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Abstract
Background: Endometrial cancer (EC) is one of the most common gyneco-
logical malignancies and the second most common gynecological malignancy
cause of death in women. Heterogeneous tissues with different grades of com-
plexity and different diffusion properties characterize the EC. Several diffusion
magnetic resonance imaging (DMRI) protocols have been used to perform a
non-invasive and global evaluation of EC for diagnostic and prognostic pur-
poses. However, the association of a single value for the diffusion coefficient
to an EC tissue could be a severe limit for developing a DMRI virtual histology
protocol.
Purpose: This study evaluates the potential of diffusion kurtosis imaging (DKI)
and tissue multiple diffusion clusterization in detecting the specific features of
healthy/cancer tissue that can be useful in EC diagnosis and prognosis.
Methods: Thirty-eight subjects were analyzed: 18 with a final diagnosis of EC
and 20 healthy, asymptomatic, with no history of endometrial pathology and
uterine tumor pathology. Diffusion-weighted Spin-Echo Echo-Planar Imaging
(DW-EPI) with TR/TE = 2000 ms/77 ms was used at 3T using six different
b-values: (500, 800, 1000, 1500, 2000, and 2500)s/mm2 along three gradi-
ent directions (x, y, z). The decay of the signal in each voxel was used to
obtain clusters of different diffusion compartments reflecting tissue heterogene-
ity. Moreover, using the Kurtosis representation, the parametric maps of the
apparent kurtosis (K) and diffusivity (D) coefficients were obtained. The statis-
tical analysis of the differences in the mean value of the parameters obtained
in the selected regions of interest (ROIs) in tumor area (T) peritumor area (PT)
and healthy tissue was carried out using a Kruskal–Wallis Test.A p-value < 0.05
indicated a statistically significant difference. To validate DKI and multiple diffu-
sion clusterization in the detection of EC and healthy tissue, DMRI results were
compared with EC histology. A ROC curve analysis was performed to evaluate
the performance of the clustering feature in differentiating healthy and tumoral
tissues.
Results: K discriminates the peritumor area (PT) of the tumor from the healthy
tissues (p < 0.05) and the area inside the EC (cancerous tissue, p < 0.05).
This result is validated and explained by the diffusion clustering, which shows
a great variability in K for pathological compared to healthy subjects. Moreover,
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the standard deviation of K in the cluster defined by the highest K/D ratio
differentiates T and H ROIs.
Conclusions: K as well as diffusion clusterization are sensitive to the different
microstructural organizations in EC and healthy tissue, promoting themself as
a potential tool for the diagnosis and prognosis of EC.
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1 INTRODUCTION

Endometrial cancer (EC) is the second most common
gynecological malignancy in developed countries1 and it
is the sixth most common cancer worldwide for women.2

In Western Europe, it is the seventh cause of cancer-
related deaths in the female gender. Diagnosis and
preoperative prognosis are essential to perform better
surgical procedures and implement a suitable therapy
as quickly as possible. Current clinical protocols for
the diagnosis of endometrial carcinoma are based on
invasive gynecological techniques, such as biopsy and
curettage.

Traditionally, this type of carcinoma has been classi-
fied as Type I or Type II based on clinical,endocrine,and
epidemiological observations (Bokhman subdivision).
Nowadays, a new classification based on molecular
stratification is used.3,4 However, diagnostic uncertainty
can occur in the histological examination of the biopsied
tissue due to the operator’s experience and the hetero-
geneity of the carcinoma. Indeed, the operator takes
only a portion of the tumor mass and, therefore, the
examination could highlight only local and non-general
characteristics. Consequently, inaccurate knowledge of
the pathological degree of the tumor can negatively
influence the outcome of the disease.

