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ABSTRACT The future of networking promises to support time-sensitive applications that require ultra
low latencies and reliabilities of 99.999%. Recent advances in cellular and WiFi connections enhance the
network to meet high reliability and ultra low latencies. However, the aforementioned services require that
the server processing time ensures low latencies with high reliability, otherwise the end-to-end performance
is not met. To that end, in this paper we use queueing theory to model the sojourn time distribution
for ultra reliable low latency constrained services of M/M/R-JSQ-PS systems: Markovian queues with
R CPUs following a join-shortest-queue processor sharing discipline (for example Linux systems). We
develop open-source simulation software, and develop and compare six analytical approximations for the
sojourn time distribution. The proposed approximations yield Wasserstein distances below 2 time units,
and upon medium loads incur into errors of less than 4.7 time units (e.g., milliseconds) for the 99.999th

percentile sojourn time. Moreover, the proposed approximations are stable regardless the number of CPUs
and stay close to the simulations regardless the service time distribution. To show the applicability of
our approximations, we leverage on a real world vehicular dataset to scale a 99.999% reliable vehicular
service.

INDEX TERMS queuing theory, simulation, URLLC

I. Introduction

RECENT advances in the networking community aim at
a better control over infrastructure behaviour. Although

the Internet was designed to provide a best-effort delivery [1]
recent use cases require guarantees regarding the service
latency, no matter whether the network is congested or not.
Recent use cases such as vehicle to everything (V2X) [2],
Industry 4.0 [3], drones control [4], or remote surgery [5]
require that the Internet delivers packets with reliabilities
above a 99.999%. That is, more than a 99.999% of the
packets should meet latency constraints in the order of few
milliseconds.

The aforementioned services lie within the category of
Ultra-Reliable Low Latency Communications (URLLC).
5G and WiFi 6 are key enabler technologies, for their
fast and reliable transmission mechanisms ensure wireless
reliability (above a 99.999%) and transmission latencies in

the order of few milliseconds. Namely, 5G provides URLLC
using techniques such as mini-slot transmissions [6] to
reduce the transmission time and Type B repetitions [7]
to increase the probability of successful packet delivery
in the radio transmissions. While IEEE 802.11 (WiFi)
provides URLLC using techniques as traffic shapers [8],
synchronised buffers [9], packet preemption [10], 802.1AS
time sinchronization [11] Time-Aware Shaping [12], and
Orthogonal Frequency Division Multiple Access (OFDMA).

Through the aforementioned techniques it is possible
to ensure fast and reliable communications in V2X use
cases [2], [13]. For example, a remote controller can
provide Teleoperated Support (TeSo) to a vehicle with 5G
connectivity. The vehicle sends a video stream using 5G and
it is played in the monitor of the remote controller, who
takes control over the vehicle to e.g. press the brakes.
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To support URLLC in V2X services as TeSo, the end-to-
end delay must be smaller than 20 ms with 99.999% reliability.
Hence, the 99.999% of the time the (i) communication
between the vehicle and the 5G antenna; and (ii) video
processing/decoding at the remote control centre must
take less than 20 ms. Works such as [14]–[16] propose
solutions to perform resource allocation in the (i) radio
communication between the vehicle and the 5G antenna to
achieve URLLC. However, the aforementioned works oversee
the (ii) processing time when computing the end-to-end delay
of the service.

This work uses queueing theory to model the processing
time of URLLC services (as V2X traffic). In particular,
we focus on modelling the processing time in a server
with multiple CPUs as processor sharing discipline, which
is the case of Linux-based systems and the considered
systems in network provisioning [17]–[19]. Existing works
in the literature do consider these kinds if systems, see the
related work in Section II, however they have not specified
99.999-percentiles of the sojourn time cumulative distribution
function (CDFs).

To fill this gap, the present paper proposes six approxi-
mations for the CDF of the sojourn time in M/M/R-JSQ-PS
systems. M/M/R-JSQ-PS systems follow a join shortest
queue (JSQ) policy to dispatch incoming traffic among CPUs.
We study JSQ for it is a popular in server farms [20] and
it is how the CFS Linux scheduler [21] behaves when all
server CPUs are dedicated to an application. The proposed
approximations, with some leveraging [20], are useful to
know how much time is consumed processing URLLC
traffic, and hence to understand whether tasks’ processing
time meet the delay requirements with e.g. a 99.999%
reliability. To validate the proposed approximations, we
develop open-source simulation software based on discrete
event simulation.

The contributions of our work are summarised as follows:

• We build a discrete event simulation for G/G/R-JSQ-PS
systems;

• We propose six analytical approximations for the
sojourn time cumulative distribution function (CDF)
of M/M/R-JSQ-PS systems;

• We derive a run-time complexity analysis to obtain
the sojourn time CDF using both the simulation and
analytical approximations;

• We study which approximation is more accurate de-
pending on the system load and number of CPUs;

• We use the proposed approximations to decide the
scaling of an URLLC use case using a real-world
vehicular dataset; and

• We explain how to reuse our results to derive scaling
decisions in a network infrastructure with PS servers
processing traffic for URLLC.

In terms of Wasserstein distance, the proposed analytical
approximations deviate less than a 2 out of 182 time units

from the sojourn time CDF in M/M/R-JSQ-PS systems,
and we show that that serves as an upper bound to take
scaling decisions for servers processing URLLC traffic, while
achieving accuracies above a 99.999%.

The paper is structured as follows: in Section II we
go over the related work about the sojourn time CDF in
queueing systems. Then, in Section III we introduce the
considered system that we study in this paper. In Section IV
we detail the analytical approximations that we propose
for the sojourn time CDF of M/M/R-JSQ-PS systems, and
in Section V we study the run-time complexity of the
proposed approximations. Later, in Section VI we discuss
the development of the G/G/R-JSQ-PS simulation, and give
some measure of its complexity for comparison with the
proposed approximations. Then, in Section VII we use the
simulation as a baseline for comparing the accuracies of the
approximations derived earlier. Finally, in Section IX we use
the derived expressions to scale an URLLC vehicular service,
Section X offers discussion of the work and its potential and
limitations, and in Section XI we conclude our work and
point out future research directions.

II. Related work
In the networking community queueing theory is a well-
established tool to assess the modelling of network infras-
tructure [22], [23]. The packet-based nature of the Internet, so
as the buffering and processor sharing nature of servers, make
it a useful theoretical tool to derive insights on the behaviour
of the network. Recent URLLC services and their urgent
need for communication guarantees can benefit from the
theoretical results of queueing theory in order to adequately
provision the network.

The fundamental results of queueing theory [22] give
closed-form formulas for the sojourn time (waiting plus
service time) of M/M/1 systems, i.e. systems with 1 server
that has exponential service time to dispatch customers
arriving according to a Poisson distribution and queue up
before they are served. Namely, it is possible to find both
the average and CDF for the sojourn time of M/M/1 systems,
with the latter having also an exponential distribution [22].

However, the internet traffic is typically dispatched in
parallel by multiple servers or CPUs within a server. Hence,
it is better resorting to M/M/R systems with up to R
servers/CPUs that attend customers in parallel. For such
systems, the queueing theory fundamentals also give closed-
form expressions for the average sojourn time [22], and
indications on how to derive its CDF [23].

But still, both M/M/1 and M/M/R systems may not be
suitable to model networking components, as the assumption
of exponential service times may not be realistic. To that end,
the literature has devoted effort to derive the sojourn time
CDF expressions of systems not satisfying such assumptions.
For example [24], [25] provide expressions for the sojourn
time CDFs of M/D/1 and M/G/1 systems, respectively. How-
ever both works provide the sojourn time CDF expression in
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the form of the Laplace-Stieltjes transform, i.e. a non-closed
expression of the sojourn time CDF.

Other works such as [26] generalise the Possion arrival
process to a Markovian arrival processes (MAP) and provide
closed-formulas for the sojourn time CDF in MAP/M/1
systems. However in general, making the assumption of
Poissonian arrivals is fair as long as there is a considerable
amount of independent flows, as the Palm–Khintchine
theorem states [27]. Hence, it is reasonable to model data
centres as M/G/R systems, as suggested by [23], where
server farms for traffic processing are used as motivation for
studying M/M/R systems.

Nevertheless, M/M/R systems with first-come-first-serve
service discipline do not mimic the behaviour of Linux based
systems, where each CPU shares the computing time using
a processor sharing (PS) discipline, where packets wait in
the queue until a server finishes processing a job. Under
processor sharing jobs all receive service concurrently, but
their instantaneous service rate changes with the number
of concurrent jobs being served. They therefore experience
slower service rates the more jobs are present. A survey on
the modelling of queues with PS discipline is given in [28].

