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Next-generation ground-based gravitational wave observatories will observe mergers of intermediate-
mass black holes (IMBHs) out to high redshift. Such IMBHs can form through runaway tidal
encounters in the cores of dense stellar clusters. In this paper, we ask if the gravitational wave
observation of a single merger event between two IMBHs, occurring in the aftermath of the coalescence
of the clusters in which they formed, can be used to infer the properties of their host clusters, such
as mass, redshift, and half-mass radius. We implement an astrophysically motivated analytic model
for cluster evolution and IMBH growth, and we perform IMBH binary parameter estimation using
a network of three next-generation detectors. We find that inferring the structural properties of
clusters in this way is challenging due to model degeneracy. However, the posteriors on the cluster
formation redshifts have relatively narrow peaks, and it may still be possible to infer the cluster
formation history by measuring a whole population of IMBH binary merger events.

I. INTRODUCTION

While the current LIGO-Virgo-KAGRA network of
gravitational wave (GW) observatories routinely detects
compact binary coalescences [1–3], the community is de-
veloping next-generation (XG) ground-based GW obser-
vatories, such as the Einstein Telescope (ET) [4] and
Cosmic Explorer (CE) [5]. With improved sensitivity at
frequencies of the order of a few Hz, these detectors will
observe the mergers of black holes (BHs) with masses in
the hundreds of solar masses out to high redshift [6–9].
As such, these detectors will give us access to the lower
end of the intermediate-mass black hole (IMBH) regime,
bridging the gap between stellar mass and supermassive
BHs. Understanding the IMBH population and their en-
vironments is important, because IMBHs are believed to
seed the growth of supermassive BHs [10].

There are several local optically selected IMBH candi-
dates with masses ∼ 105–106M⊙ possibly lurking in the
centers of dwarf galaxies [11–14]. IMBHs may also power
some ultraluminous X-ray sources, such as M82X-1 in
the starburst galaxy M82, which has been interpreted as
an accreting IMBH of ≃ 400M⊙ [15] (but see [16] for an
alternative interpretation of this source as a ∼ 26M⊙ BH
accreting beyond the Eddington limit). The hyperlumi-
nous X-ray source ESO243-49 HLX-1, with an inferred
BH mass of at least 500M⊙ [17] and its association with
a massive (∼ 106M⊙) young star cluster [18], is arguably
the strongest IMBH candidate. Current radio observa-
tions of Galactic globular clusters set an upper limit on
the mass of putative IMBHs accreting at the Bondi rate
in their centers to ≲ 1000M⊙ [19], although kinetic data
support the presence of IMBHs in some systems [20–22].
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Unlike supermassive BHs, confident detections of IMBHs
based on stellar dynamics are still elusive due to their
smaller radius of influence, which scales proportionally
to BH mass. Ultimately, the unequivocal detection of an
IMBH requires a BH mass measurement in the range 100–
106M⊙. Given the current challenges with dynamical and
electromagnetic probes, a promising alternative avenue
to measure IMBH masses is the observation of GWs from
the inspiral and merger of a BH binaries. The analysis of
gravitational waveforms provides a clean method to infer
IMBH masses and spins, not plagued by the uncertainties
related to accretion physics or stellar dynamics.

There is a multitude of proposed IMBH formation sce-
narios, that generally fall into one of the following three
categories (see Fig. 1 in Ref. [11]): (i) direct collapse of
low-metallicity gas clouds, (ii) growth of BH remnants of
metal-poor Population III (Pop. III) stars through gas
accretion, and (iii) growth of an initial seed through merg-
ers. The latter scenario includes three types of mergers in
dense star clusters: repeated BH mergers [23], repeated
stellar mergers [24], or repeated accretion of stars by a BH,
i.e., tidal disruption events (TDEs) [25]. An important
difference between these scenarios is that channels (i) and
(ii) are believed to operate only at high redshift (z ≳ 10),
when heavy elements are not so abundant, as they are
only effective at low metallicities. On the other hand,
the third scenario may occur at any redshift, as long as
sufficiently compact clusters form throughout cosmic time.
Therefore, mergers of binaries with IMBH components
formed via channels (i) and (ii) may be dominant in the
high-redshift Universe, while channel (iii) might produce
merger events even at lower redshifts.

Several mechanisms can lead to the formation and
merger of IMBH-IMBH binaries. One of the scenarios for
BH growth is the hierarchical assembly of BHs, first from
the stellar mass to the intermediate mass regime, and
then to the supermassive regime [26–28]. In this scenario,
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IMBHs first form from gravitational runaways in the cores
of dense star clusters. Clusters that reside within a few
kpcs from the center of their host galaxy undergo dy-
namical friction and can sink into the core before they
”evaporate” [29], where they merge with the nuclear star
cluster or with other inspiralling globular clusters (see e.g.
Sec. 7.2 of Ref. [30]). Dynamical friction also contributes
to the growth of the central nuclear star cluster [29, 31].
In this way, IMBHs assembled in different cluster environ-
ments are brought together as their host clusters carry
them along, eventually ending up in the central regions
of the galaxy [32]. For example, the compact stellar com-
plex IRS 13E is hypothesized to be the core of a dissolved
young star cluster hosting an IMBH that sank into the
Galactic center. However, the absence of a radio or X-ray
signature casts doubt on the presence of an IMBH at the
center of this system [33], that could be dominated by
a subcluster of stellar-mass BHs [34]. A second possible
scenario leading to the formation of IMBH-IMBH pairs
is the merger of ultra-dwarf galaxies. Dynamical friction
brings the IMBHs into the central regions, and the sinking
timescale can be significantly shorter if the IMBHs are
embedded in NSCs [35]. According to observations in
the local Universe, the NSC occupation fraction (i.e., the
fraction of systems with identified NSCs) is at least 80%
in the galaxy stellar mass range ∼ 108–1010M⊙: see the
right panel of Fig. 3 in [30, 36]. In a third scenario, star
clusters can form in the clumpy star-forming turbulent
environment of giant molecular cloud complexes, and then
merge hierarchically after sinking into the central regions.
This process can be very efficient and rapid, as suggested
by magnetohydrodynamic simulations [37]. In particular,
IMBHs can be brought together and form a binary much
more efficiently when surrounded by stellar clusters, as
the dynamical friction timescale can be effectively reduced
by orders of magnitude for the cluster-IMBH system due
to its higher dynamical mass (see also Fig. 3 of [35]). The
simulations of Ref. [38] suggest that the formation and
hardening of IMBH-IMBH pairs in the centers of dwarfs
is very efficient and leads to their merger.

There are two broad classes of gravitational runaway
channels that can form IMBHs in star clusters, based on
the timescale over which they operate: the “fast” and
“slow” mechanisms [39].

The fast channel operates early in the cluster’s evolu-
tion, and corresponds to either repeated stellar collisions
or successive BH-BH mergers. Stellar collisions require
very dense collisional systems with a small enough initial
relaxation time to allow for core-collapse before mas-
sive stars evolve to BHs. They result in the formation
of a massive star (which then collapses into an IMBH)
within ∼ 10 Myr [40–42]. For heavier stars the colli-
sional runaway scenario is likely to be limited by strong
stellar winds, which could lead to a mass loss rate that
exceeds the growth rate, especially in high-metallicity
systems [43, 44]. Therefore, this channel may only be
relevant in low-metallicity environments, because metal-
poor stars are expected to have a weaker wind-driven

mass loss. The second possible route for the fast channel
(i.e., successive BH-BH mergers) is limited by the escape
velocity of the cluster. The relativistic kick imparted
to the merger remnant could reach hundreds of km s−1,
leading to an ejection in all but the heaviest clusters (such
as the progenitors of ultracompact dwarfs, or nuclear star
clusters), that have a high enough escape velocity [45].

In the slow channel, after most BHs have been ejected
from the system, the subcluster of the few remaining BHs
becomes Spitzer-stable, and couples efficiently to the rest
of the cluster. A runaway BH then begins to grow through
the consumption of low-mass stars. It turns out that
the mass of the growing BH asymptotes to a value that
depends on the properties of the host environment [25,
46]. Such a growing BH from runaway tidal encounters
is unlikely to be ejected, because relativistic kicks do
not operate, and (by momentum conservation) BH-star
interactions impart an insignificant Newtonian recoil to
the BH (see Sec. 4.3 of Ref. [25]).

Assuming that binaries of IMBHs build up from the
coalescence of inspiralling globular clusters in the cen-
ters of galaxies, a precise characterization of the IMBH
masses and spins may allow us to connect them with the
properties of their cluster progenitors. Recent studies
have shown that XG detectors can measure the properties
of IMBHs out to a high redshift z [7–9]. In particular,
binaries with IMBH component masses ≲ 1000M⊙ at cos-
mic noon (z = 2) produce GWs with signal-to-noise ratio
(SNR) in the hundreds, such that their masses and redshift
can be measured with percent-level accuracy. There are
also proposals to constrain the properties of star clusters
using GW measurements of stellar-mass BH merger events
with current ground-based detectors; however, these infer-
ences are prone to contamination from the isolated binary
evolution channel, as well as other channels operating in
the stellar-mass regime [47–49].

In this paper, we assess how the detection and parame-
ter estimation (PE) of individual IMBH-IMBH mergers in
XG observatories can be exploited to infer the properties
of their host stellar clusters. We consider several different
binary IMBHs with total (source-frame) mass ≲ 1500M⊙
and redshift ≲ 8. For each of these systems, we generate
the corresponding GW signal with state-of-the-art wave-
form models and perform full Bayesian PE in a network of
XG detectors. We develop an astrophysically motivated
analytical model that relates the mass of the IMBH to
the initial conditions of the evolving cluster as a function
of time, assuming that the BH grows through successive
TDEs. Clusters in the tidal environment of a galaxy, or
in a giant star-forming complex, inspiral by dynamical
friction and deposit their formed IMBHs into the central
regions, where they pair up with another IMBH that
formed in another cluster that also sank into the center.
In alternative, IMBHs assembled in the centers of dwarf
galaxies can be brought together and form a bound pair
after their parent galaxies have merged (see Fig. 1 for a
schematic representation). For each IMBH merger, we
then combine the PE results and our analytical model
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FIG. 1. A sketch of the scenario examined in this paper: the
formation of IMBH binaries with mass components m1 and
m2 and their subsequent coalescence at redshift zm after the
merger of their host star clusters. Each star cluster has an
initial mass Mcl,0i, initial half-mass radius rh,0i, and formation
redshift zcl,0i, where i = 1, 2. The symbol ∆tg,i denotes the
time between the formation of each cluster and their merger,
while ∆td will denote the delay time between the merger of
the clusters and the merger of the IMBH binary.

to hierarchically infer the mass, half-mass radius, and
formation redshift of the progenitor host clusters.

The paper is structured as follows. In Sec. II we de-
velop our astrophysical model for BH growth and cluster
evolution. In Sec. III we present the cluster posterior
distributions for a set of simulated IMBH binary events.
In Sec. IV we discuss the limitations of our model. Finally,
in Sec. V we present our conclusions and directions for
future work. To improve readability, some technical mate-
rial is presented in Appendix. In Appendix A we discuss
our calculation of the tidal capture radius; in Appendix B
we compute the conditions for cluster dissolution and the
effect of BH feedback; in Appendix C we briefly discuss
our parameter estimation calculation; in Appendix D
we demonstrate that the spin of a BH growing through
runaway stellar consumption asymptotes to zero; and in
Appendix E we present marginalized posteriors of the
cluster properties in some specific cases.

II. BLACK HOLE GROWTH MODEL

A model for the evolution of the BH mass MBH as a
function of time t given the cluster parameters is required
to relate the mass of the growing BH to the properties
of its host cluster. Since the cluster expands and loses
mass as it evolves, we define this dependence through
the cluster’s global initial conditions: the initial cluster
mass Mcl,0, the initial half-mass radius rh,0, and the

redshift of cluster formation zcl,0. In this section we
present the central BH growth rate formula (Sec. II A),
the evolution of the cluster’s global properties (Sec. II B),
an analytic time-dependent BH mass solution (Sec. II C),
an investigation of how the BH growth is affected by the
cluster’s initial conditions (Sec. II D), and a calculation
of the delay time ∆td between cluster coalescence and
IMBH binary merger (Sec. II E).

