,74) = 5.78, p < 0.001; N2c latency: R2
adj = 0.26, F (5,73) = 4.47, p < 0.001; N2c amplitude: 393 

R2
adj = 0.25, F (6,72) = 5.46, p <  0.001; CPP onset: R2

adj = 0.28, F (7,71) = 5.32, p < 0.001; 394 

CPP slope: R2
adj = 0.27, F (8,70) = 4.68, p < 0.001; CPP amplitude: R2

adj = 0.27, F (9,69) = 395 

4.22, p < 0.001; CNV slope: R2
adj = 0.28, F (10,68) = 4.01, p < 0.001; CNV amplitude: R2

adj = 396 

0.30, F (11,67) = 4.09, p < 0.001). CPP onset (stand. β = -0.30, t = -2.66, p = 0.001) and CNV 397 

slope (stand. β = 0.27, t = 2.13, p = 0.03) accounted for independent variation in drift rate.  398 

 399 

Neural signals predicting variations in Response Threshold (a)  400 

Response threshold is the amount of accumulated evidence required for a decision to be 401 

made. EEG signals explained 22% of variations in this parameter and adding each of the EEG 402 

metrics  significantly improved the model fit (alpha power: R2
adj = 0.14, F (4,74) = 4.20, p = 403 

0.004; N2c latency: R2
adj = 0.19, F (5,73) = 4.75, p < 0.001; N2c amplitude: R2

adj = 0.18, F 404 

(6,72) = 3.95, p =  0.002; CPP onset: R2
adj = 0.24, F (7,71) = 4.51, p < 0.001; CPP slope: R2

adj 405 

= 0.23, F (8,70) = 3.90, p < 0.001; CPP amplitude: R2
adj = 0.22, F (9,69) = 3.41, p = 0.002; 406 

CNV slope: R2
adj = 0.21, F (10,68) = 3.14, p = 0.002; CNV amplitude: R2

adj = 0.22, F (11,67) = 407 

3.04, p = 0.002) and only CPP onset (stand. β = -0.31, t = -2.65, p = 0.01) accounted for 408 

independent variation in response threshold.  409 
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The results above collectively provide evidence supporting associations between neural 410 

metrics of decision-making as measured with EEG, and DDM parameters derived from 411 

behavioural outcomes. Among all EEG components, the dynamics of CPP emerged as the 412 

strongest contributor to the variations in DDM parameters.  413 

 414 

Neurobehavioural characteristics of decision-making in ADHD 415 

To investigate the distinctions in behavioural, DDM and electrophysiological measures of 416 

decision-making between the ADHD and control groups, we conducted MANCOVA with site 417 

and age as covariates. As the Box's M test score was significant (p < 0.001), we used Pillai’s 418 

trace statistic, which is considered to be most robust against type I error in MANCOVA (Olson, 419 

1976; Scheiner, 2020). The results revealed significant main effects of Group (Pillai's Trace = 420 

0.36, F (14, 62) = 2.50, p = 0.007, partial η2 = 0.36) and age (Pillai's Trace = 0.31, F (14, 62) 421 

= 1.98, p = 0.035, partial η2 = 0.31) but not Site (Pillai's Trace = 0.25, F (14, 62) = 1.48, p = 422 

0.15, partial η2 = 0.25).  423 

 424 

Table 1 summarises pairwise comparisons of all the measures between the ADHD and control 425 

groups. Significant differences were observed between the two groups across all measures of 426 

performance, as well as the drift rate and response threshold parameters of DDM. All EEG 427 

components showed significant changes in ADHD in at least one feature of the signal, except 428 

for pre-target alpha. Figure 4 illustrates the differences in spatiotemporal patterns of EEG 429 

signals between the two groups.  430 

 431 

Although CPP onset emerged as the strongest predictor of behavioural variations among all 432 

neural components, it did not significantly differ between groups. To determine whether the 433 

relationship between CPP onset and performance metrics was group-specific, we conducted 434 

a post-hoc analysis. Spearman’s correlations (controlling for age and site) revealed that CPP 435 

onset was significantly correlated with all three performance measures in the control group 436 