Given a number of parallel PS servers, a number of authors
have given consideration to the scheduling or distribution of
arriving jobs amongst the servers, for example [29]–[32]. In
particular, [20], [33], [34] consider join-shortest-queue, or
load-balancing schemes. For example, in [20] the research
resorts to single queue analysis (SQA) to provide insights
on how the traffic intensity changes depending on the queue
occupation at each CPU, so as the average number of jobs
at each CPU; and in [34] they aims to minimize the average
number of users at all servers. However, none specify what
is e.g. the 99.999-percentile of the sojourn time (that is the
queueing and processing time).

Although the queueing theory literature has widely studied
the sojourn time in different systems, it has not yet managed
to find out exact sojourn time CDFs in systems with the
multiple PS CPUs of Linux based servers. To the best
of our knowledge, the existing literature does not provide
expressions to compute the sojourn time CDF in PS multi-
processor systems that are close to those servers that will
process URLLC traffic. Therefore this paper contributes to
the related work by proposing six approximations for the
sojourn time CDF of M/M/R-JSQ-PS systems. The proposed
approximations are useful to check whether the URLLC
traffic processing will meet the 99.999% or similar guarantees
of URLLC with almost negligible latencies in the order of
few milliseconds.

When exact analytical expressions or closed form ap-
proximations for CDFs are intractable, researchers often
run stochastic simulations of the system. Discrete-event
simulation is a standard technique for the task [35], with a
number of commercial (e.g. Simul8 [36] and AnyLogic [37])
and open-source (e.g. Simmer [38], SimPy [39], and Ciw
[40]) software options. However, to the authors’ knowledge,

URLLC packets

Λ Mbps

JSQ
scheduler

λ1 Mbps
µ

PS server 1
. . .

..
.

λR Mbps
µ

PS server R

FIGURE 1: M/M/R-JSQ-PS system processing URLLC packets.

prior to the work of this paper the listed options do not offer
straightforward out-of-the-box ways to simulate processor
sharing servers, requiring bespoke code or modifications.
Therefore, a major contribution of this paper is the extension
of the Ciw software to be able to simulate various kinds
of processor sharing queues. This work is described in
Section VI.

III. An M/M/R-JSQ-PS queueing system
This work is concerned with the sojourn time distribution
P(T ≤ t) of customers in an M/M/R-JSQ-PS system, that is a
system with R parallel processor sharing queues, with overall
Poisson arrival rate Λ, and intended service times distributed
exponentially with rate µ. Customers join the processor
sharing queue that has the least amount of customers.

Processor-sharing is a queueing discipline where all
customers are served simultaneously, but the service load
is shared between the customers. That is, if a customer is
expecting to receive a service time s, then the rate at which
that service is given is s/n when there are n customers
present. Therefore if there are n customers present throughout
the customer’s service, then it will last sn time units. A key
feature is that n can vary during that customer’s service.

FIGURE 1 illustrates this system.

IV. M/M/R-JSQ-PS sojourn time CDF approximations
In order to find the sojourn time distribution of a join-shortest-
queue processor-sharing M/M/R-JSQ-PS queue, we follow
an approach outlined in [20], called Single Queue Analysis
(SQA). Here, rather than considering the whole M/M/R queue,
we consider each server as its own Mn/M/1-PS queue, with
state-dependent arrival rates dependent on the join-shortest-
queue mechanism, which relies on the state of all R parallel
Mn/M/1-PS queues. Let Λ denote the overall arrival rate
to the M/M/R-JSQ-PS queue, then for each PS server their
effective state-dependent arrival rate is λn when there are
n customers already being served by that server. Note that
the probability of there being n customers at the server
depends on how the JSQ mechanism operates given the other
queues. TABLE 1 summarizes the notation used throughout
this paper.
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TABLE 1: Notation table

Symbol Definition

T random variable for the customer sojourn time
Λ overall arrival rate.
µ intended service rate
R number of parallel processor sharing servers
ρ traffic intensity ρ = Λ

Rµ

λn arrival rate experienced by a server with n customers
W complementary sojourn time CDF, W (t) = P(T > t)

wn W with n customers, wn(t) = P(T > t | n)

An probability of joining a server with n customers
πn portion of arrivals a server receives with n customers

C(v, b) number of occurrences of b in the vector v
Z(v, b) set of indices in v where b occurs
Q system transition matrix, with entries qi,j
pj probability of being in state j
D defective infinitesimal generator
L1 maximum number of customers at a server
L2 maximum number of customers at the system
qmax maximum runtime of the simulation
qwarmup warmup time used in the simulation
tmax largest value of T calculated

Ω(G,H) Wasserstein distance between CDF G and CDF H
F random variable representing the RTT
τ overall (sojourn time plus RTT, T + F ) latency target
η overall (sojourn time plus RTT, T + F ) reliability
ηT sojourn time reliability
ηF RTT reliability
tηT ηT percentile of T
fηF ηF percentile of F

Now, considering a single server as its own queue, we adapt
the methodology developed in [26] to the join-shortest-queue
situation. In that paper Theorem 1 gives the sojourn time
CDF of a single MAP/M/1-PS queue. A small adaptation,
now considering an generic MAP process state-dependent
Markovian arrivals λn, gives the sojourn time CDF as:

P(T ≤ t) = 1− P(T > t) = 1−W (t) = 1−
∞∑
n=0

Anwn(t)

(1)
where An is the probability of an arriving customer joining
the queue when there are n customers already present, and
wn(t) is the conditional probability that the sojourn time
is greater than t given that there are n customers already
present at arrival.

We study two approximations each for finding the λn, An,
and wn for each n. Then combining these in (1) gives us six
approximations of the sojourn time CDF for an M/M/R-JSQ-
PS queue. The second approximations for λn, An are the ones
proposed in [20] and we present them to have a self-contained
section. Lastly, the second approximation of wn follows the
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FIGURE 2: Transition state diagram of the M/M/R-JSQ-PS system when
R = 2.

proof strategy from [20] using the defective infinitesimal
generator we propose. Therefore, our contributions are the
first approximations for λn, An so as the first and second
approximation for wn.

A. First approximation of λn
Note first that the arrival rate for each single queue being
dependent on the number of customers already present in
that queue is a valid assumption: the arrival rates to each
individual queue when there are n customers already present
depends on the probability of n being the smallest number
of customers present in all R of the queues. This however
is not straightforward to calculate in isolation of the other
R queues, therefore we resort to approximations.

First we note that λn = πnΛ, where πn is the proportion
of arrivals a server will receive if they have n customers
already present.

We find πn by constructing a truncated Markov
chain of the M/M/R-JSQ-PS system. Define the
state space of the non-truncated Markov chain by
S = {(a1, a2, . . . , aR) ∀ a1, a2, . . . , aR ∈ N0}, where az
denotes the number of customers with server z. Let si ∈ S
denote the ith state of the Markov chain, which indicates the
number of customers at each server. For example, the ith
state being si = (2, 3, . . . , 4) to indicate the first, second and
last CPU have 2, 3 and 4 customers; respectively. Define
the transition rate qi,j from si to sj , for all i, j, by (2):
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qi,j =


µ if C(δ, 0) = R− 1 ∧ C(δ,−1) = 1;

Λ
C(si,min(si))

if δ = C(δ, 0) = R− 1 ∧ C(δ, 1) = 1

∧ Z(δ, 1) ⊆ Z(si,min(si));
0 otherwise,

(2)
where δ = si− sj ; C(v, b) = |{z ∈ v : z = b}| is a function
that counts the number of occurrences of b in a vector v;
and Z(v, b) = {z : vz = b} is the set of indices in v where
b occurs. FIGURE 2 is a representation of the Markov chain
when R = 2. When R = 1 this reduces to an M/M/1 (or
equivalently M/M/1-PS) system, and it becomes difficult to
represent this system when R > 2.

Steady-state probabilities can be found numerically by
truncating the Markov chain, that is choosing an appropriate
L1 such that az < L1 for all servers z, and solving pQ = 0
with pe = 1, where Q is the transition matrix with entries
qi,j and e is the vector of ones.

Once all pi are found, the proportion of arrivals a server
will receive if they have n customers already present, πn,
can be found using (3):

πn =

 ∑
si,0=n

min si=n

pi
C(si, n)


 ∑

si,0=n

pi

−1

(3)

where si,0 represents the number of customers at the first
server when in state i. In the aforementioned example – with
si = (2, 3, . . . , 4) – the first server has si,0 = 2 CPUs.

B. Second approximation of λn
The authors of [20] provide numerical approximations for
λ0, λ1, λ2 in [20, Section 5], given in (4), (5) and (6), and
all other λn for n ≥ 3 by (7).

