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 A B S T R A C T

The full view of the apples in the orchard is often obscured by leaves and trunks, making it challenging to 
accurately determine their ripeness, whilst it is an essential yet difficult task for apple-harvesting robots. Within 
this context, we propose a novel method to address two critical challenges: ripeness determination and in-field 
occlusion. The proposed method is trained in a self-supervised manner on a dataset consisting of less than 1% 
labelled images and the rest of unlabelled images. It is made up of three key parts: a reconstructor, a feature 
extractor, and a predictor. The reconstructor is designed to reconstruct the missing parts of occluded apples. 
The feature extractor is introduced to learn ripeness-related features from the vast number of unlabelled images. 
Unlike the previous approaches classifying the fruit ripeness into several discrete categories, the predictor uses 
the learned features to generate a continuous ripeness score in the range between 0.0 and 1.0, thus eliminating 
the need to subjectively pre-define ripeness stages and offering end-users the flexibility to make their own 
decisions.

Experimental results comparing our method to another method with different settings show that our method 
achieves the best Structural Similarity Index Measure (SSIM) of 0.75 and the second-best Peak-Signal-to-Noise 
Ratio (PSNR) of 25.36 for reconstructing missing apple parts, whilst using the fewest 86.3M parameters. 
Besides, our method outperforms 15 other self-supervised methods and even a supervised method in the 
ripeness score prediction, with the smallest score 0.0127 for fully unripe and the highest score 0.8933 for 
fully ripe apples. The results demonstrate the potential of our method to be incorporated with in-field robotic 
systems, enabling them to assess ripeness for selective harvesting effectively. It is helpful to monitor the overall 
ripeness of large orchards digitally, aid the decision-making processes and advance the goals of smart and 
precision agriculture.
1. Introduction

1.1. Background

Apples are one of the most popular fruits globally, cherished for 
their taste and nutritional value. Food and Agriculture Organization 
of the United Nations (FAO) reports that global apple production has 
steadily increased since 2017 (FAO, 2024). This growth has been 
supported by advancements in agricultural technology, which have 
contributed to increased mechanization in apple production. Despite 
these advancements, apple harvesting remains a labour-intensive and 
time-consuming process, and it is facing the growing challenge of 
labour shortages recently.
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Significant research efforts across the world have been devoted to 
the development of fruit-harvesting robots over the past few years. Sil-
wal et al. (2017) designed a cost-effective robotic apple harvester that 
successfully picked 84% of the apples in a commercial orchard. Kang 
et al. (2020) developed an apple harvesting system, with a lightweight 
detection network with PointNet for pose estimation.  Zhang et al. 
(2021) further proposed an apple harvesting prototype that integrates 
a fruit detection model, a three-degree-of-freedom manipulator, and 
a vacuum end-effector.  Bu et al. (2022) evaluated a robotic apple 
harvester and found that the ‘‘horizontal pull with bending’’ motion 
outperformed the anthropomorphic motion in success rate and speed 
while avoiding stem-pulling and bruising. Besides, a spatio-temporal 
model was introduced to detect in-field pineapple, achieving a high 
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Fig. 1. Apples with distinct ripeness difference can appear simultaneously.

detection accuracy for pineapple-picking robot (Meng et al., 2023). 
For pitaya fruit harvesting, Li et al. (2024) improved the YOLOv5s 
model to work in both day and night environments, and deployed it 
on a mobile device.  Jangali et al. (2024) presented a multi-purpose 
robotic end effector with vacuum suction and rotation, achieving 66.1% 
successful rate in apple thinning and showing potential for harvesting. 
Lammers et al. (2024) developed a dual-arm robotic apple harvesting 
system with improved perception and coordination algorithms.  Chen 
et al. (2024) proposed an approach to develop fruit-picking robots by 
proposing vision algorithms for efficient locomotion, self-positioning, 
and dynamic harvesting.

However, most of above fruit-harvesting robots do not consider fruit 
ripeness during operation, meaning that all fruit are harvested at the 
same time. In the context of apple precision agriculture, variations in 
apple ripening times exist both among trees within the same orchard 
and even among apples on the same tree, as illustrated in Fig.  1. 
The differences in ripening times are influenced by a combination of 
environmental conditions, biological traits, and human interventions. 
This lack of selectivity can lead to reduced apple market value and 
the need for post-harvest sorting. Therefore, it is necessary for the 
harvesting robots to adopt a selective harvesting approach that focuses 
only on ripe apples.

1.2. Ripeness determination

Ripeness determination is the first challenge in this work. In the 
past decades, researchers have developed many methods to identify 
the ripeness stage of apples and other fruits. These methods can be 
broadly categorized into destructive and non-destructive approaches. 
Destructive approaches rely on analysing fruit’s internal attributes 
such as titratable acidity, soluble solids content, and total soluble 
solids. Qin et al. (2009) found that spectral scattering, either across 
all wavelengths or selected ones, provides accurate predictions of 
apple ripeness. Liu et al. (2016) analysed changes in colour, soluble 
sugars, organic acids, anthocyanins, and aroma components during 
apple ripening using liquid chromatography and gas chromatography-
mass spectrometry. Das et al. (2016) measured ultra-violet fluorescence 
from chlorophyll in apple skin across different varieties during ripening 
and correlated it with destructive firmness tests to assess ripeness.

In contrast, non-destructive approaches have recently gained more 
attention due to they are cost-efficient and do not damage the fruit. 
These approaches often take imaging as input data. Liu et al. (2015) 
used multispectral imaging with 19 wavelengths to predict the ripeness 
of tomatoes. Besides, it is noted that deep learning has recently emerged 
as a non-destructive approach for classifying fruit ripeness stages using 
2 
Fig. 2. Different users have different criteria for apple ripeness.

RGB images as input data. Saranya et al. (2021) proposed a convo-
lutional neural network (CNN) to classify bananas into four ripeness 
stages and compared its performance with state-of-the-art CNNs using 
transfer learning. Suharjito et al. (2021) developed a mobile application 
for classifying the ripeness levels of oil palm fresh fruit bunches, 
utilizing lightweight CNN MobileNets (Howard et al., 2017). Several 
studies have explored the use of vanilla and customized CNNs to 
predict different fruit ripeness stages. DenseNet (Huang et al., 2017) 
was applied to assess ripeness in mulberries (Miraei Ashtiani et al., 
2021). VGG (Simonyan and Zisserman, 2015) was utilized to predict 
the ripeness levels of grapes (Ramos et al., 2021).

Moreover, some studies have incorporated fruit ripeness classifica-
tion into detection and segmentation tasks. For instance, Xiao et al. 
(2021) employed a two-step approach to detect apples, first using 
Fast-RCNN (Girshick, 2015) to predict apple locations, followed by 
classifying them into 3 ripeness stages. Zhao et al. (2023b) introduced 
a novel one-stage instance segmentation model that directly segments 
peaches and classifies them into 3 ripeness stages. Wang et al. (2023) 
proposed a feature augmentation network with decoupled heads to 
segment strawberries and classify them into 2 ripeness stages. Wang 
et al. (2024) proposed a new class balance method and a YOLO-based 
network, for segmenting tomatoes and classifying them into 3 ripeness 
stages. These studies have demonstrated the success of deep learning 
models in classifying fruit ripeness stages.

