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Testbeds and Evaluation Frameworks for Anomaly Detection
within Built Environments: A Systematic Review
MOHAMMED ALOSAIMI, Cardiff University, UK
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CHARITH PERERA, Cardiff University, UK

The Internet of Things (IoT) has revolutionized built environments by enabling seamless data exchange
among devices such as sensors, actuators, and computers. However, IoT devices often lack robust security
mechanisms, making them vulnerable to cyberattacks, privacy breaches, and operational anomalies caused
by environmental factors or device faults. While anomaly detection techniques are critical for securing IoT
systems, the role of testbeds in evaluating these techniques has been largely overlooked. This systematic
review addresses this gap by treating testbeds as first-class entities essential for the standardized evaluation
and validation of anomaly detection methods in built environments. We analyze testbed characteristics,
including infrastructure configurations, device selection, user-interaction models, and methods for anomaly
generation. We also examine evaluation frameworks, highlighting key metrics and integrating emerging
technologies such as edge computing and 5G networks into testbed design. By providing a structured and
comprehensive approach to testbed development and evaluation, this paper offers valuable guidance to
researchers and practitioners in enhancing the reliability and effectiveness of anomaly detection systems.
Our findings contribute to the development of more secure, adaptable, and scalable IoT systems, ultimately
improving the security, resilience, and efficiency of built environments.

CCS Concepts: • Security and privacy → Intrusion/anomaly detection and malware mitigation; •
General and reference→ Surveys and overviews;Metrics; Evaluation.
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1 INTRODUCTION
The Internet of Things (IoT) enables devices, or ’things,’ such as sensors, actuators, and computers,
to autonomously exchange data while monitoring or interacting with their surroundings [1];
however, these IoT devices often face significant power constraints [2]. By 2025, IoT could impact
the economy by up to $11 trillion, with an estimated 27 billion devices deployed [3]. However, with
this growth, IoT devices face increasing cyber threats, such as unauthorized access and privacy
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Table 1. Summary of Existing Surveys

Paper Method Focus AD-T Testbed Dataset EM CUT

Cook et al. [11] Survey Time-Series Data
Himeur et al. [12] Review Energy Consumption in Buildings
Erhan et al. [13] Review Sensor System

Moustafa et al. [14] Survey Network Anomaly Detection
Gaddam et al. [15] Survey Sensor Faults and Outliers
da Costa et al. [16] Survey Intrusion Detection in IoT
Luo et al. [17] Systematic Survey Cyber-Physical Systems

Benkhelifa et al. [18] Review Intrusion Detection Systems
Fahim & Sillitti [19] Systematic Review Intelligent Inhabitant Environments
Taha & Hadi [20] Review Categorical Data
Fernando et al. [21] Survey Medical Data
No, it does not discuss this topic, Yes, it discusses this topic partially discusses this topic. "AD-T"=Anomaly Detection Techniques. "EM"=Evaluation Metrics.

"CUT"=Commonly Used Tools in the context of testbed and anomaly detection.

breaches involving voice assistants or cameras [4]. Given that IoT devices are spread throughout
the home, the risks of data privacy and security increase [5]. If compromised, attackers could alter
data or control devices, potentially unlocking doors or assessing occupancy through network traffic
[6]. Consequently, detecting anomalies is critical to protecting data integrity and privacy.

Detecting cyber or physical threats requires a system that monitors data for anomalies. According
to Barnett and Lewis, “an outlier is an observation (or subset of observations) that appears to be
inconsistent with the remainder of that set of data” [7], while Cook et al. define an anomaly in IoT
as a measurable consequence of an unexpected change outside the norm [8]. Detecting anomalies
is challenging because the concept of "normal" can change over time or due to environmental
factors. Trends or seasonal shifts might appear abnormal even when they are not, while certain
conditions, such as someone lying on the kitchen floor, are clear anomalies needing immediate
action [9]. This complexity means that effective anomaly detection is often application-specific,
designed to recognize unique features within a particular context [8].

Previous reviews on anomaly detection have been conducted, but our work focuses on anomaly
detection algorithms specifically within built environments, emphasizing the importance of the
testbed. We treat the testbed as a first-class citizen, essential for standardized and thoroughly
evaluating detection techniques. Our review also covers evaluation metrics, types of anomalies,
methods of anomaly creation, and smart home datasets, including data collection, duration of
capture, and analysis tools.

This review is structured as follows: Section 2 provides background on anomaly types, detection
techniques, and Reinforcement Learning (RL) for anomaly detection. Section 3 outlines the
research methodology, including research questions and filtering criteria. Section 4 covers the
creation of the testbed, the generation of anomalies, and the setup of the testbed for devices and
users. Section 5 describes various anomaly detection mechanisms and their algorithms. Section 6
details the setup of the dataset, the network configuration, the data collection, the duration of the
capture, and the analysis. Section 7 highlights tools for building testbeds or datasets, while Section
8 reviews commonly used evaluation metrics in the anomaly detection literature. Table 1 compares
existing surveys, where a detailed discussion is provided in the supplementary material [10].

2 ANOMALY DETECTION
In this section, we highlight different anomaly detection types and techniques that we found in the
literature. We also compare different anomaly detection techniques and highlight key points for
each presented technique.

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: March 2025.
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Fig. 1. A scatter plot illustrating the three types of anomalies: point anomalies (red), contextual anomalies
(green), and collective anomalies (purple). The x-axis represents data points, and the y-axis represents values. A
shaded region marks an anomaly-prone area, and a dashed line represents the mean normal data. [22][23].

Table 2. Comparison Between Different Anomaly Detection Techniques

AD Techniques Labeled ML-model Example Key Points

S Yes SGB [24] Number of anomalies is much less than normal instances
SS Partially Ramp-OCSVM [25] More common than supervised AD due to the fact that they do not need anomalous labels
US No GAN [26] Produces high false positives if a dataset has more anomalous samples than normal ones.
RL No DQN [27] Needs a thorough analysis of the anomaly and its relationship to the environment.
DL Yes/No Autoencoder [28] Works well for complex anomalies, but needs a large amount of labeled data for training
En Yes/No Majority voting [29] Uses multiple base detector to detect an anomaly
H Yes/No Autoencoder & SVM [30] A combination of S, SS, or US to overcome the limitation of individual techniques
FL Yes/No LSTM [31] Training is done locally, updates are only shared

"AD"=Anomaly Detection, "S"=Supervised, "SS"=Semi-supervised, "US"=Unsupervised, "DL"=Deep Learning, "En"=Ensemble, "H"=Hybrid, "FL"=Federated

Learning, "RL"=Reinforcement Learning, "SGB"=Stochastic Gradient Boosting

2.1 Anomaly Types
Chandola et al. [22] describe three types of anomalies: point, contextual, and collective. A point
anomaly is a single data point that stands out within a dataset. A contextual anomaly appears
unusual only within its specific data context, while a collective anomaly involves a set of data
points that seem normal individually but are abnormal as a group. For example, a temperature
reading of 45°C in a dataset of 16–22°C values would be a point anomaly. Ten consecutive warm
days in winter would represent a collective anomaly, while 45°C in summer could be normal in some
regions but anomalous in others - making it a contextual anomaly. Figure 1 shows the difference
between point, contextual, and collective anomalies.

2.2 Anomaly Detection Techniques
Anomaly detection identifies uncommon occurrences or data points that deviate significantly
from normal behavior and fall into three types: supervised, semi-supervised, and unsupervised.
Supervised detection requires labeled data to train a model to classify new data as normal or
abnormal, but it faces challenges like data imbalance and accurate labeling [22]. Semi-supervised
detection uses both labeled and unlabeled data, requiring less annotation [32] and working well for
rare abnormal scenarios. Unsupervised detection identifies anomalies within unlabeled data based
on inherent properties, assuming most data are normal, but it risks false alarms if this balance

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: March 2025.
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shifts [22]. Detection results are presented as either scores or labels, with data classified as either
normal or anomalous.
Deep learning (DL)-based anomaly detection has gained popularity for its capacity to learn

complex, high-dimensional patterns, recognize anomalies, and extract features directly from data.
DL methods, including autoencoders, adapt to evolving anomalies and large datasets but require
extensive labeled data and careful hyperparameter tuning. Ensemble anomaly detection techniques
use multiple models to improve accuracy, aggregating results through methods like averaging
or voting to create a robust detection system. Hybrid anomaly detection techniques combine
supervised, semi-supervised, and unsupervisedmethods, blending statistical andmachine learning
(ML) algorithms for more accurate anomaly detection. Federated Learning (FL)-based anomaly
detection techniques enable decentralized anomaly detection, where entities train models locally
and share only model updates, preserving data privacy while collaborating to enhance model
accuracy.

Feature selection is essential for preparing training data in anomaly detection, removing irrelevant
features to enhance model accuracy, reduce storage needs, and lower computational costs [33]. In
supervised feature selection, the goal is to choose a subset of features that aid in classifying data
samples [33]. In contrast, unsupervised selection processes all data, with the algorithm refining
feature choices iteratively [33]. These methods apply across supervised, unsupervised, and semi-
supervised anomaly detection techniques [33].

RL, a recent addition to anomaly detection, involves an agent interacting with an environment
and maximizing rewards through a trial-and-error approach [34]. Pang et al. [27] developed an
RL framework that detects unknown anomalies in mostly unlabeled data, tested against semi-
supervised and unsupervised methods like DeepSAD [35], DevNet [36], iForest [37], and REPEN
[38] on datasets such as NB15 [39] and Thyroid [40][41]. However, Müller et al. [42] argue that
RL in anomaly detection is inefficient due to its often simplified approach and detachment from
real-world complexity. They propose guidelines for practical RL applications, like focusing on
dynamic, environment-specific anomalies and eliminating rewards in the deployment stage to better
simulate real conditions. Table 2 shows a comparison between the anomaly detection techniques
we discussed.