λ0 = µ
(
ka − kbkRc − kdkRe

)
(4)

λ1 =

µ

(
ρR − 1 +

µ(ρ−ρR+1)
λ0(1−ρ)

)
λ2

µ − ρR + 1
(5)

λ2 = µkfk
R
g (6)

λn = µ

(
Λ

nµ

)n
(7)

with ka, kb, kc, kd, ke, kf and kg defined by:

ka =
ρ

(1− ρ)

kb =
−0.0263ρ2 + 0.0054ρ+ 0.1155

ρ2 − 1.939ρ+ 0.9534

kc = −6.2973ρ4 + 14.3382ρ3 − 12.3532ρ2 + 6.2557ρ− 1.005

kd =
−226.1839ρ2 + 342.3814ρ+ 10.2851

ρ3 − 146.2751ρ2 − 481.1256ρ+ 599.9166)

ke = 0.4462ρ3 − 1.8317ρ2 + 2.4376ρ− 0.0512

kf = −0.29ρ3 + 0.8822ρ2 − 0.5349ρ+ 1.0112

kg = −0.1864ρ2 + 1.195ρ− 0.016

C. First approximation of An
Using the same Markov chain defined in Section A, An can
be found by manipulating the steady-state probabilities pi,
given in (8):

An =
∑

min si=n

pi. (8)

D. Second approximation of An
From the SQA we can consider each PS server to be its
own M/M/1-PS queue with state-dependent arrival rates. This
gives a birth-death process, where An is the probability of
that system being in state n. Thus we have:

An =

n−1∏
i=0

λi
µ
A0 (9)

A0 =

(
1 +

∞∑
i=1

i−1∏
j=0

λj
µ

)−1

. (10)

E. First approximation of wn(t)
In [26], for a general MAP, wn(t) is given explicitly by:

wn(t) = eDte (11)

where D is considered to be a defective infinitesimal
generator that defines the sojourn time of a customer arriving
in state n. Simplifying the MAP to be state-dependent arrival
λn, D takes the from:

D =


−(λ0 + µ) λ0 0 0 . . .

1
2µ −(λ1 + µ) λ1 0 . . .
0 2

3µ −(λ2 + µ) λ2 . . .
0 0 3

4µ −(λ3 + µ) . . .
...

...
...

...
. . .

 (12)

By constructing a truncated D explicitly, numerical meth-
ods, such as Padé’s method [41], are used to find the matrix
exponential.
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F. Second approximation of wn(t)
As constructing D explicitly and numerically computing a
matrix exponential can be computationally inefficient, in
Lemma 1 we give a recurrent relation for finding wn(t).

Lemma 1. If a server within an M/M/R-JSQ-PS system has
n customers, its sojourn time CDF is

P(T > t | n) = wn(t) =

∞∑
i=0

(λ0 + µ)iti

i!
e−(λ0+µ)thn,i

(13)
with hn,0 = 1 for all n, h−1,i = 0 for all i, and hn,i
satisfying

hn,i+1 =
n

n+ 1

µ

λ0 + µ
hn−1,i + hn,i

(
1− λn + µ

λ0 + µ

)
+

λn
λ0 + µ

hn+1,i (14)

Proof:
We mimic the proof presented in [26, Corollary 2], where
authors derive the vector of sojourn time complementary
CDF w(t), with wn(t) = P(T > t | n), using the differential
equation d

dtw(t) = Dw(t). With explicit solution w(t) =
eDte.

In the above explicit solution, D is considered the defective
infinitesimal generator taking the form given in (12). By
applying the uniformisation technique [42], the explicit
solution of the aforementioned differential equation is

wn(t) =

∞∑
i=0

(λ0 + µ)iti

i!
e−(λ0+µ)t

[
I +

1

λ0 + µ
T

]i
e

(15)
with I the identity matrix. To ease the computation of the
matrix to the power of i, (i.e., [·]i) the following vector is

defined hn,i =
[
I + 1

λ0+µT
]i
e. And it leads to the recursion

hn,i+1 =
[
I + 1

λ0+µT
]
hn,i, with hn,0 = e,∀n. As a result,

w(t) is defined as

wn(t) =

∞∑
i=0

(λ0 + µ)iti

i!
e−(λ0+µ)thn,i (16)

and the nth element of w(t) is given by (13).
This gives wn(t) in a form which, for a sufficiently large

value, L2, in place of infinity, can be found recursively. This
naive adaptation of [26] replaces their static MAP with the
state-dependent arrival rate λn.

G. Summary & Considerations
In this work we implement and test six different methods
of approximating the complementary sojourn time CDF of
an M/M/R-JSQ-PS system, W (t). TABLE 2 summarises the
methodology.

Choices of model hyper-parameters, those that concern
only the methodology and not the system that is itself being
modelled, can effect both the accuracy and run-time (or
computational complexity) of the model, and choices are

TABLE 2: Summary of the six methods of calculating W (t).

Method λn An wn(t)

A A C E
B A D E
C B D E
D A C F
E A D F
F B D F

usually a compromise between the two. Each of the six sub-
methods described in Section IV have hyper-parameters than
need to be chosen. Those that explicitly build an infinite
Markov chain, that is methods A and C, need to truncate the
Markov chain using a limit L1, so that numerical methods can
be used on a finite Markov chain. The limit L1 corresponds
to the maximum number of customers each PS server will
receive. Thus these Markov chains will have LR1 states, and
so its construction requires defining L2R

1 transitions. The
larger the L1 the more accurate the model, as there would
be a smaller probability of a server receiving more than L1

customers, however larger limits have longer run-times and
larger memory consumption.

Other sub-methods, methods D and F contain infinite
sums. For these, a sufficiently large cut-off, L2 is required
to truncate these sums for numerical computation. This L2

corresponds to the overall maximum number of customers
that can be present, and so can be chosen to much larger
than L1. Similarly, method E requires the construction of a
matrix, where each state corresponds the the overall number
of customers, and so L2 is also be used to truncate this
matrix.

H. Markov chain truncation
When we approximate λn and An using Section A and
Section C, respectively, we truncate the transition matrix
Q of the Markov chain in (2). Namely, we limit the “last”
considered state Si = (L1 − 1)e has L1 − 1 users in all the
R servers. The truncation L1 should be carefully selected
such that ∑

sj : max sj≥L1

pj < ε (17)

that is, the probability of entering a state with a server with L1

or more customers should remain below a tolerance ε ∈ R+

FIGURE 3 illustrates how the probability of having L1or
more users at a server decreases as we increase the truncation
limit L1 and how this is effected by both ρ and R. This data
was obtained using the simulation described in Section VI.

V. Complexity analysis
It is of paramount importance to consider the run-time com-
plexity of each approximation λn, An, wn(t), as a network
operator may require fast operational decisions to satisfy the
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FIGURE 3: Probability of having L1 or more customers at some server (17)
with different loads ρ = 0.85, 0.90, 0.95 and available servers R =

1, . . . , 9.

URLLC. If the approximation run-time is not fast enough,
the operator would not be able to update the scaling and
routing strategies upon demand changes in time. Therefore,
in the following we analyse the run-time complexity of each
approximation for λn, An and wn(t).

A. First approximation of λn
Using (3) this approximation finds the portion of arrivals that
a server foresees using the steady-state probabilities pi of the
M/M/R-JSQ-R Markov chain with LR1 states and transition
matrix Q of size L2R

1 . For each entry qi,j of the transition
matrix we make min(si), Z(δ, b), C(δ, b) operations, all of
them of complexity O(R). Hence, computing all entries of
the transition matrix Q takes O(RL2R

1 ) operations.
To find the steady-state vector p we solve (Q̃|e)Tp =

(p|e)T , where Q̃ is the transition matrix Q less one row. This
is a linear system with a matrix of size LR1 × LR1 . Finding
such solution with the LAPACK [43] gesv method leads to
a cubic run-time complexity on the matrix size. Therefore,
obtaining the steady-state probability takes O(L3R

1 ). Note
that it is the computation of p that dominates the complexity
of approximating λn, as creating the transition matrix Q
has O(RLR1 ) complexity and computing πn has O(LR1 )
complexity – see (3). Hence, the first approximation of λn
has run-time complexity O(L3R

1 ).

B. Second approximation of λn
In (7) we see that there is a power relationship between n
and λn, namely, λn = µ( Λ

nµ )n. As computing a power has
complexity O(log n), the second approximation of λn has
complexity O(log n).

C. First approximation of An
Once we compute the Markov chain steady-state probabilities
pn, this method only performs a summation over such
probabilities (8). Thus, the complexity of computing An
is O(LR1 ), for we iterate over all the LR1 states and check
whether each of them satisfies min sj = n.

D. Second approximation of An
Given the values of λn, first we compute the probability of
joining the queue when there are 0 users A0 in (10). As
mentioned in Section G, we truncate the infinite summations
up to L2. Hence, it takes

∑L2

i i operations to compute A0,
and so is O(L2

2). Once A0 is computed, we perform O(L2)
operations to compute An in (9). Therefore as a whole, the
second approximation of An has O(L2

2) complexity.

E. First approximation of wn(t)
This approximation computes the exponential of the defective
infinitesimal generator matrix D – see (11). As mentioned
in Section G, we also truncate the D matrix up to L2 elements
in its diagonal such that D is an L2 × L2 matrix. As D
is diagonal with ≤ 3 terms at each row, its creation has
complexity O(L2). With Padé’s method [41] we compute T
exponential with O(L2 logL2) complexity.

