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A B S T R A C T

Microplastics (MPs) present significant challenges for anaerobic digestion (AD) processes used in energy recovery 
from contaminated organic waste. Given that optimal AD conditions vary widely across studies when MPs are 
present, a robust predictive model is essential to accurately assess these complex effects. This study applied four 
machine learning algorithms to predict methane yield using two datasets—one with and one without MPs. 
Among these, gradient boosting regression demonstrated the highest prediction accuracy, with testing R2 values 
of 0.996 for systems without MP pollution and 0.998 with MP pollution. This model was then further optimized 
by removing redundant and low-importance features, refining its predictive power. Feature importance analysis 
revealed that digestion time and substrate organic matter content were key parameters positively correlated with 
methane production. In the presence of MPs, substrate pH and inoculum total solids emerged as critical factors, 
with partial dependence plots offering deeper insights into their optimal conditions. This research offers new 
perspectives on the intricate effects of MPs on methane production, which could inform the optimization of AD 
processes in environments contaminated by MPs.

1. Introduction

The extensive use of fossil fuels, driven by industrial growth, con-
tributes significantly to climate change and energy scarcity, as fossil fuel 
consumption accounts for over two-thirds of global greenhouse gas 
emissions (Risco-Bravo et al., 2024). This reliance on fossil fuels has 
heightened global concerns about ecological balance and environmental 
safety, prompting a shift towards renewable energy sources with lower 
greenhouse gas emissions. Anaerobic digestion (AD) is recognized as a 
promising waste-to-energy technology capable of producing methane 
from various waste sources, including wastewater, food waste, crop 
residues, forestry materials, and livestock manure (Li et al., 2019; Gao 
et al., 2022). Although biogas production reached approximately 35 
million tons of oil equivalent in 2018, this remains a fraction of AD 
potential to meet an estimated 20% of current global gas demand (IEA, 
2020). However, since AD involves a complex biochemical process in 
which multiple anaerobic microorganisms work together, it is inherently 
less stable and vulnerable to unfavorable factors leading to inefficiency 
(Gao et al., 2022). Key parameters such as feedstock characteristics, 
carbon to nitrogen ratio, temperature, pH, microbial community, and 
solid to liquid ratio have been shown to significantly impact AD 

efficiency (Kainthola et al., 2019; Kumar and Samadder, 2020). Organic 
wastes often contain a variety of exogenous pollutants, including heavy 
metal, plastic, and persistent organic pollutants, which pose ecotoxicity 
risks and can inhibit the AD process (Tou et al., 2017; Ajay et al., 2020; 
Luo et al., 2020). For instance, over 90% of plastics in domestic and 
industrial wastewater are retained in waste-activated sludge during 
treatment (Carr et al., 2016). Additionally, plastics commonly used in 
food packaging frequently contaminate food waste due to imperfect 
waste segregation systems (Li et al., 2022).

Plastics are widely used in various applications, leading to a large 
amount of plastic waste in the environment due to poor waste man-
agement systems. Researchers have classified plastics based on their 
origin and degradability into two main types: petroleum-based and bio- 
based, as well as non-degradable and degradable plastics (Shang et al., 
2023). This study specifically focuses on petroleum-based plastics 
because their non-renewable and resistant nature poses serious threats 
to ecosystems. Plastic debris can break down through various processes, 
resulting in tiny particles called microplastic (MP), which are smaller 
than 5 mm (Akdogan and Guven, 2019). These MPs can be found in a 
wide range of organic wastes that are commonly used as substrates for 
AD. For instance, MPs generated in urban and residential areas often end 
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up in wastewater treatment systems alongside municipal and industrial 
waste, as well as urban runoff (Nizzetto et al., 2016). During wastewater 
treatment, over 90% of MPs are trapped in waste activated sludge (WAS) 
(Carr et al., 2016). Additionally, plastics used in food packaging 
frequently contaminate food waste due to improper waste segregation, 
which can lead to the generation of MPs during the recycling of food 
waste (Li et al., 2022). The presence of MPs in organic waste can disrupt 
methane production during AD, creating new challenges for system 
operations. Research indicated that the impact of MPs varies depending 
on their type, size, and concentration (Wei et al., 2019a; Chen et al., 
2021; H. Chen et al., 2023; X. Wang et al., 2023). Furthermore, factors 
such as the type of feedstock, properties of the inoculum, and opera-
tional parameters can influence these effects. Exploring all these pa-
rameters involved in MPs effects through parallel experiments presents 
significant challenges. Therefore, prior to performing AD, it is crucial to 
determine the optimal conditions for maximum methane yield from 
substrates that contain MPs. However, to the best of our knowledge, the 
approach that can predict methane yield from MP-laden substrates while 
addressing the issues involved in identifying the optimal AD conditions, 
MPs properties, and feedstock properties to maximize methane yield has 
not yet been developed.

