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Abstract: Background: Early prediction of ICU death in acute hypoxemic respiratory failure
(AHRF) could inform clinicians for targeting therapies to reduce harm and increase survival.
We sought to determine clinical modifiable and non-modifiable features during the first
24 h of AHRF associated with ICU death. Methods: This is a development, testing, and
validation study using data from a prospective, multicenter, nation-based, observational
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cohort of 1241 patients with AHRF (defined as PaO2/FiO2 ≤ 300 mmHg on mechanical
ventilation [MV] with positive end-expiratory pressure [PEEP] ≥ 5 cmH2O and FiO2 ≥ 0.3)
from any etiology. Using relevant features captured at AHRF diagnosis and within 24 h, we
developed a logistic regression model following variable selection by genetic algorithm and
machine learning (ML) approaches. Results: We analyzed 1193 patients, after excluding
48 patients with no data at 24 h after AHRF diagnosis. Using repeated random sampling,
we selected 75% (n = 900) for model development and testing, and 25% (n = 293) for final
validation. Risk modeling identified six major predictors of ICU death, including patient’s
age, and values at 24 h of PEEP, FiO2, plateau pressure, tidal volume, and number of
extrapulmonary organ failures. Performance with ML methods was similar to logistic
regression and achieved a high area under the receiver operating characteristic curve
(AUROC) of 0.88, 95%CI 0.86–0.90. Validation confirmed adequate model performance
(AUROC 0.83, 95%CI 0.78–0.88). Conclusions: ML and traditional methods led to an
encouraging model to predict ICU death in ventilated AHRF as early as 24 h after diagnosis.
More research is needed to identify modifiable factors to prevent ICU deaths.

Keywords: acute hypoxemic respiratory failure; ICU mortality; clinical trials; lung-
protective ventilation; machine learning; mortality prediction; observational studies

1. Introduction
Acute hypoxemic respiratory failure (AHRF), as defined by PaO2/FiO2 ≤ 300 mmHg

on positive end-expiratory pressure (PEEP) ≥ 5 cmH2O and FiO2 ≥ 0.3 under mechani-
cal ventilation (MV), is a frequent and heterogeneous clinical syndrome in the intensive
care unit (ICU) with a reported mortality ranging between 35% and 55% [1–6]. There
is a wide variability in the definition and description of the baseline characteristics of
this syndrome [1,5–7]. With a wide range of etiologies and manifestations (coma, acute
heart failure, stroke, sepsis, pneumonia, trauma, etc.), it usually requires endotracheal
intubation and MV. It is estimated that worldwide, 1 million patients develop AHRF every
year [8]. Conversely, hypoxemia is common in patients on MV, although there is conflicting
information regarding prevalence and outcome [1–9].

ICU patients have a broad range of baseline clinical characteristics that will progress
for benefit or harm, despite the implementation of best management guidelines [10,11].
In general, critical care physicians have a limited ability to predict the death of AHRF
patients in ICU very early, despite existing prediction models combining multiple variables
driving prognosis [12,13]. Commonly used general risk prediction scores such as SAPS-II
and APACHE-2 have shown to be unreliable [14]. A more accurate and clinically relevant
estimation for assessment of ICU outcome might be beneficial for targeting therapeutic
interventions in AHRF patients to avoid iatrogenic harm and to enhance organ dysfunction
recovery. AHRF outcome is usually influenced by a wide spectrum of clinical features
dependent and independent of pulmonary function [1,2,10,11,15,16]. Identifying modifiable
clinical variables that could be associated with death in ICU within 24 h of therapy could
suggest treatment alternatives to increase survival. The modern use of machine learning
(ML), a healthcare innovation that identifies a recognizable problem with a likely solvable
solution, could capture a complex interaction among variables [17,18] associated with
AHRF outcome.

