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We show that the gravitational waveform emitted by a binary on an eccentric orbit can be naturally
decomposed into a series of harmonics. The frequencies of these harmonics depend upon the radial
frequency, fr, determined by the time to return to apoapsis, and the azimuthal frequency, fϕ, determined by
the time to complete one orbit relative to a fixed axis. These frequencies differ due to periapsis advance.
Restricting to the (2, 2) multipole, we find that the frequencies can be expressed as f ¼ 2fϕ þ kfr.
We introduce a straightforward method of generating these harmonics and show that the majority of the
signal power is contained in the k ¼ −1; 0; 1 harmonics for moderate eccentricities. We demonstrate that by
filtering these three leading harmonics, we are able to obtain a good estimate of the orbital eccentricity from
their relative amplitudes.

DOI: 10.1103/PhysRevD.111.044073

I. INTRODUCTION

Gravitational wave (GW) data analyses commonly
assume observed GW signals to originate in quasicircular
binary systems with a negligible amount of eccentricity [1].
This is motivated by the general relativity prediction that
compact binaries rapidly circularize during inspiral [2,3]
with the value of eccentricity approximately halving when
the orbital frequency is doubled in the low eccentricity limit
[4,5]. Studies have shown that matched filtering eccentric
signals with quasicircular templates can cause significant
power loss [6–9], potentially pushing observable GW
events under the detection threshold. For eccentric signals
that are detected, it can be shown that performing parameter
estimation with quasicircular waveforms introduces sys-
tematic biases in the recovered posteriors [4,8–10]. The
inclusion of eccentricity is therefore crucial to the detection
and accurate analysis of eccentric GW events.
For a field binary of massive stars that evolve into

black holes (BHs) at the end of their lives, we expect
the binary black hole (BBH) to radiate away any eccen-
tricity before entering the detectable band of current GW

detectors [5,11]. While eccentricity can be introduced to
systems in this isolated formation channel, for example
through stellar kicks from the second supernova [12], it is
expected that the majority of observed GW signals with
non-negligible eccentricity will be from BBHs that have
formed dynamically [4,5,13,14]. BHs in dynamical envi-
ronments such as globular clusters or galactic nuclei can
form gravitationally bound eccentric binary systems
with relatively low orbital separations, causing the BHs
to merge before all of the eccentricity can be radiated away.
In these cases the BBH may still have a significant value
of eccentricity at detectable frequencies [4,5,13,15].
The detection (or nondetection) of eccentricity in GW
signals can thus place constraints on origins of observed
BBH systems [13].
Traditional Bayesian parameter estimation techniques

used for quasicircular signals are extremely computation-
ally expensive when applied to eccentric waveforms for
two main reasons. First, the detailed effects introduced by
eccentricity cause waveforms with nonzero eccentricity to
be much slower to generate [16]. Second, two additional
parameters must be added to the analysis: the eccentricity
and the mean anomaly, which determines the position along
the eccentric orbit [16,17]. Several studies have analyzed a
small selection of events using this approach [16,18,19],
however performing full Bayesian analyses including
eccentricity on a catalog of GW events remains computa-
tionally challenging. With the higher event rates and
detector sensitivity of O4 and O5 [20], there is a growing
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need for faster parameter estimation techniques incorpo-
rating eccentricity to keep up the rate of observations.
Several studies have developed and applied such

techniques to search for evidence of eccentricity in the
first three LIGO–Virgo–KAGRA (LVK) [21–23] observing
runs [1,24,25]. Romero-Shaw et al. [26,27] reweight
samples from quasicircular analyses and find evidence
for eccentricity in GW190521, GW190620, GW191109,
and GW200208_22. Gupte et al. [10] have more recently
used the machine-learning code DINGO to accelerate
parameter estimation and find support for eccentricity
in GW190701, GW200129, and GW200208_22.
Nevertheless, there is no universally agreed GW candidate
with a confirmed detection of nonzero eccentricity. A major
challenge both of these studies have faced is distinguishing
between the effects of eccentricity and precession. It is
widely believed that an observational degeneracy exists
between the two [28,29], and work is underway to produce
a waveform approximant with functionality to simultane-
ously model both [30].
In this paper we propose a method based on decom-

posing the eccentric waveform into harmonics. Such a
decomposition has been described in many previous
studies, both in terms of half-integer multiples of the
standard circular GW frequency [3,31], and by including
a new frequency induced by apsidal advance [11,32–35].
Singular value decomposition (SVD) has been used in
the context of GWs before improve the efficiency of
searches [36]. Here we apply SVD in order to identify
the most efficient harmonic decomposition of eccentric
waveforms and analyse its structure.
The amplitude of eccentric harmonics depends on the

eccentricity of the system [2,32,33]. By calculating the
power in two or more harmonics in a real GW signal, we
can then compute a quick estimate of the binary’s eccen-
tricity. A similar approach has been applied in the past for
higher order multipoles and precession harmonics [37].
Developing a physical understanding of eccentric harmon-
ics may also allow us to compare their form to precession
harmonics and shed light on the cause and extent of any
degeneracy that exists between the two.
In Sec. II we describe the main features of eccentric

waveforms and identify the frequencies of their harmonic
structure. In Sec. III we apply SVD to a set of eccentric
waveforms to identify a fast and robust way to generate
eccentric harmonic waveforms from existing waveform
models. We examine the degeneracy between eccentricity
and chirp mass in Sec. IV and show how we can use
quasicircular parameter estimation to inform the starting
point of our method. In Sec. V we describe how to map
from calculated harmonic signal to noise ratios (SNRs) to
eccentricity, and apply this to a simulated example. Finally,
in Sec. VI, we provide a summary and discussion of future
applications of our approach.

II. GRAVITATIONAL WAVEFORMS FROM
ECCENTRIC BINARIES

The calculation of full binary merger waveforms for
eccentric signals is challenging. The first extension to
the leading order calculation [2,3] was to include post-
Newtonian effects [38–43] which provide a more accurate
description of the waveform during the inspiral phase. Full
numerical simulations of binaries on eccentric orbits have
been performed and compared to post-Newtonian wave-
forms [44]. More recently, complete waveform models,
combining information from post-Newtonian theory and
numerical simulations have been developed [45–48]. There
exist several eccentric waveform models capable of use
in searches for and parameter estimation of noncircular
BBH systems [47–53]. In this work we choose to use the
TEOBResumS-Dali waveform model in our analysis,
however the method and techniques described can be
easily expanded to other eccentric waveforms, taking care
to consider differing definitions of eccentricity used by
each waveform model [14,54]. A definition of eccentric-
ity, egw, has been proposed [55] which measures the
eccentricity directly from the waveform after it has been
generated. However we leave the incorporation of this to
future work, and simply use the value of eccentricity
as reported by the TEOBResumS-Dali waveform
model. TEOBResumS-Dali uses the effective one body
(EOB) [56] formalism to construct full models of the
inspiral-merger-ringdown (IMR) waveform. This model
incorporates the effect of aligned spins on the emitted
waveform but does not include in-plane spins which lead
to orbital precession [57].

A. Waveforms from eccentric binaries

The leading order gravitational wave emission from an
eccentricity binary system was first calculated in [2,3]. As
is well known, the orbital eccentricity leads to an increase
in gravitational wave emission, relative to a circular
binary, and a decay of eccentricity as the orbit shrinks.
In addition, relativistic effects lead to advance of the
periapsis [58]. Both of these effects impact the nature
of the gravitational wave signal emitted by a binary on
an eccentric orbit. Here, we briefly recap the key features
of the waveform. We refer readers to other papers,
e.g., [2,11,32,43], for more complete descriptions of
the evolution of eccentric binaries.
Consider a binary with massesm1 andm2 on an elliptical

orbit with a semimajor axis a and eccentricity e. As with a
circular binary, the evolution is determined, at leading order
by the chirp mass, M, defined by

M ¼ ðm1m2Þ3=5
ðm1 þm2Þ1=5

; ð1Þ
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and consequently we choose to parametrize the system by
the chirp mass and mass ratio, defined as

q ¼ m2

m1

where m2 ≤ m1: ð2Þ

The orientation of the binary at a given time t is given by
the orbital phase ϕðtÞ relative to a fixed coordinate system.
We define νðtÞ to be the true anomaly, the phase measured
from the periapsis direction to the current orbital position
as seen by the ellipse’s main focus. The argument of
periapsis, relative to a fixed axis, is denoted γðtÞ so that the
phase of the binary relative to a fixed axis is given by
ϕðtÞ ¼ νðtÞ þ γðtÞ. In many cases, it is simplest to describe
the binary position with respect to the periapsis direction in
terms of a uniformly increasing angle, the mean anomaly
lðtÞ which increases uniformly through one radial period
(from periapsis to periapsis). While these quantities are
most naturally defined in the Newtonian limit of no
radiation reaction, they extend in a natural way to the
post-Newtonian framework [11,43]. Formulas for the
evolution of these parameters have been calculated to
3PN order [42,43], although here we focus primarily on
the leading-order evolution as that motivates our later
waveform decomposition.
At leading order, the gravitational wave emission occurs

at twice the average orbital frequency ω ¼ 2πf ¼ 2hdϕdti.
The evolution of the gravitational wave frequency with
time is given as [2,31] (with G ¼ c ¼ 1)

�
df
dt

�
¼ 96πf2

5
ðπMfÞ5=3

�
1þ 73

24
e2 þ 37

96
e4

ð1 − e2Þ7=2
�
; ð3Þ

and the evolution of the eccentricity as [2,31]

�
de
dt

�
¼ −

304

15

1

M
ðπMfÞ8=3
ð1 − e2Þ5=2

�
1þ 121e2

304

�
: ð4Þ

These expressions can be combined to give the evolution of
eccentricity with frequency, which can be integrated to [11]

f
fref

¼
�
eref
e

�
18=19

�
1−e2

1−e2ref

�
3=2

�
304þ121e2ref
304þ121e2

�1305
2299

: ð5Þ

Thus, for moderate eccentricities, the second and third
terms are close to unity and can be neglected and, to a
reasonable approximation, the eccentricity decays as

e ∝ f−19=18: ð6Þ

Meanwhile the orbital separation reduces as a ∝ f−2=3,
leading to circularization of the binary as frequency
increases.

