
ORIGINAL ARTICLE

European Journal of Nuclear Medicine and Molecular Imaging
https://doi.org/10.1007/s00259-025-07119-z

  Daniel R. McGowan
Daniel.McGowan@oncology.ox.ac.uk

1 GE HealthCare, Oxford, UK
2 GE HealthCare, Waukesha, USA
3	 Wales	Research	and	Diagnostic	PET	Imaging	Centre,	Cardiff	

University,	Cardiff,	UK
4	 University	Hospital	of	Wales,	Cardiff,	UK

5 Department of Nuclear Medicine, Zurich University 
Hospital, Zurich, Switzerland

6 Division of Nuclear Medicine, School of Medicine, Stanford 
University, Stanford, CA, USA

7 Department of Medical Physics and Clinical Engineering, 
Oxford University Hospitals NHS FT, Oxford, UK

8 GE HealthCare, Zurich, Switzerland
9 Department of Oncology, University of Oxford, Oxford, UK

Abstract
Aim To	evaluate	a	deep	learning-based	time-of-flight	(DLToF)	model	trained	to	enhance	the	image	quality	of	non-ToF	PET	
images	for	different	tracers,	reconstructed	using	BSREM	algorithm,	towards	ToF	images.
Methods A	3D	residual	U-NET	model	was	trained	using	8	different	tracers	(FDG:	75%	and	non-FDG:	25%)	from	11	sites	
from	US,	Europe	and	Asia.	A	 total	of	309	 training	and	33	validation	datasets	scanned	on	GE	Discovery	MI	(DMI)	ToF	
scanners	were	used	for	development	of	DLToF	models	of	three	strengths:	low	(L),	medium	(M)	and	high	(H).	The	training	
and	validation	pairs	 consisted	 of	 target	ToF	 and	 input	 non-ToF	BSREM	 reconstructions	 using	 site-preferred	 regularisa-
tion	parameters	(beta	values).	The	contrast	and	noise	properties	of	each	model	were	defined	by	adjusting	the	beta	value	of	
target	ToF	images.	A	total	of	60	DMI	datasets,	consisting	of	a	set	of	4	tracers	(18F-FDG, 18F-PSMA, 68Ga-PSMA, 68Ga-
DOTATATE)	and	15	exams	each,	were	collected	for	testing	and	quantitative	analysis	of	the	models	based	on	standardized	
uptake	value	(SUV)	in	regions	of	interest	(ROI)	placed	in	lesions,	lungs	and	liver.	Each	dataset	includes	5	image	series:	ToF	
and	non-ToF	BSREM	and	three	DLToF	images.	The	image	series	(300	in	total)	were	blind	scored	on	a	5-point	Likert	score	
by	4	readers	based	on	lesion	detectability,	diagnostic	confidence,	and	image	noise/quality.
Results In	lesion	SUVmax	quantification	with	respect	to	ToF	BSREM,	DLToF-H	achieved	the	best	results	among	the	three	
models	by	reducing	the	non-ToF	BSREM	errors	from	-39%	to	-6%	for	18F-FDG	(38	lesions);	from	-42%	to	-7%	for	18F-PSMA 
(35	 lesions);	 from	-34%	 to	 -4%	for	 68Ga-PSMA	(23	 lesions)	and	 from	-34%	 to	 -12%	for	 68Ga-DOTATATE	(32	 lesions).	
Quantification	results	in	liver	and	lung	also	showed	ToF-like	performance	of	DLToF	models.	Clinical	reader	resulted	showed	
that	DLToF-H	results	in	an	improved	lesion	detectability	on	average	for	all	four	radiotracers	whereas	DLToF-L	achieved	the	
highest	scores	for	image	quality	(noise	level).	The	results	of	DLToF-M	however	showed	that	this	model	results	in	the	best	
trade-off	between	lesion	detection	and	noise	level	and	hence	achieved	the	highest	score	for	diagnostic	confidence	on	average	
for all radiotracers.
Conclusion This	study	demonstrated	that	the	DLToF	models	are	suitable	for	both	FDG	and	non-FDG	tracers	and	could	be	
utilized	for	digital	BGO	PET/CT	scanners	to	provide	an	image	quality	and	lesion	detectability	comparable	and	close	to	ToF.
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Introduction

Bismuth	 germanate	 (BGO)-based	 detectors,	 though	 not	
time-of-flight	 (ToF)	 capable,	 were	 initially	 preferred	 in	
clinical	 scanners	 for	 their	 photon	 stopping	 power	 (higher	
sensitivity)	 and	 higher	 photoelectric	 fraction.	 However,	
conventional	BGO	detectors	had	limited	timing	resolution	
due to their light output and decay time. Recent advance-
ments	 in	 silicon	 photomultipliers	 (SiPMs)	 and	 fast	 read-
out	 electronics	 have	 improved	 BGO’s	 potential	 for	 PET	
scanners by measuring Cherenkov photons emitted upon 
511	keV	interaction	[1].