A. Stellar consumption rate

Assuming most of the cluster’s mass is locked in light
stars that survive for billions of years, the stellar number
is N⋆ ≃ Mcl/m⋆ where m⋆ ≃ 0.6M⊙ for a Kroupa initial
mass function [50]. We neglect the contribution of BHs
(and of the central BH, of mass MBH) to the total mass
of the cluster, as the former can be shown to contribute
no more than ≃ 10% of the total mass [51]. According to
the virial theorem, the root-mean-square velocity in the
cluster is vrms ≃ (0.4GN⋆m⋆/rh)1/2 [see e.g. Eq. (2) from
Ref. [52]]. We further assume isothermal and isotropic
conditions within the half-mass radius, so that the velocity
dispersion in the cluster core is σ = vrms/

√
3. The influ-

ence radius of the central BH is defined as ra ≡ GMBH/σ
2,

and it corresponds approximately to the radius within
which the potential of the BH starts to dominate over
the stellar component. It also roughly corresponds to the
distance from the center which encloses a total stellar
mass of ≈ MBH. Stars within ra can have bound orbits
around the central BH.

When a star gets close to the central BH, the tidal forces
can be strong enough to rip the star apart in a TDE. The
critical radius for a TDE to occur (also known as the “tidal
radius”) is given by rT ≃ 2 × 10−6 pc [MBH/(100M⊙)]1/3

for main-sequence solar stars: see Eq. (6.2b) from Ref. [53]
with η = 0.844 for main sequence stars, where we used the
solar value for the radius of the star. Stars on orbits with a
pericenter larger than rT can still be captured around the
BH on more tightly bound orbits through the deposition
of orbital energy into (tidally excited) stellar internal
modes [54, 55]. We estimate the capture radius to be
rC = βrT with β = 2.0 (see Appendix A for details). The
tidal dissipation experienced at every pericenter passage
causes the orbit to decay and circularize, until the star is
eventually disrupted when it reaches rT.

Reference [25] showed that the tidal inspiral of a cap-
tured solar-mass star is an efficient process, rapidly lead-
ing to tidal disruption within < 100 yr for MBH = 50M⊙.
Therefore, we assume that stars that encounter the cen-
tral BH with a pericenter ≤ rC are consumed and lost
from the core of the cluster. Stellar trajectories with a
pericenter ≤ rC are called “loss-cone orbits” because the
space of velocity vectors tangent to these orbits defines a
cone structure [see, e.g., Fig. 6.2(a) of Ref. [53]]. However,
not all stars on loss-cone orbits are lost if their veloc-
ity vector diffuses out of the loss-cone on a timescale of
less than one orbital period. In general, there is a criti-
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cal distance from the central BH within which two-body
relaxation processes cannot perturb orbits outside the
loss-cone within an orbital time [56]. We have checked
that for the parameter space of interest, most of the flux
comes indeed from within the influence radius ra (see
the lower-panel of Fig. 6.5 from [53]). Thus, for systems
containing an IMBH, most of the BH’s stellar flux comes
from within this critical radius.

We follow Ref. [25] and use 2rT for the loss-cone radius.
Suppose tidally captured stars strongly bound to the BH
do not contribute to the growth of the BH. In that case,
we are overestimating the consumption rate by a factor
of two (because the cross section depends linearly on the
loss-cone radius in the gravitational focusing regime).

An estimate for the rate of stellar consumption by the
central BH in the cluster is given in Refs. [56, 57] in
the context of the full loss-cone model, which assumes
instantaneous repopulation of loss-cone orbits. However,
the full loss-cone model overestimates the consumption
rate: the replenishment of stellar orbits extremely close
to the BH does not occur immediately, but it normally
requires more than an orbital time. Furthermore, those
close orbits release a lot of energy into the cluster, leading
to a rapid expansion of the core, which causes a feedback
effect that limits the growth of the BH [58]. A more
conservative estimate is given in Eq. (6.15) from Ref. [53],
where the assumption is that all loss-cone orbits within
ra are replenished within the orbital time at that radius.
The equilibrium star density follows a cuspy distribution
near the BH with a profile n⋆ ∝ r−γ . A zero energy flow
solution implies the Bahcall-Wolf law with γ = 7/4 [59],
as verified in Ref. [60] with direct N -body simulations (see
also Fig. 6 of Ref. [25]). With this choice, the consumption
rate is given by

ΓC ≃ 7rC

ra

MBH

m⋆

√
GMBH

r3
a

(1a)

≃ 53 Myr−1
(

MBH

100M⊙

)−2/3 ( σ

10 km s−1

)5
(1b)

for solar mass stars.

B. Star cluster evolution

According to Hénon’s principle, the rate of energy
production (and hence the stellar consumption rate) is
regulated by the efficiency of two-body relaxation pro-
cesses. The half-mass relaxation time is given by τrh ≃
67 Myr (N⋆/105)1/2(rh/pc)3/2: see Eq. (10) from [61],
with ln Λ = 10 and ψ = 1. A fraction ζ ≃ 0.0926
of the cluster’s energy can be transferred throughout
within τrh, such that Ėcl = −ζEcl/τrh [62]. The rate
of energy generation is independent of the microphysi-
cal details of the heat production mechanism and com-
mences right after core collapse, which occurs at time
τcc ≃ 3.21τrh [61]. Furthermore, the cluster expands

ζ ξe
isolated 0.0926 0.00739

tidally limited 0.0725 0.045

TABLE I. Parameters of the star cluster evolutionary scenarios
we consider in this work, the isolated and tidally limited cases.

as a consequence of adiabatic mass loss due to stellar
evolution. We assume that the mean stellar mass m⋆

evolves with time according to dm⋆/dt = −νm⋆/t for
t > τse = 2 Myr, with ν = 0.07 [61, 63]. Combining the
balanced evolution condition with the time derivative of
the relation Ecl ≃ −0.5Mclv

2
rms for the cluster energy

results in an equation for the evolution of the half-mass
radius (compare Eq. (15) from [61]):

drh

dt
= ζ

rh

τrh
Θ(t− τcc) + 2 rh

Mcl

dMcl

dt
+ νrh

t
Θ(t− τse) .

(2)

The last term considers the effect of stellar mass evolution,
and Θ is the Heaviside function. With our approximation
Mcl ≃ m⋆N⋆, we have dMcl/dt ≃ m⋆dN⋆/dt+N⋆dm⋆/dt.
Since the velocity distribution thermalizes and the high-
velocity tail is replenished roughly every τrh, the cluster
slowly evaporates as it expands [64]. We denote by ξe
the fraction of ejected stars with a velocity larger than
the escape velocity, such that dN⋆/dt = −ξeN⋆/τrh [65].
For isolated clusters ξe ≃ 0.00739, but ξe can be larger
for systems experiencing the tidal field of the galaxy.
Along with the isolated cluster model, we also consider
Hénon’s tidally limited model, for which ξe ≃ 0.045 and
ζ ≃ 0.0725 [62]: see Table I.

The tidally limited model can be applied to systems
that experience the tidal field of the host galaxy within the
inner kpc and inspiral to the center. On the other hand,
the isolated model is more appropriate for the evolution
of nuclear star clusters, since the tidal field cancels at the
center of the galaxy. The isolated cluster evolution model
is also adequate to describe clusters that reside several
kpc away from the galaxy center; however, these isolated
clusters in the halo of the galaxy are unlikely to merge
with other clusters due to small coalescence cross-sections.

The system of equations for the global evolution is the
following

dN⋆

dt
= −ξe

N⋆

τrh
Θ(t− τcc) , (3a)

drh

dt
= (ζ − 2ξe) rh

τrh
Θ(t− τcc) + νrh

t
Θ(t− τse) , (3b)

with initial conditions N⋆(t = 0) = N⋆,0 and rh(t = 0) =
rh,0. The mean stellar mass can easily be shown to evolve
according to m⋆(t) = m⋆,0(t/τse)−ν for t > τse, with
m⋆,0 = 0.6M⊙. The mean mass quickly drops to below
0.4M⊙ within 1 Gyr, after which it slowly continues to
decrease. Before the core-collapse time t < τcc, we assume
that the global properties remain equal to the values set by
the initial conditions, while the core collapses isothermally.
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FIG. 2. Time evolution of cluster mass (left panels), half-mass radius (middle panels), and black hole mass (right panels)
for a grid of star cluster initial parameters N⋆,0 ∈ {4 × 104, 8 × 104, 2 × 105} (corresponding to different linestyles) and
rh,0 ∈ {0.3, 0.6, 1.2, 2.4} pc (corresponding to different colors). The top and bottom panels refer to isolated and tidally limited
star clusters, respectively. We assume that a fraction fs = 0.5 of each star’s mass is consumed by the BH (see Sec. II C). The
evolution has been computed up to a maximum time t corresponding to the Hubble time. The vertical lines in the middle panels
mark the moment of core collapse and the start of balanced evolution (i.e., t = τcc).

After t = τcc, gravothermal interactions produce heat in
the center which is transferred throughout the cluster
within ∼ τrh.

Formally, the equation for dN⋆/dt also contains the
−ΓC term, which is neglected here because its effect is
subdominant since the flux of energy from tidal disruption
of low angular momentum orbits is nearly zero [53]; the
cluster eventually expands in a self-regulatory way, such
that the BH does not swallow the majority of the stars [58].
For tidally limited systems, however, balanced evolution
requires the cluster to contract because of the increased
evaporation rate. In that case, the total stellar mass
decreases to the point where the BH’s contribution to the
cluster’s total mass becomes important and cannot be
ignored. Nevertheless, in Appendix B we show that the
omission of the −ΓC term in the evolution of N⋆ and the
approximation Mcl ≃ m⋆N⋆ lead to a small relative error
(of the order of 0.1%) on MBH(t). By neglecting this term
and the contribution of MBH to Mcl, the equations for
N⋆ and rh separate from the evolution of MBH, and they
can be solved independently. Therefore, we first solve the
two-by-two differential system for the global evolution
of the cluster, then we plug in the solutions for N⋆(t)
and rh(t) into the equation for dMBH/dt, and finally we
integrate in time.

The system (3) admits a simple analytic solution in
closed form, which would not have been possible had
we kept the −ΓC term in the equation for dN⋆/dt. To
obtain it, we first divide Eq. (3a) by (3b) to eliminate the
relaxation time. The resulting equation can be integrated

to obtain a relation between N⋆ and rh,

rh

rh,0
=

(
τ2

cc
τset

)ν (
N⋆

N⋆,0

)2−ζ/ξe

. (4)

Using this relation and the definition of τrh to express (3b)
as an equation for N⋆, we find the relation

dN⋆

dt
= −ξeN⋆,0

τrh,0

(
t

τse

)−ν/2 (
τ2

cc
τset

)−3ν/2 (
N⋆

N⋆,0

) 3ζ−5ξe
2ξe

,

(5)

which can be integrated to get the time evolution of the
stellar number:

N⋆(t)
N⋆,0

=

1, t ≤ τcc,[
1 + 3ζ−7ξe

2τrh,0

τ2ν
se

τ3ν
cc

(tν+1−τν+1
cc )

ν+1

] 2ξe
7ξe−3ζ

, t > τcc.

(6)

Substituting (6) into (4) then yields rh(t). When ξe = 0
and ν = 0 (i.e., in the case of no mass loss and no stellar
evolution) this solution reduces to the late-time radius
growth law rh(t) ∝ (t− τcc)2/3: see e.g. Eq. (4) in [23].

Above we have assumed that τse < τcc. The solutions
should be modified when the core collapses on a timescale
less than τse = 2 Myr. However, this requires extremely
compact systems, which we do not consider here. In those
cases, stars would rapidly condense in the system’s center
and stellar collisions would efficiently produce a massive
stellar runaway [66].
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In the tidally limited case, a massive cluster may dis-
solve in a finite time. The evaporation condition is

N⋆(t = τev) = 0, (7)

which can be solved numerically to obtain the evaporation
time τev. In particular, the equation has a real positive
root if and only if 7ξe > 3ζ.

