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A B S T R A C T

Floods are one of the most destructive disasters and require a range of structural and non-structural measures to 
reduce their impacts. Evacuation is an effective non-structural measure to increase the resilience of flood-affected 
areas. This study aims to provide a systematic overview of evacuation planning for urban flood scenarios in terms 
of theories, methods, models, and techniques for both pedestrians and vehicles. The review addresses key 
components such as flood simulation modelling, flood hazard assessment methods, shelter identification, evac-
uation route development, and evacuee movement modelling. Among these, we highlight the comparison and 
analysis of flood hazard assessment methods, shelter optimisation and route optimisation. Additionally, a sys-
tematic analysis and comparison of evacuation shelters, evacuation route algorithms, and evacuee movement 
models are presented. Metaheuristic algorithms have been shown to perform well for evacuation routes. Finally, 
the insights into four recent directions for enhancing evacuation plans include consideration of pedestrian and 
vehicle movement speeds, evacuee psychology, multimodal emergency evacuation, and the effect of overhead 
power lines on rescue operations.

1. Introduction

In recent years, climate change has led to higher and more significant 
extreme natural disasters, including floods, draughts and hurricanes 
(IPCC, 2023; UNDRR, 2022). Among these disasters, floods have a high 
frequency, affect a large number of people, cause large economic losses, 
and have a high death toll (WEF, 2021, 2020, 2019), as also summarised 
in Figs. 1 and 2. We processed the database collected by the University of 
Leuven, Belgium, there were 175 floods worldwide, with direct eco-
nomic losses of $44,767 billion, affecting 577,066,696 people, and 
7,910 deaths in 2022 (EM-DAT/CRED). Pakistan floods in 2022 affected 
33 million people, killed 1,739, and caused $15 billion in economic 
damage in 2022 (CRED., 2022). Serbia’s mega-floods led to the evacu-
ation of more than 39,000 people in 2014 (Radosavljevic et al., 2017). 
Indonesia suffered flooding, affecting about 1 million people in 2021 
(ADRC, 2021, 2020).

Measures taken to mitigate flooding can be categorized into two 

types: structural and non-structural measures (Zhou et al., 2017). 
Structural measures include dams, levees, flood control reservoirs, bank 
protection, and so on (Kryžanowski et al., 2014). Structural measures 
take a long time to build, are very costly to design, construct, and 
maintain, cannot be easily altered after construction, expected to have a 
negative impact on the environment (D’Ayala et al., 2020). Non- 
structural measures include flood forecasting and warning (Borowska- 
Stefańska et al., 2023; Bernardini and Ferreira, 2021), increasing the 
resilience of flood-prone areas, implementation of Natural Flood Man-
agement (NFM), including low-impact development (LID) and Sustain-
able Drainage Systems (SuDS) and reducing risk through evacuation, 
and so on (Wang et al., 2024a; Suresh et al., 2023). For instance, 
implemented of “sponge city” programmes, including green infrastruc-
ture (GI), best management practices (BMPs), and low-impact devel-
opment (LID), has achieved remarkable results without the construction 
of significant infrastructures (Ding et al., 2022). Non-structural mea-
sures do not generally cause significant damage to the environment and 
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are more in line with the concept of sustainable development (Suresh 
et al., 2023; Wang et al., 2021b).

Flood hazard assessment and evacuation planning are effective flood 
damage mitigation measures (Yang et al., 2022b). Evacuation’s most 
prominent factors are evacuation experiences, evacuation instructions, 
and hazard assessment (Jiang et al., 2022). Urban flood and flash flood 
hazard assessment can be conducted with flood information such as 
water depth and velocity, combined with the topography of the inun-
dated area, to classify the level of hazard (He et al., 2021; Li et al., 2021), 
In addition, the compounding effects of strong winds and tidal currents 
can affect the flood hazard and needs to be taken into account particu-
larly in coastal flood-prone areas (Leijnse et al., 2021).Different hazard 
level thresholds have to be determined based on the receptors, e.g. 
pedestrian, vehicle, or infrastructure (Musolino et al., 2020a; Pregnolato 
et al., 2017; Martinez-Gomariz et al., 2016). Flood information such as 
depth and velocity of water can be obtained from hydrodynamic models 
such as Delft3D, HEC-RAS, MIKE11, SOBEK, DIVAST, Tuflow, Jflow, 
Flood Modeller and SFINCS are widely used in flood simulation (Baky 
et al., 2019; Farooq et al., 2019; Hunter et al., 2008). These models are 

developed with different accuracy and computational efficiency. 
Furthermore, considering the compound impact of flooding from 
different sources, including fluvial, pluvial, tidal, wind- and wave-driven 
flooding, can be important (Leijnse et al., 2021). Selecting correct 
models is crucial as unsuitable models can lead to incorrect velocities 
which have a significant impact on flood hazard (Arrighi et al., 2019; 
Ahmadian et al., 2018; Kvočka et al., 2017), as well as having a 
reasonable trade-off between accurate physical representation and 
computational efficiency for the intended flood problems.

Flooding particularly can be very destructive in dense urban areas 
(Yang et al., 2022b). Hazard mapping is the fundamental of identifying 
safe shelters, safe routes, and saving for trapped populations, and in turn 
is crucial for flood evacuation (He et al., 2021). Evacuation planning can 
be initiated after the flood hazard mapping. Significant aspects of 
evacuation are the identification of safe evacuation shelters, routes to 
evacuation shelters, and the evacuation of people (Esposito Amideo 
et al., 2019). An effective evacuation plan can be key to minimizing 
injuries and fatalities.

Flood evacuee movement models are used to observe the evacuee, 

Fig. 1. Frequent occurrence of global flood disasters. (a) Floods in Serbia in 2014 (The guardian, 2014). (b) Floods in Indonesia in 2022 (The paper, 2022).
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categorized into macro-evacuation models and micro-evacuation 
models (Kaur and Kaur, 2022). Macro-evacuation models treat 
evacuee movement as a homogeneous flow, abstracting the system as a 
whole and considering the movement of evacuees as a group. Micro 
evacuation models incorporate specific characteristics of evacuees (e.g., 
age, gender, ability, body structure, and speed of movement) (Musolino 
et al., 2022; Xia et al., 2011; Yusoff et al., 2008). Gwynne et al. (1999)
classified evacuation models into three categories: optimisation, simu-
lation, and risk assessment, and summarised 22 evacuation models. 
Zheng et al. (2009) summarised seven optimised evacuee movement 
models. Moreover, Niyomubyeyi et al. (2020) believes that evacuation 
planning is a multi-objective optimisation problem for which meta-
heuristics are appropriate solutions, and classical metaheuristic algo-
rithms such as Simulated Annealing (SA) (Yusoff et al., 2008), Artificial 
Bee Colony (ABC) (Karaboga, 2005), Standard Particle Swarm Optimi-
sation algorithm (SPSO) (Shami et al., 2022), and Genetic Algorithms 
(GA) (Holland, 1975), as well as their multi-objective versions, have 
been used in the field of evacuation route planning. Yin (2023) stated 
that a successful flood evacuation would recommend evacuation times, 
evacuation routes, and evacuation shelters, indicating areas around the 
city that are more vulnerable to flooding. Sadri et al. (2017) pointed out 
that the transmission of crowd information affects evacuee decisions. 
Therefore, evacuation shelters, evacuation routes, and evacuee move-
ment models should be emphasized in flood evacuation.