F. Second approximation of wn(t)
Using the recurrent formula of Lemma 1 we can check
the complexity of this second approximation of wn(t). As
mentioned in Section G, we truncate the infinite summation
in (13) to L2 iterations. At each summation iteration i, we
perform O(log i) operations (the power operators), hence,
computing the second approximation of wn(t) has complexity
O(L2 logL2). Note that we compute hn,i incrementally
thanks to the recursive approach, hence, such computation
does not dominate the approximation complexity as hn,i+1

reuses already computed values of h∗,i. Similarly, we also
keep inside a hash table the factorial computations i! at (13)
denominator to ease the computational burden.

Depending on which Method we use – see TABLE 2 – we
will get different run-time complexities. Namely, methods
A,B,D, and E have an O(L3R

1 ) complexity because they rely
on the truncated Markov chain to derive λn, which is the
most demanding approximation. While methods C and F
have an overall complexity of O(L2

2) because the B and F
approximations dominate the computation of W (t). TABLE 3
summarises the computational complexity of each method.

VI. Simulation of G/G/R-JSQ-PS
Simulation offers an alternative method to find sojourn
time CDFs, and a baseline to compare the approximations’
accuracies. Generally simulation models are less efficient
than analytical or approximation methods, especially in
cases where a large number of simulated events need to
occur before a good approximation of the required measures
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TABLE 3: Complexity of each method.

Method λn An wn(t) Overall

A O(L3R
1 ) O(LR1 ) O(L2 logL2) O(L3R

1 )

B O(L3R
1 ) O(L2

2) O(L2 logL2) O(L3R
1 )

C O(logn) O(L2
2) O(L2 logL2) O(L2

2)

D O(L3R
1 ) O(LR1 ) O(L2 logL2) O(L3R

1 )

E O(L3R
1 ) O(L2

2) O(L2 logL2) O(L3R
1 )

F O(logn) O(L2
2) O(L2 logL2) O(L2

2)

are found. This is the case here with the G/G/R-JSQ-PS
simulation, where under high loads the simulation may halt
due to the experienced service time of customers approaching
infinity. However, for reasonable traffic intensities, simulation
can provide an alternative baseline to measure the approxi-
mation accuracies. Here we outline implementation details
and complexity analysis for the simulation.

A. Implementation
In discrete event simulation a virtual representation of a
queueing system is created, and ‘run’ by sampling a number
of basic random variables such as arrival dates of customers
and intended service times, which interact with one another
and the system to emulate the behaviour of the queueing
system under consideration. Given a long enough runtime
and/or a large enough number of trials, observed statistics
will converge to exact values due to the law of large numbers.
However due to their stochastic nature convergence may be
slow, and depending on the complexity of the system, can be
computationally expensive. Here the Ciw library [40] is used,
an open-source Python library for conducting discrete event
simulation. A key contribution of this work is the adaption
of the library to include processor-sharing capabilities, which
were included in release v2.2.0: these capabilities include
standard processor sharing, limited processor sharing as
described in [44], and capacitated processor sharing as
described in [45], and their combinations.

Ciw uses the event-scheduling approach to discrete event
simulation [40]. Events in the sense of a discrete event simu-
lation correspond to individual calculations or manipulations
to the simulated individuals of the system, for example a
customer joining a queue, a customer sampling an intended
service time. In this implementation events are ‘scheduled’
to occur at some point in the future, and time jumps from
event to event in a discrete manner. The scheduling here is
an artifact of the implementation only: a random event needs
to be scheduled, by sampling a random time in the future for
it to occur. Events themselves can cause any number of other
events to be scheduled, either immediately or at some point in
the future. If they are scheduled for the future, then they are
called B-events, and if they are scheduled immediately, then
they are called conditional or C-events, Events can also cause

Start

Initialise Simulation

A-Phase

B-Phase

C-Phase

Any more
C-Events?

Any more
B-Events?

Simulation
Complete?

Stop

No

No

No

Yes

Yes

Yes

FIGURE 4: Flow diagram of the event scheduling approach used by Ciw,
taken from [46].

future events to be re-scheduled for a later or earlier time.
The event-scheduling approach proceeds by implementing
any B-events, called the B-phase; then implementing any
C-events, called the C-phase; and then advancing the clock
to the next B-event, called the A-phase. FIGURE 4 gives
illustrates this event scheduling process.

Processor sharing is implemented by manipulating the re-
scheduling of future events in the following way. Upon arrival,
a customer is given an arrival date t?, and an intended service
time s. They also observe the number of customers, including
themselves, who are present at the processor-sharing server,
x?. At this point they have already received d = 0 of their
intended service time. Given that nothing else changes, this
customer will finish service at date tend calculated from (18).

tend = t? +
1

x?
(s− d) (18)
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Therefore this is the date that will be scheduled for that
customer to finish service. Now, say and event happens at
some t such that t? < t < tend, and that event is either an
arrival to the server, or another customer finishing service
with the server. If the event is an arrival, set x = x? + 1;
and if the event is a customer finishing service then set
x = x? − 1. At this point our original customer will have
received d = d+ 1

x?
(t− t?) of their intended service. Now

set x? = x, t? = t, and re-calculate their service end date
using (18), and then re-schedule their finish service event.

This re-scheduling process is to be performed for every
customer in service at any B- or C- event that causes
x? to change. This was implemented and released in
Ciw v2.2.0, along with some processor sharing variations:
limited processor sharing queues [44], a generalisation of a
processor sharing queue, in which only a given number of
customers may share the service load at any one time; and
capacitated processor sharing queues [45] with a switching
parameter, where the service discipline switches to from FIFO
to processor sharing if the number of customers exceeds this
parameter.

The join-shortest-queue processor sharing system con-
sidered in this paper is implemented by combining this
processor sharing capability with routing objects. An example
is given in the documentation: https://ciw.readthedocs.io/en/
latest/Guides/Routing/join shortest queue.html. Sojourn time
CDFs can then be calculated easily as all customer records
are saved.

B. Considerations
For the Ciw simulation there are three hyper-parameters to
consider: the maximum simulation time, the warm up time,
and the number of trials. The larger the number of trials, the
more we can smoothe out the stochastic nature of the DES by
take averages of the key performance indicators of each trial,
however the more trials take longer to run. The warm-up time
is a proportion of the maximum simulation time where results
are not collected. This filtering of results ensures that key
performance indicators are not collected before the simulation
reaches steady-state, and therefore and not dependent on the
starting conditions of the simulation. The larger the warm-up
time, the higher the chance that the collected results are
in steady state (this is highly dependent on other model
parameters), although this means less results to collect and
so more uncertainty. A larger maximum simulation time
does both, ensures that there are enough results to decrease
uncertainty, and increases the chance that steady-state is
reached, however this also increases run-times.

C. Simulation complexity
Events, and more importantly the number of events in a run
of the simulation are random. Therefore we cannot have a
true complexity analysis, but we can say something about
the order of expected number of operations. In this section

we consider the average time complexity of the M/M/R−
JSQ− PS system.

We will consider number of operations per unit of
simulation time when in steady state. Assuming there are M
customers in the system at steady-state, there are two types
of B-events that can take place in a given time unit, arrivals,
and customers ending service.

• Arrivals: there’s an average of Λ arrivals per time unit.
At each arrival we need to check R servers to see which
is least busy. Then once a server is chosen, we need to
go through each customer at that server and re-schedule
their end service dates - (18). As join-shortest-queue
systems should evenly share customers between servers,
we expect there to be M

R customers at that server. So
per time unit, the expected number of operations for
arrival events is O

(
Λ
(
R+ M

R

))
.

• End services: at steady state, due to work conservation
and Burke’s theorem [47], there’s an average of Λ
services ending per time unit. At each end service we
need to go through each customer at that server and
re-schedule their end service dates. So per time unit, the
expected number of operations for end service events
is O(ΛM

R ).

It is difficult to find a closed expression for M , hence
the need for simulation and approximations. However a
naive estimate for the average number of customers M
is the traffic intensity, M ≈ ρ = Λ

µR . Let qmax be the
maximum simulation time. Altogether, when in steady state,
the expected number of operations for a simulation run is
O
(
qmax

(
Λ
(
R+ M

R

)
+ ΛM

R

))
= O

(
qmax

(
ΛR2 + 2Λ2

µR2

))
.

Although qmax is a user chosen hyper-parameter, and
increases the expected number of operations linearly, it
is useful to consider if it’s choice should be influenced
by other system parameters. Consider that, when in steady
state, increasing the simulation time increases the number
of sojourn time samples we have to estimate the CDF. Say
we need X samples to estimate a good CDF, then qmax
should be chosen such that qmax = X

Λ . As X is independent
of any other parameter, it can be considered a constant.
However, this is assuming a steady state. We should actually
choose qmax = X

Λ + qwarmup, where qwarmup is the warmup
time, the time it takes to reach steady state. It is likely
that qwarmup would be effected by the system parameters. In
practice, the factor X , and thus the maximum simulation
time qmax, needs to be quite large in order to gain a good
approximation of the sojourn time CDF. As a demonstration,
consider FIGURE 5 which shows, for a given system (Λ = 10,
ρ = 0.85, R = 2) the simulation’s running approximation of
the 99th percentile of the sojourn time CDF, as the simulation
time progresses. Here it takes roughly X = 75000 before a
good approximation is reached; taking around 15 minutes to
run, as opposed to the few seconds it took for approximation
method B to run.
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FIGURE 5: Demonstrating the simulation time required for a good
approximation of the CDF.
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FIGURE 6: Graphical interpretation of the Wasserstein distance between
the actual and approximated CDFs.