In Fig. 2 we show the time evolution of the stellar
number (left panels) and half-mass radius (middle panels)
for a set of initial conditions. The top panels show the
evolution of isolated clusters, while the bottom panels
show the evolution of tidally limited clusters. The evap-
oration rate (and hence the expansion/contraction rate)
is more sensitive to the compactness of the cluster than
to its mass, because the half-mass relaxation time has
a stronger dependence on the radius than on the mass:
τrh ∝

√
N⋆r3

h. The slow growth of rh visible at 2 Myr in
the central panels, before balanced evolution begins (at
τcc) for all models, corresponds to the adiabatic expansion
due to stellar wind mass loss, and it can be attributed to
the last term of Eq. (2).

C. Black hole mass growth

Having computed the global evolution of the cluster,
we can now find the growth of the BH mass as a function
of time by integration.

While the BH subsystem remains Spitzer unstable, it
decouples from stars and evolves independently. The
formation of hard binary BHs happens in the central
regions, and binary-single BH interactions often lead to
ejections. During this balanced evolutionary phase, the
hard binary BHs generate the energy required for the
cluster to expand. After most BHs have evaporated from
the system and the stellar population starts to couple with

the few remaining BHs dynamically, the heat production
in the system becomes dominated by the bounded stars
within the influence radius of the BH [25]. Then the
runaway tidal interactions begin, and a single growing
BH stands out and settles in the center. According to
Ref. [67] it takes about 10 initial relaxation times after
core collapse for 90% of the BHs to be ejected from
the cluster; that is, the lifetime of the BH subsystem is
τBH ∼ τcc + 10τrh,0 ≃ 13.21τrh,0. We define this timescale
to correspond to the moment when the BH seed begins
to grow via runaway tidal encounters with stars.

We begin with MBH,0 = 10M⊙ stellar-mass BH seeds in
star clusters and follow their growth through the repeated
consumption of stars using the rate formula for ΓC in
Eq. (1). We have checked that taking MBH,0 = 50M⊙ has
only a mild effect on the growth history of the BH, leading
to mass variations with a relative error of order less than
5% (see also Ref. [23]). This implies a weak dependence
on metallicity. Thus, our results are rather insensitive to
the seed BH mass spectrum, as long as the seeds are of
stellar mass. Assuming that a fraction fs of each star’s
mass is consumed by the BH, the mass accretion rate can
be expressed as

dMBH

dt
= fsm⋆ΓC (8)

for t > τBH. Using the definition of ΓC from Eq. (1), we
find

dMBH

dt
≃ 3.4fsR⋆

√
Gm

13/6
⋆

(
N⋆

rh

)5/2 1
M

2/3
BH

, (9)

where R⋆ is the radius of the star (for which we use the
solar value). Eq. (9) can be integrated by separation of
variables, and the BH mass evolution is found to be

MBH(t) =


MBH,0, t ≤ τBH,M5/3

BH,0 + c1

[
x

ν
3 +1

2F 1

(
ν+3

3(ν+1) ,
5(ξe−ζ)
7ξe−3ζ ; 4ν+6

3(ν+1) ;
(

x
τcc

)ν+1
1

1− 2(ν+1)
3ζ−7ξe

τrh,0
τcc ( τcc

τse )2ν

)] ∣∣∣∣∣
t

τBH

3/5

, t > τBH

(10)

where x is the integration variable, 2F 1 is the hypergeo-
metric function, and we have defined the constant

c1 =
√

50Gκ5

2187π
3 − γ

2 − γ

Γ(γ + 1)
Γ(γ − 1/2)

× fsβη
2/3R⋆m⋆,0

(
N⋆,0

rh,0

)5/2
τ

14ν/3
se

τ5ν
cc

, (11)

where Γ denotes the Gamma function. We can invert

Eq. (10) numerically (in practice, we use a Newton-
Raphson scheme) to obtain the time t at which the BH
mass is equal to MBH with a tolerance of at most 1 Myr.

At late times, the BH mass asymptotes to a constant
value that depends on the initial conditions of the cluster,
and correlates more strongly with the initial cluster mass
than with the initial half-mass radius. In general, heavier
star clusters produce heavier IMBHs. By contrast, the
half-mass radius mostly affects the relaxation time, and
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hence the time at which the BH starts growing. The
evolution of the BH mass as a function of time is shown
in the rightmost panels of Fig. 2. In the tidally limited
case (lower right panel) the BH mass curve terminates at
the moment the cluster evaporates, defined in Eq. (7).

D. Dependence on the cluster’s initial conditions

The fraction of stellar mass accreted, fs, can be as
high as ∼ 0.5 [68] and as low as ∼ 0.01 [69]. In this
work, we consider two representative values of fs = 0.5
and fs = 0.03. In Fig. 3 we set fs = 0.5, and we show
the BH mass assembled at t = 0.1 τHub (left panel) and
t = τHub (right panel), where τHub is the Hubble time, in
the (Mcl,0, rh,0) plane, where Mcl,0 is the initial cluster
mass and rh,0 is the initial half-mass radius. The top
panels correspond to the isolated evolutionary scenario,
while the bottom panels correspond to the tidally limited
case. In Fig. 4 we illustrate the effect of a lower value of
fs (here, fs = 0.03) by plotting the BH mass assembled at
t = τHub in the isolated case (the other panels have been
omitted for brevity, as they follow similar trends). By
comparing with the top right panel of Fig. 3, we see that
a lower value of fs results in a shift of the constant BH
mass contours: for a fixed Mcl,0 the BH mass is smaller,
and a heavier cluster is required to compensate for the
loss in the stellar mass accreted at each TDE.

In the top panels, the region below the orange dashed
lines corresponds to systems whose core collapses on a
timescale less than 2 Myr and runaway stellar collisions
would form a supermassive star that collapses into an
IMBH [41]. We thus exclude this region (τcc < 2 Myr)
of the parameter space since it produces massive BHs
from another channel. In the bottom panels, the τev ≤
τHub (τev ≤ 0.1τHub) region corresponds to clusters that
evaporate on a timescale less than τHub (0.1τHub), where
we recall that the criterion for cluster evaporation was
given in Eq. (7).

The green dashed line corresponds to a constant initial
escape velocity of 200 km s−1 [23]. We exclude the region
to the right of this line from this study, because when the
escape velocity is large enough, it is possible to have a
significant number of repeated BH mergers and to form an
IMBH in the core of the cluster while the BH subsystem
has not evaporated yet. In fact, the main limiting factor
in growing BHs through repeated mergers comes from the
GW recoil received by the remnant of each merger event,
which can often of order hundreds of km s−1. For ths
reason, BH retention requires environments that are suffi-
ciently heavy and compact [70]. A BH growing through
repeated mergers can be efficiently retained in clusters as
long as the escape velocities are larger than ≈ 300 km s−1,
leading to a runaway growth [71]. Reference [23] also finds
that the formation of IMBHs above 100M⊙ is efficient if
the escape velocity exceeds a critical value which is in the
range ≃ 200–300 km s−1.

To demonstrate the significance of repeated BH merg-

ers, we have performed a set of star cluster simulations
with the Rapster code [72] (for the details of our initial
conditions on the simulated star cluster population, see
Sec. III.A of Ref. [73]). In the left panel of Fig. 5 we
show the maximum primary BH mass assembled in each
simulated cluster, while in the right panel we show the
mass ratio of every dynamical merger from all cluster
simulations. The maximum BH mass is strongly corre-
lated with the initial escape velocity: heavier BHs form
in systems with higher escape velocity, because the GW
kick received by the remnant limits the retention of the
runaway BH. The simulations indicate that hierarchical
BH mergers contaminate the BH mass spectrum above
200M⊙ if the cluster’s initial escape velocity is in the
hundreds of km s−1. Moreover, as can be seen from the
right panel of Fig. 5, the growth of BHs through repeated
mergers is predominantly oligarchic, i.e., the probability
of forming two massive BHs in the same system is very
low. If two moderately heavy BHs form in the same clus-
ter, then the two heaviest BHs will preferentially pair
up and merge before capturing other smaller BHs. In
particular, in the primary mass range above 200M⊙ the
mass ratio typically remains below ∼ 0.3. In this way it
is possible to form binaries involving two massive BHs
from the merger of two different stellar systems, each of
which formed an IMBH.

We emphasize that the exact location of the decision
boundaries marked by the orange, red, and blue dashed
lines in our parameter space are qualitative features, mo-
tivated by the discussion above.

E. Delay time

We consider the formation of IMBH-IMBH pairs
through the coalescence of two star clusters, each cluster
hosting one IMBH (see Fig. 1). This can be accomplished
either through the merger of globular clusters that inspiral
into the central regions of their galaxy through dynam-
ical friction [26] or through the coalescence of nuclear
star clusters in the post-merger phase of two dwarf galax-
ies [35]. Alternatively, IMBHs may form in star clusters
that fragment in the turbulent central regions of a galaxy
and are then brought together to form a bound pair [37].

To compute the new properties of the merged star
cluster, we assume mass and energy conservation (see also
Ref. [74]), so that if Mcl,1 and Mcl,2 are the masses and
rh,1 and rh,2 the half-mass radii of the two clusters just
before their coalescence, then the mass and radius of the
new cluster are given by

M ′
cl = Mcl,1 +Mcl,2 , (12a)

r′
h = M ′2

cl
M2

cl,1
rh,1

+ M2
cl,2

rh,2

. (12b)

The merger of the two IMBHs brought into the same
environment is not instantaneous. Rather, there is a time
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FIG. 3. Contour plots of the BH mass assembled via runaway tidal encounters in the (Mcl,0, rh,0) plane at t = 0.1τHub (left
panels) and t = τHub (right panels). The top and bottom panels refer to isolated and tidally limited star clusters, respectively.
The τBH ≥ τHub (τBH ≥ 0.1 τHub) region above the blue dashed line corresponds to clusters for which the time required for the
BH to begin growing is larger than a Hubble time (one-tenth of a Hubble time) due to non-evaporation of the BH subsystem. In
the top panels, the τcc ≤ 2 Myr region below the dashed orange line corresponds to clusters for which core collapse occurs before
massive stars become BHs, and an IMBH might form through runaway stellar mergers instead. The vesc,0 > 200 km s−1 region
(dashed green line) corresponds to clusters for which the initial escape velocity is large enough for the repeated BH merger
channel to dominate. In the bottom panels, the τev ≤ τHub (τev ≤ 0.1τHub) region corresponds to clusters that evaporate on a
timescale less than τHub (0.1τHub): see Eq. (7). The parameter fs is set to 0.5.
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FIG. 4. Same the as the top right panel of Fig. 3, but with
fs = 0.03.

delay τdelay following the merger of the two clusters. We
thus identify three contributions to the time delay:

(1) The dynamical friction timescale over which the
least massive IMBH with massm2 reaches the center
from the initial half-mass radius of the remnant
cluster r′

h. This is the time for the formation of the
IMBH-IMBH binary since the merger of their host
clusters. It is given by (see Ref. [75], pg. 648)

τdf ≃ 3.8 Myr
(
r′

h
1 pc

)2
σ′

10 km s−1
100M⊙

m2
, (13)

where we have set the Coulomb logarithm to ln Λ =
10 and σ′ = (0.4GM ′

cl/r
′
h)1/2. Since τdf scales in-

versely with the IMBH mass, the heaviest IMBH
reaches the center first, thus the formation time
of the IMBH-IMBH binary is dominated by the
dynamical friction of the secondary IMBH.
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FIG. 5. Left panel: Maximum BH mass assembled through repeated BH mergers in a large set of Rapster simulations as a
function of the initial cluster escape velocity. Each point corresponds to a different star cluster simulation. Right panel: Mass
ratio versus the primary mass of each merger in the Rapster catalog.