3 RESEARCH METHOD
The study approach we used follows the guidelines of Barbara Kitchenham [43] and comprises the
following consecutive phases: developing a set of research questions; eliciting keywords from the
developed research questions to generate the search queries; selecting the databases where the
search must be conducted; specifying filtering criteria such as language and year of publication;
skimming through titles and abstracts to eliminate irrelevant and duplicate research papers; re-
viewing the papers in detail and developing extensive criteria throughout a comprehensive reading;
adding different tags to relevant research papers so that it is easier to comprehend what each paper
has covered; and assessing the remaining articles using the research questions that were developed
at the start.

3.1 ResearchQuestions
This systematic review aims to investigate the different anomaly detection techniques and testbed
characteristics in the built environment context. For that reason, the following questions were
developed:

RQ 1What are the different types of anomalies and how are they generated?
RQ 2 What are the characteristics and properties of a smart home testbed that are useful in the

context of developing and testing anomaly detection techniques?

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: March 2025.
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Table 3. Digital Databases

No. Digital Database

1 IEEE Xplore
2 ACM Digital Library
3 Science Direct
4 Research Gate
5 Elsevier

Table 4. Websites

No. Websites

1 Research Rabbit
2 Connected Papers
3 LitMaps

Table 5. Keywords

No. Keyword

1 smart home testbed
2 smart building testbed
3 testbed
4 smart home anomaly detection
5 smart building anomaly detection
6 testbed anomaly detection

RQ 3 What are the evaluation criteria for anomaly detection techniques within a built environ-
ment?

RQ 4 How are smart home and anomaly detection datasets created and analyzed?

3.2 Search Process
This systematic review has searched for related research papers from the following electronic
databases shown in Table 3. Additionally, the literature review used three websites that help to find
related research papers, as shown in Table 4. For each website, a related research paper (we used [44]
as a seed) was fed to the website as a seed; then, each website generated a visual literature map that
shows related references to the fed research paper after analyzing it. We chose the aforementioned
research paper as a seed because we needed more research papers that discuss implementing a
testbed in detail. This approach has introduced strongly related literature that covers the topic of
developing and evaluating a testbed. Table 5 shows the list of keywords used during the search
process. Additionally, we used the following search string along with the keywords:

- smart home OR building and testbed AND anomaly detection
- smart home testbed OR smart building testbed OR testbed

3.3 Filtering Criteria andQuality Assessment
After conducting an initial search, we came across 429 research papers that must be filtered. We
started reading titles, then abstracts, and conclusions to determine how related a certain paper is
according to our literature review topic. Additionally, we created two labels within Google Scholar:
one for research papers that discuss testbeds, and another for papers that discuss anomaly detection
for a built environment.

4 TESTBEDS
The inherent connectivity of IoT devices has introduced a changing communication paradigm
[45], emphasizing the critical need for robust testbeds designed to evaluate anomaly detection
techniques in complex and dynamic environments. Having the testbed as a second-class citizen
has always been the case when evaluating anomaly detection techniques. For that reason, we are
introducing testbed specifications, infrastructure configurations, user and device selection criteria,
and different approaches to creating anomalies as testbed characteristics that we summarize in
Figure 2.

4.1 Testbed Design Specifications
Designing and implementing a testbed is not an arbitrary task. There should be guidelines to
accomplish the testbed design; as such, we are trying to form testbed development guidelines

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: March 2025.
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Testbed

User Selection

Anonymous user ID
User Role and Policies

Activity Day-time

(Sikder, 2021)

Device Selection

COTS

Customer Rating
Popularity
Availability
Price

(Jafari, 2015)

(Xue, 2020)

(Lei, 2018)

(Sridharan, 2018)

(Ren, 2019)

Infrastructure Selection

Physical

Infrastructure Simulation

Emulation

(Lundstr ̈ om, 2015)

(Nguyen, 2009)
(Alshammari, 2017)

(Bruneau, 2009)
(Synnott, 2014)
(Cassens, 2012)
(Golestan, 2019)
(Ding, 2019)
(PIVA, 2021)
(Alisic, 2020)
(Hossain, 2017)

(Behal, 2017)
(Mäkinen, 2017)
(Beuran, 2009)
(Bao, 2017)

In-the-lab

In-the-wild

(Alsuhli, 2019)
(Gaonkar, 2020)
(Benhaddou, 2019)
(Xu, 2018)
(Zhang, 2018)
(Miettinen, 2017)
(Bures, 2021)
(Yu, 2020)
(Xu, 2019)
(Li, 2015)
(Zhu, 2016)
(Ge, 2020)
(Cook, 2013)
(Nazerfard, 2010)
(Rashidi, 2011)
(Osiegbu, 2015)

Experiment Condition Controlled

Uncontrolled
Anomaly Creation

Building Malicious Apps

Using Built-in Tools
Changing Environmental Conditions
Anomaly Simulation

(Gimenez, 2021)
(Kang, 2020)
(Mirkovic, 2009)

Fig. 2. A Sankey diagram categorizing testbed characteristics based on infrastructure selection, device
selection, user selection, experimental conditions, and anomaly creation. Colored flows indicate relationships
between categories and citations of related studies.

from the literature review we are conducting. Siboni et al. [46] illustrated several testbed design
specifications:

• Device under test: The testbed should adopt different types of devices, such as smartwatches
and fitness trackers. Even though Siboni et al. [46] were specific about wearable devices, this
design requirement should also apply to smart home testbed devices.

• Testing environments: The testbed should be able to mimic and simulate different environ-
ments, whether static or dynamic, for instance.

• Security testing: There should be a variety of security tests conducted on the testbed, each
targeting a different aspect of security. A vulnerability scan and penetration test should be
conducted to assess and verify the security level of IoT devices.

• Simulator array: The testbed should be able to simulate different scenarios to generate
real-time data. For instance, this design requirement could be accomplished using a simulation
technique like a GPS simulator to try the testbed in different locations. Another simulation
scenario is the use of a network simulator to try different wireless technologies such as
Zigbee and Bluetooth.

• Communication channels: The testbed should support different communication technolo-
gies, wired and wireless, such as Zigbee, Wi-Fi, Bluetooth, USB, and Ethernet.

• Protocol analysis: The testbed should be able to analyze different types of protocols such
as IPv4, TCP, and TLS.

• Operating system compatibility: The testbed should provide virtualization so that its
devices can run their software, which supports different types of operating systems.

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: March 2025.
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• Data forensic analysis: The testbed should maintain stored device data, including data
from backup and log files, to conduct data forensic analysis.

• Management and report mechanisms: It is important that the testbed is equipped with
management and reporting mechanisms in order to be able to control and manage the testing
flow. Tools for exploring and analyzing data should be included in these report tools.

• User intervention and automation: The testbed should allow for user intervention and
automation during all testing phases.

• Testbed enhancement capability: The entire testbed should be implemented as a plug-in
framework to support future operations.

4.2 Infrastructure Deployment Configurations
This section discusses various testbed infrastructure deployment configurations that include physi-
cal (both in-the-wild and in-the-lab), simulation, and emulation. We also summarize the differences
between each testbed deployment that Bhatia et al. [47] discussed in Table 6.

4.2.1 Physical: In-The-Wild:
There are several ways to implement a testbed within a built environment, with home layout

influencing data generated from device interactions. Sikder et al. [48] demonstrated that different
layouts—single-bedroom apartments, double-bedroom homes, and duplexes—affect user activities
and, in turn, detection accuracy. They tested setups with a single smart home system (SHS)
hub and multiple hubs (e.g., Amazon Alexa, Samsung SmartThings), finding that multi-hub setups
improve accuracy across layouts, with single-bedroom homes achieving higher accuracy except
in duplexes with adaptive training. Similarly, Lei et al. [49] evaluated a virtual security button
(VSButton) across three layouts using a Wi-Fi router, motion detection module, and Echo Dot.
Cook et al. [50] conducted a smart home-in-a-box study in a three-bedroom apartment with 20
participants, assessing installation times for each participant.

In-The-Lab/Prototype: Jabbar et al. [51] took a different approach to testbed deployment with
their IoT@Home prototype, a smart home model built in NX10 software. It includes a master
bedroom, two additional bedrooms, two bathrooms, a kitchen, a living room, and a porch. Key
features include sliding windowswithmotorized doors, an RFID entry system, and a high-positioned
water tank with an ultrasonic sensor to monitor water levels. This setup demonstrates the variety
in smart home testbed layouts, from physical layouts to software-based prototypes.

4.2.2 Simulation: A smart home environment could also be simulated by monitoring smart home
devices and then building a model that simulates each device’s behavior. Pina et al. [52] followed
this approach where they decided to use a temperature sensor, presence sensor, light bulb, simple
TV, joystick, and remote control that would be installed in different rooms from E1 to E4 that
have different layouts. Afterward, they used the Markov chain to simulate each device’s behavior
after monitoring its state and how it changes and communicates with other devices. Even though
this approach might be suitable in cases where budget is an issue, there is no guarantee that the
simulated states will truly reflect how devices communicate and behave in the real world.

4.2.3 Emulation: To test their DDoS detection mechanism, Behal et al. [53] used the Common
Open Research Emulator (CORE) to increase the number of nodes in their testbed. In their
emulated testbed, they deployed 16 virtual nodes and 4 soft routers using CORE, and they used
75 physical nodes in three different groups of 25 computers each, 3 D-Link physical routers, 4 L2
switches, 2 L3 switches, and 1 2-processor 8-core Linux server that acts as the victim Web server.
Although this approach used software, CORE in this case, and hardware to build the testbed, the
result of using such an approach is not widely adopted in the testbed community.

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: March 2025.
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Table 6. Infrastructure Deployment Comparison

Characteristics Physical Simulation Emulation

Realism Optimal realism Lack of Realism as it relies on software More realistic as it uses real machines that run an OS,

while part of the testbed is virtualized such as routers

Easy to Reconfigure No Yes Moderate as part of the testbed depends on physical machines

Cost High Low Moderate as part of the testbed is virtualized

Scalable No Yes No

Examples CASAS, Aegis+ OpNet, NS-2 Emulab, DETER

4.3 Selection Criteria
As we discuss testbed requirements and characteristics in the context of a built-in environment, we
must also discuss users using the testbed, experiment conditions, and device selection.