It is interesting to note that the six approximations’
time complexities, and the expected time complexity for
the simulation, are affected by different parameters. The
approximations are affected by the hyper-parameters L1 and
L2, along with R, however the simulation is effected by
the system parameters themselves. This shows that for some
specific cases and parameter sets, it might be worthwhile
resorting to simulation after all.

VII. Approximations’ accuracy
We perform a computational experiment to compare the six
methods against one another under various circumstances.
With a fixed choice of µ = 1 we calculate the sojourn
time CDFs using each method, for all 1 ≤ R ≤ 10, and
all ρ ∈ (0, 1) in steps of 0.01. CDFs are compared against
the simulation CDF using the Wasserstein distance [48], or
Earth-mover’s distance. This is given in (19), with a graphic
interpretation given in FIGURE 6. This measure goes from
0, representing equal CDFs, to tmax, the maximum sojourn
time calculated, representing the largest possible difference
between the CDFs. In practice this is calculated numerically
by taking Riemann sums with ∆ = 0.01 time units.

R L1

1 22
2 22
3 22
4 13
5 7
6 5
7 4
8 3
9 3

10 2

TABLE 4: Choice of Markov chain limit L1 for each R.

Ω(G,H) =

∫ +∞

−∞
|G(t)−H(t)|dt (19)

For these experiments hyper-parameter choices are a fixed:
L2 = 130; tmax = 182.32; a maximum simulation time of
160000 time units and a warm-up time of 8000. The choice
of the Markov chain limit L1 is dependent on R, it is chosen
to be both large enough that the probability of exceeding
this is small, and small enough so that the number of defined
transitions is manageable, we choose (L1+1)2R < 10×1010.
For each R our choice of L1 is given in TABLE 4.

FIGURES. 7a-7f show the obtained Wasserstein distance,
for each method A to F respectively, for each value of R
and ρ.

First it is important to note the scale of the y-axis on these
plots, they range from 0 to 2; while the Wasserstein distance
has the potential to range from 0 to 182.32. Therefore,
wherever the Wasserstein distance falls within the plot’s
range, we can note that these are not bad approximations
overall. We can see that all methods are highly dependant
on the traffic intensity ρ, however the relationship between
accuracy and ρ is different for the methods that use the first
approximation of wn (methods A, B and C), and those that
use the second approximation of wn (methods D, E and
F). For the first approximation, low and high values of the
load ρ result in higher approximation error. This may be
due to unstable approximation algorithms used to compute
matrix exponential [49]. While the second approximation
performs much better for low values of ρ, middling values
perform much worse here. In addition, we see that the second
approximation is more dependant of R, with lower values
of R performing better. Similarly, this dependence on R is
more pronounced in methods C and F, suggesting that the
second approximation of λn performs worse with higher R
than the first Markov chain approximation.

FIGURE 8 shows which method was most accurate for
each R, ρ pair. From this we see that method D performed
best for low values of ρ, while methods A and B perform
best for middling to high values of ρ. Method E is the best
performing methods for very high values of ρ, however from
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FIGURE 7: Accuracy of each method with increasing traffic intensity ρ and number of CPUs R.

the plot in FIGURE 7e we know that these are still not good
approximations of the CDF. Interestingly, when R = 1, that
is when there is no join-shortest-queue behaviour happening,
method F performs consistently.

VIII. Behaviour in high reliabilities
In the prior section we have seen that methods A-F yield an
accurate approximation of the sojourn time CDF, namely that
the Wasserstein distance remains reasonably small. Depend-
ing on the load conditions ρ we can use the approximation
with highest accuracy (see FIGURE 8) to achieve accurate
sojourn time CDF approximations.

However, URLLC services ask for end-to-end latencies
with high reliabilities such as 99%, 99.9%, 99.99%, or
99.999%. This means that the network latency plus processing
latency of a service (that is the sojourn time) should be
met, e.g., 99.999% of the times. If the end-to-end latency
requirement is of 20ms and the maximum network latency
remains below 1ms1, this means that the sojourn time should
remain below 19ms in the 99.999% of the times. Therefore,
the applicability of our methods A-F depend on their accuracy
at the 99.999th percentile.

In FIGURE 9 we illustrate the error, measured in scalable
time units, achieved by the best approximation at the 99.999th

percentile. In other words, if Ta,99.999 is the best method
99.999th percentile for the sojourn time, and T99.999 is
the simulated 99.999-percentile; then FIGURE 9 illustrates
Ta,99.999−T99.999. To derive the simulated 99.999th percentile
we use the simulation from Section VI.

As with the Wasserstein distance (see FIGURES 7a-7f),
FIGURE 9 evidences that the 99.999th error becomes more

1NR PUSCH transmissions take less than 1ms using mini-slots [50].

prominent as the load ρ approaches to 1 in the M/M/R-JSQ-
PS system. In particular, the best method under-estimates
the 99.999th percentile of the sojourn time for the error falls
towards negative values near -180 as ρ approaches to 1. Note
that the maximum sojourn time in the experiments can pop up
to tmax = 182.32 time units, hence, the error is notoriously
large towards the highest load ρ ≈ 1.

Nevertheless, for not so high loads ρ ≤ 0.85 the 99.999th

percentile error remains low. Namely, the error is of less
than t = 17.78 time units with respect to the simulations
when R ≥ 3 CPUs – see TABLE 5. For high loads ρ >
0.85 our accuracy measure is bad. This is likely due to
the fact that upon large loads the PS fashion increases the
customers’ experienced service time to infinity, which is
something impossible to simulate. Therefore, the baseline
measure would no longer be accurate. As such, for loads
above ρ > 0.85 we cannot comment on the accuracy of the
approximations.

If the system has R < 3 CPUs, then the best method
has erratic oscillations, indeed the 99.999th percentile is
underestimated by t = −67.15 time units with R = 1 – see
TABLE 5.

We have also analysed what is best method error for the
99th, 99.9th, and 99.99th percentiles. The results are shown in
Appendix A and they show the same pattern as the observed
for the 99.999th percentile in FIGURE 9. That is, the best A-F
method results in under-estimations of the sojourn time that
get worse as ρ approaches to 1. Moreover, the results from
FIGURE 14 in Appendix A shows that the error oscillations
start to become more prominent with higher reliabilities and
mid values of CPUs.

Overall, the best method gives accurate estimations for the
99.999th percentile of the sojourn time as long as ρ ≤ 0.85;
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TABLE 5: Sojourn time 99.999th percentile errors using the best method
with increasing number of CPUs R and load ρ. Positive/negative mean
over/under-estimation, respectively.

R = 1R = 1R = 1 R = 3R = 3R = 3 R = 5R = 5R = 5 R = 7R = 7R = 7 R = 10R = 10R = 10

ρ = 0.10ρ = 0.10ρ = 0.10 -4.11 0.88 2.03 1.92 1.92
ρ = 0.25ρ = 0.25ρ = 0.25 -1.30 2.02 3.82 3.92 3.47
ρ = 0.50ρ = 0.50ρ = 0.50 -4.70 -1.05 1.64 1.77 1.97
ρ = 0.75ρ = 0.75ρ = 0.75 -17.71 -6.74 -8.15 -5.25 -2.78
ρ = 0.85ρ = 0.85ρ = 0.85 -67.15 -14.46 -17.78 -15.67 -10.08
ρ = 0.90ρ = 0.90ρ = 0.90 -104.75 -51.17 -38.83 -32.18 -25.52
ρ = 0.95ρ = 0.95ρ = 0.95 -100.83 -126.16 -102.52 -79.20 -71.42
ρ = 0.99ρ = 0.99ρ = 0.99 -180.50 -180.51 -180.52 -180.53 -180.54

tends under-estimate the 99.999th percentile; and is more
stable for R ≥ 3 CPUs.

A. Comparison with non-exponential service times
So far we have seen that the methods A-F perform sufficiently
well to estimate high reliabilities of an M/M/R-JSQ-PS
system, e.g., the 99.999th percentile of the sojourn time.
However, exponentially distributed service rates are often
an unrealistic assumption, with deterministic, or uniform,

TABLE 6: Summary of the service time distributions compared in FIG-
URE 10.

