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Introduction

Cystic fibrosis (CF) heterozygotes (also known as ‘carriers’) are people who have one mutated copy
of the CFTR gene. Research into the health risks of CF carriers has been limited by a lack of large
cohorts tested for CF carrier status, but routine clinical testing identifies CF carriers in the population.
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Such test records additionally contain large amounts of clinical information, making them a valuable
research resource to not only identify CF carriers in the population but also to provide additional
data not found elsewhere.
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Methods

Following governance approvals, we adapted 30 years worth of CF genetic testing records generated
by the All-Wales Medical Genomics Service (AWMGS) and submitted them to the SAIL Databank
for anonymised linkage.

Results

Unexpected obstacles meant that a minimum amount of clinical information could be annotated
ahead of linkage. The raw data were highly heterogeneous due to the records’ longitudinal collection
and clinical origins, making standardisation difficult. Moreover, the presence of unique identifiers in
the clinical data violated the separation principle, requiring manual annotation to produce a cleaned
dataset. Explicit identification of patients or their relatives throughout the records complicated split
file anonymisation.

Conclusion

Extracting useful information from historical clinical genetic test records is a significant challenge
with technical and governance aspects. The mixing of unique identifiers with clinical data in
heterogeneous, unstructured free text combined with a lack of automated tools meant that manual
annotation was required to adhere to the separation principle. As such, only a minimum of the
available clinical data was annotatable within the project timeline and mutually exclusive access
to the identifiable and pseudonymised data meant that annotations could not later be validated.
Future efforts to link clinical genetic test records for research must consider these challenges in their
approach.
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Introduction

Comprehensive data linkage infrastructure supports delivery
of research that is of significant benefit to public health.
Understanding the challenges associated with unlocking new
data flows is key to securing the resources required for driving
future research. Cystic fibrosis (CF) is a life-limiting genetic
disorder caused by inheriting two pathogenic variants in the
cystic fibrosis transmembrane conductance regulator (CFTR)
gene. The CF Registry is a curated data product that captures
longitudinal clinical information for CF patients in the UK,
and has been utilised in data linkage environments to enhance
the accuracy of CF research [1]. However, routinely collected
clinical data, such as from genetics services, is not commonly
utilised for research.

The All-Wales Medical Genomics Service (AWMGS) has
provided CFTR mutation analysis for diagnostic purposes and
newborn screening for 30 years. These reports represent a
rich resource of information about people with CF (pwCF),
CF carriers, and individuals who received a negative result
(i-e. no mutations found), including genotypes, family history,
and clinical indications for testing. Automated approaches to
converting ‘messy’ historical records into structured analytical-
ready formats are an active area of development [2] but
this requires case-by-case design to accommodate the specific
dataset being cleaned.

Here, we describe efforts to adapt 30 years’ of clinical
reports pertaining to CF tests generated by the AWMGS (the
AWMGS CF Test Record) for anonymised data linkage project
within the Secure Anonymised Information Linkage Databank
(SAIL) Databank [3, 4].

Description of data source

Data contents

A total of 16,181 individual CF gene test records, collected
between 1987 and 2023, are stored at AWMGS in an
SQL compatible laboratory information management system
(LIMS). Early records (pre-1995) are typically incomplete. The
longitudinal nature of these records means their contents vary
widely in formatting and scope, but broadly encompass three
major areas of information: who the patient is, why they have
been referred, and the result of the test.

Personal identifiable information (PIl) includes forename,
surname, NHS number, date of birth, and postcode at the
time of testing, but not gender. Information pertaining to
the referral comprises both clinical presentation e.g. positive
IRT, meconium ileus, and pertinent family history e.g.,
sibling / parent with CF. The result information specifies the
level of testing undertaken (i.e., the number of mutations
being screened for), any mutations found, and residual risk
calculated.