Few studies have investigated the prediction of ICU mortality in AHRF in the era of
lung-protective MV. Predicting AHRF outcome could inform clinicians’ decision making
by targeting specific therapeutic interventions to facilitate organ recovery, reduce harm,
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and decrease mortality. Therefore, in this study we aimed to assess the value of machine
learning approaches in the development of a multivariable model for an early prediction of
ICU death in patients with AHRF.

2. Methods
This is a secondary analysis of an observational, non-interventional, multicenter study,

approved by the Ethics Committees of Hospital Universitario Dr. Negrín (Las Palmas de
Gran Canaria, Spain, #2021-321-1), with preexisting ethical approval/exemptions allowing
retrospective analysis [1]. The need for informed consent was waived based on Spanish
legislation for biomedical research, due to the retrospective nature of analysis, anonymiza-
tion/dissociation of data, and no potential harm or benefit to patients (Supplemental File).
The study was conducted following the principles for medical research of the Declaration
of Helsinki [19] and the transparent reporting of a multivariable prediction model for
individual prognosis or diagnosis (TRIPOD) guidelines for prediction models [20].

We used a large dataset of AHRF patients representing the full diversity of AHRF
patients seen in ICUs and treated with lung-protective MV [1]. We excluded patients who
died or were extubated during the first day of AHRF diagnosis. All our patients were
treated from admission into ICU. For prediction of ICU death, we followed three steps:
(i) a methodology to report the model’s prediction, (ii) to present the performance of the
prediction, and (iii) to explain the model’s reasoning.

2.1. Sites, Patient Populations and Study Design

We performed a comprehensive secondary analysis, termed the MEMORIAL (MachinE
learning Model to predict ICU Outcome in patients with acute hypoxemic RespIratory
fAiLure) Study, of an unrestricted dataset derived from 1241 adult (≥18 years) patients
with AHRF [1] from any etiology, treated with lung-protective MV, conducted at 22 ICUs
from 14 geographical areas of Spain, and enrolled during three periods covering several
seasons (Supplemental File). Based on previous work [21], we focused our analysis on
variables collected within the first 24 h of AHRF diagnosis to estimate early probability
of ICU death, independent of any underlying disease or cause of death (Figure S1). We
analyzed a total of 1193 patients (Tables 1 and S1), after excluding 48 patients with no data
at 24 h. Patients were excluded if they were extubated or died during the first day of AHRF
diagnosis (Table S2). The unit of observation was having data collected at AHRF diagnosis
(T0) and at 24 h (T24) (Tables 1, S1 and S2).

We used harmonized data from 22 hospitals across Spain (Supplemental File). We used
variables (Tables S3 and S4) including demographics, comorbidities, cause of AHRF (or
reason for MV), acute physiology and chronic health evaluation II (APACHE II) score [22]
during the first 24 h of AHRF diagnosis, and data from ventilator settings and lung
mechanics [tidal volume (VT), respiratory rate (RR), positive end-expiratory pressure
(PEEP), plateau pressure (Pplat)], and gas exchange [(PaO2, PaCO2, FiO2, PaO2/FiO2, pH)]
at T0 and T24. We recorded the sequential organ failure assessment (SOFA) score [23] and
occurrence of extrapulmonary organ system failures (OFs) included in the SOFA scale at
diagnosis of AHRF and 24 h later. Sepsis was defined by Sepsis-3 criteria [24]. We recorded
the date and status (alive or dead) of patients at ICU and hospital discharge. Primary
outcome was all-cause ICU mortality (defined as death while admitted into ICU).
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Table 1. Baseline characteristics and outcome data of 1241 ventilated patients with acute hypoxemic
respiratory failure (AHRF) and 1193 patients with data at 24 h after AHRF diagnosis.