(RT: rho = 0.4, p = 0.01; Miss Rate: rho = 0.56, p < 0.001; Hit Rate: rho = -0.50, p = 0.001) but 437 

only with RT in the ADHD group (RT: rho = 0.44, p = 0.008; Miss Rate: rho = 0.26, p = 0.14; 438 

Hit Rate: rho = -0.27, p = 0.12) (Figure 3). These findings suggest that, despite the overall 439 

significance of CPP onset, other critical factors – specifically altered in ADHD – obscure the 440 

brain-behaviour relationships. Of note, Fisher's z-tests showed no statistically significant 441 

difference between the correlations (all p-values > 0.05) in the two groups, suggesting this 442 

observation should be interpreted cautiously and explored further in future research. 443 
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 444 

Group differences in reaction time are mediated by variations in the neural measures 445 

of evidence accumulation. 446 

 Given the predictive power of the CPP for decision-making performance and its capacity to 447 

distinguish between groups (CPP slope and amplitude), we tested whether CPP dynamics 448 

mediated the performance differences observed in ADHD. Because the mediation effects of 449 

the different CPP metrics were likely related, for each behavioural measure, we jointly tested 450 

all the three mediators in one model to assess simultaneous effects more accurately 451 

(MacKinnon et al., 2000, 2007). Bootstrapped mediation analyses with 5000 samples (bias-452 

corrected percentile; with site and age as confounding factors) revealed that the inter-subject 453 

variation in RT for the ADHD group, at least in part, depends on individual differences in the 454 

efficiency of evidence accumulation (Table 2). The mediation effect was observed for CPP 455 

slope and amplitude, but not for CPP onset, which aligns with the lack of significant group-456 

level differences in onset. 457 

 458 

Finally, we sought to determine whether the EEG signatures could serve as predictors for the 459 

clinical scores. Hierarchical regression models revealed that variations in the EEG signatures 460 

collectively accounted for a significant portion of ~70-80% (R2
adj) variance in each clinical 461 

score. The model fit for each score was significantly improved by adding each neural metric 462 

(all p FDR-corrected<0.001). However, none of the EEG signals emerged as independent 463 

predictors for the clinical scores suggesting that these scores may reflect the interplay of 464 

multiple processing stages. 465 

 466 

Discussion 467 

In this study, we aimed to develop a mechanistic account of ADHD-related changes in a 468 

fundamental cognitive process by integrating neurocognitive, neurophysiological, and 469 

computational levels of analysis, and identified distinct phenotypic signatures. First, our 470 

findings confirmed the link between performance and the EEG signatures of cognitive 471 

processes during perceptual decision-making, highlighting CPP dynamics as robust, 472 

independent neural predictors across various measures (RT, Miss and Hit Rates). Also, 473 

consistent with the literature (Rommelse et al., 2007; Karalunas and Huang-Pollock, 2013), 474 

the ADHD cohort demonstrated significantly slower RTs, a higher number of missed targets, 475 

and a reduced Hit Rate. DDM parameters (drift rate and response threshold) also 476 

demonstrated sensitivity in distinguishing ADHD from typically developing children and were 477 
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significantly correlated with neural dynamics of evidence accumulation (CPP). In addition, 478 

children with ADHD exhibited altered dynamics in several neurophysiological signatures of the 479 

decision process including target selection (early and attenuated N2c), evidence accumulation 480 

(reduced CPP slope and amplitude) and anticipation of voluntary action (reduced CNV slope). 481 

Critically, the interplay of these neural signals explained meaningful inter-individual variation 482 

in performance and clinical outcomes.  483 

The N2c component is a key signature of early target selection mechanisms that support the 484 

decision process by facilitating enhanced processing of target features (Loughnane et al., 485 

2016). Although the marginally earlier latency of the N2c observed in children with ADHD 486 

could be interpreted as enhanced target detection, its diminished amplitude coupled with the 487 

poorer performance of the ADHD group, more likely indicate premature processing of sensory 488 

information and/or changes in allocation of attentional resources. The N2c is closely related 489 

to the N2pc component elicited during visual search tasks, reflecting attentional impairment in 490 

ADHD, as indicated by altered timing and reduced amplitude (Cross-Villasana et al., 2015; 491 