Using ToF information, the location of positron-emitting 
radiopharmaceuticals	 within	 the	 scanner’s	 field	 of	 view	
(FOV)	can	be	estimated	with	an	uncertainty	governed	by	the	
scanner’s	coincidence	timing	resolution	(CTR).	Depending	
on the activity distribution, this can have a positive impact 
on	contrast	recovery	at	a	given	noise	level	[2, 3]. Addition-
ally, the impact of erroneous data correction processes, 
particularly attenuation correction, is reduced when ToF 
information	is	leveraged	during	reconstruction	[4, 5]. More-
over, this localisation leads to higher signal-to-noise ratio 
(SNR)	gain	as	the	contribution	of	random	coincidences	will	
be	smaller	[6].

The convergence of small low-uptake lesions, that are 
of paramount importance in early cancer detection, is also 
influenced	by	the	type	of	reconstruction	algorithm	and	the	
selection	of	its	hyperparameters	(e.g.	number	of	iterations,	
regularisation	 strength,	 etc.).	 Ordered	 subsets	 expectation	
maximisation	 (OSEM)	 and	 block	 sequential	 regularised	
expectation	 maximisation	 (BSREM	 [7])	 are	 two	 model-
based iterative reconstruction algorithms widely used with 
ToF	information	and	point	spread	function	(PSF)	modelling	
for	improved	diagnostic	confidence	and	lesion	detectability	
[8–10].	 PSF	modelling	 is	 a	 resolution	 recovery	 technique	
that accounts for the processes that lead to resolution loss 
in	PET	[11].	A	BSREM	algorithm,	commercially	available	
in	 GE	 HealthCare’s	 PET/CT	 scanner	 as	 Q.Clear™, uses 
regularisation during reconstruction in order to ensure noise 
reduction	and	effective	convergence	of	tracer-avid	features.	
The main limitations of the model-based reconstruction 
algorithms	are	(i)	they	rely	on	practical	assumptions	in	order	
to mathematically formulate the characteristics of the PET 
system,	the	acquired	data,	and	the	image	and	(ii)	the	selec-
tion of their hyperparameters that depends on a number of 
factors	including	the	scanner	configuration,	acquisition	pro-
tocol and more importantly the patient.

With	 the	 recent	 advancements	 in	 artificial	 intelligence	
and	deep	learning	(DL),	data-driven	algorithms	have	gained	
significant	 attention	 in	 image	 reconstruction	 [12, 13]. 
These algorithms no longer rely on the assumptions used in 
model-based algorithm. Instead, they learn a mapping from 

measured	data	to	image	(i.e.	direct	reconstruction	[14–16]),	
or	from	one	image	state	to	another	state	(e.g.	high-noise	to	
low-noise	[17–19]	or	low-iteration	to	high-iteration	[20]).	In	
Mehranian et al., we trained a deep convolutional neural net-
work	(dCNN),	named	as	DLToF,	in	order	to	map	the	images	
reconstructed	by	non-ToF	BSREM	algorithm	 to	 their	ToF	
counterparts for improved lesion detectability in 18F-FDG 
oncology PET scans in scanners without ToF capability 
[21].	Recently,	Sanaat	et	al.	[22] also used dCNNs to syn-
thesize	ToF	sinograms	(or	images)	from	non-ToF	sinograms	
(or	images)	in	18F-FDG brain imaging.

In recent years, there has been a tremendous progress in 
long	axial	FOV	or	total-body	L[Y]SO-based	PET	scanners	
that are now commercially available world-wide. Thanks to 
their	high	sensitivity,	they	allow	a	reduction	in	acquisition	
time	 or	 injected	 activity	without	 impairing	 image	 quality,	
to perform delayed imaging and simultaneous total body 
dynamic	 imaging,	 among	 others	 [23, 24]. To provide an 
affordable	long-axial	FOV	with	even	higher	sensitivity,	GE	
HealthCare	(GEHC)	has	recently	introduced	a	new	digital	
BGO-based	PET/CT	scanner,	Omni	Legend™, with detector 
assembly that is scalable up to 128 cm, providing an excep-
tionally	high	sensitivity	[25].

Given	 that	 the	 benefits	 of	 ToF	 technology	manifest	 in	
image space and ToF image properties can be emulated by 
deep	learning,	the	DLToF	model	[21] has now been deployed 
in	 Omni	 Legend	 PET	 systems,	 commercially	 branded	 as	
Precision	DL™. This model was trained and deployed for 
18F-FDG	oncology	 exams	 only	with	 three	 different	 levels	
of	contrast	to	noise	trade	off	(low:	L,	medium:	M	and	high:	
H).	 In	 this	 study,	we	extended	 the	DLToF	models	beyond	
FDG by training them with a range of radiotracers with the 
hypothesis that with additional tracers the model can be bet-
ter	 generalised	 for	 four	 radiotracers	 of	 interest:	 18F-FDG, 
18F-PSMA, 68Ga-PSMA and 68Ga-DOTATATE. Hence, 
these resulting models were considered for oncology, and 
prostate	 and	 neuroendocrine	 tumours	 (theranostics)	 PET	
imaging.