Machine Learning (ML) has gained momentum in environmental 
science and engineering, offering robust tools for complex regression 
and classification tasks by leveraging large, multidimensional datasets 
(Zhong et al., 2021). Within the field, ML techniques have been suc-
cessfully used for MP monitoring, allowing automated counting and 
identification of MPs in environmental samples from images (Yurtsever 
and Yurtsever, 2019; Lorenzo-Navarro et al., 2021). ML models are also 
increasingly applied in waste-to-energy systems, including AD (Yildirim 
and Ozkaya, 2023; Y. Zhang et al., 2023b,c), pyrolysis (Zhu et al., 2019), 
hydrothermal carbonization (Li et al., 2021b), and gasification (Elmaz 
et al., 2020; Li et al., 2021a). For instance, recent work by Yildirim and 
Ozkaya (2023) demonstrated that Random Forest (RF) model achieved 
the highest accuracy in predicting biogas yield from operational data of 
a real-scale AD plant. However, an exhaustive literature review revealed 
that most of the ML work has focused on biogas prediction from the AD 
systems with different operational conditions, and few studies have been 
conducted to address the effects of MP contamination on biogas pro-
duction. Considering MP contamination alongside other AD parameters 
could enhance our understanding of how these pollutants affect 
methane production, providing insights to improve AD performance 
across diverse plant operations. Additionally, the increasing volume of 
research on various MPs in AD systems supports ML-based analyses, 
which could clarify the complex influence of MP physicochemical 
properties and AD conditions on biogas output (Wei et al., 2019b; Chen 
et al., 2021).

To address the existing knowledge gap regarding methane produc-
tion in AD systems impacted by MP contamination, we developed four 
ML models specifically tailored to predict methane yield. Through a 
comprehensive comparative analysis of these models, we identified the 
most accurate one. ML techniques offer distinct advantages over tradi-
tional statistical analyses by simultaneously accounting for multiple 
relevant factors while uncovering complex correlations. This capability 
allows for precise predictions of methane production, facilitating a 
better understanding of how MPs influence various AD systems. To 
enhance our analysis, we categorized the dataset into two groups: one 
without MP contamination and one with MP contamination. By applying 
ML approach to each condition separately, we quantitatively assessed 
the effects of MPs on key AD parameters, allowing for a comparative 
evaluation of their influence. Additionally, the insights derived from ML 
model can inform the design of AD systems, particularly in optimizing 
the use of MP-contaminated substrates through recommendations on 
inoculum-to-substrate ratios. In this study, we identified 18 input vari-
ables, which were categorized into four main areas: (i) MP character-
istics; (ii) physicochemical properties of substrates; (iii) 
physicochemical properties of inoculums; and (iv) experimental 

conditions of AD. Prior to the development of ML models, we conducted 
descriptive statistical analyses on data from existing literature to 
establish correlations among these variables. This comprehensive 
approach enhances our understanding of how various factors contribute 
to methane production in the presence of MPs, ultimately supporting 
improved AD strategies in contaminated environments.

2. Materials and methods

2.1. Data collection and preprocessing

A comprehensive literature search was conducted to collect data on 
the methane production from AD exposed to different plastics from 
literature databases, including Web of Sciences, Scopus, and PubMed. 
The search terms included keywords related to AD and petroleum-based 
plastics, and then the content of the searched literature was examined to 
identify literature for data collection. The detailed literature search and 
screening process was described in Gao et al. (2024). To ensure gener-
alizability, 18 attributes were defined as the input features during the 
data collection consisting of four empirical categories, (1) MP charac-
teristics (type, particle size, and concentration), (2) substrate properties 
(total solid (TS), volatile solid (VS), pH, total chemical oxygen demand 
(TCOD), and soluble chemical oxygen demand (SCOD)), (3) inoculum 
properties (TS, VS, pH, TCOD, and SCOD), and (4) operating conditions 
for AD (feed to inoculum ratio (F/I), bioreactor volume, working vol-
ume, temperature, and digestion time), and methane yield was defined 
as the output target. The significance of these input features will be 
thoroughly examined through subsequent feature selection part. The 
collected publications for this study were expected to contain all the 
data on these four categories, and the publications were excluded 
because of lacking all data for the parameter under consideration. 
Consequently, 20 studies were selected (Table S1), providing 2878 
methane yield data points for machine learning analysis. For compa-
rably examine the impact of MPs on AD, the dataset was divided into two 
subsets: one without MP pollution (Table 1) and one with MP pollution 
(Table S2). Data were obtained directly from text and tables or were 
extracted manually from figures using the Web Plot Digitizer Software 
(https://apps.automeris.io/wpd4/).