(2) The hardening timescale of the IMBH-IMBH bi-
nary, τhar. We compute the hardening timescale
by assuming that the pair hardens through binary-
single interactions at a rate provided by full-loss
cone theory. Stars that interact closely with the
hard IMBH-IMBH binary are ejected and are unable
to efficiently heat up the cluster.
If Eb = Gm1m2/(2a) is the binding energy of the
IMBH-IMBH binary, then the rate of change of
binding energy is given by dEb/dt = ⟨∆Eb⟩(dN/dt).
Here the mean energy change per interaction is given
by ⟨∆Eb⟩ = (H/(4π))(m⋆/m12)Eb, where H ≃ 15
and m12 = m1 + m2 [76]. Moreover, dN/dt is the
binary-single interaction rate given by Eq. (6.15) of
Ref. [77], computed by setting the loss-cone radius
equal to the semimajor axis of the binary, aB, and
the central mass equal to the binary’s mass, m12.
Combining these equations leads to a differential
equation for the evolution of aB:

daB

dt
= −H

2π

√
2
π

3 − γ

2 − γ

Γ(γ + 1)
Γ(γ − 1/2)

σ′5

G2m2
12
a2

B. (14)

In addition, we assume a Bahcall-Wolf profile, i.e.,
γ = 7/4. For simplicity, we further assume that
the cluster properties do not vary significantly over
the hardening evolution of the IMBH-IMBH binary.
Therefore we approximate σ′ as constant during the
evolution of the IMBH-IMBH pair until its merger.
Based on a cross-section argument (for the deriva-
tion see, e.g., Sec. 4.3 from Ref. [78]), the rate of
change of the binary’s semimajor axis can be written
as daB/dt = −(GHρ/σ′)a2

B. Notice that Eq. (14)
can be brought into this form if we define an effective
density as

ρeff ≡ 1
2π

√
2
π

3 − γ

2 − γ

Γ(γ + 1)
Γ(γ − 1/2)

σ′6

G3m2
12
. (15)

The semi-major axis shrinks until the emission of
GWs is efficient enough to drive the evolution of the
binary. At this point, the binary decouples from the
dynamics, and we denote the corresponding semi-
major axis by agw. The eccentricity at decoupling,
egw, is sampled from a thermal distribution, and the
hardening timescale τhar is computed as in Eq. (9)
from Ref. [79], where the density is set equal to ρeff .

(3) The gravitational radiation coalescence timescale,
τgw. We compute this timescale by substituting the
semimajor axis and the eccentricity of the binary at
dynamical decoupling, agw and egw, respectively, as
computed in the previous step, in the semianalytic
approximation formula from Ref. [80].

To summarize, the total time delay is computed as τdelay =
τdf + τhar + τgw.

III. SINGLE-EVENT CLUSTER POSTERIORS

We perform full Bayesian PE on six IMBH-IMBH merg-
ing systems, denoted in alphabetical order from A to F.
Their parameters are listed in Table II. We assume a
network of three XG GW detectors, including two CEs
and one ET. In Appendix C we give more details on the
PE runs, the choice of network, and the chosen waveform
model. We set the spin magnitude of all IMBHs to a
small but nonzero value of 0.1. This choice is motivated
by the expected evolution of the IMBH spin as the mass
grows through repeated minor TDEs: as discussed in
Appendix D, the spin rapidly asymptotes to zero as the
BH mass increases, with a scatter of order ∼ 0.1.

For each IMBH-IMBH binary, we exploit the PE results
and the forward model discussed in Sec. III A below to
hierarchically infer the initial properties of the cluster
environment in which the IMBHs formed. The Bayesian
framework to compute the cluster posterior distributions
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m1/M⊙ m2/M⊙ zm SNR
A 300 300 1.0 515
B 300 300 2.0 211
C 300 300 4.0 64
D 600 200 2.0 225
E 1000 400 0.5 1548
F 200 200 8.0 17

TABLE II. Source parameters of the six IMBH-IMBH binaries
on which we perform PE. The columns are from left to right:
primary (source-frame) IMBH mass, secondary (source-frame)
IMBH mass, merger redshift, and network SNR.

and our main results are presented in Sec. III A and
Sec. III B, respectively.

A. Bayesian analysis

In this subsection we present the Bayesian framework
used to infer the cluster properties. We start with
a description of the cluster parameters (Sec. III A 1),
followed by the method we use to reweigh the prior
(Sec. III A 2)) and a discussion of our chosen astrophysical
prior (Sec. III A 3).

1. Cluster parameters

Our goal is to obtain the posterior distribution of the
cluster parameters λ given the GW data d corresponding
to a single IMBH-IMBH merger event, which we denote
by p(λ|d). We interpret λ as the collection of initial
conditions of the parent clusters associated with the two
IMBHs in the merger event, i.e.,

λ = {Mcl,01, rh,01, zcl,01,∆tg,1,

Mcl,02, rh,02, zcl,02,∆tg,2}. (16)

Recall that ∆tg,i (i = 1, 2) denotes the growth time of each
cluster, i.e., the time elapsed between the formation of
each cluster and their merger. We want to infer the cluster
parameters from information about the IMBH component
masses and their merger redshift θ = {m1,m2, zm}. The
analytical model of Sec. II relates θ and λ through a map
of the form F : λ → θ. More formally, we have

m1 = MBH(∆tg,1;Mcl,01, rh,01) , (17a)
m2 = MBH(∆tg,2;Mcl,02, rh,02) , (17b)
zm = z(tcl,01 + ∆tg,1 + τdelay)

= z(tcl,02 + ∆tg,2 + τdelay) . (17c)

Here z = z(t) is the redshift-cosmic time relation com-
puted assuming the Planck 2018 cosmology [81], and MBH
is the BH mass growth function of Eq. (10). We have
also made explicit the dependence on the initial mass
and half-mass radius of each cluster. We impose the time
constraint

tcl,01 + ∆tg,1 = tcl,02 + ∆tg,2 , (18)

where tcl,0i are the cosmic times of cluster formation
corresponding to redshifts zcl,0i (i = 1, 2), because the
two clusters must merge at the same cosmic time. In
Eq. (17c), the delay time τdelay (that depends on λ) is
computed as the sum of three time delays as described in
Sec. II E. We do not include τdelay in the list of Eq. (16)
because it is not independent from the other parameters:
τdelay must respect the condition tcl,01 + ∆tg,1 + τdelay =
tcl,02+∆tg,2+τdelay = tm, which is equivalent to Eq. (17c),
because the IMBHs must merge at the same cosmic time
tm (or at the same redshift zm).

Conservation of probability implies that p(λ|d)dλ =
p(θ|d)dθ. Therefore, given posterior samples {θi} of
the source parameters of a GW event, we may compute
posterior samples of the cluster parameters {λi} by using
the inverse map λi = F−1(θi). Notice that the F -map is
many-to-one as it is a projection, and thus the value of its
inverse is not unique. Nevertheless, we still consider an
inverse scheme in which we randomly sample points from
the five-dimensional submanifold F−1(θ). In practice, we
first sample log10(Mcl,0) and log10(rh,0) for both clusters
uniformly and compute ∆tg,1 and ∆tg,2 from Eq. (17a)
and (17b), respectively, subject to the constraints that
(i) the inferred growth times are positive definite; (ii)
the lifetime of each BH subsystem is τBH < τHub; (iii)
each cluster needs to collapse after stars become BHs,
i.e., τcc > τse; (iv) each escape velocity needs to be less
than the critical escape velocity, i.e., vesc,0 < 200 km s−1;
and finally (v) the age of each cluster formation tcl,0,
calculated from Eqs. (17c) and (18), must be larger than
a minimum value τPopII, here taken to correspond to a
redshift zPopII = 15.

Our sampling algorithm of the submanifold F−1(θ)
does not return a uniform set of draws. Therefore, we
reweigh our samples with the inverse Jacobian factor
|dθ/dλ|−1, which we derive to be the product of the TDE
rates [see Eq. (9)] at the moment of cluster merger. To de-
rive this weight factor, we define a new map θ′ → λ with
θ′ = {m1,m2, zm, z

′
m,M

′
cl,01,M

′
cl,02, r

′
h,01r

′
h,02}, where

m1, m2, and zm are defined as in Eq. (17), z′
m = zm,

M ′
cl,0i = Mcl,0i, and r′

h,0i = rh,0i (i = 1, 2). We then
compute the determinant of the Jacobian matrix for this
map and obtain the product of the inverse of the TDE
rates evaluated at the moment of cluster merger.

2. Source-parameter prior reweighing

When performing PE on our chosen events, we assume
some prior on the source parameters, denoted by pPE(θ).
Since the likelihood function remains invariant under the
F -map, so that p(d|θ) = p(d|λ), it follows that the priors
on θ and λ are related by a Jacobian as pPE(θ)dθ =
pPE(λ)dλ, and therefore they are not independent from
each other. This implies that a prior on λ is induced by
the PE prior choice, which may not be consistent with
the astrophysically motivated prior pastro(λ) (that will
be described in Sec. III A 3 below). Hence, we reweigh
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the posterior samples on source parameters of our merger
events by the astrophysical prior on θ, pastro(θ), which
we introduce to be consistent with pastro(λ). To obtain
pastro(θ), we first draw samples {λi} from pastro(λ), then
we get the samples θi = F(λi) with forward modelling,
and finally we estimate the function pastro(θ) with kernel
density estimation on these samples.

We reweigh the source posterior samples with probabil-
ity weight w = pastro(θ)/pPE(θ). This procedure gives us
a new set of binary-source posterior samples, consistent
with the choice of astrophysical prior on λ.

3. Astrophysical prior

We assume the priors on Mcl,0, rh,0, and zcl,0 to be
uncorrelated with each other. There is currently no ob-
servational support for a redshift evolution of the initial
cluster mass function. The observed correlation between

mass and radius in young massive clusters is weak, and
therefore we ignore it here [82, 83].

As for the available growth time ∆tg, we need to as-
sume a specific astrophysical scenario to come up with a
physically sensible prior distribution. Here, we consider
the coalescence of clusters after they sink into the center
of the host galaxy or a star-forming complex through
dynamical friction as a physically motivating setting. Our
method is insensitive to which cluster reached the cen-
ter first. Therefore, we give equal probability to each of
the two scenarios (the cluster of either the primary or
the secondary IMBH reaches the center first), bearing in
mind that the initial cluster mass Mcl,0 and galactocentric
radius Rg,0 are coupled through the dynamical friction
timescale, because τdf ∝ R2

g,0/Mcl,0 [75]. Notice that
the cluster evolves as it inspirals into the center, hence
in principle the dynamical friction timescale depends on
the cluster properties in a nontrivial way [29], but for
simplicity we neglect these complications.

We thus write the astrophysical prior as

pastro(λ) ∝ 1
2 [p(∆tg,1|Mcl,01) + p(∆tg,2|Mcl,02)] × p(Mcl,01)p(Mcl,02)p(rh,01)p(rh,02)p(zcl,01)p(zcl,02). (19)

Notice that the factors p(∆tg,1|∆tg,2, zcl,01, zcl,02) and
p(∆tg,2|∆tg,1, zcl,01, zcl,02), which arise as a consequence
of Bayes’ theorem, are both constants, and do not appear
in the expression of the prior above. This is due to the
time constraint of Eq. (18).

To derive p(∆tg,i|Mcl,0i) in Eq. (19) we need a prior for
the galactocentric radius. Taking a singular isothermal
distribution for the volumetric number density of form-
ing star clusters, we find that the cumulative number of
clusters contained within radius r is N(< r) ∝ r. Thus,
the probability density function of Rg,0 is constant, as
dN(< r)/dr ∝ constant. Using the dependence of the
dynamical friction time and imposing that ∆tg = τdf , we
arrive at

p(∆tg|Mcl,0) ∝ Mcl,0/
√

∆tg . (20)

In the tidally limited model, since clusters may evapo-
rate in a finite time before reaching the center, we make
sure that the growth time ∆tg is smaller than the evapora-
tion time τev. Furthermore, clusters must reach the center
after assembling the IMBH in their core, otherwise there
will be no IMBH by the time the cluster coalesces with
another cluster. This results in the constraint τBH > τdf .

Based on observations of young massive clusters in the
local Universe, we assume a simple power-law distribution,

p(Mcl,0) ∝ M−2
cl,0 . (21)

While a Schechter mass function with a truncation mass
scale at ∼ 106M⊙ would also fit the data, there is no deci-
sive statistical significance in favor of either model [83, 84].

The choice of whether or not to include a truncation scale
at 106M⊙ in the initial cluster mass function would not
significantly impact our results, because the majority of
the allowed parameter space volume lies below the trun-
cation scale, unless the latter were much smaller than
106M⊙ on average (cf. Figs. 3 and 4). We assume the ini-
tial cluster mass function to be universal and take its prior
range to be [104, 107]M⊙. We choose a log-uniform prior
on the half-mass radius in the range [10−2, 10] pc. The
choice of cluster formation history relies on cosmological
simulations of globular cluster formation [85, 86]. Moti-
vated by these studies, we model p(zcl,0) as a Gaussian
distribution with mean zcl,0 = 3.2 and standard deviation
σzcl,0 = 1.5, as in Ref. [87], defined in the prior domain
[0, 15].