This study will summarise the outline of the evacuation planning 
process through reviewing three research cases, with flood hazard 
mapping being a cornerstone for developing an evacuation plan. We 
analyse the three main aspects of evacuation: methods for determining 
safe evacuation shelters, algorithms for planning evacuation routes, and 
models for evacuee movement. Finally, three future research directions 
are proposed.

2. Research cases

The evacuation planning process involves components such as 
obtaining flood information, identifying flood hazards, selecting evac-
uation shelters, planning evacuation routes, and observing evacuees 
(Esposito Amideo et al., 2019). To demonstrate components of evacua-
tion planning in this study, three case studies that represent typical flood 
evacuation processes are briefly reviewed and then summarised in this 
section. It should be noted that since evacuation planning is an inter-
disciplinary research area, these studies were provided to ensure all 
readers are familiar with the steps being discussed in the next step. The 
first case is Musolino et al. (2020b) who conducted an evacuation route 
study for the Boscastle (UK) area. On August 16, 2004, the picturesque 
village of Boscastle was hit by an unexpected extreme flash flood which 
left the village inhabitants and visitors devastated during the event. An 
evacuation route study was carried out for the area. In house widely 
used numerical model, namely DIVAST TVD, was used for obtaining the 
flood information. After that, two methods were used for mapping the 
flood hazard, the empirically based method and the mechanics-based 
and experimental calibrated method. The result of the hazard map-
ping proved that the method based on mechanics and experimental 
calibrated methods is more in line with the actual situation of the human 
body and more sensitive to hazard classification. The methodology and 
conclusions have been employed by many scholars in the subsequent 
flood hazard mapping (Dong et al., 2022; Li et al., 2021).

The second case is focused on an evacuation route study conducted 
by He et al. (2021) for a suburban area in Yangzhou, China. The area 
with a total area of 13.83 km2 and about 19,000 inhabitants living. On 
foot human evacuation speed in flood was set to 1.0 m/s. MIKE 21 was 
used to model the flood in the area, obtaining the flood information, to 
construct a flood hazard mapping, and develop a Dynamic Route Opti-
misation (CADRO) algorithm to determine dynamic Flood Evacuation 
Routes (FER) in an evacuee movement model, which was compared with 

Fig. 2. Breakdown of frequency and losses per disaster type worldwide in 2022.
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the evacuation route generated using A* (Hart et al., 1968), and the 
results showed that the route of the (CADRO) algorithm was more 
realistic than the route of the A* algorithm, and could evacuate more 
people. In this approach, the initial locations of evacuees are randomly 
set based on the number of inhabitants. The evacuees start moving to 
shelter locations once the flood starts. As the flood develops, more areas 
become flooded and less routes are available for evacuation. The 
remaining evacuees are squeezed towards a few available routes, and 
some of the evacuees may be destabilised during their evacuation. 
CADRO was tested to generate routes that evacuate more evacuees to the 
shelter locations compared to the A* algorithm.

The third case study selected was conducted by Lee et al. (2020) who 
were planning to identify an evacuation shelter in Seoul, Korea (Seocho- 
gu and Gangnam-gu). Their study was mainly divided into three stages. 
First, SWMM and FLO2D were used to obtain flood information: the 
flood inundation area, inundation depth, and flow velocity. Next, 
selecting candidate shelters by using a hierarchical model based on 
accessibility, flood safety, service accessibility, and facility capacity. 
Finally, evaluation of candidate and existing evacuation shelters. The 
study showed that candidate evacuation shelters planned using the hi-
erarchical model were preferable in terms of safety and serviceability, 
and it objectively defines the hierarchy of shelters, which helps to 
quantify and improve the city’s flood protection.

Through reviewing a large number of studies and as demonstrated by 
the three typical research cases, flood evacuation can be divided into 
two stages as outlined below:

Stage 1: Flood hazard mapping 

• Obtaining flood information through flood models, namely hydro-
dynamic or hydrological models.

• Hazard mapping based on predefined criteria using flood informa-
tion from a pedestrian or vehicle perspective.

Stage 2: Flood evacuation planning 

• Selecting evacuation shelter.
• Identifying evacuation routes.
• Assessing evacuee movements.

This framework for flood hazard mapping and evacuation planning is 
concise, clear, scientific, and has strong practical properties that can be 
well used in the field of flood research. Therefore, based on this 
framework, Fig. 3. was developed. This figure also serves as a structure 
for subsequent contents.

3. Flood hazard mapping

3.1. Flood model

Flood hazard assessment and mapping is a crucial tool for evacuation 
planning (Yang et al., 2022b). In the process of mapping, it is divided 
into two broad steps (Qi et al., 2021; Xia et al., 2011): 

• Obtaining flood information (from hydrologic models and hydro-
dynamic models).

• Assessing hazard based on the receptors, namely people, vehicles, or 
infrastructure.

3.1.1. Obtaining flood information from hydrologic models and 
hydrodynamic models

The flood model is a useful method for obtaining detailed flood in-
formation (Bulti & Abebe, 2020; Wade et al., 2006). Modelling historical 
floods and analysing patterns of change (Zhu et al., 2023a), contribute to 
improving the resilience of the city against future flooding. Flood 
models are divided into hydrological and hydrodynamic models 

(Bodoque et al., 2023; Qi et al., 2021).
Hydrological models are a vital component of water resources and 

environmental management (Brunner et al., 2021; Devia et al., 2015), 
mainly including precipitation, surface runoff, infiltration, and evapo-
ration that are affected by the underlying city surface. Hydrological 
modelling is systematic in its consideration of multiple segments of flood 
formation which is fitting for the simulation of small to medium scales 
areas (Guo et al., 2020). Meanwhile, with the development of remote 
sensing and drone technologies, flood simulation by hydrological 
models has also been popularized (Karamuz et al., 2020; Knoben et al., 
2019; Mioc et al., 2008).

Hydrodynamic models have advantages over hydrological models in 
terms of hydraulic properties (Qi et al., 2021). Urban flood processes are 
more influenced by topography, and hydrodynamic models can consider 
microtopography such as urban drainage systems, river systems, and 
streets (Yazdani et al., 2022). At the same time, these models can be 
directly linked to hydrological and river models to provide flood hazard 
information, flood forecasting, and scenario analysis(Anees et al., 2016). 
Thus, hydrodynamic models are widely used in the mapping of flood 
hazard.