Magnetic Resonance Imaging (MRI) may be able to
characterize the tumor lesion in all its extension, in a
non-invasive and radiation-free modality. In this context,
diffusion magnetic resonance imaging (DMRI) showed
great potential for the diagnosis and prognosis of EC.5–7

Some works highlighted that the apparent diffusion coef-
ficient (ADC) values can distinguish EC from healthy
endometrial tissues or benign endometrial lesions.8,9

Other authors showed that ADC values can assess the
degree of cancerous cells’ differentiation.10 In the last
years, DMRI investigations based on diffusion-weighted
measurements at different diffusion weights (b-values)
were developed to increase the sensitivity and speci-
ficity of diffusion investigations. Among these, Diffusion
Kurtosis Imaging (DKI)11 that allows the quantifica-
tion of kurtosis parameter (K) and diffusion parameter
(D) has shown interesting results in different investiga-
tions related to neurological pathologies such as the
evaluation of brain gliomas12–15 and the evaluation of

meningiomas cell proliferation.16 Recently the DKI has
also been used for the study of the body. For example, K
quantified in the prostate provides a better identification
and classification of prostate cancer17,18 compared to
other MRI investigations. However, as DMRI is an indi-
rect measure of the medium microstructure and relies
on parameters’ inference from representations or mod-
els based on specific assumptions, it is necessary to
validate the information obtained from these methods
through histological investigations.19

Heterogeneous tissues with different grades of com-
plexity and different diffusivity properties characterize
the EC. The association of a single K or D value to an
EC could be a severe limit for developing a DMRI virtual
histology protocol. Therefore, in this study, to extract and
highlight multiple diffusion tissue characteristics that
may lead to more detailed information on the histologi-
cal nature of cancer itself, a differentiation based on the
k-means clustering was performed on the data obtained
by the kurtosis model.

Regarding the characteristics of the lesion to be
evaluated to obtain useful information for diagnosis
and prognosis, recent studies on soft-tissue sarcoma
have found the peritumoral tissues’ characteristics
to be associated with the tumor’s malignancy.20–22

Despite the differences in tissues between sarcomas
and adenocarcinomas, Deng et al.23 found significant
differences between deep and superficial myome-
trial invasion in peritumoral regions of EC, confirming
the importance of further investigation on peritumoral
tissues.

The present study aimed to evaluate the potential of
DKI in detecting the specific features of healthy and
EC tissues, to be useful in EC diagnosis and progno-
sis. For this purpose, DKI results were validated and
explained using diffusion clusterization and histologi-
cal outcomes. Furthermore, diffusion parameters were
tested in the tumor area (T), in the area of the healthy
endometrium (H), and in the area immediately outside
the tumor endometrium (peritumor, PT).

2 MATERIALS AND METHODS

The pipeline of this study is displayed in Figure 1.
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MAIURO ET AL. 3

F IGURE 1 The pipeline of the analysis performed in this work.

2.1 Subjects

The prospective observational study was approved by
the Ethical Committee of the University Hospital Poli-
clinico Umberto I (Rome, Italy). All patients signed
the informed consent for the experimental protocol.
Eighteen patients with a final diagnosis of EC were
investigated (age range: 51–87 years, mean ± standard
deviation (SD): 72 ± 10 years, BMI range: 23–43Kg/m2,
average ± SD: 30 ± 5Kg/m2). In particular, three sub-
jects were classified as Endometrioid with grade G1,
six as G2, five as G3, and four as serous papillary
(grade G3 serous). In addition,20 subjects were enrolled
as a control group with a H (age range: 47–79 years,
mean ± SD: 59 ± 7 years, BMI range: 21–31Kg/m2,
mean±SD:25± 3Kg/m2).Both EC subjects and healthy
volunteers were in a menopausal state (see Table S1 in
Supplemental Material for subjects’ specifications). EC
patients with the presence of further contemporary or
past neoplastic pathologies or undergoing chemother-
apy or radiotherapy treatment were discarded in this
work.