Wang et al., 2016; Luo et al., 2019). Like the N2pc, the N2c functions as a general target 492 

selection signal emerging irrespective of the presence of distractors or the degree of 493 

spatiotemporal uncertainty (Loughnane et al., 2016). Although the N2c did not seem to act as 494 

an independent predictor of performance or clinical characteristics in ADHD, its significant 495 

contribution to models predicting behavioural outcomes and clinical scores suggests a partial 496 

link between ADHD-related decision-making impairments and the target selection 497 

mechanisms that support the decision process. N2c dynamics are relatively unexplored in the 498 

ADHD literature and, given the importance of attentional differences to ADHD, merit further 499 

investigation. 500 

There is evidence that a key mechanism that changes in ADHD may be the rate of basic 501 

information processing (Rommelse et al., 2007; Salum et al., 2014b, 2014a; Mihali et al., 502 

2018). Indeed, efforts to model a variety of behavioural impairments associated with ADHD 503 

have consistently highlighted the rate of evidence accumulation as the core contributor to 504 

performance changes (Karalunas et al., 2012, 2014; Huang-Pollock et al., 2017, 2020; 505 

Weigard and Sripada, 2021). In line with prior computational modeling studies across various 506 

neurocognitive paradigms (Shapiro & Huang-Pollock, 2019; Weigard & Sripada, 2021), we 507 

found a significant attenuation in the DDM drift rate parameter in individuals with ADHD. Our 508 

EEG findings complement this work by tracing the dynamics of an established 509 

neurophysiological index of evidence accumulation, the CPP. CPP dynamics (onset) not only 510 

exhibited robust predictive power for all the measures of cognitive performance examined in 511 

this study, but also differed significantly between ADHD and typically developing individuals 512 

(CPP slope and amplitude). Although CPP onset was delayed in the ADHD group, this 513 
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difference did not reach statistical significance. This result, coupled with the apparent 514 

weakened relationship observed between CPP onset and behaviour in the ADHD group, might 515 

reflect underlying complexities in the neural dynamics of ADHD, though this difference was 516 

not statistically significant.  It is likely that our trial-averaged approach has obscured variations 517 

in neural timing and amplitude, particularly in ADHD, where such variability is expected to be 518 

higher. This smearing effect can blur the precise timing and reduce the perceived strength of 519 

neural signals, which prevents the accurate detection of CPP onset, making it more difficult to 520 

detect its true relationship with behaviour. A trial-wise approach that captures both amplitude 521 

and timing variations more effectively could potentially clarify such changes in brain-behaviour 522 

relationships in ADHD.  In line with claims of inefficient evidence accumulation in ADHD, we 523 

found a reduced CPP slope and a smaller CPP amplitude in the ADHD group. More consistent 524 

with previous research showing that steeper CPP slopes predict faster reaction times and 525 

CPP amplitude is reliably greater for hits than for misses (O’connell et al., 2012; Kelly and 526 

O’Connell, 2013, 2015), this result provides neurophysiological evidence to support the 527 

hypothesis that suboptimal evidence accumulation or poorer signal-to-noise ratios in the 528 

processing of task-relevant information may contribute to differences in decision-making in 529 

ADHD.  530 

While both CPP slope and DDM drift rate are suggested to reflect the rate of evidence 531 

accumulation, we found drift rate was independently predicted by CPP onset, not slope. 532 

Despite this, the inclusion of CPP slope in the regression significantly improved the model fit. 533 

These results suggest that the two metrics do correlate, but the contribution of CPP slope to 534 

drift rate is shared with other neural predictors in the model. This agrees with previous 535 

literature, which indicates that CPP slope is influenced by earlier neural processes in decision-536 

making, such as attentional engagement (alpha power (Kelly & O'Connell, 2013)) and 537 

attentional selection (N2 amplitude (Loughnane et al., 2016)). CNV amplitude is also expected 538 

to covary with CPP slope, with larger CPP slopes associated with smaller CNVs due to faster 539 