Materials and methods

Data acquisition and processing

The PET list-mode data and CT-based attenuation correc-
tion	(CTAC)	images	of	a	total	of	342	exams	utilising	8	dif-
ferent	tracers	scanned	on	GEHC’s	LYSO-based	Discovery	
MI	(DMI)	ToF	PET/CT	scanners	were	retrospectively	col-
lected	 and	 used	 for	 development	 of	 multi-tracer	 DLToF	
models. Supp Materials Fig. 1shows the distribution of the 
datasets	per	tracers.	As	shown,	about	75%	of	datasets	were	
FDG and the rest were non-FDG. The data were collected 
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from 11 sites in US, Europe and Asia and were split into 
training	(n	=	309)	and	validation	(n	=	33)	sets.

A total of 60 DMI clinical exams, 15 exams each for a 
set	of	4	primary	tracers	(18F-FDG, 18F-PSMA, 68Ga-PSMA, 
68Ga-DOTATATE),	were	additionally	collected	 to	be	used	
as an independent testing set. These exams were used for 
quantitative	 evaluation	 as	 well	 as	 clinical	 reader	 studies.	
Supp. Materials Tables 1 and Supp. Materials Table 2 sum-
marise the distribution of the training, validation and testing 
sets per site and per tracer. To test the models on a non-ToF 
PET scanner, four exams were also collected from a GEHC 
’s	BGO-based	Omni	Legend	scanner	 for	 the	 four	primary	
radiotracers. The testing and validation cases were chosen 
by two nuclear medicine experts based on the availability 
of the data as well as pathologically challenging cases with 
small lesions.

Using	 training	 datasets	 from	 different	 clinical	 sites	
enhances	the	generalizability	of	DLToF	models,	accommo-
dating	 different	 reconstruction	 parameters	 and	 acquisition	
protocols	at	each	site.	The	DMI’s	PET	subsystem	offers	a	
nominal ToF resolution of 385 ps, with varying sensitiv-
ity	based	on	the	number	of	detector	rings	(3–6)	providing	
axial	 FOVs	 of	 15–30	 cm.	 Various	 scanners	 and	 imaging	
protocols	 at	 sites	 resulted	 in	 a	 range	of	 injected	 18F-FDG 
activity	 (mean	±	SD:	 315	±	120	 MBq)	 and	 scan	 duration	
(161	±	46	s/bed).	Patient	sizes	also	varied	(body	mass	index,	
BMI	 27.3	±	6.0	 kg/m²),	 and	 uptake	 times	 ranged	 from	
82	±	26	min.	Each	subject	underwent	a	whole-body	CT	scan	
for	PET	attenuation	correction	using	100–120	kVp.

Each	dataset	was	 reconstructed	using	 the	ToF	BSREM	
and	non-ToF	BSREM	algorithm	with	different	 regularisa-
tion	 (beta)	 values	 depending	 on	 the	 site	 preferred	 values.	
Three	models	of	different	strengths,	low	(L),	medium	(M)	
and	high	(H),	were	trained	in	supervised	leaning.	The	train-
ing and validation pairs consisted of target ToF and input 
non-ToF	 BSREM	 reconstructions.	 The	 strength	 of	 each	
model in terms of image contrast and noise level was 
defined	by	 adjusting	 the	 beta	 value	 of	 target	ToF	 images.	
Supp. Materials Tables 3 and Supp. Materials Table 4 sum-
marise	the	beta	values	chosen	for	each	DL-ToF	model,	clini-
cal site, and target-input pair for FDG and non-FDG tracers. 
Each image was reconstructed with a 256 × 256 matrix size 
and	field-of-view	700	mm	(x-y	pixel	 size:	2.73	mm,	slice	
thickness:	2.79	mm).	Whole-body	image	volumes	used	for	
validation	 and	 training	 were	 axially	 divided	 into	 equally	
spaced	contiguous	3D	patches,	each	of	50	slices	(14	cm).

To	improve	the	generalisability	of	the	DLToF	models	for	
phantoms, augmented datasets from an anthropomorphic 
Torso phantom, scanned on a DMI scanner with an axial 
FOV	of	25	cm,	were	included	in	the	training	set.	As	shown	
in Supp Materials Fig. 2, the phantom is comprised of liver 
and lungs with inserted FDG-avid lesions. The phantom list 

data includes three high-count scans that were augmented to 
generate	extra	datasets.	Two	half-duration	and	four	quarter-
duration scan datasets were generated from each one of the 
three	scans.	The	ToF	BSREM	and	non-ToF	BSREM	images	
of	each	resulting	dataset	were	augmented	by	a	random	±	45°	
rotation, resulting in a total of 84 phantom datasets. The full, 
half,	 and	quarter	duration	datasets	were	acquired	at	 count	
levels of 700, 350, and 175 M counts in single-bed-position 
scans, respectively.