Histology of patients’ tissue extracted after surgi-
cal treatment consisting of bilateral hysterosalpingo-
oophorectomy was obtained as described by Satta
et al.9

2.2 MRI acquisition protocol

All patients and healthy volunteers underwent an MRI
performed using a 3.0 T clinical scanner (GE Dis-
covery MR 750 3.0 T—GE Healthcare, Milwaukee,
WI, USA). Images were acquired using a Diffusion-
weighted Spin-Echo Echo-Planar Imaging (DW-EPI)
with TR/TE = 2000 ms/77 ms; bandwidth = 1953 Hz;
matrix size = 256 × 256, FOV 300 × 300mm2. The
number of slices varied from 9 to 11 (depending on
endometrium extension) for all the healthy subjects and
the EC patients,except five healthy subjects and five EC
patients, for which the number of slices varied from 11
to 34. Since the repetition time TR also depends on the
number of slices, the images of these 5 healthy sub-
jects and 5 EC patients had different TR: between 4s
and 6s. The in-plane resolution was 1.17 × 1.17mm2,
and STK = 5 mm. The diffusion encoding gradients
were applied along three no-coplanar directions using
six different b-values: (500, 800, 1000, 1500, 2000, and
2500) s∕mm2 and averaged over the three directions.
The number of averaged signals (NS) for each b value
was NS = 2. Acquisitions were obtained using a body
coil with 32 channels positioned on the lower abdomen
and a SENSE accelerator algorithm. The second-order
spherical harmonic shim correction was used.
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4 MAIURO ET AL.

F IGURE 2 ROI segmentation of tumoral (red), peritumoral
(orange) and healthy tissue (green). ROI, region of interest.

2.3 Regions of interest

In this study, three different regions of interest (ROIs)
were considered as shown in Figure 2: (1) ROI of the
T, (2) ROI of the peritumor area (PT), and (3) ROI of
the H only on healthy subjects. The ROI segmentation
was performed jointly by two specialist radiologists with
4- and 20-years of experience, respectively. Moreover,
to have further confirmation of the correctness of the
positioning, the ROIs were identified using both diffusion
and T2-weighted images.

Finally,an ROI on the bladder was segmented to eval-
uate the background level of noise obtained in the DW
acquired at b = 2500s/mm2.

2.4 Data processing

It is well known that the kurtosis parameters are influ-
enced by the noise.24 Therefore, the Signal-to-Noise-
Ratio (SNR) was evaluated for each patient,considering
as signal the median of S(b) in all the ROIs (H,PT,and T)
and keeping as noise the SD of the signals at b = 2500
s∕mm2 taken on the bladder ROI. Indeed, the bladder
contains urine, which can be considered like free water
with faster diffusion compared to the surrounding tis-
sues’ diffusion; thus, it has no signal for high b-values.
The choice of using the bladder’s signal instead of the

background comes because images have no available
background zones.

Finally, a denoiser tool based on a homomorphic
approach for the spatially variant noise estimation devel-
oped by Aja-Fernandez et al.25 was applied to the
images to reduce/eliminate the K dependence on the
noise. The original adopted toolbox is available on
MATLAB.26

2.5 Conventional kurtosis
representation fitting

The kurtosis representation was fitted to the averaged
voxel signal values within each ROI using the following
function to describe the signal decay11,27:

S (b) = S (0) e
(
−bDapp+

1
6

b2D2
appKapp

)
(1)

where S (b) is the signal as a function of b-values
b = (𝛾g𝛿)2 (Δ − 𝛿

3
), S (0) is the signal at b = 0 s∕mm2,

Dapp (in mm2∕s) represents the ADC corrected for non-
Gaussian bias and Kapp (dimensionless) represents the
apparent kurtosis coefficient, that is, the deviation from
the Gaussian behavior.11,27 For simplicity, in this paper,
we will refer to Dapp and Kapp as D and K, respectively.

The fitting was performed adopting a homemade
Python script using the nonlinear least square method
(“SciPy” library, scipy.org) and the following boundary
constraints: K ∈ [-0.7,3.7] and D ∈ [0.01,3]e-3 mm2/s.

The parametric maps of K and D of the Kurto-
sis model were obtained using a voxel-wise fitting
procedure adopting the same homemade Python script.

2.6 Identification of multiple
components with a k-means clustering

Multiple diffusion tissue characteristics were obtained
by k-means clustering of the data using Python’s library
“sklearn” (scikit-learn.org).

