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ABSTRACT

The Euclid mission of the European Space Agency will provide weak gravitational lensing and galaxy clustering surveys that can be used to
constrain the standard cosmological model and its extensions, with an opportunity to test the properties of dark matter beyond the minimal
cold dark matter paradigm. We present forecasts from the combination of the Euclid weak lensing and photometric galaxy clustering data on
the parameters describing four interesting and representative non-minimal dark matter models: a mixture of cold and warm dark matter relics;
unstable dark matter decaying either into massless or massive relics; and dark matter undergoing feeble interactions with relativistic relics. We
modelled these scenarios at the level of the non-linear matter power spectrum using emulators trained on dedicated N-body simulations. We
used a mock Euclid likelihood and Monte Carlo Markov chains to fit mock data and infer error bars on dark matter parameters marginalised
over other parameters. We find that the Euclid photometric probe (alone or in combination with cosmic microwave background data from the
Planck satellite) will be sensitive to the effect of each of the four dark matter models considered here. The improvement will be particularly
spectacular for decaying and interacting dark matter models. With Euclid, the bounds on some dark matter parameters can improve by up to two
orders of magnitude compared to current limits. We discuss the dependence of predicted uncertainties on different assumptions: the inclusion
of photometric galaxy clustering data, the minimum angular scale taken into account, and modelling of baryonic feedback effects. We conclude
that the Euclid mission will be able to measure quantities related to the dark sector of particle physics with unprecedented sensitivity. This will
provide important information for model building in high-energy physics. Any hint of a deviation from the minimal cold dark matter paradigm
would have profound implications for cosmology and particle physics.

Key words. cosmological parameters – cosmology: observations – dark matter – large-scale structure of Universe

1. Introduction

Understanding the nature of dark matter (DM) is one of the pri-
ority targets within the communities of cosmology, astroparti-
cle physics, and high-energy physics. Over the past decade, the
Large Hadron Collider (LHC) results and the absence of direct
or indirect DM detection have shown that the situation concern-
ing the nature of DM is wide open. Weakly interacting massive
particles (WIMPs) are only one candidate among many possi-
bilities (Bertone et al. 2005; Feng 2010). Particle-like DM could
have a large range of plausible masses, lifetimes, annihilation
cross-sections, and scattering cross-sections.

The standard cosmological model makes the working
assumption of a purely stable, decoupled, and cold dark mat-
ter (CDM) species, which can be modelled as dust in simula-
tions of the evolution of the Universe since very early times
– well before photon decoupling. In the CDM limit, the only
measurable parameter related to DM is its relic non-relativistic
density today, ρcdm, which can be expressed in terms of a dimen-
sionless density parameter, ωcdm := Ωcdmh2, where Ωcdm is the
fractional density of CDM (relative to the critical density) and
h := H0/(100 kms−1 Mpc−1) is the reduced Hubble parame-
ter. However, in non-minimal scenarios, DM could have several
other parameters of possible relevance for fitting cosmologi-
cal observations, such as: a non-negligible velocity dispersion
(Bond & Szalay 1983; Bode et al. 2001), a lifetime not con-
siderably larger than the age of the Universe (e.g. Ichiki et al.
2004; Audren et al. 2014), and cross-sections describing either
its self-interaction (Spergel & Steinhardt 2000; Feng et al. 2009)
or its feeble interaction with other species (Boehm et al. 2001;
Cyr-Racine et al. 2016).

From the point of view of a particle physics model-builder,
non-minimal DM models are easy to motivate; typically, they do
not require more complicated or more fine-tuned ingredients that
the particle physics models leading to plain CDM. The logic pur-
sued successfully by high-energy physicists for almost a century
consists of postulating additional symmetries (rather than adding
individual particles) in order to explain unaccounted experimen-
tal results. The current standard model of particle physics is
known to be incomplete (Workman et al. 2022) and the assump-
tion of new symmetries usually comes together with a rich dark
sector; that is, several new particles with new interactions, with
potentially more than one population surviving until today and

contributing to DM or dark radiation. From this point of view,
having just one decoupled, stable, and cold relic in our Universe
does not sound much more natural than being surrounded by
one or more dark species with potentially non-trivial properties.
High-energy physicists often suggest that, given the richness of
the visible sector, there is no obvious reason for the dark sector
to reduce to a single CDM relic particle.

The astrophysics community is sometimes reluctant to
investigate the possible consequences of non-minimal particle-
physics assumptions in cosmology as long as the minimal
ΛCDM model has not been ruled out. The situation is, however,
evolving given the accumulation of tensions or unresolved ques-
tions in cosmological observations (like the small-scale CDM
crisis, Hubble tension, or S 8 tension; see for instance Verde et al.
2019, Abdalla et al. 2022). In this context, it sounds at least rea-
sonable to investigate the possibility of detecting some effects
induced by non-minimal DM models. Of course, it is still possi-
ble that future observations only provide bounds on these mod-
els and leave us with plain CDM as a preferred case. Even in
this case, it would be extremely interesting for particle physics
model-builders to have such bounds, since constraints from
accelerators or astroparticle experiments usually probe a differ-
ent regime or different model assumptions than cosmological
data.

Non-minimal DM properties may affect the growth of struc-
tures in the Universe in different ways, at different times, and
on different scales. Thus, they can leave several types of sig-
natures in the two-point correlation function of matter fluctua-
tions in Fourier space, called the matter power spectrum. This
spectrum can be reconstructed from several types of cosmolog-
ical observations at different redshifts. The modified growth of
structure induced by non-minimal DM models could also affect
other statistical probes of structure formation (higher-order cor-
relation functions, halo mass function, peak and void statistics),
but in this work we only consider its impact on the matter power
spectrum.

Euclid (Euclid Collaboration: Mellier et al. 2025) is
a medium-class mission of the European Space Agency,
which will map the local Universe to improve our under-
standing of the expansion history and of the growth of
structures. The satellite will observe roughly 15 000 deg2

of the sky through two instruments, a visible imager
(VIS, Euclid Collaboration: Cropper et al 2025) and
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a Near-Infrared Spectrometer and Photometer (NISP,
Euclid Collaboration: Jahnke et al. 2025), delivering the
images of more than one billion galaxies and the spectra of
tens of millions of galaxies out to redshift of about 2. The
combination of spectroscopy and photometry will allow us to
reconstruct the matter power spectrum up to an accuracy of 1%.

Since the matter power spectrum could be strongly affected
by the nature of DM, Euclid is a perfect tool for testing non-
minimal DM properties. It may either confirm the standard CDM
paradigm or discover some new DM features. The goal of this
work is precisely to estimate the sensitivity of Euclid to dif-
ferent DM parameters beyond its mere relic density. Given the
wide range of possible alternatives to standard CDM, we cannot
explore all possibilities. We instead concentrate on four exam-
ples of non-minimal scenarios that are still compatible with
current data and that could be either constrained or detected
by Euclid. Our choice of models is dictated by simple con-
siderations. First, we should select some representative cases.
Since in non-minimal models, DM particles are expected to
either free-stream (with some velocity dispersion) and/or decay
(with some rate) and/or scatter (with some cross-sections), we
go through examples in each of these three categories. A well-
motivated example of DM with a velocity dispersion is warm
DM. Some simple examples of decaying DM consist of parti-
cles with a constant decay rate, decaying into either relativistic
or non-relativistic daughter particles; and a representative case of
scattering DM is that of DM interacting with dark radiation. Sec-
ond, we are interested in models such that galaxy redshift sur-
veys could provide stronger bounds than other observables, and
in particular, than cosmic microwave background (CMB) and/or
Lyman-α forest data. For reasons detailed in the next sections,
this would not be the case for pure warm DM or pure decaying
DM. Thus, going to the next level of complexity, we assume a
mixture of either cold and warm DM, or of stable and unstable
particles. In conclusion, we focus on four interesting and rep-
resentative models: a mixture of cold and warm DM, a mixture
of stable and unstable particles decaying into either relativistic
or non-relativistic particles, and DM interacting with dark rela-
tivistic relics.

Euclid will deliver several types of observations. Among
these, the weak lensing (WL) survey and the galaxy clustering
(GC) photometric survey will be ideal to constrain DM proper-
ties, since they will both provide a measurement of the matter
power spectrum down to small scales and up to high redshift.
These two surveys will return maps in tomographic bins that can
be analysed all together (taking into account cross-correlations
between WL and galaxy density maps). In addition to this joint
data set, called the photometric probe, Euclid will provide other
observations. The Euclid spectroscopic galaxy redshift survey
will play an essential role in constraining several cosmological
models and parameters. Cluster number counts will also con-
vey very useful information. However, these surveys will not
provide information on such small scales as WL, and their imple-
mentation in sensitivity forecasts relies on a different methodol-
ogy than for the photometric probe. In particular, they require
a different approach to model non-linear effects for each non-
minimal DM model. Thus, for simplicity, we choose to concen-
trate only on the Euclid photometric probe in this work.

In Sect. 2 of this work, we review the four DM models that
we investigate, with a brief discussion of their foundations, their
free parameters, and their effects on the linear matter power spec-
trum. In Sect. 3, we explain how to model the effect of these
scenarios at the level of the non-linear power spectrum, using
emulators trained on dedicated N-body simulations. In Sect. 4,

we summarise the assumptions and numerical pipelines used in
our parameter sensitivity forecasts for the Euclid photometric
probe. We present our results for each model in Sect. 5 and pro-
vide final conclusions in Sect. 7.

2. Non-minimal particle dark matter models

Many particle DM properties can be tested with cosmology
(Gluscevic et al. 2019). As was mentioned in the introduction,
we only focus here on four particular models. On the one
hand, these models constitute representative samples of the
three most plausible properties of non-minimal particle DM: a
non-negligible velocity dispersion, some decay rate, or a non-
negligible scattering rate. On the other hand, within their respec-
tive category, they account for the simplest scenarios that can
be constrained better by WL and galaxy surveys than CMB and
Lyman-α data.

2.1. Cold plus warm dark matter

In this model, a fraction, fwdm, of the total DM fractional den-
sity, Ωdm, is assumed to be warm, so that Ωdm = Ωcdm + Ωwdm =
(1− fwdm) Ωdm + fwdm Ωdm. The warm dark matter (WDM) com-
ponent possesses a thermal (root mean square) velocity vrms that
depends on the temperature-to-mass ratio Twdm/mwdm. WDM
would revert to CDM in the limit vrms → 0, or equivalently
mwdm → ∞.

This mixed cold plus warm dark matter (CWDM) model has
been studied previously, for instance, in Boyarsky et al. (2009a),
Schneider (2015), Murgia et al. (2017, 2018), Parimbelli et al.
(2021), or Hooper et al. (2022). It may account either for cos-
mologies with two distinct DM components, or also, effec-
tively, for cosmologies with a single DM component with a
non-thermal distribution, such as resonantly produced sterile
neutrinos (Boyarsky et al. 2009b). This model has been often
invoked as a possible solution to the small-scale CDM crisis
(Anderhalden et al. 2013; Maccio et al. 2013). Current best con-
straints come from Lyman-α forest surveys (Hooper et al. 2022),
Milky Way satellites (Diamanti et al. 2017), and WL surveys
(Hervas-Peters et al. 2024; see Sect. 5.1).

The thermal velocity of WDM defines its maximum free-
streaming scale, reached at the time of its non-relativistic
transition during radiation domination. On larger wavelengths,
cosmological fluctuations have the same evolution as in a model
in which all the DM would be cold. On smaller scales, the per-
turbations of the WDM component are negligible and the growth
of CDM density fluctuations is suppressed. Thus, at the level of
linear perturbations, the overall effect of WDM is to induce a
step-like suppression in the matter power spectrum. The ampli-
tude of the step is controlled by fwdm

1. The shape of the step is
universal for all models in which the WDM phase-space distribu-
tion has a thermal shape up to a rescaling factor. This covers two
well-known limits: on the one hand, thermal WDM, for which
the phase-space distribution is thermal (with no rescaling factor)
but the WDM temperature, Twdm, is reduced compared to the
active neutrino temperature, due to its earlier decoupling time;
and the Dodelson–Widrow (DW) model (Dodelson & Widrow
1994; Colombi et al. 1996), for which the phase-space distribu-

1 The step-like amplitude can be approximated as (1 −

fwdm)2
[
D(a0)/D(aeq)

]−(3/2) fwdm , where D(a) is the scale-independent
linear growth factor of CDM density fluctuations in a pure ΛCDM
universe, aeq is the scale factor at radiation-to-matter equality, and a0 is
the scale factor today (Boyarsky et al. 2009a).
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tion is identical to that of active neutrinos (with Twdm = Tν) up to
a rescaling factor χ � 1 accounting for the efficiency of active-
sterile neutrino oscillations in the early Universe with a small
mixing angle, χ ∼ sin2 θ. For this broad category of models, the
location of the step-like suppression is controlled by the thermal
velocity; that is, by the temperature-to-mass ratio, Twdm/mwdm.

It is convenient to parameterise the location of the step in
terms of the rescaled mass

x := mwdm
Tν

Twdm
, (1)

where Tν is the current value of the active neutrino temperature
computed in the instantaneous decoupling limit; that is, such that
Tν/Tγ = (4/11)1/3. For the class of models described above,
the effect of WDM is entirely described by the two parameters
( fwdm, x), independently of the chosen model (thermal WDM or
DW). In the DW case, x coincides with mDW

wdm. In the thermal
case, one has

mthermal
wdm =

(
94.1 Ωwdmh2

)1/4
( x
1 eV

)3/4
eV , (2)

where we used the fact that for Fermi–Dirac thermal relics X
with a temperature TX = Tν one gets mX = 94.1 ΩXh2 eV2.

In this model, the evolution of linear cosmological per-
turbation can be computed with the public version of CLASS.
Then, to account for the thermal WDM case, we pass to the
code the parameters Ωwdmh2 = fwdm Ωdmh2, mthermal

wdm , and finally
Twdm/Tγ = (4/11)1/3(mthermal

wdm /x) with x inferred from Eq. (2)3.
In principle one could use a different set of parameters for the
equivalent DW model and find the exact same linear power spec-
tra (Lesgourgues 2011; Blas et al. 2011; Lesgourgues & Tram
2011). Figure 1 shows the power spectrum at redshift zero for
several CWDM models rescaled by that of a pure ΛCDM model,
for various values of ( fwdm, x) but fixed values of the usual
ΛCDM parameters (Ωm, Ωb, h, As, ns) accounting respectively
for the fractional density of total non-relativistic matter (bary-
onic plus dark), the fractional density of baryonic matter, the
reduced Hubble parameter, and the amplitude and spectral index
of the primordial spectrum of scalar (curvature) perturbations.
In the left panel, we vary x (or equivalently mDW

wdm) with fixed
fwdm to check that x only controls the location of the step. In
the right panel we do the opposite to show that fwdm controls its
amplitude.

In Sect. 3.1, we show how to compute the impact of CWDM
on the non-linear matter spectrum. In Sect. 5.1, we perform
Euclid forecasts on the parameter of the CWDM model. For that
purpose, we use a Bayesian MCMC approach to fit the CWDM
model to mock Euclid data, assuming a logarithmic prior on
fwdm ∈ [2×10−3, 1] and a flat prior on mthermal

wdm ∈ [10 eV, 1 keV].
Such a logarithmic prior on fwdm allows us to assess pre-

cisely the constraining power of Euclid even when fwdm is very

2 Since our definition of the reference temperature Tν applies to neu-
trinos in the instantaneous decoupling limit, in order to be consis-
tent, we need to stick to the same limit when computing the factor
mX/(ΩXh2eV). Thus, for this factor, we must use the value 94.1 rather
than the slightly smaller value 93.1 that accounts for the mass-to-density
ratio of active neutrino.
3 Here we use CLASS v3.2.0. In practice, we fix the number of
non-cold DM species to one, N_ncdm = 1, and we pass to the code
omega_ncdm = fwdm Ωdmh2, m_ncdm = mthermal

wdm , and

T_ncdm =
Twdm

Tγ

=

(
4

11

)1/3(
94.1 Ωwdmh2

)1/3
mthermal

wdm

1 eV

−1/3

.

small (e.g. in the range from 10−3 to 10−1). This limit is the most
interesting in the case of the Euclid probes since, in this case,
the data may be compatible with a relatively small WDM mass,
and thus a small step located on relatively large wavelengths,
in the range probed by WL and GC surveys in the linear and
mildly non-linear regime. Large values of fwdm (e.g. in the range
from 0.1 to 1) imply a strong suppression of the power spec-
trum that is already excluded by Lyman-α forest data unless
the mass is really large – a limit in which, from the point of
view of Euclid data, CWDM would be indistinguishable from
pure CDM.

2.2. Dark matter with one-body decay

If DM particles are unstable, they may decay in different ways
into lighter particles. Cosmological observables are not sensi-
tive to all details concerning the nature of the decay products,
but they depend on simple considerations like the fact that these
decay products could be relativistic or non-relativistic. In the
simplest scenario, all decay products are assumed to be ultra-
relativistic and can be considered as a single species, dubbed
dark radiation (DR). This simple model of decaying dark matter
(DDM) is often called one-body decaying DM and abbreviated
as 1b-DDM.

In this section, we assume that DM is made up of two cold
species: a fraction 1 − fddm of stable dark matter (CDM) and a
fraction fddm of 1b-DDM decaying into DR. For simplicity, we
assume a constant decay rate, Γddm = 1/τddm, where τddm is the
lifetime of the decaying species. The current value of the frac-
tional dark radiation density, Ωdr, is not an independent parame-
ter of the model: it can be computed consistently for each value
of fddm and Γddm.

This model has been studied previously; for instance,
in Ichiki et al. (2004), Audren et al. (2014), Berezhiani et al.
(2015), Chudaykin et al. (2016, 2018), Oldengott et al. (2016),
Poulin et al. (2016), Pandey et al. (2020), Xiao et al. (2020),
Nygaard et al. (2021), Schöneberg et al. (2022), Simon et al.
(2022), Holm et al. (2023), or Bucko et al. (2023). It has been
often invoked as a possible solution to the Hubble and/or S 8
tension. The best constraints at the moment come from CMB
plus baryon acoustic oscillation (BAO) data (Nygaard et al.
2021), galaxy surveys (Simon et al. 2022), and WL surveys
(Bucko et al. 2023; see Sect. 5.2).

In this model, the evolution of linear cosmological pertur-
bations can be computed with the public version of CLASS4.
The code accepts two possible definitions of the decaying DM
fraction: one can either pass the value of fddm today, taking
the effect of decay into account, or the value f ini

ddm evaluated at
some initial time τini � τddm, before any significant decay has
occurred,

f ini
ddm =

ρini
ddm

ρini
dm

=
ρini

ddm

ρini
cdm + ρini

ddm

. (3)

Here we choose to report results on f ini
ddm, for the purpose of eas-

ier comparison with previously published bounds. Some related
parameters are Ωini

ddm (respectively Ωini
dm), the fractional density

that DDM (respectively total DM) would have today if DDM did
not decay. The free parameters of the 1b-DDM model are then
(Γddm, f ini

ddm, Ωini
dm, Ωb, h, As, ns), while the cosmological constant

4 Here we use CLASS v3.2.0.
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Fig. 1. Ratio of the linear (solid lines) and non-linear (dashed lines) power spectra of several CWDM models to that of a pure ΛCDM model with
the same cosmological parameters, parameterised by the fraction fwdm and the rescaled mass x. The other parameters (Ωdm, Ωb, h, As, ns) are kept
fixed. All spectra are computed today (z = 0). These plots cover all the cases in which WDM has a Fermi–Dirac distribution possibly rescaled by
a factor χ, including the limits of the thermal WDM (χ = 1) and Dodelson–Widrow (Twdm = Tν) models. In the latter case x coincides with the
physical mass. The non-linear spectra are predicted by the emulator introduced in Sect. 3.1 and plotted up to the maximum wavenumber at which
this emulator is trusted.
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Fig. 2. Ratio of the linear (solid lines) and non-linear (dashed lines) power spectra of several 1b-DDM models to that of a pure ΛCDM model with
the same cosmological parameters, parameterised by the fraction f ini

ddm and the decay rate Γddm. We work in the basis ( f ini
ddm,Γddm f ini

ddm) to show that
only the product of the two DDM parameters affects the linear power spectrum. The other parameters (Ωini

dm, Ωb, h, As, ns) are kept fixed, and the
spectra are computed today (z = 0). The non-linear spectra are predicted by the emulator introduced in Sect. 3.2 and plotted up to the maximum
wavenumber at which this emulator is trusted.

parameter ΩΛ is adjusted to match the budget equation in a flat
universe5.