However, a key limitation of these studies is that they rely on the 
pre-defined number of ripeness stages during image labelling, which 
may not align with real-world decision-making processes. Specifically, 
simulating the decisions of end-users (e.g., farmers, orchard managers) 
is difficult, as their criteria for ripeness often vary based on individual 
goals. For example, some managers targeting long-distance markets 
may prefer to harvest apples early before fully ripe, while some may 
like to harvest apples only when fully ripe.

Determining apple ripeness from images is usually a subjective 
and challenging task. Fig.  2 shows that the definitions of ‘‘ripe’’ can 
be different among different users, ranging from binary classifica-
tions to more granular multi-category classifications. Binary and three-
category classifications are the most commonly considered by previous 
research. However, extending these models to finer classifications, such 
as five categories, requires re-labelling the images and retraining the 
model, which introduces unnecessary effort. To solve this, we regard 
ripeness determination as a regression task rather than a multi-category 
classification task.

It is noted that regardless of the number of ripeness stages defined 
by the users, the fully unripe and fully ripe apples will always remain in 
the first and last categories, respectively. Based on this, we proposed a 
self-supervised method which takes few images of fully unripe and fully 
ripe apples as labels, learns from a large number of unlabelled images, 
and generates ripeness scores as output.
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Fig. 3. Example of modal and amodal masks (Gené-Mola et al., 2023).

1.3. In-field occlusion

In-field occlusion is the second challenge in this work. Since most of 
these robots heavily depend on visual perception for fruit identification 
and localization, occlusion significantly impacts their decision-making 
process. As shown in Fig.  1, apples are often easily occluded by leaves. 
Moreover, occlusion can also result in recognition failures, requiring 
manual leaf removal prior to picking (Van Herck et al., 2020).

Some of previous research has considered the occlusion when train-
ing the detection and segmentation models. Tian et al. (2019) intro-
duced a YOLO-based model specifically designed for detecting apples 
at different growth stages in orchards and mitigated apple overlap and 
occlusion to some extent. Zheng et al. (2021) proposed a CNN-based 
vision algorithm for mango instance segmentation and picking point 
localization, considering occlusion, overlap, and variations in object 
scale. Wang et al. (2024) replaced the network’s complete-IoU regres-
sion loss function with the weighted-IoU loss function to address tomato 
fruit and leaf occlusion. Chen et al. (2023) proposed a YOLO-based 
lightweight 4-class occlusion detection method for Camellia oleifera 
fruit, introducing a clustering algorithm to select the target dataset. 
Similarly, Du et al. (2023) proposed a detection model to locate ripe 
ground-planted strawberries of 4 different occlusion categories.

Furthermore, some researchers proposed to estimate the shape of 
partially occluded fruits by means of amodal instance segmentation, 
which aims to predict the shape of each object of interest in an 
image (Li and Malik, 2016). Gené-Mola et al. (2023) implemented 
an amodal segmentation model with an end-to-end CNN for accurate 
Fiji apple detection and sizing, predicting complete shapes (visible 
and occluded regions) and achieving robust diameter estimation. The 
examples of modal and amodal masks are shown in Fig.  3. Kim et al. 
(2023) employed an amodal segmentation approach using a recon-
struction network to perform cucumber occlusion recovery, achieving 
high accuracy and speed. Besides, some researchers introduced math-
ematical methods to estimate the shape of the target fruit. Sun et al. 
(2024) proposed an active deep sensing method to handle occlusions 
in clustered and single fruit scenarios, utilizing a deep network to 
predict optimal observation positions, and guiding robots to avoid the 
occlusion. Liang et al. (2024) mitigated the challenge of fruit occlusion 
in complex environments by leveraging approximately spherical fruit 
shape priors for improved segmentation and localization, enabling 
effective occlusion-aware solutions without reliance on additional data 
or equipment.

However, all of the above research limits the addressed problem to 
either classifying the occlusion categories or estimating the shape of 
the occluded fruit. Taking a step forward, we propose a self-supervised 
method to reconstruct the details of the occluded parts of the fruits.

1.4. Self-supervised learning

Self-supervised learning is a promising path to advance machine 
learning, which can learn from a large number of unlabelled data
(Balestriero et al., 2023). There have been some efforts in applying self-
supervised learning in the agricultural sector, such as cherry maturity 
detection (Gai et al., 2023), leaf disease identification (Zhao et al., 
2023a), and crop anomaly detection (Choi et al., 2024). Different from 
them, we adopt self-supervised learning to extract features related to 
apple ripeness and address the in-field occlusion problem.
3 
Fig. 4. Left: The apple orchard. Right: Samples of apple images.

1.5. Contributions

To address the mentioned two challenges, this paper is devoted 
to in-field occluded apple ripeness determination with few labelled 
images and vast unlabelled images. Specifically, we proposed a self-
supervised method, which consists of three parts: a reconstructor, a 
feature extractor, and a ripeness score predictor. To the best of the 
authors’ knowledge, our method is novel and has not been explored 
in prior research.

The main contributions of our proposed method are summarized as 
follows:

1. The reconstructor is trained on unlabelled ‘‘complete’’ apple 
images to learn, and then apply the acquired knowledge to 
reconstruct the details of missing parts for ‘‘incomplete’’ apples.

2. The feature extractor is designed to capture ripeness-related 
features from a large number of apple images, of which less than 
1% images are labelled.

3. The predictor eliminates the need for subjectively pre-defining 
the number of ripeness stages, instead, it generates a continuous 
‘‘ripeness score’’ between 0.0 and 1.0, allowing end-users to 
make decisions based on their criteria.

2. Dataset

2.1. Image collection

We captured a number of 2530 apple images (4032 × 3024 pixels) 
with a mobile phone in a large Jazz apple orchard located near Hawke’s 
Bay, New Zealand. The overview of the orchard and samples of the 
apple images are presented in Fig.  4. The collection took several weeks 
from February to March, and encompassed the complete apple ripening 
progress from fully unripe to fully ripe.

There were no specific requirements for the image collection. All 
apple images were taken under natural illumination and in real-world 
production settings, taken from various angles to simulate every possi-
ble scenario for the in-field operation of robots. As a result, the apples 
exhibited variations such as being isolated, in close proximity to each 
other, and partially obscured by leaves or stalks.

2.2. Image preprocessing

We use YOLO-World (Cheng et al., 2024) to detect the bounding 
boxes of apples, and then use the boxes as the input of Segment 
Anything Model (SAM, Kirillov et al., 2023) to perform the apple 
instance segmentation. The workflow of the process is shown in Fig.  5. 
The dataset consists of 2530 images, from which 7191 apple instances 
were detected and segmented following the workflow. From these, we 
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Fig. 5. The workflow of image preprocessing.

Fig. 6. The selected 20 fully unripe and 20 fully ripe apples.

Fig. 7. The Fr distribution of the dataset.

manually selected 20 fully unripe and 20 fully ripe apples under diverse 
conditions, using them as labelled instances, as illustrated in Fig.  6, 
while the remaining 7151 apple instances remain unlabelled. 