RTs and less time for urgency to grow. Our data confirms that CPP slope covaries with both 540 

alpha power (rho = 0.24, p = 0.04) and CNV amplitude (rho = -0.34, p = 0.003). Therefore, 541 

these neural metrices probably share some of the variance contributed by CPP slope, making 542 

it difficult for CPP slope to account for unique variance independently. Overall, these findings 543 

suggest that CPP may not be a direct neural analogue to the DDM drift rate. 544 

The strong predictive power of CPP onset for drift rate may, in part, be due to methodological 545 

constraints in onset detection. CPP onset is identified at the point where the signal reliably 546 

exceeds background noise, and this measurement may be influenced by the rate of evidence 547 

accumulation. Participants with faster accumulation rates could surpass the noise threshold 548 

earlier, leading to earlier detected onsets. Therefore, while we cannot rule out that drift rate 549 

JN
eurosci

 Acce
pted M

an
uscr

ipt



and CPP onset are dependent, there is a possibility that their true relationship has been 550 

obscured by methodological limitations. 551 

To our knowledge, this study is the first to investigate CPP dynamics in ADHD. However, the 552 

P300 event-related potential1(Twomey et al., 2015; O’Connell and Kelly, 2021), also 553 

associated with evidence accumulation, has consistently been reported to have reduced 554 

amplitude in ADHD across a variety of tasks (Itagaki et al., 2011; Hasler et al., 2016; Kaiser 555 

et al., 2020). In fact, these effects are sufficiently robust that P300 dynamics have been 556 

proposed as potential ADHD biomarkers (Kaiser et al., 2020) and metrics for research on 557 

pharmacological treatment (Ogrim et al., 2016; Yamamuro et al., 2016; Peisch et al., 2021). 558 

Although the interpretation of these P300 effects varies across tasks, these results can be 559 

broadly characterised as reflecting suboptimal processing of task-relevant information. The 560 

CPP is thought to be functionally equivalent to the P300 (Itagaki et al., 2011), but studying the 561 

CPP offers several critical advantages over this previous work. Unlike the stimulus-locked 562 

P300, the slope and amplitude of CPP are estimated from the response-locked potentials 563 

accounting for the fact that the signal peaks at the time of response. Furthermore, the P300 564 

analysis often overlooks the onset and build-up rate of the signal which are critical for 565 

understanding the neural processes underlying evidence accumulation.  566 

The present findings also align with research that indicates methylphenidate (MPH) enhances 567 

cognitive task performance by improving evidence accumulation. MPH is the mainstay 568 

treatment for ADHD and has been shown to normalise the reduced DDM drift rate in ADHD 569 

(Fosco et al., 2017). It also realigns P300 dynamics in neurocognitive (Peisch et al., 2021) and 570 

perceptual decision-making tasks (Loughnane et al., 2019). Additionally, preliminary evidence 571 

suggests that MPH enhances CPP slope in human EEG (Loughnane et al., 2019). The neural 572 

mechanisms by which MPH might enhance evidence accumulation are still largely unknown 573 

although some evidence from behavioural modelling studies suggests that it may regulate the 574 

suboptimal neural signal-to-noise ratios in children with ADHD (Ratcliff et al., 2009; Loughnane 575 

et al., 2019; Pertermann et al., 2019), suggesting that an increase in neural gain may account 576 

for effects observed on the P300. Future studies may yield a deeper understanding of the 577 

pharmacology of discrete processing stages underlying human choice behaviour by 578 

integrating the EEG paradigms and computational modelling approach employed in the 579 

present study with pharmacological manipulation. 580 

Finally, our data revealed ADHD-related changes in CNV dynamics, which also contributed to 581 

the variation in behavioural performance. The CNV signal is commonly observed in target 582 

 

1
 The CPP is typically observed during extended perceptual discrimination, while the P300 is evoked by discrete 

sensory events (e.g., an oddball stimulus).  
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detection and choice response time tasks, which is associated with temporal preparation for 583 

anticipated events or volitional movements (Brunia and Van Boxtel, 2001; Van Rijn et al., 584 

2011; Baker et al., 2012). This signal is influenced by dopaminergic systems (Birbaumer et 585 

al., 1990) and its attenuation has been widely reported in children (Banaschewski et al., 2003; 586 

Doehnert et al., 2013; Kaiser et al., 2020) and adults with ADHD (McLoughlin et al., 2010, 587 