If one varies the two decaying DM parameters (Γddm, f ini
ddm)

while fixing the other parameters (Ωini
dm, Ωb, h, As, ns), one

changes the predicted age of the Universe, which controls the
amplitude of the matter power spectrum on all scales, as well as
the redshift of radiation-to-matter equality, which determines the

5 To be precise, for each 1b-DDM model, we pass to the
CLASS code the decay rate expressed in units of km s−1 Mpc−1,
Gamma_dcdm = 977.792 (Γddm/1 Gyr−1) km s−1 Mpc−1, the DDM den-
sity parameter Omega_ini_dcdm = f ini

ddm Ωini
dm, the CDM density param-

eter Omega_cdm = (1 − f ini
ddm) Ωini

dm, and the remaining four parameters
following the usual syntax.

scale of the overall peak in the spectrum. These effects cause an
enhancement of the matter power spectrum on scales larger than
those crossing the Hubble radius around the time of equality, cor-
responding to comoving wavenumbers k < 2–3 × 10−3 h Mpc−1,
and a suppression on smaller scales. For wavenumbers k ≥
10−1 h Mpc−1, the power spectrum is suppressed by a constant
factor with respect to the ΛCDM case. A larger fraction, f ini

ddm,
or a higher rate, Γddm, both imply a smaller amplitude of the
power spectrum on these scales. Actually, the suppression fac-
tor is found to depend essentially on the product Γddm f ini

ddm, as is
illustrated in Fig. 2. In the left panel, we vary f ini

ddm while keeping
the product Γddm f ini

ddm fixed to 0.005 Gyr−1 (a value representa-
tive of the constraints found in the result Sect. 5.2). Then, the
power spectrum of the 1b-DDM model is found to be indepen-
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dent of f ini
ddm up to the order of one per mille. Thus, we anticipate

that the parameter f ini
ddm alone is difficult to constrain with Euclid

data. Instead, in the right panel of Fig. 2, we vary the product
Γddm f ini

ddm while keeping f ini
ddm fixed. We clearly see a change in

the suppression factor for k ≥ 10−1 h Mpc−1 and in the slope of
the power spectrum for k ∼ 10−2 h Mpc−1, potentially detectable
using Euclid probes.

In Sect. 3.2, we compute the impact of the 1b-DDM model
on the non-linear matter spectrum. In Sect. 5.2, we fit the 1b-
DDM model to mock Euclid data. In order to obtain fast-
converging MCMC chains, we adopt some flat priors on f ini

ddm and
Γddm f ini

ddm, with prior edges detailed in Sect. 5.2, but we expect
interesting constraints only on the second parameter.

2.3. Dark matter with two-body decay

In the next-to-simplest cosmological model of DDM, a cold
DDM particle with a large mass, mddm, and a constant decay rate,
Γddm, is assumed to decay into a first massless daughter particle
and a second massive daughter particle with mass mdaughter. This
model is dubbed two-body decaying DM (2b-DDM). The parent
particle is assumed to account for a fraction, f ini

ddm, of the initial
CDM budget, defined in the same way as for one-body decay
(see Eq. (3)), with the remaining fraction 1− f ini

ddm corresponding
to ordinary stable CDM. In each decay, the fraction of energy
transferred from the parent particle to the first massless daughter
particle, ε, can be related to the mass ratio:

ε =
1
2

1 − m2
daughter

m2
ddm

 . (4)

In the limit mdaughter → mddm, all the energy goes into the sec-
ond massive daughter, but since this corresponds to the conver-
sion of one CDM particle into another one, the model is indistin-
guishable from the standard ΛCDM model. In the opposite limit
mdaughter → 0, the two daughter particles are ultra-relativistic and
share the same amount of energy, which corresponds to ε = 0.5:
this limit is equivalent to the 1-body decay model introduced
in the previous section. However, in the more interesting range
0 < ε < 0.5, the second daughter particle can behave as WDM.
Aoyama et al. (2014) have shown that for the purpose of comput-
ing cosmological observables one only needs to specify the three
parameters ( fddm, Γddm, ε) on top of the usual ΛCDM parameters.

This model has been studied previously, for instance,
in Aoyama et al. (2014), Vattis et al. (2019), Haridasu & Viel
(2020), Franco Abellán et al. (2022, 2021), Schöneberg et al.
(2022), Simon et al. (2022), or Bucko et al. (2024). It has also
been invoked as a possible solution to the H0 and/or S 8 ten-
sion. The best constraints at the moment come from CMB plus
BAO data (Schöneberg et al. 2022), galaxy surveys (Simon et al.
2022), and WL surveys (Bucko et al. 2024; see Sect. 5.3).
Finally, Franco Abellán et al. (2024) have shown how to perform
efficient sensitivity forecasts based on machine learning tech-
niques for this model.

At the level of linear perturbation theory, this model is imple-
mented in a branch of CLASS developed and publicly released6

by the authors of Franco Abellán et al. (2021, 2022). Figure 3
shows the effect on the linear power spectrum of a variation
in the parameters (Γddm, ε, f ini

ddm) for fixed ΛCDM parameters.
We see that this model leads to a step-like suppression of the

6 We use the branch called merging_with_master of the GitHub
repository https://github.com/PoulinV/class_decays. This
branch is an extension of CLASS v2.7.1..

matter power spectrum, which is not surprising since, in this
case, DM is split between a CDM and a WDM component. The
shape of the step is, however, different from the CWDM case,
because the warm component gets produced progressively and
affects different scales at different times. Figure 3 focuses on
cases with ε � 0.5 for which, in each decay, most of the energy
is transferred from one non-relativistic DM species to another
one. Thus, while the universe expands, the energy density of total
matter evolves almost like in the case of stable DM, ρm ∝ a−3,
and the age of the universe is not significantly affected by the
DDM parameters. This explains why in Fig. 3 we do not see any
effect of the 2b-DDM parameters on the matter power spectrum
on very large scales (k � 10−1 h Mpc−1), as it was the case for
1b-DDM. As a side note, one can observe tiny oscillations in
the linear power spectrum ratios of Figure 3. This is most likely
a numerical artefact caused by the use of a fluid approximation
for the perturbations of the warm species within a fixed range
of scales. The same figure shows that these spurious oscillations
are smoothed out by the emulator introduced in Sect. 3.3. Thus,
they cannot affect our results7.

The parameter ε controls the velocity of the daughter particle
just after the decay, which reads vk = c ε/

√
1 − 2ε in the centre

of mass frame (the subscript k refers to ‘kick’, since the daughter
particles get a velocity kick). Thus, by analogy with WDM, ε
determines the free-streaming scale and the location of the step
in the power spectrum. The parameters (Γddm, f ini

ddm) both control
the abundance of 2b-DDM as a function of time and thus the
linear growth rate of the total DM density fluctuation δdm(a).
Hence these parameters both control the amplitude of the step.
The ΛCDM limit is recovered for ε = 0 and/or f ini

ddm = 0 and/or
Γddm = 0.

In Sect. 3.3, we show how to compute the impact of
the 2b-DDM model on the non-linear matter spectrum.
In Sect. 5.3, we fit the 2b-DDM model to mock Euclid
data. We perform our sensitivity forecast with flat priors
on {log10 f ini

ddm, log10(Γddm/Gyr−1), log10 ε}, with prior edges
detailed in that section.

2.4. ETHOS n = 0

The ETHOS framework (Cyr-Racine et al. 2016) is a general
attempt to parameterise physically plausible interactions in a
dark sector featuring at least one type of non-relativistic relics
(playing the role of cold interacting dark matter, IDM) and one
type of ultra-relativistic relics (playing the role of interacting
dark radiation, IDR). The theory provides a mapping between
phenomenological parameters describing the relevant interaction
rates and fundamental parameters appearing in the Lagrangian of
the dark sector. In particular, the ETHOS index n describes to the
power-law dependence of the IDR-IDM interaction rate Γidr−idm
on the temperature of the dark sector.

The case n = 0 is of particular interest, because it cor-
responds to an IDM-IDR momentum exchange rate Γidm−idr
scaling like the Hubble radius during radiation domination
(Buen-Abad et al. 2015; Cyr-Racine et al. 2016; Becker et al.
2021). Thus, in this model, the ratio Γidm−idr/H (where both
Γidm−idr and H depend on time) remains constant during radi-
ation domination and decreases slowly during matter domina-
tion. This means that IDM and IDR can remain in a regime

7 Even without such smoothing, these oscillations would be innocuous
since they only occur on huge scales (larger than the scale of the broad
peak of the matter power spectrum, with k � 10−2 h Mpc−1), which are
hardly constrained by Euclid.
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Fig. 3. Ratio of the linear (solid lines) and non-linear (dashed lines) power spectra of several two-body DDM models to that of a pure ΛCDM
model with the same cosmological parameters, parameterised by the fraction f ini

ddm, the decay rate Γddm, and the fraction of energy ε going into the
ultra-relativistic daughter particle at each decay. The parameters (Ωini

dm, Ωb, h, As, ns) are kept fixed, and the spectra are computed today (z = 0).
The non-linear spectra are predicted by the emulator introduced in Sect. 3.3 and plotted up to the maximum wavenumber at which this emulator is
trusted.

of feeble but steady interactions until equality. The IDR-IDM
interactions then become gradually irrelevant at the beginning of
matter domination and negligible during the formation of non-
linear structures. On the other hand, ETHOS models with n > 0
tend to suppress the power spectrum very sharply below some
scale. Thus, similar to pure WDM models, they are easier to con-
strain with Lyman-α data than with galaxy surveys.

This model can be motivated with some concrete and
plausible particle physics set up, such as non-Abelian DM
(Buen-Abad et al. 2015). It is interesting from the point of
view of cosmology phenomenology because it introduces
a very smooth suppression in the matter power spectrum
(Lesgourgues et al. 2016; Buen-Abad et al. 2018) – instead of
oscillatory patterns or an exponential cut-off as would be the case
for ETHOS models with n > 0. The power spectrum suppression
shape is also very different from the one caused by a hot or warm
DM component. This model is often invoked as a solution to
the S 8 tension (Lesgourgues et al. 2016; Buen-Abad et al. 2018)
– or even to the Hubble tension, but this is no longer the case
with recent data (Schöneberg et al. 2022). Current constraints on
this model are obtained with CMB data combined with Lyman-
α data (Archidiacono et al. 2019; Hooper et al. 2022) or with the
full-shape power spectrum of the BOSS galaxy redshift survey
(Rubira et al. 2023; see Sect. 5.4).

This model can be parameterised in terms of the IDR-IDM
scattering amplitude, Γidr−idm(z∗), at some arbitrary reference
redshift z∗, of the density of DM (through Ωidmh2), and of the
density of DR (through Ωidrh2). Following the rest of the liter-
ature, we choose a reference redshift z∗ = 107 and express the
effective comoving rate of IDR scattering off IDM as
Γidr−idm(z∗) = −Ωidmh2 c adark . (5)
Assuming IDR with a thermal spectrum and two fermionic
degrees of freedom, we can parameterise the IDR density in
terms of the IDR-to-photon temperature ratio, Tidr/Tγ = ξidr ≤

1, such that Ωidr = 7
8ξ

4
idrΩγ. The contribution of IDR to

the effective number of neutrinos is then given by ∆Neff =
(Tidr/Tν)4 with Tν defined in the instantaneous neutrino decou-
pling limit; that is, ∆Neff = (11/4)4/3ξ4

idr ' 3.85 ξ4
idr. The

ratio ξidr is a dimensionless parameter. Γidr−idm is a rate and
adark is an inverse distance that we express in Mpc−1 (this def-
inition and choice of units has no other purpose than match-
ing the conventions of the CLASS code and of previous work
studying this model)8. Finally, in the ETHOS framework, one
needs to specify the self-interaction rate between IDR parti-
cles. The non-Abelian DM model and the CMB+Lyman-α con-
straints of Lesgourgues et al. (2016), Buen-Abad et al. (2018),
Archidiacono et al. (2019), or Hooper et al. (2022) assumed a
strongly self-interacting IDR fluid. One may assume instead
free-streaming IDR, and Rubira et al. (2023) consider the two
cases. These two different assumptions are expected to have a
small impact on CMB constraints (due to the effect of IDR fluc-
tuations dragging the photons fluctuations before decoupling)
but a negligible impact on constraints from large-scale structure
(because IDR self-interactions are irrelevant for the growth rate
of IDM). Here we stick to the assumption of free-streaming IDR.

The most important physical effect of this model on the mat-
ter power spectrum comes from the fact that the IDR-IDM inter-
actions tend to slow down the growth rate of DM fluctuations
on sub-Hubble scales during radiation domination, and to sup-
press the power spectrum on small scales at all subsequent times
(Lesgourgues et al. 2016; Buen-Abad et al. 2015). Actually, as
is mentioned in Archidiacono et al. (2019), the power spectrum
suppression is mainly sensitive to the effective comoving scat-
tering rate of IDR off IDM, which is given by

Γidm−idr =
4ρidr

3ρidm
Γidr−idm . (6)

Since ρidr is proportional to ξ4
idr while ρidm is normalised by

the measurement of Ωidmh2, this rate is controlled mainly
by the parameter combination adark ξ

4
idr. Therefore, we expect

the amplitude of the suppression in the linear matter power
spectrum to depend strongly on adark ξ

4
idr and weakly on the

orthogonal combination, except in the case of sufficiently

8 Starting from adark in Mpc−1, one can obtain the rate (c adark) in Gyr−1

by multiplying with 306 Mpc Gyr−1.
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Fig. 4. Ratio of the linear (solid lines) and non-linear (dashed lines) power spectra of several free-streaming ETHOS n = 0 models to that of a
pure ΛCDM model with the same cosmological parameters, parameterised by the dark-radiation-to-photon temperature ratio ξidr and interaction
strength adark. The effects are displayed in the basis (ξidr, adark ξ

4
idr) to show that the combination adark ξ

4
idr, which gives the scattering rate of IDR

off IDM, controls the amplitude of the small-scale suppression of the linear matter power spectrum. The other parameters (Ωini
dm, Ωb, h, As, ns) are

kept fixed, and the spectra are computed today (z = 0). The non-linear spectra are predicted by the emulator introduced in Sect. 3.4 and plotted up
to the maximum wavenumber at which this emulator is trusted.

large ξ4
idr, in which the effect of additional radiation with a

given ∆Neff also comes into play. Indeed, an enhancement of
∆Neff has some well-known effects on the matter and CMB
power spectra, explained for instance in Lesgourgues & Verde
(2022), and we expect Euclid to be sensitive to this effect
(Euclid Collaboration: Archidiacono et al. 2025).

The ETHOS formalism is implemented in the public version
of CLASS9. We show in Fig. 4 the effect of varying the parame-
ters ξidr or adark ξ

4
idr with fixed values of all other cosmological

parameters.
In the left panel, the scattering rate controlled by adark ξ

4
idr

is fixed, which explains the constant suppression of the linear
power spectrum in the large-k limit. When log10(ξidr) varies from
−1.2 to −0.6, ∆Neff increases from 6.1 × 10−6 to 0.015, which
is too small to directly affect the matter power spectrum. How-
ever, these different values of ξidr and thus adark have an impact
on intermediate scales: they control the maximum scale at which
IDM feels the interaction, and thus the wavenumber at which the
matter power spectrum starts to be suppressed. When log10(ξidr)
reaches −0.4, the radiation density gets enhanced by a non-
negligible amount, ∆Neff = 0.097. This results in an additional
suppression of the linear power spectrum on small scales.

In the right panel, the amount of IDR is fixed to a small value
but the effective scattering rate is increased, leading to more and
more suppression. This suppression has a different shape to the
case of WDM: it behaves like a transition to a smaller spectral
index rather than an exponential cut-off.

In Sect. 3.4, we show how to compute the impact of the
ETHOS n = 0 model on the non-linear matter spectrum. In

9 Here we use CLASS v3.2.0, and we set the parameter of the ETHOS
sector, described in Archidiacono et al. (2019), according to: f_idm = 1
to switch on 100% of IDM; nindex_idm_dr = n = 0; idr_nature =
free_streaming; a_idm_dr = adark in units of inverse Megaparsecs;
and xi_idr = ξidr. Other ETHOS parameters are set to their default
value, which means in particular that IDR is assumed to consist of two
fermionic degrees of freedom with a statistical factor stat_f_idr =
0.875.

Sect. 5.4, we fit this model to mock Euclid data. We perform our
sensitivity forecast with flat priors on {log10(adarkξ

4
idr/Mpc−1),

log10 ξidr}, with prior edges detailed in that section.

3. Emulating the non-linear evolution

To predict observable WL and galaxy correlation spectra,
one needs to know the non-linear matter power spectrum for
each model. Since N-body simulations are computationally too
expensive for being run at each point in MCMC chains, it is
customary to use a restricted set of N-body simulations to build
emulators of the non-linear matter power spectrum. These emu-
lators should be accurate compared to the sensitivity of the
experiment within the range of model parameters covered by our
priors, and fast to evaluate within MCMC runs. In this section,
we describe the emulators used in our MCMC forecasts for each
of the four non-minimal DM models described in Sect. 2.

Instead of directly emulating the non-linear power spectrum
of the extended cosmological model, Pnl

model(k, z), it is customary
to emulate the ratio

Smodel(k, z) =
Pnl

model(k, z)

Pnl
ΛCDM(k, z)

, (7)

and to compute the final observable spectra using

Pnl
model(k, z) = Pnl

ΛCDM(k, z) Smodel(k, z) . (8)

This strategy offers two main advantages. Firstly, it is easier
to generate accurate training data for the ratio Smodel(k, z) than
for the final spectrum, since several N-body simulation artefacts
tend to cancel out in the ratio (e.g. resolution effects at small
scale, or residual noise from cosmic variance and mesh assign-
ment on large scale). Secondly, the final spectrum depends on
all cosmological and DM parameters, but the ratio Smodel(k, z)
does not in some cases. This ratio depends on course on the DM
parameters, but not necessarily on each single parameter of the
ΛCDM model. In each model, one can perform some explicit
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tests to investigate this dependence and build the emulator on a
reduced parameter space.

In this work, we need to decide which tool we should
use for predicting the first factor in Eq. (8); that is, the spec-
trum Pnl

ΛCDM(k, z). In principle, we could use fitting functions
like Halofit (Smith et al. 2003) or HMcode 2020 (Mead et al.
2021), emulators like the EuclidEmulator2 (Knabenhans et al.
2021) or BACCOemulator (Angulo et al. 2021), etc. In the
future, when analysing real data, we shall use the best tool avail-
able at that time in order to get unbiased results. But for the
purpose of the present work, which is to forecast the sensitiv-
ity to DM parameters, one could use essentially any of these
tools without changing the results on the DM parameter sensitiv-
ity, provided that the same tool is used when generating fiducial
data and when fitting theoretical predictions. Our choice shall be
specified in the next sections.

In the context of this work, having accurate predictions for
the ratio Smodel(k, z) is more important. With a noisy emula-
tor, one could get slightly wrong predictions for the effect of
DM parameters on the final observable spectra, and potentially
underestimate degeneracies between these parameters and cos-
mological or baryonic feedback parameters. In the forecasts pre-
sented here, we use emulators designed to achieve per-cent level
accuracy up to k ∼ O(10) h Mpc−1 and z ∼ 2.5 (in the next
section we provide further details on the accuracy of each emu-
lator). Given the sensitivity of Euclid, this is sufficient for robust
forecasts. There are some plans to keep training these emula-
tors and improving their accuracy in order to be sure that, when
analysing real data, the error coming from the emulator is clearly
subdominant in the total systematic error budget.