Fr =
𝑁𝑎𝑝𝑝𝑙𝑒

𝑁𝑖𝑚𝑔
(1)

We compute the foreground ratio Fr of all uniformly resized apple 
instances using Eq. (1), where 𝑁𝑎𝑝𝑝𝑙𝑒 represents the number of pixels 
corresponding to apples, and 𝑁𝑖𝑚𝑔 is the total number of pixels in the 
image.

The distribution of Fr is presented in Fig.  7. Here, we define apples 
with Fr ≥ 0.6 as ‘‘complete’’ apples, as they contain sufficient visual 
information for analysis. In contrast, apples with Fr < 0.6 are catego-
rized as ‘‘incomplete’’ apples, as substantial portions of the apple are 
occluded, resulting in limited details.

2.3. Image augmentation

Image augmentation involves applying various transformations to 
images to artificially increase the size of a dataset and simulate real-
world conditions.

For some of self-supervised learning methods, image augmentation 
is a cornerstone of training strategies. It serves as a key mechanism 
4 
Fig. 8. Left: The original image. Right: Examples generated via augmentation.

to manipulate input data, ensuring that the model learns meaningful 
representations from a large number of unlabelled data.

Based on the collected apple images, we assume that some in-
field conditions observed in apples, such as variations in brightness, 
shadows, viewing angles, and occlusions caused by leaves, branches, or 
other fruits, can be regarded as forms of ’natural augmentation’. These 
natural augmentations do not influence the ripeness of the apples, as 
ripeness is an intrinsic quality independent of external conditions.

In this paper, we incorporate a variety of artificial augmentation 
methods, including random cropping, random scaling, random flipping, 
brightness adjustment, colour jittering and Gaussian blur to simulate 
natural augmentations. For instance, random cropping and flipping 
mimic the perspectives of images captured from different angles, while 
Gaussian blur replicates the effect of images taken when the camera is 
out of focus on the apples. It is noted that gray-scale conversion is not 
used in our work, as it results in the loss of colour information. The 
illustration of augmentations is provided in Fig.  8.

By setting different probabilities to each method, we generate a di-
verse set of variations, enabling the model to robustly learn meaningful 
features associated with ripeness across different scenarios.

3. Proposed method

3.1. Overview

The overall architecture of our work is shown in Fig.  9. The col-
lected images first undergo a preprocessing stage, including object 
detection and instance segmentation. Following this, the apple in-
stances are partitioned based on two criteria: (1) whether they are 
labelled and (2) whether they are complete or incomplete. Complete 
apples are utilized for feature extraction and reconstruction, and in-
complete apples are used for reconstruction. Finally, labelled apples 
serve as boundaries for projecting the features onto the final ripeness 
prediction.

Specifically, our proposed method contains three parts: a missing-
part reconstructor, a feature extractor and a ripeness score predictor. 
The framework of our method is illustrated in Fig.  10.

• Reconstructor
The reconstructor is a self-supervised component designed for 
incomplete apples, which aims to reconstruct missing parts of 
apples to provide more details.

• Extractor
The extractor also operates within a self-supervised paradigm to 
learn representations related to ripeness from images. Specifi-
cally, it is expected to find a feature space in which every apple is 
separated by its ripeness, and unripe apples are as far as possible 
from ripe apples.

• Predictor
The predictor is a simple multi-layer perceptron (MLP), which 
takes features from the extractor as input and predicts ripeness 
scores.
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Fig. 9. The overall architecture of our work.
Fig. 10. The framework of our proposed method.
3.2. Reconstructor

The reconstructor is based on ’Masked Image Modelling’, which 
learns by masking portions of the input image and predicting the 
missing parts. In this context, we consider occlusions caused by leaves 
or trunks as a kind of natural mask, and the task is to reconstruct these 
occluded apples.

Specifically, our reconstructor employs the SimMIM (Xie et al., 
2022), which consists of an encoder that maps the normalized image 
to a latent representation and a prediction head that reconstructs the 
reconstructed image from the latent representation. The illustration is 
presented in Fig.  10.

Given an input image, it is divided into regular and non-overlapping 
patches. A subset of patches is selected, while the remaining ones are 
masked. The encoder embeds the visible patches using a linear projec-
tion with added positional embeddings and processes them through a 
series of Transformer blocks. It is noted that the encoder operates exclu-
sively on visible, unmasked patches, as masked patches are removed, 
and no mask tokens are used. The encoder extracts a latent feature 
representation of the masked image, which is utilized to predict the 
original signals in the masked regions. For the encoder, we consider 
two common vision Transformer architectures: the standard Vision 
Transformer (ViT, Dosovitskiy et al., 2020) and the Swin Transformer 
(SwinT, Liu et al., 2021).

The prediction head processes the latent feature representation to 
generate a form of the original signals for the masked regions. While 
the prediction head can have arbitrary form and capacity, we employ 
a single-layer 1 × 1 convolutional layer to maintain a small model 
size. Each output element from the prediction head is a vector of pixel 
values corresponding to a patch. The final layer of the decoder is a 
5 
linear projection with the number of output channels equal to the pixel 
count in a patch. The output of the prediction head is then reshaped to 
reconstruct the image.

The Mask Autoencoder (MAE, He et al., 2021) is another state-of-
the-art model of masked image modelling, which takes a complete ViT 
architecture for both the encoder and prediction head. MAE demon-
strates that random sampling with a high masking ratio significantly 
reduces redundancy, creating a task that cannot be easily solved by 
extrapolation from visible neighbouring patches. Accordingly, our re-
constructor adopts a strategy of random masking with a 75% masking 
ratio, meaning 75% of the input image patches are masked, leaving 
only 25% visible for the model.

3.2.1. Training details
During training, we fine-tune the pre-trained models on complete 

apple instances to save training time.
Our loss function calculates the mean squared error (MSE) be-

tween the reconstructed and original images by measuring the average 
squared difference between their pixel values. It is defined as in Eq. (2). 

MSE(𝐱, 𝐲) = 1
𝛺(𝐱𝑀 )

‖𝐲𝑀 − 𝐱𝑀‖

2
2 (2)

where 𝐱, 𝐲 ∈ R3×𝐻×𝑊  are the original RGB values and the predicted 
values, respectively; 𝑀 indicates the set of masked pixels; 𝛺(⋅) is the 
number of elements.

3.2.2. Evaluation details
During the evaluation, we introduce another two metrics to evaluate 

the reconstruction quality in de-normalized colour value.
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• Peak-Signal-to-Noise Ratio (PSNR)
PSNR (Hore and Ziou, 2010) is a widely used metric for evalu-
ating the quality of image reconstruction in computer vision. It 
measures the similarity between the original and reconstructed 
images by comparing the ratio of peak signal to noise on a loga-
rithmic scale. PSNR is defined as in Eq. (3), where 255 is the max-
imum pixel value for 8-bit images. A higher PSNR indicates that 
the reconstructed image is closer to the original, indicating better 
quality. Conversely, a lower PSNR indicates greater numerical 
differences between the images, reflecting poorer quality.

