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 A B S T R A C T

Diffusion Magnetic Resonance Imaging (dMRI) sensitises the MRI signal to spin motion. This includes Brownian 
diffusion, but also flow across intricate networks of capillaries. This effect, the intra-voxel incoherent motion 
(IVIM), enables microvasculature characterisation with dMRI, through metrics such as the vascular signal 
fraction 𝑓𝑉  or the vascular Apparent Diffusion Coefficient (ADC) 𝐷∗. The IVIM metrics, while sensitive to 
perfusion, are protocol-dependent, and their interpretation can change depending on the flow regime spins 
experience during the dMRI measurements (e.g., diffusive vs ballistic), which is in general not known for a 
given voxel. These facts hamper their practical clinical utility, and innovative vascular dMRI models are needed 
to enable the in vivo calculation of biologically meaningful markers of capillary flow. These could have relevant 
applications in cancer, as in the assessment of the response to anti-angiogenic therapies targeting tumour 
vessels. This paper tackles this need by introducing SpinFlowSim, an open-source simulator of dMRI signals 
arising from blood flow within pipe networks. SpinFlowSim, tailored for the laminar flow patterns within 
capillaries, enables the synthesis of highly-realistic microvascular dMRI signals, given networks reconstructed 
from histology. We showcase the simulator by generating synthetic signals for 15 networks, reconstructed 
from liver biopsies, and containing cancerous and non-cancerous tissue. Signals exhibit complex, non-mono-
exponential behaviours, consistent with in vivo signal patterns, and pointing towards the co-existence of 
different flow regimes within the same network, as well as diffusion time dependence. We also demonstrate 
the potential utility of SpinFlowSim by devising a strategy for microvascular property mapping informed by 
the synthetic signals, and focussing on the quantification of blood velocity distribution moments and of an
apparent network branching index. These were estimated in silico and in vivo, in healthy volunteers scanned at 
1.5T and 3T and in 13 cancer patients, scanned at 1.5T. In conclusion, realistic flow simulations, as those 
enabled by SpinFlowSim, may play a key role in the development of the next-generation of dMRI methods for 
microvascular mapping, with immediate applications in oncology.
1. Introduction

In diffusion Magnetic Resonance Imaging (dMRI), water proton 
motion is encoded in the acquired signals through magnetic field 
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gradients (Kiselev, 2017). Diffusion encoding provides sensitivity not 
only to Brownian motion due to pure diffusion, but also to pseudo-
diffusion effects arising from the incoherent flow of blood protons 
through intricate capillary networks (Le Bihan et al., 1986). Flow 
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through sets of pseudo-randomly distributed capillaries leads to mag-
nitude dMRI signal attenuation, a phenomenon known as Intra-Voxel 
Incoherent Motion (IVIM) effect. IVIM enables the in vivo character-
isation of microvascular perfusion through dMRI (Le Bihan, 2019), 
relevant in a variety of diseases, as, for example, in cancer (Fokkinga 
et al., 2024). Cancers feature aberrant microvasculature, whose flow 
patterns can differ considerably from normal tissues (Munn, 2003). 
Tumour vasculature is targeted specifically by anti-angiogenic treat-
ments, which are being used in several cancers (e.g., in liver or kidney 
carcinomas (Jayson et al., 2016)) and tested in combination with 
therapies such as immune check-point inhibitors, with promising re-
sults (Huinen et al., 2021). The non-invasive assessment of vascular 
properties through dMRI can equip physicians with new tools for 
tumour characterisation and longitudinal assessment. It is thereby an 
active field of research, with studies spanning from malignancy detec-
tion to treatment response assessment (Iima et al., 2018; Perucho et al., 
2021).

IVIM methods typically rely on disentangling vascular from extra-
vascular tissue dMRI signals (Barbieri et al., 2016b,a). Multi-
exponential models are routinely used for this purpose, providing 
metrics such as the vascular signal fraction 𝑓𝑣, or the pseudo-diffusion
(vascular) apparent diffusion coefficient (ADC) 𝐷∗, whose estimation 
has been recently made more robust by deep learning (Barbieri et al., 
2020; Zheng et al., 2023). Both 𝑓𝑣 and 𝐷∗ are useful indices, as 
they have shown value in cancer assessment (Dappa et al., 2017). 
However, these metrics have limitations, since they entangle several, 
different microvascular characteristics into a single number, e.g., the 
product between the mean of the blood velocity and capillary length 
distributions in the diffusive flow regime (Le Bihan and Turner, 1992-
09). Moreover, they do not account for higher-order cumulants of the 
diffusion decay (e.g., kurtosis terms proportional to 𝑏2), and their actual 
numerical value can depend on the acquisition protocol in non-trivial 
ways (Wu and Zhang, 2019). In practice, this makes routine IVIM 
metrics semi-quantitative, surrogate parameters, a fact that, together 
with their known high variability (Barbieri et al., 2020), hampers their 
large-scale clinical deployment.

Recently, the numerical simulation of dMRI signals within
histologically-realistic voxel models is being increasingly used to in-
form parameter estimation (Nilsson et al., 2010; Nguyen et al., 2014; 
Fieremans and Lee, 2018; Buizza et al., 2021; Morelli et al., 2023). 
Simulation-informed approaches increase the realism of signal models, 
and may thus improve the biological fidelity of dMRI parametric 
maps (Nedjati-Gilani et al., 2017; Palombo et al., 2019). However, up to 
date dMRI simulations have been dominated by Monte Carlo Brownian 
random walks (Hall and Alexander, 2009; Ginsburger et al., 2019; 
Rafael-Patino et al., 2020; Lee et al., 2021). Given that only a few simu-
lation frameworks have focussed on blood flow (Van et al., 2021; Weine 
et al., 2024), there is an urgent need for new, histologically-meaningful, 
and reproducible simulators tailored for dMRI signal arising from blood 
flow. These could be used to inform novel numerical approaches for 
non-invasive microvasculature mapping based on dMRI, which could 
equip oncologists with biologically-meaningful vascular markers in 
clinical settings. The new dMRI methods could enable the characteri-
sation of capillary flow patterns that are not captured by classical IVIM 
𝑓𝑣 and 𝐷∗, e.g., informing on anisotropic flow patterns, higher-order 
cumulants or diffusion-time dependence of the vascular signal.

With this article we aim to fill this scientific gap. We present 
an open-source framework for blood flow simulation within vascular 
networks, referred to as SpinFlowSim from here on, and demonstrate 
its potential to inform microvasculature property estimation in dMRI. 
We start by illustrating the computational engine behind SpinFlowSim, 
based on pipe network theory. Afterwards, we describe the synthe-
sis of dMRI signals arising from flow within realistic vascular net-
works obtained from histological images of human tumours. Finally, 
we showcase a potential application of SpinFlowSim, by using the syn-
thetic signals to inform microvasculature property estimation, which is 
2 
demonstrated in silico and in vivo, in healthy volunteers and in cancer 
patients. Preliminary findings were disseminated at a conference in 
abstract form (Voronova et al., 2024b). A draft of this article has also 
been posted as in the medRxiv preprint server (Voronova et al., 2024a).

2. Methods

In this section we illustrate the computational engine upon which 
SpinFlowSim relies, illustrated in Fig.  1. Afterwards, we present the 
histological data used to generate realistic vascular networks, and then 
describe how synthetic dMRI signals were used to inform microvascu-
lature parameter estimation in silico and in vivo. SpinFlowSim is made 
freely available at https://github.com/radiomicsgroup/SpinFlowSim.

2.1. Simulation framework

In SpinFlowSim (Fig.  1) we aim to reconstruct the distribution of 
volumetric flow rate (VFR) across the different segments of an input 
vascular network. The following characteristics of the vascular network 
are specified directly by the user:

• a list of capillary segments with their radii;
• the 3D coordinates of the extremities of each segment, referred to 
as nodes;

• the inlet/outlet of the whole network;
• the input VFR 𝑞𝑖𝑛.
To obtain the VFR distribution, we solve a linear inverse problem, 

in which the pressure drop 𝛥𝑝𝑘,𝑛 across each pair of connected nodes 
(𝑘, 𝑛) is proportional to the VFR 𝑞𝑘,𝑛 between 𝑘 and 𝑛 through a flow 
resistance coefficient 𝑅𝑘,𝑛, via 

𝛥𝑝𝑘,𝑛 = 𝑅𝑘,𝑛 𝑞𝑘,𝑛. (1)

The approach, valid for the laminar flow regime in micro-capillaries, 
has been recently proposed for capillary flow simulations (Schmid 
et al., 2015; Van et al., 2021).

To solve for all unknown 𝑞𝑘,𝑛 in Eq. (1), we rely on PySpice (Salvaire, 
2023), a python package for electric circuit analysis, given that solving 
our flow problem is formally equivalent to solving a passive electric cir-
cuit (electric-hydraulic analogy). Note that in a passive electric circuit, 
the voltage drop across a resistor is proportional to the product of the 
electric current through the resistor and the resistance of the element 
itself, i.e., it is formally equivalent to Eq. (1). In this first demonstration 
of SpinFlowSim, we compute the resistance between nodes 𝑘 and 𝑛
through a modified Hagen–Poiseuille law, as done in Blinder et al. 
(2013): 

𝑅𝑘,𝑛 = 4
(

1 − 0.863 𝑒−
𝑟𝑘,𝑛

14.3𝜇m + 27.5 𝑒−
𝑟𝑘,𝑛

0.351𝜇m

) 8𝜇 𝐿𝑘,𝑛

𝜋 𝑟4𝑘,𝑛
. (2)

Eq. (2) models the effect of the hematocrit as well as erythrocyte-
capillary wall interactions (Pries and Secomb, 2008; Blinder et al., 
2013). Above, 𝜇 is the dynamic viscosity of pure plasma (Késmárky 
et al., 2008) (𝜇 = 1.20 mPa s at 37 ◦C), 𝑟𝑘,𝑛 is the radius of the capillary 
segment, and 𝐿𝑘,𝑛 its length.