The hydrodynamic models commonly used are categorized as one- 
dimensional (1D) models (Ma et al., 2022), two-dimensional (2D) 
models (Farooq et al., 2019; Connell et al., 2001), coupled one- and two- 
dimensional (1 ~ 2D) models (Liu et al., 2014; Chen et al., 2007; Tayefi 
et al., 2007; Chang et al., 2005), and three-dimensional (3D) models 
(Dong et al., 2022; Azhar & Sanyal, 2019; Baky et al., 2019; Anees et al., 
2016). These models have been studied by many researchers from 
different perspectives, including simulation dimensions, numerical 
methods, advantages, limitations, and application scenarios (Guo et al., 
2021; Nkwunonwo et al., 2020; Teng et al., 2017). Therefore, the spe-
cific details will not be discussed in this study.

3.1.2. Hazard mapping
The level of hazard is different based on the receptors, e.g. adults, 

children, or vehicles. For example, adults can withstand deeper water 
and higher flow velocities than elderlies and children (Lee et al., 2019) 
or that instability can be linked to individuals Body Mass Index (BMI) 
(Kvočka et al., 2018; Xia et al., 2011). Vehicles are susceptible to stalling 
in deep water areas with water depth thresholds lower than people 
(Dong et al., 2022).

Flood evacuation is generally carried out by walking or driving and 
therefore hazard mapping for people and vehicles is a fundamental part 
of evacuation planning (Shirvani et al., 2021a; Xia et al., 2011). The 
flood hazard should be assessed from two hazard perspectives: hazard to 
people and vehicles. 

• Assessing hazard to people

It is considered to be dangerous for people to walk in flood water, 
due to the hazard of instability, collision of debris, or blinding effect of 
flood water on potential obstacles on the road (Musolino et al., 2020a). 
However, walking is considered an inevitable way to evacuate, espe-
cially for those who do not have access to a vehicle (Renne, 2018) or 
where safe locations are not accessible with vehicles. Human instability 
in flood water is generally caused by sliding or toppling as shown in 
Fig. 4 which is commonly determined using experimental studies, me-
chanics analysis, image and video analysis of the critical conditions. 
Foster and Cox (1973) was an early pioneer in initiating human insta-
bility experiments, concluding that relatively low flow depths (h < 0.3 
m) may be unsafe at high velocities (i.e., greater than about 1.5 m/s). 
Many researchers have followed him since then and conducted experi-
ments using children, adults elderlies and different terrain slopes, shoe 
material, etc. as to obtain more evidence for reference (Martinez- 
Gomariz et al., 2016; Cox et al., 2010b; Jonkman and Penning-Rowsell, 
2008; Yee, 2003; Karvonen et al., 2000). Abt et al. (1989) developed a 
generalized equation for instability criteria which depends on velocity 
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Fig. 3. The Flowchart of Flood Risk Assessment and Evacuation.
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and depth. Debris in water were considered in the instability formula 
proposed by Ramsbottom et al. (2004). Xia et al. (2014) constructed a 
formula for mechanical instability based on experimental data. Chen 
et al. (2019) corrected the body parameters in Xia’s formula to a more 
generic BMI which makes the formula applicable globally. Zhu et al. 
(2023b) incorporated the effect of turbulence intensity in Xia’s formula. 
In addition, as technology advances, video and images of evacuee 
instability recorded during the real floods can also be used as a com-
plement to the experimental studies to obtain critical water depth and 
velocity (Quagliarini et al., 2023; Alizadeh et al., 2022; Milanesi et al., 
2016). However, actual flood videos and images are rarely recorded 
because of the power cut and the flood destructiveness. Summary of the 
key studies conducted on human instability in floods are summarised in 
Table 1 and the results are summarised in Fig. 5.

The results of 13 studies summarised in Table 1 are aggregated in 
Fig. 5. It can be seen that adults and children can barely withstand ve-
locity of more than 3 m/s at any depth and the maximum water depth 
that they can stand is 1.2 m. The red curve at the bottom was proposed 
by Martinez-Gomariz et al. (2016), it is the most conservative, and 
exceeding it means that the person starting to be at risk. The uppermost 
curve was proposed by Ramsbottom et al. (2004), it covers all experi-
mental data, and water depths and velocity above this line must be 
considered unsafe. Musolino et al. (2020a) studied various approaches 
to human stability in floods and highlighted the revised Mechanics 
Based Methods (rMBM) which represents the MBM method such as Xia’s 
formula (Xia et al., 2011), in which the slope of the ground is considered, 
could be the most accurate representation of human instability.

The data obtained from the flood model, combined with the human 
instability determination criteria described above, allows for a pedes-
trian instability flood hazard assessment. 

• Assessing hazard to vehicles

Vehicles can be an effective part of evacuation, especially for flood 
hazard evacuation of large areas. The critical conditions for vehicles are: 
floating, sliding, and toppling (Martínez-Gomariz et al., 2018) which are 
also illustrated in Fig. 4. The instability thresholds are different for 
different vehicles (Suwanno et al., 2023). Wang et al. (2021a) showed 
hazard severity thresholds of adult < child < SUV < small cars. Bonham 
and Hattersley (1967) tested the car at 46 different combinations of 
depth and velocity, and the results of the experiment can be used to 
determine a range of automotive stability limits. Gordon and Stone 
(1973) considered three modes of motion resistance, and stability was 
found to be slightly higher for front wheel lock conditions than for rear 
wheel lock conditions. Keller and Mitsch (1993) conducted a purely 
theoretical study of automobile and human stability, assessing stability 
perpendicular to the vehicle by comparing the vertical reaction forces 

(FV) on each axle. Cox et al. (2010a) summarised various guidelines and 
other determination criteria. Xia et al. (2010) derived a formula for 
determining vehicle instability based on the theory of equilibrium me-
chanics of slip dynamics and applied it to vehicle hazard assessment in 
the flooded area of Zhengzhou, China. Martínez-Gomariz et al. (2017)
conducted experiments using three different scales, totalling 12 vehicle 
models, and delineated thresholds, which are more comprehensive and 
adaptable to modern models. Major studies identified in the literature 
are summarised in Table 2.

The results of different vehicle instability studies are summarised in 
Fig. 6. A similar trend but different criteria for different vehicles can be 
seen. As a result, some regulatory authorities use a conservative value to 
communicate the possibility of vehicle instability to the public. For 
instance, the Emergency Management in Australia advises public to 
avoid driving through more than 30 cm to reduce the risk of vehicle 
instability (Suwanno et al., 2023; Cox et al., 2010a). Martínez-Gomariz 
et al. (2017) proposed a line for large passenger carrier vehicles which is 
more conservative than other curves. Xia et al. (2010) proposed the 
highest threshold in the figure, and therefore once the flood conditions 
exceed the threshold suggested by Xia et al (2010), it indicates that 
instability could occur to a high level of certainty.