Moreover, the units of plastic concentration and methane yield were 
converted to mg/L and mL/g of VS uniformly to avoid inconsistencies in 
the parameters for machine learning. Plastic concentrations were con-
verted to the values in the substrate according to the method proposed 
by Leusch and Ziajahromi (2021), where the densities of the different 
plastics were polyethylene = 0.94 g/cm3, polyethylene terephthalate =
1.38 g/cm3, polyvinyl chloride = 1.4 g/cm3, polystyrene = 1.06 g/cm3, 
polycarbonate = 1.2 g/cm3, polyester = 1.38 g/cm3, and polyamide 6 =
1.14 g/cm3. Since the data samples were compiled from a wide range of 
publications, inevitably inconsistencies exist leading to 6 features 
(TCOD, SCOD, and pH the substrate and inoculum, respectively) con-
taining missing data points (22.2%, 22.1%, 13.8%, 13.8%, 12.2%, 
10.6%) in the raw dataset. To solve this problem, the K Nearest Neigh-
bour algorithm from the fancyimpute library 0.7.0 was implemented to 
the raw dataset for data imputation. In addition, the target encoder was 
applied to convert the categorical feature (plastic type) to the numerical 
feature to consist of the other features. For each category of the plastic 
type feature, target encoding replaces it with the mean of the target 
variable for that specific category. This method is particularly useful for 
categorical variables with a high cardinality, as it captures the rela-
tionship between the categorical feature and the target variable, while 
avoiding the pitfalls of one-hot encoding, such as increased dimen-
sionality and potential sparsity (Micci-Barreca, 2001).

2.2. Model development and evaluation

To predict methane production from organic wastes with and 
without MP contamination, four supervised machine learning models 
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were selected: RF, Support Vector Regression (SVR), Gradient Boosting 
Regression (GBR), and eXtreme Gradient Boosting (XGB). These ML al-
gorithms have been employed for modelling the complex relationships 
in AD process and have demonstrated accuracy in methane production 
prediction (Andrade Cruz et al., 2022). The models were trained and 
tested on a computer with Windows 10, using Python 3.8 and machine 
learning libraries including scikit-learn, XGBoost, and Pandas. Detailed 
descriptions of these selected ML models can be found in Text S1.

Before building each machine learning model, each of the two 
datasets (with and without MPs) was randomly split into a training 
dataset (80%) and a test dataset (20%). To ensure that each model 
received the same dataset, datasets were split only once during the 
feature selection phase and then used in turn to train the four different 
models (RF, SVR, GBR and XGB). Once these models have been built, 
their training and generalisation performance on the same dataset is 
evaluated using two metrics: the root mean square error (RMSE) and the 
coefficient of determination (R2). The RMSE is a measure of the pre-
diction error of the model and how well the model fits the observations 
(Eq. (1)), so the smaller the RMSE, the better the model performs. The R2 

(Eq. (2)) is a statistic that measures the superiority of the model over a 
simple average model (Y = X) and shows how well the model explains 
the variance of the predicted values. The R2 ranges from 0 to 1, and the 
closer to 1, the better the model performs. 

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
( yi − ŷi)

2
√

(1) 

R2 =1 −

∑n
i=1( yi − ŷi)

2

∑n
i=1( yi − y)2 (2) 

where yi is the real target value of the ith sample, ŷi is the predicted 
target value, and y is the average of the actual value of the target in all 
samples (n).

2.3. ML-based feature selection

In regression problems, feature selection is a method of filtering out 
features that contribute little to the target result or add noise to the 
machine learning models. This can improve both the performance of 
models and the accuracy of predicted results (T. Zhang et al., 2020). 
ML-based feature importance and correlation analysis are essential for 
feature selection. Based on the performance of the selected four ML 
models, the best-performing model was then employed to perform 
feature selection. Specifically, Hierarchical Clustering (HC) and Pearson 
Correlation Coefficient (PCC) analysis were firstly applied to the com-
plete dataset, including both "with plastic" and "without plastic" condi-
tions. (Palansooriya et al., 2022). Features with high correlations, 

indicating they provided similar information, were grouped into one 
cluster. From each cluster, one representative feature was selected for 
ML model development. ML-based feature importance can effectively 
identify the representative features of a cluster. Then four machine 
learning models-RF, SVR, GBR, and XGB-were trained and tested on the 
two datasets to select the best-performing model. Feature importance 
rankings from best-performing model, along with the HC results, were 
used to remove features with low importance and low correlation to the 
target variable, retaining only the most relevant features for further 
analysis. By combining feature importance with correlation, the most 
crucial feature within each cluster was chosen as the representative 
feature. The subsequent removal of less contribution features served as a 
strategic optimization step, further enhancing the overall performance 
of the machine learning model.

2.4. ML performance analysis with updated datasets

After feature selection, two updated datasets (with and without MPs) 
were further applied to refine the initially optimized ML model. 
Retaining the same hyperparameters (n_estimators, learning rate, 
max_depth, min_samples_split, min_samples_leaf and subsample) 
allowed for direct comparison between the original and updated models, 
assessing the effectiveness of the feature selection method while mini-
mizing time and computational costs (Palansooriya et al., 2022). 
Improved predictive performance in the updated model would validate 
the feature selection process, whereas any decline would indicate a need 
for hyperparameter retuning. The final model then provided insights 
into the significance and influence of each feature on the target variable. 
The detailed process of the ML model is provided in Text S1.