Data quality
Consistency

Much of the information in the CF gene test record was highly
heterogeneous, as represented in Table 1. Inconsistent data
entry presented a considerable data quality issue. Some of

this variation reflects the longitudinal nature of the records,
i.e. updates in practice over time, such as adopting different
CFTR variant naming schemes, but most is likely attributable
to inconsistent protocols over the 30-year collection period.
Some fields are populated with a variety of synonymous entries
that may be interpretable given context (see Table 1, Reason
and Result columns) but are not internally consistent enough
to serve as reliable annotations.

Formatting

To facilitate data cleaning, we reformatted the records from
an SQL table to a comma separated tabular format with one
test per row. The spatial organisation of the initial report
dictated the columns created, as visualised in Table 1. PII
fields were distributed across separate columns, but free-hand
clinical notes were preserved in a small number of large
unstructured text fields. These fields encompassed a broad
range of information, including clinical context, test result
and, problematically, unique identifiers for the patients, their
relatives, and in some cases their clinicians too. This particular
characteristic resulted in a lack of machine readability and
presented a significant challenge to importing the records to
the SAIL databank.

Data source conclusion

Clinical scientists generate reports that are formatted
according to the needs of the clinician using them, prioritising
human readability and focus on the individual or family. These
features contrast with the needs of the data scientist, who
requires machine readability, clear separation of variables,
and population level focus. Whilst the records may be high
quality clinical resources, and there has been increasing
standardisation over time, historical records bring pervasive
structural issues that limit their quality and utility as a data
resource.

Methods and materials

Pseudonymisation

The SAIL Databank’'s pseudonymisation protocol was
developed in conjunction with Health Informatics Wales
(HWIS), now Digital Health and Care Wales (DHCW) [4].
The procedure generates an anonymised linkage field (ALF)
from key unique identifiers, such that an ALF represents a
unique individual consistently across linked datasets.

Obstacles and challenges

Errant identifiers

A key requirement of SAIL is clear adherence to the separation
principle [5, 6]. The noted mixing of patient and family PlII
with clinical data in large free text columns was a significant
obstacle to satisfying this separation principle. An “errant
identifier” refers to the presence of unique identifiers in fields
containing clinical data.
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Table 1: Synthetic representation of the contents, formatting, and structure of the CF test records

Forename Surname Reason Result

Notes

JOHN SMITH fam_hist cf carrier

JANE SMITH susp _carrier 1

ROBERT SMITH IRT _pos IRT 2 mut

DAVID SMITH CF 1 mut

ANDREW JONES fertility one/N

DELIA JONES FH NN

MARY JONES family pos

JOHN’s son, ROBERT SMITH, has cystic fibrosis.
c.1521 1523delCTT variant has been identified. ROBERT'S
paternal aunt, CAROLINE, died of cystic fibrosis.

JANE's son, ROBERT SMITH, has cystic fibrosis. Her partner,
JOHN SMITH, is also a carrier for the c.1521 1523delCTT
variant. JANE is also a carrier.

ROBERT has presented with [symptoms| and received a positive
IRT test. His father, JOHN SMITH, and mother, JANE SMITH,
are carriers for p.(F508del).

DAVID's son, JOHN SMITH, is a carrier of DF508 and his
daughter CAROLINE died of CF. His grandson ROBERT has
cystic fibrosis. DAVID is a carrier of DF508. His wife AUDREY
is deceased.

ANDREW and his partner have been experiencing fertility issues.
Familial variant detected.

DELIA's cousin, ALEXIA JONES, died of CF. Her and her
husband ANDY want to understand their CF risk. No variants
detected. ANDREW is a carrier for the c.1521 1523delCTT
variant.

MARY JONES is the father of ANDREW JONES. She is a
carrier for the ¢.1521 1523delCTT variant.