4.3.1 User Criteria. In this section, we discuss user selection criteria in the context of the smart
home environment so that the smart home testbed can generate realistic data that reflects the user’s
behavior. According to Sikder et al. [48], the following selection criteria should be considered:

• Anonymous user ID: Each residence or user should be assigned an ID, and this ID should
be used for all communication with the user to maintain the user’s privacy.

• User role and policies: Each residence can choose a rule to their liking. For example, a user
can choose to turn on the light once a motion sensor detects a motion. Conversely, another
user can choose to turn the light differently once the door is open, for example. Different
rules can be assigned by different users.

• Activity day-time: Different time activities should be considered because an individual’s
activity differs in time. A working adult might have more activity on weekends than on
weekdays. Hence, a change in daily routine might not be malicious behavior.

4.3.2 Device Criteria. One of the tasks to develop a testbed is to select devices for the testbed.
As several devices come from the same category, there should be a way to prefer one over the
other. During the selection of IoT devices, Ren et al. [54] selected IoT devices that fall into a broad
range of categories based on popularity, customer rating, price, and availability for both the UK
and the US because the study wanted to compare between the two testbeds in terms of IoT device
information exposure in different locations. In addition, anomaly detection systems in smart home
environments vary in effectiveness depending on the diversity of the device types used in training
these systems. Research indicates that the training datasets characteristics significantly impact the
performance of these systems [55].

4.3.3 Experiment Condition. Smart home experiments can occur in controlled or uncontrolled
environments. Ren et al. [54] examined IoT device data exposure in a studio apartment testbed over
six months with 36 participants, testing both uncontrolled (US only) and controlled settings (US
and UK). In the uncontrolled setup, participants accessed devices freely, while controlled settings
restricted access times. A privacy issue emerged with a doorbell recording and sending videos
without consent. Exposed data were classified as stored, sensor, and activity, with data-sharing
parties identified as first-party vendors, support services, and third-party advertisers.

4.4 Anomaly Creation
This section discusses several techniques to create different types of anomalies within the smart
home environment.

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: March 2025.
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4.4.1 Building Malicious Apps: One method for creating anomalies is building malicious apps that
mimic cyberattacks to test detection algorithms. Sikder et al. [48] developed five threat scenarios:
impersonation, false data injection, side-channel attack, denial-of-service, and app-triggered attacks.
For impersonation, an app leaked unlock codes via SMS or replayed a captured voice command
to mimic the owner. False data injection apps altered sensor data or issued commands to devices.
Side-channel apps either flickered lights without user presence or triggered a speaker to perform
a potentially harmful action. Denial-of-service apps disabled smart home tasks, while app-
triggered attacks changed device states to provoke malicious outcomes.

4.4.2 Using Built-in Tools: Creating controlled cyber anomalies in a testbed is essential to prevent
unintended spread. Gimenez et al. [56] used the open-sourceMirage (github.com/conchyliculture/mi-
rage) framework to generate wireless attacks, including Zigbee scans and injections, Wi-Fi de-
authentication and rogue APs, and Bluetooth (BLE) scans, each lasting two minutes across various
locations. Dadkhah et al. [57] used the Low Orbit Ion Cannon (LOIC) for DDoS attacks over
HTTP, UDP, and TCP, while Nmap (nmap.org) and Hydra (github.com/vanhauser-thc/thc-hydra)
were employed for brute force RTSP attacks on camera URLs.

4.4.3 Changing Environmental Conditions: Anomalies in built environments can be introduced by
altering environmental factors such as temperature, humidity, and physical obstructions, which
significantly impact IoT device performance and reliability [58]. Kang et al. [59] demonstrated this
by using a Mi Air Purifier 2S and Mi Sterilization Humidifier to inject anomalies through air mist,
simulating a polluted environment that affected the purifier’s operation.
Environmental interference, including signal loss due to physical barriers like walls or nearby

devices, can cause unexpected device behavior, leading to false-positive or false-negative anomaly
detections. Misclassification occurs when detection models are not trained for such environment-
specific anomalies, often mistaking them for security breaches. Power fluctuations or network
congestion can also mimic cyberattacks or device failures, complicating anomaly detection further.
Testbeds simulate environmental factors like temperature, humidity, and signal interference,

as seen in Kang et al.’s work [59], though replicating complex real-world conditions remains
challenging. Network emulators, such as CORE, help mimic interference and communication
delays, providing insights into anomaly detection resilience.
A hybrid approach, combining physical and virtual testbeds, enhances realistic replication of

environmental conditions. Physical setups with devices like smart lights or thermostats, alongside
network emulation, can improve the robustness of anomaly detection models by accounting for
dynamic environmental variations. Advanced simulation tools are essential to emulate complex
real-world factors, including multiple interference sources, signal degradation, and fluctuating
environmental conditions.

4.4.4 Simulation: Simulation, though sometimes less realistic, is a budget-friendly option for
generating anomalies. Said et al. [60] designed an intrusion detection model for IoT systems
in smart hospitals using the Contiki Cooja simulator (github.com/contiki-ng), with settings for
nodes, topology, and transmission rates, achieving 93.4% accuracy for rank attacks but only 60.8%
for flood attacks. Similarly, Mirkovic et al. [61] used the NS-2 simulator and the DETER testbed
[62] for DoS attack evaluation, finding that the testbed handled significantly higher throughput.
Lundström et al. [63] created a Markov-based anomaly detection model for smart homes, trained on
simulated normal data, and achieved 85% accuracy. However, as Zuo et al. [64] emphasize, the rapid
expansion of network traffic and its complex nature pose challenges for traditional ML methods,
making it difficult to accurately capture traffic characteristics when working with large datasets.
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Table 7. Anomaly Detection Mechanisms

Paper Anomaly Detection Mechanism Testbed Dataset CA PA DF

Sikder et al. [48] Markov Chain–based machine learning model
Ullah & Mahmoud [65] FFN

Kang et al. [59] (Not mentioned in the paper)
Hosseini et al. [66] Gaussian-based Kernel Density Estimation

Li et al. [67] LSTM Autoencoder
Liu et al. [68] AMCNN-LSTM (Attention Mechanism-Based CNN-LSTM Model)

Mudgerikar et al. [69] Random Forest
Djenouri et al. [70] The genetic algorithm and the bee swarm optimization
Mothukuri et al. [71] LSTM & GRU

Shafi et al. [72] E3ML & MLP &RNN &ADT
Yahyaoui et al. [73] OCSVM & DL
Gimenez et al. [56] Autoencoder neural network & temporal and spatial diagnosis
Heartfield et al. [4] Isolation Forest

Teh et al. [74] RFE & RFR for feature extraction and selection &PCA for AD
Sater & Hamza [75] Three LSTM layers
Sarwar et al. [76] Adaboost
Dissem et al. [77] RLNAS & Autoencoder
Xiao et al. [78] Autoencoder with (LDMS & TTPE & NWRL)
Lie et al. [79] Knowledge graph-based bimodal

No, it does not discuss this topic, Yes, it does discuss this topic. "CA"=Cyber Anomaly. "PA"=Physical Anomaly. "DF"=Device Fault.

This highlights the importance of high-fidelity simulations to ensure that network anomalies are
realistically represented, enhancing the performance of anomaly detection systems.

4.5 Scalability and Adaptability
Scalability and adaptability are essential for testbeds, especially as IoT evolves and anomalies
grow more complex. Scalability depends on infrastructure type, communication protocols, and
device diversity. Physical testbeds are less scalable due to financial and logistical demands for
adding devices, while simulated or emulated testbeds, like CORE, scale more easily by expanding
virtual nodes and handling high network traffic efficiently. Adaptability requires that testbeds
integrate new devices and protocols, often achieved with modular frameworks where components
like communication layers can be added or replaced without significantly changing the entire setup.
Technologies like SDN and virtualization also support real-time updates, enabling adaptability. To
facilitate these needs, a plug-in framework and layered design allow seamless updates to individual
layers, reducing modification complexity. New devices or protocols can be tested via simulation or
emulation before physical integration, simplifying the process.

4.6 New Technologies Integration
The complexity of IoT networks is advancing rapidly with the emergence of technologies like 5G and
edge computing, making it essential to develop testbeds that incorporate these advancements. Such
integration not only enhances real-time processing but also creates a more realistic environment
for evaluating AD techniques. To address resource constraints in edge environments, testbeds
should include devices like microcontrollers to evaluate AD performance under limited resources,
ensuring AD techniques are lightweight and efficient. The testbed should also support decentralized
learning, such as FL, allowing local ML model training on edge devices to preserve data privacy
while sharing only model updates. Real-time responses are essential; the testbed should isolate
compromised devices upon anomaly detection.With the emergence of 5G, which supports numerous
IoT devices with low latency, testbeds must simulate high-density 5G networks to assess AD
scalability and accuracy. Furthermore, to reflect 5G’s low-latency environment, AD capabilities
should be distributed across the network, and the testbed should simulate large-scale IoT networks
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Table 8. Strengths, Weaknesses, and Suitability of Anomaly Detection Mechanisms

Anomaly Detection
Mechanism

Strength Weakness Suitability

Markov Chain–based
machine learning model

Effective for time-series data Not suitable for non-linear rela-
tionship

Detecting simple point anomalies

FFN Handles structured and unstruc-
tured data

Computationally intensive Detecting complex anomalies that
have labeled data

Gaussian-based Kernel
Density Estimation

Effective in anomaly detection for
continuous data

Produce false positives in changing
environments

continuous datasets

LSTM Autoencoder Captures long-term dependencies
in the data

Requires extensive training Detecting anomalies that devel-
oped gradually

AMCNN-LSTM (Attention
Mechanism-Based CNN-
LSTM Model)

Ability to extract features and per-
form temporal analysis

Computationally intensive Detecting sophisticated attacks

Random Forest Handles high-dimensional data
well

Not suitable for time-series data Detecting point anomalies and
knows attacks

The genetic algorithm and
the bee swarm optimiza-
tion

Works well in complex environ-
ments

Computationally intensive Works well when feature selection
and optimization are important