In Fig. 1 we show a portion of the gravitational wave-
form emitted by an eccentric binary with M ¼ 24M⊙,
mass ratio q ¼ 0.5, beginning at a frequency fref ¼ 10 Hz
with an eccentricity eref ¼ 0.2, the argument of periapsis
γ ¼ π, and a mean of anomaly of l ¼ π, so at the initial
time the binary is at apoapsis and aligned with the fixed
coordinate x-axis. As expected, the amplitude of the
waveform is modulated with the minimum signal at
apoapsis and maximum at periapsis. In addition, the
instantaneous frequency of the emitted GWs varies around
the orbit with higher frequency when the amplitude is
higher, as the black holes orbit faster around periapsis.
However, due to periapsis advance, the length of an
amplitude modulation is noticeably longer than the time
taken to complete one orbit, or equivalently two cycles of
the GW signal. To demonstrate this more clearly, we also
show the GW signal from a binary which starts at apoapsis
and is initially aligned with the x-axis one period earlier.
The amplitude modulations in the two waveforms are
aligned, but the phases of the waveform are offset due
to periapsis advance.
The GW phase oscillates twice over the course of the

binary’s azimuthal orbit (returning to a fixed orientation),
while the amplitude modulations occur once per radial orbit
(periapsis to periapsis). Thus, we might expect to be able to
decompose the signal into two distinct frequencies which
we define as

ωr ¼
dl
dt

and ωϕ ¼
�
dϕ
dt

�
¼ ωr þ

�
dγ
dt

�
: ð7Þ

FIG. 1. A portion of the inspiral signal of a binary on an
eccentric orbit with fref ¼ 10 Hz; e10 ¼ 0.2, M ¼ 24M⊙, and
q ¼ 0.5. The dashed envelope shows the overall amplitude of
the waveform (including both þ and × GW polarizations). The
orange curve shows an identical signal to the blue line but with
the frequency and eccentricity back-evolved using Eq. (5)
and Eq. (18) in order to start the waveform at the previous
apoapsis. The waveform was generated with the TEOBResumS-
Dali [47] model.
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The evolution of the periapsis is given at leading order
for a nonspinning system by [11,58]

�
dγ
dt

�
¼ 3ω5=3

ϕ ðm1 þm2Þ2=3
ð1 − e2Þ : ð8Þ

Thus, the radial and azimuthal frequencies can be
related through

fr ¼ fϕ

�
1 −

Δγ
2π

�
where Δγ ¼ 1

fϕ

�
dγ
dt

�
: ð9Þ

Here, Δγ is the periapsis advance during one orbit. By
definition fϕ is always greater than fr for eccentric
systems, due to periapsis advance. Higher order post-
Newtonian expressions for these quantities are provided
in, e.g. [11].
The leading-order waveform for an eccentric binary can

be decomposed into a series of components each with a
characteristic frequency determined by multiples of the
radial and azimuthal frequencies [32,33]. Observation of
two or more of these components enables measurement of
the orbital eccentricity, as has been discussed in the context
of LISA observations [33–35]. The two polarizations of the
emitted gravitational wave can be written at leading order,
and assuming a uniform evolution of the periapsis, as

hþ ¼ −hoðtÞ
1þ cos2ι

2

X
n

½unðeÞ cosðnlðtÞ þ 2γðtÞÞ

þ vnðeÞ cosðnlðtÞ − 2γðtÞÞ�; ð10Þ

h× ¼ hoðtÞ cos ι
X
n

½unðeÞ sinðnlðtÞ þ 2γðtÞÞ

þ vnðeÞ sinðnlðtÞ − 2γðtÞÞ�: ð11Þ

The functions un and vn are calculated in [2,32] as
combinations of Bessel functions and provided as power
series in eccentricity in [33]. The only functions which are
nonvanishing at Oðe0Þ or Oðe1Þ are for n ≤ 3 and these are
given, up to and including e2 terms, as

u1 ¼ −
3e
4
; u2 ¼ 1 −

5e2

2
; u3 ¼ −

9e
4
;

v1 ¼ 0; v2 ¼ 0; v3 ¼ 0: ð12Þ

Thus, at zeroth order in eccentricity, the waveform is
emitted at twice the azimuthal frequency, f0 ¼ 2fϕ. The
frequencies which appear at first order in eccentricity
are 2fϕ � fr.
The frequency structure of the waveform emitted by an

eccentric binary can be understood at an intuitive level from
the waveform in Fig. 1. The primary gravitational wave
emission occurs at twice the azimuthal frequency, as the

gravitational wave strain is determined by (derivatives of)
the quadrupole moments of the system. Thus, the gravi-
tational wave phase depends on the relative orientation of
the two bodies. The amplitude of the signal is largest at
periapsis as the bodies are moving fastest and smallest at
apoapsis when the bodies are moving more slowly. Thus,
the amplitude modulations depend upon the radial fre-
quency. It follows that the gravitational wave will have a
leading component at twice the azimuthal frequency, with
subleading contributions whose frequencies are increased/
decreased by the radial frequency.
The signal observed in a gravitational-wave detector

depends upon the orientation of the binary relative to the
detector. Specifically, it depends upon the location and
polarization, encoded in the detector response function, and
binary inclination ι. The signal also depends upon the initial
orientation of the binary. This is parametrized by two
angles, which specify the phase of the binary and the
argument of periapsis. The orientation can be specified
by any two of the initial phase ϕref , initial anomaly
(either mean lref or true νref ) and argument of periapsis
γref . These are related to the initial true anomaly using
ϕref ¼ νref þ γref , where there are well-known expressions
to translate between mean and true anomaly.
In the above discussion, and for the remainder of the

paper, we restrict attention to the (2, 2) multipole of
the gravitational wave signal. There is a contribution to
the (2, 0) multipole at OðeÞ with a frequency fr [32] which
we will neglect. Its amplitude has a sin2 ι dependence on
inclination and will therefore vanish for face-on systems
where the amplitude of the (2, 2) multipole is maximized.
The binary will emit in higher multipoles [47,48,59,60].
We neglect these contributions as the most significant (3, 3)
and (4, 4) modes vanish for face-on systems. Therefore, it is
reasonable to expect that for most observed systems, which
are preferentially viewed face-on, these contributions will
be subdominant, however we plan to investigate their
impact in a future publication.

B. Eccentric harmonic frequencies

It is common [3,31] to decompose the eccentric binary
waveform in multiples of the azimuthal frequency. This
basis has the advantage that the harmonics are naturally
orthogonal. However, the power, particularly at moderately
high eccentricities, is spread over a large number of
waveform harmonics. As is clear from Fig. 1 and the
discussion above, the radial frequency naturally imparts a
modulation onto the leading order waveform. Therefore, it
is also natural to decompose the waveform into a series

fk ¼ 2fϕ þ kfr; ð13Þ

as has been noted in [11,32,33,35].
Figure 2 shows a Q-transform of a signal from a black

hole binary on an eccentric orbit. The frequency harmonics
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are clearly visible as curves of high amplitude whose
frequencies increase as the binary approaches merger. The
loudest mode, marked with the solid line, has a frequency
of twice the azimuthal frequency. The frequency of the
other harmonics increases with time but their amplitudes,
relative to the leading mode, decrease during inspiral as
eccentricity is radiated away and the orbit circularizes.
We also show lines of frequency 2fϕ þ kfr and

ð2þ kÞfϕ on the figure. To do so, we first obtain the
azimuthal frequency as fϕ ¼ 1

2
f0. We get the radial

frequency by first calculating the eccentricity as a function
of frequency from Eq. (5), using this to calculate the rate of
periapsis advance from Eq. (8) and the radial frequency
from Eq. (9). The lowest frequency harmonic shown, h−2,
is at a very low frequency for the majority of the signal,
however may enter the detector’s sensitive band at late
times. Frequencies which are multiples of fϕ are shown as
dotted lines on the figure, while those which vary by
multiples of fr are shown with dashed lines. It is clear the
frequencies 2fϕ þ kfr more accurately follow the power of
the signal. A decomposition in this frequency basis will
then lead to power in a fewer modes than if we use
multiples of fϕ.
The rate of apsidal advance is not constant over the

merger of two compact bodies but increases as the
frequency increases, as can be seen from Eq. (8). Thus,
the fractional difference between the two sets of frequen-
cies increases as the system inspirals. The inclusion of the
apsidal advance is increasingly important to efficiently
describe eccentric GW signals close to merger, and allows
for the existence of additional harmonic h−2 (and even h−3

at high frequencies). As the binary approaches the inner-
most stable circular orbit (ISCO), aISCO ¼ 6M, we obtain,
from Eq. (8) and Eq. (9),

fr;ISCO ¼ fϕ;ISCO

�
1 −

1

2ð1 − e2ISCOÞ
�
≈
fϕ;ISCO

2
; ð14Þ

where we have taken the eccentricity at ISCO to be
negligible which is a good approximation for most realistic
choices of eccentricity.