To individualize the signal’s clusters, the kurtosis rep-
resentation was also fitted voxel-wise on each ROI to
obtain an estimation of the signal at b = 0, Se(0),
then the voxels’ signals S(b) were normalized by the
interpolated Se(0) to uniform the signals before clus-
tering. The k-means was performed on the logarithmic
normalized signals ln( S(b)

Se(0)
) with specified number of

clusters based on the silhouette test.28 Since the
mean number of defined clusters was 2, finding that
only 2 pathological and 3 healthy subjects showed
3 clusters (Figure S1 in Supplemental Material), the
clustering algorithm was applied fixing the number of
clusters to two to maintain the results as general as
possible.
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MAIURO ET AL. 5

Voxel-wise fitting of the kurtosis representation was
performed on the original signals S(b) in each cluster so
that the mean and SD of the diffusion and the kurtosis
parameters could be evaluated for each cluster for both
pathological and healthy subjects’ groups. The labels of
the clusters were named “Cluster 1″ for the cluster with
the minimum ratio K∕D and ”Cluster 2″ for the cluster
with the maximum ratio K∕D.

The voxel-wise fitting was also performed consider-
ing the entire ROIs as a single cluster to evaluate the
advantage of clustering with two clusters.

2.7 Multivariable analysis and ROC
curve

We considered four different models: (1) the con-
ventional Kurtosis representation, where features are
D and K on each ROI; (2) the clustering model
where the following twelve features were analyzed:
D1, K1, stdD1, stdK1, KDratio1 = K1 ∕D1 for the Cluster
1 (where stdD1 and stdK1 are the SD of the diffu-
sion coefficients and the kurtosis of the cluster 1),
D2, K2, stdD2, stdK2, KDratio2 = K2 ∕D2 for the Cluster
2, Dratio = D1 ∕D2 and Kratio = K1 ∕K2; 3) the clustering
model assuming only one cluster on the entire ROI with
the following five features: D, K, stdD, stdK, KDratio =

K∕D; 4) the clustering model considering one clus-
ter at the time with the five features defined before.
The datasets were divided into five folds and a uni-
variate feature selection was performed individually for
each fold testing for their separation power using a
Mann–Whitney test with a statistical significance set
at p ≤ 0.05∕n with n the number of the model’s fea-
tures, according to Bonferroni correction. Once sorted
by increasing p-value, the best-uncorrelated features
(Pearson correlation 𝜌 < 0.8) were selected for the mul-
tivariable analysis. Features were standardized using
the z-score, and then logistic regression with Lasso reg-
ularization was performed.29 AUC score was evaluated
over the folds and the confidence interval was obtained
by performing an a-posteriori bootstrapping with 1000
bootstraps. We reported the performances of the logis-
tic regression as accuracy,precision, recall, and f1 score
computed at the Youden Index. Results are reported as
median with a confidence interval between 5% and 95%
over the folds.

2.8 Statistical analysis

Since in principle,patients differentiate in tissue type but
also in SNR level,age,and TR,the following linear mixed
model (LMM) was performed on the kurtosis model’s
parameters K and D, using the MATLAB function fitmle
(Matlab 2021a), to evaluate the actual dependency of K

TABLE 1 Linear mixed model output for K and D parameters
obtained by denoised images. p-value BH is the corrected p-value
with the Benjamini and Hochberg method.

Parameter Name Estimate p-value p-value BH

K Intercept 0.8 0.1 0.2

SNR −0.003 0.2 0.3

Tissue 0.9 0.00003 0.0001

TR −0.08 0.1 0.2

Age −0.0004 1 1

D Intercept 0.7 0.003 0.008

SNR 0.002 0.0004 0.002

Tissue −0.07 0.1 0.2

TR 0.02 0.5 0.7

Age 0.0004 0.9 0.9

Abbreviations: SNR = signal to noise ratio, TR = repetition time.

and D on all these confounders:

y ∼ 𝜷X + zu + 𝜖

where y is the parameter’s vector, X is a matrix of
the fixed effect (tissue’s type, SNR level, age and
TR), 𝜷 is the fixed effect coefficient, zu is the ran-
dom effect contribute including the tissues’ type cor-
rected by the tumor grade, the SNR corrected by the
tissues (since there is a difference in the T2 relax-
ation time30), and the correction of the intercept for
ages. Finally, 𝜖 is the random error. The coefficients
obtained by the LMM have p-values assessing if they
are significantly different from zero. These p-values
were corrected following the Benjamini and Hochberg
method.31

The Kruskal–Wallis test (Non-parametric Analysis of
variance) with Dunn and Sidak’s correction (Matlab
2021a) and Cohen’s d effective size were performed to
evaluate the significant differences between the aver-
age parameters obtained in the three areas (T, PT,
H). A p-value < 0.05 was selected for the statistical
significance.