PSNR(𝐱, 𝐲) = 10 ⋅ log10(
2552

MSE(𝐱, 𝐲) ) (3)

• Structural Similarity Index Measure (SSIM)
SSIM (Wang et al., 2004) is another well-known metric used to 
measure the structural similarity between the original and recon-
structed images. It focuses on comparing structural information in 
images including luminance, contrast, and texture, which aligns 
more closely with human visual perception. The definition of 
SSIM is given in Eq. (4). 

SSIM(𝐱, 𝐲) =
(2𝜇𝐱𝜇𝐲 + 𝐶1)(2𝜎𝐱𝐲 + 𝐶2)

(𝜇2
𝐱 + 𝜇2

𝐲 + 𝐶1)(𝜎2𝐱 + 𝜎2𝐲 + 𝐶2)
(4)

where 𝜇𝐱, 𝜇𝐲 and 𝜎2𝐱 , 𝜎2𝐲 are the average luminance and variance 
of the original and reconstructed images. 𝜎𝐱𝐲 is the covariance 
between two images. 𝐶1 and 𝐶2 are small constants to avoid a zero 
denominator. The SSIM value ranges from [−1, 1], and a higher 
value represents a more accurate replication of the original image.

3.3. Extractor

The feature extractor is implemented in a self-supervised learning 
framework, using the online-clustering method SwAV (Caron et al., 
2021a). This method employs two parallel branches to facilitate fea-
ture learning. Specifically, the feature extractor is designed to identify 
representations associated with apple ripeness. The goal is to find a 
feature space in which fully unripe apples are positioned farthest from 
fully ripe apples, while ensuring that a random given apple image and 
its augmented variants are mapped to closely aligned locations. An 
overview of this process is presented in Fig.  10.

The input image is transformed into multiple augmented views 𝐱𝑛𝑡
(e.g., 𝑥1 and 𝑥2 in the figure) using transformations 𝑡 sampled from a 
set   of image augmentation techniques.

These augmented views 𝐱𝑛𝑡 are then passed through an encoder 𝑓𝜃 , 
which consists of two standard convolutional layers, to generate non-
linear feature representations 𝐳𝑛𝑡 (e.g., 𝑧1 and 𝑧2). Then the feature 
representations are normalized using 𝓁2 normalization and projected 
onto the unit sphere.

Next, a code 𝐪𝑛𝑡 (e.g., 𝑞1 and 𝑞2) is computed by mapping the feature 
𝐳𝑛𝑡 to a set of prototypes 𝐂. The prototype 𝐂 consists a set of 𝐾 trainable 
vectors, denoted as {𝐜1,… , 𝐜𝐾}. In this work, 𝐂 is represented as a 
matrix whose columns correspond to the prototype vectors 𝐜1,… , 𝐜𝐾 . 
These prototypes are treated as model parameters and are updated 
iteratively during the training process.

In detail, a code is computed for one augmented version of an image 
and predicted from other augmented versions of the same image. Given 
two feature vectors, 𝐳𝑡 and 𝐳𝑠, derived from different augmentations of 
the same image, their corresponding codes 𝐪𝑡 and 𝐪𝑠 are obtained by 
matching these features to a set of 𝐾 prototype vectors, {𝐜1,… , 𝐜𝐾}. The 
computation involves multiplying the feature vector 𝐳𝑛𝑡 with the proto-
type matrix 𝐂, followed by applying the Sinkhorn–Knopp algorithm to 
normalize the result and produce the code 𝐪𝑛𝑡.

The prototype vectors represent the clustering centres of the apple 
images. As this method is an online method, the codes are updated only 
based on the image features within the current batch, distinguishing 
6 
Fig. 11. The proposed distances for model performance evaluation.

this method from offline clustering approaches that require the entire 
dataset to compute the codes. The loss function is defined in Eq. (5). 
𝐿(𝐳𝑡, 𝐳𝑠) = 𝓁(𝐳𝑡,𝐪𝑠) + 𝓁(𝐳𝑠,𝐪𝑡) (5)

where the function 𝓁(𝐳,𝐪) quantifies the alignment between features 
𝐳 and a code 𝐪. Conceptually, our method evaluates the similarity 
between the features 𝐳𝑡 and 𝐳𝑠 using the intermediate codes 𝐪𝑡 and 𝐪𝑠. In 
other words, if these two features are from augmentations of the same 
input image, and they encode the same or similar information, then it 
should be feasible to predict the code from the other feature.

The loss function in Eq. (5) consists of two terms that define the 
‘‘swapped’’ prediction task: predicting the code 𝐪𝑡 from the feature 
𝐳𝑠, and vice versa, predicting 𝐪𝑠 from 𝐳𝑡. Each term corresponds to 
the cross entropy loss between the predicted code and the probability 
distribution obtained by applying softmax function to the dot products 
of 𝐳𝑖 and all prototypes in 𝐂. The loss formulation is detailed in Eq. (6), 
where 𝜏 is a temperature parameter that controls the sharpness of the 
softmax distribution. 

𝓁(𝐳𝑡,𝐪𝑠) = −
∑

𝑘
𝐪(𝑘)𝑠 log𝐩(𝑘)𝑡 , 𝐩(𝑘)𝑡 =

exp
(

1
𝜏 𝐳

⊤
𝑡 𝐜𝑘

)

∑

𝑘′ exp
(

1
𝜏 𝐳

⊤
𝑡 𝐜𝑘′

) (6)

In contrast to previous self-supervised learning methods, which 
directly compare the similarity of feature vectors 𝐳𝑛𝑡. Comparing high-
dimension features (e.g. 2048) usually takes a lot of time and computa-
tional overhead. Instead, we focus on comparing the codes 𝐪𝑛𝑡 derived 
from different views, aiming to make them consistent. This strategy 
allows the model to capture more details of the input. In this work, we 
choose the code as the output of the feature extractor, as it provides a 
more efficient and effective representation for comparison.

Inspired by SMoG (Pang et al., 2022), the similarity comparison 
can happen at the instance-level, and also at the group-level. Building 
on this idea, we conceptualized two distances as metrics to make the 
extractor more suitable for our apple ripeness determination task. We 
illustrate the considered distances in Fig.  11. 

𝐷 = 𝐴
𝑁𝐺
∑

𝑖=1

𝑁𝐸
∑

𝑗≥𝑘
(1 −

𝑓𝑖 ⋅ 𝑓𝑗
‖𝑓𝑖‖2‖𝑓𝑗‖2

) (7)

The definition of the distance is given in Eq. (7), where 𝑓 is the 
extracted feature and ‖𝑓‖2 is the Euclidean norm of 𝑓 , 𝐴 is a constant. 
𝑘 is a variable and 𝑁 denotes an ordered set. Specifically, we define 𝑁𝐺
as the set of labelled fully unripe apples and 𝑁𝐸 as the set of labelled 
fully ripe apples. The sizes of 𝑁𝐺 and 𝑁𝐸 are 20 in our work.