III. WAVEFORM DECOMPOSITION

The waveform for an eccentric binary is composed of
a set of harmonics at frequencies 2fϕ þ kfr. However,
waveform models for eccentric binaries [48,50] do not
generate these harmonics, but rather the emitted waveform
for a given set of parameters. In this section, we present a
method to generate a set component waveforms hk, which
contain the harmonic with frequency fk ¼ 2fϕ þ kfr. To
do so, we generate a set of eccentric waveforms, with
identical masses, spins and eccentricity but varying initial
phase and argument of periapsis. By combining them
appropriately, we obtain the harmonics hk. Then we can
generate an eccentric waveform h with an arbitrary phase
and argument of periapsis as

hðϕref ; γrefÞ ¼
X
k

Akðϕref ; γrefÞhk; ð15Þ

where Ak are complex coefficients determining the con-
tribution of each harmonic.

A. Generating the required waveforms

To obtain the harmonics hk, we wish to generate a set of
waveforms xj with mean anomaly evenly spaced between 0
and 2π. Unfortunately, this simple approach does not work
as binaries with identical parameters other than the initial
mean anomaly take different amounts of time to merge:
a waveform starting close to periapsis, where the emitted
GW signal is maximal, will merge more quickly than one
starting near apoapsis. Therefore, we instead generate all
waveforms with lref ¼ π, i.e., at apoapsis, and vary the
initial frequency and eccentricity to ensure that the wave-
forms have the appropriate mean anomaly a fixed time
before merger. This is a similar approach to the one
introduced in [17]. We briefly describe the method below.
First, we calculate the change in frequency over on orbit

from Eq. (3), approximating the frequency and eccentricity
as constant over a single orbit. This gives the change in
gravitational wave frequency in one azimuthal orbit as

Δf ≈
192πf

5
ðπMfÞ5=3

�
1þ 73

24
e2 þ 37

96
e4

ð1 − e2Þ7=2
�
: ð16Þ

FIG. 2. Q-transform of a gravitational waveform from an
eccentric binary, generated with the TEOBResumS-Dalimodel
[47], with fref ¼ 5 Hz; e10 ¼ 0.2,M ¼ 10M⊙, and q ¼ 0.5 with
amplitude normalized over time by dividing all amplitudes by the
maximum value at each frequency. The line of maximum
amplitude at each time step is shown in purple, corresponding
to the h0 harmonic. The dashed purple and dashed black lines are
higher harmonic frequency predictions from Eq. (13) and the
integer multiple model respectively.
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Due to periapsis advance, the binary must complete

norbit ¼
�
1 −

Δγ
2π

�
−1

ð17Þ

orbits before returning to periapsis. Therefore, to generate
waveforms which are evenly spaced in mean anomaly, we
generate a set of waveforms all starting at apoapsis with
initial frequencies

fj ¼ fref −
�
j
n

�
norbitΔf; ð18Þ

where j ¼ f0; 1;…; n − 1g.
While the binary evolves from fj to fref , the eccentricity

will decrease. We use Eq. (5) to calculate the appropriate
initial eccentricity to ensure an eccentricity eref at fref .
While these expressions are derived at leading post-
Newtonian order, we find they are sufficiently accurate
to generate the required waveforms and extract the eccen-
tric harmonics.
Figure 1 shows waveforms which start exactly one radial

orbit apart. The second waveform starts at the previous
apoapsis and experiences one full amplitude modulation
before the envelope joins up with the original waveform.
The phase of the gravitational waveform differs for the two
waveforms: both are generated with ϕref ¼ 0 but different
initial frequencies and eccentricities.
In principle, we can calculate the appropriate initial

phase, ϕj, for each waveform from the periapsis advance
formula. However, this is complicated by the fact that the
phase does not evolve uniformly through the orbit—it has
both a secular and oscillatory contribution [42]. Instead,
we calculate the appropriate phase by directly comparing
the gravitational waveforms. To do so, we first combine
both GW polarizations into a single complex waveform
using x ¼ xþ − ix×. We can then calculate the complex
inner product ðxjjx0Þ between the two waveforms,
defined as

ðajbÞ ¼ 4

Z
fhigh

flow

ãðfÞb̃⋆ðfÞ
SðfÞ df: ð19Þ

Here SðfÞ is the power spectral density (PSD),1 and ãðfÞ
denotes the Fourier transform of the signal aðtÞ. The
relative phase difference, ϕj between the two signals is
obtained from ðxjjx0Þ ¼ A exp½2iϕj� and we can apply
this phase offset to xj to obtain a signal which is in phase
with x0.

B. Singular value decomposition

SVD can used to identify the most important parameters
describing a multivariate dataset, reducing a large number
of correlated basis vectors to a small number of orthogonal
basis vectors which capture the key features of the data.
SVD has been previously applied to GW data, for example
to develop more efficient searches [36]. Here, we wish to
use SVD to identify the key features of the eccentric
waveforms and compare them to the theoretical predictions
from Sec. II.
A n ×M complex matrix X is factorized as

X ¼ U⋆SV; ð20Þ

where U is a n × n complex unitary matrix, S is a n ×M
rectangular diagonal matrix of positive real numbers, and V
is anM ×M complex unitary matrix. Here, our matrixX is
formed from n ¼ 100 gravitational wave signals from an
eccentric binary system, fx0; x1;…; x99g, with identical
masses and spins but varying mean anomaly, generated as
described in Sec. III A. By construction, the length of all of
the waveforms is equal and consequently M represents the
number of time samples in each waveform. We first whiten
these waveforms using the appropriate detector PSD, SðfÞ,
to ensure that the SVD decomposition captures the most
significant observable features of the waveform. To do this,
we Fourier transform the waveforms to the frequency
domain, whiten by dividing by

ffiffiffiffiffiffiffiffiffi
SðfÞp

, before returning
to the time domain and performing SVD.
The matrix V contains a set ofM waveform components,

hSVDk , which span the space of possible vectors of lengthM.
Of these, the first n provide basis waveforms which can be
used to reconstruct the initial eccentric binary waveforms xj,
while the remaining rows are orthogonal to the first n and
ensure that V comprises a complete basis. In what follows,
we only consider the first n rows of V. These hSVDk are
ordered in terms of importance, so that hSVD0 is normalized
waveform that describes the primary features of the original
fxjg. The S matrix contains n diagonal values, Sk, describ-
ing the relative importance of the corresponding waveform
component hSVDk . In particular, the fraction of information
contained in the waveform hSVDk is given by

αk ¼
S2kP
k0S

2
k0
: ð21Þ

The matrix U⋆ provides the weighted contribution of
each of the SVD waveforms, hSVDk , to the original set of
waveforms xj. Equivalently, we can rewrite Eq. (20) as

SV ¼ UX: ð22Þ

Thus, the matrix U also gives the contribution of each of the
xj to the basis waveforms hSVDk .

1In this work we use the PSD corresponding to Advanced
LIGO at design sensitivity with broad-band signal recycling and
high power [61] available at dcc.ligo.org/ligo-t0900288/public.
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In generating the SVD component waveforms, we have
used whitened waveforms xj. However, in many cases it is
useful to construct unwhitened waveforms associated with
the SVD basis. We can easily do this using Eq. (22). Given
the coefficients U and normalizations S obtained using
whitened waveforms, we can use unwhitened waveforms to
construct a new matrix X and generate the unwhitened
SVD basis V.
In Fig. 3 we show the coefficients for the contribution of

each xj to the first four SVD components. The zeroth SVD
waveform has an equal contribution from each waveform,
so that it averages over the modulations caused by
eccentricity. The next three components have an approx-
imately equal magnitude contribution from each waveform
but a phase which varies by 2π, −2π and 4π respectively.
Each factor of 2π in phase of the SVD coefficients
corresponds to an increase (or decrease) of the waveform
frequency by fr. Thus we recognize these components as
corresponding to the k ¼ 0; 1;−1; 2 gravitational wave
harmonics introduced in Sec. II. A subset of higher
SVD components can also be mapped to the eccentric
harmonics while others cannot be clearly identified—likely
because there is not significant power in more than the
leading few harmonics.
We can use Eq. (21) to assess the relative importance of

the SVD components. For a signal with e10 ¼ 0.2 and
M ¼ 24M⊙, we find that 98.6% of the total information is
contained in just the first two components, and 99.9%
contained in the first four. This demonstrates that we
require a small number of components to accurately
describe eccentric waveforms. We investigate this in more
detail in Sec. III D after first introducing a faster way to
generate the eccentric harmonics.

C. Constructing eccentric harmonics

Only a small number of the SVD components are needed
to accurately describe the gravitational waveform emitted

by an eccentric binary with fixed masses and spins but
arbitrary initial orientation, as determined by the argument
of periapsis and true anomaly. Generating this basis using
an SVD decomposition of 100 eccentric waveforms is
unnecessarily complex and time-consuming. Given the
frequency structure of the eccentric harmonics predicted
theoretically in Eq. (13) and confirmed in the SVD
decomposition, we propose a more straightforward and
computationally efficient method to generate them.
From Fig. 3, it follows that the eccentric harmonics can

be generated by summing the waveforms xj with the
appropriate phase factor as

hk ¼
1

n

Xn−1
j¼0

eð2πijk=nÞxj: ð23Þ

As before xj are waveforms generated evenly spaced in
mean anomaly at a fixed time before merger, n gives the
total number of waveforms and k is the index labeling the
desired harmonic. This ensures that the frequency of hk is
given by fk ¼ 2fϕ þ kfr. Since we are interested in only
the leading few harmonics, we can use a small value of n
and still recover accurate representations of the waveform.
It is easy to see that, by definition, hk ¼ hk�n. Therefore if
n is larger than the number of eccentric harmonics with
significant power, each hk will only contain power from
one harmonic. Unless otherwise specified we choose to use
n ¼ 6 in this work as there is limited power in the k ¼ −2
harmonic owing to its very low frequency content, and
the k ¼ 5 harmonic has negligible power over the range
of masses and eccentricities used in this paper. Therefore,
we generate eccentric harmonics corresponding to
k ¼ −1; 0; 1; 2; 3, and 4.
The waveforms generated by the SVD are, by definition,

orthogonal, but this is not the case for the harmonics
obtained using Eq. (23). When representing a waveform as