3 RESULTS

In general, the denoised images gained more than 70%
of SNR for each b-value to the original DWIs. The min-
imum SNR at b value 2500 s∕mm2 was about seven in
denoised images.

The LMM applied on denoised images reflects no
dependencies of the kurtosis parameter K on SNR, TR,
and patients’ age, whereas it showed a dependence on
the tissue type with a corrected p-value < 0.05 (Table 1).
On the other hand, D seems to depend on the inter-
cept with a high coefficient and the SNR with a small
but significant coefficient (Table 1).
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6 MAIURO ET AL.

3.1 Conventional kurtosis
representation

The Kurtosis coefficient K obtained in both the PT and
the T zones is significantly higher than that obtained
in the H zone (p-value = 0.01 and p-value = 0.05,
respectively, see Figure 3a and Table S2). The diffu-
sion coefficient D calculated in the T zone is significantly
lower than in the H area (p-value = 0.03, Figure 3a and
Table S2). In Table S3 of Supplemental Material is avail-
able the Cohen’s d values for each ROI’s difference
reflecting the Kruskal–Wallis results with the high effect
size for the Kurtosis K differences between the PT and
T zones compared to the H area and the diffusion coef-
ficient D between the tumoral tissues T and the normal
tissues H.

3.2 K-means clustering

The k-means clustering algorithm individualized two
main diffusive compartments for both healthy and patho-
logical subjects, as shown in the parametric maps
displayed in Figure 4 (in Figure S3 of Supplemental
Material, the histologies of the tumoral subject are avail-
able). Figure 3e shows the clustering map obtained by
the k-means analysis. In the left panel of Figure 3e,
each point represents the mean values of the param-
eters couple (K; D) in each cluster, whereas the axes
of the surrounding ellipse represent half of their SD.
Healthy subjects (green marks) are concentrated in the
center of the plot, with barely visible ellipses meaning
that the couple (K; D) has no significant variability inside
the healthy tissues. The T and PT zones show instead
greater SD and various values for the couple (K; D). In
particular, most of the variability was found for the K
parameter in the peritumoral ROIs (orange and yellow
dots in Figure 3e). In the right panel of Figure 3e, the
scatter plot of the SDs summarizes these results show-
ing all the healthy green dots on the bottom left of the
plot, whereas the SDs of the pathological tissues’ com-
partments are spread along the K axis. In general, the
approximate ratio of voxels belonging to Cluster 1 was
50% (i.e.,equal to the ratio in Cluster 2) compared to the
entire ROI.

The ROC curve in Figure 3b shows an AUC (95%
IC) = 0.84 (0.68–0.95) for the identification of tumoral
zones compared to the healthy tissues using the Two
Clusters model with fifteen features, while ROC curves
of the model considering the Single Cluster 2 showed
the best AUC score = 0.89 (0.76–0.98). In Figure 3c,
the ROC curve of the four analyzed models for the
identification of the peritumoral ROI shows the best
AUC = 0.94 (0.82–1.00) for the Single Cluster 2. The
bar-plots in Figure 3d show the normalized weight
adopted during the linear regression of the classifier
for each fold and feature for the models with more than

TABLE 2 Parameters obtained by the classification metrics
averaged over a five-fold validation for the best model of single
cluster 2 at Youden index.