LSTM & GRU Works well for sequence prediction Computationally intensive Detecting anomalies in time-series
data

E3ML & MLP & RNN &
ADT

Using combination of ML models
improve accuracy

Computationally intensive Detecting anomalies in complex
environments

OCSVM & DL OCSVM works well for unsuper-
vised AD & DL works well for high-
dimensional data

OCSVM is sensitive to anomalies
& DL requires large training data

Detecting novel anomalies

Autoencoder neural
network & temporal and
spatial diagnosis

Works well for unsupervised AD &
it detects complex anomalies due to
temporal and spatial diagnoses

Requires extensive training data Detecting complex anomalies

Isolation Forest Resource efficient & Scales well Not suitable for sophisticated
anomalies

Detecting simple anomalies

PCA Works well for high-dimensional
data

Not suitable for non-linear data Detecting point anomalies

Three LSTM layers Having three-layers allows LSTM to
detect complex anomalies in time-
series data

Computationally intensive Detecting real-time sophisticated
anomalies

Adaboost Effective in combining weak classi-
fiers to form a strong classifier

Sensitive to noisy data and outliers Suitable high-dimensional
datasets and unusual data pat-
terns

RLNAS & Autorncoder Capable of automatic feature learn-
ing and neural architecture search

High computational cost during
training

Effective in discovering optimal
neural architectures for anomaly
detection

Autoencoder with (LDMS
& TTPE & NWRL)

Integrates multiple techniques for
enhanced performance

Complexity in implementation
and tuning

Suitable for complex anomaly de-
tection tasks requiring multiple
methodologies

Knowledge graph-based
bimodal

Leverages structured knowledge for
improved context understanding

Limited by the quality and com-
pleteness of the knowledge graph

Effective in scenarios where rela-
tional context is crucial

and network slicing to evaluate AD effectiveness in isolated network segments. In summary, while
this discussion has centered on edge computing and 5G networks, these are just two examples
of emerging IoT technologies. As the IoT landscape continues to evolve, AD techniques must be
designed to adapt effectively to the challenges posed by these advancements.

4.7 Ethical and Privacy Considerations
The use of testbeds is highly dependent on ethical and privacy considerations because data from
testbeds are close to real life data. Studies should be more transparent on how they use the data, and
who has access to it, and what are the measurements that the data has taken to secure sensitive data.
Sikder et al. [48] implemented an approach to confidentiality by assigning anonymous IDs to partic-
ipants, ensuring that personal information remained protected. Another method to enhance privacy
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involves Differential Privacy (DP), which adds noise to the dataset, preserving the statistical
integrity of the data while safeguarding user privacy. However, DP can introduce challenges, as the
added noise may impact the accuracy of anomaly detection algorithms, requiring careful evaluation
of its effects [80]. FL also offers a privacy-focused framework by ensuring data remains locally
while only model updates are shared with a central node. Zhang et al. [81] presented FedGroup,
an FL approach that aggregates updates from groups of IoT devices, maintaining individual data
privacy throughout the process. Finally, obtaining informed consent from participants is essential;
clear communication about data usage further reinforces trust and ethical standards in testbed
development.

4.8 Challenges and Mitigation
Developing a comprehensive real-world testbed presents significant challenges, particularly due to
the financial requirements for infrastructure, heterogeneous IoT devices, and ongoing maintenance.
One way to overcome these challenges is through the use of virtualization and emulation, which
enable the simulation of real-world devices, network configurations, and environments without
the need for physical deployment. For example, Emulab is an emulator that can simulate both
IoT and network devices, offering a cost-effective alternative to physical testbed development.
By leveraging such tools, the overall cost of testbed creation can be significantly reduced. In
addition, employing commercial off-the-shelf (COTS) devices instead of more sophisticated and
expensive IoT hardware can help lower the financial burden. Low-cost alternatives like Raspberry Pi
or microcontrollers can serve as substitutes for various smart home devices, offering functionality at
a fraction of the cost. Another cost-saving strategy is the use of collaborative testbed environments,
where organizations or universities share testbed resources. For instance, platforms like FIT IoT-
LAB allow shared access to testbed infrastructure, reducing individual development costs and
maximizing resource utilization.

Integrating heterogeneous devices into a testbed poses another critical challenge. IoT devices are
often built by different manufacturers and use various communication protocols, making it difficult
to seamlessly integrate them into a unified testbed environment. Middleware platforms such as
Home Assistant and OpenHAB can help bridge this gap by facilitating the integration of devices
that use different communication protocols, allowing them to be managed and controlled from
a single platform. Moreover, using devices that comply with common standard communication
protocols can further simplify integration efforts, reducing compatibility issues and mitigating the
complexities associated with IoT heterogeneity.

Evaluating testbed characteristics is key to building reliable anomaly detection frameworks for
built environments like smart homes. These testbeds simulate real-world conditions, enabling us to
assess how well systems detect unusual behaviors. However, achieving realistic simulations within
testbeds is challenging, as they often lack the complexity of real environments, where factors like
device malfunctions, human errors, and network congestion occur. Hybrid testbeds, which combine
physical IoT devices with simulated environments, can address this by better replicating these
scenarios. Device diversity is another challenge, as real environments contain a range of devices
from different manufacturers with various communication protocols. Focusing on widely-used
devices can help address this. Testbeds also miss long-term environmental effects like seasonal
changes or device wear, which impact anomaly detection. Extending data collection periods and
simulating environmental factors can help reveal issues that emerge over time. Finally, human
interaction varies across ages, routines, and emergency responses, making short-term testbeds
inadequate for capturing real behavior. Long-term studies that gather data on human interaction
could bridge this gap and enhance testbed realism.
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Table 9. Overview of Anomaly Detection in Built Environments, Including Smart Homes, Smart Buildings,
Smart Cities, and Industrial IoT. The Table Summarizes Anomaly Types, Detection Techniques, Testbed
Characteristics, Evaluation Metrics, and Dataset Creation Challenges Across Different Applications

Application Anomaly Types Detection Techniques
Examples

Testbed Character-
istics

Evaluation Metrics Dataset Creation
Challenges

Smart Home Unauthorized
access, device
malfunction, ab-
normal energy
consumption, pri-
vacy breaches

Markov Chain models
(state-based anomalies),
DL (complex patterns),
Ensemble methods (ro-
bustness)

High device diversity,
realistic network
topology, user be-
havior modeling,
environmental con-
trol (temperature,
lighting)

Recall (critical for
security), Precision
(minimize false
alarms), F1-score (bal-
anced performance)

Privacy-preserving
techniques, realistic
user behavior profiles,
diverse attack scenar-
ios

Smart Building HVAC system
failures, security
breaches, occu-
pancy anomalies,
water leaks, fire
detection

DL (complex systems),
Hybrid approaches
(adaptability), Statis-
tical methods (energy
consumption)

Scalable network
topology, sensor
diversity (tempera-
ture, humidity, CO2),
energy consumption
monitoring, physical
security

Accuracy (overall per-
formance), Precision
(minimize false posi-
tives), F1-score (bal-
anced)

Long-term mon-
itoring (seasonal
variations), diverse
occupancy patterns,
integration of build-
ing management
systems (BMS) data

Smart City Traffic congestion,
water leaks, air
quality anomalies,
infrastructure fail-
ures, cyberattacks

Traffic flow prediction
models, anomaly detec-
tion in sensor networks,
DL (urban data analy-
sis)

Large-scale network
simulation, sensor net-
work emulation, traf-
fic flow modeling, en-
vironmental monitor-
ing (air quality)

Balanced accuracy
(imbalanced data),
ROC AUC (overall
performance), Run-
time (real-time)

Real-world traffic
data integration,
sensor data fusion,
simulation of urban
dynamics, diverse
environmental condi-
tions

Industrial IoT Equipment failures,
process deviations,
safety violations,
cyber-physical
attacks

Statistical process con-
trol, ML-based fault de-
tection, DL (predictive
maintenance)

Real-time data ac-
quisition, industrial
protocol support
(e.g., Modbus), sensor
integration (vibration,
temperature), fault
injection

Precision (minimize
false alarms), Recall
(capture critical
failures), MAE, MSE,
RMSE (prediction)

Integration of SCADA
systems data, fault in-
jection, simulation of
industrial processes,
long-term equipment
performance data

5 ANOMALY DETECTION MECHANISM
In this section, we discuss several anomaly detection mechanisms applied to testbeds and various
datasets, focusing on the anomaly detection algorithms used, dataset choices, devices employed in
testbeds, types of anomalies detected, and evaluation metrics. A summary of anomaly detection
mechanisms is presented in Table 7, and a comparison between the presented mechanisms based
on their strengths, weaknesses, and suitability is presented in Table 8. An overview of anomaly
detection in built environments across different applications is provided in Table 9.

5.1 Testbed-based Anomaly Detection
Sikder et al. [48] presented Aegis, a context-aware security framework for (SHSs) that detects
malicious behavior by analyzing device interactions and user activities. The framework contributes
by leveraging contextual models to understand sensor-device co-dependencies and user activity
correlations, enhancing anomaly detection in SHSs. Its novelty lies in its Markov Chain-based
approach, which captures sensor-device interactions and user behavior patterns to identify security
threats while adapting to different home layouts with minimal overhead. Evaluated on a real-world
smart home testbed with various devices and attack scenarios, Aegis achieved high detection
accuracy, demonstrating its effectiveness in securing diverse smart home environments.