FIG. 3. Coefficients (arbitrary normalization) of component waveform used by the SVD to construct the component hSVDk waveform
space for e10 ¼ 0.2, M ¼ 24M⊙, and q ¼ 0.5. The colors depict initial mean anomaly of the waveform at tref , which varies from 0 to
2π. The four components here are those containing the most information, sorted in descending order from left to right. The most
important component has an equal contribution from each waveform, meaning it is simply the average. The other components use an
(essentially) equal magnitude contribution from each component but a phase which varies by 2π, −2π and 4π respectively for the second,
third, and fourth most important components.
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a sum of appropriately weighted harmonics in Eq. (15),
it is simpler to calculate the coefficients if the waveform
components are orthogonal. We therefore apply Gram-
Schmidt orthogonalization to obtain a set of orthogonal
waveforms. We iteratively orthogonalize the waveforms by
defining h⊥l as

h⊥l ¼ hl −
Xl−1
i¼0

ðhljhiÞ
ðhijhiÞ

hi; ð24Þ

where the index l relabels the harmonics in order of
descending importance, i.e., harmonics with l ¼ f0; 1; 2;
3; 4;…g correspond to harmonics with k ¼ f0; 1;−1;
2; 3;…g, such that the sum runs over the indices of only
more important harmonics. From now on we will drop
the ⊥ notation for convenience. For most of the parameter
space the orthogonalization has little impact on the wave-
forms, however for high mass signals the observable
waveform is short and the binary completes only a few
orbits in band. Therefore, the different harmonics can have
large overlaps and the projected waveforms can differ

significantly from the original ones. In this limit, it becomes
difficult to robustly identify the individual harmonics.
In Table I we show the overlap between the SVD

waveforms and those generated using Eq. (23), for different
values of n. The waveform overlap is defined as

Oðh; h0Þ ¼ jðhjh0Þj
jhjjh0j ; ð25Þ

where

jhj ¼
ffiffiffiffiffiffiffiffiffiffiffi
ðhjhÞ

p
; ð26Þ

so that Oðh; h0Þ ¼ 1 indicates identical waveforms, up to
an overall phase. The harmonics are in good agreement
with the SVD components in most cases. There is a poor
agreement for the k ¼ 1 component when n ¼ 2 and the
k ¼ −1 harmonic when n ¼ 3, likely due to the fact that
two harmonics with observable power mapped to the same
component. The k ¼ 4 waveform has limited power, which
likely explains the poor agreement with the SVD compo-
nent. Other than these cases, the overlaps are greater than
0.95 in all cases and 0.99 for most.

D. Generating eccentric harmonics

Figure 4 shows a portion of an eccentric waveform for
e10 ¼ 0.2, M ¼ 24M⊙, q ¼ 0.5. In addition to the full
waveform, we show the contributions to the waveform from
the four leading eccentric harmonics, h0, h1, h−1, and h2,
constructed as described in Sec. III C. We also show the
approximate waveform generated from these harmonics,
which is an excellent fit to the full waveform. This confirms
both that a small number of harmonics can be used to
accurately reconstruct the eccentric waveform and that our

TABLE I. Overlap between our harmonic waveforms (hk)
generated with n ¼ 2 − 6 waveforms (xk) and waveforms con-
structed from a SVD analysis performed on 100 component
waveforms (hSVDk ) with e10 ¼ 0.2, M ¼ 24M⊙, and q ¼ 0.5.

k n ¼ 2 n ¼ 3 n ¼ 4 n ¼ 5 n ¼ 6

0 0.9963 0.9996 0.9991 0.9996 1.0000
1 0.9225 0.9949 0.9995 0.9993 0.9995
−1 � � � 0.8050 0.9618 0.9917 0.9908
2 � � � � � � 0.9946 0.9957 0.9621
3 � � � � � � � � � 0.9667 0.9700
4 � � � � � � � � � � � � 0.8399

FIG. 4. The gravitational waveform (black) and the four leading harmonics for a signal with e10 ¼ 0.2,M ¼ 24M⊙, and q ¼ 0.5 and
vanishing component spins, starting at fref ¼ 10 Hz, generated using the TEOBResumS-Dali model [47]. The harmonics are
generated using Eq. (23) with n ¼ 10. The magenta line shows the sum of these four harmonics, which is a good approximation to the
full signal.
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efficient method of generating these harmonics is suffi-
ciently accurate.
In Fig. 5, we show how the SNR in the eccentric

harmonics varies with eccentricity, chirp mass, and mass
ratio. To do so, we generate the harmonics for a system with
the specified chirp mass, mass ratio and eccentricity using
Eq. (23). We note that at fixed values of masses, spins, and
eccentricity, the SNR in an eccentric merger (and in each of
the harmonics) can vary with the initial orientation of the
binary. Consequently, we generate multiple signals for each
point in parameter space, each consisting of a waveform
generated with a different initial mean anomaly. We there-
fore show the SNRs in Fig. 5 as bands containing the range
of possible SNRs. We calculate the SNR for each signal, h,
in data, d, using [62–64]

ρ ¼ Maxtc
jðhðtcÞjdÞj

jhj ; ð27Þ

where the complex matched filter is defined in Eq. (19). In
all cases in this work we generate waveforms beginning at
10 Hz but begin the matched filtering at 20 Hz. When
matched filtering individual eccentric harmonics, we want
to use the same value of tc for each harmonic to ensure they
correspond to a binary with the same coalescence time. To
achieve this we first calculate the SNR ρ0 for the leading
k ¼ 0 harmonic, and require that the identical time tc is
used to calculate SNRs ρk. As there is no noise contribution
in this case, d ¼ h and so ρtotal ¼ jhj.
Figure 5 shows that the total SNR of a binary increases

slightly with eccentricity—although the binary will merge
more quickly, the emitted waveform amplitude will be
higher. The fraction of the SNR captured by the k ¼ 0
harmonic decreases as e10 increases, with close to 100% of
the power contained in the leading harmonic at e10 ¼ 0,

reducing to 80% at e10 ≈ 0.4. The majority of the additional
power is captured by the k ¼ 1 harmonic, with increasing
power in both the k ¼ −1 and k ¼ 2 harmonics at higher
eccentricities. As expected from Eq. (12), the SNR in the
k ¼ 1 and −1 harmonics increases linearly with eccentric-
ity while the falloff of SNR in k ¼ 0 and the growth of SNR
in the k ¼ 2 harmonic vary quadratically.
The SNR in the signal increases with increasing chirp

mass, as the overall amplitude is higher. However, there is
little change in the relative importance of the harmonics,
with the k ¼ 0 harmonic capturing the vast majority of
the SNR over all masses and the k ¼ 1 harmonic being the
second most significant. As the mass ratio is varied, the
total SNR of the signal reduces for q≲ 0.5, although
the power in the k ¼ −1, 1 and 2 harmonics remains
approximately constant, indicating that these harmonics
become more important for unequal mass binaries.

IV. DEGENERACY BETWEEN ECCENTRICITY
AND MASS

We have introduced a decomposition of the waveform
emitted by an eccentric binary into a series of harmonics.
Furthermore we have shown that the vast majority of the
signal power is contained within the first few harmonics. In
addition, as can be seen from Fig. 5, the significance of the
k ≠ 0 harmonics increases with increasing eccentricity. As
expected from theoretical considerations, this increase is
approximately linear for the k ¼ 1 and −1 harmonics. This
suggests that it may be possible measure the eccentricity
using the relative SNR in the different harmonics. For this
approach to be viable, and computationally feasible, we
require the eccentric harmonics to provide an accurate
representation of the waveform over a range of eccen-
tricities (in much the same way as a small number of

FIG. 5. The expected SNR for an eccentric binary merger. The fiducial values of the eccentricity at 10 Hz, e10, chirp mass,M, mass
ratio, q ¼ m2=m1 are e10 ¼ 0.2, M ¼ 24M⊙ and q ¼ 0.5. The components are nonspinning and the binary is placed at a distance of
1680 Mpc directly above a detector operating the Advanced LIGO design sensitivity. In each plot, we vary one parameter, left: the
eccentricity, center: the chirp mass, and right: the mass ratio, keeping other values fixed. The shaded regions denote the range of SNRs as
the orientation (initial phase and argument of periapsis) is varied. The gray region shows the total SNR in the signal while the {brown,
blue, orange, red} regions show the SNR of the k ¼ f0; 1;−1; 2g harmonics respectively.
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precession harmonics can describe a precessing waveform
with different values of in-plane spins [65,66]). It is well
known, see, e.g., [4], that there exist degeneracies between
the eccentricity and other parameters, most notably the
chirp mass. Here, we investigate whether the eccentric
harmonics are, at least approximately, valid over a range of
eccentricities if we appropriately change the values of the
other parameters, specifically the chirp mass.