The detailed process of this study, depicted in Fig. 1, is divided into 
three main parts. In the first step, data was collected from the literatures 
according to input and output variables, and data preprocessing was 
carried out prior to model development. In the second phase, four ML 
models were constructed using the original datasets, and the best- 
performing model was selected for feature importance and clustering 
analysis. Moreover, the features contributed to the model were filtered 
based on feature importance and correlation, and the redundant data 
were removed, thus upgrading the datasets. Finally, the best predictive 
model for guiding practical applications was identified through AutoML 
based on the updated dataset.

3. Results and discussion

3.1. Statistical analysis of raw and reconstructed dataset

Following a comprehensive literature review and data collection, 18 

Table 1 
Empirical categories and input features used to predict methane production from anaerobic digestion without microplastic pollution.

Empirical categories Input features Unit Abbreviation Data range No. of datapoints

Substrate properties 1 TS g/L S_TS 15.3–249.2 730
2 VS g/L S_VS 9.5–183.6 730
3 pH – S_pH 4.7–7.4 654
4 TCOD g/L S_TCOD 11.9–156.6 548
5 SCOD g/L S_SCOD 0.1–31.1 630

Inoculum properties 6 TS g/L I_TS 15.6–163.5 730
7 VS g/L I_VS 7.9–79 730
8 pH – I_pH 6.4–8.1 615
9 TCOD g/L I_TCOD 5.5–98 557

10 SCOD g/L I_SCOD 0.2–7.5 615

Experimental conditions 11 F/I – F/I 0.4–14.5 730
12 Bioreactor volume mL B_Vol 108–1000 730
13 Working volume mL W_Vol 50–750 730
14 Temperature ◦C Temp 35–37 730
15 Digestion time d Time 1–125 730

Note: TS: total solid; VS: volatile solid; TCOD: total chemical oxygen demand; SCOD: soluble chemical oxygen demand; F/I: feed to inoculum ratio.

Z. Gao et al.                                                                                                                                                                                                                                     Journal of Environmental Management 377 (2025) 124627 

3 



input variables and 1 output variable were identified from 20 publica-
tions. These input variables were categorized into four empirical cate-
gories based on field knowledge, and methane yield was considered as 
the output variable. Detailed characteristics of the input variables for 
both conditions, with and without MP contamination, are presented in 
Table 1 and Table S2, respectively. A total of eight types of MPs were 
screened, which basically includes major types of petroleum-based 
plastics used in real life (Kwon et al., 2023). The range of digestion 
times in the collected dataset was extensive (1–125 d), representing the 
entire digestion process of substrates (Gao et al., 2022). pH plays a 
critical function in the operation of AD systems (Pang et al., 2023). 
However, since only a few of the screened publications mentioned 
adjusting the initial pH of the AD system to 7, and the data for this 
variable was missing from most of the publications, this variable was not 
included in the operating conditions for AD.

The statistical distribution of input features and output target for the 
raw data obtained from publications is shown in Fig. 2, only the final 
methane yield (specific methane yield) was considered. In terms of the 
plastic types employed in the studies, about one-third of the samples 
(28.4%) were PS and 15.5% focused on PVC (Fig. 2a). The PS particles 
were chosen as representative plastics in most of the studies due to their 
high global production and commercial availability; while PVC has 
received much attention as the most toxic plastic throughout the pro-
duction and disposal process (Wei et al., 2019b). Moreover, the impact 
of different MP sizes on AD was variable (Fig. 2b). It was found that 
larger MP particles are more dispersible, resulting in increased exposure 
to sludge (Wang et al., 2022). Smaller MPs, on the other hand, can cause 
cytotoxicity by penetrating microbial cells (Zhang and Chen, 2020). The 
range of MP concentration was 0.012–126000 mg/L (Table S2), and the 
overall trend was that specific methane yield decreased with increasing 
plastic concentration (Fig. 2c). Fig. 2d shows the ratio of specific 
methane yield in the presence of different plastic types compared to the 
absence of plastic. The results indicated that PA6 and PC caused an in-
crease in methane yield, but the presence of MPs generally decreased the 
methane yield. It has been demonstrated that different MP types can 
have opposite results on AD. For example, methane yield was reduced by 
up to 23% at PS concentration of 100 mg/L (Feng et al., 2018). In 
contrast, the presence of PA6 at 10 particles/g TS improved methane 
yield by 39.5%, from 124 to 173 mL/g of VS (Chen et al., 2021). These 
contrasting outcomes indicated that different MP types could affect the 
AD process variably due to their diverse physicochemical properties, 
which cannot be explained by similar mechanisms. Apart from plastic 

pollution, the properties of substrate and inoculum also influence the 
methane yield from AD. As shown in Fig. 2e, the physicochemical 
properties of the substrates were basically consistent, while those of the 
inoculum varied among the studies.