• Intra-distance
For a random unlabelled apple, we assume that the distance 
between the image and its augmentations should be as small 
as possible. This ensures that the image and its augmentations 
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occupy a stable position between unripe and ripe items in the 
feature space. This intra-distance, denoted as 𝐷𝑖2𝑎, is implicitly 
considered by the loss Eq. (6).
For the set of labelled apples, we assume that unripe items should 
be closest to other unripe items, and ripe items should be closest 
to other ripe items in the feature space. To quantify this, we define 
that:

– The average distance between labelled unripe apples as 𝐷 =
𝐷𝑔2𝑔 , where 𝑖, 𝑗 ∈ 𝑁𝐺 , 𝐴 = 2

|

|

𝑁𝐺 ||(||𝑁𝐺 ||+1)
, 𝑘 = 𝑖.

– The average distance between labelled ripe apples as 𝐷 =
𝐷𝑟2𝑟, where 𝑖, 𝑗 ∈ 𝑁𝐺 , 𝐴 = 2

|

|

𝑁𝐸 ||(||𝑁𝐸 ||+1)
, 𝑘 = 𝑖.

• Inter-distance
For labelled unripe and ripe apple images, unripe items should 
be as distant as possible from ripe items in the feature space. To 
quantify this separation, we compute the average group-level dis-
tance between labelled unripe and labelled ripe apples, denoted 
as: 𝐷 = 𝐷𝑟2𝑔 , where 𝑖 ∈ 𝑁𝐺 , 𝑗 ∈ 𝑁𝐸 , 𝐴 = 1

|

|

𝑁𝐺 ||
|

|

𝑁𝐸 ||
, 𝑘 = 1.

Intra-distances evaluate the clustering consistency within each apple 
and its variants in the feature space. Inter-distance measures the degree 
of separation between the two labelled groups, while also providing 
insight into the depth of the feature space. The computation of these 
two distances serves as a complement to the ‘‘swapped’’ prediction 
loss, offering additional metrics for assessing the effectiveness of the 
learned representations. This combination is also particularly useful 
for comparing the performance of different self-supervised learning 
methods.

3.3.1. Training details
In this paper, the two views consist of a global view (high-resolution,

224 × 224 pixels) and a local view (low-resolution, 112 × 112 pixels) 
augmentations. The extractors are trained from scratch on the set of 
complete apples. The backbone of the extractor is ResNet-18 to save 
the model size. The dimension of the output feature is set to 256, the 
number of prototypes is 512, the temperature 𝜏 is set to 0.1, and the 
number of Sinkhorn–Knopp iteration is set to 3. No pre-trained weights 
are used and the parameters of all convolution layers are initialized by 
a normal distribution.

3.3.2. Evaluation details
During the evaluation, we report the 𝐷𝑟2𝑟, 𝐷𝑔2𝑔 and 𝐷𝑟2𝑔 , each 

bounded within the range [0, 2]. Ideally, lower values of 𝐷𝑟2𝑟 and 𝐷𝑔2𝑔
indicate promising performance, as they reflect the extractor’s ability 
to effectively process the labelled images under various augmentations. 
Besides, 𝐷𝑟2𝑔 is expected to be significantly greater than 𝐷𝑟2𝑟 and 
𝐷𝑔2𝑔 , indicating that unripe apples from ripe apples are successfully 
separated in the feature space. To help better compare the results, we 
simply compute the distance difference, defined as (𝐷𝑟2𝑔 −𝐷𝑟2𝑟 −𝐷𝑔2𝑔), 
where higher values indicate better overall separation.

These three distances serve as metrics to evaluate how closely the 
extractor aligns with our aim outlined in 3.1. Specifically, extractors 
generate high-dimension features instead of final outputs. If the ex-
tractor has lower 𝐷𝑟2𝑟, 𝐷𝑔2𝑔 values and higher 𝐷𝑟2𝑔 value, then it is 
promising but does not promise to produce better final results. Because 
high-dimension features are then processed by the predictor for final 
results, the design of the predictor is also a big factor that influences 
final results.

3.4. Predictor

A simple 3-layer MLP predictor is employed to predict the ripeness 
score from the extracted features. The network consists of three fully 
connected layers, with dimensions set to [𝑁 , 128, 100, 1], where 𝑁
represents the feature dimension from the extractor. Each layer, except 
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the final one, is followed by a ReLU activation function. The final layer 
is a fully connected output layer with a single neuron, which produces 
the ripeness score 𝑅. This score is then normalized to fall within the 
range [0.0, 1.0]. This architecture effectively reduces the dimension-
ality from input space to a single scalar value while leveraging ReLU 
non-linearity to capture complex relationships between the features, 
ensuring robust and accurate predictions. The illustration is shown in 
Fig.  10.

3.4.1. Training details
During training, the weights of feature extractors are frozen, and 

only the weights of the predictor are updated. The predictor is trained 
from scratch using the labelled images only. The loss function calculates 
the MSE between the one-hot encoded predictions and the ground 
truths from labelled images.

3.4.2. Evaluation details
The mean values 𝑥̄𝑔𝑟𝑒𝑒𝑛 and 𝑥̄𝑟𝑒𝑑 , along with the variances 𝑠2𝑔𝑟𝑒𝑒𝑛

and 𝑠2𝑟𝑒𝑑 of labelled fully unripe and fully ripe apples are selected as 
our evaluation metrics. Ideally, the model is expected to predict a 
score of 0.0 for fully unripe apples and 1.0 for fully ripe apples. These 
metrics align with human sense, where higher values correspond to 
riper apples.

The range of prediction values indicates that we treat apple ripeness 
prediction as a regression task rather than a multi-class classifica-
tion task. As a result, our method generates continuous predictions 
instead of discrete ones. It avoids the inherent discontinuities of dis-
crete classification and allows for a smooth representation of the ap-
ple ripeness distribution, providing a more nuanced understanding of 
ripeness levels.

Additionally and importantly, we plot the distribution of ripeness 
score predictions along with dense apple images, and visualize these 
predictions on the extracted features for better interpretation.

4. Experiments and results

4.1. Experiments

In this paper, experiments were conducted based on PyTorch Light-
ning 2.0.0 (Falcon, 2019) and were carried out using Python 3.9.13 and 
PyTorch 1.13 on a computer with an Intel Xeon Gold 6152 @2.1 GHz 
CPU, 1 Nvidia Tesla P100 GPU and 32.0 GB memory.

We employed a stochastic gradient descent (SGD) optimizer with 
a weight decay of 5 × 10−5, a momentum of 0.9. Different initial 
learning rates ranging from 0.0001 to 0.06 were explored across dif-
ferent models to identify the optimal value for achieving the best 
performance.

The default patience setting for the reconstructor and extractor 
was set to 30 epochs to optimize training time, meaning the model 
terminated training if no improvement in metrics was observed after 30 
epochs. In contrast, the patience for the predictor was set to 3 epochs 
to minimize the risk of overfitting.

4.2. Reconstructor

4.2.1. Comparison
We compare our reconstructor with MAE. The numerical results and 

visual comparison are shown in Table  1 and Fig.  12.
For MAE models, ViT-Base (ViT-B) with a mask size of 16 achieves 

a PSNR of 25.14 and a SSIM of 0.73. When the model size increases to 
ViT-Large (ViT-L), the performance improves, with ViT-L achieving the 
highest PSNR of 25.71 and an SSIM of 0.74. However, this improve-
ment comes at the cost of significantly larger parameters, increasing 
from 111M to 329M.