There are synonymous entries in the Reason and Result fields: “fam _hist”, “FH", and “family” all indicate testing due to family
history. Separately, “one/N", "1 _mut", and “cf carrier” indicate a single mutation found. Entries such as "pos” are ambiguous. The
variant p.(F508del) is referred to by both its DNA and legacy names, c.1521 1523delCTT and DF508 respectively. The Notes
column mixes unique identifiers such as forename and surname with clinical data, such as the variants identified. Bold names are
individuals without a test record or who have been referred to by a common common permutations of their forename, and are
resultantly not indexed by the Forename/Surname columns. The case of Andrew Jones demonstrates a patients test result being
recorded in a relatives report. This table is not intended to be exhaustive. IRT =immunoreactive trypsin; FH =family history;

NN = Normal.

It was found that addressing this problem could take two
forms: (1) white-listing (positive selection) data to be carried
forward into SAIL through specific annotation, or (2) detection
and scrubbing (negative selection) of the errant identifiers so
that the remaining cleaned data could be taken forward. The
latter approach was explored first as it seemed most amenable
to automation.

Any iterative regular expression (regex) approach designed
to detect and scrub errant identifiers would require a
comprehensive reference list to match against, but no
sufficiently comprehensive list was available or possible to
generate. The list of patients who had received testing was not
sufficient because errant identifiers often named individuals
not in the testing pool, e.g., untested relatives of the patient
(see Table 1 for example names in bold), the attending
clinician, etc.

A de novo natural language processing (NLP) detection
approach was explored inspired by similar work elsewhere [2, 7].
It was initially hypothesised that named entity recognition
(NER) coupled with part-of-speech (POS) tagging could
identify individuals by proper nouns, and use referential
language to indirectly detect names e.g. verbs (Joe Doe
attended, presented with etc.), copulas (where the name is the
subject, e.g. Joe is, Joe will be), and possessives (has, have.
However, this approach came with no guarantee to remove all

errant identifiers, which was found to be incompatible with the
governance requirements of SAIL. Therefore, a more labour-
intensive approach of manually positively selecting non-PlI
data to be imported to SAIL was opted for as this would
guarantee de-identification, since PIl could be deliberately
avoided. Vital fields were defined as genotype, testing level
(number of CF variants tested for) and referral category i.e.,
family screening, newborn screening, etc. and were manually
annotated across 16,181 records. From initial contact to
completing annotation, this process took approximately 160
human work hours.

Absent identifiers

Out of 16,181 records, approximately 5,900 lacked an NHS
Number, which is used for determinative matching to generate
an ALF. A subset of patients without an NHS number were
identified in their test results as living outside of the UK, but
the vast majority could not be explained. Absence of NHS
Number may be ameliorated by comparison of other unique
identifiers (e.g. date of birth), but if these were not available,
the individual in question could not be linked to other datasets,
resulting in a practical exclusion from the project. Prenatal
cases were common in this group, given they lack a birth date
and often a forename.
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In pregnancies where there is a family history of CF or
foetal symptoms (such as echogenic bowel), the first step is
testing the mother. If the mother is at least a carrier, the
foetus may have CF testing through amniocentesis. In these
cases, the test record usually lists no forename, no date of
birth, and no NHS Number. A similar issue was observed for
babies tested as part of newborn screening (NBS): if a name
had not been assigned, the child was often recorded as some
variant of “Baby-of”, then the mothers name or simply the
family name. If the child did not receive a follow-up test at
birth to restore this data, then this record would result in a
non-match in SAIL and exclusion from the project.

Cross-indexing

Where couples were tested together, it was common for the
results for one individual to be explicitly included in the report
for their partner, so that genetic counsellors could approach
both as a single case without missing any information.
However, this cross-linking of data introduced error to the
manual annotation of test result because it disconnected the
name the report was filed under from that persons test result
(see Table 1, under Andrew Jones). Following anonymisation,
any residual error not caught during annotation checking
would lead to distortions in the data.