Yahyaoui et al. [73] introduced READ-IoT, a reliable event and anomaly detection framework for
IoT systems that integrates event detection (EDS) and anomaly detection (ADS) into a unified
system for improved efficiency. The framework contributes by combining rule-based and ML-based
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Raspberry Pi 3

Arduino Uno

Fig. 3. A Sankey diagram showing IoT devices and sensors used in selected testbed studies. Devices such as
smart locks, smart thermostats, and security cameras are mapped to their corresponding research sources.
Common brands include SmartThings, Philips Hue, and Raspberry Pi.

detection within a hybrid cloud/fog deployment strategy, ensuring real-time responsiveness and
reliability. Its novelty lies in its cascaded detection approach, where rule-based filtering precedes
ML-based analysis, and a reputation-aware deployment mechanism enhances detection accuracy
while addressing real-time constraints. Evaluated on real and simulated IoT environments, READ-
IoT achieved over 90% accuracy with OCSVM and 98% with DL, demonstrating low latency and
high reliability in detecting fire incidents and unauthorized access.
Kang et al. [59] proposed SmartHomeDetector, a hierarchical automata-based framework for

detecting anomalies in IoT devices within smart homes. The framework consists of a model con-
struction phase and a runtime anomaly detection phase, contributing by providing a structured
approach to anomaly detection through automated behavior modeling. Its novelty lies in construct-
ing a hierarchical automata-based behavior model using automatic testing, capturing both external
user operations and internal device transformations, along with runtime metrics. By employing a
comprehensive detection technique, SmartHomeDetector identifies various anomaly types based on
deviations from this model. Evaluated on a smart home testbed, the approach effectively detected
abrupt, accumulated, functional component, and human-induced anomalies, demonstrating its
potential despite being tested on a limited number of devices.

Hosseini et al. [66] presented an on-line anomaly detection approach for household appliances,
specifically standard and smart refrigerators, using energy consumption data to model normal
operation and detect anomalies. The study contributes by offering insights into managing anomaly
detection and diagnosis phases, crucial for correctly distinguishing faulty from abnormal behaviors.
Its novelty lies in its appliance-level approach, leveraging sub-metered data to develop a low-
intrusion, low-resolution, and efficient anomaly detection method, distinguishing it from aggregate-
level techniques. Additionally, it introduces the concept of diagnosis decision, assessing operational
conditions to differentiate faults from abnormal usage. Using a Gaussian-based kernel density
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estimation algorithm, the approach achieved 99% accuracy for smart refrigerators and 98% for
standard refrigerators, demonstrating its practicality for real-world implementation.
Xiao et al. [78] contributed SmartGuard, an autoencoder-based anomaly detection framework

for smart homes. SmartGuard addresses challenges in learning infrequent behaviors, temporal
context, and noise handling. Its novelty lies in the integration of a Loss-guided Dynamic Mask
Strategy (LDMS), a Three-level Time-aware Position Embedding (TTPE), and aNoise-aware
Weighted Reconstruction Loss (NWRL) to enhance anomaly detection by improving learning
efficiency, capturing temporal anomalies, and reducing misclassification. SmartGuard was evaluated
using three datasets: a custom AN dataset collected through a smart home testbed with 36 devices
and three volunteers living in an apartment for over two weeks, and two public datasets, FR
and SP. Abnormal behaviors were artificially injected into normal sequences for testing. This
comprehensive evaluation demonstrated SmartGuard’s ability to detect ten types of anomalies,
such as light flickering and unauthorized camera deactivation, outperforming methods like LOF,
Isolation Forest, and TransformerAutoencoder in recall, precision, and F1-score, particularly for
time-sensitive anomalies.

Li et al. [79] introduced SeIoT, a knowledge graph-based bimodal anomaly detection framework
for smart homes that enhances IoT security by integrating interaction-related and time-related
semantics extracted from network traffic. The framework contributes by leveraging a knowledge
graph to represent smart home semantics and an FS-HAN-based anomaly detection mechanism
to identify anomalous behaviors. Its novelty lies in using FS-HAN to model complex device-
environment interactions, enabling the detection of both device-targeted and platform-based attacks
solely through network traffic sniffing. Evaluated in a real-world testbed, SeIoT outperformed
traditional NADSes, achieving a 97.7% true positive rate (TPR) and a 99.0% true negative rate
(TNR), demonstrating its effectiveness in securing smart home environments. A summary of the
testbed devices is provided in Figure 3.

5.2 Dataset-based Anomaly Detection
Li et al. [67] presented ADRIoT, an edge-assisted anomaly detection framework for IoT networks,
featuring an edge-based anomaly detection module with device-specific LSTM autoencoders and a
multi-edge collaboration mechanism for resource sharing. The framework contributes by providing
Detection-as-a-Service through a cloud-edge architecture, enhancing anomaly detection efficiency.
Its novelty lies in leveraging unsupervised LSTM autoencoders for zero-day attack detection on
individual IoT devices and integrating SSDP-based multi-edge collaboration for efficient resource
utilization. Evaluated on a real-world IoT traffic dataset, ADRIoT outperformed other unsupervised
anomaly detection methods, demonstrating its effectiveness in securing diverse IoT environments.
Mudgerikar et al. [82] introduced E-Spion, an edge-based intrusion detection system (IDS)

designed for IoT devices, leveraging system-level profiling through process parameters and system
calls to detect anomalies. The system contributes by integrating a device-edge split architecture and
a three-layer anomaly detection engine, consisting of process whitelisting, process behavior moni-
toring, and system call behavior monitoring. Its novelty lies in its ability to detect both traditional
IoT malware and sophisticated file-less attacks with minimal overhead. Evaluated on malware
datasets, E-Spion demonstrated high detection accuracy, with Random Forest outperforming other
classifiers in intrusion detection efficiency.

Ullah & Mahmoud [65] proposed a framework utilizing conditional Generative Adversarial
Networks (cGANs) to address data imbalance and enhance anomaly detection in IoT networks.
Their approach introduces one-class cGAN (ocGAN) and binary-class cGAN (bcGAN) models
to generate synthetic data for minority classes, improving detection across various datasets. This
study contributes by integrating cGAN-based data augmentation techniques for both normal and
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malicious profiles and introduces a novel multiclass classification approach using bcGAN. Evaluated
across multiple IoT network datasets, the framework demonstrated superior performance, achieving
high detection rates and outperforming traditional anomaly detection models and GAN-based
approaches.

Mothukuri et al. [71] proposed an FL-based anomaly detection approach for intrusion detection
in IoT networks, enabling GRU models to be trained on-device while preserving data privacy. Their
approach integrates federated training rounds, where only model weights are shared instead of raw
data, and an ensembler that aggregates updates to optimize a global model. This study contributes
by leveraging FL to enhance intrusion detection without centralized data collection and introduces
a novel FL-GRU framework that outperforms traditional centralized ML, achieving higher accuracy
(90.255%) with fewer training epochs on a Modbus-based attack dataset [83].

Sarwar et al. [76] proposed a ML-based anomaly detection approach for securing smart home
IoT networks. Using the UNSW BoT-IoT dataset, they evaluated six classifiers and demonstrated
that Random Forest (RF), Decision Tree (DT), and AdaBoost achieved the highest accuracy
(100% on training data, 99.9% on test data), outperforming ANN, LSTM, and Autoencoders. This
study contributes by comparing multiple classifiers and highlighting the effectiveness of feature
selection techniques in improving anomaly detection accuracy. Its novelty lies in demonstrating
the robustness of tree-based models on a larger IoT dataset, offering a more scalable and effective
approach than previous methods.
Dissem et al. [77] proposed an automated time-series anomaly detection framework for smart

buildings, leveraging RL to optimize autoencoder architecture. Their RL-based neural architec-
ture search (RLNAS) enables the automatic selection of optimal models without prior knowledge,
outperforming random search. This study contributes by introducing an RL-driven approach for
anomaly detection and demonstrates its novelty by achieving higher F1 scores and accuracy on
smart building sensor data, particularly for temperature, humidity, and power consumption, while
addressing the challenge of high-variability features like illuminance. Figure 4 presents the datasets
and research papers discussed in Section 5.2.

6 DATASETS
Having IoT devices in a controlled environment facilitates monitoring and observing how de-
vices communicate and behave under different test scenarios. In this section, we discuss different
infrastructure setups, data creation, data collection, capture duration, and methods of dataset
analysis.

6.1 Infrastructure Setup
When designing an infrastructure for a dataset, one must consider if the dataset infrastructure will
be implemented physically or virtually. For example, Vigoya et al. [84] implemented a virtual infras-
tructure by building four client nodes, each having four processes where each process represents a
temperature sensor. Each sensor (process) has an MQTT client, which sends its temperature data
to a central MQTT broker using the MQTT publisher–subscriber approach. Similarly, Koroniotis
et al. [85] also implemented a virtual infrastructure that follows the MQTT publisher–subscriber
approach, which is implemented over TCP/IP using Node-Red to simulate IoT devices.
In contrast, Dadkhah et al. [57] followed another approach in terms of infrastructure setup for

their dataset where they built a physical infrastructure using two network interface cards: one is
connected to the gateway while the other is connected to a NETGEAR GS308 switch, which all IoT
devices that require Ethernet are connected to it. Vera Plus smart hub is connected to the switch,
acting as an Internet gateway for Wi-Fi IoT devices. Furthermore, Philips Hue Bridge, SmartThings
Hub, and Fibaro Home Center Lite have been used to facilitate the communication of Zigbee and
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Fig. 4. A circular chord diagram linking research papers to the datasets they utilized. Each paper is positioned
around the circle, with colored arcs connecting it to corresponding datasets.

Z-Wave devices and sensors. These two examples of infrastructure show how different dataset
creation can be in terms of infrastructure. Additionally, it illustrates the possibility of creating a
data structure with limited resources.

6.2 Network Configuration
Different IoT device testing dictates different network configurations. Some devices only communi-
cate through Zigbee protocol, and others communicate through Wi-Fi and voice commands. This
heterogeneity directly contributes to the choice of network configurations. Even though having
different wireless communication technologies is beneficial in terms of including a different range
of IoT devices, it mostly comes with the burden of having a hub for each wireless communication
technology, such as Zigbee. Moreover, some devices within the same wireless communication
technology require different hubs, as does Bosch Twinguard, which requires a Bosch smart home
controller. Therefore, types of devices and their communication settings must be considered when
building the network configuration of a dataset environment.