By comparing Fig. 5. and Fig. 6., we can make the following con-
clusions. Primarily, the ultimate destabilising water depth for a person is 
greater than that of a vehicle. The ultimate water depth of the vehicle is 
0.6 m, and the ultimate water depth of the person is 1.2 m. This indicates 
that walking can be used for evacuation when the water depth is high. 
Secondly, the ultimate destabilising velocity of a vehicle is greater than 
that of a person. The ultimate flow velocity of a person is 3 m/s and the 
ultimate flow velocity of a vehicle is 6 m/s, so in the case of low water 
depth and high flow velocity, vehicle evacuation is more feasible. 
Finally, there is a cross-over area between the two figures. When the 
water depth is lower than 0.6 m and the flow velocity is lower than 3 m/ 
s, the two figures will overlap, which indicates that evacuation can be 
carried out either on foot or by vehicle. Evans et al. (2024) recently 
proposed the flood hazard level based on a combination of the results of 
the Martinez-Gomariz’s equations by considering the overlap area. In 
addition, although flood risk is assessed from different perspectives, they 
all demonstrate that it is more common to use the mechanic-based 
method of assessment.

Coastal flooding is a compound process that involves the effects of 
water depth, flow velocity and the effects of wind, using the SFINCS 
model can well simulate the compound flood process in coastal area 
(Leijnse et al., 2021). It is important that the effects of wind are included 
in experiments and mechanistic analyses on humans or vehicles. Wang 
and Marsooli (2021) incorporated the effect of wind into the human 
instability formula based on a mechanics method and corrected the 
formula with simplified experiments, which was finally used for New 

Fig. 4. Flood Hazard Assessment form people and vehicles.
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Table 1 
Summary of findings on human flood instability.

Researcher Method Parameters 
considered

Brief summary

Depth Velocity

Foster and Cox 
(1973)

Experiment √ √ Experimental flume: 6 m 
× 0.6 m × 0.75 
mResearch subjects: 6 
male children, (aged:9 ~ 
13 height:1.27 ~ 1.45 m, 
weight:25 ~ 37 kg). 
Experimental content: 
Children were tested for 
standing, walking, 
turning, and sitting in the 
flume facing upstream 
and downstream 
respectively. 
Results: Relatively low 
flow depths (h < 0.3 m) 
may be unsafe at high 
velocities (i.e., greater 
than about 1.5 m/s).

Abt et al. (1989) Experiences √ √ Experimental flume: 61 
m × 2.44 m × 1.22 m. 
Research subjects: (males 
and females, 1.52 to 1.83 
m tall, 41 to 91 kg in 
weight, and 62 to 172 kg 
in height). 
Results: an equation for 
water depth and velocity.

Karvonen et al. 
(2000)

Experiment √ √ Experimental field: 130 
m × 11 m × 5.5 m. 
Experimental subjects:2 
subjects were 
professional rescuers. 
Results: expressions 
defining the limits of 
human stability under 
good, normal, and poor 
conditions were derived.

Yee (2003) Experiment √ √ The test procedure was 
similar to that previously 
reported by Foster and 
Cox (1973). Experimental 
subjects: 4 young children 
(2 males and 2 females, 
age: 6 ~ 8, height: 1.09 ~ 
1.25, weight: 19 ~ 25). 
Results: critical D.V 
values of 0.51–––0.55 
m2/s showed very similar 
unstable behavior.

Ramsbottom 
et al. (2004)

Experiment √ √ Various empirical 
equations were tested 
using experimental data 
from Abt et al. (1989) and 
Karvonen et al. (2000). 
Results: The strongest 
correlation was observed 
for H*M = K(D*V) + C.

Ishigaki et al. 
(2006)

Experiment √ √ Experimental conditions: 
water depths of 
0.1–––0.4 m and 
velocities of 0.5–––1.125 
m/s. 
Experimental subjects: 16 
females and 33 males 
were tested for 
evacuation time. 
Results: an evacuation 
criterion of V2*D = 1.2 
was derived.

Wade et al. 
(2006)

Experiences √ √ Adjust the formula H.M =
K(D*V) + C to modify the 
velocity factor from + 1.5  

Table 1 (continued )

Researcher Method Parameters 
considered 

Brief summary

Depth Velocity

to + 0.5 and the debris 
factor (DF) from 0 ~ 2 to 
0 ~ 1.

Jonkman and 
Penning- 
Rowsell 
(2008)

Experiment √ √ Experimental subject: a 
professional stuntman 
(height:1.7 m, weight: 68 
kg). 
Experimental content: 
Standing and walking at 
right angles to and into 
the flow of water 
Results: The flow leading 
to failure ranged from 2.4 
to 2.6 m/s (D*V = 0.84 
and 0.91).

Cox et al. 
(2010b)

Experiences √ √ For children with height 
and mass product (H*M) 
between 25 ~ 50, the risk 
is lower for D*V flow 
values < 0.4 m/s. 
For adults (H*M > 50), 
with a maximum depth 
limit of 1.2 m at shallow 
depths and a maximum 
flow velocity of 3.0 m/s, 
the risk is lower for D*V 
values < 0.6 m/s.

Xia et al. (2014) Experiment √ √ Analysed the forces on the 
human body and derived 
slipping and toppling 
formulas.

Milanesi et al. 
(2016)

Experiment √ √ A method for deducing 
water depth and velocity 
from video frames is 
presented and unstable 
data for children, youths, 
and adults are obtained.

Martinez- 
Gomariz et al. 
(2016)

Experiment √ √ Summarizing the results 
of the Russo (2009) 
experiment with those 
obtained in this iteration 
of the experiment, a lower 
bound function (v*y) =
0.22 m2/s was defined, 
and the most 
conventional stability 
criterion (v*y) = 0.5 m2/ 
s.

Chen et al. 
(2019)

Experiment √ √ Re-correcting Xia’s 
formula for European 
characteristics.

Lee et al. (2019) Experiment √ √ Experimental site: 
Swimming pool. 
Subjects: 32 subjects (20 
males and 12 females) 
acted as proxies for older 
adults, wearing an elderly 
simulator that produced 
movements associated 
with older adults. 
Results: Regression 
equations were derived 
for the evacuation speed 
of older adults in different 
water depths.

Zhu et al. 
(2023b)

Experiment √ √ Upgrading Xia’s toppling 
formula makes it more 
conservative, with k 
taking the value of 0.45.

Alizadeh et al. 
(2022)

Picture √ √ A methodology is 
presented that employs a 
combination of user- 
provided photographs of 

(continued on next page)
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York, USA. Wind has both stabilising and destabilising effects, which can 
enhance stability or weaken it. Studies have indicated that the desta-
bilising effects of wind are greater, therefore it is important to consider 
factor winds in flood hazard and vulnerability assessments for coastal- 
flood-prone areas (Li et al., 2022; Sebastian et al., 2021).