For SimMIM models, our reconstructor with ViT-B achieves the 
highest SSIM of 0.75 and the second-highest PSNR of 25.36, while 
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Table 1
The results of reconstruction.
 Model Image/Mask Size PSNR↑ (dB) SSIM↑ Params (M) 
 MAE ViT-B 224/16 25.14 0.73 111  
 224/32 22.00 0.67  
 ViT-L 224/16 25.71 0.74 329  
 224/32 21.24 0.67  
 SimMIM SwinT 192a/16 24.40 0.74 89.9  
 192a/32 21.47 0.72  
 ViT-B (Ours) 224/16 25.36 0.75 86.3  
 224/32 21.27 0.69  
a Follows the pre-trained SwinT setting with a window size of 6.

Fig. 12. The reconstruction comparison using different models and mask sizes.

utilizing only 86.3M parameters. Notably, our model has the smallest 
parameter count, requiring less than one-third of the parameters of 
MAE ViT-L, but delivering very comparable performance.

From the visual comparison, we observe that with the same input 
image and masking strategy, ViT-L produces the best reconstructions, 
while ViT-B delivers similar but reasonable results.

It is well-known that larger models deliver better performance, as 
they can learn and store more information. However, the small per-
formance difference observed here is acceptable when considering the 
significant disparity in model size. Increasing the model size excessively 
for tiny marginal performance gains is not a practical choice for our 
task.

Compared to the standard ViT, using the Swin Transformer as the 
backbone yields inferior performance in our task. We hypothesize that 
this is due to the hierarchical structure of the Swin Transformer, which 
processes image patches locally using smaller patches and gradually 
expands the receptive field. This local processing may disrupt the 
consistency of information within the expanded receptive field, as 
illustrated in the first row of Fig.  12.

The results highlight the significant impact of mask size on per-
formance, with larger mask sizes consistently leading to degradation 
across all models. The original SimMIM identifies a mask size of 32 
as optimal, but based on our experiments, the performance drops 
substantially with a mask size of 32 compared to 16. A mask size of 16 
proves to be the most suitable for reconstructing missing apple parts. 
8 
We suggest that a mask size of 32 lacks flexibility, as it is too large 
to effectively cover the missing patches and introduces excessive noise 
into the visible patches.

Overall, our reconstructor achieves a favourable balance between 
performance and efficiency, providing valuable information for subse-
quent ripeness prediction.

4.2.2. Visualization
Then, we test the reconstructor with incomplete apple images under 

different settings. The visualization is shown in Fig.  13. Ground truths 
of these input images are unknown, but the detailed progress for each 
reconstruction is shown in the visualizations.

The various cases show diverse environmental and lighting condi-
tions affecting the visibility and appearance of apples:

• Very limited visibility
In cases (a) and (c), the majority of the apples are obscured, 
resulting in visible rates of less than 30%.

• Different occlusion sources
In case (g), the apple is hidden by the trunk, while apples in other 
cases are covered by leaves.

• Lighting conditions
In cases (a), (c), (i), and (j), the apples are shaded from direct 
sunlight, while in cases (d), (e), (k), and (l), they are exposed to 
direct sunlight.

• Shadows and light patterns
In cases (e), (g), (h), and (k), direct shadows, light-stripes or 
light-spot are observed on the apples, creating complex light 
patterns.

• High contrast conditions
In cases (e), (k), and (l), the apples exhibit strong contrasts 
between light and shadow, presenting challenging illumination 
scenarios.

• Backlighting effects
In cases (b) and (g), the apples are positioned against the light 
source, resulting in unique lighting angles and potential silhouette 
effects.

• Uniform colour
In cases (a), (c), (d), and (f), the apples are predominantly of a 
single colour.

• Gradual colour transitions
In cases (b), (e), and (h), the apples showcase significant continu-
ous colour variations, introducing additional complexity in visual 
features.

Our reconstructor demonstrates its reliable ability to effectively pre-
dict occluded apple parts under various conditions, including different 
illumination levels, occlusions, and ripeness stages in the above cases.

It is suggested that the model trained on a diverse set of apple 
images in various settings is able to accurately predict the occluded 
parts of incomplete apples. This enables the use of the trained model 
to reconstruct missing parts without the need for manually designed 
fruit shapes or handcrafted features.

4.3. Extractor

The extractor serves as a critical component of our method, acting 
as a bridge between the input images and the predictor. To evaluate 
the performance, we compare our extractor against 15 other self-
supervised methods and a supervised binary classification model. For 
the binary classification model, we employ MSE as the loss func-
tion, while the self-supervised methods utilize their respective original 
loss functions, including negative cosine similarity loss, normalized 
temperature-scaled cross-entropy loss (NT-Xent loss), and other cus-
tomized loss functions. The comparative results are presented in Table 
2.
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Fig. 13. The visualization of reconstruction, the numbers in masked input indicate visible rates for the model. Detailed analysis of (a)∼(l) are in 4.2.2.
Table 2
The results of extractor.
 Extractor Backbone Loss Dimension 𝐷𝑟2𝑟 ↓ 𝐷𝑔2𝑔 ↓ 𝐷𝑟2𝑔 ↑ (𝐷𝑟2𝑔 −𝐷𝑟2𝑟 −𝐷𝑔2𝑔 ) ↑ Params (M) 
 Binarya Res18 MSE loss 512 0.1488 0.0609 0.2391 0.0293 11.2  
 BYOL (Grill et al., 2020) Res18 NegativeCosineSimilarity 256 0.0002 0.0036 0.0038 −0.0001 12.5  
 FastSiam (Pototzky et al., 2022) Res18 NegativeCosineSimilarity 128 0.0504 0.0032 0.1370 0.0833 11.8  
 SimSiam (Chen and He, 2021) Res18 NegativeCosineSimilarity 256 0.0118 0.1594 0.7084 0.5373 13.5  
 DenseCL (Wang et al., 2021) Res18 NT-Xent loss 2048 0.2488 0.2035 0.6969 0.2446 23.7  
 MoCo (He et al., 2020) Res18 NT-Xent loss 512 0.5583 0.8731 0.9668 −0.4646 11.5  
 NNCLR (Dwibedi et al., 2021) Res18 NT-Xent loss 128 0.3879 0.8371 1.1086 −0.1163 11.9  
 SimCLR (Chen et al., 2020) Res18 NT-Xent loss 512 0.2769 0.2366 0.6583 0.1448 11.5  
 DCL (Yeh et al., 2022) Res18 DCL loss 512 0.8192 1.0193 0.7207 −1.1179 11.5  
 DCLW (Yeh et al., 2022) Res18 DCL weighted loss 512 1.0032 1.4614 0.8880 −1.5767 11.5  
 DINO (Caron et al., 2021b) Res18 DINO loss 2048 0.5046 0.2689 1.1046 0.3311 23.7  
 MSN (Assran et al., 2022b) ViT-S MSN loss 256 0.6997 1.1675 1.0978 −0.7694 27.8  
 PMSN (Assran et al., 2022a) ViT-S PMSN loss 384 0.0001 0.0003 0.0001 −0.0003 27.8  
 TiCo (Zhu et al., 2022) Res18 TiCo loss 256 0.4499 0.3836 0.5986 −0.2349 23.9  
 VICReg (Bardes et al., 2022a) Res18 VICReg loss 512 0.1828 0.1722 0.1849 −0.1701 16.4  
 VICRegL (Bardes et al., 2022b) Res18 VICRegL loss 2048 0.6578 0.6641 0.6012 −0.7208 20.7  
 SwAV(Ours) Res18 SwAV loss 256 0.3816 0.2418 0.8844 0.2610 11.7  
a Binary classification is the only supervised model, using features extracted from the layer before fully connected layer.
Table 3
The results of predictor using features from extractors.
 Extractor 𝑥̄𝑔𝑟𝑒𝑒𝑛 ↓ 𝑠2𝑔𝑟𝑒𝑒𝑛 ↓ 𝑥̄𝑟𝑒𝑑 ↑ 𝑠2𝑟𝑒𝑑 ↓  
 Binary 0.2460 0.0037 0.7258 0.0098  
 BYOL 0.0636 0.0017 0.6383 0.0414  
 FastSiam 0.5336 0.0014 0.8011 0.0052  
 SimSiam 0.2375 0.0011 0.7302 0.0047  
 DenseCL 0.3329 0.0031 0.7440 0.0185  
 MoCo 0.1964 0.0055 0.6536 0.0145  
 NNCLR 0.1194 0.0012 0.7821 0.0162  
 SimCLR 0.0607 0.0012 0.7548 0.0169  
 DINO 0.1798 0.0037 0.8208 0.0161  
 TiCo 0.0444 0.0005 0.7606 0.0034 
 VICReg 0.0893 0.0011 0.7121 0.0070  
 SwAV(Ours) 0.0127 0.0001 0.8933 0.0094 
9 
ResNet-18 is selected as the backbone for most of the self-supervised 
methods, as it is more lightweight compared to the commonly used 
ResNet-50. For MSN and PMSN, ViT-Small (ViT-S) is used, following 
their respective model designs. The output dimensions for each method 
are kept consistent with their original configurations.