Variables N = 1241
T0

N = 1193
T0 p-Value

Age, years, median (IQR) 65 (54–74) 65 (54–74)
Age, years, mean ± SD 62.8 ± 14.3 62.7 ± 14.4 0.864

Sex n (%: 95%CI) n (%:95%CI)
Male 834 (67.2: 64.6 to 69.8) 806 (67.6: 64.9 to 70.2) 0.888
Female 407 (32.8: 30.2 to 35.4) 387 (32.4: 29.8 to 35.1) 0.888

Etiology (reasons for invasive MV), n (%: 95%CI)
Post-surgery 208 (16.8: 14.7 to 18.8) 190 (15.9: 13.9 to 18.0) 0.617
Stroke or coma 191 (15.4: 13.4 to 17.4) 189 (15.8: 13.8 to 17.9) 0.806
Pneumonia 169 (13.6: 11.7 to 15.5) 167 (14.0: 12.0 to 16.0) 0.823
Sepsis/Acute pancreatitis 152 (12.3;10.4 to 14.1) 146 (12.2: 10.4 to 14.1) 1
Trauma 151 (12.2: 10.4 to 14.0) 150 (12.6: 10.7 to 14.5) 0.806
Cardiac arrest 117 (9.4: 7.8 to 11.1) 108 (9.1: 7.4 to 10.7) 0.807
Cardiac failure/fluid overload 62 (5.0: 3.8 to 6.2) 59 (5.0: 3.7 to 6.2) 1
Aspiration/Inhalation 49 (4.0: 2.9 to 5.0) 47 (3.9: 2.8 to 5.0) 0.920
Others 137 (11.0: 9.3 to 12.8) 132(11.1: 9.3 to 12.8) 1
Unknown etiology 5 (0.4: 0 to 0.1) 5 (0.4: 0.0 to 0.1) 1

APACHE II score, mean ± SD 21.0 ± 8.0 § 21.0 ± 7.8 § 1.0

SOFA score, mean ± SD 8.95 ± 3.47 8.94 ± 3.39 0.943

FiO2, mean ± SD 0.63 ± 0.22 0.63 ± 0.21 1.0

PaO2, mmHg, mean ± SD 98.9 ± 34.6 98.8 ± 34.4 0.943

PaO2/FiO2, mmHg, mean ± SD 170.5 ± 64.1 170.9 ± 64.0 0.878

PaCO2, mmHg, mean ± SD 46.1 ± 12.4 45.9 ±12.0 0.686

pH, mean ± SD 7.32 ± 0.11 7.32 ± 0.11 1.0

VT, mL/kg PBW, mean ± SD 6.88 ± 1.07 6.89 ± 1.06 0.817

Respiratory rate, ventilator cycles/min, mean ± SD 19.7 ± 4.4 19.7 ± 4.4 1.0

Minute ventilation, L/min, mean ± SD 8.6 ± 2.1 8.6 ± 2.1 1.0

PEEP, cmH2O, mean ± SD 7.8 ± 2.8 7.8 ± 2.8 1.0

Plateau pressure, cmH2O, mean ± SD 22.3 ± 5.5 22.3 ± 5.4 1.0

Driving pressure, cmH2O, mean ± SD 14.5 ± 4.9 14.4 ± 4.8 0.611

No. extrapulmonary OFs, mean ± SD 1.72 ± 1.05 1.71 ± 1.03 0.813

Length of ICU stay, d, median (IQR) 10 (4–21) 11 (5–21) 0.449

Days from last day MV to ICU discharge, median (IQR) 2 (0–5) 2 (0–5) 0.734

All-cause ICU mortality, n (%: 95%CI) 438 (35.3: 32.6 to 38.0) 416 (34.9: 32.2 to 37.7) 0.862

All-cause hospital mortality, n (%: 95%CI) 514 (41.4: 38.7 to 44.2) 489 (41.0: 38.2 to 43.8) 0.862
APACHE: acute physiology and chronic health evaluation; AHRF: acute hypoxemic respiratory failure; CI:
confidence intervals; d: days; FiO2: fraction of inspired oxygen concentration; ICU: intensive care unit; IQR:
interquartile range; MV: mechanical ventilation; OF: organ failure; PBW: predicted body weight; PEEP: positive
end-expiratory pressure; SD: standard deviation; SOFA: sequential organ failure assessment scale; T0: at AHRF
diagnosis; VT: tidal volume. § APACHE II was not reported at baseline in 40 patients from the entire 1241 cohort,
and in 39 from the 1193 patients.