In Fig. 6 we compare the astrophysical prior on zcl,0
(black) with the resulting intrinsic distributions of zm
after applying our forward model in the isolated (blue)
and tidally limited (orange) cases. The initial conditions
for the cluster parameters have been drawn from the as-
trophysical prior, but the distributions are only shown for
a population of IMBH binary mergers with masses in the
range [100, 1500]M⊙. We assume fs = 0.5 in the left panel
and fs = 0.03 in the right panel, with the latter choice
leading to slightly smaller time delays. To highlight the
importance of cluster formation history on the distribu-
tion of zm, we have chosen two different priors on zcl,0: a
low-redshift one that peaks at z = 3.2 (solid), and a high-
redshift one which peaks at z = 9.6 (dashed). Finally,
we also show the redshift distributions for detectable bi-
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FIG. 6. Probability density distribution of the merger redshifts of all IMBH binaries with masses between 100M⊙ and 1500M⊙
with fs = 0.5 (left panel) and fs = 0.03 (right panel). The cluster initial conditions have been sampled from the astrophysical
prior (see Sec. III A 3). Two cluster formation histories have been assumed: a low-z prior (black solid curve) and a high-z prior
(black dashed curve). The blue and orange curves correspond to the intrinsic distributions in the isolated and tidally limited
cases, while the cyan and yellow curves correspond to the detectable distributions, respectively, computed by imposing a network
SNR threshold of 12.

naries in the isolated and tidally limited cases (in cyan
and yellow colors, respectively) assuming a network SNR
threshold of 12. The orientation and sky position of each
IMBH merger have been sampled isotropically. While the
selection effect only affects the redshift distribution at
high redshifts, we may still be able to distinguish between
a low-redshift and a high-redshift cluster formation sce-
nario by measuring the highest redshift events in the tail
of the distribution.

B. Results

In this subsection we present our results. We start
with an example showing the full corner plot for binary D
(Sec. III B 1) and then we show the marginalized posteriors
for the rest of the simulated events (Sec. III B 2).

1. Full cluster posterior example

In Fig. 7 we focus on IMBH binary D (cf. Table II) and
we show the full posterior distributions of the parameters
of the progenitor star clusters. While we show the full
posterior results for only one binary as an example, the
qualitative features described here apply to all binaries we
examined. The lower-left corner plot shows 2D posteriors
on cluster parameters assuming that a fraction fs = 0.5
of each star’s mass is consumed by the BH, while the
upper-right corner plot assumes fs = 0.03. The panels on
the diagonal show the 1D marginalized distributions for
both cases. The two colors in the lower (upper) corner
plot correspond to the two cluster evolutionary models
considered in this study, i.e., the isolated case (in blue
or green) and the tidally limited case (in orange or red),

respectively. In each panel, we show two contours, cor-
responding to 0.5σ (11.8%) and 1.5σ (67.5%) confidence
levels.

We will first focus on a specific case. Then we will
discuss the difference between the isolated and tidally
limited cases, and the effect of the accretion rate.
The fs = 0.5 isolated scenario. Let us first focus
on the isolated scenario with fs = 0.5 (blue contours
in the lower-left corner plot). While the IMBH masses
and redshift of binary D are measured with an error of
a few percent, we see that the structural properties of
the star clusters (i.e., initial masses and half-mass radii)
are constrained rather poorly. The shape of the contours
in the Mcl,0–rh,0 plane is similar to the shape of the
allowed parameter space (Fig. 3), with a preference for
lighter cluster masses due to our prior choice. Typical
initial cluster masses Mcl,0 ∼ few × 104M⊙ are favored
for producing the IMBH masses of this particular binary
(m1 = 600M⊙ and m2 = 200M⊙) through the runaway
TDE scenario. Note also that the posterior of Mcl,02 has
more support at a lower value than the posterior of Mcl,01:
the inference suggests that the lighter BH formed in a
lighter cluster.

The posteriors of rh,0 span a wide range of values, but
there is a strong preference for compact clusters with radii
on the order of ∼ 0.1pc. This is related to the prior choice
for the growth time ∆tg and initial cluster mass Mcl,0.
Since p(∆tg|Mcl,0) ∝ Mcl,0/

√
∆tg (as a consequence of

the time dependence of dynamical friction on the initial
galactocentric radius and cluster mass), there is a pref-
erence for clusters that reach the center faster. Such
systems have a smaller allowed growth timescale before
merging with another cluster, and more compact systems
evolve faster because the relaxation time depends more
strongly on the radius than on the mass scale. Further-
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FIG. 7. Cluster posterior distributions for the progenitors of the IMBH components of binary D (see Table II). The lower-left
corner plot shows the isolated (blue) and tidally limited (orange) contours for fs = 0.5. The upper-right corner plot shows the
isolated (green) and tidally limited (red) contours for fs = 0.03. The diagonal entries show the marginalized posteriors for all
four cases. The two contours in each panel correspond to the 0.5σ (11.8%) and 1.5σ (67.5%) confidence levels.

more, the contour lines of constant BH mass on the cluster
mass-radius plane have a positive slope, i.e., a preference
for lighter clusters (as in the assumed prior) results in
smaller values for rh,0. To summarize: the cluster mass
controls the mass scale of the IMBH, while the half-mass
radius controls the speed at which the asymptotic IMBH
mass is approached.

The posterior on the structural parameters is relatively
broad mostly because of model degeneracies, rather than
measurement uncertainties. As in Fig. 3, a contour of con-
stant BH mass formed within a Hubble time is (to a good
approximation) a line in the Mcl,0–rh,0 parameter space,
meaning that there are multiple clusters with different ini-
tial conditions whose IMBH mass asymptotes to the same
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value. The nontrivial structure in the cluster posteriors
arises due to the time information. In particular, a spe-
cific cluster’s radius strongly correlates with the growth
time within the same system (the correlation is stronger
for tidally limited clusters). This is because the radius
controls how fast clusters evolve: smaller-rh,0 clusters,
that lose mass faster, need to merge with another cluster
on a smaller timescale before they completely evaporate,
hence the smaller growth times. On the other hand, there
is no correlation between ∆tg,i and rh,0j for i ̸= j, as pa-
rameters belonging to different clusters are uncorrelated
in our model. The correlation between ∆tg and zcl,0 is
also expected, since a larger growth time results in earlier
star cluster formation times.

In our framework, we find that the strongest constraints
can be placed on the formation redshift of the clusters,
in the sense that the marginalized posteriors on zcl,0i are
relatively narrow compared to the width of the assumed
prior on this parameter. We find that the marginalized
posterior on zcl,0i is strongly peaked at redshifts close to
the merger redshift of the IMBH binary, zm. This is due
to the choice of prior on ∆tg. Clusters that form close to
the center of the host galaxy preferably inspiral rapidly to
the center, and they have to assemble the IMBH within
the same time.
Isolated vs. tidally limited clusters. In the isolated
cluster evolution scenario (blue) we see a slight preference
for lighter clusters relative to the tidally limited clusters
(orange). This is because isolated clusters in our model
have a smaller fraction of ejected stars with a velocity
larger than the escape velocity, ξe (see Table I), and hence
evaporate at a slower rate.
Effect of the accretion rate. In the case of a lower
accretion rate (fs = 0.03, upper-right corner plot) we
observe a preference for heavier star clusters relative to
the case fs = 0.5 discussed so far. This is because the BH
growth rate is now smaller by a factor ≃ 17. Thus, since
the asymptotic value of the BH mass depends strongly
on Mcl,0, a heavier star cluster is required to produce
the same BH mass. By looking at the diagonal in the
corner plots of Fig. 7, we observe that the peak in rh,0
for fs = 0.03 also shifts to a higher value. This is due to
a binning effect when projecting the posteriors onto the
radius axis. Despite the higher density of points in the
posterior for low values of Mcl,0 and rh,0, there is a larger
number of samples per logarithmic bin for higher values:
see the panel in the first row and second column of Fig. 7.
This does not happen in the fs = 0.5 case (second row,
first column) because the parameter space “volume” in
the high-density region is larger. This implies that the
peak in rh,0 is at lower values.

There does not seem to be a significant variation in
the distributions of the growth times, that have a typical
value of ∼ 1000 Myr with a long tail down to a few tens of
Myr. For context, the Arches cluster, which is the densest
young massive star cluster in the bulge of the Milky Way,
with a galactocentric radius of ∼ 30 pc and a total mass
of ∼ 104M⊙, will reach the center within a few hundred

Myr (using an estimate based on the dynamical friction
timescale of Eq. (8.12) from [75]). Similarly, young super
star clusters have been identified in the central regions of
the starburst galaxy M82 [88], and their orbit is expected
to decay through dynamical friction.

2. Marginalized cluster posteriors for fs = 0.5

In this section, we present the marginalized one-
dimensional posterior distributions of the cluster param-
eters and describe their features. In Fig. 8 we show the
marginalized distributions for binaries A–E (rows two to
six) computed assuming the low-redshift prior on zcl,0 for
all of them (cf. Fig. 6). In Fig. 8 we plot separately the
results for binary F, computed assuming the high-redshift
prior instead. In both figures, the first row shows the
marginalized prior for each parameter. In each of the
panels we plot the posteriors of the two clusters hosting
an IMBH, with solid (dashed) lines corresponding to the
progenitor cluster of the primary (secondary) IMBH, re-
spectively. The colors correspond to the isolated (blue)
and tidally limited (orange) evolutionary models. Al-
though τdelay is not an independent parameter of our
model, we show its distribution with dotted histograms
(along with the ∆tg distributions) in the third column. All
of these plots refer to an accretion parameter fs = 0.5. To
avoid clutter, the corresponding marginalized posteriors
for the case fs = 0.03 are shown in Appendix E.

As a general trend, we find that higher redshift systems
require denser clusters. This can be seen by comparing
binaries A, B, and C, which have the same component
masses but different merger redshifts: binary A merges
at zm = 1 (when the age of the Universe is t ≃ 5.8 Gyr),
while binary C merges at zm = 4 (t ≃ 1.5 Gyr). There
is less time available to assemble the IMBHs in binary
C, ensuring that they pair and eventually merge, hence
more compact stellar cluster progenitors are required. In
particular, the posteriors on the radii inferred for systems
A to C assuming tidally limited evolution peak at rh,0 ∼
1.3 pc, ∼ 0.7 pc, and ∼ 0.4 pc, respectively. In addition,
tidally limited clusters evaporate at a higher rate, and
thus require heavier and wider systems that survive for
longer. As a consequence, the priors p(Mcl,0) and p(rh,0)
shown in the top row of Fig. 8 have a preference for high
values.

As the redshift is lowered at fixed IMBH masses (i.e.,
moving “upward” in the plot from binary C to binary
A), the accessible parameter space in the Mcl,0–rh,0 plane
grows to larger radii: compare the left and right columns
of Fig. 3. This is why the posteriors on rh,0 gains more
support at larger values. Since the initial cluster mass
and radius are correlated, the posteriors on Mcl,0 also
gain support at higher masses. Notice that for these sys-
tems there is no statistical difference between the solid
and dashed curves (corresponding to the primary and
secondary IMBH): the IMBHs in these binaries have the
same mass, and due to symmetry there should no be
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FIG. 8. Marginalized cluster posterior distributions, assuming the low-redshift prior on zcl,0 and an accretion parameter
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FIG. 9. Same as Fig. 8 but for binary F, and assuming the high-redshift prior on zcl,0.

difference in the induced distributions for their progeni-
tor clusters (although the two IMBHs might have been
assembled in clusters with different initial conditions due
to model degeneracy). The peak that appears in p(rh,0|d)
occurs due to the flattening of the MBH contours as they

approach the τBH = τHub − tcl,0 boundary (see Fig. 3),
which causes a pile-up feature upon projection of the
posterior samples onto the one-dimensional probability
distribution corresponding to rh,0.