The results demonstrate that supervised binary classification and 
several self-supervised methods demonstrate strong performance in 
separating fully unripe and fully ripe apples within the feature space. 
However, certain self-supervised methods, such as DCL, DCLW, MSN, 
PMSN, and VICRegL, fail to meet expectations for this task. Their 
𝐷𝑟2𝑔 values are smaller than 𝐷𝑟2𝑟 and 𝐷𝑔2𝑔 , indicating an insufficient 
separation between unripe and ripe apples, thus they are excluded to 
be incorporated with the predictor.

The binary classification model achieves the 𝐷𝑟2𝑔 (0.2391) greater 
than both 𝐷𝑟2𝑟 (0.1488) and 𝐷𝑔2𝑔 (0.0609). These results suggest 
that unripe apples are distributed more densely than ripe apples. Our 
method achieves the 𝐷  of 0.8844, which is significantly greater 
𝑟2𝑔
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Fig. 14. Ripeness score 𝑅 predictions for complete apple instances, with intervals of 0.1 and at most 40 items displayed per score.
than 𝐷𝑔2𝑔 (0.3816) and 𝐷𝑟2𝑟 (0.2418), demonstrating a better balance 
between the clustering of ripe and unripe apples compared to binary 
classification.

While PMSN achieves the smallest 𝐷𝑔2𝑔 and 𝐷𝑟2𝑟, its 𝐷𝑟2𝑔 equals 
𝐷𝑟2𝑟, indicating that it does not effectively separate unripe and ripe 
apples in the feature space. NNCLR achieves the highest 𝐷  of 1.1086, 
𝑟2𝑔

10 
but the margin relative to its 𝐷𝑟2𝑟 and 𝐷𝑔2𝑔 is insufficient to ensure clear 
separation.

SimSiam achieves the highest distance difference of 0.5373, with a 
remarkably low 𝐷𝑟2𝑟 of 0.0118. It is noted that DINO also demonstrates 
a balanced distribution between unripe and ripe apples, reflecting 
its ability to achieve meaningful separation. In contrast, the binary 
classification method yields a distance difference of only 0.0293 due to 
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Fig. 15. 3D PCA visualizations of ripeness scores on extracted features.
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imbalanced 𝐷𝑔2𝑔 and 𝐷𝑟2𝑟. Our method achieves a distance difference of 
0.2610, significantly outperforming the binary classification approach 
by a large margin. It also surpasses several other self-supervised meth-
ods, showcasing robust performance in separating unripe and ripe 
apples.

Regarding model size, introducing complex backbones, such as ViT-
S with 27.8M parameters, does not bring noticeable improvements. 
We suggest that this is because our task is relatively simple, making 
heavy backbones prone to over-fitting. Additionally, The binary classi-
fication model only occupies 11.2M parameters as the result of no extra 
modules being introduced. Our method is with 11.7M parameters, in-
corporating additional parameters for the extra branch and prototypes 
𝐂. Despite this, our model remains more compact than many other 
self-supervised methods while delivering superior performance.

4.4. Predictor

4.4.1. Comparison
The 12 extractors with 𝐷𝑟2𝑔 > 𝐷𝑟2𝑟 and 𝐷𝑟2𝑔 > 𝐷𝑔2𝑔 are selected 

to extract image features for the predictor. The performance of the 
predictor is summarized in Table  3. Our method demonstrates the best 
overall performance, achieving the lowest 𝑥̄𝑔𝑟𝑒𝑒𝑛 of 0.0127 and 𝑠2𝑔𝑟𝑒𝑒𝑛 of 
0.0001, along with the highest 𝑥̄𝑟𝑒𝑑 of 0.8933 and the second-highest 
𝑠2𝑟𝑒𝑑 of 0.0094. In contrast, the binary classification model yields a 𝑥̄𝑔𝑟𝑒𝑒𝑛
of 0.2460 and a 𝑥̄𝑟𝑒𝑑 of 0.7258, indicating its comparatively weaker 
capability in predicting ripeness scores.

The results further highlight that some self-supervised methods 
outperform the binary classification model. For example, TiCO achieves 
competitive results with the lowest 𝑠2𝑟𝑒𝑑 of 0.0034 and the second-lowest 
𝑥̄𝑔𝑟𝑒𝑒𝑛 of 0.0127. DINO delivers a 𝑥̄𝑔𝑟𝑒𝑒𝑛 of 0.1798 and a 𝑥𝑟𝑒𝑑 of 0.8208. 
Similarly, VICReg and SimCLR produce relatively low 𝑥̄𝑔𝑟𝑒𝑒𝑛 values and 
high 𝑥̄𝑟𝑒𝑑 values.