2.2. Predefined Rules, Variable Selection, and Statistical Analysis

The study was conducted in three steps (Figure S2). For the first step (model training
and testing) and third step (validation) we used random sampling for selecting 75.4%
(n = 900) and 24.6% (n = 293), respectively (Supplemental File). We searched in the data
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for model specification since the model was not pre-specified. Once risk features were
identified by univariate logistic regression analysis (Table S5), we performed a multivariable
logistic regression analysis. In the second step, and since prediction models often perform
poorly when assessed in validation studies, we performed internal–external validation
by leaving out patients enrolled in each of the three periods (phases) once [1,25,26]. The
strength for assessing internal–external validation increases when studies include patients
from different hospitals, as in our patient population. We revalidated the model by testing
it on 293 unseen patients.

Although we collected 246 variables in each patient during their ICU stay, variable
selection has vital importance in developing an actionable and interpretable prediction
model in clinical practice. Our goal for variable selection was to include clinically relevant
features, avoiding redundant variables. We analyzed the following variables as potential
predictors of ICU death: age at ICU admission, gender, comorbidities (only those with a
prevalence ≥ 5%) (Tables S3 and S4), number of extrapulmonary OFs, SOFA score, PaO2,
PaO2/FiO2, FiO2, PaCO2, pH, VT, RR, PEEP, Pplat, driving pressure (calculated as Pplat
minus PEEP), and minute ventilation at T0 and T24 (Tables S6 and S7). No information
on medication or special procedures was used in our prediction model. We defined and
specified the statistical analysis plan before the final statistical analyses were conducted
(Supplemental File).

We first performed descriptive statistical analyses. We performed a univariate analysis
to predict ICU outcome and identified variables that could be included in the potential
prediction model based on predefined rules and area under the receiver operating charac-
teristic curves (AUCROC). Because the inclusion of all available variables in ML can lead
to complex models, we screened the collected variables using a genetic algorithm (GA)
variable selection method [27] to achieve parsimony with a small subset of variables while
excluding redundant variables [28]. We applied GA to optimize the selected variables by
minimizing the Akaike and the Bayesian information criteria (AIC, BIC) [29]. We report the
variance inflation factor as a measure of multicollinearity in regression logistic analysis. A
two-sided p-value < 0.005 was considered for identification of prognostic variables to keep
the false discovery rate below 5% [30].

We constructed the MEMORIAL prediction model by considering the minimum num-
ber of features selected by GA that provided a similar performance as an all-variables
prediction model. We used a five-fold cross-validation to randomly split the 900-patient
cohort into 720 patients for training and 180 for testing (see Supplemental File). We
evaluated this minimum number features model using logistic regression and three su-
pervised ML methods: multilayer perceptron (MLP), random forest (RF), and support
vector machine (SVM) [31,32] (Supplement File), to assess the performance using AUROC
of each ML. Calculations were conducted using R Core Team software 2024 (R version
4.4.2 (https://www.r-project.org (R Foundation for Statistical Computing, Vienna, Austria).
We assessed calibration and discrimination in a validation cohort of 293 unseen random
patients for validation [33,34] (Supplemental File).