Binary E is interesting as it is the heaviest and closest
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event analyzed, merging at zm = 0.5. This binary has the
largest available lookback time and requires on average
heavier clusters, especially to assemble the high-mass
(1000M⊙) primary IMBH. The cluster mass distributions
for the secondary are shifted to slightly lower values, since
the lower-mass (400M⊙) secondary IMBH is preferentially
assembled in lighter clusters.

As mentioned in the previous section, rh,0 is strongly
correlated with ∆tg. Thus, features in the radius poste-
riors (such as bimodality) are usually observed also in
the posteriors of the growth time. The correlations are
primarily driven by the prior on ∆tg, which prefers small
values relative to τdelay (see the third column of Fig. 8):
if the cluster has to quickly merge with another cluster,
then it must be very compact and evolve rapidly in order
to grow the IMBH within the limited time window.

The total delay time, from cluster formation to binary
merger, is dominated by the IMBH-IMBH formation and
evolution timescale after the two clusters coalesce, i.e.,
by the τdelay timescale (dashed histograms in the third
column of Fig. 8). Recall that in our astrophysical scenario
of interest IMBHs grow rapidly in dense star clusters,
which then quickly sink into the central regions of the
star-forming complex by dynamical friction, where they
form an IMBH binary that hardens and eventually merges.
The first growth process can be rapid (within hundreds of
Myr), while the phase of binary formation and evolution
can take up to billions of years. For IMBH binaries that
merge at high redshifts, however, the inferred delay times
are required to be low (on the order of hundreds of Myr)
because of the limited lookback time available. Tidally
limited clusters also have a preference for smaller delay
times, because the cluster resulting from the merger of
the two progenitor clusters is generally more compact and
has a smaller relaxation timescale.

The zcl,0 distributions in the fourth column of Fig. 8
have the smallest variance when compared with the prior
p(zcl,0). In this sense, the redshift at cluster formation is
the best-constrained parameter. The constraining power
becomes less significant for binary F (see Fig. 9), whose
binary source parameters are worst measured due to its
high redshift. Moreover, at those high redshifts, due
to the nonlinear relation between redshift and cosmic
time, there is less available physical time, and the total
delay time from cluster formation to the binary merger
cannot be more than ≃ 400 Myr (which corresponds to
the difference between the ages at z = 15 and z = 8).
Although there is a higher probability for the clusters
to have formed closer to the IMBH binary merger, there
is a long tail in the cluster redshift distributions, which
originates from the high-end tail in ∆tg. Notice that the
redshift distributions sometimes have support below the
merger redshift due to the broad posterior on the merger
redshift zm. This feature is most noticeable in the high-
redshift events, whose parameters are harder to measure.
Finally, the zcl,0 distributions are not very different even
when the merging IMBHs have different masses. We have
found that differences can be observed only when the

mass ratio q = m1/m2 ≥ 10, and that the distribution of
zcl,0 weakly depends on the IMBH mass ratio.

IV. LIMITATIONS OF THE MODEL

In this section, we discuss the limitations of our model.
In Sec. IV A we present alternative formation channels
that could form IMBHs. In Sec. IV B we revisit the
assumption of isothermal conditions in the cluster beyond
the core radius. In Sec. IV C we discuss the validity of the
TDE rate estimate of Eq. (1). In Sec. IV D, we discuss
the limitations of our assumption of a monolithic star
cluster evolution composed of a single mass component.
Finally, in Sec. IV E we compare the predictions on the
IMBH mass from our astrophysical model with the N -
body simulations of Ref. [25].

A. Alternative IMBH growth channels

In this work, we have considered the formation of
IMBHs through runaway tidal encounters. However,
hundred-M⊙ BHs can form in other ways. In this sub-
section, we review some of these alternative formation
pathways, such as remnants of Pop III stars (Sec. IV A 1),
runaway stellar collisions (Sec. IV A 2), repeated BH merg-
ers (Sec. IV A 3), and gas accretion (Sec. IV A 4).

1. Population III remnants

The first stars (known as Pop III stars) are believed to
have weaker winds and their collapse will lead to heavier
remnants [89]. If formed in pairs, such stars may form BH
binaries with both components masses above ∼ 150M⊙,
as suggested by population synthesis codes [90, 91]. While
the stellar winds of very massive stars are uncertain, and
the details of the formation of Pop III stars are debated,
the collapse of Pop III stars could contaminate the lower
end of the IMBH mass spectrum, producing IMBH binary
mergers at higher redshifts [92]. If the cluster formation
rate peaks at z ∼ 4, then the population of IMBH binary
mergers from gravitational runaways studied in this paper
could be distinguished from massive Pop III binaries,
whose merger rate would peak at around z ∼ 10. In
addition, the collapsar model presented in Ref. [93] could
also form IMBHs beyond 130M⊙.

2. Runaway stellar collisions

Stars with masses ≳ 200M⊙ formed through run-
away stellar collisions may also lead to the formation
of IMBHs [24, 40, 94–96]. However, the mass growth rate
of the runaway star may be too strong for a very massive
star to even form in a metal-rich environment [43, 44],
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so this formation scenario may only be relevant in low-
metallicity systems.

A simple analytic model for the production of IMBHs
through this channel, where the mass of the IMBH progen-
itor is given as a function of the cluster’s initial mass, was
developed in Ref. [66] and verified through N -body simu-
lations. Assuming that the very massive star assembled
via this mechanism collapses directly into an IMBH, and
neglecting any stellar wind effects that would reduce the
mass of the star by the end of its life, Eq. (16) from [66]
finds the simple relation MIMBH ≃ mseed + 0.008Mcl,0.
Here mseed is the zero-age main-sequence seed mass of
the heaviest star that initially forms in the cluster, which
may be ∼ 150M⊙ [97]. Based on this equation, the mass
scale of star clusters that contribute to the formation of
hundred-M⊙ IMBHs is similar to the mass scale of the
runaway TDE channel examined in this paper for fs = 0.5.
Nevertheless, the stellar collision channel requires suffi-
ciently small initial relaxation times (hence, very compact
stellar systems), so that the process can kick-start before
the heaviest stars form a BH subsystem that can pre-
vent such a stellar runaway. The formation of the IMBH
through stellar collisions is very rapid (within only a few
Myr), and based on the classification of Ref. [39] it would
correspond to a “fast” growth scenario.

The IMBHs formed through this channel may be ejected
from the cluster in its later evolutionary phases. Refer-
ence [98] found a very low retention of IMBHs with a
mass in the hundred solar masses in globular clusters:
in their simulations, all IMBHs formed through runaway
stellar collisions are ejected within 500 Myr. Since IMBHs
form very rapidly (within only a few Myr before the for-
mation of the BH subsystem), they typically interact with
lighter BHs, possibly leading to intermediate-mass ratio
inspirals [99]. The interaction of the IMBH with other
stellar-mass BHs can induce a moderate kick of the order
of hundreds of km s−1, that may still be larger than the
escape velocity. Similar kicks can also result from the
relativistic recoil of the remnant of an IMBH-BH merger.
The IMBH may be retained in the system if the escape
velocity is high enough (for example, in nuclear star clus-
ters [100]). On the other hand, Ref. [25] found efficient
retention of IMBHs that grow through runaway TDEs,
and their simulations did not eject any IMBH. This is
because the Newtonian kick imparted to the IMBH is not
large enough to eject it as a consequence of momentum
conservation. After all, the mass ratio is very asymmetric
(typically, q > 100) during IMBH-star-star interactions.
Nevertheless, interactions of the IMBH with binary stars
are more likely to produce hyper-velocity stars ejected
from the cluster through the Hills mechanism [101].

3. Repeated BH mergers

As discussed in Sec. II D, star clusters with a sufficiently
high escape velocity undergo runaway BH mergers (see
also [42, 71, 102]). The simulations shown in the right

panel of Fig. 5 suggest that the formation of two IMBHs
with masses between 200M⊙ and 1000M⊙ within the
same stellar environment, while possible, is unlikely (see
also, e.g., Fig. 1 from Ref. [103] for an independent study
supporting this conclusion).

In the cluster merger scenario, two IMBHs in the mass
range considered in this paper can still form through the
repeated BH merger channel in very heavy and compact
stellar clusters. It is hard to find unambiguous obser-
vational signatures that could tell the two possibilities
apart. Spin measurements are unlikely to help, as the
spin of a BH growing from minor incoherent accretion
episodes always asymptotes to zero [104–106] (see also
Appendix D). However, one could argue that the heavier
star clusters required for runaway BH mergers are much
rarer than lighter systems, and the corresponding merger
rates would be lower. For cluster with escape velocity
below ∼ 200 Km s−1, the left panel of Figure 5 suggests
that the TDE channel should dominate, in the sense that
IMBHs are unlikely to form through repeated BH mergers
for those clusters.

4. Gas accretion

Observational data imply that, despite being dry stel-
lar systems, globular clusters contain some gas in their
centers, resulting from stellar winds of low-mass stars
and ionized by ambient white dwarfs. For instance,
Reference [107] inferred a density of gas particles ne =
0.23 cm−3 using the dissipative effects that the gas would
have on the emission of millisecond pulsars in 47 Tucanae.

A stellar-mass BH of 10M⊙ accreting at the Bondi rate
in the core of 47 Tucanae (assuming a spherical flow)
would not grow to hundreds of solar masses within a
Hubble time. Therefore, the gas contained in evolved
clusters does not reach densities suitable to produce an
IMBH through accretion. Nevertheless, if accreting con-
tinuously at the Eddington rate, a 10M⊙ BH would grow
into the hundreds of M⊙ within ∼ 200 Myr, assuming
a Salpeter timescale of 45 Myr. This channel (in which
IMBHs grow via gas accretion in gas-rich nuclear star
clusters) was considered in Ref. [108], and it may con-
taminate the formation channel examined in this work.
Spin measurements could be useful to distinguish the
two scenarios: the spin of the IMBH would be driven to
near-extremal values if accretion is coherent (rather than
episodic), i.e., it would be much larger than the typical
spin magnitudes of 0.1 found in the channel proposed in
this work (cf. Appendix D).

B. Isothermal assumption

The assumption of isothermal conditions in ra ≲ r ≲ rh
is valid as long as ra is smaller than the core radius rc.
Otherwise, the core velocity dispersion within the cusp re-
gion is enhanced by the presence of the central BH. Based
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on numerical simulations and an energy balance between
the flux through rh and rc in systems with a central BH,
Reference [109] derives that rc/rh ≃ 4.3(MBH/Mcl)3/4.
Thus, rc/ra ≃ 0.6(Mcl/MBH)1/4. Since we are interested
in IMBHs with a mass no larger than 2000M⊙ and clus-
ters with rh,0 > 0.1 pc, we estimate that the ratio rc/ra
does not fall short of unity. At the same time, it has a
typical value of ≈ 1.9 in the parameter space region of
interest for this work. Therefore, the enhancement in σ is
not an issue, because we deal with relatively light IMBHs.

Within the influence radius of the central growing
IMBH, we have assumed Bahcall-Wolf conditions with
density power law index γ = 7/4, as verified in N -body
simulations. Nevertheless, according to Ref. [110] γ can
be as low as 1.4 in the presence of other compact objects
instead, and the consumption rate in that case would drop
by ≃ 64%. This would lead to a slower growth rate and
cause a systematic effect in the measurement of the cluster
properties. Since the asymptotic value of the IMBH mass
is more strongly linked to the initial cluster mass, a larger
value of γ would result in an underestimation of Mcl,0.

C. Validity of the full loss-cone model

Our stellar consumption rate formula [Eq. (1)], while
conservative, still assumes an instantaneous repopulation
of loss-cone orbits with energy ∼ m⋆σ

2 (which corre-
sponds to an orbit with semimajor axis equal to ra).
Nevertheless, according to Fig. 6.5(b) in [53], the loss
cone is efficiently filled by two-body relaxation for small
BH masses ≲ 104M⊙, because the q parameter (which
measures the degree to which the loss cone is filled by
gravitational relaxation) is greater than unity for most
stars inside ra with energies > m⋆σ

2. Essentially, the
relaxation time in the core is small enough that star-star
encounters efficiently cause energy and angular momen-
tum diffusion, and provide a steady flux of stars into
the loss cone [56, 57]. Thus, we expect our full loss-cone
model to approximate ΓC reasonably well.