3.2. Flood evacuation

Flood evacuation is a purposeful, organized, and planned action to 
save more people (Pel et al., 2011; Alsnih & Stopher, 2004). The public’s 
concerns during a flood include inundated areas, safe locations, 
dangerous routes, trapped people, and supplies during a flood (Esposito 
Amideo et al., 2019). It is consequently proposed that the paramount 
study topics of flood evacuation are (Yang et al., 2022a; Haghani, 2020; 
Liu et al., 2019b; Jozefowiez et al., 2008): 

• Evacuation shelters
• Evacuation routes
• Evacuee movement

3.2.1. Evacuation shelters
Evacuation scenarios occur in flood disasters where people in the 

affected disaster area need to be transported to a safe place (e.g., a 
gymnasium or sports arena) (Goerigk et al., 2014). These safe places are 
referred to as shelters in here as used in several studies (Edirisinghe 
et al., 2021; Lim et al., 2021; Rahman et al., 2021). Shelter sites are 
expected to protect people from disasters and provide food, medical 
care, and accommodation for evacuees (Bayram, 2016; Mesa-Arango 
et al., 2013). Shelter identification and evacuation of vulnerable pop-
ulations are key aspects of disaster response (Esposito Amideo et al., 
2019). London Resilience Team (2022) classified evacuation sites into 
three categories: Direct Movement to an Emergency Rest Centre 
(DMERC), Emergency Evacuation Centre (EEC), and Emergency Rest 
Centre (ERC). which determining factors are the capacity of the shelter, 
the time of using the shelter, the distance of the shelter, etc. In general, 
the area around the inundated region is the most susceptible area where 
the immediate shelters can be simply sought by considering factors such 
as distance and risk level. Focusing on the area more likely to be affected 
by the flood, referred to here as a high-risk area for simplicity, and 
expanding to the area with lesser likelihood of flooding, it is possible to 
find short-term or even long-term large-scale shelters by considering 
service accessibility, medical equipment, and other conditions. The 
concept of different types of evacuation shelters is shown in Fig. 7.

There are three steps to planning for shelter: collecting candidate 
shelters, optimising shelters, and determining the shelters, Stage 2 
evacuation shelters flowchart as shown in Fig. 3. Candidate shelters are 
schools, universities, community centres, churches, hospitals, police 
stations, and other houses, they can be optimised by a single-objective 
model, a multi-objective model, or multiple-criteria decision making 
(Bera et al., 2023; Ma et al., 2019). Single-objective models consider one 
aspect of the evacuation point such as distance, size, accessibility, etc. 
with a single objective function and all parameters are deterministic and 
constant over time. The approaches taken are p-median, p-center, and 
covering methods (Hakimi, 1964). A multi-objective model is one that 
contains at least two objectives, such as the selection of shelters taking 
into account the site capacity, accessibility, and medical facilities (Alam 
et al., 2021). The multiple-criteria decision making is an orderly division 
of immediate, short-term, and long-term flood preparedness emergency 

Table 1 (continued )

Researcher Method Parameters 
considered 

Brief summary

Depth Velocity

flooded streets to reliably 
estimate flood depths.

Quagliarini et al. 
(2023)

Videotape √ √ Analysed 139 videotapes 
of recent real-life flood 
evacuations in outdoor 
built environments 
involving approximately 
1,000 people around the 
world. 
The most common flood 
conditions and thresholds 
triggering each behavior 
involved waters between 
the ankles and the waist.

Fig. 5. Results of human instability in floods.
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shelters based on accessibility, flood safety, service accessibility, and 
facility capacity, it is more appropriate for making large-scale global 
analyses (Lee et al., 2020). Lyu et al. (2020) obtained the inundated area 
of the City of Shenzhen based on three criteria: hazard, exposure, and 
vulnerability. Edirisinghe et al. (2021) considered elevation, accessi-
bility, land use, availability of buildings, presence of water features, 
rainfall, and population density when making evacuation shelter ar-
rangements, totalling seven criteria. Based on the flood hazard assess-
ment, the modified particle swarm optimisation algorithm (MPSO), 
local search particle swarm optimisation algorithm (LMPSO), genetic 
algorithm (GA), ant colony optimisation algorithm (ACO), and simu-
lated annealing algorithm (SA) can be used to find the optimal shelters 
(Samany et al., 2021; Campos et al., 2012). GIS and remote sensing are 
widely used as effective tools for shelter site planning (Edirisinghe et al., 
2021; Rahman et al., 2021).

In the application of these models for shelter identification, the 
single-objective model focuses on only one aspect of the shelter and is 
not considered comprehensive enough. Multi-objective models consider 
multiple aspects, but the results are generally sub-optimal. For example, 
it is highly unlikely that shelters will satisfy the maximum capacity and 
the shortest distance to travel. Multiple-criteria decision making sub-
divides the problem and solves it with lots of criteria, while the criteria 
weights are subjective as determined by the expert’s experience. 
Different models were selected depending on the scale of the area 
inundated and the number of objectives.

3.2.2. Evacuation routes
Evacuation routes are possible paths points the evacuation zone to 

shelters or safety zones. Identifying the routes with the shortest distance 
and lowest risk which are dynamically updated has been the focus of 
several studies (Alizadeh et al., 2022; Musolino et al., 2022; Thapa et al., 
2022; Shirvani et al., 2021a). The concept of evacuation routes is 
demonstrated in Fig. 8. Identifying the safest evacuation route or iden-
tifying the shortest route between the inundated area and shelter or 
identifying the shortest route with an acceptable level of risk, e.g. Route 
A, B, or C as shown in Fig. 8, can be very challenging. This is due to the 
complexity of road structure in large urban areas and the range of other 

Table 2 
Summary of findings on vehicle flood instability.

Researcher Method Parameters 
considered

Brief summary

Depth Velocity

Bonham and 
Hattersley 
(1967)

Experiment √ √ Experimental object: Ford 
Falcon model 
Experimental scale: 1:25 
geometric length scale. 
Experiment: Tests were 
conducted at 46 different 
combinations of depths and 
velocities ranging from 0.11 
to 0.57 m and velocities 
ranging from 0.48 to 3.09 m/ 
s (all at prototype scales) 
Results: The experimental 
data could be used to 
determine the float and 
friction stability limits for a 
range of cars available at the 
time.  
These automobiles were 
categorized into seven 
categories, including small, 
medium, and large 
automobiles, rear-engine 
automobiles, and sports cars.

Gordon and 
Stone 
(1973)

Experiment √ √ Experimental scale: 1:16 
Experimental content: Three 
modes of resistance to 
motion were considered. 
These included 
Including:1. front wheels 
locked.2. rear wheels 
locked.3. both locked. The 
total horizontal reaction 
force and vertical reaction 
force of the front and rear 
wheels were measured under 
fine threaded vertical and 
lateral restraints 
Results: Stability was found 
to be slightly higher for the 
front wheel locking 
condition than the rear 
wheel locking condition.

Keller and 
Mitsch 
(1993)

Theory √ √ Subjects: a Suzuki Rainier, a 
Ford Laser, a Toyota Corolla 
and a larger Ford Limited. 
Experimental content: This 
study assessed the stability of 
the vehicle perpendicular to 
the vehicle by comparing the 
vertical reaction force (FV) 
on each axle. 
Results: instability occurs 
when the vertical reaction 
force is less than or equal to 
zero (the vehicle floats) or 
when the horizontal force is 
equal to the vertical restoring 
force (assumed to be a 
function of the coefficient of 
friction and the vertical 
reaction force)

Cox et al. 
(2010a)

Guidelines √ √ Guideline/ 
Recommendation: 
Department PublicWorks, 
NSW (PWD86/DECCW05), 
Australian Rainfall and 
Runoff (1987), Melbourne 
Water Land Development 
Manual: Floodway Safety 
Criteria(1996), Emergency 
Management Manual 
(EMA1999), Moore and  

Table 2 (continued )

Researcher Method Parameters 
considered 

Brief summary

Depth Velocity

Power(2002), Aus Roads 
Guide to Road Design − Part 
5: Drainage Design(2008)

Xia et al. 
(2010)

Experiment √ √ All potential energies acting 
on the flooded vehicle were 
considered, and a general 
formula for the initial 
velocity of the flooded 
vehicle was deduced based 
on the theory of sliding 
equilibrium mechanics. 
Results: the flooded vehicle 
is most likely to move when 
the depth of water is just 
close to the height of the 
vehicle.