A. Degeneracy of h0 with chirp mass

In Fig. 6, we show how well the h0 harmonic from a
fixed signal matches with the equivalent harmonic for a
second waveform with varying eccentricity and chirp mass.
Our initial binary has an eccentricity e10 ¼ 0.073,
M ¼ 24.16M⊙, q ¼ 0.5, and both black holes have zero
spin. The match, M, is the maximum value of the overlap,
maximized over time shifts as

Mðh; h0Þ ¼ MaxδtOðhðtcÞ; h0ðtc þ δtÞÞ; ð28Þ

where tc and tc þ δt denote the coalescence times of the
two waveforms. The match encodes the fraction of the SNR
in the signal h which is recovered when filtering with the
waveform h0. To generate the eccentric harmonics, we use
the procedure discussed in Sec. III C with n ¼ 6 wave-
forms. As discussed in Sec. III D, we generate waveforms
beginning at 10 Hz and calculate the match between
waveforms starting at 20 Hz.
Figure 6 shows a clear degeneracy between eccentricity

and chirp mass as expected. Binaries with lower mass and

higher eccentricity are largely indistinguishable from
the initial signal. In [4], the authors introduced an
eccentric chirp mass Mecc to map the lines of degeneracy
and we follow that approach here. To do so we work at
leading post-Newtonian order and consider only the inspi-
ral part of the waveform. In that case we can write the
waveform as

hðfÞ ¼ AðfÞeiϕðfÞ; ð29Þ

where AðfÞ ¼ Af−7=6 and A depends upon the mass of
and distance to the binary. We choose to neglect the
dependence of the amplitude AðfÞ with eccentricity, as
this will be subleading in comparison to the phasing [4].
The phase can be written as a function of frequency as

ϕðfÞ ¼ ϕc þ 2πftc þ aM−5=3
ecc f−5=3; ð30Þ

where ϕc and tc are the phase and time of coalescence
respectively and a¼3=ð128π5=3Þ. The eccentric chirp mass
Mecc depends upon the eccentricity and is defined as [4]

M−5=3
ecc ¼M−5=3

�
1−

2355

1462
e2f

�
≕M−5=3ð1−ke2fÞ; ð31Þ

where ef is the eccentricity as a function of frequency f and
we have defined the constant k ¼ 2355

1462
.

Since the eccentricity decreases with frequency, the
eccentric chirp mass changes as the binary evolves. To
obtain a single value of Mecc we must choose a reference
frequency at which to evaluate the eccentricity. In [4], the
authors expand the phasing in powers of ðf − frefÞ to
obtain an eccentric chirp mass which provides the dominant
impact on the phasing at fref . Here, we instead calculate a
frequency averaged eccentric chirp mass, where the fre-
quency averaging is based upon the relative amplitude of
the signal, hðfÞ, to the noise,

ffiffiffiffiffiffiffiffiffi
SðfÞp

.
We begin by evaluating the overlap between a non-

eccentric signal with chirp mass M̂ and an eccentric
signal with chirp mass M and initial eccentricity eref.
By maximizing the overlap as a function of mass, we obtain
the degeneracy between mass and eccentricity that appro-
priately weights varying effective chirp mass over the
inspiral. The overlap between the two signals is2

O¼
����
Z

df
AðfÞ2
SðfÞ expfiaf−5=3ðM̂−5=3−M−5=3

ecc Þg
����: ð32Þ

FIG. 6. Match between the h0 eccentric waveform harmonic
across the chirp mass and eccentricity space, calculated between
the fiducial waveform, generated at e10 ¼ 0.073;M ¼ 24.16M⊙
(indicated by the red dot and chosen such that our illustrative
event lies on the degeneracy line) and the point shown. In all
cases the system has a mass ratio of q ¼ 0.5, the waveform is
generated from 10 Hz and the match performed using the aLIGO
PSD with a low frequency cutoff of 20 Hz. The magenta line
shows the line of degeneracy between eccentricity and chirp mass
described by Eq. (39).

2We fix the relative timing between the signals here by
calculating an overlap rather than a match. The result provides
good agreement with the observed degeneracy, indicating that the
maximization over time would have little impact on the result.
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Next, we assume that the chirp massM is close to the chirp
mass, M̂, of the noneccentric signal and expand at leading
order as

M−5=3
ecc ¼ M̂−5=3ð1þ δmÞð1 − ke2fÞ: ð33Þ

This allows us to express the overlap as

O≈
����
Z

df
AðfÞ2
SðfÞ expfiaðM̂fÞ−5=3ðδm−ke2fð1þδmÞÞg

����:
ð34Þ

We then expand the exponential including terms up to
quadratic order in either δm or e2f. To do so, we square
Eq. (34) and expand, obtaining a quadratic contribution
from either the product of first-order terms or a single
second order term. Thus, we obtain

O2 ≈ 1 − a2M̂−10=3
h
f−10=3ðδm − ke2fÞ2

− ðf−5=3ðδm − ke2fÞÞ2
i
; ð35Þ

where we have defined x̄ as the frequency averaged
value of x,

x̄ ¼ 4

Z
df

xjhj2
SðfÞ =4

Z
df

jhj2
SðfÞ: ð36Þ

Finally, we collect terms with equal powers of δm to obtain

1 −O2 ≈ a2M̂−10=3
n
δm2

h
f−10=3 − ðf−5=3Þ2

i

− 2δm
h
ke2ff

−10=3 − ðke2ff−5=3Þðf−5=3Þ
i

þ
h
k2e4ff

−10=3 − ðke2ff−5=3Þ2
io

: ð37Þ

In order to find the degeneracy, we differentiate with
respect to δm to obtain

δm ¼ ke2ff
−10=3 − ðke2ff−5=3Þðf−5=3Þ
f−10=3 − ðf−5=3Þ2

: ð38Þ

Substituting the expression for eccentricity as a function of
frequency, Eq. (5), gives the degeneracy between δm and
reference eccentricity, e10. Finally, we obtain the chirp mass
M as a function of eccentricity as

M ¼ M̂ð1þ δmÞ−3=5; ð39Þ

where δm is given in Eq. (38). The degeneracy line is
plotted on Fig. 6 and is in excellent agreement with the
observed degeneracy.

For a signal observed at SNR around 10, the 90% con-
fidence interval for parameter recovery approximately
corresponds to the region with match ≥ 0.97 [67]. This
extends to an eccentricity of close to 0.4. Therefore, for a
low SNR observation, the leading order eccentric harmonic
is appropriate for relatively large eccentricities.
It is also useful to understand how the extent of the M

and e10 degeneracy will scale with mass. To do so, we must
identifying how a contour of fixed overlap scales with the
chirp mass. It is clear that substituting δm from Eq. (38)
into Eq. (37) gives a series of terms which all depend upon
the combination of M−10=3e4f (although the specific fre-
quency weighting of each term does vary). Then, using the
leading order relation between eccentricity and GW fre-
quency [the first term in Eq. (5)] we see that eccentricity is
(approximately) proportional to frequency. This allows us
to conclude that for low eccentricities and relatively low
masses, where the inspiral part of the waveform is the
dominant contribution, that a contour of fixed overlap
requires a fixed value of M̂−10=3e410. Equivalently, we
expect results to scale as e10 ∝ M̂5=6.

B. Degeneracy for other eccentric harmonics

We would like to use the relative amplitudes of the
eccentric harmonics to extract the binary eccentricity from
a gravitational waveform. In Sec. IVA, we saw that the
k ¼ 0 harmonic has a high match across a broad range of
eccentricities, and derived a method of calculating the
appropriate degenerate direction in M and e10 space. This
opens up the possibility of using a single set of harmonics
to probe the full extent of the degeneracy line, rather than
searching across all values of mass and eccentricity
independently. This approach is only viable if the overlap
between mass and eccentricity follows a similar degeneracy
for the other harmonics.
In Fig. 7, we show the overlap with a fixed waveform for

the h−1, h1, and h2 harmonics across a range of chirp mass
and eccentricity. As discussed in Sec. III C, we are not
free to vary the relative timing of the different harmonics.
Therefore, we first maximize the overlap for the h0
harmonic and then use the same time delay when calculat-
ing the overlap for the other harmonics. All three harmonics
show a degeneracy between mass and eccentricity. For
comparison, we show the degenerate direction for the h0
waveform overlaid on the plots. While all three harmonics
have a degeneracy between mass and eccentricity, they
each follow a different degeneracy direction than h0. This is
unsurprising, given that each harmonic has a different
frequency, fk ¼ 2fϕ þ kfr. Therefore, the h1 and h2
waveforms are at higher frequencies than h0 at any instant
while h−1 is at a lower frequency. Furthermore, we know
that the eccentricity of the orbit decays over time. Thus, for
a fixed value of e10 the signal averaged eccentricity will be
higher for h2 and h1 than it is for h0 and lower for h−1.
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Thus, we expect the terms in the numerator of Eq. (38) to be
larger for h1 and h2 and therefore require a larger change in
M for a fixed value of e10. This is indeed what we see, in
particular for h2 where the degeneracy between e and M
has a much lower slope. We expect to observe the opposite
effect for h−1, but the degeneracy is remarkably similar to
that for h0, likely because the early part of the h−1 signal is
out of band.
Moving along the h0 degeneracy, the overlap of h1

remains above 0.9 for eccentricities as high as e10 ≈ 0.2,
and for h−1 up to e10 ≈ 0.4. Thus, even though these
harmonics follow a different mass-eccentricity degeneracy,
a single set of waveforms can be used for h0, h1 and h−1
for eccentricities between e10 ¼ 0 and at least e10 ¼ 0.2.
Above that, the overlap of the h1 waveform falls off rapidly.
Unfortunately, the degenerate direction for h2 differs
significantly from h0. Therefore, in what follows, we
restrict attention to the h1 and h−1 harmonics, even though
h2 can contain as much SNR as h−1 at moderate eccen-
tricities (as shown in Fig. 5).
In Appendix we show the variation of the match/overlap

for the h0, h−1 and h1 harmonics for binaries with
M ¼ 10M⊙ and 40M⊙. While the details differ, similar
conclusions hold, namely that the degeneracy in the mass–
eccentricity plane is similar enough in these three harmon-
ics that a single set of waveforms can be used to cover a
range of eccentricity values.