3.1. Cold plus warm dark matter

To predict the non-linear suppression in the matter power spec-
trum in CWDM scenarios, we use an improved version of the
emulator already described in Parimbelli et al. (2021). Such an
emulator is trained on a large set of N-body simulations, cov-
ering a large parameter space, for a total of 100 models with
different WDM fractions fwdm and WDM masses. The simula-
tions explicitly assume thermal WDM, but this assumption is
not relevant in the final analysis: as long as one performs the
mass conversion described in Sect. 2.1 before calling the emu-
lator, the latter still applies to all models in which WDM has
a Fermi–Dirac distribution possibly rescaled by a factor χ. The
simulations cover masses down to mthermal

wdm = 0.03 keV, but we
have checked that the emulator provides a consistent extrapola-
tion down to mthermal

wdm = 0.01 keV for small fractions f ini
ddm (see

Hervas-Peters et al. 2024). For each model, four realisations are
run with fixed amplitudes: two with different random phases and
two with the opposite phases. The box size is set to 120 h−1 Mpc
in order to reconnect with the linear regime at large scales for all
redshifts and without any significant discontinuity and to obtain
percent-level convergence up to k ≈ 10 h Mpc−1. The (fixed) cos-
mological parameters are Ωm = 0.315, Ωb = 0.049, h = 0.674,
ns = 0.965, and a value of As that would give σ8 = 0.811 in the
pure ΛCDM limit (where σ8 is the square root of the variance of
matter fluctuations in spheres of radius 8 h−1 Mpc).

Initial conditions are set at z = 99 with a modified ver-
sion of the N-GenIC code (Springel et al. 2005), using a linear
power spectrum obtained from CLASS (Blas et al. 2011). The
simulations are run with the tree-particle mesh (TreePM) code
GADGET-III (Springel et al. 2005) and follow the gravitational
evolution of 5123 particles. Snapshots are taken starting from
z = 3.5 down to z = 0, linearly spaced with ∆z = 0.5. Once

the power spectra from these snapshots are measured, we take
their ratio with respect to the corresponding ΛCDM spectrum
and build the emulator following the exact same procedure as
in Parimbelli et al. (2021). This new tool emulates the first 20
principal components of the power spectrum suppression using
Gaussian processes. It is trained on the redshift range z ∈ [0−3.5]
and in the range of scales k ∈ [0.07 − 25] h Mpc−1. The per-
formances are found to be comparable to the ones stated in
Parimbelli et al. (2021); that is, the difference between the emu-
lated and the simulated suppressions never exceeds ∼1.5%. All
in all, the non-linear matter power spectrum in the presence of
CWDM is given by

Pnl
ΛCWDM(k, z) = Pnl

ΛCDM(k, z)SCWDM(k, z) , (9)

where the last term is precisely what the emulator predicts and
Pnl

ΛCDM(k, z) is computed with the version of Halofit revisited
by Takahashi et al. (2012) and Bird et al. (2012).

We plot a few examples of predictions for the non-linear
spectrum at z = 0 (compared to the linear predictions of
CLASS) in Fig. 1. We can clearly see that the suppression of
power induced by the WDM component on small scales is much
smaller in the non-linear (rather than linear) power spectrum.
This is a well-known effect of mode-mode coupling when per-
turbations become non-linear. The smaller is the redshift, the less
pronounced is the power spectrum suppression on scales smaller
than the maximum free-streaming scale.

A few considerations about the simulations must be made
here. For the sake of computational efficiency, all the particles
in all the realisations are initialised as cold particles, even in the
runs containing WDM. This assumption has a twofold implica-
tion. First, we assume that the differences between a CWDM
model and ΛCDM reside in the initial conditions and in their
linear power spectra; second, we are neglecting WDM thermal
velocities. We tested the impact of these two assumptions by
running a further realisation, with fwdm = 0.2 and mthermal

wdm =

0.13 keV, in which we initialise 5123 CDM particles as well as
5123 more particles as Type2, with the correct thermal veloci-
ties10. This value of fwdm has been chosen because, below this
fraction, current data are compatible with any value for mwdm;
the value of the mass has been chosen in order to have a ∼50%
suppression in the linear power spectrum at k ∼ 5 h Mpc−1.
We show the results of this test in Fig. 5. In the left plot, we
compare the matter power spectrum suppression at various red-
shifts when neglecting thermal velocities (solid orange lines) and
when fully considering them (dashed violet lines). As can be
noted, differences between the two treatments are only relevant
at z & 2 and for k & 5 h Mpc−1. The right plot shows instead
the ratios between the angular power spectra of cosmic shear
(or equivalently WL, orange), the cross-correlation between GC
and galaxy lensing (red), and GC (purple), computed according
to the prescriptions described in Sect. 4, using each of the two
sets of power spectra in the left plot. We use a single bin here for

10 Notice that, in N-GenIC, Type2 particles are assigned thermal
velocities as if they were standard neutrinos with three species
degenerate in mass. Therefore, in order to correctly account for ther-
mal velocities of WDM, one needs to rescale the mass to assign
to the NU_PartMass_in_ev key in the parameter file. The renor-
malised mass mren

wdm can be computed through (Bode et al. 2001;
Lesgourgues & Pastor 2006)

mren
wdm

3
=

150 km/s
120 km/s

(
Ωwdm

0.3

)−1/3( h
0.65

)−2/3(mwdm

1 eV

)4/3
eV .

In our specific case the renormalised mass value is 4290.7 eV.

A249, page 9 of 32



Euclid Collaboration et al.: A&A, 693, A249 (2025)

Fig. 5. Left: Effect of neglecting the WDM thermal velocities in CWDM simulations with fwdm = 0.2 and mthermal
wdm = 0.13 keV. In each panel,

solid orange lines represent the suppression in the non-linear matter power spectrum when neglecting WDM thermal velocities; dashed violet
lines do the same when implementing WDM as a second fluid in the simulation, with its own thermal velocity field. We plot as vertical lines
the mean interparticle separation in blue and the Nyquist frequency in red. Right: Ratio of angular power spectra C(`) for cosmic shear (orange),
the cross-correlation of GC and galaxy lensing (red), and GC (purple), defined in Eq. (30), and computed using either the power spectra that
neglect or consider thermal velocities. These C(`) are computed for simplicity in a single redshift bin ranging from z = 0 to 3.5 with the galaxy
distribution of Eq. (34). We show the 0.25% and 0.5% regions as dark and light shaded areas. The maximum ` value corresponding to the optimistic
and pessimistic settings for Euclid are drawn as vertical lines for each probe (cosmic shear or equivalently WL in dotted yellow, GC and cross-
correlation in dotted violet).

simplicity, ranging from z = 0 to z = 3.5, and neglect intrinsic
alignment. Differences are well below percent level; for compar-
ison, at ` = 104, the Euclid sample variance is expected to be
∼1.6%. We can conclude that our assumptions do not introduce
any systematic effects in the analysis.

3.2. Dark matter with one-body decay

We employed the fitting functions found by Hubert et al. (2021)
to model the non-linear matter power spectrum in the presence
of one-body decay. These fits are inspired by fitting functions
published in Enqvist et al. (2015) and built upon N-body simula-
tions implementing DDM into the PKDGRAV3 code (Potter et al.
2017).

We have seen in Sect. 2.2 that 1b-DDM induces a suppres-
sion in the linear matter power spectrum that is asymptotically
constant on intermediate and small scales, with a suppression
factor proportional to Γddm f ini

ddm, or to f ini
ddm/τddm. The amplitude

and redshift dependence of this suppression factor is given by

εlin(z) = α f ini
ddm

(
Gyr
τddm

)β ( 1
0.105 z + 1

)γ
, (10)

where α, β, γ are functions of ωb := Ωbh2, h, and ωm :=
Ωbh2 + Ωdmh2. We refer to Hubert et al. (2021) and Bucko et al.
(2023) for their detailed form. We note that the suppression func-
tions εlin(z) and εnonlin(k, z) introduced respectively in Eqs. (10,
11) should not be confused with the parameter ε of the 2b-DDM
model. The non-linear evolution imprints an additional suppres-
sion that can be inferred from N-body simulations. Enqvist et al.
(2015) provided a fit to the non-linear suppression function
εnonlin(k, z) in the case f ini

ddm = 1 that Hubert et al. (2021) gener-
alised to arbitrary values of the DDM fraction. The suppression
function is estimated from N-body simulations for a fixed cos-
mology. Since only late-time DM decays are of interest, the ini-

tial conditions of such N-body simulations are identical to those
in a ΛCDM scenario. However, to account for the 1b-DDM,
the particle masses are being gradually decreased in the simu-
lation as a function of the rate Γddm, the fraction f ini

ddm and the
simulation time, mimicking the decay process (for more details,
see Hubert et al. 2021). The suite of N-body simulations used
to construct the fitting functions was run with a box size of
500 h−1 Mpc evolving 10243 particles. The cosmological param-
eters were fixed to fiducial values Ωm = 0.307, Ωb = 0.048,
109As = 2.43, h = 0.678, and ns = 0.96. The convergence of the
1b-DDM N-body simulations was studied in Hubert et al. (2021)
with the conclusion that the implementation of the model is trust-
worthy at least up to k ' 6.4 h Mpc−1. Finally, Hubert et al.
(2021) argue that εnonlin(k, z) is nearly cosmology-independent
and can be extrapolated to cosmologies well beyond those
probed in our work.

The fitting function provides the suppression of the matter
power spectrum with respect to the fiducial ΛCDM cosmology,
P1b−DDM(k, z)/PΛCDM(k, z) = 1 − εnonlin(k, z), with

εnonlin(k, z) =
1 + a1

(
k/Mpc−1

)p1

1 + a2

(
k/Mpc−1

)p2
εlin(z) . (11)

The suppression function interpolates from the linear behaviour
on intermediate scales, εnonlin(k, z) −→ εlin(z), to a power-law
suppression on small scales with εnonlin(k, z) ∝ kp1−p2 . The fac-
tors a1, a2, p1, and p2 are given for each lifetime τddm and red-
shift z by

a1 = 0.7208 + 2.027
(

Gyr
τddm

)
+

3.031
1 + 1.1 z

− 0.18 ,

a2 = 0.0120 + 2.786
(

Gyr
τddm

)
+

0.6699
1 + 1.1 z

− 0.09 ,
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Fig. 6. Effect of 1b-DDM parameters on the linear (solid) and non-linear (dashed) matter power spectrum. Left: Effect of varying the decay rate
Γddm with a fixed fraction f ini

ddm = 1. Right: Effect of varying the fraction f ini
ddm with a fixed decay rate Γddm = (1/13.5) Gyr−1. The other parameters

(Ωini
dm, Ωb, h, As, ns) are kept fixed, and the spectra are computed today (z = 0). Dashed lines show the predictions of the emulator of Hubert et al.

(2021). Our pipeline relies on the prescription of Eq. (16), shown as a dotted line, which smoothly interpolates from the linear to non-linear
behaviour.

p1 = 1.045 + 1.225
(

Gyr
τddm

)
+

0.2207
1 + 1.1 z

− 0.099 ,

p2 = 0.992 + 1.735
(

Gyr
τddm

)
+

0.2154
1 + 1.1 z

− 0.056 . (12)

These fitting functions are publicly available as a part of the
DMemu package,11 and designed to reproduce the results of N-
body simulations with a precision better than 1% up to k =
13 h Mpc−1. We note that, at a given redshift, the fitting functions
of Eq. (12) depend only on τddm (or Γddm), while εlin depends
only on Γddm f ini

ddm. Thus, the non-linear evolution lifts the degen-
eracy between Γddm and f ini

ddm observed at the level of the linear
power spectrum.

In order to match the linear predictions of CLASS on large
and intermediate scales with those of the fitting functions on
intermediate and small scales without introducing any discon-
tinuity, we use the following ansatz to calculate the non-linear
matter power spectrum of the 1b-DDM model:

P1b−DDM(k, z) = P1b−DDM,lin(k, z)
PΛCDM(k, z)

PΛCDM,lin(k, z)

×
1 − εnonlin(k, z)

1 − εlin(z)
, (13)

with the non-linear ΛCDM spectrum evaluated with the version
of Halofit revisited by Takahashi et al. (2020) and Bird et al.
(2012). Then, firstly, on intermediate (linear) scales, the second
and third factor in the right-hand side of Eq. (13) go to one, and
one recovers P1b−DDM(k, z) −→ P1b−DDM,lin(k, z). Secondly, on
smaller (non-linear) scales, after noticing that we can rewrite
Eq. (13) as

P1b−DDM(k, z) =
P1b−DDM,lin(k, z)

1 − εlin(z)
PΛCDM(k, z)

PΛCDM,lin(k, z)
× [1 − εnonlin(k, z)] , (14)

and that the first fraction tends towards PΛCDM,lin(k, z), we get

P1b−DDM(k, z) −→ PΛCDM(k, z) [1 − εnonlin(k, z)] , (15)
11 https://github.com/jbucko/DMemu

that is, the approximation to the non-linear 1b-DDM power spec-
trum provided by the emulator. Equation (13) is designed to pro-
vide a smooth transition between these two limits. According to
this ansatz, the ratio P1b−DDM(k, z)/PΛCDM(k, z) is given by the
boost factor

S1b(k, z) =
P1b−DDM,lin(k, z)
PΛCDM,lin(k, z)

1 − εnonlin(k, z)
1 − εlin(z)

. (16)

We already saw in Fig. 2 the ratio of 1b-DDM-to-ΛCDM
linear power spectra, as well as the ratio of non-linear spec-
tra given by Eq. (16). Figure 6 is similar to Fig. 2 but shows
additionally the raw result of the emulator; that is, the ratio
P1b−DDM(k, z)/PΛCDM(k, z) ' 1 − εnonlin(k, z) above k &
0.05 h Mpc−1 (dashed lines). The linear prediction (solid lines)
and the raw emulator (dashed lines) match each other quite well
around k = 0.05 h Mpc−1, but switching abruptly from one to the
other at a given wavenumber would introduce a small disconti-
nuity in the spectrum. Dotted lines show the boost factor defined
in Eq. (16) and used in our pipeline. This factor provides a very
smooth interpolation from the prediction of CLASS to that of the
emulator.

3.3. Dark matter with two-body decay

To model the two-body decays up to non-linear scales, we use
the emulator published in Bucko et al. (2024), which can provide
the 2b-DDM-to-ΛCDM non-linear power spectrum ratio

S2b(k, z) =
P2b−DDM(k, z)
PΛCDM(k, z)

(17)

up to z ' 2.3 and k ' 6 h Mpc−1. The emulator was trained
on approximately 100 PKDGRAV3 N-body simulations directly
implementing the late-time DM decays, while starting from
ΛCDM-like initial conditions at zini = 49. Bucko et al. (2024)
set Lbox = 125, 250, 512 h−1 Mpc and N = 2563, 5123, 10243

depending of each specific DDM configuration, in such way
to achieve converged simulations up to kmax = 6 h Mpc−1.
Bucko et al. (2024) argue that the suppression S2b(k, z) is
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approximately independent of cosmology and fix the standard
cosmological parameters to Ωm = 0.307, Ωb = 0.048, 109As =
2.43, h = 0.678, and ns = 0.96 in the simulations. At each simu-
lation time step, a number of DM particles is randomly selected
for decay. The decay into a lighter daughter particle is accounted
for through a velocity kick with amplitude vk and random direc-
tion. In the limit ε � 0.5 considered here, vk is approximately
given by c ε. These kicks lead to suppression in the matter power
spectrum below the free-streaming length of the massive daugh-
ter particles controlled by vk ∼ c ε.

The emulator predicts S2b(k, z) using a combination of a
‘Principal Component Analysis’ (PCA) with feed-forward ‘sinu-
soidal representation networks’ (SIRENs; see Sitzmann et al.
(2020)). Within the emulation process, the PCA is used to com-
press the power spectrum ratios S2b(k, z), taking into account 5
principal components. Then, the SIREN architecture is trained
in a supervised fashion to predict these principal components
given the input parameters of 2b-DDM model and the redshift of
interest. The loss function of the network is the square distance
of the input and output 2b-DDM-to-ΛCDM ratio, reconstructed
from the PCA components predicted by the network. The emu-
lator covers the case of an arbitrary fraction f ini

ddm ∈ [0, 1] of
long-lived DDM particles with τddm := Γ−1

ddm ≥ 13.5 Gyr decay-
ing into non-relativistic daughters with vk . 5000 km s−1, corre-
sponding to ε < 0.017. The emulator can predict ratios of 2b-
DDM and ΛCDM nonlinear matter power spectra up to z = 2.3
and k ' 6 h Mpc−1, with a precision better than 1% at the 68%
CL. It is implemented inside the publicly available DMemu pack-
age introduced after Eq. (12). We already compared the emulator
result to the linear 2b-DDM-to-ΛCDM linear power spectrum
ratio in Fig. 3.

Like in other cases, the final non-linear power spectrum
of the 2b-DDM model is obtained by mutiplying the non-
linear power spectrum of the ΛCDM model (computed using
Halofit) with the emulated ratio S2b(k, z).

3.4. ETHOS n = 0

The non-linear matter power spectrum of the ETHOS n = 0
model is predicted by a dedicated emulator that will be presented
in Bucko et al. (in prep.). Like for the 1b-DDM and 2b-DDM
cases, this emulator will be released within the DMemu package.
It assumes the particular case in which IDR consists of two free-
streaming fermionic degrees of freedom. It predicts the ETHOS-
to-ΛCDM non-linear power spectrum ratio

SETHOS n=0(k, z) =
PETHOS n=0(k, z)

PΛCDM(k, z)
(18)

up to z = 3 and k ' 5 h Mpc−1. The architecture used to
train the ETHOS emulator is similar to the one used in the
2b-DDM scenario, described in Sect. 3.3, with slight modifi-
cations. First of all, only 4 PCA components are used to com-
press the input ETHOS-to-ΛCDM matter power spectra, while
the SIREN architecture involves two dense hidden layers with
256 neurons each. The emulator provides below 1% errors at the
aforementioned scales and redshifts, within the range of ETHOS
models defined by the N-body simulations discussed in the next
paragraphs.

The emulator is built upon a suite of N-body simulations
which have been run using PKDGRAV3 with Lbox = 325 h−1 Mpc
and N = 5123, assuming a fiducial cosmology with ωidm :=
Ωidmh2 = 0.1202, ωb = 0.02236, h = 0.6727, ns = 0.9649,
and 109As = 2.101. One massive neutrinos species with mν =

0.06 eV was included. Instead of using a typical back-scaling
approach to generate the initial conditions, Bucko et al. (in prep.)
follow an alternative method described in Tram et al. (2019).
The “true” initial conditions are generated using the C0NCEPT
code (Dakin et al. 2022). In combination with CLASS, C0NCEPT
also computes the linear evolution of all species (photons, met-
ric, neutrinos, IDR, IDM). This information is used to calculate
the gravitational potential at each time step in the PKDGRAV3 sim-
ulation. In this way, the DM particles of the simulation feel their
own gravity, taken into account at the non-linear level, plus the
gravity from other species, modelled at the linear level.

The simulations used to train the emulator implement the
ETHOS n = 0 only through modified initial conditions at zini =
49. The effect of IDM-IDR scattering at z < zini is neglected.
This assumption is valid only for model parameters such that the
scattering rate Γidm−idr is negligible compared to the Hubble rate
at z = zini. Since the rate Γidm−idr is computed with respect to
conformal time, it should be compared to the conformal Hubble
rateH = aH. Rubira et al. (2023) provide an analytical approx-
imation for the (redshift-dependent) interaction rate to Hubble
rate ratio,

Γidm−idr

H
' 0.0152

(
adark

1000 Mpc−1

) (
ξidr

0.1

)4

×
(1 + z)2[

Ωm(1 + z)3 + Ωγ(1 + z)4(1 + ξ4
idr) + ΩΛ

]1/2 . (19)

Assuming Ωm = 0.27 and ξ4
idr � 1, this gives approximately

Γidm−idr/H ' adarkξ
4
idr/(0.48 Mpc−1) at z = 49. Bucko et al. (in

prep.) suggest to trust the simulations and the emulator as long
as this ratio is smaller than 0.1. In first approximation, this is
the case for adarkξ

4
idr < 0.05 Mpc−1. We shall see in Sect. 5.4 that

this region is appropriate to study the sensitivity of Euclid to
ETHOS parameters, at least when the fiducial model is assumed
to be ΛCDM (or close to it).