To further reveal the overall relationship of all variables, the k- 
nearest neighbors algorithm with k = 3 was used to fill in the missing 
values in features S_pH, I_pH, S_TCOD, I_TCOD, S_SCOD and I_SCOD, 
where the Euclidean distance was employed to identify the three nearest 
neighbors, and a weighted average of their values was used for impu-
tation, thereby obtaining a complete dataset. The KNN imputation 
method was selected as it effectively preserves the local structure of the 
data and avoids assumptions about the underlying distribution 
(Salamattalab et al., 2024). The linear relationship between pairwise 
variables in the complete dataset was analyzed by PCC (Fig. S2). As 
shown in the figure, digestion time had a weak positive correlation with 
methane yield. Meanwhile, the TCOD and SCOD of the substrate also 
showed a weak positive correlation with methane yield. However, 
methane yield did not linearly correlate with MP type, particle size, and 
concentration. In addition, the statistical analysis described above did 
not allow for any general conclusions to be drawn or any judgements to 
be made in the AD processes. Therefore, the linear analyses did not well 
reflect the effects of the input variables on methane yield. Further in-
ternal correlations among these variables should be revealed based on 
big data and non-linear methods.

3.2. ML models development and feature analysis

Four ML algorithms, named RF, SVR, XGB, and GBR, were developed 
and assessed to predict the methane yield using 18 input features after 
filling in data gaps. The optimal hyper-parameters for each model were 
adjusted during the training step which aims to minimize the prediction 
error based on 5-fold cross-validation (Table S3). Fig. 3 presents the 
performance of each model, as measured by the R2 and RMSE, as well as 
an actual values comparison of predicted values derived from the 
training and testing datasets. The testing R2 values for GBR model were 
0.996 without MP pollution and 0.998 with MP pollution, with corre-
sponding RMSE values of 7.102 and 7.730. For the XGB and RF models, 
R2 values remained similarly high across both datasets, approximately 
0.993 and 0.996. In contrast, the SVR model exhibited the lowest pre-
dictive accuracy. These findings indicate that the GBR model out-
performed the other three ML models in accurately predicting methane 
yield. These four ML models have been commonly used to predict 

Fig. 1. Flowchart detailing the strategies of the machine learning framework to determine the effect of microplastic pollution on anaerobic digestion. RF: Random 
Forest; SVR: Support Vector Regression; GBR: Gradient Boosting Regressor; XGB: eXtreme Gradient Boosting.
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Fig. 2. Statistical data visualization of the impact of: (a) microplastic types; (b) microplastic size; and (c) microplastic concentration on specific methane yield; (d) 
Ratio of specific methane yield in the presence of different microplastic types compared to the absence of microplastic; (e) Box-normal plot representing the 
physicochemical properties of substrate and inoculum. PA6: Polyamide 6; PC: polycarbonate; PE: polyethylene; PEI: polyethyleneimine; PES: polyester; PET: 
polyethylene terephthalate; PS: polystyrene; PVC: polyvinyl chloride; TS: total solid; VS: volatile solid; TCOD: total chemical oxygen demand; SCOD: soluble chemical 
oxygen demand.
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methane production from AD. Zhang et al. employed three ML models 
(GBR, XGB, and RF) to reveal the role of biochar in AD, with GBR per-
forming the best (2023a).

Although the prediction accuracy of ML models (especially GBR) was 
satisfactory with respect to the preliminary dataset after filling in the 
gaps, some input features were not important enough to build a model 
for methane yield prediction. The features which were highly correlated 
with each other may not offer unique discriminative information, and it 
can be easy to complicate the model by using too many of these vari-
ables, leading to generalization capability. To enhance prediction per-
formance, ML-based feature engineering was applied to filter out less 
significant features and simplify the model. PCC (Fig. S2) and hierar-
chical clustering (Fig. 4a and c) were used to identify highly correlated 
input features, while the top-performing GBR model provided a ranking 
of feature importance (Fig. 4b and d). Based on domain knowledge, four 
empirical categories, including MP characteristics, substrate properties, 
inoculum properties, and operating conditions for AD, were identified to 
guide final feature selection. Notably, features within the same cluster 
but from different empirical categories were retained to preserve 
distinctive predictive information.

PCC analysis (Fig. S2) revealed a strong correlation between biore-
actor volume and working volume. These two variables also clustered 
together and showed low feature importance values (Fig. 4). Conse-
quently, bioreactor volume and working volume were deemed redun-
dant for predicting methane yield. For inoculum properties, TS and VS 
content were strongly correlated, as were TCOD and SCOD. Addition-
ally, TS and pH of inoculum were identified as more important features 
and belonged to separate clusters (Fig. 4). Finally, the VS, TCOD and 
SCOD content of inoculum were removed to establish a fresh dataset. 
Based on the feature importance values (Fig. 4b and d), the importance 
of the substrate properties was higher overall than that of the inoculum, 
except for the TS. It is reasonable that the substrate, as a raw material 
utilized by the microorganisms, had a higher organic matter content 
compared to the inoculum, providing a greater impact on the AD system 