After recovering the VFR 𝑞𝑘,𝑛 between each pair of connected nodes, 
in SpinFlowSim we obtain the corresponding mean velocity 𝑣𝑘,𝑛 as 

𝑣𝑘,𝑛 =
𝑞𝑘,𝑛
𝜋𝑟2𝑘,𝑛

. (3)

Finally, the 3D trajectory 𝐩𝑤(𝑡) of the generic 𝑤-th blood spin is 
synthesised by integrating the discrete-time system 
𝐩𝑤 (𝑡 + 𝛥𝑡) = 𝐩𝑤(𝑡) + 𝛥𝑡 𝑣𝑤(𝑡)𝐧𝑤(𝑡) (4)

given an initial position 𝐩𝑤(0) = 𝐩𝑤,0. In Eq. (4), 𝛥𝑡 is the temporal 
resolution of the simulation, while 𝑣𝑤(𝑡) and 𝐧𝑤(𝑡) are the instantaneous 
velocity vector magnitude and direction experienced by the spin at time 
𝑡. Spins’ initial positions 𝐩  are seeded across the whole network, with 
𝑤,0

https://github.com/radiomicsgroup/SpinFlowSim
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Fig. 1. Outline of the proposed SpinFlowSim framework. The dashed boxes indicate user-provided input information. An illustrative example of a network segmented on a biopsy 

with resolved volumetric flow rates for an input flow 𝑞𝑖𝑛 = 3.1 ⋅ 10−3 mm3/s and synthesised signals are shown.
uniform spin density in each segment. The numbers of spins assigned 
to each segment is proportional to its volume (Van et al., 2021). 
During the integration of Eq. (4), spins reaching the termination of a 
capillary are assigned at random to one of the emanating branches. The 
probability of a spin being assigned to a specific branch is proportional 
to the VFR through that branch (Van et al., 2021). More formally, once 
a flowing spin reaches the 𝑘-th node, the probability of it continuing 
its trajectory in the 𝑘 → 𝑛 branch emanating from 𝑘 is 

𝑝(𝑘 → 𝑛) =
𝑞𝑘,𝑛

∑

𝑛 𝑞𝑘,𝑛
. (5)

Moreover, spins reaching the network outlet continue flowing through 
a shifted copy of the vascular network, whose inlet position coincides 
3 
exactly with the outlet itself. This ensures that no spins are lost during 
the simulation (periodic boundary condition). SpinFlowSim supports 
the visualisation of spin trajectories as a video, in order to facilitate 
the visual inspection of the simulation output.

Once the trajectories for 𝑊  spins have been generated, we synthe-
sise a complex-valued dMRI signal 𝑠 for any input gradient wave form 
𝐆(𝑡) as (Fieremans and Lee, 2018) 

𝑠 = 1
𝑊

𝑊
∑

𝑤=1
𝑒−𝑖 𝛾 𝛥𝑡

∑𝑇
𝑡=0 𝐩𝑤(𝑡) ⋅𝐆(𝑡) (6)

given the requested total simulation duration 𝑇 .



A.K. Voronova et al.

Fig. 2. Vascular networks segmented on digitised liver tumour biopsies (resolution: 0.454 μm). Each network is labelled as ‘‘Non-Cancerous’’ or ‘‘Cancerous’’, depending on whether 
it was drawn on non-cancerous liver parenchyma or on tumour tissue. For the latter case, the primary cancer is also indicated (CRC stands for Colorectal Cancer, while HCC 
for Hepatocellular Carcinoma). The non-cancerous networks were drawn on liver tissue found on liver tumour biopsies of patients suffering from Melanoma (n = 2) and Ovarian 
cancer (n = 1).

Fig. 3. Examples of resolved vascular networks. The top row shows results from a vascular network segmented on a HE-stained non-cancerous liver region, found on a biopsy of 
a patient with metastatic melanoma (Net 6). The bottom panel shows results from a CD31-stained rectal cancer area (Net 12). From left to right, we show the vascular network, 
the resolved blood flow velocity field for 𝑞𝑖𝑛 = 3.1 ⋅ 10−3 mm3/s, and examples of dMRI signal decay over a range of b-values (0–150 s∕mm2) and diffusion times (𝛥 = {30, 50, 
70} ms, 𝛿 = 20 ms). The inlet/outlet were: nodes 0 and 33 for Net 6; nodes 0 and 14 for Net 12. These have been indicated by input/output yellow arrows.

Medical Image Analysis 102 (2025) 103531 
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Fig. 4. Scatter plots relating estimated and ground truth microvascular parameters in computer simulations. First row (panels (a), (b), (c)): results for protocol ‘‘PGSE in vivo’’. 
Second row (panels (d), (e), (f)): results for protocol ‘‘TRSE’’. Third row (panels (g), (h), (i)): results for protocol ‘‘richPGSE subset’’. Fourth row (panels (j), (k), (l)): results for 
protocol ‘‘richPGSE’’. From left to right: results for metric 𝑣𝑚 (panels (a), (d), (g), (j)); results for metric 𝑣𝑠 (panels (b), (e), (h), (k)); results for metric 𝐴𝑁𝐵 (panels (c), (f), (i), 
(l)).Spearman’s and Pearson’s correlation coefficients between estimated and ground truth values are also reported in each plot.
2.2. Vascular networks

We deployed SpinFlowSim on vascular networks reconstructed from 
2D histological images. These consisted of biopsies obtained in pa-
tients suffering from advanced tumours and participating in an ongoing 
imaging study at the Vall d’Hebron Institute of Oncology (Barcelona).

The biopsied tissue, taken from liver tumours, was processed and 
stained. Digitised images of the stained tissue were acquired on a 
Hamamatsu C9600-12 optical slide scanner (resolution: 0.454 μm). For 
5 
this study, we used 11 histological images, obtained from 11 patients. 
For each patient, we had access to either a routine hematoxylin-eosin 
(HE) stain (n = 9) or a CD31 stain (n = 2).

We drew a total of 15 2D networks. We drew networks manu-
ally, by tracing visible capillaries in non-cancerous liver parenchyma 
or in cancerous regions-of-interest (ROIs). Networks were drawn on 
approximately square ROIs, of sizes ranging from 250 to 550 μm per 
side. Networks were made of interconnected segments, with curved 
capillaries approximated by a piece-wise series of straight pipes. A 
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Fig. 5. Representative vascular voxel signals measured in two healthy volunteers in vivo. Top (A–D): signals from healthy volunteer 4, scanned on a 3T system, with the ‘‘PGSEinvivo’’ 
protocol, based on routine PGSE. Bottom (E–H): signals from healthy volunteer 2, scanned on a 1.5T system, with the ‘‘TRSEinvivo’’ protocol, based on a DW TRSE acquisition. 
From left to right, signals from different ROIs are shown: kidney cortex (A and E); kidney medulla (B and F); spleen (C and G); liver parenchyma (D and H). The figure reports 
the median and the inter-quartile range of variation of the signal across voxels within the ROI. An estimated range of noise floor fluctuations is also reported in grey.

Fig. 6. Microvascular maps in a representative healthy volunteer scanned on the 1.5T system with protocol ‘‘TRSEinvivo’’. (a): labelled scan; (b) and (c): IVIM maps 𝑓𝑉  and 𝐷∗; 
(d), (e) and (f): microvascular indices 𝑣𝑚, 𝑣𝑠 and 𝐴𝑁𝐵. In the labelled scan, we highlight the location of the liver and the spleen.

Medical Image Analysis 102 (2025) 103531 
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Fig. 7. Microvascular maps in the healthy volunteer scanned on the 3T system with protocol ‘‘PGSEinvivo’’. (a): labelled scan; (b) and (c): IVIM maps 𝑓𝑉  and 𝐷∗; (d), (e) and 
(f): microvascular indices 𝑣𝑚, 𝑣𝑠 and 𝐴𝑁𝐵. In the labelled scan, we highlight the location of the liver, the spleen and of the kidneys.

Fig. 8. Bar plots reporting mean and standard error of the mean of all microvascular metrics in the different regions-of-interest (ROIs) of the four healthy volunteers. (a): trends 
for metric 𝑓𝑉 ; (b): trends for metric 𝐷∗; (c): trends for metric 𝑣𝑚; (d): trends for metric 𝑣𝑠; (e): trends for metric 𝐴𝑁𝐵.

Medical Image Analysis 102 (2025) 103531 
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Fig. 9. Parametric maps obtained in adrenal metastases, liver and spleen of a 61 y.o. male patient, suffering from advanced rectal cancer (patient 8, scanned on a 1.5T Siemens 
Avanto system with a DW TRSE sequence). Top row: labelled scan and IVIM maps 𝑓𝑉  and 𝐷∗. Bottom row: microvascular parameters obtained via simulation-informed model 
fitting, namely: mean blood velocity 𝑣𝑚, blood velocity standard deviation 𝑣𝑠, and Apparent Network Branching 𝐴𝑁𝐵.
characteristic radius was assigned to each segment by averaging three 
radius measurements, performed at the inlet, middle point, and outlet 
level. For each network, we computed an approximated network size as 
the maximum euclidean distance between any pair of nodes. Addition-
ally, we also assessed the network dimensions by calculating the total 
number of capillary segments. As compared to the euclidean network 
size mentioned above, this index has the potential of distinguishing 
between networks of similar dimensions, but characterised by different 
spatial densities of capillaries. We also computed the mean and stan-
dard deviation of the capillary radii and lengths (𝑟 and 𝐿), which we 
refer to as 𝑟𝑚 and 𝐿𝑚.

We generated 100 VFR distribution realisations by changing ran-
domly the position of the network inlet/outlet 10 times, and varying 
the input VFR 𝑞𝑖𝑛 for each inlet/outlet pair (10 uniformly-spaced 𝑞𝑖𝑛
values in [1.5⋅10−4; 5.5⋅10−3] mm3∕s), to cover plausible blood capillary 
velocities (Ivanov et al., 1981). The total duration and the temporal 
resolution of the simulations were 𝑇 = 100 ms and 𝛥𝑡 = 0.01 ms. 
We characterised each realisation by computing: mean and standard 
deviation of the velocity and VFR distribution across capillary segments 
(𝑣𝑚 and 𝑣𝑠; 𝑞𝑚 and 𝑞𝑠); mean radius (𝑟𝑚), mean segment length (𝑆𝐿𝑚) 
and mean path length (𝑃𝐿𝑚); number of input/output paths; as well an 
Apparent Network Branching (𝐴𝑁𝐵 index). 𝐴𝑁𝐵 measures the average 
number of segments spins travel through during a reference time of 
100 ms. Conversely, 𝑃𝐿𝑚 is instead obtained as 𝑃𝐿𝑚 = ⟨𝑃𝐿⟩, where 
𝑃𝐿 indicates the length of the generic input/output flow path, obtained 
through the cumulative length of the segments contained within a path 
connecting inlet to outlet, i.e., 𝑃𝐿 =

∑

𝑗 ∈ 𝑓𝑙𝑜𝑤 𝑝𝑎𝑡ℎ 𝐿𝑗 . In practice, 𝑃𝐿𝑚
reports the average 𝑃𝐿 over all possible input/output network paths. 
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Spearman’s correlation coefficients among all possible pairs of network 
metrics were computed. Additionally, we studied the correlation among 
mean VFR 𝑞𝑝, mean velocity 𝑣𝑝, mean radius 𝑟𝑝 and path length 𝑃𝐿
along all possible input/output paths contained in the networks. For 
each path, these were computed as 𝑞𝑝 = ⟨𝐿𝑞⟩∕𝑃𝐿, 𝑣𝑝 = ⟨𝐿𝑣⟩∕𝑃𝐿
and 𝑟𝑝 = ⟨𝐿𝑟⟩∕𝑃𝐿. The existence of closed flow loops within the 
networks was also assessed with the graph theory python package
graph-tools (Peixoto, 2023).