Distribution Mean Variance

Expon(µ) 1
µ

1
µ2

Det = 1
µ

1
µ

0

U
(

1
2µ
, 3

2µ

)
1
µ

1
12µ2

Lognormal
(

1
µ
− ln(2)2

2
, ln(2)

)
1
µ

1
µ2

Gamma
(

1
2
, 2
µ

)
1
µ

2
µ

lognormal, and gamma distributed service times being more
realistic for services with a bounded number of operations.
Here we explore the use of Markovian models to model other
service distributions.

To investigate, we calculate and compare sojourn time
CDFs using exponentially distributed services and determin-
istic, uniform, lognormal, and gamma services for various
values of R and ρ. A summary of the service time dis-
tributions used is given in Table 6. In such a manner, all
distributions share the same average service time, although
their variances vary.

We see that the CDFs obtained when modelling service
times as exponentially distributed always lie below those
obtained using the service time distributions with equal or
smaller variances. This is demonstrated in FIGURE 10,
which shows that the tail percentiles are always larger,
or more pessimistic, when modelling exponential services.
However for the Gamma distributed service times, with
twice the variance of the exponential service times, using
the exponential approximations no longer gives a bound on
the percentiles.

FIGURE 10 also evidences how near ρ = 0.6 when we use
R = 5 or R = 10 CPUs the best method (black) gets closer
to the percentiles of the simulated results (yellow). This
behaviour is because after ρ = 0.6 the best method changes
from method D to method C (see FIGURE 8). Similarly,
at high loads ρ ≥ 0.97 the best method changes from C to
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exponentially distributed, uniformly distributed, deterministic, lognormal and gamma distributed.

E, thus, the sudden change in the sojourn time percentiles.
Namely, the sojourn time percentiles at such high loads
differs significantly from the values obtained in the simulation
(yellow). The erratic values of the best method for ρ ≥ 0.97
even goes below the sojourn time percentiles obtained for
uniform and deterministic service times (blue and red lines
in FIGURE 10, respectively).

Altogether, FIGURE 10 shows that our best method (black):
(i) stays close to the sojourn time percentiles obtained in
simulations (yellow) for loads ρ < 0.97; (ii) lies above the
sojourn times provided by deterministic (red) and uniformly
distributed (blue) service times; (iii) lies below the sojourn
times provided by the gamma (wine) service times; and (iv)
close to lognormal (green) service times. Lastly, FIGURE 10
shows (v) our best method largely underestimates the sojourn
time percentile for ρ ≥ 0.97, resulting in even smaller
percentiles than uniformly distributed and deterministic
service times.

IX. Scaling an URLLC service
In this section we explain how to use the proposed methods to
scale the number of CPUs at a server processing an URLLC
service with latency target τ and reliability requirement η.
We assume that the URLLC traffic is sent through a network

that introduces an end-to-end delay denoted by the random
variable F , and retain the previous notation of the sojourn
time (server processing time) as the random variable T .
Overall, we have to ensure that:

P(F + T ≤ τ) ≥ η. (20)

It might not be feasible to understand the CDF of the
network end-to-end delay F , but we might know the ηF -
percentile of F , which we denote as fηF . Then:

P(F + T ≤ τ) =

∫ τ

0

P ((F ≤ x) ∩ (T ≤ τ − x)) dx (21)

=

∫ τ

0

P(F ≤ x)P(T ≤ τ − x)dx (22)

≥ P(F ≤ fηF )P(T ≤ τ − fηF ) (23)
= ηFP(T ≤ τ − fηF ) (24)
≥ η (25)

Here step 21 is derived from the convolution of the two
random variables F and T ; and step 22 is from assuming
the independence of F and T . Step 23 takes one slice of the
previous integral, and so would be smaller by definition. To
see this, consider the case where F > fηF , now there is still
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an opportunity for F + T ≤ τ depending on the value of T .
Finally step 24 is from the definition of fηF .

Together this gives the following inequality:

P(T ≤ τ − fηF ) ≥ η

ηF
= ηT (26)

Thus we wish to choose the number of CPUs R such that
T satisfies (26), which implies that (20) will be satisfied. If
the above holds, we ensure that the URLLC service will
meet a latency τ with reliability η. Otherwise, we have to
increase the number of CPUs R at the server that process
the URLLC traffic.

Lets consider an URLLC service that has latency and relia-
bility requirements of τ = 10 ms and η = 0.99, respectively.
If we know that the ηF = 0.9999-percentile of the network
end-to-end delay is f0.9999 = 5 ms, the sojourn time T of
the server must satisfy P(T ≤ 10− 5) ≥ 0.99

0.9999 ≈ 0.9901.
At a given time of the day the URLLC users send

Λ = 100 packets/sec, and the server has R = 3 CPUs
with processing rates of µ = 50 packets/sec. Therefore, the
server foresees a load ρ ≈ 0.33, and we should check which
method best approximates the sojourn time CDF at such
load. In FIGURE 8 we see that method D achieves the
highest accuracy at the tuple (ρ,R) = (0.33, 3), hence, we
use method D approximation for the 0.9901-percentile of
the sojourn time – see Appendix B for further details.

According to method D, with a load ρ ≈ 0.33 and
R = 3 CPUs the sojourn time is 6.43 ms, i.e., we have
P(T ≤ 6.43) ≥ 0.9901. However we require that the sojourn
time T satisfies T ≤ τ − f0.9999 = 5 with reliability

0.99
0.9999 = 0.9901. In other words with the currant load and 3
CPUs the sojourn time exceeds the required latency percentile
by 1.43 ms.

Following the above example, we should increase the
number of CPUs until (26) is satisfied. Equivalently, as the
URLLC demand traffic Λ decreases, we should decrease the
number of CPUs to the minimum number that satisfies (26).
Algorithm 1 details the above procedure.

Given the traffic rate Λ, the current number of CPUs R with
their service rates µ, the URLLC reliability η, the overall
latency requirement τ , and the network end-to-end delay
for the ηF -percentile fηF ; Algorithm 1 gives the required
number of CPUs for an M/M/R-JSQ-PS system. Namely, in
line 8 the ηT -percentile of the sojourn time is computed,
according to the best method – according to (26) and checks
if this is sufficient or a CPU increase is needed. Moreover, in
line 9 we increase CPUs until the load remains smaller than
an 85%. Hereof, we prevent the accuracy degradation of our
approximations at high loads – as discussed in Section. VIII.

A. Example: scaling Teleoperated Support (TeSo) service
In this section we provide an example of how to use
Algorithm 1 to scale an autonomous driving service, namely,
the Teleoperated Support (TeSo) service [13]. Such service
consists of a vehicle sending video or sensor streams to
a remote controller that takes control over the vehicle in

Algorithm 1: URLLC server scaling
Data: Λ, R, µ, η, τ, ηF , f

ηF

Result: R, tηT
1 Function sojourn_percentile(η′, R′):
2 ρ = Λ

R′µ

3 method X = best method(ρ,R′)
4 tη

′
= method X.percentile(η′)

5 return tη
′

6 R = 1
7 ηT = η

ηF

8 tηT = sojourn percentile(ηT , R)
9 while fηF + tηT > τ and ρ > 0.85 do

10 R = R+ 1
11 tηT = sojourn percentile(ηT , R)
12 end

Autonomous
driving
traffic

Dot 4489

Band n79
(4.8-4.9GHz)

Λ [fps]

Flight rack
10 U

UPF
JSQ

µ

CPU 1
...

µ

CPU 10

Edge server
@TeSo center5GC

local
breakout

F T

FIGURE 11: 5G-SA setup [51] with local breakout to the Edge server.

risky situations. For example, if a car accident happens the
vehicle may require that a remote driver with expertise takes
control until the vehicle leaves the road. The video stream is
decoded and played at the remote driver location (the TeSo
center) and the driver sends instructions as e.g. pressing
the brakes. According to [13], TeSo asks for an end-to-end
service latency and reliability of τ ≤ 20 ms and η = 0.99999,
respectively. We consider an M/M/R-JSQ-PS server that
decodes the video stream sent in the NR PUSCH, and here
the PUSCH transmission time and video decoding must take
less than 20 ms the 99.999% of the time. Otherwise, the
remote driver may not receive some frames or receive them
too late to react to e.g. a car crash.

We consider the 5G-SA deployment in FIGURE 11 to
provide connectivity to connected vehicles. The setup was
tested in the 5G-DIVE project [51] and consists of an
Ericsson Dot 4489 Radio Unit that was connected to a Flight
rack connected to a 5G core (5GC) in a remote location. To
prevent the network traffic going to the remote 5GC, the UPF
was deployed within the Flight rack with a local breakout
that sends latency-sensitive traffic to an Edge server. With
a preemptive priority queue for URLLC traffic at the UPF,
TeSo traffic does not suffer from queueing delay [52, 1.3.2].
Consequently, the end-to-end delay F is governed by the
uplink NR PUSCH transmissions.
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TABLE 7: NR setup used in TeSo scaling

Parameter Value

Numerology µ = 2

SNR 5,10,15 dB
Carrier Freq. 4.8 GHz
Channel size 138 RB

PUSCH/PDSCH mapping Type A
MCS 256 QAM

HARQ RV seq [0,2,3,1]
LDPC decoding algo Norm. min-sum

Tx Layers 2
Tx Antennas 8
Rx Antennas 2

Propagation Channel CDL-C [53]
Delay Spread 300 ns

Max Doppler Shift 5 Hz
MIMO setup 4x2 array

TABLE 8: Scaling performance at peak demand for (5,10,15) dB SNR.