We plot the magnitude of the ratio given by Eq. (19) at z = 49
as a function of (ξidr, adark) in the left panel of Fig. 7. The region
where the emulator is to be trusted lays below the solid black
line. Dashed lines in the left panel of Fig. 7 correspond to mod-
els with either log10(adark/Mpc−1) = 1.0 (dashed) or ξidr = 0.25
(dash-dotted), for which we show the emulator predictions in the
right panel of the same figure. Namely, the dashed curves show
the power spectrum suppression as a function of ξidr, ranging
from the ΛCDM limit for ξidr = 0.0 up to ξidr = 0.4, while fixing
log10(adark/Mpc−1) to 1.0. Similarly, the dash-dotted lines show
the emulator output for ξidr = 0.25 varying the coupling strength
adark from 10−3 Mpc−1 to 109.5 Mpc−1. We note that some of
the cases shown in the right panel stand outside of the region
Γidm−idr/H ≤ 0.1 in which the emulator is to be fully trusted.

The effect of the ETHOS parameters on the non-linear power
spectrum is also shown in Fig. 4 in the (ξidr, adarkξ

4
idr) basis. While

at the linear level the suppression of the matter power spectrum is
mainly controlled by the combination adarkξ

4
idr, we see that at the

non-linear level ξidr also plays a significant role for fixed adarkξ
4
idr.

3.5. Baryonic feedback

Baryonic feedback processes can alter the gas distribution
around DM halos, causing a deviation between the total mat-
ter distribution and the distribution of DM (e.g. Chisari et al.
2018; van Daalen et al. 2020). These processes induce a suppres-
sion of the total matter power spectrum Pm on small scales that
may be somewhat similar to the effect of non-minimal DM and
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Fig. 7. Left: Ratio of the interaction rate between IDM and IDR (Γidm−dr) and comoving Hubble rate (H) as a function of the dark-radiation-to-
photon temperature ratio ξidr and interaction strength adark, computed at the redshift zini = 49 at which the N-body simulations used to construct the
ETHOS emulator are initialised. We display the contours of equal ratio as solid white lines and highlight the threshold value of 0.1 in black. We
further depict the region with adark = 10 Mpc−1 (dashed grey) and ξidr = 0.25 (dash-dotted grey). Right: Power spectrum suppression SETHOS(k, z)
predicted by the emulator for parameters chosen along each of the two grey lines of the left panel.

induce degeneracies between baryonic and DM parameters (see
e.g. Hubert et al. 2021). Hence, for our purposes, it is crucial
to incorporate these processes into our modelling framework.
In this study, we use the BCemu framework12 (Giri & Schneider
2023) to address this concern. The BCemu framework serves as
an emulator for the suppression Sbf(k) caused by baryonic feed-
back. Consequently, the total non-linear matter power spectrum
in a given cosmological model, Pm, can be expressed as

Pm(k, z) = Sbf(k, z) Pm,no bf(k, z) , (20)

where Pm,no bf(k, z) is the total matter power spectrum neglecting
baryonic feedback effects at redshift z.
BCemu has been used in several recent WL stud-

ies (e.g. Schneider et al. 2022; Grandis et al. 2024). It is
based on the baryonic correction modelling framework
of Schneider & Teyssier (2015), Schneider et al. (2019), and
Giri & Schneider (2021). This framework parameterises the stel-
lar and gas profiles at a given redshift with seven baryonic
parameters. Giri & Schneider (2021) analysed these baryonic
parameters and found that three parameters are enough to model
the suppression seen in hydrodynamical simulations at scales
k . 10 h Mpc−1 and at a given redshift. We use this three-
parameter model in this work.

Two of these parameters describe the gas profile in halos of
given virial radius, rvir, and virial mass, Mvir, modelled as

ρgas(r) ∝
Ωb/Ωm − fstar(Mvir)[

1 + 10 r
rvir

]β(Mvir)
[
1 + r

θejrvir

] 2
5 [7−β(Mvir)]

, (21)

with a total stellar fraction, fstar(Mvir), and a mass-dependent
index,

β(Mvir) =
3 Mvir/M′c

1 + Mvir/M′c
. (22)

The former function is assumed to be known,

fstar(Mvir) = 0.055
(

1011.3 h−1 M�
Mvir

)0.2

. (23)

12 The code is available at https://github.com/sambit-giri/
BCemu.

Thus, in this model, the gas profile only depends on two free
parameters: a critical mass M′c such that small halos with Mvir �

Mc have a gas profile shallower than the Navarro–Frenk–White
profile, and an ejection factor θej giving the ratio of the gas ejec-
tion radius to the virial radius. The BCemu model also involves
assumptions concerning the stellar profile of the central galaxy.
The fraction of stars in the central galaxy, fcga(Mvir), is given by
a relation similar to fstar(Mvir), but with a different exponent,

fcga(Mvir) = 0.055
(

1011.3 h−1 M�
Mvir

)0.2+ηδ

, (24)

where the index ηδ is an additional free parameter.
In summary, the minimal BCemu model relies on three

free parameters (M′c, θej, ηδ) impacting, respectively, the over-
all suppression induced by baryonic feedback, the maximum
scales affected by the suppression, and the upturn of Sbf(k, z)
at large k. In order to deal only with dimensionless param-
eters, Schneider et al. (2022) redefine the first one as Mc :=
M′c/

(
1 h−1 M�

)
. Figure 2 in Schneider et al. (2019) shows the

impact of these parameters on the matter power spectrum. In
the BCemu model, the only cosmology dependence of Sbf(k, z)
comes through the baryon fraction Ωb/Ωm.

In particular, we assume no explicit dependence of the bary-
onic feedback suppression function Sbf(k, z) on the parame-
ters describing non-standard DM models. This assumption was
shown to be valid at least for k < 5 h Mpc−1 in the CWDM sce-
nario (see Sect. 3.4 in Parimbelli et al. 2021). This conclusion is
expected to apply also to the other DM scenarios studied here in
which, like in the CWDM case, DM particles are decoupled at
low redshift and behave either as CDM or WDM. In our analysis,
smaller scales with k > 5 h Mpc−1 only have a small contribution
to the spectra CXY

i j (`) involving the first two WL redshift bins.
Thus, the findings of Parimbelli et al. (2021) suggest that we can
safely neglect the impact of non-standard DM on baryonic feed-
back. More generally, we can think of the effect of non-standard
DM and of BF on the non-linear matter power spectrum as two
leading-order effects, of a few percent each within the range of
scales relevant in our analysis, and that of non-standard DM on
BF as a next-to-leading order effect of a few percent squared; that
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is, a few per mille. It is thus reasonable to neglect this correction
in a first analysis.

We refer interested readers to Giri & Schneider (2021) for a
more detailed description of the BCemu parameters.

The redshift evolution of Sbf(k, z) is modelled by making
each of the three baryonic parameters b redshift dependent as

b(z) = b(0)(1 + z)−νb , b ∈ {log10Mc, θej, ηδ} , (25)

where νb is a free parameter. This leads to a total of six param-
eters to model the baryonic feedback. In our choice of fiducial
values and priors, we restrict the values of νb such that the bary-
onic parameters {log10Mc, θej, ηδ} remain within the range of the
parameter space where BCemu is trained.

While it is known that the WL signal is modified at small
scales by baryonic feedback effects, the situation is much less
clear regarding the GC signal. Since galaxies act as tracers of
the underlying DM distribution, they are not directly affected
by the ejection of gas via feedback processes. We rather expect
an indirect effect caused by the relaxation of the DM potential
reacting to the ejection of gas. Since we do not know the true
amplitude of this indirect effect, we consider two extreme cases
where the GC is either unchanged by baryonic feedback or it is
affected in the same way as the WL. We expect the truth to lie
somewhere between these two cases.

4. Forecast methodology

4.1. Likelihood

We use a standard formalism to describe the Euclid photometric
likelihood already presented, for instance, in Audren et al.
(2013b), Euclid Collaboration: Blanchard et al. (2020),
Euclid Collaboration: Archidiacono et al. (2025), Casas et al.
(2024). The galaxy images of the WL survey and the galaxy
positions of the GC photometric survey are binned into N
redshift bins. In each bin, the raw data can be processed into
two-dimensional spherical maps of either the lensing potential
field density in the WL case or the galaxy density field in the
GCph case. The maps are decomposed into spherical harmonics
with coefficients ai(`,m) for each redshift bin i. Each ai is
assumed to obey a Gaussian distribution with covariance matrix
Ci j(`) = 1

2`+1
∑

m ai(`,m)[ai(`,m)]∗. The Ci j(`) are the observed
power spectra of WL or GCph in harmonic space and can be
compared to theoretical predictions.

In our forecasts, we assume that the power spectra observed
by Euclid coincides with the theoretical predictions of a given
fiducial cosmology with spectra Cfid

i j (`) arising from multipoles
afid

i such that Cfid
i j (`) = 1

2`+1
∑

m afid
i (`,m)[afid

i (`,m)]∗. The like-
lihood L of the observed data given a theoretical model with
spectrum Cth

i j (`) is then given by

L = N
∏
`,m

[
det Cth(`)

]−1/2

× exp

− fsky
1
2

∑
i j

afid
i (`,m) (Cth

i j )
−1(`) [afid

j (`,m)]∗
 , (26)

where N is a normalisation factor, and partial sky coverage is
approximately accounted for through multiplication with the sky
fraction fsky. This can be rewritten as (Audren et al. 2013b)

χ2 := −2 ln
L

Lmax

= fsky

∑
`

(2` + 1)
{
Tr[(Cth)−1(`) Cfid(`)]

+ ln
det Cth(`)

det Cfid(`)
− N

}
= fsky

∑
`

(2` + 1)

dmix
`

dth
`

+ ln
dth
`

dfid
`

− N

 , (27)

where N is the size of the matrices Cth(`) and Cfid(`), while

C(`) :=
[
CLL

i j (`) CGL
i j (`)

CLG
i j (`) CGG

i j (`)

]
, d` := det C(`) (28)

for each of the theoretical and fiducial spectra. Finally, the mixed
determinant is defined as

dmix
` :=

N∑
k=1

det


Cth

i j (`) for j , k
Cfid

i j (`) for j = k

 , (29)

such that in each term of the sum, the determinant is evaluated
over a matrix in which the k-th column of the theory matrix Cth

has been substituted by the k-th column of the fiducial matrix
Cfid.

We then perform MCMC forecasts (Audren et al. 2013b;
Casas et al. 2024) using this likelihood. The likelihood is
incorporated into the MontePython package13 (Audren et al.
2013a; Brinckmann & Lesgourgues 2019) for Bayesian param-
eter inference. The role of MontePython is to fit the fiducial
spectra under the assumption of a given theoretical model with a
set of free parameters. A few independent Monte Carlo Markov
Chains sample the likelihood by exploring the parameter space
according to the Metropolis-Hastings algorithm, until some con-
vergence criterium is reached. The best-fit model coincides by
construction with the fiducial model, while the marginalised
credible interval of each parameter provide an estimate of the
sensitivity of Euclid to this parameter.

4.2. Observable power spectra

The model for the spectra CXY
i j used in the likelihood, where

X = L (respectively X = G) refers to the WL (respec-
tively GC) probe and i = 1, . . . ,Ni to the bin num-
ber, is detailed in Euclid Collaboration: Blanchard et al. (2020),
Euclid Collaboration: Archidiacono et al. (2025), Casas et al.
(2024). The final expression is given by

CXY
i j (`) =

∫ zmax

zmin

dz
WX

i (k(`, z), z) WY
j (k(`, z), z)

c−1 H(z) r2(z)
× Pm(k(`, z), z)

+ NXY
i j (`) , (30)

where WX
i (k, z) are the window functions of the X probe, H(z)

is the Hubble rate at redshift z, r(z) the comoving distance to an
object at redshift z, Pm(k, z) the matter power spectrum evaluated
at wavenumber k, and NXY

i j (`) the noise spectrum. The bound-
aries zmin and zmax, defined in Table 1, specify the redshift range
covered by the survey. The relation k(`, z) is inferred from the
Limber approximation (Kaiser 1992; Kilbinger et al. 2017),

k(`, z) =
` + 1/2

r(z)
, (31)

13 https://github.com/brinckmann/montepython_public

A249, page 14 of 32

https://github.com/brinckmann/montepython_public


Euclid Collaboration et al.: A&A, 693, A249 (2025)

which is sufficiently accurate for ` > `min, where `min is given
in Table 1 (see however Tanidis & Camera 2019). Assuming a
Poissonian distribution of galaxies, the noise spectra read

NLL
i j =

σ2
ε

n̄i
δi j, NGG

i j =
1
n̄i
δi j, NLG

i j = NGL
i j = 0 , (32)

where n̄i is the expected average number of galaxies per stera-
dian in the i-th bin, and σ2

ε is the variance of the observed
ellipticities, also given in Table 1. The galaxy field that GCph
measures is assumed to be a linear tracer of the underlying
matter field, such that the galaxy power spectrum is given by
Pg(k, z) = b2(z)Pm(k, z) with some bias function b(z). Here,
for simplicity, we neglect additional effects on the photometric
galaxy power spectrum such as lensing magnification or redshift-
space distortions (Yoo et al. 2009; Bonvin & Durrer 2011;
Challinor & Lewis 2011; Yoo & Zaldarriaga 2014), although
these effects are expected to play a non-negligible role in
the analysis of real Euclid data (see Lepori et al. 2022 and
Tanidis et al. 2024). Sticking to linear bias is conservative as
long as we rely on pessimistic assumptions concerning the min-
imum angular scale or maximal multipole lGCph

max described in
Table 1. In the optimistic case, we should be aware that non-
linear biasing may come into play on the smallest scales used
in the analysis, and introduce a possible degeneracy with DM
parameters that is neglected here.

Then the GC window functions reads

WG
i (z) =

ni(z) H(z) b(z)
c

, (33)

where ni(z) is the observed galaxy density distribution nor-
malised to unit area in redshift bin i. Since there is no reliable
model for b(z), it is modelled as a step-like function given by
b(z) = bi in the redshift range z−i < z < z+

i of redshift bin i. Each
bi is treated as a free nuisance parameter and marginalised over
in the forecast. Taking photometric redshift errors into account,
the observed distribution of galaxies ni(z) in bin i is given by the
true galaxy distribution,

n(z) = n0

(
z
z0

)2

exp

− (
z
z0

)1.5 , (34)

with z0 = zmean/
√

2, and by the redshift error probability distri-
bution,

pph(zp|z) =
1 − fout

√
2πσb(1 + z)

exp
{
−

1
2

[
z − cbzp − zb

σb(1 + z)

]2}
+

fout
√

2πσ0(1 + z)
exp

{
−

1
2

[
z − c0zp − zb

σ0(1 + z)

]2}
. (35)

The normalised distribution ni(z) then reads (Ma et al. 2005;
Joachimi & Schneider 2009; Joachimi & Bridle 2010)

ni(z) =
n(z)

∫ z+
i

z−i
dzp pph(zp|z)∫ zmax

zmin
dz̃ n(z̃)

∫ z+
i

z−i
dzp pph(zp|z̃)

. (36)

The parameters entering this model are listed in Table 1. The WL
window functions are given by

WL
i (k, z) = Wγ

i (z) −AIACIAΩm
FIA(z)
D(k, z)

W IA
i (z) , (37)

Table 1. Specifications used in our mock Euclid photometric likelihood
in the pessimistic (pess.) and optimistic (opt.) cases.

Type Name Value (pess./opt.)

Redshift bins Nbin 10
Redshift bins zmin = z−0 0.001
Redshift bins z+

1 , z
+
2 , z

+
3 0.418, 0.560, 0.768,

Redshift bins z+
4 , z

+
5 , z

+
6 0.789, 0.900, 1.019

Redshift bins z+
7 , z

+
8 , z

+
9 1.155, 1.324, 1.576

Redshift bins zmax = z+
10 2.5

Redshift bins zmean 0.9
Photometric error c0 1.0
Photometric error cb 1.0
Photometric error z0 0.1
Photometric error zb 0.0
Photometric error σ0 0.05
Photometric error σb 0.05
Photometric error fout 0.1
Intrinsic alignment CIA 0.0134
Intrinsic alignment βIA 2.17
Noise σε 0.3
Noise ngal 30 arcmin−2

Multipoles `min 10
Multipoles `WL

max 1500/5000
Multipoles `

GCph
max 750/1500

Sky coverage fsky 0.3636

where the latter term corrects for intrinsic alignment (IA) effects,
W IA

i (z) = c−1ni(z)H(z), and Wγ
i (z) is the shear-only window

function

Wγ
i (z) =

3
2

c−2H2
0Ωm(1 + z)r(z)

×

∫ zmax

z
dz′ni(z′)

[
1 −

r(z)
r(z′)

]
. (38)

D(k, z) is the linear growth factor, defined as D(k, z) B
[Pm,lin(k, z)/Pm,lin(k, z = 0)]1/2. In linear ΛCDM cosmology, per-
turbations grow independently of scale and the k dependence
exactly cancels out. Instead, the particle DM models considered
in this work lead to some scale-dependent linear growth, such
that the function D is a function of (k, z). The factor FIA is mod-
elled as

FIA(z) = (1 + z)ηIA [〈L〉(z)/L∗(z)]βIA (39)

and depends on the mean galaxy luminosity divided by a
characteristic luminosity 〈L〉(z)/L∗(z), which is read from the
file scaledmeanlum_E2SA.dat provided by the authors of
Euclid Collaboration: Blanchard et al. (2020). In practice, we
vary ηIA and AIA as nuisance parameters but fix βIA and CIA
due to the strong degeneracies between the former and the latter.

We note that Eq. (38) is derived under the assumption that the
non-relativistic matter density scales like a−3: the factor (1+z) in
front of the integral actually comes from the product ρm(z) a2(z).
In the ΛCDM, CWDM, and ETHOS models, the assumption
ρm ∝ a−3 is excellent (as long as massive neutrino effects are
neglected). In the 2b-DDM case, it is still excellent since we are
only interested in the limit ε � 1 in which the decays convert a
negligible fraction of the non-relativistic energy density ρm into
relativistic energy density ρr. However, in the 1b-DDM case, the
product ρm a3 decreases slightly between the highest and lowest
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redshift probed by the survey, which spans an interval of proper
time ∆t. The relative variation in ρm a3 over this interval is given
by f ini

ddm Γddm ∆t, and remains below a few percent for the 1b-
DDM models studied in the next sections. Thus we neglect this
sub-dominant effect and stick to Eq. (38)14.

In our forecast we rely either on a pessimistic or optimistic
assumption concerning the range of scales at which our model is
trusted and data is included. In the pessimistic case, we truncate
the data at `WL

max = 1500 for WL and `GC
max = 750 for GCps. In the

optimistic case, we use `WL
max = 5000 for WL and `GC

max = 1500 for
GCps.