V. INFERRING THE ECCENTRICITY
OF A BINARY

We have now introduced the key concepts required to
enable rapid identification of eccentric systems. In Sec. II,
we presented the decomposition of the waveform into

harmonics with frequencies of 2fϕ þ kfr. In Sec. III, we
showed that the majority of the power in the signal, at least at
moderate eccentricities, is contained in the first few harmon-
ics and that the amplitudes of these subleading harmonics
increaseswith eccentricity. Finally, in Sec. IV,we showed that
there is a mass-eccentricity degeneracy which allows a single
set of eccentric harmonics to be used over a range of the
parameter space. Taken together, these features enable us to
use a small set of waveforms to rapidly identify eccentric
systems and provide an estimate of the eccentricity. The
method has clear parallels with similar proposals for iden-
tifying precession [65] and higher GW multipoles [37,68].
In this section, we present a method to infer the

eccentricity of a binary from the observed GW signal.
We assume that the signal has previously been identified in
the data and the best-fit parameters corresponding to a
circular binary have been estimated through standard
methods [37,69–71]. For the simplified example presented
here, we focus only on the chirp mass and eccentricity.3 We
then use this information to generate a set of eccentric
waveforms, obtain the eccentric harmonics and use them to
probe the eccentricity of the system.

A. The example signal

Let us consider an illustrative example of a binary with
M ¼ 24.0M⊙, e10 ¼ 0.2, q ¼ 0.5 and nonspinning

FIG. 7. Overlap between different eccentric waveform harmonics across the chirp mass and eccentricity space. at the time offset of the
equivalent match for the h0 waveform. The three plots show how the overlap of left: h−1 harmonic, center: h1 harmonic, and right h2
harmonic with the fiducial waveform varies. The overlap is calculated between a fixed waveform with e10 ¼ 0.073, M ¼ 24.16M⊙,
q ¼ 2 and zero component spins (indicated by the red dot and chosen such that our illustrative event lies on the degeneracy line) and the
point shown. The waveform is generated from 10 Hz and the overlap performed using a low frequency cutoff of 20 Hz. The time offset
between waveforms is fixed by maximizing the overlap of the h0 harmonics. The magenta line shows the line of degeneracy between
eccentricity and chirp mass for h0 given in Eq. (39).

3The method should extend in a straightforward manner to the
full parameter space of masses and aligned spins. However, this
will require an investigation of the degeneracy between eccen-
tricity and other mass and spin parameters, such as mass ratio and
effective spin, similar to that performed for chirp mass in Sec. IV.
That work is beyond the scope of this paper, but we plan to return
to it in future.
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components, with a SNR of ρ ≈ 20. We assume that the
signal is identified by search and parameter estimation
routines restricted to circular binaries that estimates a chirp
mass of M ¼ 24.16M⊙, which lies on the correct mass–
eccentricity degeneracy line. We calculate the degeneracy
in eccentricity and chirp mass as described in Sec. IV and
generate the k ¼ 0; 1;−1 eccentric harmonics at a given
point on the degeneracy line, using the method described
in Sec. III C. As can be seen in Fig. 7, the degeneracy
direction for the h1 and h−1 harmonics differs from h0 and
this determines the appropriate point: using a larger value
of eccentricity will enable us to probe higher eccentricities,
but at the expense of poorer matches at low eccentricity.
From investigations, we have found that e10 ¼ 0.035
provides good results for a binary with M ¼ 10M⊙,
and we extend to other masses through the scaling of
eref ∝ M5=6, as discussed in Sec. IVA. Therefore, for this
example, we use e10 ¼ 0.073when generating the eccentric
harmonics.
We matched filter the k ¼ 0; 1;−1 eccentric harmonics

against the data and use the ratio of SNRs in the different
harmonics to infer the eccentricity. For our example,
we obtain

ρ0 ¼ 21.13; ρ1 ¼ 4.04;

ρ−1 ¼ 1.06; ρð1;−1Þ ¼ 4.11; ð40Þ

where ρð1;−1Þ is the quadrature sum of the SNRs in the
k ¼ 1 and k ¼ −1 harmonics.

B. Variation of harmonic amplitudes with eccentricity

In Fig. 5, we have seen that the SNR in the k ¼ 1 and −1
harmonics scales approximately linearly with the total
SNR, although the exact value depends upon the initial
location of the binary on its eccentric orbit. Furthermore,
we are now working with a fixed set of eccentric harmonics,
computed at a fiducial eccentricity of e10 ¼ 0.073. While
these match well with waveforms of different eccentricity,
see Fig. 6 and Fig. 7, there is a reduction in the expected
SNR due to mismatches between the fiducial waveforms
and the signal. In order to provide a mapping between
the SNRs in each harmonic and the eccentricity, we must
account for these effects.
In Fig. 8 we show the expected ratio of SNRs in the

eccentric harmonics as a function of e10, along the mass-
eccentricity degeneracy line. We have generated the har-
monics at the fiducial eccentricity of e10 ¼ 0.073. At each
value of e10 we generate a set of waveforms with different
initial mean anomalies and calculate the match between
each waveform and the k ¼ 0 harmonic, and the overlap
with the other harmonics. This provides the expected value
of ρk=ρ0 for each waveform, which we show as a band on
the figure. The relative SNR in the h1 harmonic increases
linearly up to e10 ≈ 0.15 above which the rate of increase

reduces, while the SNR in h−1 increases approximately
linearly, although with a large width, up to e10 ¼ 0.4. We
also show the fractional power in the h1 and h−1 waveforms
combined.4 This increases with eccentricity, but the growth
falls off similarly to the SNR in h1.
On the figure, we also show the SNR, ρ⊥, which is

orthogonal to the h0 waveform. As expected, this increases
with eccentricity. For moderate eccentricities, the h1 and
h−1 harmonics capture the vast majority of the orthogonal
power. However, at larger eccentricity, there is significant
SNR which is not captured by the h1 and h−1 waveforms.
There are two reasons for this. First, at higher eccentricities,
the other harmonics, most notably h2, become more
important and contribute a greater fraction of the SNR,
as seen in Fig. 5. Second, the match between the fiducial h1
and h−1 waveforms and those of the signal decreases, as
shown in Fig. 7. Both of these effects lead to a reduction in
the fraction of available SNR that is recovered. At very low
eccentricities, we also see that there is a small amount of
power orthogonal to h0. Here, the impact of eccentricity is

FIG. 8. The fractional SNR in different eccentric harmonics
relative to the h0 waveform. The harmonics are generated at a
fixed eccentricity of e10 ¼ 0.073 (dashed purple line) and mass,
M ¼ 24.14M⊙, using the methods described in Sec. III. Shaded
regions correspond to the range of fractional SNRs in the different
harmonics for binaries which lie along the mass-eccentricity
degeneracy shown in Fig. 6. The black region here shows the total
power orthogonal to h0, ρ⊥ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2total − ρ20

p
=ρ0. To determine the

minimum and maximum values of each region we generate and
match 32 TEOBResumS-Dali waveforms with varying initial
mean anomaly for each eccentricity value.

4Given the large variation in expected SNR in the h−1
harmonic, it is initially surprising that combining its contribution
with h1 leads to such an improvement in the expected SNR at
high eccentricity. We have investigated this effect and found that
relative power in the two modes is anticorrelated, so that when
there is less power in h1 we have the maximum contribution from
h−1. This explains the observed improvement, although we do not
have a clear, physical interpretation of why this occurs.
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minimal, and the orthogonal SNR arises from a difference
between the fiducial h0 and the noneccentric waveform.

C. Consistency of h1 and h− 1 signals

Figure 8 provides the data required to map between the
observed SNR in the k ¼ 0, 1 and −1 eccentric harmonics
and the eccentricity. In many cases the observed SNR in the
h1 and h−1 harmonics will be low and it is important to
assess the uncertainties in the measured SNRs due to the
presence of noise. The simplest approach is to add the
SNRs in quadrature. While the quadrature sum of SNRs in
the two modes contains all of the signal power, it also
contains four noise components—the real and imaginary
parts of the matched filter of each harmonic. We know from
Eq. (12) that both the amplitude and phase of these wave-
form components are correlated and, by making use of this,
we can reduce the noise contribution to the combined SNR.
This will enable us to place tighter bounds on eccentricity.
For simplicity, we assume that the other parameters of

the system have been measured from the h0 waveform and
focus on determining the eccentricity and initial mean
anomaly lref from the h1 and h−1 signals. The initial phase
Φk of the different harmonics in a signal is obtained from
Eq. (10) and Eq. (11) as

Φk ¼ 2γref þ ð2þ kÞlref ; ð41Þ

so that

Φ1 −Φ0 ¼ Φ0 −Φ−1 ¼ lref : ð42Þ

We wish to maximize the SNR over the amplitudes of
the h1 and h−1 harmonics independently, but require a
consistent phase between the three modes. To obtain the
desired form of the SNR, we maximize the log-likelihood
over the free amplitudes and phases. The log-likelihood is
given by [72]

logΛ ¼ ReðhjdÞ − 1

2
ðhjhÞ ¼ 1

2
ρ2: ð43Þ

Here, h is the trial waveform given by

h ¼
X
k

AkeiΦkhk; ð44Þ

and d is the data. We assume the signal has been identified
and the parameters associated to the h0 harmonic have been
determined. Then, we are only interested in determining the
contributions of the h1 and h−1 eccentric harmonics to the
signal.
Let us denote the inner product between the data and

waveform harmonics as

ðhkjdÞ ¼ αke−iφk : ð45Þ

Then, we can rewrite the likelihood as

logΛ ¼
X

k∈ ½−1;1�
αkAk cosðΦk − φkÞ −

1

2
A2
k; ð46Þ

where we have used the orthonormality of the harmonics,
ðhjjhkÞ ¼ δjk. If we maximize Eq. (46) independently over
A1;−1 and Φ1;−1 we obtain the quadrature sum of SNRs of
the two harmonics, as expected.
We can enforce phase consistency of the harmonics by

requiring that Eq. (42) is satisfied. Then the likelihood is

logΛ ¼
X

k∈ ½−1;1�
αkAk cosðklref þ ðΦ0 − φkÞÞ −

1

2
A2
k: ð47Þ

We assume that Φ0 has been determined from the h0
waveform and maximize over three parameters: A1;−1 and
lref . We first maximize over the amplitudes Ak to obtain