Mutual exclusivity

Whilst the mutual exclusion of access to identifiable and
anonymised data is a clearly justified security policy, in this
case it created two issues. Firstly, annotation of the raw
data could only proceed in one stage before the data was
uploaded to SAIL. Given the project analysis could only be
undertaken in SAIL, this limited the amount of time that could
be spent on annotation and therefore limited the breadth of
information taken forward to the minimum necessary for the
project. Secondly, annotations could not be later validated
against the identifiable data they were based on, which limited
the reliability of the anonymised data.

CFTR variant nomenclature standardisation

Genetic variants have historically been referred to by the
change they induce at the protein level e.g. F508del/DF508/
AF508, or the cDNA level. These are referred to as ‘legacy’
names and their usage tends to be local unless sufficiently
harmonised through common use. The Human Genome
Variation Society (HGVS) provides guidelines for consistently
naming variants at the cDNA, RNA, genomic, and protein
levels e.g. ¢.1521 1523del (p.Phe508del) [8] and these are
the preferred reporting standard.

A key utility point of the CF test record are evaluating
change in CF population genetics over the period of testing,
but use of legacy or HGVS standard formats was variable
through time. To ensure variants could be consistency counted,
a standardising resource that could translate across all schemas
was required.

A thesaurus was created by linking two discrete CFTR
variation databases: CFTR2 [9, 10] and a Simple ClinVar
extract focusing on pathogenic and likely pathogenic variants
[11]. In total, 1108 CFTR variants were identified across

the two resources, with 417 shared by both databases. DNA
name, protein name, and legacy names were not symmetrically
available in both. A third resource, the Mutalyzer batch
interpreter [12], was used to validate found variants and
provide comprehensive entries across naming schemes. Each
annotated variant in the CF Test Record was then linked to
the thesaurus using each instance of a name for full readability
regardless of naming scheme. It was found that even when
similar formats were used across reference resources, minor
adjustments in syntax were necessary e.g., G>A vs G->A.
Harmonising minor details such as this were crucial for efficient
linkage of variant names.

Conclusions and recommendations

A comprehensive data linkage architecture promotes versatile
research infrastructure and accurate insights. Whilst new
data systems can readily adopt standards and protocols to
better anticipate the requirements of anonymised linkage
[13], historical data must be carefully adapted to unlock
its value, and the complexity of this task should not be
underestimated. We have described 30 years worth of Welsh
CF gene test records as a novel resource for anonymised data
linkage and given an account of the challenges associated
with adapting it for this purpose. Future efforts to liberate
analogous datasets focused on different conditions will benefit
from our recommendations.

Firstly, we have found that dealing with errant identifiers
requires positive selection of pertinent data, as negative
selection is unlikely to be comprehensive enough to satisfy
the separation principle. NLP tools for annotation are unlikely
to fully replace manual annotation because of the strict data
governance standards of existing linkage frameworks. That
said, the development of such tools will be a key part of
supporting data adaptation efforts in the future and will
be delivered through collaboration between data scientists,
clinical scientists, and computer scientists.

Secondly, mutual exclusivity of access to identifiable and
anonymised data has the potential to create problematic
bottlenecks that may limit the scope of data available for
research and the reliability of annotations. Governance officers
should be made aware of the drawbacks of this practice
and should consider allowing temporary ‘look-back’ access
arrangements to enable validation of anonymised resources.
Research groups should make provision for more contact time
with the identifiable data than is estimated to be required, be
clear on what fields are vital, and document as much detail
on their encoding practices as possible for post-anonymisation
reference.

Thirdly, data controllers should consider linkage as a future
destination for their data and adapt their standards accordingly
to facilitate it. For historical data, this should take the form of
providing documentation such as data dictionaries, metadata
on encoding practices through time, data maps, etc. These
resources will enhance efforts to adapt historical datasets by
helping to assess their quality, to locate and characterise them,
and to anticipate resource requirements.