Figures 1 and S2 summarize the study design.

https://www.r-project.org
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(p = 0.686) among the parent (n = 1241), study (n = 1193), training/testing (n = 900), and 
validation cohorts (n = 293), respectively (Tables 1 and 2). We observed a broad range of 
changes between values at baseline and after 24 h of routine ICU management. No pa-
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The median age at the time of AHRF was 65 years, with fewer women (32.4%) than men 
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Figure 1. Diagram representing the study design. The flowchart illustrates the scheme for the
database of 1193 patients with acute hypoxemic respiratory failure (AHRF), selection of variables
for final analysis, machine learning approaches, and comparisons among prediction models. Once
the most relevant variables were selected by a genetic algorithm (GA) in the dataset of 900 patients,
this dataset was divided into five folders to perform five-fold randomized cross-validation, repeated
100 times using machine learning. AIC: Akaike information criterion, BIB: Bayesian information
criterion, MLP: multilayer perceptron, RF: random forest, RL: logistic regression; SVM: support
vector machine.

3. Results
After removing 48 patients with no data at 24 h (Table S2), we included 1193 patients

in our analysis (Table 1). ICU mortality was 35% (n = 416), with no differences in mortality
(p = 0.686) among the parent (n = 1241), study (n = 1193), training/testing (n = 900), and
validation cohorts (n = 293), respectively (Tables 1 and 2). We observed a broad range of
changes between values at baseline and after 24 h of routine ICU management. No patients
were discharged and subsequently readmitted to the ICU during the study period. The
median age at the time of AHRF was 65 years, with fewer women (32.4%) than men (67.6%).
The patients’ race was not available in our datasets.

Only comorbidities with a >5% prevalence were considered in the model
(Tables S3 and S4). In the univariate analysis, 16 variables had a prognostic relation with
ICU death and 12 variables had an AUROC ≥ 0.60 (Table S5). In the multivariable logistic
regression analysis, fewer features became predictors of ICU death (Tables S6–S10). The
performance of the model with 37 variables had an AUCROC of 0.89 (95%CI 0.88–0.91),
but most variables were correlated (Figures S3 and S4). After applying GA for variable
selection using optimization of BIC, the AUCROC with six variables was 0.88 (95%CI
0.86–0.90) (Table 3) without strong multicollinearity (Table S10). Those six variables with
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strong relation to ICU death were age and values at T24 of PEEP, Pplat, FiO2, number
of extrapulmonary OFs, and VT (Figure S5). The order of importance of those variables
was: PEEP at T24, Pplat at T24, patient’s age at ICU admission, FiO2 at T24, number of
extrapulmonary OFs at T24, and VT at T24. Of note, PEEP and VT at T24 had an OR < 1
and, therefore, were protective (greater values associated with lower mortality). A sensi-
tivity analysis sustained these findings (Table S11). A data-driven stratification based on
thresholds for those variables had a distinctive ICU mortality, mostly at T24.

Table 2. Baseline and outcome data of 1193 ventilated patients with acute hypoxemic respiratory
failure, randomly sampled into training/testing cohort (n = 900) and validation cohort (n = 293).

Variables N = 900
T0

N = 293
T0 p-Value

Age, years, median (IQR) 65 (54–74) 65 (55–74)
Age, years, mean ± SD 62.5 ± 14.5 63.2 ± 13.9 0.469
Sex n (%: 95%CI) n (%:95%CI)
Male 607 (67.4: 64.4 to 70.5) 199 (67.9: 62.6 to 73.3) 0.920
Female 293 (32.6: 29.5 to 35.6) 94 (32.1: 26.7 to 37.4) 0.920
Etiology (reasons for invasive MV), n (%: 95%CI)

Post-surgery 136 (15.1: 12.8 to 17.5) 54 (18.4: 14.0 to 22.9) 0.209
Stroke or coma 140 (15.6: 13.2 to 17.9) 49 (16.7: 12.5 to 21.0) 0.699
Pneumonia 133 (14.8: 12.5 to 17.1) 34 (11.6: t.9 to 15.3) 0.206
Sepsis/Acute pancreatitis 113 (12.6: 10.4 to 14.7) 33 (11.3: 7.6 to 14.9) 0.632
Trauma 114 (12.7: 10.4 to 14.0) 36 (12.3: 8.5 to 16.1) 1.0
Cardiac arrest 79 (8.8: 6.9 to 10.6) 29 (9.9: 6.5 to 13.3) 0.647
Cardiac failure/fluid overload 44 (4.9: 3.5 to 6.3) 15 (5.1: 2.6 to 7.6) 1.0
Aspiration/Inhalation 37 (4.1: 2.8 to 5.4) 10 (3.4: 1.3 to 5.5) 0.718
Others 99 (11.0: 9.0 to 13.0) 33 (11.3: 7.6 to 14.9) 1.0
Unknown etiology 5 (0.6: 0 to 1) 0 (0: 0 to 0) -