To ensure consistent performance of the models for 
matrix	 sizes	 larger	 than	 256,	 50%	 of	 all	 training	 patches	
were	resampled	to	larger	matrix	sizes	up	to	384	×	384	(voxel	
size 1.82 × 1.82 × 2.07 mm3).	Supp.	Materials	Table	5 sum-
marises the number of training and validation patches using 
FDG, non-FDG and phantom datasets. The training patches 
were	scaled	in	standardised	uptake	value	(SUV)	and	capped	
at	SUV	of	20	for	both	training	and	inferencing.	This	value	
was chosen experimentally and based on the observation 
that ToF reconstruction primarily impacts small lesions with 
low	SUV	[26]. Additionally, this threshold allows a reduc-
tion of the dynamic range of input images and as a result 
minimises artifacts occasionally observed around very hot 
regions such as bladder or kidneys.

Model training

A	3D	U-Net	network	 [27] with residual and skip connec-
tions	was	implemented	in	PyTorch	1.6	(www.pytorch.org)	
(schematic	 shown	 in	 Supp	Materials	 Fig.	3).	 DLToF	 net-
works were trained in a supervised session where their pre-
dicted ToF images were compared to target ToF ones based 
on	mean	squared	error	(MSE)	loss	function.	Supp.	Materi-
als Table 6 summarises the network and training hyperpa-
rameters that were experimentally optimised. The ADAM 
algorithm	[28]	was	used	 to	update	 the	networks’	 trainable	
parameters for a maximum of 100 epochs on a workstation 
with	a	NVIDIA	A40	GPU	with	48	GB	memory.	The	valida-
tion	 set	was	 used	 to	monitor	 the	 network’s	 generalisation	
error	to	avoid	over-fitting.	The	epoch	at	which	a	model	had	
the lowest validation loss and showed no artifacts was cho-
sen as a stopping point.

Evaluation

The	trained	DL	models	were	quantitatively	evaluated	using	
the	 testing	 sets	 based	 on	 SUV	measures	 including	 lesion	
SUVmax	(maximum	voxel	intensity),	SUVmean	(mean	inten-
sity	of	voxels)	in	normal	liver	and	lungs	and	the	noise	in	the	
liver	using	volumes	of	interest	(VOIs)	selected	per	subject.	
For	each	subject,	5	VOIs	of	size	7	×	7	×	7	voxels	 (~	7	mL)	
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(Supp.	 Materials	 Table	 10).	 P-values	 were	 Bonferroni	
corrected.

Results

Quantitative analyses

Figures 1, 2 and 3	showcase	the	performance	of	the	DLToF	
models	 in	 comparison	 with	 input	 non-ToF	 BSREM	 and	
target	ToF	BSREM	images	for	subjects	scanned	using	18F-
FDG, 18F-PSMA and 68Ga-DOTATATE on a Discovery MI 
PET/CT	scanner.	The	patients	have	multiple	small	 lesions	
that have a lower contrast in the non-ToF image compared 
to	ToF	images.	The	DLToF	models	improve	the	conspicuity	
and contrast of the lesions towards their target ToF images. 
Since	the	models	were	trained	to	provide	different	levels	of	
smoothness, the liver noise as well as lesion contrast is dif-
ferent	among	these	models.	DLToF-H	results	in	highest	con-
trast	enhancement	toward	ToF	while	DLToF-L	results	in	the	
highest	noise	 reduction	and	DLToF-M	provide	a	balanced	
contrast enhancement and noise reduction.

Table 1	summarises	the	quantification	results	of	non-ToF	
BSREM	and	DL-ToF	methods	on	the	DMI’s	60	testing	set	
(15	exams	per	4	radiotracers)	for	SUVmax of the 128 book-
marked	 lesions,	 and	SUVmean in lungs and liver. The per-
centage	difference	from	the	target	ToF	BSREM	method	is	
provided	 (mean	±	standard	 deviation).	The	DLToF	method	
reduces	the	lesion’s	SUVmax	difference	for	each	radiotracer	
set depending on their strength or smoothness level. In par-
ticular,	DLToF-H	reduces	the	average	difference	from	-38.9	
to	-5.9%	for	F18-FDG,	from	-41.8	to	-6.7%	for	F18-PSMA,	

were	defined	in	the	lungs,	and	5	similar	VOIs	in	liver.	Noise	
in	the	liver	was	calculated	as	the	standard	deviation	of	five	
VOI	mean	values.	For	each	subject,	up	 to	5	small	 lesions	
were bookmarked and segmented using an adaptive thresh-
olding	method	(42%	of	maximum	minus	minimum	SUV	in	
a	 7	×	7	×	7	 bounding	 box).	The	 relative	 difference	 in	 SUV	
values	(compared	to	the	target	ToF	BSREM	SUVs),	scatter	
plots	 and	Box-whisker	 plots	were	 generated.	The	 statisti-
cal	significance	of	differences	in	SUVs	was	evaluated	using	
unequal	 variance	 (Welch)	 t-test.	Additionally,	 normalised	
root-mean-square	error	(NMSE)	between	SUV	of	reference	
ToF	images	(x)	and	other	images	(y)	for	bookmarked	VOIs	
was	calculated	by:

NMSE =
∑ N

i=1(xi − yi)2

∑ N
i=1y2

i

where	N	is	the	total	number	of	voxels	in	the	VOIs.	SUVmean 
was	used	for	lungs	and	liver	and	SUVmax for lesions.