Âk ¼ αk cosðklref þ ðΦ0 − φkÞÞ: ð48Þ

Substituting the form of Âk into the likelihood, and
reexpressing the cosine terms, we obtain

logΛ ¼
X

k∈ ½−1;1�

α2k
4
½1þ cos 2lref cosð2ðΦ0 − φkÞÞ

− k sin 2lref sinð2ðΦ0 − φkÞÞ�: ð49Þ

Next, we can maximize over lref to obtain an expression for
tan 2l̂ref which we substitute into Eq. (49) to obtain

logΛ ¼ 1

4

�
α21 þ α2−1

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α41 þ 2α21α

2
−1 cos½4Φ0 − 2ðφ1 þ φ−1Þ� þ α4−1

q 	
:

ð50Þ

We can check the expression in a couple of limiting cases.
First, if the phases of the two harmonics are consistent with
a signal, then 2Φ0 − ðφ1 þ φ−1Þ ¼ 0 and the log-likelihood
simplifies to the usual form

logΛ ¼ 1

2

h
α21 þ α2−1

i
: ð51Þ

Next, when the two harmonics are 90° out of phase,
2Φ0 − ðφ1 þ φ−1Þ ¼ π=2, the likelihood becomes

logΛ ¼ 1

4
½α21 þ α2−1� þ

1

4
jα21 − α2−1j

¼ 1

2
Maxðα21; α2−1Þ: ð52Þ
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Here, only the most significant harmonic contributes to the
SNR. Indeed, for phase offsets greater than 90°, we also
instead obtain the result given in Eq. (52).5

We denote the phase consistent combined SNR quantity
as ρð1;−1Þ. The benefit of the maximized SNR expression is
that it reduces the number of noise degrees of freedom
which contribute. Heuristically, we expect to reduce the
number of degrees of freedom from four to three, as we
have eliminated one free phase. Using the quadrature sum
of ρ1 and ρ−1 gives four degrees of freedom, with the
observed SNR described by a noncentral χ2 distribution
with four degrees of freedom. Enforcing phase consistency
reduces the noise contribution. By generating 106 simu-
lated signals in different Gaussian noise realizations, we
have seen that the distribution is almost identical to a
noncentral χ2 with three degrees of freedom. Of course, if
we require consistent phases of the harmonics, we must
also require this of the signals, e.g., when constructing the
relevant shaded region in Fig. 8. We have done this and, as
expected, there is negligible difference. In principle, we are
able to extract the initial mean anomaly from the relative
phases of the harmonics. Unfortunately, the value will
depend sensitively upon the masses and eccentricity of the
fiducial signal, as seen in [17], and therefore we are
unlikely to significantly constrain its value.
In addition to requiring a consistent phases of the

eccentric harmonics we could in principle also require
the amplitudes to be consistent. However, due to the
variation in SNR with mean anomaly, particularly for
the h−1 harmonic, this is not feasible.

D. Estimating the eccentricity
from the harmonic amplitudes

To obtain an estimate of the eccentricity, we calculate the
relative SNR in h1 and h−1 and then use Fig. 8 to read off
the eccentricity. For our example, we have ρð1;−1Þ=ρ0 ¼
4.11=21.13 ≈ 0.2 and, from Fig. 8, we obtain an eccen-
tricity of e10 ≈ 0.2. We know, however, that the measured
SNR is comprised of both a signal and noise contribution,
this provides an uncertainty on the SNR in the eccentric
signal, as opposed to the noise. In addition, the mapping
from SNR to eccentricity is complicated due to the width
of the allowed region. We must address both of these
issues in order to obtain an accurate measure of the

eccentricity, and its uncertainty, from the measured
SNRs, as shown in Fig. 9.
It is straightforward to map from an expected value of

signal SNR to the distribution of measured SNRs in noise
using a noncentral χ2 distribution [37]. We wish to obtain
the inverse mapping: from the measured SNR to a
distribution for the expected signal SNR, which we achieve
through rejection sampling. First, we generate a uniform
distribution of expected signal SNR values and for each
find the corresponding probability density of obtaining the
given measured SNR in noise. We then use these proba-
bilities as weights to either accept or reject each signal SNR
sample, with higher probabilities leading to a greater
chance of acceptance. These accepted samples then form
the distribution of signal SNR for ρð1;−1Þ, which we divide
by measured value of ρ0 to get the SNR ratio. In principle,
we should also account for noise in the ρ0 measurement but
this has a negligible effect due to the higher SNR of h0 and
we choose not to incorporate it. The distribution of signal
SNR ratios is plotted as the likelihood in the bottom right
panel of Fig. 9. The signal SNR distribution peaks at a
smaller value than the measured SNR, as is expected since
noise is more likely to increase the measured SNR.
Next, we need to derive a mapping from the ratio of

SNRs in the eccentric harmonics to the binary’s eccentric-
ity. To do so, we must account both for the uncertainty in
the mapping which arises from the variation of SNR with
initial mean anomaly and the nonlinearity of the mapping
between parameters, as shown in the lower right panel in
Fig. 9. We would like to enforce a uniform prior on
eccentricity.6 We obtain the prior on the SNR ratio,
ρð1;−1Þ=ρ0 numerically by generating 106 samples from
the uniform prior on eccentricity and mapping them to SNR
ratio. Each value of e10 corresponds to a range of permitted
SNR ratios and we randomly select a value uniformly
distributed within the permitted range. A uniform prior in
eccentricity maps to the prior distribution shown in the
bottom right panel of Fig. 9. The features at SNR ratio
around e10 ¼ 0.2 arise from the structure in the mapping to
eccentricity. The falloff at e10 ¼ 0.4 is due to our truncation
of the mapping at e10 ¼ 0.4 but this is at large enough
values that it does not impact our result.
Combining the prior and likelihood distributions gives

the overall distribution for the SNR ratio, again shown in
Fig. 9. We map this distribution back to eccentricity to
obtain the measured eccentricity distribution of the signal.
Figure 9 shows the final result. We have generated a

gravitational wave signal from a binary with M ¼ 24M⊙
on an eccentric orbit with e10 ¼ 0.2, with an SNR of 20
injected into Gaussian noise. By matched filtering the data,

5Naively, it appears that when the components are maximally
out of phase, 2Φ0 − ðφ1 þ φ−1Þ ¼ π, we again obtain the
maximum SNR in Eq. (50). However, this requires one of the
amplitudes Ak to be negative, which is not permitted. Physically
the likelihood cannot become higher when the two components
become more out of phase with one another. Nonetheless, it is
always possible to simply take the SNR of the loudest harmonic
as in Eq. (52) by setting one of the Ak ¼ 0. Thus, the likelihood
must therefore take the form given in Eq. (52) whenever
2Φ0 − ðφ1 þ φ−1Þ > π=2.

6Astrophysically, there may be an argument to impose differ-
ent eccentricity priors. This is straightforward to do starting with
a uniform prior on e10. In contrast, there is no (astro-)physical
motivation to apply a specific prior on the SNR ratio.
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we obtained the SNRs in the eccentric harmonics given
in Eq. (40). From these SNRs, we obtain the probability
distribution for ρð1;−1Þ=ρ0. We then map this to an eccen-
tricity distribution, and obtain the value

e10 ¼ 0.19þ0.11
−0.10 ; ð53Þ

where the central value is the median and the uncertainties
provide the 90% confidence interval. Most significantly,
there is sufficient SNR in the h1 and h−1 eccentric
harmonics to confidently identify the signal as originating
from an eccentric binary and place a lower bound (at
90% confidence) of e10 ¼ 0.09.

VI. DISCUSSION

We have investigated the structure of the gravitational
wave signal emitted by an eccentric binary merger and

seen that the waveform can be decomposed into a
series of harmonics, as has been shown previously in
the literature for the inspiral portion of the waveform
[32–35]. The frequencies of these harmonics are given by
2fϕ þ kfr, where fr is the radial frequency (characterized
by the time taken to return to apoapsis) and fϕ is the
azimuthal frequency (characterized by the time taken
to return to a fixed direction) [11]. With the use of an
SVD of eccentric waveforms, we have shown that this
decomposition also works well through the merger and
ringdown, and provided a framework for efficiently
constructing these harmonics from existing eccentric
waveform models.
We have shown that there are three modes which, at low

to moderate eccentricities, contain the majority of the
power in the GW signal, which we denote as h0, h1,
and h−1. In all cases we have studied, h0 represents the
dominant mode, containing the majority of the SNR and

FIG. 9. Mapping of measured SNRs to eccentricity for a single detector and Gaussian noise example with an simulated signal of
e10 ¼ 0.2;M ¼ 24M⊙; q ¼ 0.5 and a total SNR of 20. The bottom right panel shows the measured and inferred distribution of SNR
ratio in the h1 and h−1 harmonics relative to h0. The prior on SNR ratio is obtained by requiring a flat prior on eccentricity, as discussed
in the text. The overall distribution is the product of the likelihood and prior. The bottom left panel shows the mapping between SNR
ratio and eccentricity, along a chirp mass–eccentricity degeneracy line passing through e10 ¼ 0.2;M ¼ 24M⊙. The shaded regions
show the distributions of the SNR ratio and eccentricity, with darker shades corresponding to greater probability density. The top left
panel shows the inferred eccentricity distribution with the black lines corresponding to quantiles of 5%, 50%, and 95%. The dotted pink
line represents the simulated eccentricity, e10 ¼ 0.2.
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resembling the signal emitted from a noneccentric binary of
comparable mass. The next most important is the h1
waveform (first higher frequency) and subsequently h−1
(first lower frequency) which describe the basic form of the
modulations due to the binary orbiting between apo- and
periapsis. The amplitudes of the subleading modes increase
approximately linearly with eccentricity and so, if we are
able to measure the relative amplitudes of these modes, we
can extract the eccentricity of the binary.
Next, we have identified the degenerate direction in chirp

mass and eccentricity space by adapting the method of [4].
We have showed that while the degeneracy of the h0 mode
clearly follows the expected degeneracy line, the degen-
eracy line for the subleading harmonics differs slightly.
Nonetheless, the degenerate direction for h0, h1 and h−1 is
similar enough that we can use a common direction
determined by h0 as a reasonable approximation of all
three. This allows the three waveforms to probe a range of
eccentricities at which these harmonics are a reasonably
good representation of the waveform.
We have proposed a method to rapidly estimate the

eccentricity of a binary merger with minimal computa-
tional cost. Beginning from the best-fit noneccentric
parameters, we generate the h0, h1, and h−1 eccentric
harmonics and matched filter them against the data. The
ratio of the SNRs in each harmonic should then give us
information about the eccentricity of the binary. This is
complicated somewhat by the fact that the amplitude of
the different harmonics also varies with the initial mean
anomaly of the system, which we handle by appropriately
broadening the mapping from the harmonic SNRs to
eccentricity. At the end of Sec. V, we demonstrate the
method on a simulated signal and show that we can
accurately recover the eccentricity.
One of the benefits of our proposed approach is its speed.