APACHE II score, mean ± SD 20.9 ± 7.9 § 21.2 ± 7.7 § 0.570

SOFA score, mean ± SD 8.9 ± 3.3 9.0 ± 3.5 0.657
FiO2, mean ± SD 0.63 ± 0.22 0.62 ± 0.21 0.495
PaO2, mmHg, mean ± SD 99.3 ± 35.6 97.5 ± 30.7 0.438
PaO2/FiO2, mmHg, mean ± SD 170.9 ± 63.8 170.8 ± 64.4 0.982
PaCO2, mmHg, mean ± SD 45.7 ± 12.0 46.7 ± 12.1 0.217
pH, mean ± SD 7.32 ± 0.11 7.31 ± 0.11 0.177
VT, mL/kg PBW, mean ± SD 6.9 ± 1.0 6.8 ± 1.1 0.147
Respiratory rate, ventilator cycles/min, mean ± SD 20 ± 4 20 ± 5 1.0
Minute ventilation, L/min, mean ± SD 8.6 ± 2.1 8.7 ± 2.1 0.479
PEEP, cmH2O, mean ± SD 8 ± 3 8 ± 3 1.0
Plateau pressure, cmH2O, mean ± SD 22 ± 5 22 ± 5 1.0
Driving pressure, cmH2O, mean ± SD 14 ± 5 14 ± 5 1.0
No. extrapulmonary OFs, mean ± SD 1.7 ± 1.0 1.8 ± 1.0 0.137
Length of ICU stay, d, median (IQR) 10 (7.22–21) 12 (5–21) 0.944
Days from last day MV to ICU discharge, median (IQR) 2 (0–5) 2 (0–6) 0.825
All-cause ICU mortality, n (%: 95%CI) 312 (34.7: 31.6 to 37.8) 104 (35.5: 30.0 to 41.0) 0.841
All-cause hospital mortality, n (%: 95%CI) 369 (41.0: 37.8 to 44.2) 120 (41.0: 35.3 to 46.6) 1.0

APACHE: acute physiology and chronic health evaluation; CI: confidence intervals; d: days; FiO2: fraction of
inspired oxygen concentration; ICU: intensive care unit; IQR: interquartile range; MV: mechanical ventilation;
OF: organ failure; PBW: predicted body weight; PEEP: positive end-expiratory pressure; SD: standard deviation;
SOFA: sequential organ failure assessment scale; VT: tidal volume. § APACHE II was not reported at baseline in
30 patients from the entire 900 cohort, and in 9 from the 293 patients.
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Table 3. Performance of a parsimonious model for predicting ICU mortality (6-variable model) within
24 h of diagnosis of AHRF using the genetic algorithm variable selection method, logistic regression
analysis, and minimizing the Bayesian information criterion (BIC) in 900 patients. This model reduced
the number of variables from 37 to 6. Data are expressed as mean values of logistic coefficients.