Martínez- 
Gomariz 
et al. 
(2017)

Experiment √ √ Experimental subjects: 12 
models 
Experimental scale: three 
different model scales (1:14, 
1:18 and 1:24) and the 
effects of friction and 
buoyancy were analysed 
Results: a new methodology 
was developed to obtain the 
stability threshold of any real 
vehicle exposed to flooding.
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parameters potentially affecting the route, such as the level of risk.
Evacuation route planning is carried out by combining flood simu-

lation results and road models. The road model can be as large as the 
road network for vehicles and as small as the pedestrian footpaths as 
included in the Stage 2 evacuation routes flowchart in Fig. 3. There are 
two main methods for determining and optimising evacuation routes: 
specific methods and metaheuristic algorithms. Specific methods 
include weighting methods and direct identification methods. Ogawa 
et al. (2023) used the weighting method to determine evacuation routes 
based on flood changes during a period to increase the number of 
evacuees being saved in Osaka, Japan. Dong et al. (2020) employed 
Bayesian combination of existing road network and flood data to 
determine the failed evacuation road sections. Thapa et al. (2022)
conducted field surveys via drone and mapped the disaster to directly 
identify emergency evacuation routes from road networks for pedes-
trians. Shirvani et al. (2021a) used an agent-based model to investigate 
dynamic human interactions with flood water during evacuation. Evans 
et al. (2024) provided a hazard assessment that integrates people and 
vehicles and can be used to determine the flood risk level of a route. 

Musolino et al. (2022) also developed flood evacuation routes based on 
the revised MBM and considered retrofitting existing infrastructures to 
remove bottlenecks to safe evacuation where there was no alternative 
route. However, specific methods can become more time-consuming as 
the scope of the study becomes larger. Additionally, there are subjec-
tivity in these models. For example, in weighting methods, weightings 
are assigned to different aspects to reflect expert judgements towards the 
importance of these aspects, yet these weightings have not been tested 
with reality. Optimising routes mainly addresses route capacity, traffic 
congestion, reverse flow and bottlenecks (Borowska-Stefańska et al., 
2023; Haghani, 2020). Metaheuristic algorithms are widely applied in 
this optimisation process, they are randomly generated based on flood 
data and evolutionary principles, consistent with the phenomenon of 
population evacuation, and are more objective (Li et al., 2024; Niyo-
mubyeyi et al., 2020; Yusoff et al., 2008).

As for metaheuristic methods, Di Caprio et al. (2022) proposed that 
they can provide optimal or near-optimal route solutions in small and 
large networks within a reasonable computational time. Metaheuristic 
algorithms are categorized into two groups: those based on biological, 

Fig. 6. Results of vehicle instability in floods.

Fig. 7. Evacuation shelters for different objectives.
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physical, chemical heuristics and group intelligence, such as annealing 
algorithms, ant colony optimisation algorithms, genetic algorithms, and 
particle swarm optimisation algorithms, and other metaheuristic algo-
rithms, such as Dijkstra’s and A* algorithms. These algorithms have 
been widely used to solve flood problems (Zhang et al., 2021a; Abdel- 
Basset et al., 2018). The summary of the metaheuristic algorithms 
used in evacuation planning is shown in Table 3. Different metaheuristic 
algorithms used to identify the best evacuation route can be classified 
into two categories as follows: 

• The classical metaheuristic algorithms

In the field of evacuation routes, the classical algorithms which 
include: A* algorithm, Dijkstra’s algorithm, CCRP algorithm, Genetic 
algorithm, Ant colony optimisation algorithm, and Particle swarm 
optimisation algorithm, have been widely used by many scholars and 
are being continuously improved (Li et al., 2023; Xu et al., 2022; Liu 
et al., 2021; Abusalama et al., 2020; Dokeroglu et al., 2019).

Dijkstra’s algorithm is an algorithm for finding the shortest route 
between two points. It is based on expanding outward in layers centred 
on the starting point until the end point is found (Li et al., 2023; Zhang 
et al., 2021b; Dijkstra, 1959). The A* algorithm is based on Dijkstra’s 
algorithm with an added evaluation function. The purpose of the eval-
uation function is to compute the cost of a new node to ensure that the 
new node will have the lowest cost in the next direction of travel, and 
finally, the route connecting all the points is guaranteed to have the 
lowest cost (Hart et al., 1968). The A* algorithm combines the iterative 
checking of the Dijkstra algorithm with the directionality of the best-first 
algorithm for good performance and accuracy (Faroqi et al., 2022). Liu 
et al. (2021) used A* algorithms to help intelligently driven vehicles 
choose the best route in the traffic network with constraints such as 
limited heights, widths, weights, accidents, and traffic jams during 
emergencies. They also incorporated a priori knowledge judgments 
combined with the A* algorithm for search optimisation to propose an 
optimal route planning algorithm for traffic jams, accidents, and tem-
porary restrictions. Given a transportation network, an evacuation start 
point, an evacuation endpoint, and the number of evacuees, Evacuation 
route planning (ERP) can compute the route that minimizes evacuation 
time and cost (Cova & Johnson, 2003). To extend the algorithm to a 
larger scale, the Capacity Constrained Route Planner algorithm (CCRP) 
was developed (Shekhar et al., 2012; Qingsong et al., 2005). The algo-
rithm adds pseudo-source nodes to improve scaling performance (Choe 
et al., 2023; Abusalama et al., 2020; Kim et al., 2007).

Genetic algorithms are based on the theory of biological evolution in 
nature (Holland, 1975). The best solution is developed through 

crossover, mutation, and selection where the crossover is an exchange of 
different parts of the route, and a uniform crossover is more probably to 
achieve the best (Nur et al., 2023). In addition, multi-criteria genetic 
algorithms and multi-objective genetic algorithms have been generated 
to realize multi-objectives for evacuation distance, evacuation time, and 
evacuation route (Ikeda & Inoue, 2016). Genetic algorithms can also be 
combined with fuzzy algorithms to improve simulation performance 
(Pourrahmani et al., 2015). Genetic algorithms are widely used in 
transportation planning, flood disasters, fire, and other emergency 
evacuation (Li et al., 2019a).