The matter power spectrum Pm(k, z) that appears in Eq. (30)
is usually computed in four steps. First, we call a Boltzmann
code to compute the linear matter power spectrum of a ΛCDM
model with the same cosmological parameters as the non-
standard DM model we are interested in. Second, we ask the
same Boltzmann code to use a standard algorithm to infer the
non-linear power spectrum for this ΛCDM model. In the fore-
casts of this work, for simplicity, we use the version of Halofit
revisited by Takahashi et al. (2012) and Bird et al. (2012) as a
baseline, or HMcode 2020 (Mead et al. 2021) in the case where
neutrinos are assumed to have a mass of 0.06 eV. Third, we
use one of the emulators described in Sects. 3.1 to 3.4 to trans-
form this into a non-linear power spectrum for the non-standard
DM model of interest. Fourth, when baryonic feedback cor-
rections need to be taken into account, we call the emulator
described in Sect. 3.5 to add baryonic corrections. For the WL
auto-correlation spectra, CLL

i j , the matter power spectrum of
Eq. (30) always includes baryonic feedback. For the GCph auto-
correlation spectra, CGG

i j , we consider the two cases in which the
power spectrum incorporates such corrections or not. We note
that for the cross-correlation spectra, when baryonic feedback is
included in WL but not GCph, we use for CLG

i j (`) = CGL
ji ,

CLG
i j (`) =

∫ zmax

zmin

dz
WL

i (k(`, z), z)WG
j (k(`, z), z)

c−1H(z)r2(z)

×

√
PBF

m (k(`, z), z)Pno BF
m (k(`, z), z)

+ NLG
i j (`) . (40)

4.3. Boltzmann code

We need to call a Boltzmann code for two purposes: first, to
compute the comoving distance-redshift relation r(z) and the
(scale-dependent) growth factor D(k, z); and second, to com-
pute the non-linear matter power spectrum Pm(k, z). However,
the strategy of the emulators described in Sects. 3.1–3.4 implies
a calculation of the non-linear matter power spectrum for the
equivalent ΛCDM sharing the same value of the standard cos-
mological parameters {ωb, ωcdm, h, As, ns} as the non-standard
DM model of interest. Instead, the distance-redshift relation and
the scale-dependent growth factor should be computed accord-
ing to the background and linear theory equations describing the
true non-standard DM model. We solve this issue by calling the
Boltzmann code twice at each point in parameter space: first for
the non-standard DM model with linear output, to infer r(z) and
D(k, z); and second for the equivalent ΛCDM with Halofit or

14 If this effect was not negligible and was implemented in Eq. (38),
it would lead to a redshift-dependent rescaling of Wγ

i (z), which could
only increase the sensitivity of observations to 1b-DDM parameters.
Thus our approximation stays on the conservative side.

HMcode 2020 corrections switched on, to get the desired non-
linear matter power spectrum.

We choose to use CLASS v 3.2 (Lesgourgues 2011;
Blas et al. 2011) as our Boltzmann code since the CWDM, 1b-
DDM and ETHOS models are implemented in the main public
branch of the code15, while 2b-DDM is implemented in a public
but separate branch class_decays16.

When calling CLASS, we should specify a maximum
wavenumber kmax. A given Fourier mode k of a field observed
at redshift z projects under a given angle θ contributing mainly
to a mutipole `, with the relation between k, `, and z given by
Eq. (31). Thus the choice of kmax should reflect the maximum
multipole `max and minimum redshift zmin contributing to the
power spectra in a given analysis. Using the relation k(`, z) at
fixed `, one can express each CXY

i j (`) as an integral over k rather
than z, and plot the cumulative contribution of different k values
to CXY

i j (`). To make a robust choice for kmax, we show in Fig. 8
the contribution of different k values to the power spectra of the
first redshift bins, CLL

00 (`) and CGG
00 (`). The figure shows that in

the pessimistic case (`WL
max = 1500), choosing kmax = 10 Mpc−1 is

sufficient to include 99.5% of the contribution the CLL
00 (`), and a

fortiori to all other spectra. For the optimistic case (`WL
max = 5000),

we find that kmax = 30 Mpc−1 is sufficient.
The CXY

i j (`) are computed with a trapezoidal integral over
200 values of z on a linear grid between zmin and zmax. The inte-
gral is performed for discrete values of `, with a logarithmically
spaced grid of 100 values of ` between `min and `max. Finally,
a second-order spline interpolation is used to get the spectra for
every integer `.

4.4. Parameters and priors

We list in Table 2 the free parameters used in our forecasts (not
including the DM parameters specific to each model, which shall
be specified in each Sect. 5). The table also provides the assumed
fiducial values and priors. We remind that forecast errors are any-
way nearly independent of the chosen fiducial values, especially
for the ΛCDM parameters, which have nearly Gaussian poste-
riors. The first five parameters are the cosmological parameter
of the standard ΛCDM model. The following six parameters
describe the baryonic feedback model implemented in BCemu.
The last 12 nuisance parameters account for linear bias in each
bin and intrinsic alignment parameters.

We use a flat prior on each of these parameters. For the first
three BCemu parameters and the two intrinsic alignment param-
eter, we pass explicit prior edges to ensure that these parameters
remain a range making sense physically. For the other param-
eters, as long as we only perform parameter inference with the
Metropolis-Hastings algorithm, it is strictly equivalent to pass
to MontePython some very remote prior edges – such that the
chains never reach the prior boundaries – or to require the code
to use non-informative priors (abbreviated as n.i. in Table 2), in
which case the code achieves the same feature automatically. We
note that our chains never reach the prior edges passed for the
intrinsic alignement parameters, so we are effectively using non-
informative priors also forAIA, ηIA.

Finally, theoretical predictions depend on a few additional
parameters that are usually kept fixed because the set of free
nuisance parameters from Table 2 are sufficient to account for
the uncertainty on the model. For intrinsic alignment, we fix the

15 https://github.com/lesgourg/class_public
16 https://github.com/PoulinV/class_decays
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Fig. 8. Cumulative contribution of different k values to CXY
i j (`) for a given ` in the nearest redshift bin (i j = 00). Left: Case of WL, XY = LL. Right:

Case of GC, XY = GG. For each `, 99.5% of the contribution stands below the black isocontour. In the pessimistic case, we include all values of
(`, k) on the left of and below the dashed grey lines in the calculation of our observables; in the optimistic case, on the left and below the dashed
orange line. Thus, we always include at least 99.5% of the contribution to each CXY

i j (`).

Table 2. List of free parameter, fiducial values, and top-hat prior ranges
used in all our runs.

Parameter Fiducial value Range

Ωb 0.049199 n.i.
h 0.67370 n.i.
ns 0.96605 n.i.
ln(1010As) 3.0447 n.i.
Ωm 0.31457 n.i.
log10 Mc 13.25 [11, 15]
θej 4.711 [2, 8]
ηδ 0.097 [0.05, 0.4]
νlog10 Mc 0.038 n.i.
νθej 0 n.i.
νηδ 0.06 n.i.
b1 1.0998 n.i.
b2 1.2202 n.i.
b3 1.2724 n.i.
b4 1.3166 n.i.
b5 1.3581 n.i.
b6 1.3998 n.i.
b7 1.4446 n.i.
b8 1.4965 n.i.
b9 1.565 n.i.
b10 1.7430 n.i.
AIA 1.72 [0, 12.1]
ηIA −0.41 [−7, 6.17]

Notes. This list includes five ΛCDM cosmological parameters, six bary-
onic feedback parameters, ten bias parameters for GC, and two intrinsic
alignment parameters for WL. We do not include the DM parameters
which are different in each model and specified in Sect. 2. The acronym
n.i. means ‘non-informative prior’ (see the text for details).

parameter βIA defined in Eq. (39) to βIA = 2.17; for baryonic
feedback, we fix the BCemu parameters µ = 1, γ = 2.5, δ = 7,
η = 0.2.

Table 3. List of free parameters names, fiducial values, and top-hat prior
ranges (in addition to those listed in Table 2) for the CWDM model.

Parameter Fiducial value Range

mthermal
wdm [eV] ∞ [10, 1000]

log10 fwdm −∞ [−3, 0]

Notes. The fiducial values correspond to the pure ΛCDM limit.

5. Results and discussion

5.1. Cold plus warm dark matter

Main results. For the CWDM model, we perform forecasts using
the free parameters mthermal

wdm and fwdm introduced in Sect. 2.1. Our
fiducial values and priors are summarised in Table 3 for these
parameters and Table 2 for all other free parameters. The fidu-
cial model is chosen to be a pure ΛCDM model. As was already
stated in Sect. 2.1, we use a linear prior on the mass and a log-
arithmic prior on the WDM fraction (that is, a flat priors on its
logarithm). The latter choice allows us to explore the constrain-
ing power of Euclid for very small WDM fractions (see also
Schneider et al. 2020). This limit is particularly interesting to
study with Euclid since, in this case, Euclid bounds can be com-
petitive with respect to Lyman-α bounds (Hooper et al. 2022).

Indeed, Lyman-α data probe smaller scales than WL and GC
surveys, and can in principle better constrain models with a large
mass. However, when the WDM fraction is small, the effect of
WDM on the power spectrum is also small. Then, it could be
unconstrained by Lyman-α data, and if WDM is light enough its
effects can manifest themselves on relatively large scales. In this
case, the precise measurement of the power spectrum at larger
scales with Euclid remains decisive.

Our main results are summarised in Fig. 9, where we show
the marginalised 95% credible intervals for fwdm and mwdm. The
horizontal axis can be interpreted as the thermal WDM mass
(bottom axis) or as the Dodelson–Widrow mass (top axis, see
Sect. 2.1 for details). The different colours of the contours mark
the different probes that have been used to obtain the constraints.
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Fig. 9. Left: Edges of the 95% credible interval on the WDM mass mwdm and fraction fwdm for the CWDM model, with pessimistic assumptions
and three data combinations: WL alone, WL plus GC from the photometric survey (3× 2pt), and 3× 2pt combined with Planck CMB data. For
the 3× 2pt and 3× 2pt + Planck data sets, baryonic feedback has been assumed to affect the WL power spectrum but not the GC power spectrum.
The posterior is marginalised over other cosmological parameters, baryonic feedback parameters, and nuisance parameters (accounting for bias
uncertainty and intrinsic alignment). The model is equivalent to pure ΛCDM towards the lower horizontal axis (small fwdm) and right vertical axis
(large mwdm). The forecast assumes a flat prior on the mass of thermal WDM (lower axis) and a logarithmic prior on the WDM fraction (left axis),
but we show the relation to Dodelson–Widrow masses in the upper axis (see Sect. 2.1 for definitions). Right: Same with optimistic assumptions.

These contours are already marginalised over all other cosmo-
logical and nuisance parameters (including baryonic feedback
parameters). For each of the six cases shown in Fig. 9, we ran 36
chains summing up to ∼1.4 millions of steps (MS) in each opti-
mistic case or ∼2.6 MS in each pessimistic case. The Gelman-
Rubin convergence criterium (Gelman & Rubin 1992) reached
about |R− 1| ∼ 0.002 for most parameters, with a worse value of
∼0.008 for a few parameters.

The constraints from WL are considerably looser (by about a
factor five) in the pessimistic rather than optimistic case. Indeed,
in the pessimistic case, the WL data is only fitted up to `max =
1500, while models with a thermal mass of a few hundreds of
keV only affect larger multipoles. As long as one sticks to pes-
simistic assumptions, adding information from GC (in the pho-
tometric survey) and on clustering-lensing correlations (3 × 2pt)
makes a small difference, because in this case the clustering
information is taken into account only up to `max = 750. The
addition of CMB data from Planck also has a very small impact,
given that CMB is sensitive to the clustering properties of pres-
sureless DM (including WDM) only at second order in per-
turbations, through CMB lensing effects – as was explained in
Voruz et al. (2014). Figure 9 shows that in the pessimistic case,
Euclid 3 × 2pt + Planck data have a potential to rule out masses
mthermal

wdm . 280 eV (95%CL) in the extreme case where these par-
ticles make up the totality of DM, or mthermal

wdm . 75 eV for fwdm =
0.1 (95%CL). We note that even with pessimistic assumptions,
the WDM mass can be constrained even for WDM fractions
slightly below 0.1, while current bounds from high-resolution
Lyman-α data cannot distinguish models with fwdm = 0.1 from
the pure ΛCDM limit (Hooper et al. 2022).

The picture drastically improves when one assumes opti-
mistic settings with `max = 5000 for WL and `max = 1500 for

GC. The data are then able to probe the presence of WDM with
a much smaller value of the maximum free-streaming scale; that
is, a larger mass. For the same WDM fraction, using WL data
alone, the mass bounds become approximately five times tighter
in the optimistic case. Despite of its limitation to `max ≤ 1500,
GC data turns out to be very sensitive to the suppression induced
by WDM even with a large mass, such that the 3 × 2pt probe is
about twice more sensitive than the WL probe alone. However,
the combination with Planck data makes no difference also in
that case – at least when the mock data is assumed to account
for a pure CDM model. The reason is that, for the large WDM
masses that remain compatible with the data, the maximum free-
streaming scale of WDM is very low, such that even CMB lens-
ing is unaffected by the suppression induced by WDM. In the
optimistic case, the Euclid 3 × 2pt probe has a potential to rule
out all WDM masses with mthermal

wdm . 930 eV for fwdm = 1 and
mthermal

wdm . 230 eV for fwdm = 0.1. It can constrain the mass
even when fwdm is as low as a few times 10−2; in other words,
when only a few percent of the total DM is warm. This region of
parameter space is far from current Lyman-α bounds, and even
future Lyman-α surveys are unlikely to probe such small WDM
fractions.

It is still unclear whether the final Euclid sensitivity will be
closer to that of our pessimistic or optimistic forecast. At least,
we expect that these two forecasts are bracketing the true con-
straining power of the future data. We shall see that, compared
to other non-minimal DM models discussed in the next sections,
CWDM is particularly sensitive to the choice of a cut-off mul-
tipole `max. This is due to the step-like nature of the effect of
WDM on the matter power spectrum: up to a given wavenum-
ber, the ΛCDM and CWDM models are strictly equivalent, and
then the power drops. This means that the constraining power of
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Fig. 10. Left: Same as Fig. 9, but only for the 3 × 2pt dataset and with different assumptions on baryonic feedback (BF): fixed BF (magenta), BF
affecting only the WL power spectrum (orange), or BF affecting both the WL and GC power spectra (grey). The “truth” is expected to lay between
the latter two cases (orange and grey), which give anyway very similar results. Right: Same with optimistic assumptions.

a data set on the CWDM parameters depends more on the mini-
mum scale (and thus maximum multipole and redshift) included
in the analysis than on the actual error bars on the power spec-
trum. As was discussed above, this is particularly true for large
values of fwdm; for tiny WDM fractions, the precision with which
the power spectrum is constrained remains crucial.

Importance of baryonic feedback. In Fig. 10, we evaluate
the impact of different assumptions concerning baryonic feed-
back effects. We compare the bounds derived from the 3 × 2pt
probe only under three assumptions. The baseline case (orange
contours) is the same as in our previous discussion and in Fig. 9:
the six nuisance parameters describing baryonic feedback are
marginalised over, and baryonic feedback is assumed to affect
only the WL probe; that is, the total matter power spectrum.
The grey contours are derived assuming instead that baryonic
feedback affects the two probes (WL and GC) in the same way:
in other words, the same BCemu corrections are applied to the
total matter and galaxy power spectra. Finally, the magenta con-
tours were obtained with fixed rather than marginalised baryonic
feedback parameters: they account for the unrealistic situation
in which baryonic feedback effects would be perfectly known,
given some independent measurements.

In principle, introducing more freedom in baryonic physics
may result in looser constraints on WDM parameters due to
parameter degeneracies. On the other hand, it is not obvious
that such degeneracies are present due to the different shape of
the effects imprinted by either WDM or baryons, not only as a
function of scale but also as a function of redshift. In particu-
lar, the redshift dependence of the DM-induced suppression is
reversed compared to the one from baryonic effects; its ampli-
tude gets smaller at smaller redshift, due to non-linear clustering
and mode-mode coupling, while overall the opposite is true for
baryons, at least in most of the redshift range probed by Euclid.

We first compare the orange and magenta contours. In the
pessimistic case (left panel), we find that introducing more free-

dom in the baryonic model and marginalising over baryonic
feedback parameters does degrade a bit the bounds on WDM
parameters. However, this is no longer true in the optimistic case,
which proves that the information contained in the data at large
mutipoles is sufficient to disentangle between the physical effects
of WDM and baryonic feedback. This underlines the wealth of
cosmological information encoded in the deep non-linear regime
of the power spectrum.

We now switch to the comparison between the orange and
grey contours. The impact of baryonic feedback on the galaxy
power spectrum is not understood and modelled as well as its
impact on the total matter powers spectrum. However, as was
discussed in Sect. 3.5, we expect baryonic effects to be smaller
in the galaxy powers spectrum – or at least not bigger. Thus,
the true sensitivity of Euclid should lay somewhere between the
forecasts corresponding to the grey and orange contours. How-
ever, these contours are very close to each other in both pes-
simistic and optimistic cases. This is likely due to the reverse
redshift dependence of WDM and baryonic effects, which allows
GC data to discriminate between them. Such a test validates the
bounds on CWDM parameters obtained in the previous para-
graphs with baryonic feedback included only in the WL probe.

Comparison with current bounds. It is interesting to com-
pare the expected sensitivity of Euclid to current bounds on
CWDM parameters obtained by Hervas-Peters et al. (2024)
using an existing WL survey, the Kilo Degree Survey (KiDS –
see Asgari et al. 2021). We start by comparing the sensitiv-
ity of the Euclid WL probe alone with that of KiDS. A fair
comparison requires similar priors. However, the KiDS analy-
sis assumes logarithmic priors on both the WDM mass and frac-
tion, with slightly different prior edges than in our previous anal-
ysis. Given that Bayesian credible intervals do depend on pri-
ors, especially when constraining some parameters describing
a model extension that is not required by the data, we repeat
some of our forecasts with different top-hat priors matching
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Fig. 11. Comparison of our Euclid forecasts for the WL-only probe
with current bounds from KiDS. In this particular case, we switch to the
same top-hat prior on log10 f ini

wdm and log10(mthermal
wdm /eV) as in the KiDS

analysis of Hervas-Peters et al. (2024). In the pessimistic case, we also
adopt the same baryonic feedback recipe as Hervas-Peters et al. (2024)
with a marginalisation over three baryonic feedback parameters (instead
of six in our baseline treatment).

exactly the ones of KiDS: log10 fwdm ∈ [log10(0.005), log10(1)]
and log10(mthermal

wdm /keV) ∈ [log10(10), log10(1.5)]. The results are
shown in Fig. 11.

In the pessimistic case, we find that the Euclid sensitivity
is not so different from that of KiDS. This result may sound sur-
prising, given the much larger number of galaxy images expected
from Euclid. There are two reasons for this.

The first reason is that, as was explained before, in the case
of CWDM, the bounds depend a lot on the minimum scale (or
maximum wavenumber kmax) included in the analysis, more than
on the error bar on the measured power spectrum. It also depends
on the maximum redshift of the data, since the signature of
WDM is more clear at high redshift and partially washed out
at small redshift. We note also that a given multipole ` probes
smaller wavenumbers at high redshift, as was shown in Eq. (31).
In the KiDS analysis and in our Euclid forecast with pessimistic
assumptions, the data is conservatively cut at `max = 1500. Thus,
within the redshift range covered by both experiments, the max-
imum wavenumber at each redshift kmax(`max, z) is the same, and
the sensitivity to WDM is roughly similar despite of the smaller
Euclid error bars. For instance, the highest redshift bin of KiDS
peaks around z ∼ 1.1, probing up to k ∼ 1 h Mpc−1. Euclid adds
information at higher redshift, with the highest redshift bin peak-
ing around z ∼ 1.7, but at such a high redshift the multipole
`max = 1500 projects only to k ∼ 0.5 h Mpc−1, such that the
information gain on the CWDM model is marginal. We note that
the arguments presented in this paragraph are only valid in the
case of the Euclid pessimistic case and for the CWDM model,
which has the same power spectrum as ΛCDM up to some
large wavenumber k (given by the free-streaming scale). For
instance, we shall see that for the 1b-DDM model Euclid is much
more constraining than KiDS even with pessimistic assumption
because, in that case, the power spectrum contains information
on the DM parameters on larger scales/smaller wavenumbers.

Table 4. List of free parameters names, fiducial values, and top-hat prior
ranges (in addition to those listed in Table 2) for the 1b-DDM model.

Parameter Fiducial value Range

f ini
ddm 0 [0, 1]

Γddm f ini
ddm [Gyr−1] 0 [0, 10−2]

Notes. The fiducial values correspond to the pure ΛCDM limit. In addi-
tion to the top-hat priors on f ini

ddm an Γddm f ini
ddm reported in the table, we

use an extra prior Γddm < 0.0316 Gyr−1 to remain in the region were the
emulator was trained on N-body simulations.