(Fig. 2e). The key differences between Fig. 4b and d were the increased 
importance of inoculum TS and substrate pH in the presence of MPs. 
This is linked to the two effect pathways of MPs on AD: decreasing 
organic matter dissolution and increasing oxidative pressure (Gao et al., 
2024). The high importance of inoculum TS can be explained by its 
influence on the solid-liquid ratio of the final system (Khadaroo et al., 
2020), which influences the organic matter dissolution in substrate. 
Meanwhile, pH affects the oxidative pressure induced by MPs (H. Chen 
et al., 2023), further impacting methane production. The temperature 
can vary considerably across AD systems, which are classified into three 
categories based on temperature range and the activity of the microor-
ganisms (Ryue et al., 2020). It was found that methane yield was higher 
in thermophilic digesters than in mesophilic digesters (Liu et al., 2022). 
However, the temperature in the dataset was only 35–37 ◦C, lacking 
data on continuous digestion processes in AD plants. Therefore, the 
feature importance of temperature was the least for model prediction. In 
general, the bioreactor volume, working volume, inoculum VS, inoc-
ulum TCOD, inoculum SCOD, substrate TS, substrate VS, and tempera-
ture were discarded from the dataset of input features, as they were 
either redundant features or had low importance to the methane yield 
prediction.

3.3. ML model update with filtered datasets

The top-performing GBR model was reconceptualized using 
streamlined datasets to enhance its generalization capability and in-
crease computational efficiency. Fig. 5 shows the prediction accuracy of 
the updated GBR model. The testing R2 values were 0.967 without MP 
pollution and 0.986 with MP pollution, with corresponding RMSE values 
of 18.645 and 20.747. Although the updated GBR model had a slightly 
lower R2 value and a higher RMSE value than that of the preliminary 
GBR model, this slight reduction in prediction performance is reason-
able. The excluded features may interact with other parameters in the 
original model and thus improve predictive performance (Lan et al., 

Fig. 3. Predictive performance of four machine learning models under two conditions: (a) without microplastic pollution and (b) with microplastic pollution. XGB: 
eXtreme Gradient Boosting; SVR: Support Vector Regression; RF: Random Forest; GBR: Gradient Boosting Regressor; RMSE: root-mean-square error.
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Fig. 4. Input feature analysis from the Gradient Boosting Regressor model under two conditions: (a–b) without microplastic pollution and (c–d) with microplastic 
pollution. Panels (a) and (c) present hierarchical clustering of features, while panels (b) and (d) display feature importance rankings. P_Type, P_Size, and P_Conc: the 
type, particle size, and concentration of microplastics; S_TS, S_VS, S_pH, S_TCOD, and S_SCOD: the total solid, volatile solid, pH, total chemical oxygen demand, and 
soluble chemical oxygen demand of substrate; I_TS, I_VS, I_pH, I_TCOD, and I_SCOD: the total solid, volatile solid, pH, total chemical oxygen demand, and soluble 
chemical oxygen demand of inoculum; F/I: feed to inoculum ratio; B_Vol: bioreactor volume; W_Vol: working volume; Temp: temperature; Time: digestion time.

Fig. 5. Predictive performance of updated Gradient Boosting Regressor (GBR, the best performance model).
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2023). Nonetheless, the employment of reduced parameters can effec-
tively save computational cost and time in model development, and the 
decrease in predictive accuracy was minimal compared to the previous 
model. Additionally, excessive input features can lead to overfitting of 
the model, so the removal of redundant features from the original 
dataset diminishes the overfitting problem (Li et al., 2021a). Further-
more, the predictive performance of this paper was higher than the 
values previously reported in the literature (Baek et al., 2023; Y. Zhang 
et al., 2023b,c; Ghazizade Fard and Koupaie, 2024). These results 
implied that the feature filtering approach applied in this study, in 
which only 10 essential features were identified, can achieve a desirable 
ML model performance.

The updated GBR model was further utilized to explore the impor-
tance and impact of input features. The feature importance and their 
impact or contribution on methane yield were plotted according to each 
data point, with the importance represented by the mean absolute SHAP 
value (Fig. 6). The importance rankings varied considerably between 
datasets with and without MP pollution. In the absence of MPs, TCOD 
and SCOD of substrate ranked highly (Fig. 6a), reflecting the direct in-
fluence of organic matter on methane production (Soo et al., 2022). 

Furthermore, pH is crucial for methanogen activity in AD system, as 
these microorganisms thrive in neutral conditions around pH 7.2, with 
their growth inhibited at lower pH levels (Gao et al., 2022; Yellezuome 
et al., 2022). Conversely, the importance of TCOD and SCOD decreased 
in the presence of MPs (Fig. 6c). This decline is likely due to the inter-
ference of MPs with organic matter solubilization, which hinders 
methane production despite higher SCOD levels (Gao et al., 2024). The 
inoculum TS content directly influences the solid-liquid ratio in AD 
system. Increased solid loading can restrict microbial access to MPs, 
thereby diminishing their inhibitory effects. Additionally, pH affects 
plastic properties by influencing the degree of hydrolysis and degrada-
tion, potentially altering their physical and chemical characteristics. 
Lower pH levels may enhance the breakdown of certain MPs, leading to 
changes in their mechanical strength and stability (Tiwari et al., 2020). 
The SHAP value method not only ranks feature importance but also 
elucidates how input features affect methane yield (Fig. 6c and d). The 
input variable has a positive effect on methane yield if the SHAP value 
increases as the value of the input variable increases, which corresponds 
to the transition from blue to red in the graph. Notably, the overall SHAP 
value for methane yield increased proportionally with digestion time, 