Ant colony optimisation algorithm (ACO) derived from the feeding 
behaviour of ants (Dorigo & Blum, 2005). Ants search for food around 
the nest and release pheromones along the route. Depending on the 
distance to the food, the pheromones that the ants leave behind on their 
way to and from the nest change. The pheromone can be used to find the 
shortest route from the food to the nest. In the ACO algorithm, the 
strength of the algorithm can be judged by the number of ants M, 
pheromone strength Q, information heuristic factor α, expectation 
heuristic factor β, and pheromone volatilization factor ρ (Di Caprio et al., 
2022).The traditional ant colony algorithm is easy to fall into the local 
optimum and has poor convergence. On this basis, it can be improved by 
the clustering algorithm, fuzzy algorithm, introduction of A* algorithm, 
or introduction of optimal and worst solutions to shorten the conver-
gence time and improve the convergence effect (Dai et al., 2019; Luo 
et al., 2019). Ant colony algorithms are more commonly used in emer-
gency evacuation routes (Xu et al., 2022).

The particle swarm optimisation algorithm (PSO) is a population- 
based stochastic algorithm, which simulates the social behaviour of 
birds and fish to solve optimisation problems (Kennedy & Eberhart, 
1995). It is worth mentioning that PSO just has three key control pa-
rameters: inertia weight w, cognitive component c1, and social compo-
nent c2. These parameters have a great influence on the performance of 
particle swarm, and the best performance can only be obtained by 
setting these parameters appropriately (Eberhart & Kennedy, 1995). The 
particle swarm optimisation algorithm can be improved by modifying 
the control parameters and by combining the particle swarm algorithm 
with metaheuristic algorithms such as genetic algorithms and differen-
tial evolutionary algorithms (Shami et al., 2022).Based on particle 
swarm optimisation algorithms, discrete particle swarm optimisation 
algorithm (DPSO), modified particle swarm optimisation algorithm 
(MPSO), and local search particle swarm optimisation algorithm 
(LMPSO) have been proposed (Samany et al., 2021).

Based on the flood simulation results, the safe roads are selected and 
the retrieval and implementation algorithms are performed on these 
road networks. The roads are simplified as lines and at the road 

Fig. 8. Evacuation routes from considering risk level and route length.
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intersections are simplified as nodes (Yang et al., 2022a; Liu et al., 2021; 
Dong et al., 2020). Among these classical algorithms, Dijkstra’s algo-
rithm and A* algorithm are centred on the starting point to find the path 
to the end point, traversing a large number of nodes with a large 
workload (Faroqi et al., 2022; Zhang et al., 2021b).On the other hand, 
GA, PSO, and ACO are able to search for optimal solutions globally, but 
they tend to fall into local optima and poor convergence when solving 
dynamic evacuation problems (Zhang et al., 2021b; Luo et al., 2019). 
Nevertheless, these classical algorithms are used in many industries 
because they require fewer parameters, have a flexible structure, and 
can be easily modified and combined with other algorithms to improve 
their performance (Shami et al., 2022; Dai et al., 2019; Pourrahmani 
et al., 2015). 

• The other recent metaheuristic algorithms

In addition, 15 other metaheuristic algorithms have been introduced 
since 2000: Harmony search (HS) (Geem et al., 2001), Bacterial foraging 
optimisation (BFO) (Passino, 2002), Artificial bee colony optimisation 

(ABC) (Karaboga, 2005), Biogeography-based optimisation (BBO) 
(Simon, 2008), Cuckoo search algorithm (CSA) (Yang & Deb, 2009), 
Gravitational search algorithm (GSA) (Rashedi et al., 2009), Firefly al-
gorithm (FA) (Yang, 2010a), Bat algorithm(BA) (Yang, 2010b), Krill 
herd (KH) (Gandomi & Alavi, 2012), Teaching-learning-based optimi-
sation (TLBO) (Rao et al., 2011), Social spider optimisation (SSO) 
(Cuevas et al., 2013), Symbiotic organisms search (SOS) (Cheng & 
Prayogo, 2014), Grey wolf algorithm (GWO) (Mirjalili et al., 2014), 
Whale optimisation algorithm (WOA) (Mirjalili & Lewis, 2016), Sparrow 
Search Algorithm(SSA) (Xue & Shen, 2020).

These algorithms are applied to optimise the layout of urban pipeline 
networks (Kwon et al., 2019)、real-time flood disaster monitoring 
(Wilson & Radhamani, 2021), flood susceptibility maps (Plataridis & 
Mallios, 2023) flood forecasts (Chaowanawatee & Heednacram, 2012), 
and route planning (Dai et al., 2019; Luo et al., 2019). Among the newer 
algorithms, SSA (Sparrow Search Algorithm) is also a metaheuristic 
developed based on bird behaviour (Xue & Shen, 2020). It divides the 
population into producers and scroungers, and currently outperforms 
the Wolf Optimizer (GWO), Gravitational Search Algorithm (GSA), and 
Particle Swarm Optimisation algorithm (PSO) in terms of accuracy, 
convergence speed, stability, and robustness (Gharehchopogh et al., 
2023; Zhang & Ding, 2021). Currently, SSA has not been applied to 
evacuation routes and its performance has not been evaluated.

Among the route algorithms mentioned above, the most suitable 
classical algorithms are the Dijkstra algorithm, A* algorithm, CCRP al-
gorithm, GA, ACO and PSO, and the emerging algorithm that has been 
proved to be better is SSA. There are two main differences between 
them: the first is whether or not they are biologically characterized. It is 
obvious that GA, ACO, PSO, and SSA are developed based on biological 
principles. Flood evacuation, which is a process of evacuee movement, 
has commonality with the communication of biological entities in these 
algorithms in the selection of routes and transmission of social infor-
mation (Xu et al., 2022). The second is the relevance to route optimi-
sation. The formation of evacuation routes is based on step-by-step 
iterative selection or top-down global iterative selection. Dijkstra algo-
rithm, A* algorithm, CCRP algorithm, ACO belong to step-by-step iter-
ative selection. GA, PSO and SSA belong to the top-down global iterative 
selection, which is less computationally intensive.

3.2.3. Evacuee movement
Efficient and organised movement of evacuees can help improve the 

evacuation process and reduce mortality rates during large-scale flood 
events (Tripathy et al., 2021; Bernardini et al., 2017b). London Resil-
ience Team (2022) identified three types of evacuation: Self-Evacuation, 
Assisted Evacuation, and Supported Evacuation. Self-Evacuation: in-
dividuals can use of transport or walk to a safe place. Assisted Evacua-
tion: individuals can move but need the public authorities or community 
to provide information on safe places, routes, and even transportation. 
Supported Evacuation: individuals cannot move and require more help 
from the public authorities or community. When evacuees are moving, 
more people will choose routes that are shorter and less hazardous. This 
unplanning evacuation can cause crowd jams which will lead to herd 
effect and panic (Chen et al., 2020; Helbing & Johansson, 2013), as is 
illustrated in Fig. 9. Therefore, the evacuee movement model was 
established to better investigate the evacuee movement patterns. There 
are two types of evacuee movement models: classified as macro and 
micromodels (Yang et al., 2021; Li et al., 2019b). It is necessary to 
determine the simulation scale and access the population properties 
before selecting the models, Stage 2 evacuation movement flowchart as 
shown in Fig. 3.