Finally, we synthesised illustrative dMRI signals for routine pulsed-
gradient spin echo (PGSE) sequences. We probed b-values in the range 
[0; 150] s/mm2, and varied the gradient separation 𝛥 over two orders 
of magnitude (from 10 ms to 1 s). Signals were generated for two 
orthogonal directions within the plane containing the 2D networks, 
as well as for an increasing number of evenly-spaced directions over 
the unit circle, up to 64, and their magnitude averaged. The fraction 
of flowing spins that do not change capillary segment during the 
simulation was also recorded.

2.3. Microvascular property estimation from dMRI

We also investigated whether the synthetic signals generated with 
SpinFlowSim can be used to inform microvascular parameter estima-
tion in dMRI. We hypothesised that, for a given dMRI protocol, large 
dictionaries of synthetic, noise-free signal arrays 𝐒 = {𝐬1,… , 𝐬𝑀}, cou-
pled with their corresponding vascular parameter arrays 𝐏 = {𝐩1,… ,
𝐩𝑀}, can be used to find practical numerical implementations of the 
forward signal model 𝐩 ↦ 𝐬(𝐩). Numerical implementations of this 
type could be easily incorporated in standard non-linear least square 
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(NNLS) fitting, used routinely in dMRI, thus avoiding the need for 
approximated analytical signal expressions.

In the following sections, we will describe in silico analyses per-
formed to investigate the feasibility of simulation-informed fitting. We 
will then describe experiments performed to demonstrate the approach
in vivo, based on the acquisition of dMRI scans in healthy volunteers at 
1.5T and 3T and cancer patients at 1.5T.

2.3.1. In silico estimation
We used SpinFlowSim to synthesise signals for 4 realistic dMRI 

protocols, and then analysed such signals to test whether it is possible 
to estimate 𝑣𝑚, 𝑣𝑠 and 𝐴𝑁𝐵 from noisy measurements. One of the 
protocols represents a rich, comprehensive pulsed-gradient spin echo 
(PGSE) acquisition, encompassing several b-values in a measurement 
regime with high sensitivity to IVIM effects (i.e., 𝑏 smaller than ap-
proximately 100 s/mm2 Le Bihan, 2019), as well as multiple diffusion 
times. A second protocol is instead a shorter subset of the rich protocol. 
Finally, the third and fourth protocols match acquisitions used for in 
vivo imaging. Signals were generated for two orthogonal directions 
within the plane containing the 2D networks, and their magnitude 
averaged. In summary, the protocols were:

• a rich PGSE protocol, referred to as ‘‘richPGSE’’. It consisted of a 
total of 99 measurements, encompassing 9 𝑏 = 0 and 10 non-
zero b-values 𝑏 = {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}
s/mm2, each acquired for 9 unique diffusion times, corresponding 
to (𝛿, 𝛥) = {10, 20, 30} ms × {30, 50, 70} ms.

• A second PGSE protocol, referred to as ‘‘richPGSEsubset’’. It is a 
subset of the former, and describes a more realistic acquisition 
that could be implemented under time pressure. It encompassed 
3 𝑏 = 0 and 6 diffusion-weighted (DW) measurements, namely 
𝑏 = {50, 100} for 3 different diffusion times. The gradient duration 
𝛿 was fixed to 20 ms, while the 3 diffusion times were achieved 
by varying 𝛥 as 𝛥 = {30, 50, 70} ms.

• A DW twice-refocussed spin echo (TRSE) protocol, referred to 
simply as ‘‘TRSEinvivo’’. It matches the protocol implemented on 
a 1.5T Siemens Avanto system in vivo (see Section 2.3.2 below). It 
consisted of 3 non-DW and 6 DW measurements. These were 𝑏 =
{50, 100}, acquired for 3 diffusion times. The gradient duration of 
the 4 gradient lobes (Supplementary Fig. 1) for the 3 diffusion 
times were: 𝛿1 = {8.9, 13.2, 18.9} ms, 𝛿2 = {17.6, 19.3, 21.0} ms, 
𝛿3 = {20.4, 24.8, 30.5} ms, 𝛿4 = {6.0, 7.7, 9.5} ms. The separation 
between the onset of the gradient lobes (Supplementary Fig. 1) 
were instead: 𝛥1,2 = {17.4, 21.7, 27.5} ms, 𝛥1,4 = {63.9, 74.2, 
87.5} ms.

• Another PGSE protocol, referred to as ‘‘PGSEinvivo’’. It matches 
the protocol implemented on a 3T GE SIGNA Pioneer system in 
vivo (see Section 2.3.2 below). The protocol included the b-values 
𝑏 = {0, 10, 20, 40, 70, 100} s/mm2, with minimal variations of 
gradient timings across b-values, i.e., 𝛿 = {0, 2.06, 2.57, 3.37, 
4.18, 4.82} ms, 𝛥 = {0, 31.34, 31.85, 32.65, 33.47, 34.10} ms.

Briefly, we performed a leave-one-out experiment. For each vascular 
network in turn, we used noise-free signals from 14 out of 15 substrates 
to learn the forward signal model (𝑣𝑚, 𝑣𝑠, 𝐴𝑁𝐵) ↦ 𝑠(𝑣𝑚, 𝑣𝑠, 𝐴𝑁𝐵), 
which we then used for estimating 𝑣𝑚, 𝑣𝑠 and 𝐴𝑁𝐵 on noisy signals 
for the remaining 15th network (signal-to-noise ratio (SNR) at 𝑏 = 0
of 20). The forward signal model (𝑣𝑚, 𝑣𝑠, 𝐴𝑁𝐵) ↦ 𝑠(𝑣𝑚, 𝑣𝑠, 𝐴𝑁𝐵) 
was learnt by interpolating the set of paired examples signals/vascu-
lar parameters with a radial basis function (RBF) regressor, so that 
fitting could be performed by embedding 𝑠(𝑣𝑚, 𝑣𝑠, 𝐴𝑁𝐵) into standard 
maximum-likelihood NNLS routines (Panagiotaki et al., 2012). Fitting 
was performed with the freely-available mri2micro_dictml.py tool, part 
of the bodymritools python repository (https://github.com/fragrussu/
bodymritools). To characterise fitting performance, we generated scat-
ter plots between ground truth and estimated 𝑣 , 𝑣  and 𝐴𝑁𝐵, and 
𝑚 𝑠
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computed corresponding Spearman’s correlation coefficients. For each 
leave-one-out iteration, the 100 realisations of each network obtained 
by varying inlet/outlet and input VFR were not averaged, but rather 
used as independent entries in the signal/parameter dictionary used to 
learn the forward signal model. Similarly, microvascular parameters 
were estimated from signals from all realisations of the 15th test 
network, which were processed independently.

2.3.2. In vivo estimation
We also investigated the feasibility of using synthetic signals from 

SpinFlowSim to inform microvascular property estimation in vivo, on 
both healthy volunteers and cancer patients. All participants were 
scanned after providing informed written consent, in imaging ses-
sions approved by the Clinical Research Ethics Committee (CEIm) 
of the Vall d’Hebron University Hospital of Barcelona, Spain (codes: 
PR(AG)29/2020 and PR(IDI)109/2022).

Healthy volunteers: data and analysis. We scanned four healthy vol-
unteers on two MRI scanners. Volunteers 1 to 3 were scanned on 
a 1.5T Siemens Avanto system (35 yr old, male; 34 yr old, female; 
25 yr old, male), while volunteer 4 (32 yr old, male) on a 3T GE 
SIGNA Pioneer system. The acquisition included routine anatomical 
structural imaging and dMRI. For the 1.5T scanner, this consisted of 
a DW TRSE Echo Planar Imaging (EPI) scan, with salient parameters: 
resolution of 1.9 × 1.9 mm2; slice thickness of 6 mm; 𝑏 = {0, 50, 
100, 400, 900, 1200, 1600} s/mm2, with each 𝑏 acquired at 3 different 
diffusion times, with the same diffusion times as the ‘‘TRSE’’ protocol 
used simulations (see Section 2.3.1 above); TE = {93, 105, 120} ms
for the short, intermediate, and long diffusion time; TR = 7900 ms; 
trace DW imaging; NEX = 2; GRAPPA = 2; 6/8 Partial Fourier imaging; 
BW = 1430 Hz/pixel; acquisition of a 𝑏 = 0 image at the shortest TE 
with reversed phase encoding. For the 3T scanner instead, this con-
sisted of a standard PGSE EPI scan, with salient parameters: resolution 
2.4 × 2.4 mm2; slice thickness of 6 mm; 𝑏 = {0, 10, 20, 40, 70, 100, 
500, 1000, 1250, 1500} s/mm2; TE = 75 ms; TR = 12000 ms; trace 
DW imaging; NEX = 2; ASSET = 2; BW = 3333 Hz/pixel; respiratory 
gating.

We denoised scans with MP-PCA (Veraart et al., 2016), mitigated 
Gibbs ringing (Kellner et al., 2016) and corrected for motion and EPI 
distortions (Andersson et al., 2003) (the latter step only on the 1.5T 
data). Subsequently, we normalised the signal acquired at each TE to 
the 𝑏 = 0 signal level at the same TE, when multiple TE were acquired, 
and then estimated the vascular signal 𝑆𝑉  for 𝑏 ≤ 100 s/mm2 in each 
voxel (Gurney-Champion et al., 2018; Wang et al., 2021) as 

𝑆𝑉 = 𝑆 − 𝑆𝑇 . (7)

Above, 𝑆 is the measured signal and 𝑆𝑇  is an estimate of the extra-
vascular tissue signal. 𝑆𝑇  was computed by extrapolating to 𝑏 ≤ 100 
s/mm2 an ADC fit 𝑆𝑇 = 𝑆𝑇 (𝑏 = 0) 𝑒−𝑏𝐴𝐷𝐶𝑇  performed on signal 
measurements at 𝑏 > 100 s/mm2.