6.3 Data Collection
The goal of the dataset has an important role in selecting what type of IoT data to collect, as some
datasets are only interested in cyberattacks, and others extend their interests to different types of
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generated data. According to Dadkhah et al. [57], ideally and to observe how IoT devices behave
under different scenarios, six statuses must be taken into consideration:
Power: During the power state, all devices must be unplugged from the network, then the

network is rebooted. After that, each device is connected to the network on an individual basis,
and the MAC address associated with each device is noted, and the network traffic for each device
is captured individually as well. Moreover, the capture process should continue until no remaining
packet from that device is received. This process would provide an idea of how each device behaves
individually.
Idle: During the idle state, an assumption that devices will not communicate with each other

during the idle stage must be established. As a result, this stage should usually take place during
the night or during holidays. This process would help to identify if a device is making unwanted
communication. Ideally, the data captured in the idle stage should match the data captured in the
power state for each device.
Interactions: During the interactive state, each device’s communication with other devices

must be captured. It is also important to mention that some devices have more than one way of
communication. For instance, a Philips Hue smart light can be turned on and off through voice
command using a voice assistant device (such as Echo Dot) and the Philips Hue app. Thus, different
control conditions must be considered as well.
Scenarios: During this state, the scenario intended for the dataset is performed, and network

traffic is captured.
Active: During this stage. all IoT device network traffic is captured, including communications

between devices, when there are people interacting with the devices either actively or passively.
Attacks:During attacks, a series of cyberattacks are performed on the devices, and the network

is captured during attacks. Several tools can be used to generate cyberattacks, which we discussed
in 4.4.2 Section.

Network traffic capture can be achieved using one of the network sniffer tools such as Wireshark
and Tcpdump. However, some protocols might require additional hardware or software to be
captured, such as the Zigbee protocol.

6.4 Data Creation
Data creation must start once the dataset environment is set up and configured with the required
tools. During data creation, several scenarios are generated and followed to achieve the dataset’s
goal, whether for a smart home dataset or otherwise. For instance, Dadkhah et al. [57] generated
six different scenarios that cover several activities.
Coming home: The initial setup for this scenario is that the Ring alarm is armed, and devices

are off because no one is home. Then, once a participant enters the lab, the Ring alarm, the Netatmo
camera, and ArloQ motion detection are alerted. The participant enters the passcode to disarm
Ring and voice commands Google Nest Mini to turn on the Philips Hue lights and Globe lamp.
Similarly, the participant voice-commands Alexa to turn on the Atomi Coffee Maker and to play
music over the Sonos speaker. Finally, the participant starts the Roomba vacuum cleaner using the
associated mobile app to start the cleaning process.
Leaving home: The initial setup for this scenario is that all devices are turned on to simulate

the presence of people in the home. Then, the participant voice-commands Alexa to turn off the
Atomi Coffee Maker and stop the music that was playing over the Sonos speaker. Similarly, voice
commands Google Nest Mini to turn off the Philips Hue lights and Globe lamp. Finally, the Roomba
vacuum cleaner to its home base to stop the cleaning process.

Home intrusion (during the day): The participant enters the lab; Ring alert, Netatmo camera,
ArloQ, and HeimVision camera motion detection are triggered. The D-Link Water Sensor is also

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: March 2025.



Testbeds and Evaluation Frameworks for Anomaly Detection within Built Environments: A Systematic Review 0:19

Fig. 5. A horizontal bar chart comparing the data capture duration of six datasets. The x-axis is showing
hours, while dataset names and corresponding durations (e.g., 60 days, 27.166 days) are labeled within each
bar.

triggered to indicate that the intruder has spilled some sort of liquid. Once the Ring alarm goes off,
the participant leaves the lab, which will also trigger Netatmo and ArloQ motion detection. This
attack scenario occurs with lights on.
Home intrusion (during the night): The participant enters the lab; Ring alert and Netatmo

camera are triggered. ArloQ and HeimVision camera sound detection are triggered. The D-Link
Water Sensor is also triggered to indicate that the intruder has spilled some sort of liquid. Once
the Ring alarm goes off, the participant leaves the lab, which will also trigger Netatmo and ArloQ
motion detection. This attack scenario occurs with lights off to evaluate the night vision capability
of the Netatmo camera and the sound detection capability of ArloQ and HeimVision because they
do not support night vision.

Owner error: This scenario is to simulate homeowner errors like entering the wrong password
for a security lock. The participant enters the lab, which triggers a Netatmo camera and the ArloQ
motion detection. Then, the participant enters an incorrect password for the Ring alarm thrice
every 30 seconds, setting the alarm off.

IoT vs Non-IoT: This scenario is to test how well IoT devices integrate with Non-IoT devices. To
do so, a participant asks Alexa to play music over a Sonos speaker, let LG TV play a YouTube video,
surf social media using a phone, browse the Amazon website from a computer, and ask Google to
turn the Philips Hue lights on.

Another approach to generating synthetic data is using simulation. Moustafa and Slay [39] used a
network traffic simulator called IXIA PerfectStorm, which simulates different types of cyberattacks.
Furthermore, Vigoya et al. [84] discussed three ways of generating anomalous traffic: interception,
which could be achieved by deleting sent traffic packets; modification, which could be achieved by
changing sensor readings that are sent randomly (for instance, Vigoya et al. [84] have changed
temperature samples sent to the MQTT broker); and duplication, which could be achieved by
sending more data than planned in the first place (for instance, Vigoya et al. [84] sent more tokens
than planned).

6.5 Data Capture Duration
Data capture duration differs from one dataset to another. In this section, we try to estimate the
minimum requirement for dataset capture duration depending on well-known different datasets
that were published. (Dadkhah, 2022) [57] stated that the experiments conducted on the IoT devices
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Table 10. Formulas of Statistical-based Methods

Statistical-based Methods Formula No.

Low variance 𝑝 (1 − 𝑝) (1)

T-score |𝜇1 − 𝜇2 |/
√︃

𝜎2
1

𝑛1
+ 𝜎2

2
𝑛2

(2)

Chi-square score
∑𝑟

𝑗=1
∑𝑐

𝑠=1
(𝑛 𝑗𝑠−𝜇 𝑗𝑠

)2

𝜇 𝑗𝑠
(3)

Gini index 𝑚𝑖𝑛
W

(
𝑝 (W)(1 −∑𝑐

𝑠=1 𝑝 (𝐶𝑠 |W)2) + 𝑝 (W)(1 −∑𝑐
𝑠=1 𝑝 (𝐶𝑠 |W)2)

)
(4)

CFS 𝐶𝐹𝑆_𝑠𝑐𝑜𝑟𝑒 (S) = 𝑘𝑟𝑐𝑓√
𝑘+𝑘 (𝑘−1)𝑟 𝑓 𝑓

(5)

took 3 months to create the CIC IoT 2022 dataset (www.unb.ca/cic/datasets/iotdatas-et-2022.html).
He specifically stated that he captured 30 days of idle network traffic and 30 days of active network
traffic (see section 6.3 for more illustrations about different statuses). Furthermore, (Moustafa, 2021)
[86] created an IoT dataset called TON IoT (research.unsw.edu.au/projects/toniot-datasets) that has
a data capture of approximately 27 days. Even though (Moustafa, 2021) [86] did not specify the exact
capture duration, we were able to estimate a data capture duration by calculating the difference
between the first and second capture timestamps. Similarly, (Koroniotis, 2019) [85] published
Bot-IoT (research.unsw.edu.au/projects/bot-iot-dataset) dataset that has a capture duration of
approximately 20 days, where we investigated the first and last capture timestamps to estimate the
capture duration.
(Vigoya, 2020) [84] created a dataset (DAD) (github.com/dad-repository/dad) that captured

network traffic for 7 days. During those 7 days, different types of anomalies were generated within
5 days, which leaves 2 days with normal network activity. Additionally, each day of the capture
duration has a summary of the attack performed, if any; otherwise, it will state that no attack has
taken place.
On a shorter duration period, (Moustafa and Slay, 2015) [39] captured traffic for 2 days, where

they simulated traffic, using IXIA PerfectStorm, for 16 hours on the first day and 15 hours
on the second day, which generated 100 GB of traffic in total for their UNSW-NB15 dataset
(research.unsw.edu.au/projects/unsw-nb15-dataset). (Frazão, 2019) [83] also captured network
traffic for a short period. His experiment captured network traffic for 1 hour and 30 minutes with 1,
5, and 15 minutes of attack times. The reason behind the varying capture duration is that he wanted
to see how each ML classifier would behave with different capture duration. Figure 5 presents a
summary of capture duration.

6.6 Data Analysis
After creating the dataset, the data captured must be analyzed so that the dataset can be used in
different applications that are tailored to user needs. In this section, we discuss two techniques of
dataset analysis.

6.6.1 Feature Analysis. Analyzing network features helps in giving insight into the traffic pattern
and whether the traffic is malicious or not. Tavallaee et al. [87] analyzed the well-known KDD CUP
99 dataset features into three categories:

Basic feature: This category has all fields that are extracted from the TCP/IP connection, which
has information such as IP and MAC addresses.

Traffic feature: A feature computed on the basis of window intervals is included in this category,
which can be further divided into two subcategories: same-host features, which measure protocol
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behavior, service, and other statistics about connections with the same destination host as the
current connection over the past 2 seconds, and same-service features, which check only connections
that have been connected to the same server in the past 2 seconds.
Content feature: For cyberattacks, R2L and U2R attacks do not have frequent sequential

intrusion patterns like DoS and probing attacks. Because DoS and probe attacks involve many
connections in a short period, R2L and U2R attacks typically involve only one connection. Thus,
more in-depth features are needed to detect these kinds of attacks, e.g., the number of unsuccessful
login attempts, which is in the payload part of the packet. Such features are referred to as content
features.

Biglar Beigi et al. [88] also discussed distinct flow-based features thoroughly:

• Source and destination IP addresses: One of the primary advantages of their use is the
possibility of quantifying the number of distinct connections. However, it does not provide a
definitive conclusion as a feature.

• Source and destination port: Botnet traffic was often recognized by source and destination
ports, but this is not the case anymore due to the frequent change of source and destination
ports.

• Protocol: It reduced the volume of flows that needed to be processed by filtering out non-
related traffic. Furthermore, a certain protocol might be an indication of malicious traffic,
such as Internet Relay Chat (IRC), because it is rarely used for non-malicious purposes.