In order to investigate a range of eccentricities, we obtain
the three leading eccentric harmonics by generating six
waveforms. We then filter these three harmonics against
the data and, from the results, are able to quantify the
eccentricity of the signal. In translating from observed
SNRs to eccentricity, we require a mapping that accounts
for variation with initial mean anomaly, as shown in Fig. 8.
Producing that requires a significant number of overlaps
between eccentric waveforms. In particular, we must
generate the harmonics and then calculate overlaps with
signals with a range of eccentricities and anomalies. This
takes on the order of an hour of CPU time but in practice we
are able to precompute these grids of overlaps for a discrete
selection of masses, and interpolate the results to an
arbitrary mass. This computation is only required once,
and can then be used on all the signals from a given
observing run. The time taken to analyze a single event is
under a minute.
The work here provides a novel method for rapidly

inferring eccentricity in a binary system. However, there are

several additional steps required before this can be used as a
tool to apply to recent GW observations. First, we have
restricted attention to the chirp mass–eccentricity space,
holding both the mass ratio and effective spin constant.
While this is a reasonable starting point, particularly as
the impact of eccentricity is most strongly degenerate
with chirp mass, we must extend the formulation across
the four dimensional space of masses, effective spin and
eccentricity. This will require a detailed investigation
of the degeneracies involved. Next, we must incorporate
this eccentricity measurement into the full parameter
estimation, rather than providing only a two-dimensional
measure of mass and eccentricity. The methods provided
in the simple-pe formalism [37] can be naturally
extended to include eccentricity as it already contains
similar methods applied to higher GW multipoles [68]
and precession [65]. We also plan to investigate extending
this method to signals with higher eccentricities by
repeated decomposition and matched filtering at higher
fiducial eccentricity values (especially useful for low
chirp masses, see Appendix).
There are several other applications of the methods

that introduced here. First, the harmonic decomposition
of the eccentric waveform provides a possible basis for
searches for eccentric binaries. We have shown that the
first three eccentric harmonics contain a large fraction
of the signal power and, furthermore, a single set of
waveform harmonics can cover a range of eccentricities.
Therefore, replacing a single waveform with these three
eccentric harmonics enables a significantly more com-
putationally efficient search for eccentric binaries up
to moderate values of eccentricity, avoiding the need to
increase the dimensionality of the parameter space to
accommodate eccentricity and an anomaly parameter.
This approach has previously been proposed [65] and
applied [66] to precessing binaries, and higher GW
multipoles [73].
Existing methods of searching for eccentricity in binary

mergers often start from the noneccentric parameter esti-
mates [26,27] and then use these to infer eccentricity by
“unwrapping” the additional dimensions. Our analysis of
the appropriate direction to unwrap, and particularly the
fact that the chirp mass should vary as the eccentricity
changes will be of use to those analyses.
Several papers have discussed the fact that, particularly

for high mass signals, it can be difficult to distinguish the
impact of orbital eccentricity from precession of the binary
orbit [10,27–29]. Our waveform decomposition into har-
monics, along with the harmonic decomposition of the
precessing waveform [65] provide the ideal tools to
investigate this degeneracy. For both systems, the leading
order waveform looks essentially the same as a non-
precessing, circular binary. Then, we have the leading
order corrections due to eccentricity and precession. We
can compare these leading order corrections. Calculating
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the overlaps between precession and eccentricity effects
will inform us about the mass threshold the two effects
become degenerate, and may even provide a degeneracy
mapping between precession and eccentricity in these
degenerate regions. The studies will be complicated by
the short waveforms at these high mass values, meaning the
various harmonics are not orthogonal.
Plots were prepared with Matplotlib [74] with

analysis making use of NumPy [75], pycbc [76], and
Scipy [77].
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APPENDIX: VARIATION WITH MASS

In the main body of the paper, we have focused on the
analysis of a binary with M ¼ 24M⊙ and mass ratio

q ¼ 0.5. In this Appendix, we investigate the applicability
of the methods presented in the body of the paper across the
mass space. For this, we require that the mass–eccentricity
degeneracy matches the expected direction, as calculated in
Sec. IV and, equally importantly, that the degeneracy in
match of the subleading harmonics and in particular h1 and
h−1 is along a similar direction to the leading h0 harmonic.
In Figs. 10 and 11 we show the match across mass and
eccentricity parameter space with again a binary with
e10 ¼ 0.2, M ¼ ½10M⊙; 40M⊙�, and q ¼ 0.5. In both
cases, the degeneracy is along the expected direction [as
calculated using Eq. (39)] and extends to e10 ≈ 0.2 or 0.3 at
M ¼ 10M⊙ and M ¼ 40M⊙ respectively. The degen-
eracy of the h−1 harmonic is consistent with the h0
direction. However, the h1 has a different degeneracy
direction and the match decays more rapidly. This limits
the domain of applicability of our decomposition, particu-
larly for the M ¼ 10M⊙ signal.
We also require that the amplitude of the h1 and h−1

harmonics, obtained at the fiducial value of e10, can be used
to infer the eccentricity. For this, we require that the ratio of
SNRs in the subleading harmonics, relative to h0, increases
as a function of eccentricity. Figure 12 shows the variation
of the SNR ratios with eccentricity. For the M ¼ 10M⊙
system the SNRs in the h1 and h−1 harmonics increases up
to e10 ≈ 0.075. Above this eccentricity there is significant
power orthogonal to the three leading harmonics, which
limits the efficacy of our approach. For higher eccentricities
the decomposition at e10 ¼ 0.035 and restriction to three
harmonics is not sufficient to accurately describe the
waveforms. Based on Fig. 12, the dominant effect is likely
the mismatch between h1 generated at our fiducial point
and the features in the waveform. It is possible that

FIG. 10. Overlap between different eccentric waveform harmonics across the chirp mass and eccentricity space at the time offset of the
equivalent match for the h0 waveform. The three plots show how the match varies for the h−1 harmonic (left panel), h0 harmonic (centre
panel) and h1 harmonic (right panel). In all cases, the match is calculated between the fiducial waveform, generated at e10 ¼
0.035;M ¼ 10.07M⊙ (indicated by the red dot) and the point shown. In all cases the system has a mass ratio of q ¼ 0.5, the waveform
is generated from 10 Hz and the match performed using a low frequency cutoff of 20 Hz. The magenta line shows the line of degeneracy
between eccentricity and chirp mass described by Eq. (39).
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recalculating the harmonics at higher values of e10will enable
us to extend the validity of this approach. For the high mass
system, the SNR ratio between the h1;−1 and h0 harmonics
increases up to e10 ≳ 0.4 and captures the vast majority of the
signal power orthogonal to h0 up to e10 ∼ 0.3.

Combined, the results of Figs. 10–12 provide good
evidence that the proposed method is applicable over a
range of masses. The range of eccentricities for which it is
applicable will vary with mass, with a more restricted range
of eccentricity for lower masses.

FIG. 12. The shaded regions correspond to the range of possible matches between different harmonics at fiducial values of
e10 ¼ 0.035, M ¼ 10.06M⊙ (left panel) or e10 ¼ 0.112, M ¼ 40.20M⊙ (right panel), with a set of trial waveforms at different
eccentricities along the corresponding degeneracy line between chirp mass and eccentricity (39), all divided by the equivalent match
with h0. The blue and orange regions show ρ1=ρ0 and ρ−1=ρ0 respectively, the green region shows the region corresponding toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ21 þ ρ2−1
p

=ρ0, and the black line shows the total power in the higher harmonics, calculated as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2total − ρ20

p
=ρ0. To determine the

minimum and maximum values of each region we generate and match 32 TEOBResumS waveforms with equally spaced apsidal
anomaly values between 0 and 2π for each eccentricity value.

FIG. 11. Overlap between different eccentric waveform harmonics across the chirp mass and eccentricity space at the time offset of the
equivalent match for the h0 waveform. The three plots show how the match varies for the h−1 harmonic (left panel), h0 harmonic (center
panel) and h1 harmonic (right panel). In all cases, the match is calculated between the fiducial waveform, generated at e10 ¼
0.112;M ¼ 40.28 (indicated by the red dot) and the point shown. In all cases the system has a mass ratio of q ¼ 0.5, the waveform is
generated from 10 Hz and the match performed using a low frequency cutoff of 20 Hz. The magenta line shows the line of degeneracy
between eccentricity and chirp mass described by Eq. (39).
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