Four	radiologists,	(K.M.B,	P.A.F,	M.H	and	A.I),	blinded	
to the image reconstruction method, independently rated all 
60	testing	sets.	Each	exam	had	5	image	series:	ToF	and	non-
ToF	 BSREM,	 DLToF-L	 (low),	 DLToF-M	 (medium)	 and	
DLToF-H	(high).	The	images	were	evaluated	based	on	three	
metrics:	low-contrast	lesion	detectability,	diagnostic	confi-
dence,	 and	 image	noise/quality	based	on	 the	Likert	 scale.	
The	scores	were	1	(poor),	2	(satisfactory),	3	(good),	4	(very	
good),	and	5	(excellent)	with	image	noise	metrics	scored	on	
the	same	0–5	scale	as	described	previously	[29]. Statistical 
analysis of the clinical scores was performed with a two-
sided paired t-test for each model strength compared to ToF-
BSREM	(Supp.	Materials	Table	9)	and	non-ToF-BRSREM	

Fig. 1	 DL-ToF	enhancement	of	an	18F-FDG	test	subject	with	a	BMI	of	34.0	kg/m2	with	an	injected	activity	of	521.3	MBq	of	scanned	on	DMI	PET/
CT	scanner.	Arrows	point	to	lesions	with	lower	conspicuity	in	non-ToF	BSREM.	Display	window:	0–5	SUV
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and	 -H	 are	 statistically	 insignificant	 at	 the	 level	 of	 0.05.	
Supp. Materials Table 8 shows the NMSE performance of 
the	methods	in	lesions,	lungs	and	liver.	As	shown,	DLToF-H	
gives rise to the lowest errors for lesions and the error for 
other regions are relatively low for all methods.

Figure 4	shows	scatter	plots	of	 lesion	SUVmax for non-
ToF	BSREM	and	DL-ToF	images	compared	with	reference	

from	-33.5	 to	 -3.7%	 for	 68Ga-PSMA and from -33.5 to 
-12.0%	for	68Ga-DOTATATE exams. The results in liver and 
lungs	 show	 the	 differences	 are	 relatively	 small	 and	 under	
8%	for	all	methods.	Supp.	Materials	Table	7 reports the sta-
tistical	significance	analyses	for	lesions’	SUVmax	difference	
between	 target	ToF	BSREM	 and	 other	methods.	The	 dif-
ferences	between	ToF	BSREM	and	particularly	DLToF-M	

Fig. 3	 DL-ToF	enhancement	of	an	68Ga-DOTATATE	test	subject	with	a	BMI	of	23.1	kg/m2	with	an	injected	activity	of	187.9	MBq	of	scanned	on	
DMI	PET/CT	scanner.	Arrows	point	to	lesions	with	lower	conspicuity	in	non-ToF	BSREM.	Display	window:	0–5	(top)	and	0–15	(bottom)	SUV

 

Fig. 2	 DL-ToF	enhancement	of	a	18F-PSMA	test	subject	with	a	BMI	of	23.5	kg/m2	with	an	injected	activity	of	346.7	MBq	of	scanned	on	DMI	PET/
CT	scanner.	Arrows	point	to	lesions	with	lower	conspicuity	in	non-ToF	BSREM.	Display	window:	0–5	(top)	and	0–15	(bottom)	SUV
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Clinical reader study

Table 2 shows the average reader scores from four read-
ers	for	 the	different	PET	reconstruction	methods	(5	 image	
series)	 for	 15	 testing	 exams	 per	 4	 tracers	 (in	 total	 300	
images).	 Supp.	Materials	 Table	 9 shows p-values for the 
scores, using pairwise comparisons with respect to ToF 
BSREM	methods.	The	 results	 show	 that	 in	 terms	of	 low-
contrast	 lesion	 detectability	 DLToF-H	 scores	 higher	 than	
ToF images, on average, for most of the tracers. In terms 
of	 image	 quality	 and	 noise,	 DLToF-L	 achieves	 the	 best	
scores	 whereas	 DLToF-M	 scores	 on	 average	 higher	 than	
ToF images for most of the tracers. These results highlight 
that one can choose a model that matches preferences as 
some radiologists prefer sharper but noisier images whereas 
some	prefer	smoother	ones.	Overall,	DLToF-M	provides	a	
balance between lesion detection and noise reduction and 
can be a recommended model for most users.