Afterwards, we fitted (𝑣𝑚, 𝑣𝑠, 𝐴𝑁𝐵) voxel-by-voxel, using the same 
fitting procedure employed in in silico experiments above, but learning 
the forward model 𝐏 ↦ 𝐒(𝐏) on all 1500 synthetic signals from 
all vascular networks (i.e., without averaging signals from different 
network realisations, but rather stacking them as independent entries 
of the signal/parameter dictionary). For reference, we also computed 
more standard IVIM metrics 𝑓𝑉  and 𝐷∗, by fitting 𝑆𝑉 = 𝑆𝑉 (𝑏 = 0) 𝑒−𝑏𝐷∗

to the vascular signal, with 𝑓𝑉 ≈ 1 − 𝑆𝑇 (𝑏=0)
𝑆(𝑏=0) . For the 1.5T data, 𝑓𝑉

and 𝐷∗ were computed on the vascular signal estimates at the shortest 
TE. Mean, standard errors and standard deviations of 𝑣𝑚, 𝑣𝑠, 𝐴𝑁𝐵, 𝑓𝑉
and 𝐷∗ within manually drawn ROIs were computed. The ROIs were 
placed in the liver, spleen, as well as medulla and cortex of a kidney. 
The estimated vascular signal was plotted as a function of the b-value 
in an illustrative healthy volunteer for each scanner.

https://github.com/fragrussu/bodymritools
https://github.com/fragrussu/bodymritools
https://github.com/fragrussu/bodymritools
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Table 1
Summary of vascular networks with corresponding microvascular properties generated for this study. The non-cancerous networks were drawn on non-cancerous liver tissue found 
on biopsies from melanoma (n = 2) and ovarian cancer (n = 1) metastases. Mean patient age was 66.2 years. Male = 5, Female = 6. CRC = colorectal cancer, HCC = hepatocellular 
carcinoma, EC = Endometrial cancer. Vascular network metrics are: mean and standard deviation of blood velocity, 𝑣𝑚 and 𝑣𝑠; mean and standard deviation of the VFR, 𝑞𝑚 and 
𝑞𝑠; apparent network branching 𝐴𝑁𝐵; mean radius 𝑟𝑚; mean segment length 𝑆𝐿𝑚; mean path length 𝑃𝐿𝑚; the number of input/output (I/O) paths and the network dimensions. 
The dimensions have been indicated by two metrics, namely the actual Network Size (maximum euclidean distance between any pair of nodes), and the total number of segments. 
For ech metric (beyond those describing the network dimensions), the mean and the standard deviation (in bracket) over the 100 realisations of each network (10 input/output 
node combinations × 10 input VFRs) are reported.
 Network Description 𝑣𝑚 𝑣𝑠 𝐴𝑁𝐵 𝑟𝑚 𝑆𝐿𝑚 Network size 𝑞𝑚 𝑞𝑠 I/O Paths 𝑃𝐿𝑚 Total segments 
 [mm/s] [mm/s] [segments] [μm] [μm] [mm] [mm3/s] ⋅ 104 [mm3/s] ⋅ 104 [paths] [μm] [segments]  
 Net. 1 Cancerous liver, 13.76 14.05 46.51 3.1 46.24 0.35 4.25 4.19 376 382.59 67  
 CRC (8.52) (9.69) (22.15) (0.9) (13.95) (2.66) (2.56) (313) (44.2)  
 Net. 2 Cancerous liver, 11.24 13.69 28.33 4.02 60.85 0.39 4.94 4.74 100 460.78 45  
 Melanoma (7.01) (9.18) (13.92) (1.37) (21.59) (3.07) (2.93) (26) (26.1)  
 Net. 3 Cancerous live, 24.54 19.76 56.91 2.45 53.19 0.24 4.72 4.27 187 315.76 42  
 CRC (14.9) (12.14) (23.3) (0.95) (21.38) (2.87) (2.67) (76) (25.2)  
 Net. 4 Non-cancerous liver 4.81 3.81 12.38 5.14 81.54 0.50 3.91 3.39 353 614.36 60  
 (2.93) (2.35) (6.42) (1.64) (27.72) (2.38) (2.09) (209) (39.1)  
 Net. 5 Non-cancerous liver 10.42 8.16 35.95 3.76 53.03 0.39 4.53 3.69 536 711.76 65  
 (6.38) (5.01) (17.13) (1.03) (15.54) (2.78) (2.24) (183) (32.7)  
 Net. 6 Non-cancerous liver 10.99 11.05 36.92 3.43 48.23 0.42 4.28 4.47 1432 752.97 77  
 (6.79) (6.98) (17.55) (0.9) (13.26) (2.7) (2.77) (927) (91.8)  
 Net. 7 Cancerous liver, 10.54 10.24 33.77 3.54 60.12 0.36 4.41 5.09 192 610.74 60  
 HCC (6.59) (6.8) (16.18) (1.03) (17.81) (2.71) (3.1) (70) (76.8)  
 Net. 8 Cancerous liver, 8.42 12.71 13.74 5.36 70.9 0.60 5.81 7.48 48 539.79 47  
 HCC (7.68) (10.52) (6.71) (1.78) (22.43) (3.97) (4.58) (18) (62.0)  
 Net. 9 Cancerous liver, 13.92 17.06 32.78 3.7 55.28 0.41 5.23 5.24 42 430.99 52  
 HCC (9.27) (12.41) (16.59) (1.05) (16.45) (3.27) (3.24) (9) (51.5)  
 Net. 10 Cancerous liver, 8.68 9.8 17.96 4.71 68.17 0.44 4.84 4.82 135 728.11 53  
 HCC (5.46) (6.52) (8.71) (1.59) (21.72) (2.98) (2.96) (69) (88.5)  
 Net. 11 Cancerous liver, 19.14 19.92 33.83 3.37 61.24 0.44 5.91 5.33 80 577.98 52  
 HCC (12.03) (12.57) (15.22) (1.0) (18.89) (3.69) (3.26) (49) (44.8)  
 Net. 12 Cancerous liver, 5.49 6.76 19.84 4.42 60.47 0.38 3.29 3.7 491 544.79 66  
 CRC (3.36) (4.66) (10.15) (1.42) (19.98) (2.0) (2.33) (136) (24.6)  
 Net. 13 Cancerous liver, 6.44 6.26 23.84 4.59 55.5 0.32 3.99 3.72 427 463.76 54  
 CRC (4.1) (3.98) (11.8) (1.66) (20.63) (2.45) (2.32) (222) (18.0)  
 Net. 14 Cancerous liver, 12.45 10.92 48.51 3.64 45.1 0.29 5.23 4.22 287 476.94 45  
 EC (7.55) (6.73) (22.53) (1.27) (16.13) (3.18) (2.58) (192) (68.8)  
 Net. 15 Cancerous liver, 13.54 11.23 44.38 3.05 50.68 0.32 3.97 3.44 740 418.45 52  
 CRC (8.5) (6.97) (19.67) (1.13) (21.07) (2.46) (2.09) (292) (36.6)  
Cancer patients: data and analysis. Finally, we tested our simulation-
informed parameter estimation on dMRI scans of 13 patients suffering 
from advanced solid tumours (7 females, 5 males), who participated 
in an ongoing imaging study at the Vall d’Hebron Institute of On-
cology (Barcelona, Spain). Patients were scanned on the same 1.5T 
Siemens Avanto system used to acquire data on healthy volunteers, 
and according to the same imaging protocol. dMRI scans underwent 
the same processing as described above, obtaining voxel-wise maps of 
𝑣𝑚, 𝑣𝑠, 𝐴𝑁𝐵, 𝑓𝑉  and 𝐷∗. Mean and standard deviation of such metrics 
within tumours were obtained, with tumours manually segmented by 
an expert radiologist (R.P.L.). The estimated vascular signal was plotted 
as a function of the b-value in illustrative cancer ROIs.

3. Results

3.1. Vascular networks

Fig.  2 illustrates the 15 vascular networks generated in this study 
from liver tumour biopsies. Out of the total, 3 were segmented on 
non-cancerous liver parenchyma, while the remaining 12 on cancerous 
tissue. The 3 non-cancerous networks were drawn on liver tissue found 
on the histological slide, adjacent to tumour tissue (n = 2 melanoma 
metastases; n = 1 ovarian cancer metastasis). The 12 networks drawn 
on cancerous tissue came from primary liver hepatocellular carcinoma 
(HCC, n = 5), or from liver metastases of colorectal cancer (CRC, n = 5), 
endometrial cancer (n = 1), and melanoma (n = 1).

Table  1 reports salient statistics of the vascular networks shown in 
Fig.  2, related to capillary radii, length, velocity distribution, number of 
vascular segments sensed by flowing spins and number of input/output 
paths. None of the networks contain close loops, and all capillary 
segments are always part of at least one flow path connecting the inlet 
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to the outlet. The network size varies from approximately 240 to up to 
600 μm. The number of segments varies from 42 to 77, while the mean 
input/output path length from approximately 316 to 753 μm. The table 
shows that different network morphologies lead to different blood ve-
locity distributions. For example, mean 𝑣𝑚 across VFR realisations can 
vary from as low as approximately 4 mm/s up to 25 mm/s. This range 
of variation is mirrored in the average number of capillaries blood 
travels through during the simulation (𝐴𝑁𝐵 metric), which varies from 
just over 12 up to almost 57 segments (note that in some cases, 𝐴𝑁𝐵
can be slightly higher than the total number of segments, given that 
spins reaching the outlet of the network continue flowing in a copy of 
the network itself). The mean path length 𝑃𝐿𝑚 also varies considerably, 
e.g., from just over 300 μm for network 3, exhibiting the fastest flow 
among networks, to up to roughly 700 μm, as in networks 5 or 6. 
Notably, networks characterised by longer 𝑃𝐿𝑚 tend to feature slower 
flows — a finding consistent with the fact that longer input/output 
paths are characterised by higher flow resistance for a fixed path radius 
(see Eq. (2)). Supplementary Fig. 2 shows distributions of 𝑣𝑚, 𝑣𝑠 and 
𝐴𝑁𝐵 for all networks, across the 10 different inlet/outlet realisations 
and given an illustrative input VFR 𝑞𝑖𝑛 = 3.1 ⋅10−3 mm3/s. Distributions 
are skewed, and strong contrasts in terms of 𝑣𝑚, 𝑣𝑠 and 𝐴𝑁𝐵 are seen 
across networks (e.g., compare Net 3 with Net 4). Supplementary Fig. 
3 shows correlation coefficients among all possible pairs of metrics. 
There is a strong, positive correlation between 𝑣𝑚 and 𝑣𝑠 and 𝐴𝑁𝐵
(0.89, 0.82), and a moderate positive correlation between 𝑣𝑠 and 𝐴𝑁𝐵
(0.55). All of 𝑣𝑚, 𝑣𝑠 and 𝐴𝑁𝐵 are negatively correlated with 𝐿𝑚, 𝑟𝑚 and 
𝑃𝐿𝑚 (strongest correlations between 𝐴𝑁𝐵 and 𝑟𝑚, of −0.93; weakest 
for 𝑣𝑠 and 𝐿, of −0.19). Finally, 𝐿𝑚 and 𝑃𝐿𝑚 are positively correlated 
with 𝑟𝑚 (correlation of 0.68 and 0.44). VFR and velocity are positively 
correlated (e.g., correlation of 0.47 between 𝑣𝑚 and 𝑞𝑠).