A second reason is that, in our analysis, we marginalise over
six baryonic feedback parameters, including the three νB param-
eters accounting for a drift of the main feedback parameters B
with redshift. In the KiDS analysis, the three B parameters are
instead assumed to be redshift-independent. However, the effect
of WDM on the matter power spectrum is redshift-dependent (it
decreases when the redshift decreases due to mode-mode cou-
pling). Thus, in our analysis, it is easier to cancel the effect of
WDM with a shift in the baryonic feedback parameter, and there
is more degeneracy between the WDM and baryonic parameters.
This tends to lower our forecasted sensitivity and to compensate
the fact that Euclid measurements of the lensing power spectrum
are expected to be much more accurate. In Fig. 11, we choose
to present the results of the Euclid pessimistic forecast with
the same treatment as in KiDS analysis of Hervas-Peters et al.
(2024); that is, with only three free baryonic feedback parame-
ters, while in the Euclid optimistic forecast we stick to our more
conservative baseline treatment with a marginalisation over six
parameters B and νB.

In the optimistic case, we still find that the sensitivity of
the Euclid WL probe is approximately three times bigger than
that of KiDS, despite of our more conservative modelling of
baryonic feedback. In addition, we have already seen that with
the inclusion of all the information from the 3 × 2pt probe, we
can gain a factor three in sensitivity. All in all, under optimistic
assumptions, Euclid could be about ten times more constrain-
ing, while providing at the same time some bounds that will
be more robust against baryonic feedback effects. Furthermore,
we note that the results of our optimistic forecast confirm pre-
vious findings from Schneider et al. (2020) using more realistic
assumptions for the survey characteristics, especially regarding
the tomographic galaxy binning.

5.2. Dark matter with one-body decay

Main results. For the 1b-DDM model, we perform forecasts
using the parameter combinations f ini

ddm and Γddm f ini
ddm defined

in Sect. 2.2. The fiducial model is chosen to be a pure ΛCDM
model. We showed in Sect. 3.2 that the small-scale suppression
induced by 1b-DDM on the linear power spectrum depends only
on the product Γddm f ini

ddm, while the non-linear evolution adds a
bit of sensitivity to Γddm alone. Thus, the data are expected to
provide bounds mainly on the product of the two DDM param-
eters. Our fiducial values and priors are summarised in Table 4
for these parameters and Table 2 for all other free parameters.
The fiducial model is chosen to be a pure ΛCDM model. As
was already stated in Sect. 2.2, we use linear priors on f ini

ddm
and Γddm f ini

ddm. We note that the N-body simulations used by
Hubert et al. (2021) to build the emulator were limited to mod-
els with a DM lifetime much larger than the age of the Universe,
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Fig. 12. Same as Fig. 9, but for the 1b-DDM model, parameterised by the DDM fraction f ini
ddm and decay rate Γddm. The forecast assumes flat

priors on ( f ini
ddm, Γddm f ini

ddm) because the effect of 1b-DDM on the linear matter power spectrum scales with the product Γddm f ini
ddm (see Sect. 2.2).

The model is equivalent to pure ΛCDM in the small Γddm f ini
ddm limit. The shaded grey area restricts the parameter space to the region where

τddm = 1/Γddm ≥ 31.6 Gyr in which the emulator was trained.

namely τddm ≥ 31.6 Gyr. We thus conservatively include in our
run a prior Γddm ≤ 0.0316 Gyr−1. This additional prior excludes
a small triangle in the parameter space defined by the priors of
Table 4.

Figure 12 presents the 95% confidence level (CL) isocon-
tours of the marginalised posterior for the 1b-DDM parame-
ters inferred from our forecasts for the Euclid WL probe alone
(WL), the full Euclid photometric probe (3 × 2pt), and Euclid
3 × 2pt combined with Planck, considering both pessimistic
(left panel) or optimistic (right panel) assumptions. The fiducial
model, ΛCDM, spans the lower horizontal axis (Γddm f ini

ddm = 0).
The shaded grey area restricts the parameter space to the region
in which the emulator was trained. The fact that the contour
edges remain nearly horizontal is consistent with the fact that
1b-DDM effects depend mainly on the product Γddm f ini

ddm. The
small tilting of the contours comes from the fact that non-linear
corrections to the 1b-DDM effects do depend on Γddm alone. For
each of the six cases shown in Fig. 12, we ran 96 chains summing
up to ∼ 1.6 MS in each optimistic case or ∼3.8 MS in each pes-
simistic case. The Gelman-Rubin convergence criterium reached
about |R − 1| ∼ 0.01 for most parameters, with a worse value of
0.05 for a few parameters.

In the pessimistic case, the WL-only analysis provides a
95%CL bound close to Γddm f ini

ddm < 8 × 10−3 Gyr−1. Incorporat-
ing the 3×2pt data set leads to a substantially stronger bounds,
by approximately a factor of 2, such that Γddm f ini

ddm < 4 × 10−3.
There is an additional factor of 2 improvement when Planck data
are integrated into the analysis, requiring Γddm f ini

ddm < 1.75 ×
10−3Gyr−1. Switching to optimistic assumptions makes a sub-
stantial difference for the WL only bound, which shrinks to
Γddm f ini

ddm < 6 × 10−3 Gyr−1, and an even stronger difference for
the 3×2pt bound, which reaches Γddm f ini

ddm < 0.75 × 10−3 Gyr−1.
Planck further improves this bound down to Γddm f ini

ddm < 0.5 ×
10−3 Gyr−1.

The first conclusion emerging from these results is that the
photometric GC data has a large constraining power compared
to the WL data for this particular model. This is illustrated by
the factor 8 improvement when switching from WL to 3×2pt
data in the optimistic case. The 2-dimensional likelihood con-
tours shown in the upper panel of Fig. 13 show that, with WL
data alone, the parameter Γddm f ini

ddm is degenerate with cosmo-
logical parameters like, for instance, ns or Ωm. The addition of
GC data is beneficial for two reasons: on the one hand, it adds
sensitivity to these parameters and helps removing such degen-
eracies; on the other hand, it directly probes the 1b-DDM effects
on the matter power spectrum, up to smaller wavenumbers k than
WL data but with better sensitivity.

Another interesting conclusion is that there is a good syn-
ergy between the Planck and Euclid probes for this model. We
note that, using Planck 2018 data alone, Simon et al. (2022) and
Bucko et al. (2023) found Γddm f ini

ddm < 4 × 10−3 Gyr−1. Thus, the
Euclid 3 × 2pt probe alone is already more constraining than
Planck. In addition, the combination of the two data sets is sig-
nificantly more constraining than each data set taken individu-
ally. This is usually the consequence of parameter degeneracies
being removed by the combination. We get a confirmation of this
by looking at the upper and lower panels of Fig. 13. The con-
tours illustrate the existence of correlations between Γddm f ini

ddm
and other cosmological parameters. The addition of Planck data
resolves these degeneracies and pushes the bounds beyond those
from Euclid alone – even if Planck alone is not directly sensitive
to such small Γddm f ini

ddm values.

Importance of baryonic feedback. In Fig. 14, we show the
impact of marginalisation over baryonic feedback parameters, in
the same way as we did in Fig. 10 for CWDM. We compare the
bounds derived from the 3 × 2pt probe with either marginalised
baryonic feedback effects only for the WL probe (orange) or for
the full 3 × 2pt probe (grey), or with fixed baryonic feedback
effects (magenta).
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Fig. 13. Degeneracies between the 1b-DDM parameter Γddm f ini
ddm and four other cosmological parameters for different data sets. Top: Optimistic

case. Bottom: Pessimistic case. The addition of 3×2pt to WL and of Planck to 3×2pt leads to a better determination of all cosmological parameters
and lifts degeneracies.
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Fig. 14. Same as Fig. 10, but for the parameters of the 1b-DDM model. Unlike in the case of CWDM, we find that the various assumptions on
baryonic feedback have a big impact on the upper bound on Γddm f ini

ddm.

There is a qualitative difference between this model and
the CWDM case. In the former case, the suppression of the
small-scale matter power spectrum is caused by WDM free-
streaming during early cosmological times. However, this sup-
pression tends to be washed out at small redshift by non-linear
clustering and mode-mode coupling. As redshift decreases, the
CWDM matter power spectrum gets gradually closer to that of
ΛCDM. This is not the case in the 1b-DDM model, since the
DM decay occurs mainly at very late times. Then, the modifi-
cations to the non-linear matter power spectrum get more and
more pronounced as time passes by – which also tends to be the
case for baryonic effects, at least in most of the redshift range
probed by Euclid. In principle, this enhances the possibility that

1b-DDM and baryonic effects can compensate each other and
that degeneracies are present in parameter space.

As a matter of fact, in the pessimistic case, the bounds are
different under the three assumptions. This confirms that bary-
onic feedback and 1b-DDM effects are partially degenerate,
and that the marginalisation over baryonic feedback parameters
weakens the bounds. Assuming baryonic feedback effects also
on the GC spectrum weakens the bound on Γddm f ini

ddm by approx-
imately 25%, such that a conservative estimate in this case is
Γddm f ini

ddm < 5 × 10−3 Gyr−1 (95%CL).
In the optimistic case, we see that the 3 × 2pt data contains

enough information to remove the degeneracy between 1b-DDM
and baryonic feedback parameters when baryonic feedback is
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Fig. 15. Comparison of bounds from Euclid WL-only (optimistic or
pessimistic) and KiDS WL-only (Bucko et al. 2023) on the 1b-DDM
parameters, using the same priors for all three cases (logarithmic on
the DDM decay rate, linear on the DDM fraction). The shaded grey
area restricts the parameter space to the region where τddm = 1/Γddm ≥

31.6 Gyr in which the emulator was trained.

applied to the WL probe only, but not when it is applied also
to the GC probe. In this case, the true bound is expected to
stand between the one discussed in the previous paragraph,
Γddm f ini

ddm < 0.75 × 10−3 Gyr−1, and the more conservative one
found here, Γddm f ini

ddm < 2 × 10−3 Gyr−1 (95%CL).

Comparison with current bounds. For the 1b-DDM model,
Simon et al. (2022) found Γddm f ini

ddm < 4×10−3 Gyr−1 when using
Planck alone, and no significant improvement when adding
information from Type Ia supernovae, baryon acoustic oscilla-
tions from a variety of surveys, redshift space distortions from
the extended Baryon Oscillation Spectroscopic Survey (eBOSS),
and even the full shape of the power spectrum from the Baryon
Oscillation Spectroscopic Survey (BOSS). Bucko et al. (2023)
find no improvement either when adding KiDS data. Addition-
ally, Bucko et al. (2023) find that KiDS alone only provides a
bound of the order of Γddm f ini

ddm < 3 × 10−2 Gyr−1, almost one
order of magnitude weaker than Planck. This shows that current
large-scale structure observations have much less constraining
power than current CMB data for this particular model – a situ-
ation very different from that of CWDM.

In this context, the sensitivity that will be reached by Euclid
according to our forecast is remarkable. Euclid WL-only will
improve KiDS WL-only bounds by a factor 4 (pessimistic) or
5 (optimistic)17. The full Euclid 3 × 2pt probe will have the
same sensitivity as current CMB data (pessimistic) or improve
the bound by a factor 2 to 3 (optimistic). The combined Euclid
3× 2pt + Planck data will improve over current bounds by a fac-
tor 4 (pessimistic) to 8 (optimistic).

We see that Euclid has an even greater potential to improve
over current bounds for 1b-DDM than for CWDM. This is
related to the shape of the 1b-DDM effects on the matter power
spectrum, already displayed in Fig. 2. The survey probes 1b-

17 We cross-checked this statement by running our Euclid WL forecasts
with exactly the same top-hat priors on log10(Γdcdm/Gyr−1) and f ini

ddm as
Bucko et al. (2023), see Fig. 15.

Table 5. List of free parameters names, fiducial values, and top-hat prior
ranges (in addition to those listed in Table 2) for the 2b-DDM model.

Parameter Fiducial value Range

log10 f ini
ddm −∞ [−1.3, 0]

log10(Γddm/Gyr−1) −∞ [−2.8, −1.13]
log10 ε −∞ [−3.5, −1.8]

Notes. The fiducial values correspond to the pure ΛCDM limit. The
upper prior edges on log10(Γddm/Gyr−1) and log10 ε restrict the parame-
ter space to the region in which the emulator was trained.

DDM effects through the entire shape of the power spectrum
over the full range of measured linear and non-linear scales.
Unlike the CWDM spectrum, the 1b-DDM spectrum is not iden-
tical to the ΛCDM one up to a given free-streaming scale.
Thus, the constraints on 1b-DDM benefit from the unprece-
dented accuracy expected from Euclid data over the entire range
of scales probed by the survey.

With this model, the sensitivity of Euclid offers an opportu-
nity not only to reconstruct the matter power spectrum accurately
over a broad range of scales, but also to disentangle between
1b-DDM and baryonic effects. The strong sensitivity improve-
ment of Euclid versus KiDS is partly due to the fact that there
is a significant degeneracy between 1b-DDM and baryonic feed-
back parameter, which Euclid is able to resolve much better than
KiDS. We already explained that baryonic feedback should be
more degenerate with 1b-DDM effects than with CWDM effects.
Thus, in the CWDM case, there is no such factor and the Euclid
sensitivity remains closer to the KiDS one at least in the pes-
simistic case.

5.3. Dark matter with two-body decay

Main results. For the 2b-DDM model, we perform forecasts
using the parameters ( f ini

ddm, Γddm, ε) defined in Sect. 2.3, with
logarithmic priors defined in Table 5 for these parameters and
Table 2 for all other free parameters. As was discussed in
Sect. 2.3, at the level of the linear spectrum, 2b-DDM induces
a step-like suppression in the power spectrum with an amplitude
controlled by ( f ini

ddm, Γddm) and a scale depending on ε. At the
non-linear level the effects are more intricate and the suppres-
sion depends on all three parameters. The fiducial model of our
forecast is chosen to be a pure ΛCDM model.

In Fig. 16 we show the 95%CL contours on each pair of
2b-DDM parameters marginalised over cosmological and nui-
sance parameters for Euclid WL only, Euclid 3 × 2pt, and
3×2pt + Planck data, under pessimistic (left panel) or optimistic
(right panel) assumptions. We use the same colour scheme as
in Figs. 9 and 12. The fiducial ΛCDM model spans the left and
lower axes of each panel. For each of the six cases shown in
Fig. 16, we ran 48 chains summing up to ∼1 MS in each opti-
mistic case or ∼1.3 MS in each pessimistic case. The Gelman-
Rubin convergence criterium reached about |R − 1| ∼ 0.01 for
most parameters, with a worse value of 0.03 for a few parame-
ters.

In ( f ini
ddm, Γddm) space, the contours follow lines of constant

Γddm f ini
ddm. This suggests that for both the 1b-DDM and 2b-DDM

models the power spectrum suppression only depends on this
product – at least at the linear level. Thus, Euclid can provide
joint bounds on Γddm f ini

ddm and ε, while f ini
ddm or Γddm will be left

unconstrained.

A249, page 23 of 32



Euclid Collaboration et al.: A&A, 693, A249 (2025)

10−2

7× 10−2

Γ
d

d
m

[G
yr
−

1
]

WL

3×2pt

3×2pt + Planck

10−1 100

f ini
ddm

10−3

10−2

ε

10−2 7× 10−2

Γddm [Gyr−1]

10−2

7× 10−2

Γ
d

d
m

[G
yr
−

1
]

WL

3×2pt

3×2pt + Planck

10−1 100

f ini
ddm

10−3

10−2

ε

10−2 7× 10−2

Γddm [Gyr−1]

Fig. 16. Same as Fig. 9, but for the parameters of the 2b-DDM model. The forecast assumes logarithmic priors on the DDM fraction f ini
ddm, on the

decay rate Γddm, and on the fraction of energy ε going into the ultra-relativistic daughter at each decay. The model is equivalent to pure ΛCDM in
the small f ini

ddm and/or small ε and/or small Γddm limits.
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Fig. 17. Degeneracies between the 2b-DDM parameter ε and four other cosmological parameters for the optimistic case, in the particular case
where f ini

ddm = 1. The addition of Planck data to 3 × 2pt data lifts these degeneracies.

We first comment the results of the pessimistic case. With
WL only, our forecast returns the 95%CL bound Γddm f ini

ddm <

0.02 Gyr−1 (marginalised over ε). For f ini
ddm = 1 we find ε <

4×10−3, while for f ini
ddm = 0.3 the 2b-DDM model is indistinguish-

able from ΛCDM at the 95%CL, and ε is unconstrained. With
the addition of 3×2pt data, the constraints remain stable. Finally,
Planck data is able to alleviate some degeneracies between cos-
mological parameters and shrink the bounds by about 25%.

In the optimistic case, the WL-only bounds are identical,
but the 3 × 2pt bounds shrink by a factor two compared to
the 3 × 2pt pessimistic case, or a factor four compared to the
WL optimistic case: Γddm f ini

ddm < 0.005 Gyr−1 (with marginali-
sation over ε), ε < 1 × 10−3 for f ini

ddm = 1, and the 2b-DDM
model is indistinguishable from ΛCDM below f ini

ddm = 0.1. In
this case, the addition of Planck data makes a difference for the
bounds on ε, not because of Planck data being directly sensitive
to this parameter, but thanks to the better determination of other
parameters. Figure 17 shows how Planck data lift the degeneracy
between, for instance, ε and ns. In this case we obtain a bound
ε < 0.7 × 10−3 for f ini

ddm = 1.

Importance of baryonic feedback. Figure 18 depicts how
different baryonic feedback prescriptions influence the final pos-
teriors, using the same colour and style as Figs. 10 and 14. Like
for 1b-DDM, there could be a degeneracy between 2b-DDM
and baryonic feedback parameters since both effects tend to

grow with time. Indeed, in the 2b-DDM model, the conversion
of CDM into WDM particles appears dominantly at very late
times and the non-linear matter power spectrum departs more
and more from the ΛCDM limit.

However, we find that 2b-DDM effects and baryonic feed-
back are very weakly correlated. The constraints remain nearly
stable when fixing the baryonic feedback parameters instead
of marginalising over them, and become slightly weaker when
baryonic feedback is applied also to the GC probe. The degra-
dation is at most by a factor two. As a matter of fact, our fore-
casts predict 95%CL bounds on the 2b-DDM parameter sum-
marised by Γddm f ini

ddm < 0.02 Gyr−1 (with marginalisation over
ε) and ε < 4 × 10−3 for f ini

ddm = 1 in the pessimistic case;
or Γddm f ini

ddm < 0.008 Gyr−1 (with marginalisation over ε) and
ε < 2 × 10−3 for f ini

ddm = 1 in the optimistic case.

Comparison to current bounds. We believe that our forecast
is the first one including as a free parameter the initial fraction
f ini
ddm of DDM with two-body decay. Several studies in the past

fixed f ini
ddm = 1. Therefore, in order to compare the expected sen-

sitivity of Euclid to recent results obtained from real observa-
tions, we perform a few dedicated forecast with 100% DDM. In
Fig. 19, we compare our results to the most recent limits on Γddm
and ε from the KiDS survey (Bucko et al. 2024). In this case, we
adopt precisely the same top-hat priors on the 2b-DDM param-
eters as Bucko et al. (2024). We find that Euclid with WL alone
can improve over KiDS bounds roughly by a factor 3, while
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Fig. 18. Same as Fig. 10, but for the parameters of the 2b-DDM model.
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Fig. 19. For the 2b-DDM model with f ini
ddm = 1, comparison of Euclid

WL-only, 3 × 2pt, and 3 × 2pt + Planck bounds predicted by our sensi-
tivity forecast with current constraints from KiDS (Bucko et al. 2024).
The priors are identical in the four cases.

the full 3 × 2pt data would improve over KiDS by one order of
magnitude. This improvement is closer to the one observed for
1b-DDM than for CWDM, since a precise measurement of the
power spectrum on intermediate (linear and mildly non-linear)
scales is crucial to constrain this model, while a better measure-
ment on non-linear scales helps to discriminate decaying DM
effects from baryonic feedback effects.