Evaluation on non-ToF PET scanners

To	evaluate	generalisability	of	the	developed	DLToF	mod-
els on a real non-ToF PET scanner, for each of the studied 
radiotracers	one	subject	was	acquired	on	an	Omni	Legend	
32	cm	PET/CT	scanner.	In	this	study,	the	non-ToF	BSREM	
and	DLToF	images	were	evaluated	visually.	Figures	6 and 
7 show examples of 18F-FDG and 18F-PSMA radiotracers. 
Supp Materials Fig. 4 and Supp Materials Fig. 5 show two 
subjects	 scanned	with	 68Ga-PSMA and 68Ga-DOTATATE. 
As seen, the models improve the conspicuity of small low-
contrast lesions especially as the strength of the model is 
increased	towards	DLToF-H.	Other	improvements	are	higher	
contrast of small features such as vessel walls and adrenals. 
These examples show the expected ToF-like enhancement 
of	DLToF	models	for	the	image	sets	from	scanners	that	were	
not used for training.

Discussion

In this study, three generalised deep learning models were 
trained for ToF-like enhancement of features in non-ToF 
BSREM	PET	 images	made	with	FDG	as	well	 as	 a	 range	
of other tracers used for oncology imaging. These models 
offer	three	levels	of	smoothness	or	model	strength	to	accom-
modate the wide range of user preferences in terms of con-
trast	and	noise	levels.	This	is	subsequent	to	the	user	chosen	
regularization	parameter	of	BSREM	for	 a	given	model	 to	
give	additional	control	of	 the	overall	 image	quality.	Since	
the	BSREM	algorithm,	unlike	OSEM,	is	a	convergent	algo-
rithm while also suppressing noise, this algorithm was used 

ToF	BSREM	images.	Consistent	with	Table	1, the non-ToF 
BSREM	method	presents	 a	notable	deviation	of	 the	fitted	
line	(in	terms	of	the	slope)	in	comparison	to	ToF	BSREM	
method	 for	 all	 radiotracers.	As	 the	 strength	 of	 DLToF	 is	
increased,	 the	 fitted	 line	 slope	 for	 DLToF	 methods	 gets	
closer	to	1	which	demonstrates	lesion	SUVmax enhancement 
of the input non-ToF images towards ToF. The results show 
that	with	DLToF-H	the	slope	of	the	fitted	lines	is	increased	
from 0.60 to 0.95 for 18F-FDG	(+	58%),	from	0.57	to	0.97	
for 18F-PSMA	(+	70%),	from	0.64	to	0.91	(+	42%)	for	68Ga-
PSMA	and	from	0.73	to	0.97	(+	32%)	for	68Ga-DOTATATE 
exams.

These	results	demonstrate	that	as	the	strength	of	DLToF	
is	increased	from	low	to	high,	the	lesions’	SUV	measure	is	
increased	 towards	 their	 target	SUVs.	As	 shown	 in	Fig.	5, 
the	evaluation	of	liver	noise	(measured	as	the	average	of	the	
standard	deviations	over	5	liver	VOIs	per	15	exams	for	each	
radiotracer),	shows	that	the	DL-ToF	models	provide	differ-
ent	 smoothness	 levels,	with	DLToF-L	 resulting	 in	 a	 noise	
level	 lower	 that	non-ToF	BSREM	and	DLToF-H	resulting	
in a noise level as high or slightly higher than ToF images. 
These noise results are consistent with the noise level per-
ceived in Figs. 1, 2 and 3.

Table 1	 Quantitative	performance	of	the	DL-ToF	models	evaluated	on	
60	 testing	 exams	 (15	 exams	per	 4	 radiotracers),	 for	 lesion	SUVmax, 
lung	SUVmean	and	liver	SUVmean	as	a	percentage	difference	from	ToF	
BSREM.	N	is	the	number	of	bookmarked	lesions.	Bold	text	indicates	
the	least	difference	in	lesion	SUVmax	to	ToF	BSREM	for	each	radio-
tracer
Radiotracer Methods Lesion	

SUVmax(%)
Liver	
SUVmean(%)

Lung	
SUVmean(%)

18F-FDG 
(n	=	38)

Non-ToF 
BSREM

-38.9	±	15.5 4.6	±	4.3 7.7	±	13.9

DLToF-L -37.0	±	16.0 2.0	±	4.3 3.8	±	13.0
DLToF-M -21.9	±	17.4 3.9	±	4.2 4.1	±	13.9
DLToF-H -5.9 ± 24.3 3.5	±	3.8 4.1	±	13.4

18F-PSMA 
(n	=	35)

Non-ToF 
BSREM

-41.8	±	10.0 1.5	±	4.8 -1.9	±	12.0

DLToF-L -38.0	±	13.6 0.7	±	4.4 -2.0	±	11.0
DLToF-M -20.8	±	22.4 1.4	±	4.5 -2.9	±	9.4
DLToF-H -6.7 ± 28.4 0.4	±	4.5 -2.1	±	10.0