Median 5% CI 95% CI

T/H

Accuracy 0.86 0.77 0.98

Precision 1 0.76 1

Recall 1 0.53 1

F1 score 0.86 0.69 0.98

AUC 0.89 0.76 0.98

PT/H

Accuracy 1 0.90 1

Precision 1 0.84 1

Recall 1 1 1

F1 score 1 0.91 1

AUC 0.94 0.82 1

Abbreviation: CI = confidence interval.

two features, indicating stdK2 and stdD2 as the features
that most diversify tumoral and healthy tissues (in Sup-
plemental Material, the bar-plots for the PT ROIs are
displayed in Figure S2). In Table 2, the median values of
the classification parameters averaged over the 5-fold
validation are reported, while the results for each fold
are displayed in Table S4 of Supplemental Material for
the best model Single Cluster 2.

4 DISCUSSIONS

In this paper, we achieved some new important infor-
mation on EC heterogeneity and histopathology by
clustering the signals inside endometrial tissue ROIs.
We found that the parametric maps of the kurtosis
coefficient K and the diffusion coefficient D show com-
parable values distribution with those obtained by the
clustered signals also showing a great variability of val-
ues in pathological tissues compared to healthy ROIs. In
general, greater K values are associated with increased
tissue complexity11 but also with increased magnetic
susceptibility difference at the interface of different
tissues.32 A higher value of K in the tumor area (T) com-
pared to the average value obtained in the H can be
explained as cancer cells create a more chaotic and
complex environment than the typical structure of a
healthy tissue. Instead, the D maps show lower values
of diffusion coefficient D in the T. This is in agreement
with the slower water diffusion within the cancerous
tissue compared to the average diffusion in healthy tis-
sue which is consistent with the cell density increase in
endometrial carcinoma.10,33

From a histological point of view, the tumor tissue
is characterized by a huge and uncontrolled growth
of cells, which creates a denser and more disordered
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MAIURO ET AL. 7

F IGURE 3 (a) boxplot of diffusion coefficient D (*10−3 mm2/s) and kurtosis parameter K evaluated in the ROIs of healthy, tumoral, and
peritumoral tissue. *p < 0.05. (b) ROC curve for the healthy-tumoral separation. The conventional model is the conventional kurtosis
representation application; One cluster is the model where the ROI is treated as a single cluster; Two Clusters: the features belonging to the
clusters are considered; Cluster 1: only Cluster 1 is considered; Cluster 2: only Cluster 2 is considered. (c) ROC curve for the healthy-peritumoral
separation. (d) bar-plot of the normalized coefficients for the logistic regressor indicating the importance of each feature in the multivariable
analysis in T/H comparisons. (e) On the left: clusters’ map obtained for healthy tissues (H), tumor area (T), and peritumor area (PT); on the right:
scatter plot of the kurtosis model’s parameters K and D SD found in healthy, tumoral and peritumoral tissues.ROI, regions of interest; SD,
standard deviation.
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8 MAIURO ET AL.

F IGURE 4 (a) 73-year-old patient with grade 1 (G1) endometrioid adenocarcinoma. a) the T2 image shows a slightly higher signal intensity
in cancer. (b) a diffusion-weighted image, DWI (b value = 500 s∕mm2); (c) DWI shows the clusters’ labels on the tumoral ROI. (d) the parametric
map of the diffusion coefficient D shows a low value of D within the tumor. (e) parametric map of the kurtosis coefficient K shows a high value
of K in the T ROI; (f) clusters’ labels on the peritumoral ROI; (g) D map on the PT ROI; (h) K map on the PT ROI; (i) T2 image of a 65-year-old
healthy subject; (j) DWI (b-value = 500 s∕mm2); (k) clusters’ labels on the healthy ROI; (l) D map on the H ROI; (m) K map on the H ROI. ROI,
region of interest
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environment with cells of different sizes.34 The cluster-
ization highlighted these same features, pinpointing a
greater variability in K and D parameters in pathological
than in healthy tissues. Indeed, the SD’s scatter plots
show a clear variability in K for pathological tissues,
especially in the PT zone where different factors such
as the tumor infiltration and the magnetic susceptibil-
ity difference32 may contribute to the voxels’ intensities.
Moreover,the best classifier showed positive coefficients
in the features’ selection for stdD2 and stdK2. These
results suggest Cluster 2 (defined as the one with the
highest K/D ratio,hence higher complexity and hypercel-
lularity) to be the one responsible for the classification as
tumoral tissues.