Supplementary Fig. 4 shows scatter plots of mean VFR, mean veloc-
ity, mean radius and path length along input/output flow paths (𝑞 , 𝑣 , 
𝑝 𝑝
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𝑟𝑝 and 𝑃𝐿), for all 54271 paths contained in our networks. There is a 
positive, weak Spearman’s correlation between 𝑞𝑝 and 𝑟𝑝 (0.24), and a 
moderate negative correlation between 𝑣𝑝 and 𝑟𝑝 (−0.53). A moderate, 
positive correlation between 𝑞𝑝 and 𝑣𝑝 (0.58) and between 𝑟𝑝 and 𝑃𝐿
(0.34) is also seen. Notably, the plots contain large clouds of points 
that visually contain several sub-clusters, each with distinctive slopes 
and offsets in the scatter plane.

Fig.  3 shows examples of VFR and blood velocity fields recon-
structed in two vascular networks with SpinFlowSim, alongside dMRI 
signals. The two networks were segmented on non-cancerous liver 
parenchyma of a patient suffering of melanoma (top panel, Net 6) 
and on metastatic CRC (bottom panel, Net 12). The figure highlights 
that distributions of VFRs and velocities arise across network segments, 
owing to their different resistance to flow. The segments with the 
highest VFRs do not necessarily feature the highest velocities, due to 
differences in terms of segment diameter. The VFR distributions lead 
to fast dMRI signal attenuation in both networks, with most of the 
signal decayed by 𝑏 = 150 s/mm2. The signal decay is not mono-
exponential (note the log-scale in the y-axis). Oscillatory patterns are 
also seen as well as some diffusion time dependence, with the dMRI 
signal decreasing slightly with increasing 𝛥 at fixed 𝑏.

Supplementary Figs. 5 and 6 show vascular signals from one re-
alisation of all vascular networks for increasing diffusion times (𝛥 of 
10, 100 and 1000 ms; 𝛿 = 0.5 ms; 𝑞𝑖𝑛 = 3.1 ⋅ 10−3 mm3/s). Signals 
were obtained by averaging measurements from 2 (Supplementary 
Fig. 5) and 32 (Supplementary Fig. 6) directions. The signals exhibit 
oscillations as a function of the b-value. On visual inspections, the 
oscillation increase when 𝛥 increases from 10 to 100 ms, and then 
decrease for 𝛥 of 1000 ms, especially when signals are obtained by 
averaging over 32 directions (supplementary Fig. 6). When averaging 
is performed over only 2 orthogonal directions (Supplementary Fig. 5), 
there are examples of networks where the number of oscillations is 
largest for 𝛥 of 1000 ms (e.g., networks 7, 9, 11), and several more cases 
where the number of oscillations is similar across 𝛥 (e.g., 4, 5, 12, 14). 
These residual signal fluctuations are seen for very high levels of signal 
attenuation (i.e., 10−2 to 10−3), and are likely driven by directional 
biases. Averaging over a rich set of directions, in general, reduces signal 
oscillations (Supplementary Figs. 6 and 7).

3.2. Microvascular property estimation from dMRI

3.2.1. In silico estimation
Fig.  4 reports results from in silico estimation of 𝑣𝑚, 𝑣𝑠 and 𝐴𝑁𝐵

from noisy vascular signals, synthesised according to protocols ‘‘TRSE’’, 
‘‘PGSE’’, ‘‘richPGSE’’ and ‘‘richPGSEsubset’’. There is a moderate to 
strong correlation between ground truth and estimated 𝑣𝑚, 𝑣𝑠 and 
𝐴𝑁𝐵 values for protocols ‘‘PGSEinvivo’’ and ‘‘TRSEinvivo’’ (minimum 
Pearson’s correlation: 0.41 for 𝑣𝑠 for protocol ‘‘TRSE’’; maximum cor-
relation of 0.79 for 𝐴𝑁𝐵 for protocol ‘‘PGSEinvivo’’). Correlation is 
instead strong for protocol ‘‘richPGSE’’ and, to a lesser extent, for the 
protocol ‘‘richPGSEsubset’’, derived from it. We observe, for example, 
a Pearson’s correlation of 0.81 and 0.73 for metric 𝐴𝑁𝐵, estimated 
respectively from protocol ‘‘richPGSE’’ and ‘‘richPGSEsubset’’. As an 
example, Supplementary Fig. 8 illustrates the complete set of synthetic 
signals generated for protocol ‘‘TRSEinvivo’’ and ‘‘PGSEinvivo’’ across 
the 15 segmented networks. The figure highlights that the signal decay 
spans several orders of magnitude: variations in the microvascular 
characteristics of the networks lead to remarkably different vascular 
dMRI signals. In Supplementary Fig. 8, a small number of networks ex-
hibits considerably less signal decay than other networks – for example, 
Networks 4, 8 and 10. As apparent from Table  1, these feature among 
the highest mean capillary length 𝐿𝑚 and mean path length 𝑃𝐿𝑚, and 
among the lowest mean velocity 𝑣 .
𝑚
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3.2.2. In vivo estimation
Fig.  5 shows the estimated vascular signal in different ROIs of 

one healthy volunteer per MRI scanner. Some of the features seen 
in synthetic signals can also be observed in in vivo measurements, as 
for example: a trend towards signal decrease with increasing diffusion 
time, seen in the spleen and liver ROIs (protocol ‘‘TRSEinvivo’’); oscil-
lations as a function of the 𝑏-value, as in the spleen and in the kidney 
cortex ROIs (protocol ‘‘PGSEinvivo’’). Signal oscillations in the liver are 
instead compatible with fluctuations at the noise floor level.

Fig.  6 shows IVIM metrics 𝑓𝑉  and 𝐷∗ alongside 𝑣𝑚, 𝑣𝑠 and 𝐴𝑁𝐵 in 
the liver and spleen of healthy volunteer 1 (1.5T scanner). On visual 
inspection, 𝑓𝑉  and 𝐷∗ are systematically higher in the liver than in the 
spleen. This contrast is mirrored by 𝑣𝑚, 𝑣𝑠 and 𝐴𝑁𝐵, which are as well 
higher in the former organ than in the latter. Fig.  7 reports the same 
maps, but for volunteer 4, scanned on the 3T system. Spatial trends 
agree with those observed on the 1.5T scanner. For example, the liver 
shows the highest 𝑓𝑉  and 𝑣𝑚, while the kidney medulla exhibits higher 
values of all of 𝑓𝑉 , 𝐷∗, 𝑣𝑚, 𝑣𝑠 and 𝐴𝑁𝐵 compared to the kidney cortex. 
Fig.  8 reports instead mean and standard errors of all metrics within 
several ROIs (liver, kidney medulla and cortex, and spleen), and in all 
healthy volunteers. Mean and standard deviation are also reported in 
Table  2. Inter-organ differences are seen, as for example higher 𝐷∗, 𝑣𝑚, 
𝑣𝑠 and 𝐴𝑁𝐵 in the liver, compared to the spleen. Trends of inter-subject 
differences are also seen. E.g., in healthy volunteer 1, higher values 
of all of 𝑓𝑉 , 𝐷∗, 𝑣𝑚, 𝑣𝑠 and 𝐴𝑁𝐵 in the kidney medulla than in the 
kidney cortex are seen. However, in healthy volunteer 2, 𝐷∗ is higher 
in the cortex than in the medulla, and differences between medulla and 
cortex among all other metrics are less marked. Values of all metrics 
from healthy volunteer 3 are in between those from healthy volunteers 
1 and 2. Those from healthy volunteer 4, scanned on the 3T system 
with a different protocol, are qualitatively consistent with those from 
the 1.5T system.

Fig.  9 shows representative microvascular maps in cancer. The fig-
ure refers to adrenal gland metastases of a patient suffering from rectal 
cancer (patient 8), and includes the visualisation of maps in surround-
ing, non-cancerous tissues, as in the liver and spleen parenchymas. 
Supplementary Fig. 9 shows instead the vascular dMRI signal estimated 
within such metastases, which exhibits a trend towards decrease as the 
diffusion time increases. In the adrenal tumours, both IVIM metrics 
𝑓𝑉  and 𝐷∗ as well as microvascular 𝑣𝑚, 𝑣𝑠 and 𝐴𝑁𝐵 show intra-
tumour contrasts. For example, we observe a core of lower 𝑓𝑉  and 
𝐷∗ in both metastases. This spatial trend is mirrored by metrics 𝑣𝑚, 
𝑣𝑠 and 𝐴𝑁𝐵: the lower 𝑣𝑚, 𝑣𝑠 and 𝐴𝑁𝐵 point towards slower and less 
variable blood velocity in the core of the tumour, and predict blood to 
travel through fewer vessel segments, as compared to the outer ring. 
Overall, 𝑣𝑚, 𝑣𝑠 and 𝐴𝑁𝐵 exhibit similar contrasts among each other, 
but certain differences are also seen e.g., voxels with high 𝑣𝑚 that do 
not necessarily show the highest 𝐴𝑁𝐵 values. The metastases show low 
overall vascularisation, with 𝑓𝑉 , 𝐷∗, 𝑣𝑚, 𝑣𝑠 and 𝐴𝑁𝐵 all lower than the 
values seen in the liver, being more comparable to values seen in the 
spleen.

Table  3 reports patient demographics and mean and standard de-
viation of all vascular metrics within tumours. The metrics highlight 
inter-tumour differences in terms of dMRI-derived vascularisation met-
rics. For example, breast cancer metastases feature the highest vascular 
signal fraction 𝑓𝑉  among all tumours. Conversely, the highest 𝐷∗ is 
seen in a lung cancer adrenal gland metastasis (patient 11), which also 
features the highest 𝑣𝑚, 𝑣𝑠 and 𝐴𝑁𝐵 across the whole cohort. The 
lowest 𝐷∗ is instead seen in liver metastasis of rectal cancer (patient 
8), a trend that is mirrored by 𝑣𝑚 and 𝐴𝑁𝐵, which in this case are 
the lowest across all tumours. As compared to values reported in Table 
2, tumours appear less vascularised than the liver, featuring a lower 
𝑓𝑉 . Capillary flow in the tumours also appears slower than in the liver 
but faster, for example, than in the spleen. For example, 𝐷∗, 𝑣𝑚, 𝑣𝑠 and 
𝐴𝑁𝐵 vary in ranges that are qualitatively comparable to those seen for 
the kidney medulla on the healthy volunteers.
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Table 2
Summary of healthy volunteers’ demographics (age in years, sex) and trends of microvascular metrics 𝑓𝑉 , 𝐷∗, 𝑣𝑚, 𝑣𝑠 and 𝐴𝑁𝐵 within the manually-segmented ROIs (mean and 
standard deviation). For sex, F indicated female, while M male. For the acquisition on the 1.5T system, routine IVIM metrics 𝑓𝑉  and 𝐷∗ were obtained at fixed diffusion time, on 
the dMRI scan with the shortest TE.
 Scanner Volunteer ROI 𝑣𝑚 [mm/s] 𝑣𝑠 [mm/s] 𝐴𝑁𝐵 [segments] 𝑓𝑣 𝐷∗ [μm2∕ms]  
 