• Duration: This feature could help identify malicious traffic. For example, most botnets
initiate a single-way connection and maintain very short communication sessions before
attempting a multidirectional connection.

• First packet length: In addition to revealing the underlying protocol’s characteristics, the
first packet in the flow is useful in detecting malicious traffic.

• Flow size features: Communication patterns are mainly intended to be represented by such
features.

• Ratio between the number of incoming packets over the number of outgoing packets:
It has been noted in studies examining the breakdown of Internet traffic that there is an even
distribution between inbound and outbound traffic for various protocols. This would help
identify further traffic characterization [89].

• Packet exchange: The number of network packets exchanged between two entities could
help to identify malicious traffic. For instance, bots are always trying to keep communication
alive by sending many packets.

• Reconnect: Some malicious entities might try to disconnect and reconnect again to break
the detection process using feature extraction. To overcome this problem, a certain number
of reconnections are only allowed within a certain interval of time.

• Number and percentage of small or null packets exchanged: Studies have shown that
certain malicious traffic might exchange small network packets. For instance, IRC hosts
exchange small messages with the C&C server [90][91].

• Average packet or bits per second, average inter-arrival time of packets: This feature
helps identify similar communication patterns.

Different network features are useful for certain applications. We have seen some useful network
features in the context of malicious traffic. In the context of IoT device classification, Sivanathan et al.
[92] extracted DNS queries, NTP queries, port numbers, and cipher suits for each device within the
testbed they developed and used these features to identify the devices in the network. This shows
how different features can be used for different applications. As a final thought, extracting more
features does not always guarantee a high accuracy anomaly detection rate, according to Revathi
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Fig. 6. A word cloud visualizing 207 extracted features from 10 datasets. Larger words indicate more frequently
extracted features (e.g., ’dsport,’ ’proto,’ ’sport’), while smaller words represent less common features.

& Malathi [93]. In their paper, they applied RF, naive Bayes, and SVM, among other classifiers,
one with 41 features and another with only 13 features, where they used a correlation feature
selection (CFS) subset to filter down the features. The result was that some classifiers had a high
accuracy detection rate with fewer features. For instance, the RF classifier had an accuracy of
98.9% with only 13 features, whereas it achieved an accuracy of 97.6% with 41 features in detecting
probe attacks. Figure 6 shows the most common features extracted from the following datasets:
UNSW-NB15 [39], CIC IoT 2022 [57], Bot-IoT [85], MQTT-IoT-IDS2020 [94], DAD [84], TON_IoT
[86], CIC IoT 2023 [95], IoT-deNAT [96], IOT Sentinel [97], IoTSense [98].

6.6.2 Statistical Data Analysis. An efficient way to predict and understand IoT device behavior is
throughmathematical modeling. Using proven approach techniques, it is essential to mathematically
model the real environment to generate a dataset as realistic as possible [84]. The benefit of using
a statistical-based analysis method is that it analyzes features individually, which eliminates the
feature redundancy issue. Li et al. [99] discussed several statistical-based analysis methods that are
summarized along with their formulas in Table 10:

• Low variance: Using this method, features with low variance are filtered out.
• T-score [100]: It is used for binary classification to determine whether a feature causes a
statistically significant difference between two classes.

• Chi-square score [101]: This method helps to determine how independent a feature is of
the class label.

• Gini index [102]: Different classes of samples can be separated using this method.
• CFS [103]: It evaluates how a certain feature fits in relation to the data.

7 COMMONLY USED TOOLS AND TECHNIQUES
In this section, we discuss several commonly used tools in the context of developing a testbed and
creating a dataset that are summarized in Table 11.

7.1 Simulation
Moustafa & Slay [39] used a hardware network simulation called IXIA PerfectStorm (keysight.
com/gb/en/products/network-test/network-test-hardware/perfectstorm.html) for the simulation of
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Table 11. Summary of Commonly Used Tools and Techniques

Name Purpose References

Argus Network Feature Extraction [104][105][39][14][85]
Bro-IDS Network Analyzer [14][39]
Tcpdump Packet Capture & Analyzer [85][39][106][92]
Dpkt Network Feature Extraction [57][85][107][39]
IXIA PerfectStorm Hardware Network Simulator [14][108][39]
MATLAB Programming & Numeric Computing [109][110][111][112]
Nmap Network Scanner [46][57][85][113][9]
Hydra Password Cracker [85][57][114]
Mirage Security Analysis [56]
OpenWRT OS for Routers [115][116][106][92]
CICFlowmeter Network Feature Extraction [65][117][118][71]
LOIC Network Stress Tool [57] [113]
TSfresh Time-Series Feature Extraction [119][120][121]
Wireshark Packet Capture & Analyzer [122][46][107] [9]
Tshark Packet Capture & Analyzer [4][104] [85][123]
PyTorch Implementing AD Algorithm [71][124][75][68][34]
PySyft Implementing AD Algorithm [71][124][75][68]

network traffic and cyberattacks. According to their documentation, combining multiple simulta-
neous wired and wireless users with both application traffic and current attacks is possible with
PerfectStorm Fusion. Furthermore, thousands of real-life end-user environments are simulated and
tested using stateful applications and malicious traffic such as DoS and botnets. The workloads
include data, video, voice, storage, and network applications.

7.2 Network Feature Extraction
We have previously discussed how important extracting features is for a dataset. Similarly, Frazão
et al. [83] extracted network features using MATLAB (mathworks.com), where they extracted 68
network features, including packet timestamps, inter-packet arrival times, binary features defining
which protocols were involved, and every field of the Ethernet, ARP, IP, ICMP, UDP, TCP and
MODBUS over TCP headers. MATLAB can also be used to simulate an IoT environment using
MATLAB Simulink features as presented by Al Farooq et al. [125]. According to MATLAB’s website,
both the model-based design and multi-domain simulation are supported by Simulink. Argus
(openargus.org) is another network extraction tool that was used by Koroniotis et al. [85] to extract
the record start time, record last time, standard deviation of aggregated records, class label: 0 for
normal traffic, 1 for attack traffic, and traffic category among other network features. Likewise,
Moustafa & Slay [39] extracted three categories of network features: basic, content, and time
using Argus. In addition to auditing IP traffic, Argus provides network activity audit technology
for all network traffic, according to their website. Along with Argus, Moustafa & Slay [39] used
a network extraction tool called Bro-IDS (zeek.org) to extract network features and match the
extracted features with the extracted features from Argus. Their website states that Bro-IDS can be
configured to act as an IDS and detect well-known attacks. It is also important to know that Bro-IDS
has been renamed Zeek. Dpkt (dpkt.readthedocs.io) is another feature extraction tool written in
Python for creating and parsing network packets, which supports basic TCP/IP protocols. Dadkhah
et al. [57] extracted 48 features from each device in their experiment that include packet size,
protocol, epoch timestamp, and Ethernet frame size, among other features, using dpkt. According to
Teh et al. [74], Tsfresh (tsfresh.readthedocs.io/en/latest/) is a widely used ML library for time series
feature extraction that is written in Python. Ouyang et al. [120] also used Tsfresh in the context
of power consumption to extract features from the power consumption data of 54,174 customers.
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Furthermore, Liu et al. [119] used Tsfresh along with LSTM to present a sensor fault classification
method that is based on feature extraction.

7.3 Network Capture and Analyzing
Wireshark (wireshark.org) is a well-known useful tool that is intended to capture and analyze
network traffic. It supports hundreds of protocols to be analyzed and provides online and offline
analyzing capabilities. Its interface is easy to read, and network capture can be filtered using port
numbers, protocols, and IP addresses, among other attributes. Ren et al. [126] used Wireshark to
capture network traffic in their project. According to their paper, Wireshark does not support all
encrypted protocols. Tshark (wireshark.org/docs/man-pages/tshark.html) is the terminal version
of Wireshark, which becomes handy in case the use of GUI is not feasible. Similarly, TCPDump
(tcpdump.org) is another packet analyzer and network capture tool that is widely used nowadays.
Hamza et al. [106] captured local and remote network traffic consisting of malicious and benign
traffic for 16 days using TCPDump and stored pcap files on a hard disk that is attached to the
network gateway. Similarly, CICFlowmeter (unb.ca/cic) is a network analyzer and generator that
the Canadian Institute for Cybersecurity developed. It can generate bidirectional traffic and can
capture up to 80 different features, such as duration and length of packets. Additionally, a user can
select what features to be captured and can add new features. CICFlowmeter has been used by
Ullah & Mahmoud [127] to extract network features from pcap files of five different datasets.

7.4 Router Management
To maximize the experience of having full control of routers and access points, Bhatt & Morais
[116] configured the router they used in their research using OpenWRT (openwrt.org). OpenWRT
is an embedded Linux operating system whose file system is fully writable and has a package
management feature rather than creating a single, static firmware, as mentioned on their website.
Additionally, Pessoa & Duarte-Figueiredo [128] used OpenWRT to change the firmware of the
TPLink1043nd v2.1 access point to enable OpenFlow connections.