The 2b-DDM model with f ini
ddm = 1 has also been constrained

using current Lyman-α data in Fuß & Garny (2023). For very
small values of ε, the suppression of the matter power spectrum
could occur on such small scales that Lyman-α data would still
probe the 2b-DDM effects while Euclid data could not distin-
guish 2b-DDM from ΛCDM. However, for ε ≥ 10−3, Euclid
can probe the effects of 2b-DDM on linear and mildly non-
linear scales, and thus can be expected to have more constraining
power. This is confirmed by the results of Fuß & Garny (2023),

Table 6. List of free parameters names, fiducial values, and top-hat prior
ranges (in addition to those listed in Table 2) for the ETHOS n = 0
model.

Parameter Fiducial value Range

log10(adark/Mpc−1) −∞ [−6, 5]
log10 ξidr −∞ [−2, −0.4]

Notes. In our runs, we additionally impose a prior adarkξ
4
idr < 0.05

to exclude the region where the emulator should not be trusted (see
Sect. 3.4). The fiducial values correspond to the pure ΛCDM limit.

who show that Lyman-α data from BOSS DR14 only constrain
Γddm to be smaller than O(0.1) Gyr−1. This is about one order of
magnitude weaker than the predicted Euclid sensitivity.

5.4. ETHOS n = 0

Main results. Our ETHOS n = 0 forecasts use the parameters
(adark, ξidr) defined in Sect. 2.4, with logarithmic priors defined in
Table 6 for these parameters and Table 2 for all other free param-
eters. We have seen in Sects. 2.4 and 3.4 that the ETHOS n = 0
model induces a suppression in the power spectrum controlled
at the linear level by adarkξ

4
idr and at the non-linear level by the

two ETHOS parameters. The fiducial model of our forecasts is
chosen to be a pure ΛCDM model.

In Fig. 20 we show the 95% CL credible interval limits on
the free parameters (adark, ξidr) coming from the Euclid WL
probe, from the full 3×2pt probe, and from the same in com-
bination with Planck data. For each of the six cases shown in
Fig. 20, we ran 48 chains summing up to ∼1 MS in each opti-
mistic case or ∼ 1.7 MS in each pessimistic case. The Gelman-
Rubin convergence criterium reached about |R − 1| ∼ 0.005
for most parameters, with a worse value of ∼0.012 for a few
parameters.

In this case, the credible interval limits look slightly wob-
bly. However, the limits remain stable when pushing the MCMC
chains to very high convergence criteria, or when performing
multiple independent MCMC runs. Thus, the small oscillations
of the contours in Fig. 20 are not caused by MCMC conver-
gence issues but the emulator, which was trained on a slightly
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Fig. 20. Same as Fig. 9, but for the parameters of the ETHOS n = 0 model. Our forecast assumes logarithmic priors on the interaction strength adark
and on the dark-radiation-to-photon temperature ratio ξidr. The model is equivalent to pure ΛCDM in the small adark and/or small ξidr limits. The
grey shade excludes the region adarkξ

4
idr > 0.05 where the non-linear emulator cannot be trusted (see Sect. 3.4). We also show current constraints

inferred from Planck, BAO, and BOSS full-shape data by Rubira et al. (2023) – although these authors use different priors.

too coarse sample of models. In the future, the DMemu emula-
tor will be improved for this model. The oscillations are anyway
sufficiently small to allow for a robust qualitative interpretation
of our forecast results.

When adark is very small, this model is equivalent to a
ΛCDM+∆Neff model with ∆Neff = 3.85 ξ4

idr. The radiation
excess parameter ∆Neff can be constrained since it affects
both the matter power spectrum and CMB anisotropy spectrum
in a well-known way (Euclid Collaboration: Archidiacono et al.
2025). In this limit, we expected bounds of the order of
∆Neff < O(1) (95%CL) from the 3 × 2pt optimistic probe and
∆Neff < O(0.1) (95%CL) from the combination 3× 2pt + Planck
(Euclid Collaboration: Archidiacono et al. 2025). This translates
respectively into log10 ξidr < −0.1 (95%CL, 3 × 2pt) and
log10 ξidr < −0.4 (95%CL, 3×2pt + Planck). Our choice of prior,
ξidr ∈ [−2,−0.4], prevents us from seeing the upper bound in the
3 × 2pt case, but in the case of 3 × 2pt + Planck we can see the
upper limit on ξidr just below top axis of each panel in Fig. 20.

For larger values of adark, the model is further constrained
by the impact of IDM-IDR interactions on the small-scale mat-
ter power spectrum. As was already discussed, at the non-linear
level, this effect depends on both adark and ξidr in a non-trivial
way. However, for log10(adark/Mpc−1) < 1, we find that the
boundary of the preferred region can be approximately fitted
by constant values of the combination adark ξ

4
idr that controls the

scattering rate of IDR off IDM.
In the pessimistic case, the most substantial part of the con-

straining power comes from the WL probe, since further addition
of clustering and Planck data do not improve the bounds signif-
icantly. In all cases, the bounds for log10(adark/Mpc−1) < 1 can
be approximated as adark ξ

4
idr < 8 × 10−4 Mpc−1 (95%CL). With

the 3 × 2pt probe, the data loses sensitivity to IDM-IDR interac-
tions only for ξidr < 0.06 (i.e. ∆Neff < 5 × 10−5). We stress that
Euclid would not detect such a tiny abundance of dark radiation
through the effect of an enhanced radiation density, but through
that of DM interactions.

In the optimistic case, the WL-only bound changes
marginally, but the 3×2pt bound (with or without Planck) shrinks
by more than one order of magnitude. For log10(adark/Mpc−1) <
1 the bounds can be approximated by adark ξ

4
idr < 2×10−5 Mpc−1.

With 3 × 2pt information, the data loses sensitivity to the inter-
action rate only below ξidr < 0.03 (that is, ∆Neff < 3 × 10−6).

Importance of baryonic feedback. In this case, the impact
of baryonic feedback is illustrated in Fig. 21. Interestingly, in
the ETHOS n = 0 case, we do not find any hint of degenera-
cies between the DM and baryonic feedback parameters. In the
pessimistic and optimistic cases, the bounds remain roughly sta-
ble when the baryonic feedback parameters are fixed rather than
marginalised, or when baryonic feedback is applied also to GC.
A first explanation comes from the fact that the effect of the
ETHOS n = 0 model on the matter power spectrum always starts
on linear scales (k ∼ 10−2–10−1 h Mpc−1) which are immune
to baryonic feedback. If most of the information on this model
resides in such scales, the bounds should indeed be independent
from the modelling of baryonic feedback. In addition, like in the
CWDM case, the redshift dependence of the DM-induced sup-
pression is opposite to that of baryonic feedback. As a matter
of fact, the effect of DM interactions is imprinted on the mat-
ter power spectrum at high redshift and subsequently smoothed
out by non-linear clustering, while overall baryonic effects tend
to grow with time, at least through most of the redshift range
probed by Euclid.

Comparison with current bounds. For the same model,
using flat priors on ξidr and logarithmic priors on adark,
Archidiacono et al. (2019) found adarkξ

4
idr < 14 × 10−4 Mpc−1

(95%CL) using Planck, BAO, and high-resolution Lyman-α data
from the HIRES/MIKE quasar sample. The comparison with our
Euclid bound is not straightforward due to the different prior
shapes and edges, but indicates that Euclid has a potential to
improve over current CMB+Lyman-α bounds by a large factor
(a factor 70 according to our predictions in the 3×2pt optimistic
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Fig. 21. Same as Fig. 10, but for the parameters of the ETHOS n = 0 model.

case). This is actually not so surprising since the ETHOS n = 0
model leaves a signature already on linear scales, much larger
than the scales probed by Lyman-α data.

Rubira et al. (2023) also use flat priors on ξidr and logarith-
mic priors on adark. Their results for IDM interacting with free-
streaming IDR is reported in the left panel of their Fig. 4. We
extracted from this plot their joint bound on (adark, ξidr) inferred
from Planck, BOSS full-shape galaxy spectrum, and KiDS (the
latter being implemented as a measurement of S 8). We display
this bound in Figs. 20 and 21. The comparison with our Euclid
forecast should be taken with a grain of salt since the priors
are different in the two analyses. However, the main conclusion
is that, on the one hand, their bound is similar to our Euclid
3 × 2pt + Planck bound in the limit of large ξidr, which was
expected since this bound only reflects the upper limit on ∆Neff

from Planck; but on the other hand, for smaller values of ξidr,
we find that Euclid is much more sensitive to adark. According to
Rubira et al. (2023), the BOSS data loses any sensitivity to adark
when ξidr is equal to or smaller than 10−0.8 (that is, ξidr ≤ 0.2, or
equivalently ∆Neff ≤ 2×10−3), while for ξidr = 0.2 Euclid 3×2pt
data can still constrain the interaction rate to adark < 1 Mpc−1

(95%CL, pessimistic case) or adark < 0.1 Mpc−1 (95%CL, opti-
mistic case).

We conclude that Euclid has a great potential to constrain the
ETHOS n = 0 model and to push the bounds well below those
from any current experiment.

6. Prospects

Apart from performing additional accuracy tests on the mod-
elling of non-linear clustering and baryonic feedback, our work
could be extended in several directions.

First, one could investigate potential degeneracies between
massive neutrinos and extended DM models. A priori, we expect
this degeneracy to be weak for two reasons. First, neutrino
masses and extended DM parameters affect the shape of the mat-
ter power spectrum differently and on different scales. Second,
they induce a different scale-dependent linear growth rate, and

thus a different dependence of the linear and non-linear matter
power spectrum on redshift.

To illustrate the first point, we show in Fig. 22 the ratio of the
non-linear matter power spectrum at redshift zero for different
cosmologies featuring either massive neutrinos or non-minimal
DM over that of a reference ΛCDM cosmology with massless
neutrinos. In this figure, DM parameters are chosen close to the
95%CL credible interval boundaries found in this work in the
pessimistic case (left plot) and optimistic case (right plot). A key
point is that the steplike supression induced by neutrino masses
always starts at a very small wavenumber (k ' 0.003 h Mpc−1).
Thus, there is always a wide range of linear scales over which
the effect of neutrino masses is large while that of extended DM
is insignificant. Data points within this range should allow to
discriminate between the summed neutrino mass

∑
mν and DM

parameters. It would however be useful to check this explicitly
with forecasts featuring both types of parameters. This is espe-
cially true in the case of the 1b-DDM model, which also sup-
presses slightly the power spectrum on linear scales, and is thus
more likely to exhibit a small level of degeneracy with neutrino
masses.

Our approach could also be ported to the study of several
other extended DM models with approximately the same num-
ber of free model parameters. We recall that in the context of
Euclid we are mostly interested in models introducing a step-
like (or at least a smooth) suppression of the matter power spec-
trum, since models introducing a sharp suppression are easier to
constrain with Lyman-α data. Still, one could consider cosmolo-
gies in which a fraction of DM self-interacts (Boehm et al. 2001;
Spergel & Steinhardt 2000; Huo et al. 2018; Kahlhoefer et al.
2019) or scatters over ordinary neutrinos (Boehm & Schaeffer
2005; Serra et al. 2010; Wilkinson et al. 2014; Stadler et al.
2019; Mosbech et al. 2021; Hooper & Lucca 2022; Giarè et al.
2024) or baryons (Chen et al. 2002; Boehm & Schaeffer 2005;
Dvorkin et al. 2014; Becker et al. 2021; Ali-Haïmoud et al.
2024). We note that in some cases, like that of DM scattering
over baryons, it is unclear whether our assumption of approx-
imate separability between DM scattering effects and baryonic
feedback effects would be accurate enough.
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Fig. 22. Ratio of the non-linear matter power spectrum at redshift zero for different cosmologies featuring either massive neutrinos or non-minimal
DM over that of a reference ΛCDM cosmology with massless neutrinos. In this figure, DM parameters are chosen close to the boundary of the
95% credible intervals in the 3 × 2pt pessimistic (left plot) and optimistic (right plot) case. DM parameter values are given in Table 7.

Table 7. Dark matter parameter values used in Fig. 22.

Model Parameter Left (right) plot value

CWDM fwdm 0.1 (0.1)
mthermal

wdm [eV] 50 (150)

1b-DDM f ini
ddm 0.5 (0.5)

Γddm f ini
ddm [Gyr−1] 2.5(1.5) × 10−3

2b-DDM f ini
ddm 0.3 (0.2)

Γddm [Gyr−1] 10−2 (10−2)
ε 2(1) × 10−3

ETHOS log10(adark/Mpc−1) 0 (1.5)
n = 0 log10 ξidr −0.8 (−1.2)

Notes. These values are chosen close to the boundary of the 95% cred-
ible intervals in the 3 × 2pt pessimistic case (left plot) and optimistic
case (right plot).

7. Summary and conclusions

In summary, we have estimated the sensitivity of the future
Euclid photometric probe (i.e. of 3×2pt statistics) to the parame-
ters describing four non-minimal DM models. We have run sev-
eral MCMC forecasts in which the fiducial model assumes plain
CDM (with baryonic feedback) while the fitted model includes
the effect of non-standard DM (with free baryonic freedback
parameters). We have investigated the dependence of the results
on various assumptions (cut-off multipole `max, modelling of
baryonic feedback, combination with CMB data from Planck).
We have also compared the sensitivity predicted by our forecasts
with current bounds derived from CMB data, Lyman-alpha data,
WL data, and galaxy redshift survey data.

Each of the few non-minimal DM models considered here
has a qualitatively different impact on the matter power spec-
trum. As a matter of fact, we reach significantly different
conclusions for each of them in terms of degeneracy with bary-
onic feedback, constraining power of WL data compared to GC
data, or sensitivity of Euclid compared to current bounds. In this
section, we put together a compact summary of the most striking
conclusions.

For a mixture of cold and warm dark matter (CWDM), the
key point is that the power spectrum looks exactly like that of
ΛCDM up to a scale fixed by the WDM mass, beyond which a
step-like suppression occurs. For large WDM fractions leading
to a strong suppression, the mass bounds will always be domi-
nated by data from Lyman-α forests probing smaller scales than
Euclid. However, the results of Sect. 5.1 show that Euclid can
be very efficient at constraining small WDM masses when the
WDM fraction is also small. The Euclid 3×2pt analysis could
even bound (or detect) masses of the order of justO(10) eV (ther-
mal WDM case) or O(100) eV (Dodelson–Widrow scenario)
even if WDM accounts for only 1% of the total DM budget,
while current observations are only sensitive to WDM contribut-
ing to at least 10% of DM.

The situation is very different with models featuring a mix-
ture of stable and unstable CDM, with the latter undergoing one-
body decay into relativistic particles (1b-DDM). In this case,
the DM parameters impact the evolution of perturbations up to
very large scales, deep in the linear regime. Thus, CMB data
is also highly sensitive to the decaying DM fraction fddm and
decay rate Γddm – as a matter of fact, on their product fddmΓddm

18.
However, the results of Sect. 5.2 show that the Euclid 3 × 2pt
probe alone could provide twice stronger bounds on fddmΓddm
than Planck. In this case, there is a synergy between Euclid and
Planck: the combined data sets can resolve parameter degenera-
cies and strengthen current bounds by a factor eight.

For a mixture of stable and unstable CDM such that the lat-
ter undergoes two-body decay into one relativistic and one non-
relativistic particle (2b-DDM), the power spectrum is step-like
suppressed, a bit like the CWDM case but with a different sup-
pression shape. As a matter of fact, this model can be understood
as if a few CDM particles were gradually replaced by WDM par-
ticles at late times. In this case, WL and GC surveys are more
sensitive to the parameters of the model than Lyman-α data in
the limit of small decay rate and large ε; that is, a large velocity
dispersion, since in this limit the step-like suppression is small
but occurs on relatively large scales. For such models, the results
of Sect. 5.3 show that Euclid could improve the bound on the

18 In this summary, we use simplified notations. In the core of the paper,
the fraction was denoted f ini

ddm, see Sect. 2.2 for precise definitions.
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product fddmΓddm by one order of magnitude compared to cur-
rent WL surveys like KiDS.

For DM interacting with dark radiation at a constant rate
(ETHOS n = 0), the power spectrum is suppressed on intermedi-
ate and small scales in a more progressive way than for CWDM
and 2b-DDM. The suppression looks more like a broken power
law than an exponential cut. The forecasts of Sect. 5.4 show that
the constraining power of Euclid is particularly strong in this
case. Euclid may improve current bounds from Lyman-α and
Planck by a factor 70. Through DM interaction effects, Euclid
can probe for the first time the limit in which the abundance
of dark radiation is very small, namely in the range ∆Neff ∼

[3 × 10−6, 2 × 10−3] that current galaxy surveys do not have the
sensitivity to constrain.

Our decision to choose ΛCDM as the fiducial model in each
forecast was arbitrary: we could have chosen a fiducial model
featuring non-standard DM and compatible with current bounds,
and calculated the significance at which Euclid could differenti-
ate this model from ΛCDM. We did not perform such tests due
to computational limits, but our forecasts suggest that Euclid has
a significant discovery potential. When we find that a 2σ bound
from current data could shrink by a factor n with future Euclid
data, we get a hint that a DM model described by some param-
eters saturating the current 2σ limit could be differentiated from
ΛCDM roughly at the 2nσ level. Our forecasts show that, in
some regions of parameter space, current bounds can improve by
one to two orders of magnitude (e.g. a factor 70 in the ETHOS
n = 0 case). This shows that there are wide regions in param-
eter space where Euclid could perform an actual discovery of
non-minimal DM properties at a high level of significance.

If an experiment like Euclid provides evidence in favour of a
non-minimal DM model, the impact of such a discovery on cos-
mology will obviously be profound. Several future large-scale
structure surveys – for example, from the Square Kilometer
Array Observatory (Santos et al. 2015) or Rubin Observatory
(Ivezić et al. 2019) – would have an opportunity to check this
discovery independently, while our approach to understand and
model the process of galaxy and star formation would be deeply
impacted. Even if we conservatively assume that Euclid will
confirm plain CDM and strengthen all bounds on the parame-
ters of non-minimal DM models, the results will be incredibly
interesting, since the new limits will have implications for DM
model building and cut into the parameter space of several pos-
sible dark sector models.

Acknowledgements. We acknowledge computing resources granted by RWTH
Aachen University under project thes1340, rwth1411, rwth1437, and rwth1481.
We also acknowledge funding from DFG project 456622116 and support from
the IRAP and IN2P3 Lyon computing centers. The Euclid Consortium acknowl-
edges the European Space Agency and a number of agencies and institutes that
have supported the development of Euclid, in particular the Agenzia Spaziale
Italiana, the Austrian Forschungsförderungsgesellschaft funded through BMK,
the Belgian Science Policy, the Canadian Euclid Consortium, the Deutsches
Zentrum für Luft-und Raumfahrt, the DTU Space and the Niels Bohr Institute
in Denmark, the French Centre National d’Etudes Spatiales, the Fundação para
a Ciência e a Tecnologia, the Hungarian Academy of Sciences, the Ministerio
de Ciencia, Innovación y Universidades, the National Aeronautics and Space
Administration, the National Astronomical Observatory of 1930 Japan, the
Netherlandse Onderzoekschool Voor Astronomie, the Norwegian Space Agency,
the Research Council of Finland, the Romanian Space Agency, the State Secre-
tariat for Education, Research, and Innovation (SERI) at the Swiss Space Office
(SSO), and the United Kingdom Space Agency. A complete and detailed list is
available on 1935 the Euclid web site (www.euclid-ec.org).

References
Abdalla, E., Franco Abellán, G., Aboubrahim, A., et al. 2022, JHEAp, 34, 49

Ali-Haïmoud, Y., Gandhi, S. S., & Smith, T. L. 2024, Phys. Rev. D, 109, 083523
Anderhalden, D., Schneider, A., Maccio, A. V., Diemand, J., & Bertone, G. 2013,

JCAP, 03, 014
Angulo, R. E., Zennaro, M., Contreras, S., et al. 2021, MNRAS, 507, 5869
Aoyama, S., Sekiguchi, T., Ichiki, K., & Sugiyama, N. 2014, JCAP, 07, 021
Archidiacono, M., Hooper, D. C., Murgia, R., et al. 2019, JCAP, 10, 055
Asgari, M., Lin, C.-A., Joachimi, B., et al. 2021, A&A, 645, A104
Audren, B., Lesgourgues, J., Benabed, K., & Prunet, S. 2013a, JCAP, 02, 001
Audren, B., Lesgourgues, J., Bird, S., Haehnelt, M. G., & Viel, M. 2013b, JCAP,

01, 026
Audren, B., Lesgourgues, J., Mangano, G., Serpico, P. D., & Tram, T. 2014,

JCAP, 12, 028
Becker, N., Hooper, D. C., Kahlhoefer, F., Lesgourgues, J., & Schöneberg, N.