1.5T (TRSE)

1 (M, 35) Liver 14.95 (8.39) 16.5 (7.94) 55.0 (39.66) 0.42 (0.17) 23.79 (31.1)  
 Kidney medulla 9.59 (5.82) 10.99 (6.69) 30.05 (24.13) 0.65 (0.16) 12.88 (4.3)  
 Kidney cortex 5.99 (1.65) 5.95 (1.68) 13.42 (3.91) 0.53 (0.04) 8.3 (0.97)  
 Spleen 7.09 (8.64) 8.88 (10.34) 46.09 (63.39) 0.09 (0.06) 22.89 (32.19) 
 2 (F, 34) Liver 14.74 (8.37) 16.14 (8.23) 54.3 (40.75) 0.25 (0.11) 18.78 (19.92) 
 Kidney medulla 8.25 (8.98) 9.16 (9.7) 26.68 (30.07) 0.28 (0.21) 7.46 (5.73)  
 Kidney cortex 6.95 (5.69) 7.88 (7.13) 21.79 (18.06) 0.24 (0.09) 9.97 (4.1)  
 Spleen 8.24 (6.39) 10.27 (8.07) 26.62 (18.61) 0.12 (0.05) 7.54 (3.39)  
 3 (M, 25) Liver 11.24 (8.23) 13.64 (8.9) 47.72 (49.67) 0.37 (0.19) 16.52 (14.41) 
 Kidney medulla 10.77 (7.95) 12.51 (8.73) 44.41 (46.23) 0.48 (0.18) 18.45 (26.38) 
 Kidney cortex 4.34 (2.57) 5.09 (2.99) 14.97 (7.77) 0.25 (0.07) 9.27 (4.11)  
 Spleen 6.28 (5.47) 7.98 (5.9) 22.94 (21.2) 0.14 (0.07) 15.89 (23.7)  
 
3T (PGSE)

4 (M, 32) Liver 12.12 (8.46) 15.72 (9.24) 43.64 (33.28) 0.45 (0.16) 16.67 (21.05) 
 Kidney medulla 9.81 (6.41) 12.73 (7.95) 30.12 (23.61) 0.62 (0.16) 15.91 (14.32) 
 Kidney cortex 5.67 (3.47) 7.71 (4.61) 17.91 (10.65) 0.45 (0.08) 8.07 (2.13)  
 Spleen 4.31 (3.63) 6.12 (5.47) 15.81 (9.33) 0.28 (0.1) 7.01 (3.21)  
Table 3
Summary of patients’ demographics and key clinical data (primary cancer type, location of the imaged tumours, patients’ sex and age, in years) and trends of microvascular metrics 
𝑓𝑉 , 𝐷∗, 𝑣𝑚, 𝑣𝑠 and 𝐴𝑁𝐵 within the manually-segmented tumours (mean and standard deviation). For sex, F indicated female, while M male. Routine IVIM metrics 𝑓𝑉  and 𝐷∗

were obtained at fixed diffusion time, on the dMRI scan with the shortest TE.
 ID Primary cancer Tumour(s) location Sex Age 𝑣𝑚 [mm/s] 𝑣𝑠 [mm/s] ANB [segments] 𝑓𝑉 𝐷∗ [μm2∕ms]  
 Pat. 1 Endometrial Uterus F 65 7.34 (8.11) 8.41 (8.38) 28.86 (37.71) 0.11 (0.12) 14.44 (22.35) 
 Pat. 2 Melanoma Liver F 84 7.12 (9.14) 7.76 (8.71) 31.45 (43.12) 0.20 (0.24) 27.16 (43.33) 
 Pat. 3 Gastric Soft tissues M 62 7.78 (8.90) 8.53 (8.71) 34.88 (46.89) 0.09 (0.09) 21.09 (35.53) 
 Pat. 4 Melanoma Liver, lung, pleura F 61 10.72 (9.21) 11.97 (9.23) 42.24 (45.49) 0.19 (0.17) 24.05 (33.60) 
 Pat. 5 Melanoma Liver M 76 9.96 (8.05) 11.26 (7.93) 39.84 (41.39) 0.04 (0.14) 19.62 (21.99) 
 Pat. 6 Lung Liver M 55 5.76 (8.33) 6.64 (8.26) 26.88 (40.85) 0.14 (0.13) 15.51 (30.47) 
 Pat. 7 Gastric Stomach F 68 5.80 (7.27) 7.10 (7.52) 24.76 (28.91) 0.25 (0.18) 13.62 (22.17) 
 Pat. 8 Rectal Adrenal glands M 61 4.80 (7.14) 5.78 (7.58) 20.80 (32.32) 0.27 (0.18) 10.13 (20.32) 
 Pat. 9 Gastric Liver F 70 7.49 (8.43) 8.69 (8.51) 31.35 (40.54) 0.22 (0.18) 20.58 (35.76) 
 Pat. 10 Colon Liver F 48 6.77 (8.05) 7.86 (8.21) 28.21 (38.83) 0.22 (0.15) 17.50 (30.04) 
 Pat. 11 Lung Adrenal glands M 62 13.37 (9.42) 15.15 (9.85) 55.18 (52.69) 0.26 (0.15) 34.10 (44.59) 
 Pat. 12 Breast Liver F 33 11.15 (10.75) 11.94 (10.48) 54.71 (60.86) 0.39 (0.24) 14.40 (27.20) 
 Pat. 13 Lung Adrenal glands M 78 7.77 (8.75) 8.88 (8.97) 32.96 (44.13) 0.15 (0.13) 22.85 (36.79) 
Supplementary Fig. 10 reports Spearman’s correlation coefficients 
between all possible pairs of vascular metrics, as obtained across the 13 
cancer patients. IVIM 𝐷∗ is significantly, positively correlated with all 
of 𝑣𝑚, 𝑣𝑠 and 𝐴𝑁𝐵 (𝑟𝑠 = 0.55, 𝑝 = 0.049 with 𝑣𝑚; 𝑟𝑠 = 0.57, 𝑝 = 0.044
with 𝑣𝑠; 𝑟𝑠 = 0.64, 𝑝 = 0.019 with 𝐴𝑁𝐵). No significant correlations 
are instead seen between 𝑓𝑉  and any of 𝑣𝑚, 𝑣𝑠 and 𝐴𝑁𝐵. 𝐷∗ and 
𝑓𝑉  are weakly, negatively correlated between each other (𝑟𝑠 = −0.25, 
𝑝 = 0.394).

4. Discussion

4.1. Summary and key findings

This work presents SpinFlowSim, an open-source simulator of blood 
flow based on pipe network analysis. The simulation framework, tai-
lored for the laminar flow regime at the micro-capillary level, en-
ables the synthesis of DW signals for any desired input dMRI gra-
dient waverform. We demonstrate SpinFlowSim on 15 microvascular 
networks, reconstructed from biopsies in a variety of liver cancers 
and in non-cancerous liver parenchyma. These allowed us to simulate 
micro-perfusion IVIM signals for realistic dMRI protocols, in the low 𝑏
regime. The signals exhibit complex, non-mono-exponential behaviour, 
pointing towards the co-existence of spin pools experiencing different 
flow regimes, compatible with signal patterns observed in vivo. The 
simulation of synthetic signals paired with corresponding sets of mi-
crovascular characteristics enabled the practical estimation of these 
properties from any input dMRI measurement set, given simulations of 
the corresponding acquisition protocol. We showcase the approach in 
silico and on in vivo scans of healthy volunteers and cancer patients, 
obtaining patterns of microvascular metrics that are plausible given 
known anatomy and cancer pathophysiology.
12 
4.2. Simulation framework

Our simulator relies on a well-established computational approach 
for laminar flow characterisation in capillaries. This links the pressure 
drop across a capillary to the VFR passing through it, via a flow 
resistance proportionality factor (Schmid et al., 2015; Van et al., 2021). 
In this study, as a first proof-of-concept, we borrowed an empirical 
expression for this resistance from Blinder et al. (2013), and used 
the freely available PySpice (Salvaire, 2023) package to convert the 
VFR estimation problem into the analysis of a passive electric circuit. 
Our strategy, computationally efficient, retrieves the VFR distribution 
across all segments of a vascular network. These are used to estimate 
the mean blood velocity in each capillary and, finally, the trajectories of 
flowing spins, by numerical integration of the velocity field over time. 
By superimposing arbitrary dMRI gradient wave forms to spins flowing 
in networks reconstructed from histology, our framework enables the 
synthesis of realistic IVIM signals, without making assumptions on the 
specific flow regime in which measurements take place (e.g., diffu-
sive/ballistic Kennan et al., 1994; Scott et al., 2021). Our approach 
offers a practical way to characterise the salient characteristics of 
micro-capillary perfusion, and its relationship to dMRI. It may therefore 
play a key role in the development of innovative dMRI methods for 
vascular characterisation with unprecedented specificity to physiology, 
urgently needed for non-invasive cancer characterisation.

4.3. Vascular networks

We studied HE and CD31-stained histological images from liver 
tumour biopsies, obtained from cancer patients suffering from ad-
vanced solid tumours. From these data, we manually reconstructed 15 
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2D vascular networks, on which we simulated blood flow by varying 
the input VFR and the inlet/outlet positions. We characterised the 
networks in terms of the underlying blood velocity distribution (𝑣𝑚 and 
𝑣𝑠 parameters), and by introducing a metric quantifying the average 
number of capillary branches spins flow through, referred to as 𝐴𝑁𝐵. 
Overall, our simulations generated a total of 1500 network realisations, 
which provide insight into microvascular blood perfusion.

The most important observation is that the networks exhibit blood 
velocity and VFR distributions, sizes, number of segments, number 
of input/output paths, characteristic path and segment lengths, and 
𝐴𝑁𝐵 values that can vary considerably from each other. For example, 
the mean velocity 𝑣𝑚 ranges from approximately 4 to 25 mm/s. The 
wide variation of microperfusion metrics is exemplified, for example, 
by Net 11 and 12 in Table  1, which feature a mean 𝑣𝑚 of 19 and 
5 mm/s, despite exhibiting a similar mean capillary length of circa 
60 μm. This finding suggests that, for the typical diffusion times that 
can be probed in clinical settings (15–65 ms approximately), spins in 
the vascular compartment likely experience flow regimes that can vary 
considerably from subject to subject. On the one hand, this implies 
that hypothesising a specific regime in IVIM modelling (e.g., diffusive 
versus ballistic Kennan et al., 1994; Scott et al., 2021), may not 
suffice to capture the full complexity of blood micro-perfusion in real-
world cohorts. On the other hand, these trends suggest that multiple 
descriptors may be required to characterise in full the topology of a 
vascular network. For example, networks featuring larger sizes do not 
necessarily feature more segments (e.g., network 5 vs. 8), showing 
that non-trivial relationships between different network parameters 
exist. These results motivate the development of novel microperfusion 
dMRI methods, which attempt to retrieve network features with higher 
biologically specificity than traditional IVIM metrics such as 𝐷∗.