2011; Hasler et al., 2016). Indeed, this signal has been suggested as a robust 588 

neurophysiological marker of ADHD which effectively captures the underlying deficits in their 589 

preparatory motor processes (Doehnert et al., 2013; Kaiser et al., 2020). In the context of 590 

perceptual decision-making, the CNV is also described as a neural index of urgency which 591 

grows in a time-dependent but evidence-independent manner reflecting speed pressure in 592 

response (Devine et al., 2019). Given the slowed evidence accumulation in the ADHD group, 593 

one might expect an increased urgency to reach decision commitments as a compensatory 594 

mechanism. It appears that such strategic adjustment was not adaptive here as the ADHD 595 

group demonstrated poorer performance on average. This finding, along with the observed 596 

reduction in decision threshold in ADHD, may provide further evidence supporting that they 597 

may have inefficient adjustment in the inherent speed/accuracy trade-off in response to task 598 

demands (Mulder et al., 2010). It is possible that dysregulation of the timing mechanism 599 

associated with the CNV may contribute to this relative maladaptation. 600 

 601 

Our findings establish links between EEG metrics of decision-making, behaviour, and DDM 602 

parameters in children with and without ADHD. Future studies should confirm these 603 

relationships in diverse cohorts to strengthen the robustness and generalizability of our results. 604 

The present study also provides novel neurophysiological evidence linking differences in 605 

decision-making in ADHD to alterations in the dynamics and interplay of the neural signals 606 

indexing three key cognitive processes: target selection, decision formation and dynamic 607 

urgency. The results provide an integrated account of these changes, identifying neural 608 

signals with the potential to explain diverse performance profiles in ADHD and to inform 609 

personalized treatment approaches. These neural markers can also serve as critical guidance 610 

in constructing or constraining mechanistic accounts in future ADHD research. Crucially, the 611 

altered relationship between specific neural signals and behaviour in ADHD may uncover 612 

unexplored mechanisms underlying decision-making processes, warranting further in-depth 613 

investigation.  614 

 615 

Code Availability 616 
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Our custom-developed EEG pipeline, including the pre-processing steps and extraction of the 617 

EEG metrics, along with our code for DDM of the behavioural data, is available at 618 

https://github.com/ManaBiabani/DM_ADHD. 619 
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Figure 1. Clinical characteristics of participants in each group. P: P-Value from 918 

Wilcoxon-Signed Rank Test comparing the two groups. Every data point in the box and 919 

whisker plots corresponds to the clinical score for one individual. The shaded boxes indicate 920 

the range between the 25th and 75th percentiles of the scores, whereas the red horizontal 921 

lines inside the boxes represent the median score. * Indicates statistically significant 922 

differences between groups. 923 

 924 

Figure 2. Depiction of the random-dot motion detection task and the obtained neural 925 

measures. Note that in the actual task, white dots were presented on a black background. 926 

Here, we have adjusted the visualization for better clarity. 927 

 928 

Figure 3. Relationship between CPP dynamics and performance. A-B. Differences in CPP 929 

signal between individuals with different levels of performance. CPP amplitude and slope are 930 

measured from the response-locked CPP (A) and CPP onset is from the stimulus-locked CPP 931 

(B). Participants are binned by the behavioural measure using a median split of the data. The 932 

thick line in the graph is the group-averaged waveform and the shaded areas represent 933 

changes in the standard error of mean over time. The vertical dashed lines marked onset 934 

compare the average onsets between the groups. P: p-value from Wilcoxon-Signed Rank Test 935 

comparing the two groups. * indicates statistical significance (P<0.05) in group difference. C. 936 

The relationship between CPP onset (derived from the stimulus-locked CPP), which 937 

demonstrated significant predictive power for all behavioural measures, and performance. P 938 

and r: p-value and coefficient from partial Spearman’s correlation analysis while controlling for 939 

group, age and site. 940 

 941 

Figure 4. EEG signals of decision-making in ADHD and typically developing groups. A. 942 

Group average EEG signal waveforms for each neural signature of the decision process. The 943 

right graph illustrates the dynamics of N2c derived from the stimulus-locked signal 944 

contralateral to the target location recorded at P7 and P8.  The middle graph displays the 945 

response-locked CPP, from which we derived measurements of CPP amplitude and slope. 946 