68Ga-PSMA 
(n	=	23)

Non-ToF 
BSREM

-33.5	±	10.3 1.9	±	4.8 2.5	±	12.2

DLToF-L -25.2	±	12.9 0.8	±	4.3 -0.7	±	13.0
DLToF-M -15.4	±	12.0 2.6	±	4.2 0.8	±	10.7
DLToF-H -3.7 ± 15.4 2.2	±	4.6 2.3	±	11.6

68Ga-
DOTATATE 
(n	=	32)

Non-ToF 
BSREM

-33.5	±	13.0 0.5	±	4.6 5.4	±	19.1

DLToF-L -37.7	±	13.2 -0.3	±	3.7 3.1	±	14.8
DLToF-M -23.9	±	19.1 0.6	±	4.0 0.3	±	15.3
DLToF-H -12.0 ± 22.1 -0.3	±	4.1 4.4	±	15.5
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Fig. 5	 Noise	performance	of	different	methods	measured	as	the	average	of	standard	deviation	(SD)	of	SUVmean	values	in	liver	VOIs	in	15	testing	
exams	(5	VOI	per	exam)	per	radiotracer

 

Fig. 4	 Scatter	plots	of	lesion	SUVmax	or	non-ToF	BSREM	and	DL-ToF	models	compared	to	ToF	BSREM	images.	Each	dot	corresponds	to	a	lesion.	
The dashed line is a line of identity
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PET	imaging	using	four	different	radiotracers.	Supp	Materi-
als Table 11	compares	the	quantitative	performance	of	the	
DL-ToF	 multi-tracer	 with	 the	 FDG	 single-tracer	 version	
for our 15 FDG test exams. As shown for the cohort of 38 
lesions used in this comparison, the multi-tracer improves 
upon the single-tracer version which can be attributed to the 
larger training sets of the new model. Additionally, six FDG 
exams were selected for blinded reading by one of our read-
ers	(KMB)	comparing	the	two	versions	in	terms	of	diagnos-
tic	 confidence,	 lesion	detection	and	overall	 image	quality.	
The results presented in Supp Materials Fig. 10 show a com-
parable performance between these models for this subset 
of exams.

Our	quantitative	evaluation	in	Table	1 indicates that the 
non-ToF	BSREM	algorithm	results	 in	about	-37%	error	 in	
SUVmax for target lesions averaged across all four radio-
tracers	with	respect	to	the	reference	ToF	BSREM	algorithm	
whereas	 DLToF-H	 reduces	 the	 error	 to	 about	-7%.	 This	
improved	 quantitative	 performance	 is	 consistent	 with	 the	
clinical reader study in Table 2 which demonstrated that 
DLToF-H	 notably	 increased	 lesion	 detection	 compared	 to	
ToF	 BSREM.	 For	 the	 18F-FDG, 68Ga-PSMA and 68Ga-
DOTATATE	 testing	 sets,	DLToF-H	 scored	 slightly	 higher	
than	ToF	BSREM	(~	2%	on	average)	while	for	18F-PSMA 
testing	 set	 ToF	 BSREM	 score	 slightly	 higher	 (~	2%)	 for	
lesion	detectability.	These	results	showed	that	DLToF	with	
the	highest	 strength	performs	 as	well	 as	ToF	BSREM	for	
lesion detectability. Noise measurements in Fig. 5 show 
that this model results in an average noise level across all 
radiotracers	 as	 high	 as	 ToF	 BSREM	 (0.47	 for	 DLToF-H	
versus	 0.46	 for	ToF	BSREM).	Compared	 to	 the	 quantita-
tive	performance	of	DLToF	H	and	L	models,	and	their	noise	
performance,	DLToF-M	provides	 a	 balanced	 performance	
which	can	explain	the	on-average	higher	diagnostic	confi-
dence	 score	 of	 this	model.	Our	 additional	 lesion	 SUVmax 
quantitative	 analyses	 in	 terms	 of	 scatter	 plots	 in	 Fig.	 4 
and NRMSE in Supp. Materials Table 8 also showed that 
DLToF-H	presents	the	best	match	to	ToF	BSREM	and	has	
the	lowest	NRMSE	for	all	 tracers.	Our	qualitative	evalua-
tion	of	the	DLToF	models,	on	Omni	PET/CT	scanner	test-
ing	 sets,	 showed	 that	 the	 models	 improve	 image	 quality	
and	lesion	conspicuity	as	expected	for	a	non-ToF	BSREM	
image. Quantitative evaluations using a large Omni dataset 
in	terms	of	feature	SUV	change	from	the	baseline	non-ToF	
BSREM	is	out	of	 the	scope	of	 this	study	and	will	be	per-
formed in future work.