Our simulations also suggest that remarkably different patterns of 
vascular dMRI signals are to be expected, even for short, clinically-
feasible IVIM dMRI protocols, as exemplified by two examples in Fig. 
3. Our simulated signals exhibit complex patterns as a function of the 
b-value and the diffusion time, e.g., fast decay, typical of the diffusive 
regime, as well as oscillatory behaviours, as instead expected in the bal-
listic regime (note that the PGSE signal for a set of uniformly distributed 
straight capillaries, characterised by the same blood velocity 𝑣, is 𝑠 =
𝑠𝑖𝑛𝑐(𝛾 𝑣𝐺 𝛿 𝛥) Scott et al., 2021). Moreover, they also feature a clearly 
non-mono-exponential behaviour as a function of 𝑏, pointing again 
towards the co-existence of different flowing spin pools within the same 
network, potentially characterised by different flow regimes. Some of 
the oscillations can be explained by unaccounted directional biases of 
our networks, given that averaging over two directions may not suffice 
to fully compensate for the directional dependence of the signal, espe-
cially when the decay is strong (Supplementary Figs. 5, 6 and 7). This 
implies that our synthetic signals may be slightly exaggerating complex 
features compared to what could be observed in vivo. Nevertheless, our 
pilot analysis suffices to demonstrate that numerical approaches such as 
SpinFlowSim may lead to more accurate characterisation of unexplored 
properties ofvascular dMRI signals — e.g., concerning flow anisotropy 
or apparent pseudo-diffusion and kurtosis tensors, as illustrated in 
Supplementary Fig. 11 for the apparent pseudo-diffusion tensor in an 
exemplificative case —, ultimately opening up new opportunities for 
the development of more specific biomarkers of micro-perfusion.

4.4. Microvascular property estimation

We also investigated whether it is possible to use the synthetic 
signals generated through SpinFlowsim to inform the non-invasive es-
timation of microvascular properties. For this purpose, we interpolated 
the full set of paired synthetic signals and microvascular parameters, 
obtaining numerical forward models that can be fitted through stan-
dard NNLS approaches. We specifically investigated the feasibility of 
estimating 𝑣 , 𝑣  and 𝐴𝑁𝐵.
𝑚 𝑠
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Firstly, we studied 𝑣𝑚, 𝑣𝑠 and 𝐴𝑁𝐵 estimation on noisy in silico
signals. We considered 4 protocols: two matched those of available in 
vivo dMRI scans, and were based on DW TRSE and standard PGSE (pro-
tocols ‘‘TRSEinvivo’’ and ‘‘PGSEinvivo’’). An additional PGSE protocol 
(‘‘richPGSE’’) implemented a very rich acquisition, sampling several 
b-values as well as diffusion times, while the fourth protocol was a 
subset of the rich acquisition (‘‘richPGSEsubset’’). All protocols point 
towards the feasibility of estimating 𝑣𝑚, 𝑣𝑠 and 𝐴𝑁𝐵: we observed 
strong correlations between ground truth and estimated 𝑣𝑚 and 𝐴𝑁𝐵, 
and moderate correlations for 𝑣𝑠. As expected, performances were the 
highest for the richest protocol, with correlations as high as 0.81 for 
the 𝐴𝑁𝐵 metric, yet still acceptable for the shorter protocols (e.g., cor-
relation of 0.63 for 𝐴𝑁𝐵 and the TRSEinvivo protocol and of 0.80 
for PGSEinvivo, which features more b-values than TRSEinvivo). These 
promising results, obtained without requiring any explicit analytical 
modelling of the signal, highlight the potential utility of simulation-
informed microvascular property estimation, motivating its testing in 
vivo.

Following in silico experiments, we moved on and tested whether 
𝑣𝑚, 𝑣𝑠 and 𝐴𝑁𝐵 can also be estimated in vivo. For this purpose, we 
analysed dMRI scans acquired according to two dMRI protocols on four 
healthy volunteers and in 13 cancer patients. We estimated vascular 
dMRI signals and visualised them in different ROIs, observing complex 
signal features that are compatible with those observed in synthetic 
signals. These included, for example, signal oscillations as a function 
of 𝑏 in areas such as the spleen, suggestive of low capillary velocity 
and ballistic flow regime, or diffusion time dependence. These complex 
signal behaviours, which cannot be captured in full with simple mono-
exponential functions of the form 𝑒−𝑏𝐷∗ , justify the investigation of 
advanced models of the dMRI vascular signal. To this end, we fitted 
𝑣𝑚, 𝑣𝑠 and 𝐴𝑁𝐵 alongside standard IVIM 𝑓𝑉  and 𝐷∗, and assessed 
trends qualitatively in several organs in the healthy volunteers, and in 
the patients’ tumours.

In healthy volunteers, all metrics show high level of variability on 
visual inspection, which is confirmed by cross-organ trends in Fig. 
8. The variability, qualitatively comparable between 𝑓𝑉 /𝐷∗ and 𝑣𝑚, 
𝑣𝑠 and 𝐴𝑁𝐵, is in line with the well-known challenge of estimating 
microvascular property accurately with dMRI (Barbieri et al., 2020). 
This finding suggests that more robust parameter estimation procedures 
may be needed than those used here (e.g., Bayesian fitting or deep 
learning Barbieri et al., 2016a, 2020), for the effective deployment of 
simulation-informed fitting in clinical settings. However, despite the 
variability, metrics show trends that are compatible with known physi-
ology, and are consistent across two MRI scanners, which use different 
field strengths (1.5T and 3T) and different diffusion encoding strategies. 
For example, in healthy volunteers the liver shows much higher 𝑓𝑉 , 𝐷∗, 
𝑣𝑚, 𝑣𝑠 and 𝐴𝑁𝐵 than in the spleen. This finding is plausible considering 
that the liver is a highly vascularised organ, a blood reservoir receiving 
approximately 25% of the cardiac output, despite representing only 
2.5% of the body weight (Lautt, 2010). We also observe higher 𝑣𝑚, 
𝑣𝑠 and 𝐴𝑁𝐵 in the kidney medulla than in the cortex, a finding that 
may be reflecting their different vascularisation. Regarding kidneys, we 
do not observe a clear trend in terms of cortex-medulla differences in 
standard IVIM 𝑓𝑉  and 𝐷∗ (e.g., 𝑓𝑉  is higher in the medulla than in the 
cortex for both healthy volunteers, while 𝐷∗ is in one case higher, and 
in the other lower). This is in line with recent studies, which have found 
high variability and strong inter-subject/inter-machine differences of 
kidney IVIM (Barbieri et al., 2016a; Ljimani et al., 2018; Stabinska 
et al., 2023).

Finally, we also demonstrated the feasibility of simulation-informed 
microvascular quantification in a pilot cohort of 13 cancer patients 
suffering from advanced solid tumours. While this demonstration only 
represents a first, exploratory proof-of-concept, it serves to highlight 
that contrasts seen in 𝑣𝑚, 𝑣𝑠 and 𝐴𝑁𝐵 are physiologically plausible, 
and consistent with patterns seen on 𝑓𝑉  and 𝐷∗. For example, reduced 
𝑣 , 𝑣  and 𝐴𝑁𝐵 is seen in areas of low 𝑓  and 𝐷∗ compatible with 
𝑚 𝑠 𝑉
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reduced perfusion, expected in the tumour core (Karsch-Bluman et al., 
2019; Herman et al., 2011), exemplified by Fig.  9. In vivo, 𝑣𝑚, 𝑣𝑠 and 
𝐴𝑁𝐵 are positively correlated among each other, and they correlate 
moderately to strongly to IVIM 𝐷∗. These correlations agree with the 
correlations observed in simulations (compare Supplementary Fig. 3 
and Supplementary Fig. 10), and may indicate that 𝑣𝑚, 𝑣𝑠 and 𝐴𝑁𝐵, 
while providing complementary information to each other, are sensitive 
to similar characteristics of the network morphology. For example, the 
strong correlation between 𝑣𝑚 and 𝑣𝑠, indicating that higher variability 
in blood velocity has to be expected as the mean velocity increases, may 
be a signature of heteroscedasticity of the blood velocity distribution 
across capillaries.

All in all, our in vivo results demonstrate the feasibility of
simulation-informed microvascular mapping in dMRI. While further 
confirmation and more detailed metric characterisation is required in 
future studies, realistic flow simulations informed by histology may 
increase the accuracy of dMRI microvascular signal models. Ultimately, 
these may provide innovative, biologically-specific indices of micro-
perfusion, urgently sought for the non-invasive evaluation of cancer 
neo-angiogenesis, vascular heterogeneity and in treatment during the 
design of anti-angiogenic drugs.

4.5. Potential applications of simulation-informed microvasculature map-
ping

Potential applications of the technique span both cancer diagno-
sis/detection as well as monitoring, once a cancer is found. For ex-
ample, the characterisation of liver tumours that cannot be biopsied 
is still an unsolved issue in radiology. The non-invasive character-
isation of tumour vascularity could provide unique information to 
radiologists for the differential diagnosis of infiltrative hepatocellular 
carcinoma from other conditions, such as intrahepatic cholangiocarci-
noma or other liver diseases, e.g., fibrosis, steatosis or other vascular 
disorders (Vernuccio et al., 2021; Wang et al., 2022). Regarding mon-
itoring, SpinFlowSim-based parameter estimation may provide useful 
descriptors of cancer microvasculature in the context of antiangiogenic 
treatments.

In essence, the applications of SpinFlowSim microvasculature map-
ping are similar to those typically envisioned for more common IVIM, 
with the major difference that SpinFlowSim is designed to boost the bi-
ological specificity of the voxel-wise metrics towards capillary microp-
erfusion. As opposed to standard IVIM-like approaches, our simulation-
informed framework can account for the exact gradient timings used in 
the acquisition, and thus implicitly deal with diffusion-time dependence 
and with flow regime transitions, notoriously difficult to model ana-
lytically. This has the potential of delivering metrics that are directly 
related to the underlying dynamical processes of microvascular per-
fusion in tissues, mitigating scanner-dependent or protocol-dependent 
biases, unlike less specific IVIM 𝐷∗ or related metrics.