Fig. 6. Feature analysis of updated Gradient Boosting Regressor (GBR, the best performance model) using a feature-filtered dataset under two conditions: (a–b) 
without microplastic pollution and (c–d) with microplastic pollution. Panels (a) and (c) illustrate feature importance analysis, while panels (b) and (d) display SHAP 
value analysis. P_Type, P_Size, and P_Conc: the type, particle size, and concentration of microplastics; S_pH, S_TCOD, and S_SCOD: pH, total chemical oxygen demand, 
and soluble chemical oxygen demand of substrate; I_TS and I_pH: the total solid and pH of inoculum; F/I: feed to inoculum ratio; Time: digestion time.
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suggesting that longer digestion periods enhance biodegradability and 
consequently methane production (Gao et al., 2022). However, the 
substrate consumption and the hydrolysis products (volatile fatty acid 
and ammonia nitrogen) accumulation during AD could prevent the 
production of methane or even contribute to the cessation of the system 
(Wu et al., 2017). As depicted in Fig. 6b and d, the impact of digestion 
time on methane yield diminished at higher values. Furthermore, both 
TCOD and SCOD of the substrate demonstrated a positive relationship 
with methane yield. A high COD value indicates a significant presence of 
organic matter in AD system, while SCOD is readily utilized by micro-
organisms for methane production (X. Zhang et al., 2023a).

3.4. Optimal process design based on updated model

In addition to analyzing feature importance, partial dependence 
plots (PDP) were performed to obtain the contribution of key features in 
predicting methane production. Fig. 7 illustrates how each of 10 input 
features affects model performance, with data distributions represented 
by blue and red columns along the x-axis. pH had a strong effect on 
methane yield with an optimal level around 6.4, while either highly 
acidic or alkaline conditions were detrimental (Fig. 7a). Substrate TCOD 
and SCOD levels were also influential, with positive correlations to 
methane yield (Fig. 7b and c). Ma et al. (2018) found that COD had a 
positive contribution to methane production. However, excessive COD 
can impose organic loading stress, disrupting the AD process (Braz et al., 
2019). When COD levels exceed the tolerance limits of methanogens, the 

balance between hydrolysis/acidogenesis and methanogenesis stages is 
disrupted, reducing methane yield. High COD concentrations, primarily 
from soluble proteins and polysaccharides, are hydrolyzed into smaller 
molecules, which accumulate as volatile fatty acids by acidification. This 
volatile fatty acids buildup further inhibits methanogen activity, hin-
dering methane production (Choong et al., 2016; Ajayi-Banji and Rah-
man, 2022). In fact, methane production decreased notably above 50 
g/L TCOD in Fig. 7b. However, in the presence of MPs, the methane 
yield remained stable even as substrate SCOD levels rose above 20 g/L. 
This stabilization likely reflects the reduced solubility of organic matter 
due to MPs, which in turn limits VFA enrichment. As shown in Fig. 7e, 
the PDP value decreased sharply when the initial TS content increased 
from 15.6 g/L to 19.5 g/L, then slowed until around 40 g/L, where it 
began a gradual rise as TS content increased further. Initially, higher TS 
content of inoculum caused an increase in bioreactor TS, which pro-
longed the startup period and reduced the stability of the system, and 
this effect tended to weaken as the TS continued to increase (M. Wang 
et al., 2023; Yan et al., 2022). This eventual slow rise in methane pro-
duction may be due to the contribution of organic matter within the 
inoculum itself, which provides a slight additional methane yield 
(Muaaz-Us-Salam et al., 2020).

Xie et al. (2021) investigated the impact of varying F/I on anaerobic 
digestibility, discovering that methane production decreased as F/I 
increased, with acetoclastic methanogens facing significant inhibition at 
a maximum F/I ratio of 9. Fig. 7f shows that the PDP value initially 
declined sharply with rising F/I but stabilized around a ratio of 5. 

Fig. 7. Updated Gradient Boosting Regressor (GBR, the best performance model) interpretation by one-way Partial Dependence Plot (PDP). S_pH, S_TCOD, and 
S_SCOD: pH, total chemical oxygen demand, and soluble chemical oxygen demand of substrate; I_pH and I_TS: pH and total solid of inoculum; F/I: feed to inoculum 
ratio; Time: digestion time. P_Size and P_Conc: particle size and concentration of microplastics.
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Digestion time emerged as the most critical factor affecting methane 
production. The PDP values increased rapidly at first but gradually 
slowed down, plateauing at around 40 days (Fig. 7g). This was consis-
tent with the operating conditions of the practical AD system, which was 
generally around 35 days for a single operation in a batch AD reactor, 
and a 30-day hydraulic retention time for continuous AD 
(Muaaz-Us-Salam et al., 2020; X. Chen et al., 2023). Fig. 7h and i depict 
the effect of MP particle concentration and size on methane yield, 
respectively. The PDP value declined sharply with increasing MP con-
centration, indicating a significant inhibitory impact on methane yield. 
Notably, the effect of MPs stabilized after reaching approximately 20 
g/L. Conversely, as MP particle size increased, the PDP value initially 
rose sharply before gradually declining, peaking at around 0.5 mm. 
Particle size plays a decisive role in MP toxicity; smaller sizes have been 
reported to cause greater cellular damage (Das et al., 2021). As particle 
size increased further, the inhibition of methane by the dosage effect was 
demonstrated. Generally, a higher AD performance can be achieved 
with MP particle sizes of approximately 0.5 mm and concentrations 
below 20 g/L.