4.4.2. Visualization
To present the results more clearly, the ripeness score predictions 

are visualized in Fig.  14.
The analysis of these predictions is conducted from the following 

three perspectives:

• Prediction continuity
The dataset contains apples at various ripeness stages, with 40 
labelled fully unripe and fully ripe apples used for training. Con-
sequently, the predictions are expected to span the entire range 
of scores, from 0.0 (unripe) to 1.0 (ripe), reflecting a continuous 
progression.
Among the evaluated methods, our approach uniquely achieves 
seamless and continuous predictions across the entire score range, 
accurately representing all ripeness stages. Other methods, includ-
ing NNCLR, DINO, SimCLR, VICReg, and the binary classification 
model, also approximate full-score predictions but exhibit gaps, 
with certain score intervals missing in their outputs. This discon-
tinuity indicates limitations in capturing the smooth progression 
of ripeness.

• Prediction distribution
Like many large image datasets, including our previous Nine-
Peach dataset (Zhao et al., 2023b), the apple dataset should 
exhibit a ‘‘long-tail’’ distribution. This reflects the natural ten-
dency for unripe apples to outnumber ripe ones due to factors 
such as natural fruit-falling and artificial fruit-thinning.
Several methods, including binary classification, FastSiam, Sim-
Siam, DenseCL, MoCo, and DINO, produce predictions with a 
Gaussian-like distribution. These methods do not generate suffi-
cient predictions for unripe apples. Most predictions fall in the 
semi-ripe range, indicating poor separation between unripe and 
ripe apples. In contrast, our method, along with BYOL, NNCLR, 
SimCLR, TiCO, and VICReg, predicts ripeness scores following the 
12 
Fig. 16. Two prediction deficiencies in our reconstructor.

expected ‘‘long-tail’’ distribution. The predicted number of apples 
gradually decreases from unripe to ripe, effectively reflecting the 
natural progression of apple ripening.

• Colour gradient
A smooth colour gradient from unripe to ripe is an essential 
indicator of the accuracy of ripeness predictions. Ideally, the 
gradient should transition smoothly from green for unripe apples 
to red for fully ripe ones.
Some methods, including BYOL, FastSiam, MoCo, and VICReg, ex-
hibit obvious inconsistencies, as some green apples are incorrectly 
assigned scores over 0.5, suggesting outliers of prediction. Sim-
CLR and TiCO also face challenges, with semi-ripe and ripe apples 
often mixed, making it difficult to tell. Notably, our method 
delivers a smooth and consistent colour gradient. The predictions 
start with green on the left and gradually transition to red on 
the right, accurately reflecting the natural ripening process. This 
demonstrates the robustness and precision of our approach in 
ripeness estimation.

We used 3D Principal Component Analysis (PCA) to reduce the di-
mensionality of the extracted features to three dimensions, with the 
visualization presented in Fig.  15.

Among all of the visualizations, our method stands out by generat-
ing a smooth manifold where apple ripeness increases progressively. In 
the space, the labelled unripe and ripe apples are distinctly separated, 
indicating high explainability for the ripeness score predictions.

Since ripeness score prediction is a subjective topic, we invited sev-
eral volunteers including apple-picking robot professionals and normal 
apple consumers to choose the best prediction from their perspectives. 
The test was conducted anonymously, and ground truths were not 
disclosed. All of the participants agreed that our predictor and TiCO 
are the top-performing methods. However, compared to our predictor, 
although TiCO shows a good colour gradient, it is unconfident with 
accurate predictions for ripe apples, as a result of 𝑥̄𝑟𝑒𝑑 of 0.7606.

The results further highlight that self-supervised methods can out-
perform supervised binary classification. This underscores the ability of 
self-supervised models to learn latent ripeness-related features from a 
large number of unlabelled images, significantly reducing the need for 
manual labelling.

5. Discussion

5.1. Limitation

Our apple images were collected from a single Jazz apple orchard, 
which may not represent the different varieties of apples. Despite 
extensive searches, we could not find public datasets that meet our 
research requirements. This constraint has led us to rely only on our 
collected dataset.

In terms of reconstruction, there are two prediction deficiencies as 
shown in Fig.  16. The first is peduncle and calyx prediction deficiency, 
the model cannot predict the apple peduncle and calyx as expected. The 
second deficiency appears when excessive occlusion occurs, with very 
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Fig. 17. The digital simulation of a large orchard, with apple locations and ripeness 
monitored.

limited visible information, the reconstructor cannot perform well and 
generate reasonable results.

Our method is designed for in-field apples which have significant 
colour changes during their ripening progress. Therefore, it is not 
suitable for certain apple cultivars like Granny Smith, which remain 
green throughout all ripening stages. Additionally, it cannot be applied 
to fruits that ripen after harvesting like bananas, or to those evaluated 
based on softness like avocados.

5.2. Future work

To improve our method’s applicability, we will expand the dataset 
by including a more diverse range of apple varieties, capturing a 
broader representation across different types.

Our method demonstrates that it is feasible to use a single-view 
image to predict apple ripeness. We propose the next work should 
focus on extending this method to work with multi-view images, which 
would allow more accurate ripeness estimation. This method has the 
potential to be extended to other fruits that exhibit significant colour 
changes during the ripening process, such as peaches.

Besides, the proposed method is promising for deployment on in-
field robots to capture both the ripeness and spatial information of 
apples, making it possible to monitor the ripeness distribution across 
a large orchard. This information can facilitate data-driven decision-
making for orchard management and then be used to guide autonomous 
picking-robots to selectively harvest ripe apples. We simulate such kind 
of apple orchard in a 3D digital environment, as shown in Fig.  17.

6. Conclusion

Developing apple-harvesting robots capable of identifying the
ripeness stage of apples is a challenging task, particularly because 
in-field apples are often obscured by leaves, branches, or trunks. 
Determining apple ripeness is also challenging as it is subjective to 
define the number of ripeness stages. Under this context, we propose a 
novel self-supervised method utilizing 40 labelled and 7151 unlabelled 
apple images for two problems: ripeness determination and in-field 
occlusion.

Our method consists of three key parts: a reconstructor, a feature 
extractor, and a predictor. The reconstructor is trained to restore the 
missing details of occluded apples, enabling more complete visual 
representations. The feature extractor leverages a vast number of un-
labelled images to learn ripeness-related features effectively, reducing 
the reliance on labelled images. Finally, the predictor uses the extracted 
13 
features to generate flexible ripeness scores between 0.0 and 1.0, 
eliminating the need for subjectively pre-defined ripeness stages. This 
flexibility allows end-users to make customized decisions according to 
their specific needs and criteria.

Experimental results highlight that our method achieves the highest 
SSIM of 0.75 and the second-highest PSNR of 25.36 for reconstructing 
incomplete apples, with the fewest 86.3M parameters. Besides, our 
method outperforms 15 other self-supervised methods and even a 
supervised method in ripeness score prediction, achieving the lowest 
score of 0.0127 for fully unripe apples and the highest score of 0.8933 
for fully ripe apples.

Our method is promising for integration into in-field robotic sys-
tems, enabling them to determine ripeness effectively and selectively 
harvest only ripe fruits. Furthermore, it can be used to monitor overall 
ripeness trends across large orchards, helping managers make informed 
decisions about harvest timing and orchard management. Our method 
contributes to the goals of smart precision agriculture.
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