Area Peak CPUs Peak rejection Peak 99.999-delay (ms)

Residential (2,2,2) (0%, 0%, 0%) (19.82, 19.57, 19.57)
Industrial (7,7,7) (13%, 0%, 0%) (19.92, 19.93, 19.93)
Highway (7,10,10) (53%, 5%, 5%) (19.92, 19.95, 19.95)

To obtain the transmission time in the NR PUSCH we use
Matlab simulations with the parameters specified in TABLE 7.
For fast PUSCH transmissions we consider numerology µ =
2 to have mini-slots of 0.25 ms. The simulations consider
SNR levels of 5, 10 and 15 dB to account for different channel
quality conditions. For the throughput increases with the
SNR, so it does the accepted demand of TeSo. Moreover, the
SNR impacts the probability of successful decoding and the
number of HARQ repetitions until the frames are successfully
transmitted. Namely, having one repetition leads to a PUSCH
transmission time of two mini-slots, i.e. of 0.5 ms. In our
simulations we compute the worst transmission delay in the
NR PUSCH for each SNR, i.e. we compute f1.0 for 5, 10 and
15 dB. Recall we consider an UPF with an URLLC priority
queue, hence the worst end-to-end delay f1.0 corresponds
to the worst transmission delay (accounting repetitions) in
the NR PUSCH.

To generate the traffic demand Λ [fps] we use a real-
world dataset of the traffic flow of three roads in Torino
city, representing three different load intensities - a highway,
an industrial area, and a residential area. For each, we
assume a future scenario with 10% of all traffic being
connected autonomous vehicles, each of them sending
an H.265/HEVC video stream to the 5G network – inline
with the standard [54].

In TABLE 8 we show how the SNR impacts the number of
CPUs, rejected demand and highest 99.999-delay percentile

(i.e. F + T ) achieved during peak demand in residential,
industrial and highway roads. Upon small SNR of 5 dB,
the NR rejects the 53% of the demand of the highway at
peak hours for the 138 RBs are not enough to accommodate
the peak demand during rush hours upon mild channel
conditions. Even with good channel conditions (15 dB) the
highway rejects a 5% of the incoming demand for the RBs
are not enough, which pins the paramount importance of
RAN provisioning tackled in the literature [14]–[16]. Results
from TABLE 8 show that 10 CPUs are enough to attend the
admitted demand of peak hours, and they satisfy the 20 ms
end-to-end delay required in TeSo. Indeed, results show
that Algorithm 1 meets the end-to-end delay requirement
the 99.999% of the time during peak hours. Moreover,
TABLE 8 highlights the 99.999-percentile of the end-to-
end delay is the same for 10 and 15 dB. This is because,
PUSCH transmissions do not require repetitions upon such
SNR levels. For 5 dB PUSCH transmissions require at most
of an additional repetition. However, for the peak demand
occurs at a different point in time the 99.999-percentile is
not necessarily adding 0.25 ms to the peak 99.999 delay
percentile with 10 and 15 dB – see TABLE 8.

FIGURE 12a, FIGURE 12b and FIGURE 12c illustrate
the scaling performance of Algorithm 1 when the NR offers
15 dB of SNR at residential, industrial and highway roads
in Torino; respectively. The top row illustrates the traffic
demand attended by NR with 138 RBs during four days
in residential, industrial and highway roads. We remark
the attended demand is high enough to satisfy the Palm-
Khintchine theorem [27], hence, the Poissonian arrival
assumption for our M/M/R-JSQ-PS system (Edge server)
can be considered valid.

To process the TeSo traffic we consider the remote
operation center where the expert provides support has an
Edge server with R = 10 available CPUs performing video
decoding of H.265/HEVC video streams [54]. We use the
results in [55] to derive the service rate µ [fps] of each CPU.
For further details, we refer the reader to Appendix C.

Using Algorithm 1 we perform a reactive scaling that
updates the number of CPUs at the Edge server each
5 minutes, which is the frequency at which we receive updates
of road traffic in our data set. Thus, each 5 minutes we
invoke Algorithm 1 (with the fixed parameters η = 0.99999,
τ = 20 ms, ηF = 1.0, and f1.0 obtained through Matlab NR
PUSCH simulations) with the new value of Λ [fps].

In FIGURE 12c we see the effect of applying Algorithm 1
over four days in an highway road. The results show that
the number of CPUs increase up to R = 10 in the two
peak-hours foreseen each day, which correspond to the the
time at which the citizens travel to and from work. Similarly,
FIGURE 12c (bottom) shows that the number of CPUs drop
down to R = 1 in the night hours due to the absence of
traffic (barely 1 vehicle passing). Indeed, FIGURE 12c shows
that the 99.999-percentile of the sojourn time remains below
τ − f1.0 = 19.70 ms, because we invoked Algorithm 1 to
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FIGURE 12: Algorithm 1 performing scaling (bottom rows) on different roads as the autonomous driving traffic increases (top rows). The goal is to meet
the 99.999-percentile delay of 20ms (middle rows) considering the 5G setup in FIGURE 11 and a SNR of 15 dB.

scale considering the maximum network delay due to NR
PUCSH transmissions is f1.0 = 0.25 ms (the duration of one
mini-slot with NR numerology µ = 2). Thus, FIGURE 12c
shows that by using the proposed approximations and scaling
algorithm we meet the requirements of TeSo [13].

Similar analyses were carried out on an industrial road
in FIGURE 12b, and a residential road, in FIGURE 12a.
Considering the highway analyses of FIGURE 12c as a heavy
traffic load, these represent medium and low traffic loads
respectively. It is interesting to note here that the frequency
of needing to switch CPUs on and off is related to the size
of the load.

B. Impact of approximation errors
In Section A we compared the percentiles obtained from the
best approximations, to those obtained through simulation of
Exponential, Uniform, Deterministic, Lognormal and Gamma
distributed intended service times. Here we investigate the
difference in scaling of the autonomous driving service in
Torino if simulated intended service times followed these
distributions. Namely, rather than using the best method in
the sojourn_percentile() function of Algorithm 1, at
lines 8 and 11; we use the sojourn time percentile obtained via
simulation of exponential, uniform, deterministic, lognormal,
and gamma service times, that is we use the simulations
depicted in FIGURE 10.

We denote with t0.99999
m the sojourn time percentile

reported by Algorithm 1 when it uses the best method A-F.
Similarly, we denote t0.99999

Exp , t0.99999
U , t0.99999

Det , t0.99999
Log and

t0.99999
Gam the percentile reported by Algorithm 1 when it uses

the simulation data for Exponential, Uniform, Deterministic,
Lognormal and Gamma service times respectively. We then
consider ∆t0.99999, the difference in the 99.999-percentile
of the sojourn time when we use the best method and
simulations, respectively. A positive value of ∆t0.99999

represents an overestimation by the approximation methods,
while a negative value represents an underestimation.

In the experiments we considered the three different
roads studied in Section A, with increasing vehicular traffic:
residential, industrial, and highway roads with up to 240,
2184, and 4392 vehicles/hour respectively. As the highway

Residential Industrial Highway

20 0 20 20 0 20 20 0 20
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eP
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2 )

Det = 1
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Gamma(1
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FIGURE 13: Difference of the 99.999-percentile sojourn time ∆t0.99999

between our best method and other service time distributions at different
roads. ∆t0.99999 = 0 means no difference, ∆t0.99999 > 0 means that our
best method estimated a higher delay than the distribution. We consider a
15 dB SNR in the 5G connection.

road has more vehicular traffic Λ [fps], there are more chances
of having a high load ρ ≈ 1 at the Edge server, thus, of having
more approximation errors. Conversely, the experiment in
the residential area is the least likely to achieve high loads
because of the smaller amount of vehicular traffic.

FIGURE 13 illustrates the empirical Probability Density
Function (ePDF) ∆t0.99999 over four days when we use
Algorithm 1 scaling, for the three road types and five intended
service time distributions.

Comparing the scaling of the best method against the
exponential service time (yellow), we see that the ePDF
is centred around ∆t0.99999 = 0. Hence, our best methods
accurately approximate the sojourn time percentile in Algo-
rithm 1. However, in the highway road (yellow top right)
we notice that the mode of the obtained ePDF is shifted
to the left of ∆t0.99999 = 0, which means that the best
method underestimated the sojourn time percentile for the
exponential service times. This is because upon high loads
– i.e., as ρ approaches to 1 – the best method suffers from
large errors, as observed in FIGURE 10 and TABLE 5.
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FIGURE 14: CPU difference ∆R between our best method and other
service time distributions at different roads. ∆R = 0 means no difference,
∆R = −1 or ∆R = 1 means that our best method uses one CPU less or
more, respectively. We consider a 15 dB SNR in the 5G connection.