Although results are in general agreement with the
literature,9,35,36 the paper by Yue et al.36 reports K and
D values, obtained both in zone T and in zone H, slightly
different from the results obtained in this paper. In partic-
ular, Yue et al. and Yamada et al.35 suggest a significant
positive correlation between K values and tumor grad-
ing that we have not investigated in this paper given
the small cohort of patients for each grade. Moreover,
the scanner’s field strength used by Yamada et al.35

was 1.5T, whereas our patients were acquired using a
3T scanner. However, in our opinion, the factors that
mostly lead to different results between the present work
and the previous ones are related to the great vari-
ability and typology of EC, how the histologies were
obtained to establish the classification of the tumor, the
fact that we evaluated the diffusion parameter inside the
tumor without the boundaries (T ROI) and only in the
boundaries (PT ROI), and most important, the size of
our subjects’ cohort which was too small. Moreover, all
these differences revealed that reliable threshold val-
ues for clinical diagnosis are still not defined and all
these inconsistencies may be overcome by changing
the methodology. Indeed, our main aim was not to show
the effectiveness of a diagnostic protocol but to highlight
that diffusion-based clustering improves the quantifica-
tion of the heterogeneity observed in tissue histology,
and together they explain the kurtosis and Diffusion
values in EC and healthy tissues.

We found statistically significant differences between
the Kurtosis parameters obtained in the peritumoral
area (PT). The clustering analysis also underlined the
huge variances in these tissues for PT zones,especially
for the kurtosis parameter K, supporting our results.
Moreover, Palombo et al.32 showed that the parameter
K is positively correlated to the magnetic susceptibility
difference at the interphase between different tissues.
According to this observation,we obtained higher values
of K in PT ROIs, that is, in those ROIs at the boundaries
between cancer and healthy tissue.

As confirmed by the clustering analysis, the tumor
area (T) is highly inhomogeneous due to the presence of
some areas of necrosis. At the histological level (micron
scale) the necrotic cells and the neoplastic cells are

separated and they constitute zones of cellular order
and disorder, respectively. However, within a voxel (mil-
limeter scale) the contributions of these two different
types of cells can be averaged. Therefore, it is reason-
able that a significant difference in diffusion with the
grade of the tumor has not been found in the tumor
area (T).

The main limitation of this study is related to the small
cohort of subjects (38 subjects) and a wide variety of
endometrial tumor types whose ROIs were manually
placed. Regarding the ROIs, they were selected jointly
by two experts in EC diagnostics. Inter-operator vari-
ability was therefore not assessed. Moreover, images
averaged over the three-diffusion directions may lead to
systematic errors in the K parameter estimation,37 espe-
cially in tissues with low or moderate diffusion anisotropy.
Despite these limitations, this study aimed to highlight
the clustering method that seems to discriminate healthy
and tumoral tissues with high specificity and accuracy,
providing a promising tool for EC diagnosis. Future
research will include a larger cohort to establish thresh-
old values for diffusion, kurtosis, and cluster counts to
support the diagnosis and prognosis of EC. Finally, the
clustering method aligns with the principles of precision
medicine, a rapidly growing area of interest.

5 CONCLUSION

The present study showed the potential of DKI and diffu-
sion clusterization analysis in providing tissue features
for a non-invasive diagnosis of endometrial carcinoma.
The kurtosis coefficient K, which describes the hetero-
geneity and complexity of the tumor tissue formed by
the uncontrolled and chaotic proliferation of cancer cells,
further discriminates the area immediately outside the
peritumor area (PT) from the area of H. These results
are validated by the clustering process which under-
lines the great variability in K of the pathological tissues
and, especially their edges. In particular, the K param-
eter and its SD provide important information on the
contour and possible tumor expansion. Indeed, tumoral
tissues are differentiated from healthy subjects by the
SD of K belonging to the cluster with the highest K/D
ratio. Therefore, the K parameter corroborated by dif-
fusion clusterization could be a useful tool for an early
diagnosis of EC and may be employed to optimize the
prognosis providing an identification of the nature of the
specific EC.
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