While this study has some limitations, they do not sig-
nificantly	affect	the	validity	of	the	conclusions.	Our	testing	
sets	 do	 not	 include	 randomly	 selected	 exams	 (i.e.	 combi-
nation	 of	 normal/abnormal)	 but	 rather	 patients	were	 cho-
sen with small and low-contrast lesions or those that were 
completely	missed	in	non-ToF	BSREM	images.	Therefore,	

to	 train	DLToF	models	 and	 shift	 the	 learning	 task	 to	ToF	
enhancement instead of denoising as much as possible. In 
this	work,	the	emphasis	was	on	the	generalisation	of	DLToF	
for	a	range	of	radiotracers	as	well	as	different	image	matrix	
sizes	 by	 including	 different	 training	 datasets	 as	 well	 as	
matrix size data augmentation.

We trained a single model using training datasets from 8 
different	radiotracers.	This	design	was	chosen	over	multiple	
models	each	specific	for	a	tracer	or	a	disease	application	for	
two	main	reasons.	Firstly,	our	initial	evaluation	(presented	
in Supp Materials Figs. 6–9)	 showed	 that	 our	 previous	
FDG-only	DLToF	models	are	generalised	to	an	extent	that	
can provide ToF-like enhancements for non-FDG exams. 
Therefore, adding non-FDG data to the FDG training pool 
(75%	FDG	and	25%	non-FDG)	is	aligned	with	fine-tuning	
or transfer learning schemes. Secondly, the lower abun-
dance of non-FDG exams in nuclear medicine departments 
limits the number of non-FDG datasets for training of tracer 
specific	models.	Similarly,	Sanaat	et	al.	[30] trained a single 
multi-tracer	DL	model	for	partial	volume	correction	in	brain	

Table 2	 Clinical	 image	quality	scoring	 from	four	 readers	of	15	 test-
ing	images	per	radiotracer	based	on	different	criteria,	mean	±	standard	
deviation.	1	 is	poor,	5	 is	excellent.	Bold	 indicates	 the	best	 (highest)	
score
Tracer Method Low-contrast	

Lesion
Detectability

Diagnostic
Confidence

Image
Quality

18F-FDG ToF 
BRSREM

4.22 ± 0.99 3.97	±	1.12 3.33	±	1.13

Non-ToF 
BSREM

3.70	±	1.08 3.78	±	1.01 3.98	±	0.93

DLToF-L 3.55	±	1.20 3.67	±	1.14 4.82 ± 0.47
DLToF-M 4.10	±	0.75 4.15 ± 0.73 4.23	±	0.65
DLToF-H 4.12	±	0.90 3.90	±	0.99 3.47	±	0.91

18F-PSMA ToF 
BRSREM

4.73 ± 0.58 4.40 ± 0.81 3.70	±	0.98

Non-ToF 
BSREM

3.47	±	1.05 3.63	±	1.01 4.45	±	0.59

DLToF-L 3.57	±	1.03 3.72	±	0.90 4.83 ± 0.46
DLToF-M 4.22	±	0.80 4.32	±	0.81 4.40	±	0.69
DLToF-H 4.63	±	0.58 4.40 ± 0.69 3.60	±	0.87

68Ga-PSMA ToF 
BRSREM

4.43	±	0.81 4.20	±	0.82 3.70	±	0.98

Non-ToF 
BSREM

3.55	±	1.05 3.60	±	0.98 4.37	±	0.76

DLToF-L 3.87	±	1.07 3.87	±	1.03 4.73 ± 0.52
DLToF-M 4.25	±	0.77 4.23 ± 0.83 4.28	±	0.76
DLToF-H 4.47 ± 0.70 4.05	±	0.79 3.27	±	0.95

68Ga-DOT-
ATATE

ToF 
BRSREM

4.12	±	0.92 3.90	±	0.93 3.43	±	1.21

Non-ToF 
BSREM

3.98	±	0.89 3.98	±	0.91 4.02	±	0.83

DLToF-L 4.00	±	1.10 4.03	±	1.12 4.75 ± 0.51
DLToF-M 4.25	±	0.86 4.32 ± 0.85 4.20	±	0.73
DLToF-H 4.32 ± 0.75 4.25	±	0.77 3.57	±	0.91
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Fig. 7	 DL-ToF	enhancement	of	a	representative	18F-PSMA-1007 test 
subject	with	a	BMI	of	39.1	kg/m2	with	an	injected	activity	of	249	MBq	
scanned	 on	 a	GE	Omni	 Legend™	PET/CT	 scanner.	 Demonstrating	

two	sub-5	mm	PSMA	avid	retroperitoneal	nodes	at	the	L5	level.	Dis-
play	window:	0–6	SUV

 

Fig. 6	 DL-ToF	enhancement	of	a	representative	18F-FDG	test	subject	with	a	BMI	of	26.3	kg/m2	with	an	injected	activity	of	346	MBq	scanned	on	
a	GE	Omni	Legend	PET/CT	scanner.	Display	window:	0–5	SUV
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