Variable b SE OR 95% CI p-Value
Intercept −8.19 0.98 0 0–0 <0.001
Age 0.05 0.01 1.05 1.04–1.07 <0.001
VT at T24 −0.25 0.09 0.78 0.64–0.93 0.007
FIO2 at T24 1.78 0.64 5.92 1.71–20.79 0.005
PEEP at T24 −0.24 0.04 0.79 0.73–0.85 <0.001
Plateau pressure at T24 0.26 0.02 1.29 1.24–1.35 <0.001
No. extrapulmonary OFs at T24 0.87 0.1 2.38 1.97–2.89 <0.001
AIC 741.88
BIC 775.4986
AUC ROC 0.881 (0.860–0.903)

AHRF: acute hypoxemic respiratory failure, AIC: Akaike information criterion, AUC ROC: area under the receiving
operating characteristic curve, BIC: Bayesian information criterion, CI: confidence intervals, OF: extrapulmonary
organ failures included in the sequential organ failure assessment scale, OR: odds ratio, SE: standard error, T24: at
24 h of diagnosis of AHRF, VT: tidal volume.

Before implementing the ML model, we checked that patients and ICU deaths were
similarly distributed in the three phases of the study (Tables S12–S14). Internal validation of
the 6-variable model provided a high performance (AUCROC 0.88, 95%CI 0.84–0.93), using
MLP or conventional logistic regression (Table S15). Internal–external validation by leaving
each of the three phases out once provided an average AUCROC of 0.88 (95%CI 0.85–0.93)
by MLP and 0.87 (95%CI 0.85–0.92) by logistic regression (Table S16). The validation cohort,
using as few as 293 unseen patients, demonstrated a good performance of the model (AU-
CROC 0.83, 95%CI 0.78–0.88) (Table S17). Calibration and discrimination suggested good
reliability of predictions, with logistic regression being as good as multiplayer perceptron
ML (Figure S6).

4. Discussion
The main findings of this study are that prediction models of ICU mortality among

patients with AHRF provided adequate performance whether developed by ML techniques
or conventional regression analysis. Six clinical features (patient’s age, and values at
T24 of PEEP, Pplat, FiO2, number of extrapulmonary OFs, and VT) contained the most
prognostic information on ICU death within the first 24 h after diagnosis of AHRF. At
the time that the epidemiological study was designed [1], the focus of lung-protective
MV was to target VT, although recent data suggest that targeting driving pressure or
mechanical power could be more effective in ventilated patients [35,36]. In our study, most
patients with AHRF were ventilated according to the ARDS network and international
societies’ criteria [37,38], whereas most patients in other studies did not receive proven
or recommended approaches to lung-protective MV [2,9]. Clinical determinants of ICU
death in AHRF are multifactorial. Apart from patient age, the rest of the five variables that
were used to predict ICU mortality changed over 24 h with routine ICU management and
treatment for each specific condition, although it is unknown whether combining precision
medicine modalities for each predictor is synergistic. We are unaware of any complex
interactions between the variables and treatment [11]. Even when complex interactions and
treatment are identified among subgroups, a prediction model may unravel heterogeneity
in treatment responses [10].



J. Clin. Med. 2025, 14, 1711 9 of 14

Previous observational studies in patients with acute respiratory failure had large
variability in the definitions and description of baseline features, and had a lack of clini-
cally relevant information on management and complications [2–4,7,39–44]. In our study,
baseline characteristics were useless for predicting ICU outcome, and PaO2/FiO2 did not
stratify patients by risk of death at baseline, but it worked at 24 h of AHRF diagnosis,
independent of the use of Berlin criteria [45] or the 150-mmHg threshold [46]. Other studies
have required the presence of parenchymal abnormalities, whereas our study did not
mandate radiographic findings for diagnosis of AHRF. On the other hand, much of the
information on differences in staffing, expertise, and practice surrounding managing AHRF
with MV at individual hospitals may not be captured in the available clinical data [16].
Although there are a broad range of features that may modify the risk of ICU death, little
is known about the true drivers of heterogeneity in treatment effects in AHRF (including
patients and relative preferences, hospital load, and organization) [14,16]. We recognize that
clinicians are often mostly interested in actionable and modifiable variables for improving
expected outcomes [10].