Finally, a challenge specific to genetic test records is
standardising the nomenclature of genetic variants. For
CF, where there are many causative variants, there was



Maddison RT et al. International Journal of Population Data Science (2024) 8:2:02

no single comprehensive resource to enable translation of
nomenclatures, and this is likely the case for other genetic
conditions. We recommend that this issue is anticipated
ahead of time and accounted for with the preparation of
thesaurus-like resources.

Acknowledgements

The authors would like to thank Liz Merrifield and Dr lain
Perry for their constructive feedback, and Prof. Peter Christen
and Rainer Schnell for their insightful editor comments. We
acknowledge the vital support of Sian Morgan at AWMGS,
Natalie Richards at the Cardiff Joint Research Office, and
Cardiff University for sponsorship of the study. This work was
supported by Wales Gene Park which is funded by Health and
Care Research Wales.

Statement on conflicts of interest

The authors have no conflicts to declare.

Ethics statement

Ethical approval was obtained for researcher access to
AWMGS data and to conduct this research project from the
Central Bristol Research Ethics Committee (Central Bristol
REC 23/SW/0010). Furthermore, section 251 exemption
was sought from the Confidentiality Advisory Group (CAG)
(23/CAG/0012) as explicit research consent had not been
granted from patients directly and could not practicably be
sought due to the scale and longitudinal nature of the records.
RM is funded by a Health and Care Research Wales PhD
Studentship (HS-22-20).

Data availability statement

Researcher access to personal patient data was organised in
collaboration with Cardiff and Vale University Health Board
(CAVUHB), NHS Wales R&D, and Cardiff University. Though
AWMGS are a pan-Wales service, the Data Controllership lies
with CAVUHB. As such, none of the data used in this study are
currently available for wider sharing. The archiving of research
data in SAIL may present the opportunity for sharing with
other groups in future.

References

1. Griffiths R, Schliiter DK, Akbari A, Cosgriff R, Tucker
D, Taylor-Robinson D. ldentifying children with Cystic
Fibrosis in population-scale routinely collected data in

Wales: A Retrospective Review. Int J Popul Data Sci
2020;5. https://doi.org/10.23889/ijpds.v5i1.1346

2. Lacey AS, Fonferko-Shadrach B, Lyons RA, Kerr MP, Ford
DV, Rees MI, et al. Obtaining structured clinical data
from unstructured data using natural language processing
software: 1JPDS (2017) Issue 1, Vol 1:359 Proceedings of

10.

11.

12.

13.

the IPDLN Conference (August 2016). Int J Popul Data
Sci 2017;1. https://doi.org/10.23889/ijpds.v1i1.381

Ford DV, Jones KH, Verplancke J-P, Lyons RA, John
G, Brown G, et al. The SAIL Databank: building
a national architecture for e-health research and
evaluation. BMC Health Serv Res 2009;9:157. https://
doi.org/10.1186/1472-6963-9-157

Lyons RA, Jones KH, John G, Brooks CJ, Verplancke J-
P, Ford DV, et al. The SAIL databank: linking multiple
health and social care datasets. BMC Med Inform Decis
Mak 2009;9:3. https://doi.org/10.1186/1472-6947-9-3

Kelman CW, Bass AJ, Holman CDJ. Research use
of linked health data—a best practice protocol. Aust
N Z J Public Health 2002;26:251-5. https://doi.org/
10.1111/j.1467-842x.2002.tb00682.x

Christen P, Ranbaduge T, Schnell R. Linking Sensitive
Data: Methods and Techniques for Practical Privacy-
Preserving Information Sharing: Synopsis by Kerina Jones.
Int J Popul Data Sci 2021;6.