The inset graph depicts the stimulus-locked CPP, used to determine CPP onset. The left graph 947 

depicts the dynamics of CNV obtained from the response-locked signal recorded at FCz. The 948 

thick line in the graphs is the group-averaged waveform and the shaded areas represent the 949 

standard error of mean at each point of time. The vertical dashed line at the zero point 950 

indicates the onset of the target stimulus for N2c and the stimulus-locked CPP and represents 951 

the response time for the response-locked CPP and CNV. The horizontal dashed line 952 
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represents the baseline level of EEG activity. The vertical dashed lines marked onset compare 953 

the average onsets between the groups. B. The scalp maps depict the potential distribution 954 

for each group at the time of peak amplitude, and difference maps demonstrate the distribution 955 

of t-values resulting from t-tests comparing the two groups. The electrodes highlighted in red 956 

indicate the specific electrodes used for the line graphs and subsequent analysis. The scalp 957 

maps for CPP represent the response-locked signals used to measure amplitude. Statistical 958 

outcomes are detailed in Table 1. 959 

  960 
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Table 1. Pairwise comparisons of measures between the ADHD and typically developing 961 

groups 962 

Measures Mean Difference 

ADHD - Control 

Std. Error        Sig. 95% Confidence Interval 

RT (ms) 59.15 27.44 0.03* 4.48 113.815 

Hit Rate (%) -3.73 1.66 0.03* -7.04 -0.43 

Miss Rate (count) 7.74 2.86 0.008* 2. 04 13.45 

Drift Rate (a.u.) -0.72 0.28 0.01* -1.28 -0.17 

Non-Decision Time (ms) 0.06 0.03 0.06 -0.002 0.13 

 Response Threshold 

(a.u.) aa(ff(ffffffff(a.u.) 

(a.u.) (a.u.) (a.u.) 

-0.65 0.32 0.04* -1.30 -0.02 

 Pre-target alpha ✝(µV2) -0.04 0.05 0.51 -0.14 0.07 

N2c Latency (ms) -24.93 11.02 0.03* -46.89 -2.98 

N2c Amplitude (µV) 0.75 0.33 0.02* 0.10 1.40 

CPP Onset (ms) 25.57 16.62 0.13 -7.54 58.68 

CPP Slope (µV/ms) -0.006 0.002 0.01* -0.01 -0.001 

CPP Amplitude (µV) -2.35 0.86 0.008* -4.06 -0.63 

CNV Slope (µV/ms) 0.02 0.009 0.03* 0.002 0.04 

CNV Amplitude (µV) 1.28 1.03 0.22 -0.77 3.33 

* The mean difference is significant at an alpha level of 0.05, which survived following FDR correction for multiple 963 

comparisons in each category of measures (behaviour, EEG and DDM). ✝ Mean values are multiplied by 1015. 964 

Individual data-points are presented in Table 1-1.  965 

 966 

 967 

  968 
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Table 2. Mediation of CPP components on the impact of group on behaviour  969 

 970 

       95% Confidence 

Interval 
CPP Components Estimate Std. Error z-

value 

p Lowe

r 

Upper 

Grou

p 

→ Onset → RT -0.08 0.05 -1.52 0.13 -0.20 0.02 

Grou

p 

→ Slope → RT -0.23 0.10 -2.31 0.02* -0.44 -0.07 

Grou

p 

→ Amplitud

e 

→ RT 0.17 0.08 2.18 0.03* 0.03 0.37 

Grou

p 

→ Onset → MR -0.06 0.04 -1.45 0.15 -0.19 0.01 

Grou

p 

→ Slope → MR -0.03 0.06 -0.51 0.61 -0.21 0.11 

Grou

p 

→ Amplitud

e 

→ MR 0.01 0.06 0.13 0.90 -0.16 0.15 

Grou

p 

→ Onset → HR 0.06 0.04 1.43 0.15 -0.01 0.18 

Grou

p 

→ Slope → HR 0.05 0.06 0.81 0.42 -0.06 0.21 

Grou

p 

→ Amplitud

e 

→ HR -0.02 0.06 -0.35 0.73 -0.17 0.11 

RT: Reaction Time; MR: Miss Rate; HR: Hit Rate. * Statistical significance. Note: the results are from 971 

three separate models for the three behavioural measures. 972 

 973 

 974 
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