However, when services follow a uniform distribution
(blue) or are deterministic (orange), in agreement with the
results in FIGURE 10, we see that using the best method
in the scaling of Algorithm 1 results into overestimating the
sojourn time percentile. That is the modes of the obtained
ePDFs are shifted to the right of ∆t0.9999 = 0. And again,
the high loads ρ seen in the highway road result in a
slight increase in the percentage of time with the scaling of
Algorithm 1 underestimating the sojourn time ∆t0.99999 < 0.

For both the lognormal and gamma distributed service
times (green and wine in FIGURE 13), we observe that our
approximation does not suffer that much over-estimation of
the 99.999-percentile of sojourn time as with the uniform and
deterministic service times. Indeed, for the chosen lognormal
distribution has same variance as the exponential, the sojourn
time error is centered around ∆t0.99999 = 0. Whilst for the
gamma distribution has a larger variance, our best method
underestimates the 99.999-percentile of the sojourn time –
see how the ePDF is skewed to the left (∆t0.99999 < 0) in
FIGURE 13 fifth row.

Under- and over-estimating the sojourn time percentile can
lead to under- and over-provisioning the number of CPUs
R, respectively. In FIGURE 14 we depict how such error in
the estimation impacts to the number of CPUs. In particular,
we show ∆R, the difference in required CPUs given by
Algorithm 1 when using the best approximation to when
using simulated distributions. Note that ∆R > 0 denotes
over-provisioning due to the best method m, while ∆R < 0
means under-provisioning of CPUs.

From the results in FIGURE 14 we conclude that in residen-
tial areas with small load ρ, there is no over-provisioning with
distributions of smaller variance than the exponential service
time – i.e. deterministic and uniform distributions. However,
if the service time follows a distribution with equal or larger
variance – as the lognormal and gamma distributions – our
Algorithm 1 incurs into under-provisioning. For higher loads

ρ, as the experienced in industrial and highway scenarios,
scaling with our best method leads to over-provisioning for
the uniform and deterministic distribution, while it tends to
under-provision for service times following the lognormal or
gamma distribution. Note this is aligned with the skewness of
the ePDF for the 99.999-percentile error – i.e. in FIGURE 14
the ePDF is skewed to the right for deterministic and uniform
distribution and skewed to the left for the lognormal and
gamma distributions.

Overall, FIGURE 13 and FIGURE 14 provide three main
conclusions. First, they show that using the best method
of Section IV in the scaling Algorithm 1 results in perfect
scaling upon low loads the 70% of the time – see how
∆R = 0 in FIGURE 14 for the residential road. Second,
results show that upon higher loads (ρ approaches to 1) in
highway and access roads, our best method achieves perfect
scaling more than a 23% of the time, except for gamma
distributed service times. Third, scaling with the best method
over-provisions when there is smaller variance and under-
provisions when there is higher variance than the exponential
distribution.

X. Discussion
The approximations proposed in Section IV are useful to
perform CPU scaling in servers attending URLLC traffic.
Thanks to the CDF approximation, we can tell whether e.g.
R = 2 CPUs are enough to meet small processing delays the
99.999% of the time. In the following we discuss practical
considerations regarding our proposed approximations.

Prevent 85% loads. Results from Section VIII evidence
we cannot comment on the accuracy of the approximations
upon very high loads ρ > 0.85. Therefore, we suggest system
administrators to avoid having a server with loads above an
85% to prevent inaccurate provisioning. For example, as the
load approaches to the 85%, an additional CPUs should be
turned on. Otherwise, scaling with our best approximation
leads to over-provisioning non-exponential service times –
see FIGURE 14.

Approximations applicability. Our approximations are use-
ful to meet URLLC in existing solutions for task offloading
offloading [56] and resource provisioning (CPUs) in both
edge [57] & Radio Access Network (RAN) [58], [59]. For
example, our approximations could be used in the feasibility
checks performed in solutions found by [56, Algorithm 1]
and [59, Algorithm 1]. Hence the obtained solutions would
guarantee URLLC in task offloading and CPU provisioning.
Another application of our approximations is in the context
of online optimization, the framework used in [58] to
perform live provisioning of CPUs/GPUs in the RAN. By
using our approximations within the loss function, solutions
will satisfy URLLC requirements. Moreover, methods as
stochastic gradient descend [60] are applicable by numerically
computing the derivative of our approximations.

Accuracy vs. runtime. Our approximations’ accuracy de-
pend on the granularity of the states considered in the Markov
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chain. The larger the number of CPUs R and customers
considered L1, the larger the runtime – see TABLE 3. Given
the probability of having L1 users for different loads – see
FIGURE 3 – we recommend using the R,L1 combinations
devised in TABLE 4 for an adequate accuracy and runtime
trade-off.

XI. Conclusions
In this paper we:

i) present a generic open-source discrete event simulation
software for G/G/R-JSQ-PS systems;

ii) derive and compare six analytical approximations for
the sojourn time CDF of M/M/R-JSQ-PS systems, and
analyse their run time complexities;

iii) investigate the applicability of M/M/R-JSQ-PS models
to M/G/R-JSQ-PS systems under Uniform, Determinis-
tic, Lognormal and Gamma distributed intended service
times; and

iv) apply these approximations and simulations to the
scaling of a URLLC service for automated vehicles
on three different roads in Torino.

The proposed methods have polynomial time complexities
O(L3R

1 ), and are useful to scale servers processing URLLC
traffic under mid to high loads, for they yield errors of
less than 4.17 time units in high percentiles as a 99.999%.
Moreover, the proposed methods serve as conservative scaling
approach as long as the service time tail and variance is
smaller than the exponential distribution.

In future work we plan to use the Laplace-Stieltjes
transform together with SQA to aim at closed formed
expressions of sojourn time CDF. Additionally, given the
advent of online convex optimization [60] in networking
provisioning [58], we plan to use our CDF approximations
as loss function to leverage existing algorithms (as the FTRL)
and make CPU provisioning with regret guarantees. As a
result, we will provide online QoS guarantees for URLLC
live provisioning.
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Appendix A
Errors for increasing reliabilities
Fig. 14 shows the error for the best approximation A-F from
the 99th up to the 99.99th percentile of the sojourn time. The
sojourn time error is unitless, and it illustrates the increasing
error as ρ approaches 1, so as the increasing oscilacions of
the error for higher reliabilities, even with mid values of the
number of CPUs like R = 4 – as explained in Section VIII.

Appendix B
Getting sojourn_percentile(η′, R′)
We provide an open-source implementation2 of the proposed
approximation methods A-F. Every method is implemented
in Python and yields the sojourn time CDF for a given
number of CPUs R. Additionally, it is possible to specify
the truncation limits for the maximum number of customers
considered at each CPU L1, and the maximum number of
customers at the system L2.

In order to obtain the result of the
sojourn_percentile(η′, R′) function used inside
Algorithm 1, we first compute the load ρ given a number
of CPUs R′, and the arrival and service rates Λ, µ;
respectively. Second, we check Fig. 8 to know which
is the best method for the given (ρ,R′) tuple, e.g.,
method-A. Third, we create an instance of method-A
invoking jsq.MethodA(Λ, µ,R, L1, L2, {t0, t1, . . .}),
with {t0, t1, . . .} being the discrete time points at which we
compute the CDF. Then, we obtain the CDF of method-A by

2https://github.com/geraintpalmer/mmr-jsq-ps/
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FIGURE 14: The best method error for the 99th, 99.9th, and 99.99th percentile
the sojourn time. Positive/negative mean over/under-estimation, respectively.

accessing property sojourn_time_cdf of the method
instance. This property holds a vector {P0, P1, . . .} that
represents the CDF computed by method-A. In particular,
each element represents Pi = P(T ≤ ti). Finally, we obtain
the η′ percentile of the sojourn time as

tη
′

= arg min{ti : P(T ≤ ti) > η′} (27)

Appendix C
Considered µ for autonomous driving
The scaling experiments presented in Section A consider an
autonomous driving service, namely, a Teleoperated Support

(TeSo) service [13]. Vehicles send an H.265/HEVC video
stream that is decoded in a remote server (modelled as an
M/M/R-JSQ-PS system). The decoded video is reproduced
at a monitor used by the remote driver to see the vehicle
environment and take actions as e.g. press the brakes.

The vehicles video stream Λ is expressed as frames/sec
(fps), and is processed at a rate of µ fps in the server
hosting the autonomous driving service. For the experiments
in Section A we take into consideration the time that it takes
to decode the video stream. According to [55] an Intel Xeon
family CPU manages decode an HEVC video frame in 8 ms.
Hence a single CPU within the considered M/M/R-JSQ-PS
system offers a rate of µ = 103

8 fps for the considered
infrastructure assisted environment perception service. Such
value of µ is the one we used in the experiments presented
in Section IX.
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