D. Complex star cluster evolution

In our model, we consider the monolithic formation
of star clusters and neglect the effect of continual star
formation. Nuclear star clusters, for example, are believed
to have more complex star formation histories [100], and
subsequent star formation could be an additional form of
energy. In that case, the evolution of the cluster’s mass
and radius would be different from the one predicted in
this work, and our formalism could lead to systematic
bias in the inference of the cluster’s initial conditions.

The relaxation time in our model assumes a single-mass
cluster. To include the effect of a more complex mass func-
tion, we may divide the relaxation time by a multimass
factor ψ leading to a different mass-loss rate [111]. While
this may be ∼ 100 for a Kroupa initial mass function,

it rapidly decreases to a few within 10 Myr, as massive
stars evolve into remnants. In the case of a two-mass
model containing stars and BHs, ψ ≃ 5 [61]. This factor
approaches unity as BHs are ejected, and the growth of
the IMBH via repeated TDEs initiates because, by that
time, the cluster mass spectrum is narrow. Additionally,
our assumed timescale for τBH follows Ref. [67], which is
calculated assuming a two-mass model and accounts for
the effect of BHs on the relaxation of the whole cluster.
The inclusion of a time-evolving ψ factor in our model
would lead to a higher expansion rate for the clusters
than what is predicted by Eq. (3b).

Furthermore, we have assumed that the BH subsystem
evaporates on a timescale smaller than the evaporation
rate of stars. However, N -body simulations carried out in
Ref. [34] suggest that if the BH natal kick is small enough
for clusters to retain the majority of BHs, then those
clusters within the inner regions of the Galaxy (≲ 5 kpc)
can evolve into a dark star cluster state during which the
majority of the stars are ejected, while the remaining few
are bound compactly to the dominant BH population.
The formation of IMBHs through repeated TDEs requires
a small number of BHs embedded in a cluster dominated
by stars, which cannot be realized in a dark star cluster.
A dark star cluster state could be avoided if, for example,
BHs tend to receive a large natal kick, so most BHs are
ejected at birth.

E. Comparison with N-body simulations

It is useful to compare our BH growth model through
runaway tidal encounters with the N -body simulations
performed in [25]. Since the authors of Ref. [25] assume
a single BH mass seed in the cluster, the system does
not go through a phase of BH domination, and thus the
growth of the BH starts promptly. Since we ignore the
intermediate phase of a BH subsystem, the half-mass
radius is smaller when the BH starts to grow via the
consumption of stars. As a consequence, the TDE rate
will be higher, resulting in heavier BHs than estimated
in the previous sections of this paper. To have as close
a comparison as possible, in this subsection, we neglect
the time delays due to core collapse and BH subsystem
evaporation, i.e., we set τcc = τBH = 0.

Moreover, Reference [25] assumes a Kroupa initial mass
function in the range [0.08, 2.00]M⊙, which corresponds to
a multimass relaxation factor of ψ ≃ 3. The initial number
of stars in all systems is set to N⋆,0 = 256000, while rh,0
and MBH,0 are varied, for a total of five cluster models.
For instance, their model R06M300 has rh,0 = 0.6 pc and
MBH,0 = 300M⊙ (see the second and third columns of
Table 2 in [25] for the values of the initial parameters).

In Fig. 10 we plot the number of TDEs as a function
of time for those five cluster models. In particular, we
define NTDE(< t) = [MBH(t) − MBH,0]/(fsm⋆) as the
cumulative number of stars consumed within time t. The
value of NTDE predicted with our BH growth model, and
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FIG. 10. Predictions for the cumulative number of TDEs as a
function of time with our BH growth model (thick solid lines)
for the five clusters considered in Ref. [25] whose simulated re-
sults are shown with thin dashed lines (compare their Fig. 13).

shown in Fig. 10, be compared with Fig. 13 of Ref. [25].
Despite all the differences in modeling, we find that our
full loss-cone BH growth model agrees with [25] within a
factor of ∼ 5, generally leading to a slight overestimation
of the BH mass.

V. CONCLUSIONS

In this paper, we have studied the possibility of inferring
the properties of star clusters by measuring the parameters
of merging IMBHs with XG GW observatories, such as
ET and CE. In our astrophysical scenario, the IMBHs
are formed through runaway consumption of stars by a
central growing BH in each cluster’s core. The formation
of IMBH binaries is assumed to follow the coalescence of
the star clusters, each of which has formed a single IMBH.
Our simple astrophysical model for cluster expansion and
BH growth via runaway tidal encounters relies on the well-
established balanced evolution. We have derived a simple,
closed-form solution for the BH mass as a function of time,
and we have verified its accuracy by numerical integration.
The inference of the cluster properties is then possible
because the masses of the IMBHs and the redshift of the
merging binary are correlated with the initial conditions
of the clusters (in particular, their initial masses and half-
mass radii). We have discussed the limitations of our study
and we have presented a list of alternative astrophysical
channels through which such IMBH binaries may form.

We have focused on IMBHs with component masses
in the range ∼ 100M⊙–1000M⊙, because these will be
detectable with XG ground-based GW observatories. In
principle, IMBH-BH mergers within clusters could also
yield valuable information about their formation environ-
ment. However, we preferred to focus on comparable-mass
binaries because current gravitational waveform models
for systems with large mass ratios are unreliable. Binaries

with even heavier IMBH components (≳ 1000M⊙) will
require detectors with broadband sensitivity at decihertz
frequencies [112]. There are many proposals to cover
this GW frequency window, including space-based detec-
tors such as ALIA [113, 114] and DECIGO [115, 116];
lunar experiments such as the Gravitational-wave Lunar
Observatory for Cosmology (GLOC) [117], the Lunar
Gravitational Wave Antenna (LGWA) [118], and the Lu-
nar Seismic and Gravitational Antenna (LSGA) [119];
or experiments based on atom interferometry, such as
AEDGE [120], AION [121], MAGIS [122], MIGA [123],
ELGAR [124], and ZAIGA [125].

The runaway consumption of stars from IMBHs growing
in the centers of star clusters has interesting observational
consequences beyond GW astronomy [126]. The absence
of an identified off-nuclear optical TDE counterpart out
to a luminosity distance of 120 Mpc over 68 months of
observations with the Zwicky Transient Facility constrains
the number of TDEs per compact stellar system to be
< 10−7 yr−1 [127], two orders of magnitude smaller than
the observed nuclear TDE rate. From Eq. (8) we can find
a simple expression for the mean TDE rate per cluster:

ΓTDE(< t) = MBH(t)
fsm⋆t

≃ 3 × 10−7 yr−1MBH(t)
500M⊙

0.5
fs

0.3M⊙

m⋆

10 Gyr
t

.

(22)

This estimate, which is of the same order as the current
observational constraint, is an upper bound, because full
loss-cone theory overestimates the rate (see Sec. IV E).
Moreover, most evolved globular clusters hosting an IMBH
in their centers will likely be in their saturated regime, and
the TDE rate will be much lower than the average value
of Eq. (22), which is dominated by the short runaway
growth phase. The detection of one off-nuclear TDE by
an IMBH candidate at a distance of 247 Mpc is the only
such X-ray flare that is associated with a massive star
cluster [128]. In addition, the TDEs considered in this
work focus on IMBHs with a mass so small that the IMBH
is typically embedded within the stellar body [129]; thus,
the electromagnetic signatures of such TDEs are even
less certain. It is conceivable that, in the near future,
the multimessenger combination of TDE signatures and
GW observations of IMBH mergers will give us valuable
information about the runaway growth of IMBHs through
the repeated consumption of stars in star clusters.

A limitation of our proposal is that the initial mass
and half-mass radius of the clusters are not strongly con-
strained due to model degeneracy, i.e., their posterior
distributions are broad over the assumed prior domain.
However, the redshifts of cluster formation are more nar-
rowly constrained. Therefore, given a population of IMBH
binaries merging at different redshifts, one may infer the
posteriors for cluster formation and reconstruct the cluster
formation history by estimating their (model-dependent)
delay time distribution. These population studies are an
interesting topic for future research.
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According to numerical simulations, the formation of
globular clusters likely peaks at a redshift of around 3 to
4, i.e., before cosmic noon [85, 86]. On the observational
side, the Hubble Space Telescope and the James Webb
Space Telescope (JWST) have an angular resolution limit
that is not better than ∼ 0.01′′ in their most sensitive
frequency range. This corresponds to proper source-frame
separations of order a few hundred parsecs at cosmological
distances (z > 1). Thus, direct electromagnetic probes
of distant star clusters with radii below 10 pc, which
cannot be resolved individually, are currently challenging.
Despite these limitations, a few strongly lensed young star
clusters at z > 1 have been identified with JWST [130–
132]. These observations show evidence for the formation
of young massive clusters at sub-pc scales that could grow
IMBHs through runaway tidal encounters. The inference
scheme proposed in this paper suggests that the IMBH
merger rate, as well as the masses and redshift of the
observed IMBH merger events, can be used to trace the
formation history of star clusters. In future work, we
will study the constraints that XG GW observatories can
place on the history of cluster formation.

A Python implementation of our code for reproducibil-
ity of the results of this work is publicly available on
GitHub at the URL https://github.com/Kkritos/
Star_clusters_from_IMBH_mergers/tree/main.
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Appendix A: Tidal capture radius

Stars on parabolic orbits that approach a BH with a
pericenter distance rp > rT (where rT is the tidal radius)
are not tidally disrupted. However, they may still be
tidally captured on more compact orbits around the BH
as long as the total tidal energy dissipated during the first
pericenter passage (∆Etid) exceeds the orbital energy at
infinity (T∞). In this appendix, we estimate the critical
radius rC for tidal capture. In general, this parameter
depends on the relative velocity between the BH and the
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FIG. 11. Tidal energy dissipated during the first pericenter
passage ∆Etid, including the quadrupole and octupole contri-
butions, normalized to the energy at infinity (T∞). We show
∆Etid/T∞ as a function of the pericenter distance relative to
the tidal radius for two values of the polytropic index, n = 3
(solid) and n = 1.5 (dashed), and three values of the relative
velocity at infinity. The horizontal dotted line corresponds to
the threshold for tidal capture (∆Etid/T∞ = 1).

star at infinity (v∞), as well as on the structure of the
star (here modeled as a polytrope with polytropic index
n). Since captured stars eventually reach rT through tidal
energy dissipation at each pericenter passage and the cross
section for capture is larger than the TDE cross-section,
the loss cone radius is effectively rC.

In Fig. 11 we compute ∆Etid and plot it as a function
of rp/rT using the semianalytic fits of Ref. [133], includ-
ing the multipoles ℓ = 2 and ℓ = 3 (quadrupole and
octupole), for two polytropic indices: n = 3 and n = 1.5.
The point where ∆tid/T∞ crosses unity corresponds to
the critical pericenter for tidal capture. For pericenter
distances larger than rC the interaction is simply a flyby
with the star escaping back to infinity. As we have nor-
malized the pericenter by rT on the horizontal axis of
Fig. 11, our computed ratio ∆tid/T∞ has an extremely
weak dependence on the BH mass, which can safely be
neglected. Hence, we show results for MBH = 100M⊙ as
a representative case.

The three-dimensional velocity dispersion of the sys-
tems that produce IMBHs with MBH in the hundreds of
M⊙ varies in the range ∼ 1–100 km s−1, with a typical
value of ≃ 10 km s−1. Assuming that the IMBH sits at
the center of the cluster, v∞ can be well approximated by
the stellar three-dimensional velocity dispersion. This is
a reasonable assumption, because the Brownian motion
of a central BH with mass MBH has a wandering-to-core
radius of ≃

√
8m⋆/(3πMBH) [134], and thus the position

does not fluctuate much in the case of IMBHs. Our main
focus is on tidal captures of main sequence solar stars,
which are better described by a polytrope with n = 3.
From the solid orange line in Fig. 11 we conclude that
the critical pericenter distance for capture is typically at

https://github.com/Kkritos/Star_clusters_from_IMBH_mergers/tree/main
https://github.com/Kkritos/Star_clusters_from_IMBH_mergers/tree/main
rockfish.jhu.edu
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FIG. 12. Top panel: the data points show the total cluster
mass Mcl (in orange) and the BH mass MBH (in blue) found
by numerically solving the differential system of Eq. (B1) with
initial conditions Mcl,0 = 105M⊙, rh,0 = 1.2, and assuming
tidally limited evolution. The solid lines show the analytical
approximation. For the purposes of this comparison, stellar
evolution has been neglected. Bottom panel: relative error
between the numerical and analytical solutions.