4.6. Methodological considerations and limitations

In this article, we show the potential utility of flow simulations to 
inform dMRI signal modelling and analysis. We provide a first demon-
stration, based on a simplified simulation framework as a preliminary 
proof-of-concept. For example, we rely on an empirical expression for 
the resistance to flow across a capillary, borrowed from a model of 
cortical perfusion in the mouse primary sensory cortex (Blinder et al., 
2013). While this model accounts for salient features of blood flow 
resistance in capillaries (e.g., the effect of an average hematocrit and 
erythrocyte-wall interactions), a more realistic characterisation of the 
capillary resistance would be obtained by accounting for the Fåhræus-
Lindqvist’s, the Fåhræus’ and the phase separation effects (Schmid 
et al., 2015; Van et al., 2021). This would have required the simulation 
of the propagation of actual erythrocytes through the network, until a 
steady-state is reached, so that a per-capillary hematocrit (and hence, 
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effective blood viscosity) can be calculated. Here we did not simu-
late erythrocyte propagation, being this computationally demanding. 
Nevertheless, we acknowledge that it would enable more realistic 
representations of flow patterns within micro-capillary networks. We 
plan to include erythrocyte flow in future work, and also extend 
SpinFlowSim to account, for example, for oscillatory pressure patterns 
and vessel deformation, and for fluid exchange between capillaries and 
the interstitial space. Another possible development is related to the 
simulation of open networks, i.e., networks that are not fully contained 
within a synthetic voxel. In its current version, SpinFlowSim enables 
the simulations of such networks by discarding specific, undesired spin 
trajectories, for instance by thresholding spin positions (see Supple-
mentary Fig. 12 for an example). Nevertheless, we acknowledge that 
further optimisation of the toolbox is required to allow for a more agile 
simulation of these cases.

Furthermore, we acknowledge that for this first demonstration, 
we simulated vascular dMRI signals only on 2D capillary networks. 
While SpinFlowSim is designed to work with generic 3D networks, 
here we focussed on 2D representations due to the availability of 2D 
data (i.e., HE and CD31-stained biopsies). We accounted for this by 
averaging synthetic dMRI signals generated for two, orthogonal, in-
plane gradient directions. However, in future we plan to increase the 
fidelity of our flow simulations by reconstructing 3D networks.

Related to the point above, the vascular networks reconstructed 
from histology for this article were obtained at the capillary level. 
Therefore, our synthetic signals may not be representative of larger 
vessels, including smaller feeding arterioles and small veins or venules. 
This implies that maps of 𝑣𝑚, 𝑣𝑠 and 𝐴𝑁𝐵 from our approach has to be 
taken with care in presence of larger vessels. In future, we plan to ex-
pand our vascular signal dictionary to include realisations of larger ves-
sels, and thus improve the generalisability of our simulation-informed 
fitting.

We also acknowledge that the overall size of our networks is smaller 
than that of actual capillary beds that are contained in in vivo dMRI 
voxels, as these would be at least one order of magnitude larger. This 
may introduce correlations among spin trajectories that would be oth-
erwise blurred in the case of flow through more intricate, disordered, 
and larger networks. For the same reason, the inter-network variability 
observed in this study is likely to overestimate the true in vivo biological 
variability, where vascular networks are larger and hence likely more 
homogeneous. Exploratory analysis of data from Table  1 reveals a 
moderate-to-strong correlation between the standard deviation of ANB 
and the network size (Spearman’s correlation of –0.667, 𝑝 = 0.0067), 
while only a weak correlation between the standard deviation of 𝑣𝑚
and 𝑣𝑠 with the network size (Spearman’s correlation of –0.220, 𝑝 =
0.432 and of 0.072, 𝑝 = 0.780 respectively). This finding suggests that 
the apparent variability of at least some of our metrics, as well as 
the amount of signal oscillations, could be reduced if larger networks 
were to be considered. In future work, we plan to increase the realism 
of our numerical dMRI models by incorporating additional vascular 
characteristics so far neglected, e.g., larger and more complex capillary 
branches; networks that are not fully contained within a voxel; or 
presence of feeding arterioles and output venules, as also mentioned 
above. All of these can significantly alter the network topology and its 
VFR patterns, resulting in considerable changes of the vascular dMRI 
signals, as illustrated in two exemplificative cases in Supplementary 
Fig. 12 and Supplementary Fig. 13.

Regarding the practical simulation of spin trajectories, we point 
out that for realistic input VFR and network topologies, some of the 
flowing spins reach the outlet before the simulation has been finalised. 
In general, we did not find an obvious solution on how to best deal 
with such spins. For example, in related work (Van et al., 2021), these 
would be discarded for the computation of the dMRI signal. In this 
first implementation, we decided to send such spins through a copy 
of the network whose inlet had been shifted and made coincide exactly 
with the original network outlet. This ensures that even those parts of 
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the network that are close to the outlet contribute to the dMRI signal 
for a considerable portion of the simulation. Examples of the effect of 
this condition on spin trajectories are shown in Supplementary Video 
1 and Supplementary Video 2, showing flow through two networks 
over 72 ms of simulation, in which respectively 2.62% and 23.04% of 
the spins are sent to the network copy. While this design allows for 
full conservation of mass during the simulation, we acknowledge that 
it may also exaggerate correlations among spins. In future work we 
plan to compare systematically different approaches to deal with spins 
reaching the network output and, more generally, with comparable 
vascular simulation engines (Van et al., 2021; Lashgari et al., 2025).

As far as the correlation among properties of our synthetic networks 
are concerned instead, we acknowledge that some of the reported 
correlations require further explanation, e.g., the negative correlation 
between 𝑟𝑚 and 𝑣𝑚, which at a first glance does not appear to match 
Eq. (2). This finding has to be interpreted by noting that the VFR 
or velocity through a capillary segment are related to the overall 
resistance of the local network element to which the segment belongs. 
In other words, a 1:1 relationship 𝑣 ∝ 𝑟2 (or 𝑞 ∝ 𝑟4) from Eqs. (1), 
(2) and (3) can only be expected when comparing capillary segments 
that receive the same input flow and that are arranged in parallel: two 
capillaries with radii 𝑟2 > 𝑟1 and same length 𝐿, arranged in series, 
would feature 𝑣2 < 𝑣1, since it must hold that 𝑞1 = 𝑞2. The fact that 
when a negative correlation between mean velocity and mean radius 
along all flow paths is seen in Supplementary Fig. 4, points towards 
a potential higher predominance of serial configurations, rather than 
parallel. Notably, in Supplementary Fig. 4 not even the set of VFRs 
𝑞𝑝 and blood velocities 𝑣𝑝 along flow paths are perfectly correlated, 
despite being the condition 𝑞(𝑥, 𝑦, 𝑧) = 𝑣(𝑥,𝑦,𝑧)

𝜋 𝑟(𝑥,𝑦,𝑧)2  met exactly in each 
point (𝑥, 𝑦, 𝑧) of a capillary. These findings highlight that different 
proportionality factors among pairs of flow metrics can exist when 
comparing different flow paths, implying that both positive or negative 
correlations may be observed, depending on the network topology.

Another point to acknowledge is that in this study we focussed on 
the characterisation of vascular dMRI signals, and devised a simulation-
informed fitting procedure requiring pure vascular signals as input. For 
this reason, the analysis of in vivo signals required disentangling vascu-
lar from extra-vascular tissue signals, since low 𝑏 measurements include 
contributions from both. This was achieved by extrapolating an ADC fit 
performed on b-values with negligible vascular signal contribution, and 
thus required identifying a b-value threshold. An approach of this type, 
i.e., splitting the vascular-tissue signal characterisation in two steps, 
is sometimes referred to as segmented IVIM fitting (Gurney-Champion 
et al., 2018; Wang et al., 2021). While segmented fitting reduces the 
variability of vascular metrics, since it avoids the challenging, joint 
estimation of vascular and tissue properties (Barbieri et al., 2020), it 
may lead to biases in 𝑓𝑉  estimates, since 𝑓𝑉  may depend, at least 
slightly, on the b-value threshold. In future, we plan to improve the 
simulation-informed fitting performed here, by employing more ad-
vanced estimation techniques for the joint computation of vascular and 
tissue properties.

Regarding the vascular signal measurement in vivo, we point out 
that our acquisitions featured 3 orthogonal gradient directions. Simi-
larly to what was discussed for in silico signals, we acknowledge that 
such a reduced scheme may not suffice to fully resolve the directional 
dependence of the vascular signal. Richer acquisitions schemes would 
be required to characterise in full the complexity of vascular mea-
surements in vivo, e.g., through the computation of apparent vascular 
tensors (Notohamiprodjo et al., 2015; Hilbert et al., 2016; Voorter et al., 
2025).

Lastly, we acknowledge that the results reported here should be 
confirmed by future studies. These would require the acquisition of 
data from additional healthy volunteers and from larger patient co-
horts, and should include diffusion images from different MRI scanners 
and from more advanced dMRI protocols. Here, in patients, we used 
a simple acquisition scheme in the low 𝑏 regime (𝑏 = 0 and 𝑏 =
15 
{50, 100} s/mm2 at 3 diffusion times; protocol ‘‘TRSEinvivo’’). However, 
the accurate characterisation of the complex signal patterns arising 
from microvasculature, require denser 𝑏 samplings, e.g., to capture 
oscillatory patterns as a function of 𝑏. In this article, we included a 
healthy volunteer scan featuring a richer b-value protocol in the [0; 
100] s/mm2 range (protocol ‘‘PGSEinvivo’’), demonstrating oscillatory 
signal patterns in vivo in organs such as the spleen. Moreover, re-
sults from in silico experiments show that this protocol allows for a 
better estimation of the microvascular parameters 𝑣𝑚, 𝑣𝑠 and 𝐴𝑁𝐵, 
compared to the protocol ‘‘TRSEinvivo’’. These findings highlight the 
importance of the design of b-value sampling scheme for accurate 
microvascular parameter estimation in cancer patients in vivo. Simi-
larly, higher image quality and increased sensitivity to micro-perfusion 
could also be achieved, for example, by improving the robustness of 
the dMRI acquisition with cardiac/respiratory gating, or by employing 
flow-compensated (Wetscherek et al., 2015) gradient wave forms, or 
advanced b-tensor encoding (Nilsson et al., 2021).

5. Conclusions

SpinFlowSim, our open-source, freely-available python simulator of 
blood micro-perfusion in capillaries, enables the synthesis and charac-
terisation of realistic microvascular dMRI signals. Perfusion simulations 
in vascular networks reconstructed from histology may inform the non-
invasive, numerical estimation of innovative microvascular properties 
through dMRI, whose feasibility is demonstrated herein in vivo in 
healthy subjects and in cancer patients.
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Appendix A. Supplementary data

Supplementary material related to this article can be found online 
at https://doi.org/10.1016/j.media.2025.103531.

Data availability

SpinFlowSim is made freely available as a GitHub repository at the 
permanent address: https://github.com/radiomicsgroup/SpinFlowSim. 
The repository includes the 15 vascular networks presented in this 
study that can be used to generate synthetic vascular signals for 
simulation-informed model fitting. The code for simulation-informed 
fitting is freely available as part of BodyMRITools at the address: https:
//github.com/fragrussu/bodymritools (script mri2micro_dictml.py). Raw
in vivo human MRI scans cannot be made freely available at this stage 
due to ethical restrictions.
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