2021, JCAP, 02, 019
Berezhiani, Z., Dolgov, A. D., & Tkachev, I. I. 2015, Phys. Rev. D, 92, 061303
Bertone, G., Hooper, D., & Silk, J. 2005, Phys. Rept., 405, 279
Bird, S., Viel, M., & Haehnelt, M. G. 2012, MNRAS, 420, 2551
Blas, D., Lesgourgues, J., & Tram, T. 2011, JCAP, 07, 034
Bode, P., Ostriker, J. P., & Turok, N. 2001, ApJ, 556, 93
Boehm, C., & Schaeffer, R. 2005, A&A, 438, 419
Boehm, C., Fayet, P., & Schaeffer, R. 2001, Phys. Lett. B, 518, 8
Bond, J. R., & Szalay, A. S. 1983, ApJ, 274, 443
Bonvin, C., & Durrer, R. 2011, Phys. Rev. D, 84, 063505
Boyarsky, A., Lesgourgues, J., Ruchayskiy, O., & Viel, M. 2009a, JCAP, 05, 012
Boyarsky, A., Lesgourgues, J., Ruchayskiy, O., & Viel, M. 2009b, Phys. Rev.

Lett., 102, 201304
Brinckmann, T., & Lesgourgues, J. 2019, Phys. Dark Univ., 24, 100260
Bucko, J., Giri, S. K., & Schneider, A. 2023, A&A, 672, A157
Bucko, J., Giri, S. K., Peters, F. H., & Schneider, A. 2024, A&A, 683, A152
Buen-Abad, M. A., Marques-Tavares, G., & Schmaltz, M. 2015, Phys. Rev. D,

92, 023531
Buen-Abad, M. A., Schmaltz, M., Lesgourgues, J., & Brinckmann, T. 2018,

JCAP, 01, 008
Casas, S., Lesgourgues, J., Schöneberg, N., et al. 2024, A&A, 682, A90
Challinor, A., & Lewis, A. 2011, Phys. Rev. D, 84, 043516
Chen, X.-L., Hannestad, S., & Scherrer, R. J. 2002, Phys. Rev. D, 65, 123515
Chisari, N. E., Richardson, M. L. A., Devriendt, J., et al. 2018, MNRAS, 480,

3962
Chudaykin, A., Gorbunov, D., & Tkachev, I. 2016, Phys. Rev. D, 94, 023528
Chudaykin, A., Gorbunov, D., & Tkachev, I. 2018, Phys. Rev. D, 97, 083508
Colombi, S., Dodelson, S., & Widrow, L. M. 1996, ApJ, 458, 1
Cyr-Racine, F.-Y., Sigurdson, K., Zavala, J., et al. 2016, Phys. Rev. D, 93, 123527
Dakin, J., Hannestad, S., & Tram, T. 2022, MNRAS, 513, 991
Diamanti, R., Ando, S., Gariazzo, S., Mena, O., & Weniger, C. 2017, JCAP, 06,

008
Dodelson, S., & Widrow, L. M. 1994, Phys. Rev. Lett., 72, 17
Dvorkin, C., Blum, K., & Kamionkowski, M. 2014, Phys. Rev. D, 89, 023519
Enqvist, K., Nadathur, S., Sekiguchi, T., & Takahashi, T. 2015, JCAP, 09, 067
Euclid Collaboration (Blanchard, A., et al.) 2020, A&A, 642, A191
Euclid Collaboration (Archidiacono, M., et al.) 2025, A&A, 693, A58
Euclid Collaboration (Mellier, Y., et al.) 2025, A&A, in press, https://doi.
org/10.1051/0004-6361/202450810

Euclid Collaboration (Cropper, M. S., et al.) 2025, A&A, in press, https://
doi.org/10.1051/0004-6361/202450996

Euclid Collaboration (Jahnke, K., et al.) 2025, A&A, in press, https://doi.
org/10.1051/0004-6361/202450786

Feng, J. L. 2010, ARA&A, 48, 495
Feng, J. L., Kaplinghat, M., Tu, H., & Yu, H.-B. 2009, JCAP, 07, 004
Franco Abellán, G., Murgia, R., & Poulin, V. 2021, Phys. Rev. D, 104, 123533
Franco Abellán, G., Murgia, R., Poulin, V., & Lavalle, J. 2022, Phys. Rev. D,

105, 063525
Franco Abellán, G., Herrera, G. C., Martinelli, M., et al. 2024, JCAP, 11, 057
Fuß, L., & Garny, M. 2023, JCAP, 10, 020
Gelman, A., & Rubin, D. B. 1992, Stat. Sci., 7, 457
Giarè, W., Gómez-Valent, A., Di Valentino, E., & van de Bruck, C. 2024, Phys.

Rev. D, 109, 063516
Giri, S. K., & Schneider, A. 2021, JCAP, 12, 046
Giri, S. K., & Schneider, A. 2023, Astrophysics Source Code Library [record

ascl:2308.010]
Gluscevic, V., Ali-Haïmoud, Y., Bechtol, K., et al. 2019, Bull. Am. Astron. Soc.,

51, 134
Grandis, S., Aricò, G., Schneider, A., & Linke, L. 2024, MNRAS, 528, 4379
Haridasu, B. S., & Viel, M. 2020, MNRAS, 497, 1757
Hervas-Peters, F., Schneider, A., Bucko, J., Giri, S. K., & Parimbelli, G. 2024,

A&A, 687, A161
Holm, E. B., Herold, L., Hannestad, S., Nygaard, A., & Tram, T. 2023, Phys.

Rev. D, 107, L021303
Hooper, D. C., & Lucca, M. 2022, Phys. Rev. D, 105, 103504

A249, page 29 of 32

https://www.euclid-ec.org/
http://linker.aanda.org/10.1051/0004-6361/202451611/1
http://linker.aanda.org/10.1051/0004-6361/202451611/2
http://linker.aanda.org/10.1051/0004-6361/202451611/3
http://linker.aanda.org/10.1051/0004-6361/202451611/4
http://linker.aanda.org/10.1051/0004-6361/202451611/5
http://linker.aanda.org/10.1051/0004-6361/202451611/6
http://linker.aanda.org/10.1051/0004-6361/202451611/7
http://linker.aanda.org/10.1051/0004-6361/202451611/8
http://linker.aanda.org/10.1051/0004-6361/202451611/9
http://linker.aanda.org/10.1051/0004-6361/202451611/9
http://linker.aanda.org/10.1051/0004-6361/202451611/10
http://linker.aanda.org/10.1051/0004-6361/202451611/11
http://linker.aanda.org/10.1051/0004-6361/202451611/12
http://linker.aanda.org/10.1051/0004-6361/202451611/13
http://linker.aanda.org/10.1051/0004-6361/202451611/14
http://linker.aanda.org/10.1051/0004-6361/202451611/15
http://linker.aanda.org/10.1051/0004-6361/202451611/16
http://linker.aanda.org/10.1051/0004-6361/202451611/17
http://linker.aanda.org/10.1051/0004-6361/202451611/18
http://linker.aanda.org/10.1051/0004-6361/202451611/19
http://linker.aanda.org/10.1051/0004-6361/202451611/20
http://linker.aanda.org/10.1051/0004-6361/202451611/21
http://linker.aanda.org/10.1051/0004-6361/202451611/22
http://linker.aanda.org/10.1051/0004-6361/202451611/22
http://linker.aanda.org/10.1051/0004-6361/202451611/23
http://linker.aanda.org/10.1051/0004-6361/202451611/24
http://linker.aanda.org/10.1051/0004-6361/202451611/25
http://linker.aanda.org/10.1051/0004-6361/202451611/26
http://linker.aanda.org/10.1051/0004-6361/202451611/26
http://linker.aanda.org/10.1051/0004-6361/202451611/27
http://linker.aanda.org/10.1051/0004-6361/202451611/28
http://linker.aanda.org/10.1051/0004-6361/202451611/29
http://linker.aanda.org/10.1051/0004-6361/202451611/30
http://linker.aanda.org/10.1051/0004-6361/202451611/31
http://linker.aanda.org/10.1051/0004-6361/202451611/31
http://linker.aanda.org/10.1051/0004-6361/202451611/32
http://linker.aanda.org/10.1051/0004-6361/202451611/33
http://linker.aanda.org/10.1051/0004-6361/202451611/34
http://linker.aanda.org/10.1051/0004-6361/202451611/35
http://linker.aanda.org/10.1051/0004-6361/202451611/36
http://linker.aanda.org/10.1051/0004-6361/202451611/37
http://linker.aanda.org/10.1051/0004-6361/202451611/37
http://linker.aanda.org/10.1051/0004-6361/202451611/38
http://linker.aanda.org/10.1051/0004-6361/202451611/39
http://linker.aanda.org/10.1051/0004-6361/202451611/40
http://linker.aanda.org/10.1051/0004-6361/202451611/41
http://linker.aanda.org/10.1051/0004-6361/202451611/42
https://doi.org/10.1051/0004-6361/202450810
https://doi.org/10.1051/0004-6361/202450810
https://doi.org/10.1051/0004-6361/202450996
https://doi.org/10.1051/0004-6361/202450996
https://doi.org/10.1051/0004-6361/202450786
https://doi.org/10.1051/0004-6361/202450786
http://linker.aanda.org/10.1051/0004-6361/202451611/46
http://linker.aanda.org/10.1051/0004-6361/202451611/47
http://linker.aanda.org/10.1051/0004-6361/202451611/48
http://linker.aanda.org/10.1051/0004-6361/202451611/49
http://linker.aanda.org/10.1051/0004-6361/202451611/49
http://linker.aanda.org/10.1051/0004-6361/202451611/50
http://linker.aanda.org/10.1051/0004-6361/202451611/51
http://linker.aanda.org/10.1051/0004-6361/202451611/52
http://linker.aanda.org/10.1051/0004-6361/202451611/53
http://linker.aanda.org/10.1051/0004-6361/202451611/53
http://linker.aanda.org/10.1051/0004-6361/202451611/54
http://ascl.net/2308.010
http://linker.aanda.org/10.1051/0004-6361/202451611/56
http://linker.aanda.org/10.1051/0004-6361/202451611/56
http://linker.aanda.org/10.1051/0004-6361/202451611/57
http://linker.aanda.org/10.1051/0004-6361/202451611/58
http://linker.aanda.org/10.1051/0004-6361/202451611/59
http://linker.aanda.org/10.1051/0004-6361/202451611/60
http://linker.aanda.org/10.1051/0004-6361/202451611/60
http://linker.aanda.org/10.1051/0004-6361/202451611/61


Euclid Collaboration et al.: A&A, 693, A249 (2025)

Hooper, D. C., Schöneberg, N., Murgia, R., et al. 2022, JCAP, 10, 032
Hubert, J., Schneider, A., Potter, D., Stadel, J., & Giri, S. K. 2021, JCAP, 10, 040
Huo, R., Kaplinghat, M., Pan, Z., & Yu, H.-B. 2018, Phys. Lett. B, 783, 76
Ichiki, K., Oguri, M., & Takahashi, K. 2004, Phys. Rev. Lett., 93, 071302
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077125, Romania

87 Instituto de Astrofísica de Canarias, Calle Vía Láctea s/n, 38204
San Cristóbal de La Laguna, Tenerife, Spain

88 Departamento de Astrofísica, Universidad de La Laguna, 38206 La
Laguna, Tenerife, Spain

89 Dipartimento di Fisica e Astronomia “G. Galilei”, Università di
Padova, Via Marzolo 8, 35131 Padova, Italy

90 Departamento de Física, FCFM, Universidad de Chile, Blanco
Encalada 2008, Santiago, Chile

91 Universität Innsbruck, Institut für Astro- und Teilchenphysik, Tech-
nikerstr. 25/8, 6020 Innsbruck, Austria

92 Satlantis, University Science Park, Sede Bld 48940, Leioa-Bilbao,
Spain

93 Instituto de Astrofísica e Ciências do Espaço, Faculdade de Ciên-
cias, Universidade de Lisboa, Tapada da Ajuda 1349-018, Lisboa,
Portugal

94 Universidad Politécnica de Cartagena, Departamento de Elec-
trónica y Tecnología de Computadoras, Plaza del Hospital 1, 30202
Cartagena, Spain

95 INFN-Bologna, Via Irnerio 46, 40126 Bologna, Italy
96 Infrared Processing and Analysis Center, California Institute of

Technology, Pasadena, CA 91125, USA
97 INAF, Istituto di Radioastronomia, Via Piero Gobetti 101, 40129

Bologna, Italy
98 Astronomical Observatory of the Autonomous Region of the Aosta

Valley (OAVdA), Loc. Lignan 39, I-11020 Nus, (Aosta Valley),
Italy

99 School of Physics and Astronomy, Cardiff University, The Parade,
Cardiff CF24 3AA, UK

100 Center for Computational Astrophysics, Flatiron Institute, 162 5th
Avenue, 10010 New York, NY, USA

101 Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay,
France

102 Centre de Calcul de l’IN2P3/CNRS, 21 avenue Pierre de Coubertin,
69627 Villeurbanne Cedex, France

103 Department of Mathematics and Physics E. De Giorgi, University
of Salento, Via per Arnesano, CP-I93, 73100 Lecce, Italy

104 INAF-Sezione di Lecce, c/o Dipartimento Matematica e Fisica, Via
per Arnesano, 73100 Lecce, Italy

A249, page 31 of 32



Euclid Collaboration et al.: A&A, 693, A249 (2025)

105 INFN, Sezione di Lecce, Via per Arnesano, CP-193, 73100 Lecce,
Italy

106 Junia, EPA department, 41 Bd Vauban, 59800 Lille, France
107 INFN, Sezione di Trieste, Via Valerio 2, 34127 Trieste, TS, Italy
108 ICSC – Centro Nazionale di Ricerca in High Performance Comput-

ing, Big Data e Quantum Computing, Via Magnanelli 2, Bologna,
Italy

109 Instituto de Física Teórica UAM-CSIC, Campus de Cantoblanco,
28049 Madrid, Spain

110 CERCA/ISO, Department of Physics, Case Western Reserve Uni-
versity, 10900 Euclid Avenue, Cleveland, OH 44106, USA

111 Laboratoire Univers et Théorie, Observatoire de Paris, Université
PSL, Université Paris Cité, CNRS, 92190 Meudon, France

112 Dipartimento di Fisica e Scienze della Terra, Università degli Studi
di Ferrara, Via Giuseppe Saragat 1, 44122 Ferrara, Italy

113 Istituto Nazionale di Fisica Nucleare, Sezione di Ferrara, Via
Giuseppe Saragat 1, 44122 Ferrara, Italy

114 Kavli Institute for the Physics and Mathematics of the Universe
(WPI), University of Tokyo, Kashiwa, Chiba 277-8583, Japan

115 Ludwig-Maximilians-University, Schellingstrasse 4, 80799
Munich, Germany

116 Dipartimento di Fisica – Sezione di Astronomia, Università di Tri-
este, Via Tiepolo 11, 34131 Trieste, Italy

117 Minnesota Institute for Astrophysics, University of Minnesota, 116
Church St SE, Minneapolis, MN 55455, USA

118 Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS,
Laboratoire Lagrange, Bd de l’Observatoire, CS 34229, 06304
Nice cedex 4, France

119 Institute for Astronomy, University of Hawaii, 2680 Woodlawn
Drive, Honolulu, HI 96822, USA

120 Department of Physics & Astronomy, University of California
Irvine, Irvine, CA 92697, USA

121 Department of Astronomy & Physics and Institute for Compu-
tational Astrophysics, Saint Mary’s University, 923 Robie Street,
Halifax, Nova Scotia B3H 3C3, Canada

122 Departamento Física Aplicada, Universidad Politécnica de Carta-
gena, Campus Muralla del Mar, 30202 Cartagena, Murcia, Spain

123 Department of Physics, Oxford University, Keble Road, Oxford
OX1 3RH, UK

124 Institute of Cosmology and Gravitation, University of Portsmouth,
Portsmouth PO1 3FX, UK

125 Department of Computer Science, Aalto University, PO Box
15400, Espoo FI-00 076, Finland

126 Ruhr University Bochum, Faculty of Physics and Astronomy,
Astronomical Institute (AIRUB), German Centre for Cosmological
Lensing (GCCL), 44780 Bochum, Germany

127 DARK, Niels Bohr Institute, University of Copenhagen, Jagtvej
155, 2200 Copenhagen, Denmark

128 Univ. Grenoble Alpes, CNRS, Grenoble INP, LPSC-IN2P3, 53,
Avenue des Martyrs, 38000 Grenoble, France

129 Department of Physics and Astronomy, Vesilinnantie 5, 20014 Uni-
versity of Turku, Finland

130 Serco for European Space Agency (ESA), Camino bajo del
Castillo, s/n, Urbanizacion Villafranca del Castillo, Villanueva de
la Cañada 28692 Madrid, Spain

131 ARC Centre of Excellence for Dark Matter Particle Physics, Mel-
bourne, Australia

132 Centre for Astrophysics & Supercomputing, Swinburne University
of Technology, Hawthorn, Victoria 3122, Australia

133 School of Physics and Astronomy, Queen Mary University of Lon-
don, Mile End Road, London E1 4NS, UK

134 Department of Physics and Astronomy, University of the Western
Cape, Bellville, Cape Town 7535, South Africa

135 ICTP South American Institute for Fundamental Research, Insti-
tuto de Física Teórica, Universidade Estadual Paulista, São Paulo,
Brazil

136 Oskar Klein Centre for Cosmoparticle Physics, Department of
Physics, Stockholm University, Stockholm SE-106 91, Sweden

137 Astrophysics Group, Blackett Laboratory, Imperial College Lon-
don, London SW7 2AZ, UK

138 INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, 50125
Firenze, Italy

139 Dipartimento di Fisica, Sapienza Università di Roma, Piazzale
Aldo Moro 2, 00185 Roma, Italy

140 Centro de Astrofísica da Universidade do Porto, Rua das Estrelas,
4150-762 Porto, Portugal

141 Dipartimento di Fisica, Università di Roma Tor Vergata, Via della
Ricerca Scientifica 1, Roma, Italy

142 INFN, Sezione di Roma 2, Via della Ricerca Scientifica 1, Roma,
Italy

143 Institute of Astronomy, University of Cambridge, Madingley Road,
Cambridge CB3 0HA, UK

144 Theoretical astrophysics, Department of Physics and Astronomy,
Uppsala University, Box 515, 751 20 Uppsala, Sweden

145 Department of Physics, Royal Holloway, University of London,
London TW20 0EX, UK

146 Mullard Space Science Laboratory, University College London,
Holmbury St Mary, Dorking, Surrey RH5 6NT, UK

147 Department of Astrophysical Sciences, Peyton Hall, Princeton Uni-
versity, Princeton, NJ 08544, USA

148 Niels Bohr Institute, University of Copenhagen, Jagtvej 128, 2200
Copenhagen, Denmark

149 Center for Cosmology and Particle Physics, Department of Physics,
New York University, New York, NY 10003, USA

A249, page 32 of 32


	Introduction
	Non-minimal particle dark matter models
	Cold plus warm dark matter
	Dark matter with one-body decay 
	Dark matter with two-body decay
	ETHOS n=0 

	Emulating the non-linear evolution 
	Cold plus warm dark matter 
	Dark matter with one-body decay
	Dark matter with two-body decay
	ETHOS n=0
	Baryonic feedback

	Forecast methodology 
	Likelihood
	Observable power spectra
	Boltzmann code 
	Parameters and priors

	Results and discussion
	Cold plus warm dark matter 
	Dark matter with one-body decay
	Dark matter with two-body decay
	ETHOS n=0 

	Prospects
	Summary and conclusions 
	References