Fonferko-Shadrach B, Lacey AS, Roberts A, Akbari A,
Thompson S, Ford DV, et al. Using natural language
processing to extract structured epilepsy data from
unstructured clinic letters: development and validation
of the EXECT (extraction of epilepsy clinical text)
system. BMJ Open 2019;9:e023232. https://doi.org/
10.1136/bmjopen-2018-023232

. den Dunnen JT, Dalgleish R, Maglott DR, Hart

RK, Greenblatt MS, McGowan-Jordan J, et al. HGVS
Recommendations for the Description of Sequence
Variants: 2016 Update. Hum Mutat 2016;37:564-9.
https://doi.org/10.1002/humu.22981

Castellani C. CFTR2: How will it help care?
Paediatr Respir Rev 2013;14:2-5. https://doi.org/
10.1016/j.prrv.2013.01.006

Sosnay PR, Salinas DB, White TB, Ren CL, Farrell
PM, Raraigh KS, et al. Applying Cystic Fibrosis
Transmembrane  Conductance  Regulator  Genetics
and CFTR2 Data to Facilitate Diagnoses. J Pediatr
2017;181:527-S32.el.  https://doi.org/10.1016/].jpeds.
2016.09.063

Pérez-Palma E, Gramm M, Niirnberg P, May P, Lal
D. Simple ClinVar: an interactive web server to explore
and retrieve gene and disease variants aggregated in
ClinVar database. Nucleic Acids Res 2019;47:W99-105.
https://doi.org/10.1093/nar/gkz411

Lefter M, Vis JK, Vermaat M, den Dunnen JT,
Taschner PEM, Laros JFJ. Mutalyzer 2: next
generation HGVS nomenclature checker. Bioinforma
Oxf Engl 2021;37:2811-7. https://doi.org/10.1093/bio
informatics/btab051

Christen
misconceptions

P, Schnell
about

R.  Thirty-three
population data:

myths and
from data


https://doi.org/10.23889/ijpds.v5i1.1346
https://doi.org/10.23889/ijpds.v1i1.381
https://doi.org/10.1186/1472-6963-9-157
https://doi.org/10.1186/1472-6963-9-157
https://doi.org/10.1186/1472-6947-9-3
https://doi.org/10.1111/j.1467-842x.2002.tb00682.x
https://doi.org/10.1111/j.1467-842x.2002.tb00682.x
https://doi.org/10.1136/bmjopen-2018-023232
https://doi.org/10.1136/bmjopen-2018-023232
https://doi.org/10.1002/humu.22981
https://doi.org/10.1016/j.prrv.2013.01.006
https://doi.org/10.1016/j.prrv.2013.01.006
https://doi.org/10.1016/j.jpeds.2016.09.063
https://doi.org/10.1016/j.jpeds.2016.09.063
https://doi.org/10.1093/nar/gkz411
https://doi.org/10.1093/bioinformatics/btab051
https://doi.org/10.1093/bioinformatics/btab051

Maddison RT et al. International Journal of Population Data Science (2024) 8:2:02

capture and processing to linkage. Int J Popul Data Sci
2023;8. https://doi.org/10.23889/ijpds.v8i1.2115

Abbreviations

Acronym: Meaning

ALF: Anonymised linkage field

AWMGS: All-Wales Medical Genomics Service

CAG: Confidentiality Advisory Group

CAVUHB: Cardiff and Vale University Health Board

CF: Cystic Fibrosis

CFTR/CFTR:  Cystic fibrosis transconductance regulator;

non-italics represents protein; italics represents
gene

DHCW:
HGVS:
HWIS:

IRT:
LIMS:
NBS:
NER:
NHS:
NLP:
PIl:
POS:
REC:
SAIL:
SQL:

Digital Health and Care Wales

Human Genome Variation Society

Health Wales Informatics Service (now Digital
Health and Care Wales)

Immunoreactive trypsin

Laboratory information management system
Newborn screening

Named entity recognition

National Health Service

Natural language processing

Personal identifiable information

Part of speech

Research Ethics Committee

Secure Anonymised Information Linkage
Structured Query Language


https://doi.org/10.23889/ijpds.v8i1.2115