Little is known about how many hospitals may actually be needed for robust training.
Multicenter training allows the model to see more data and a more varied pattern of care,
which may improve generalizability [47]. As data from more hospitals become available
for training, models may become increasingly generalizable. Training and testing on
data from several hospitals likely performs better compared with data trained only at a
single hospital [48]. On the other hand, our sensitivity analysis assessed the robustness
of our ML findings. We acknowledge that fundamental differences between hospitals or
healthcare systems may affect the models’ ability to generalize to a given dataset, but we
believe that our data adequately represent the range of clinical context encountered in
ventilated AHRF patients. Changing a treating hospital may not always be an actionable
intervention, although detailing current MV guidelines represents an important initial step
for conducting further studies.

Based on our sensitivity analysis, it seems that most of the prognostic information
in the first 24 h for predicting ICU death was due to the greatest changes occurring with
adjustments of acute physiology, as suggested before [16]. One predictor is static (patient
age) and the other five variables are modifiable, time-varying, from T0 (diagnosis of AHRF)
to T24: applying PEEP, inspiratory Pplat, level of FiO2, treating extrapulmonary organ
failure, and setting appropriate VT. It has been known that ICU outcome is worse with
higher age [49], patients with severe hypoxemia requiring higher FiO2, and PEEP [13,46].
There is a direct relationship between Pplat and mortality [50], and the greater the number
of extrapulmonary OFs, the higher the mortality [51]. To date, the best strategies to achieve
improvement in AHRF have not been elucidated and should be subject to further research.
Of note, PEEP at T24 and VT at T24 had an OR < 1 and, therefore, were protective (greater
values were associated with lower mortality in AHRF), Predictors of ICU death were most
relevant if collected close to 24 h, suggesting that ventilator, gas-exchange, and organ failure
parameters at baseline are unhelpful for predicting outcome at the time of diagnosis of
AHRF. We have previously shown that restricting AHRF severity to the hypoxemia level at
baseline could lead to discrepancies in outcome prediction since hypoxemia is impacted by
clinician-set ventilatory strategies [46].

The strengths of our study include the broad inclusion and limited exclusion criteria.
Hence, our dataset represents the full diversity of AHRF patients seen in critical care units
in most ICUs in the developed world. Second, the model identified six simple variables
predicting ICU death that are routinely recorded and collected at the bedside of AHRF
ventilated patients. Also, in our analysis, we were able to identify different subpopulations
of AHRF patients with distinct mortality. Although one variable was static (patient age),
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the others changed with time, and contributed to high accuracy. Third, despite a similar
protocol for this study, working very differently at participating hospitals, we assessed
multicenter training and validation in the three phases and in the unseen cohort using tests
across resampling folds. Fourth, we identified common variables that ICU clinicians have
used in the management of AHRF across the world. Fifth, we think that a major finding
of this study is that baseline features did not explain the individual’s likelihood of ICU
outcome, suggesting that, in general, ICU treatment influences the potential outcome of
AHRF patients.

We also acknowledge that this study has some limitations. First, the model does not
include any information on medication, special procedures, or the socioeconomic status of
patient population. Second, the model does not include information of staffing, hospital
quality level, and individual and relative preferences, which are the main modifiable factors
in recent publications [16]. Third, the study was conducted in a European country following
international guidelines for the management of patients with AHRF [10,11,16,38]. Fourth,
no patients with COVID-19 were enrolled, since the study was conducted in the pre-COVID
era [1]. Finally, external validation of the proposed model in another clinical setting is
needed to confirm performance before clinical implementation can be considered [25]. Any
further validation of our model, including comparison to other general ICU risk predictions
models, should be carried out in a new, prospectively collected dataset, preferably in a
more diverse patient population.

In conclusion, six common variables are important to predict ICU mortality in venti-
lated patients with AHRF. Adherence to risk-precision-based management strategies may
reduce the ICU mortality in AHRF patients. If the prediction model is further validated,
clinicians, scientists, and health care administrators may impact the medical treatment that
could improve the outcome of patients with AHRF.
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