∼ 2.0rT. Therefore in the main text we use rC = 2.0rT
when computing the loss cone radius.

Appendix B: Cluster dissolution and BH feedback

In the isolated Hénon’s model, the ejection rate is
low (about 0.74% of stars are ejected every relaxation
time [64]), and the systems of interest do not evaporate
within a Hubble time. Moreover, we have verified that the
BH-to-cluster mass ratio in this scenario always remains
below 4% and typically at the sub-percent level, and the
number of stars consumed by the BH is a tiny fraction
of the total number. Thus the evolution of the global
system approximately decouples from that of the BH, and
the equations for (dN⋆/dt, drh/dt) and dMBH/dt separate.
This separation allows us to find a closed-form solution
for the evolution of the system (notice that dN⋆/dt and
drh/dt are still coupled through the relaxation time). The
growth of the BH strongly depends on the evolution of the
cluster as a whole through the evolution of the velocity
dispersion: see Eq. (1b).

In the tidally limited model, however, the ejection rate
is high enough for a cluster with typical initial conditions
(say, Mcl,0 ∼ 105M⊙ and rh,0 ∼ 1 pc) to evaporate well
within τHub. Therefore, at some point, the mass in stars
reduces to the point where it is comparable to MBH, and
the approximation Mcl ≃ m⋆N⋆ fails. In this appendix
we discuss the applicability of this approximation (used
in Sec. II B) to the tidally limited case.

The feedback of the BH into the evolution of the global
properties of the cluster enters through the contribution of
the consumption rate in removing stars from the system,

as well as the contribution of MBH to Mcl. In general,
the full set of equations for the evolution of the system
becomes:

Mcl = m⋆N⋆ +MBH , (B1a)
dN⋆

dt
= −ξe

N⋆

τrh
− ΓC , (B1b)

drh

dt
= ζ

rh

τrh
+ 2 rh

Mcl

dMcl

dt
, (B1c)

dMBH

dt
= fsm⋆ΓC , (B1d)

where the consumption rate ΓC is given by Eq. (1), m⋆ =
1M⊙ and fs = 0.50 are assumed to be constants, and
the other variables have been introduced in Sec. II B. In
Sec. II B we found an analytical solution to this differential
system by dropping the second term. This assumption is
justified when Mcl/MBH ≫ 1.

Here we numerically solve the system (B1) using a
fourth-order Runge-Kutta method with initial conditions
N⋆,0 = 105, rh,0 = 1 pc, and MBH,0 = 10M⊙ in the tidally
limited scenario, where ξe = 0.045 and ζ = 0.0725. The
top panel of Fig. 12 shows the time evolution of Mcl
(orange) and MBH (blue). The data points are found
from numerical integration with time step dt = 10−2 Myr,
which we found to ensure convergence with a relative
error of no more than 0.1%; the solid lines correspond to
the analytical approximation. The two solutions for Mcl
diverge when the cluster evaporates after t ≃ 2000 Myr,
and the contribution of the BH mass to Mcl cannot be
ignored in that regime. However, the mass of the BH
approaches its asymptotic value well before it becomes
comparable to Mcl. Therefore, the BH mass MBH is well
predicted by the approximate analytical model. The bot-
tom panel of Fig. 12 shows the relative error in cluster and
BH mass between the approximate analytical model and
the full numerical solutions, and it illustrates that MBH
is predicted by the approximate model to an accuracy of
|∆MBH|/MBH ∼ 10−3.

The second term on the right-hand side of Eq. (B1b)
corresponds to the reduction in the number of stars due
to the BH. This term is important only in the initial
phases of BH growth, dominating over ejections driven
by relaxations for a short period of time (i.e., not many
relaxation times). In fact, we find that the cumulative
relative change in N⋆ due to the consumption rate term
from the runaway growth phase of the BH is only ≃ 0.5%.
On the other hand, the first term of Eq. (B1b) is important
throughout the entire evolution of the cluster, affecting N⋆

over an extended period. The effect of this term becomes
evident after several initial relaxation times, ultimately
leading to cluster evaporation at around t ≃ 2100 Myr.

Appendix C: Parameter estimation of IMBH binaries

Here we describe the details of the individual Bayesian
PE runs for the IMBH binaries considered in our study.
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FIG. 13. Posterior distributions of the source-frame masses and redshift for two representative binaries (cases D and F in
Table II, respectively). The left panels show results for a binary BH with the following injected parameters: m1 = 600M⊙,
m2 = 200M⊙, z = 2, χ1 = 0.1, χ2 = 0.1, θ1 = −0.65, θ2 = 1.06, ϕ12 = 2.81, ϕJL = 2.26, θJN = 2.22, α = 5.88, δ = 0.11,
ψ = 2.26. The right panels show results for a binary BH with parameters m1 = 200M⊙, m2 = 200M⊙, z = 8, χ1 = 0.1,
χ2 = 0.1, θ1 = 0.28, θ2 = 1.00, ϕ12 = 1.23, ϕJL = 0.97, θJN = 2.05, α = 5.28, δ = 0.65, ψ = 0.97. All angles are given in radians.

We choose a network of three next-generation GW
detectors, consisting of one CE detector with 40 Km arm
length, one CE detector with 20 Km arm length, and ET in
the triangular configuration [6]. The sensitivity, location,
and orientation of the two CE detectors correspond to the
CE-A and CE-B configurations of Ref. [7], respectively.
We assume ET to be at the current location of Virgo in
Italy [135]. We set the low-frequency sensitivity cutoff at
3 Hz for all the detectors in our network.

We generate the GW signals using the IMRPhenomXPHM
waveform model [136], a state-of-the-art quasi-circular
model that includes both spin precession effects and
higher-order modes. Higher-order modes are expected to
be important for both detection [137] and PE [8] of sys-
tems with IMBH components. For each IMBH binary, we
perform Bayesian PE on the whole set of 15 parameters
that characterize the waveform model, namely,

{Mz, q,DL, χ1, χ2, θ1, θ2,

ϕ12, ϕJL, θJN, α, δ, ψ, ϕc, tc } . (C1)

Here, Mz = (1 + z)M is the detector-frame total mass,
q = m1/m2 ≥ 1 the mass ratio, DL the luminosity dis-
tance, χ1,2 the spin magnitudes, θ1,2 the angles between
the spins and the orbital angular momentum, ϕ12 the an-
gle between the in-plane spin components, ϕJL the angle
between the total and the orbital angular momentum, θJN
the orientation angle, (α, δ) the right ascension and decli-
nation, ψ the polarization angle, (ϕc, tc) the coalescence
phase and coalescence time. We perform the PE runs

using the public python package BILBY [138, 139]. We
then convert the resulting posterior samples from the set
of parameters (Mz, q,DL) to (m1,m2, zm), where m1,2
denotes the source-frame IMBH masses.

We fix the spin magnitudes to be χ1,2 = 0.1 for all bi-
naries. This value is consistent with the expectations for
IMBHs formed through repeated TDEs (see Appendix D).
Furthermore, in this study, we are mainly interested in
constraints on masses and redshifts, which are not ex-
pected to be drastically affected by spins [140]. For each
binary, we sample all the angular parameters isotropically
at a reference frequency of 3 Hz.

In Fig. 13 we show PE results for two representative
binaries in our study, i.e., cases D and F in Table II.
We only show the posterior distributions for the main
parameters of interest, i.e., the source-frame component
masses and the redshift.

Appendix D: Black hole mass-spin evolution

Here we demonstrate that the spin of a BH growing
through runaway stellar consumption asymptotes to zero.

Consider a BH of mass M and angular momentum
J . The energy E and angular momentum Φ of a unit
mass orbiting the BH at the innermost stable circular
orbit (ISCO) are given by Eqs. (2) and (3) of Ref. [141],
respectively. A mass element δ is accreted onto the BH
once it crosses the ISCO radius. Then the mass of the
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FIG. 14. Stochastic evolution of the BH spin magnitude as
it grows through the repeated consumption of stars using
the approximation of Eq. (D4). The initial BH spin is always
assumed to be maximal, while the mass consumed at each TDE
is either fsm⋆ = 0.15M⊙ (black lines) or fsm⋆ = 0.009M⊙
(red lines). We simulate 100 realizations in each case.

BH increases by ∆M = E × δ while the angular momen-
tum changes by ∆J = sΦ × δ, where s = 1 (s = −1)
for prograde (retrograde) accretion, corresponding to an
increase (decrease) in J , respectively. Therefore we have
∆J/∆M = sΦ/E = s(GM/c3)G(χ, s), where

G(χ, s) ≡ 2
3
√

3
1 + 2

√
3Z(χ, s) − 2[

1 − 2
3Z(χ,s)

]1/2 . (D1)

Here Z(χ, s) denotes the ISCO radius normalized to the
gravitational radius of the BH, GM/c2. It can be shown
by differentiation that the equation for the evolution of
the spin parameter, defined by χ ≡ cJ/(GM2), is

dχ

dM
= s

M
G(χ, s) − 2χ

M
. (D2)

Integrating by separation of variables, we find∫ χ′

χ

dχ̃

sG(χ̃, s) − 2χ̃ = ln M
′

M
. (D3)

Assuming the BH has consumed a fraction fs of a star
of mass m⋆ after a TDE such that the accreted mass is
fsm⋆ ≪ M , we can make the approximation that the
spin varies only by a small amount. In the late phases of
an evolving star cluster, the mean stellar mass is around
0.3M⊙ and fs = 0.5 or 0.03, such that fsm⋆ = 0.15M⊙
or 0.009M⊙, respectively. In general, the BH needs to
accrete an amount of matter of the order of its initial
mass for the spin to change significantly [141]. Under this
approximation, ln(M ′/M) ≃ fsm⋆/M to lowest order
(which becomes much less than 0.01 as the BH grows
beyond 10M⊙), and thus we derive a simple expression

for the spin χ′ of the BH after a single TDE:

χ′ ≃
(

1 − 2fsm⋆

M

)
χ+ s

fs

M
G(χ, s), (D4)

while the mass after the single TDE event is M ′ = M +
fsm⋆. In Fig. 14 we show the evolution of the BH spin as
a function of its mass as it grows through runaway tidal
encounters with stars, assuming the “worst case scenario”
in which the initial BH is maximally spinning.

While formally the assumption of isotropy is broken by
the spin of the BH, the BH spin effect is subdominant in
our case, because the tidal radius rT of a main-sequence
star is many orders of magnitude larger than the grav-
itational radius, and the effect of the spin enters as an
O((GMc−2/rT)3) term in the force (see e.g. [142]). There-
fore we assume prograde and retrograde accretion to be
equally probable, as appropriate for a (nearly) spherically
symmetric system. The BH spin parameter χ asymptotes
to zero as a consequence of the asymmetry in the ISCO
radius between prograde and retrograde orbits: retro-
grade orbits deliver a larger amount of (negative) angular
momentum to the BH than prograde orbits. A similar
conclusion is reached if the BH grows through repeated
mergers with smaller BHs [104, 106]. Qualitatively, χ de-
creases as the BH mass increases. The scatter in the spin
evolution depends on the amount of mass consumed at
each TDE. Starting with stellar-mass BH seeds that grow
through the repeated consumption of low-mass stars, the
spin magnitude of the BH becomes less than ∼ 0.3 by the
time it grows beyond 100M⊙, and then the BH spin can
safely be ignored. Incidentally, these considerations can
be used to infer the growth scenario of BHs in their last
mass-doubling epoch from BH spin measurements [143].

Appendix E: Marginalized cluster posteriors for
fs = 0.03

In Figs. 15 and 16, for completeness, we plot the
marginalized cluster posteriors for all of the IMBH binary
systems listed in Table II.

These figures are similar to Figs. 8 and 9, but with a
lower fraction of each star’s mass consumed by the BH
(fs = 0.03, rather than fs = 0.5).
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FIG. 15. Same as Fig. 8, but with a lower accretion rate fs = 0.03.
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FIG. 16. Same as Fig. 9, but with a lower accretion rate fs = 0.03.
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