7.5 Cyber Anomalies
To perform cyber anomalies and test the security of their testbed, Dadkhah et al. [57] performed DoS
attack using LOIC, which is a network stress tool that performs cyberattacks. Likewise, Bhuyan et al.
[113] used LOIC to generate a distributed DoS attack. Security analysis of wireless communications
is made easier with Mirage, a powerful and modular framework that is based on Romain Cayre’s
research on IoT security. The tool provides hackable wireless protocol stacks such as Zigbee, BLE,
and Wi-Fi. Using Mirage, Gimenez et al. [56] performed different types of attacks such as DoS,
injection, and probe. Hydra is another cyber anomaly tool that helps crack passwords by performing
dictionary attacks. Similarly, Koroniotis et al. [85] performed a dictionary attack on their SSH
service. Furthermore, Rose et al. [114] created malicious pcap files performing different attacks,
using Hydra to perform brute force attacks to test their framework. Another well-known security
tool is Nmap, an open-source security auditing and network discovery tool. It can find hosts within
a network, services each host is running, and ports available. Furthermore, Nmap can be used
to perform cyberattacks by running malicious scripts through the Nmap scripting engine. As an
example of using Nmap, Siboni et al. [46] used Nmap to perform a network mapping attack. Even
though Nmap can work on different operating systems, they modified Nmap to work on Android
as the experiment was conducted on a Sony smartwatch. For vulnerability scanning, Tekeoglu &
Tosun [107] used Nmap to scan for vulnerability on a FireTV stick, which shows severe threats.
First, a vulnerability was found in the FireTV stick server running on port 49986 with a 10 (out of 10)
severity score against Format String Attack on URI. Another vulnerability was also found with
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Table 12. Anomaly Detection Evaluation Metrics Summary

Paper TP TN FP FN Accuracy Precision Recall F1-Score Threshold Runtime ROC AUC EER MCC PPV MAE MSE RMSE BA

Sikder et al. [48]
Ullah & Mahmoud [65]

Kang et al. [59]
Hosseini et al. [66]

Li et al. [67]
Liu et al. [68]

Mudgerikar et al. [69]
Djenouri et al. [70]
Mothukuri et al. [71]

Shafi et al. [72]
Yahyaoui et al. [73]
Gimenez et al. [56]
Heartfield et al. [4]

Teh et al. [74]
Sater & Hamza [75]
Sarwar et al. [76]
Dissem et al. [77]
Xiao et al. [78]
Li et al. [79]

Has not been used, Has been used.

a 7.5 (out of 10) score of severity on the same port called CERN httpd CGI name heap overflow,
which allows an attacker to stop a code on the server or even run a malicious code on the server.

7.6 Anomaly Detection Algorithms Implementation
Applying anomaly detection models is a part of the anomaly detection process; thus, we also
list tools that help implement an anomaly detection model. Sater & Hamza [75] used PyTorch
(pytorch.org) to implement the stacked LSTM as an anomaly detection algorithm. PyTorch is
an open-source ML framework that is used for DL utilizing GPUs and CPUs. Similarly, PySyft
(openmined.github.io/PySyft/index.html) is another open-source tool that is used to provide secure
and private DL in Python. Mothukuri et al. [71] used PySyft along with PyTorch to implement their
FL approach.

8 EVALUATION METRICS
For every anomaly detection technique presented, there must be an evaluation criterion that gives an
indication of how efficient an anomaly detection technique is. We emphasize a range of evaluation
metrics, each serving unique purposes in anomaly detection. Accuracy, a foundational metric,
calculates the proportion of correct predictions but may mislead in imbalanced datasets where
anomalies are rare [129]. Precision measures true positives among predicted positives, crucial when
false positives affect system performance, such as in IoT scenarios. Recall, focusing on true positives
among actual positives, is vital in critical contexts like cybersecurity. The F1-score, balancing
precision and recall, suits imbalanced datasets by addressing trade-offs between false positives
and missed detections. Receiver Operating Characteristic (ROC) curves and Area Under
the Curve (AUC) illustrate the trade-off between sensitivity and specificity, providing valuable
insights for reducing missed anomalies and false alarms. Metrics like TPR and false positive rate
(FPR) provide detailed views of detection performance, especially in real-time systems where
frequent alerts can lead to alert fatigue [130]. Selecting the right metric is key to evaluating anomaly
detection systems effectively in specific applications.
In this section, we present the most common evaluation metrics that are used to evaluate

different anomaly detection techniques as summarized in Table 12. Furthermore, we summarize
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value interpretations that yield a quality anomaly detection technique in Figure 7 and formulas of
discussed evaluation metrics in Table 13

• True positive (TP) is when an anomaly is correctly predicted by a model.
• True negative (TN) is when the absence of an anomaly is correctly predicted by a model.
• False positive (FP) is when an anomaly is incorrectly predicted by a model.
• False negative (FN) is when the absence of an anomaly is incorrectly predicted by a model.
• Accuracy measures how accurate a model’s prediction is. Accuracy is inefficient if a dataset
is imbalanced [129].

• Precision measures the ratio of predicted anomalies to the total data samples [129].
• Recall measures how many anomalies (TP) were classified by the model [129].
• F1-Score measures the accuracy of a model, using precision and recall, especially when the
dataset is imbalanced [66].

• Threshold is a value that distinguishes between two binary classes, in our case, normal
or abnormal. Less than a threshold is a normal instance, whereas any value over it is an
anomaly.

• Runtime is the time it takes a model to completely run and finish, which is also known as
computational time.

• ROC provides a graphical representation of amodel’s performance using the TPR, represented
as a y-axis in a graph, and (FPR), represented as an x-axis in a graph [129].

• AUC measures the area under the ROC curve. Essentially, it measures how much area under
the ROC has been covered [129].

• Equal Error Rate (EER) is an intersection point between the TPR and FPR on the ROC
graph where FPR and FN rate (FNR) values are equal [129].

• Matthews correlation coefficient (MCC) measures how accurate a model is in terms of
anomaly prediction taking into consideration all four evaluation metrics: TP, TF, FP, and FN.
Furthermore, MCC yields a high score if most of both negative and positive data samples are
correctly predicted [131].

• Predictive positive value (PPV) measures the proportion of positive anomalies that are
actually positive [132]

• Mean absolute error (MAE) evaluates how closely the predicted anomalies match the
actual anomalies [129].

• Mean squared error (MSE) is similar to MAE, but it is more sensitive to anomalies because
errors are squared [129].

• Root mean squared error (RMSE) is a measure of the average of squared errors squared
[129].

• Balanced accuracy (BA) measures how accurate the prediction of a model is when the
dataset is imbalanced [75].

9 CONCLUSION
We reviewed and presented guidelines based on scientific background to design a testbed, choose
a testbed layout, select users and devices, and define the experimental condition for the testbed.
Additionally, different anomaly-creation methods were presented. We have also reviewed multiple
anomaly detection mechanisms in terms of the detection algorithm used, whether was it tested on
a testbed or a dataset, and the types of anomalies generated.
Furthermore, we discussed the type of infrastructure to create a dataset and what network

configuration to choose because different wireless communication protocols might need different
hubs to manage them; hence, the budget of the implementation will go up. In terms of data collection,

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: March 2025.



Testbeds and Evaluation Frameworks for Anomaly Detection within Built Environments: A Systematic Review 0:27

Lower is
better

Runtime

MAE

RMSE

MSE

EER

Evaluation 
Metrics

Higher is
BetterBA

TP Accuracy

Precision

PPV

F1-Score Recall

Between -1 and 1,
where 1 represents

the ideal value
MCC

FN

FP

Between 0 and 1,
where 1 represents

the ideal value

The lower the value
compared to the

baseline, the better

ThresholdAUC

ROC
A value in the top-left
corner of the graph is

preferable

TN

Fig. 7. A mind map of evaluation metrics used in anomaly detection. Nodes categorize metrics into groups
like accuracy, recall, precision, and error rates, with arrows indicating whether higher or lower values are
preferred.

Table 13. Anomaly Detection Evaluation Metrics Formulas

Evaluation Metric Formula No.

Accuracy 𝑇𝑃+𝑇𝑁
𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁 (1)

Precision 𝑇𝑃
𝑇𝑃+𝐹𝑃 (2)

Recall 𝑇𝑃
𝑇𝑃+𝐹𝑁 (3)

F1-Score 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙 (4)

ROC 𝑇𝑃𝑅 = 𝑇𝑃
𝑇𝑃+𝐹𝑁 𝐹𝑃𝑅 = 𝐹𝑃

𝐹𝑃+𝑇𝑁 (5)

MCC (𝑇𝑃×𝑇𝑁 )−(𝐹𝑃×𝐹𝑁 )√
(𝑇𝑃+𝐹𝑃 ) (𝑇𝑃+𝐹𝑁 ) (𝑇𝑁+𝐹𝑃 ) (𝑇𝑁+𝐹𝑁 )

(6)

PPV 𝑇𝑃
𝑇𝑃+𝐹𝑃 (7)

MAE 1
𝑛

∑𝑛
𝑖=1 |𝑦𝑖 − 𝑦𝑖 | (8)

MSE 1
𝑛

∑𝑛
𝑖=1 (𝑦𝑖 − 𝑦𝑖 )2 (9)

RMSE
√︃

1
𝑛

∑𝑛
𝑖=1 (𝑦𝑖 − 𝑦𝑖 )2 (10)

BA 𝑇𝑃𝑅+𝑇𝑁𝑅
2 (11)

we provided six different statuses in which data are collected during power, idle, interaction,
scenarios, active, and attacks. To generate the data, different traffic scenarios must be considered
and followed. We provided examples of smart home scenarios that might differ depending on
the dataset’s goal. Dataset analysis is an important aspect of the dataset creation process, which
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Table 14. Applicability of Anomaly Detection Methodologies Across Smart Environments and Applications

Application/Domain Smart Home Smart Building Smart City Industrial IoT

Anomaly Types
Detection Technique
Testbed Characteristics Partially addressed by the

use of emulation(CORE).
Requires further scalabil-
ity testing

Limited coverage of indus-
trial devices

Evaluation Metrics
Dataset Creation Requires real-world traffic

data
Limited coverage of indus-
trial protocols

Fully covered

consists of feature extraction and statistical analysis. Several network feature types were presented
with examples of some distinct network features and their description. Statistical-based analysis
methods with low variance, T-score, chi-squared score, Gini index, and CFS were discussed in
detail.
A set of useful tools, in terms of capturing and analyzing network traffic such as Wireshark,

extracting network features such as CICFlowmeter, and performing cyberattacks such as Mirage,
was presented along with their websites and references. We also highlighted the most common
anomaly detection evaluation metrics used in the literature.

To broaden the applicability of our study, which encompasses both urban-focused and industrial
applications to some extent, we have included a diverse range of anomaly types, anomaly detection
techniques, comprehensive testbed characteristics, and evaluation metrics. While our findings are
validated against specific testing scenarios, further research is necessary to assess the framework’s
scalability in network-heavy environments, particularly those deploying a large volume of devices.
This would provide valuable insights into its efficiency in managing challenges faced in smart cities
and industrial systems. Table 14 illustrates the applicability and limitation of our study.
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