3.5. Implications and limitations of the current study

The optimum conditions for methane production in AD containing 
MPs varied considerably among studies. It is challenging to examine all 
relevant parameters via simultaneous experiments. In this study, an ML- 
based empirical method was developed to overcome this challenge, 
which can be used to predict the methane production from the AD 
system with MPs pollution based on the properties of MP, substrate, and 
inoculum, as well as the experimental conditions. The updated GBR 
model has been designed as a potential technique to accurately predict 
methane production without performing any experiments, which could 
be helpful in practical AD plants. Additionally, ML-based interpretation 
analyses compared conditions with and without plastic contamination, 
highlighting the critical parameters for optimizing methane production 
in MP-contaminated AD systems. The dependence relationships of 
methane production on the operational parameters were revealed by the 
PDP analysis, which provided an insight into the relative importance of 
each variable for methane production and identified the most important 
variables. Meanwhile, the interaction between the parameters needs to 
be further analyzed carefully to more accurately guide actual operations 
(Haider Jaffari et al., 2023). Overall, this study can facilitate a 
comprehensive view of the effects of MPs in AD process and achieve 
maximum resource recovery through AD using MP polluted organics.

The results of this study also have several limitations due to the 
quality and quantity of data collected from publications. Although many 
publications have focused on the effects of MPs on anaerobic digestion 
so far, there is no available data for all the 18 variables selected for the 
ML dataset. For those articles that provided all the required data, the 
data distribution for certain input features and the output target was 
inconsistent because of a variety of variations in experimental goals, 
methodologies, and conditions. For example, the MP content in the 
environment was often measured by counting, i.e. the number of MP 
particles identified in a specific mass or volume of the environment 
(Murphy et al., 2016). Therefore, the collected data for MP concentra-
tion contained particles/L and the common unit (mg/L) (Feng et al., 
2018; Wei et al., 2019a; J. Zhang et al., 2020). In addition, microbes play 
an important role in the AD processes, and MPs have been found to 
interfere with functional microbes during AD (Li et al., 2022). However, 
it is difficult to extract accurate data from stacked histograms of relative 
microbial content, and microbial community fluctuates greatly among 
different experimental conditions. Hence, future research should focus 
on the construction of a comprehensive database that includes studies 
under uniform experimental conditions and similar experimental 
methodologies. Furthermore, in the current dataset, there were only 
three types of MP features (including MP type, particle size, and con-
centration) that could be extracted from the publications. With the 

development and availability of microscopic characterization tools, 
more features of MPs involved in AD will be measured and discussed. In 
particular, the surface functional groups of MPs are directly associated 
with their impact on AD. The application of surface chemistry data 
obtained from X-ray photoelectron spectroscopy, three-dimension 
excitation emission matrix fluorescence spectroscopy, and Fourier 
transform infrared spectroscopy for developing ML models can provide a 
better understanding on the effects of MPs in AD process.

4. Conclusions

This study developed and compared four ML models (RF, SVR, XGB, 
and GBR) to predict methane yield in AD systems with and without MP 
pollution. To enhance the computational performance and reduce the 
impact of redundant features, the dataset was refined using feature 
importance and cluster analysis, leading to an optimized model. The 
following conclusions can be drawn: 

a) Among the four ML models, demonstrated the highest accuracy in 
predicting methane yield. This superior performance underscores 
GBR’s potential for effectively modelling complex AD systems and 
evaluating the impacts of MPs pollution.

b) The study identified MP concentration as a key predictor of methane 
yield, outweighing the influence of MP type and particle size. 
Additionally, feature importance results indicated that in the pres-
ence of MPs, substrate pH and SCOD, along with inoculum TS, are 
critical parameters and should be closely regulated in practical AD 
operations.

c) PDP analysis provided insights into optimal conditions for methane 
production, emphasizing digestion time, pH, F/I, and MP particle 
size and concentration. These insights provide valuable guidance for 
optimizing operational conditions in AD systems to maximize 
methane yield.

This work identifies key predictors and optimal operational condi-
tions, offering valuable insights to improve AD efficiency and high-
lighting the significant impact of MPs on AD systems. These findings lay 
the groundwork for future research and the practical application of ML 
techniques to optimize AD plant operations and enhance sustainability.
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