Macroscopic models, although having high computational effi-
ciency, cannot reflect the interactions and heterogeneity among in-
dividuals and are only suitable for modelling large-scale populations. 
Microscopic models are relatively less computationally efficient, but the 
motion description is more accurate and natural (Zheng et al., 2009). 
Macro models are mainly fluid dynamics models (Twarogowska et al., 

Table 3 
Summary of metaheuristic algorithms for flood research.

Researcher Algorithm names Application

Dijkstra (1959) Dijkstra algorithm Flood evacuation routes (Li et al., 
2023; Zhang et al., 2021b; Dijkstra, 
1959)

Hart et al. 
(1968)

A* algorithm Flood evacuation routes (Faroqi 
et al., 2022; Liu et al., 2019a)

Qingsong et al. 
(2005)

CCRP algorithm Reasonable allocation of route 
capacity (Choe et al., 2023)

Holland (1975) Genetic algorithm (GA) Route planning (Di Caprio et al., 
2022)

Kennedy and 
Eberhart 
(1995)

Particle swarm 
optimisation algorithm 
(PSO)

Route Optimisation (Shami et al., 
2022)

Geem et al. 
(2001)

Harmony search (HS) Optimise the layout of urban pipeline 
network (Kwon et al., 2019)

Passino (2002) Bacterial foraging 
optimisation (BFO)

Real time flood disaster monitoring (
Wilson & Radhamani, 2021)

Karaboga 
(2005)

Artificial bee colony 
optimisation (ABC)

Accurate prediction of flood-prone 
flood areas (Plataridis & Mallios, 
2023)

Dorigo and 
Blum (2005)

Ant colony 
optimisation algorithm 
(ACO)

Route planning (Dai et al., 2019; Luo 
et al., 2019)

Simon (2008) Biogeography-based 
optimisation (BBO)

Flood susceptibility maps (Plataridis 
& Mallios, 2023)

Yang and Deb 
(2009)

Cuckoo search 
algorithm (CSA)

Flood forecasts (Chaowanawatee & 
Heednacram, 2012)

Rashedi et al. 
(2009)

Gravitational search 
algorithm (GSA)

Model parameter optimisation (
Akbari et al., 2019)

Yang, (2010a) Firefly algorithm (FA) Process optimisation, robotics and 
civil engineering (Fister et al., 2013)

Yang (2010b) Bat algorithm（BA） Flood susceptibility maps (Rahmati 
et al., 2020)

Gandomi and 
Alavi (2012)

Krill herd (KH) Optimisation issues, positional 
assignment (Sitoy & Gamot, 2019)

Rao et al. 
(2011)

Teaching-learning- 
based optimisation 
(TLBO)

Estimation of flood discharges for 
different return periods (Anılan et al., 
2017)

Cuevas et al. 
(2013)

Social spider 
optimisation (SSO)

Computer vision, image processing, 
and energy (Luque-Chang et al., 
2018)

Cheng and 
Prayogo 
(2014)

Symbiotic organisms 
search (SOS)

Task and resource scheduling, 
construction and civil engineering (
Gharehchopogh et al., 2019)

Mirjalili et al. 
(2014)

Grey wolf algorithm 
(GWO)

Spatial prediction of urban flood- 
inundation (Darabi et al., 2021)

Mirjalili and 
Lewis (2016)

Whale optimisation 
algorithm (WOA)

Evaluation model of regional flood 
disaster resilience (Liu et al., 2020)

Xue and Shen 
(2020)

Sparrow Search 
Algorithm (SSA)

Engineering Optimisation (
Gharehchopogh et al., 2023; Zhang & 
Ding, 2021)
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2014). The motion of a traveling evacuee is similar to that of a gas or a 
liquid, has fluid-like properties, and is often used as a macroscopic 
model for evacuee movement. The use of partial differential equations of 
fluid dynamics to study the typical characteristics of evacuee flow allows 
more general conclusions to be drawn.

There are 6 types of microscopic models: cellular automata models, 
lattice gas models, social force models, agent-based models, game 
models, and animal experimentation-based approaches (Bernardini 
et al., 2017a; Vermuyten et al., 2016). Different models discretize 
differently for group characteristics, size, time, and space. Different 
microscopic evacuation modelling for crowds is summarised in Table 4.

The cellular automata model, proposed by von Neumann, is a 
discrete dynamical system consisting of a grid of regular cells, where 
each cell changes according to the value of its domain cell at the pre-
vious time step and is updated synchronously according to a set of local 
rules (Li et al., 2019b). The cellular automata (CA) model has become 
one of the most widely used evacuation models due to its advantages 
such as high efficiency, scalability, and simplicity of implementation. 
The method has been used in real cases by obtaining flood information 
for flood hazard assessment through hydrodynamic modelling, and then 
evacuation simulation of the crowd, which can observe the people 
trapped situation (He et al., 2021; Li et al., 2021). Lattice gas models are 
a special case of cellular automata models (Muramatsu et al., 1999; 
Wolfram, 1984; Fredkin & Toffoli, 1982). In the lattice gas model, each 
pedestrian is considered as an active particle on the lattice, which can 
well simulate pedestrian evacuation dynamics and simulation is more 
accurate, but the more people there are, the less scalable it is (Wąs et al., 
2016; Helbing et al., 2003). The social force model suggests that pe-
destrians have a desired speed when traveling to a destination and are 
subject to attractive and repulsive forces from obstacles. The social force 

model is a good representation of individual pedestrians and their in-
teractions in a crowd and can be used in conjunction with flood 
modelling to effectively plan evacuation routes (Bernardini et al., 
2017b; Helbing & Johansson, 2013).

Based on the Agent-based model, the social structure is constructed 
“from top to bottom” through the virtual simulation of individuals, and 
the operating rules for the interaction between agents are created for the 
pedestrian simulation accordingly. The various agent parameters 
considered during evacuation are age, gender, income, awareness, ed-
ucation level, and risk perception (Bernardini et al., 2017a; Liu et al., 
2008). Shirvani et al. (2021b) combined agent modelling with flood 
scenarios to study the evacuation movements of pedestrians, but did not 
take into account the uncertainty of psychological characteristics. It is 
important to highlight that the more heterogeneity considered, the 
higher the cost. The Game theory model is a simulation of individuals 
generating competitive behaviours in an emergency which can examine 
the rational interactive behaviour of evacuees, which is currently less 
used because it is not possible to quantify and focus on only one aspect of 
competition during the flood evacuation (Lo et al., 2006).

Animals have also been used to study evacuee movement and some 
features of the collective behaviour of animals during panic escapes are 
very similar to those of humans (Saloma et al., 2003). Therefore, animal 
experiments can be utilized to simulate the human evacuation process 
(Altshuler et al., 2005). Haghani (2020) reviewed 18 experiments using 
animals to study evacuation. However, the experimental results did not 
show diversity, and animal experiments are becoming less. Among the 
above-mentioned evacuee movement as a microscopic model, the 
cellular automata model is widely used due to its advantages such as 
high efficiency, accuracy, and fast computation speed. This is followed 
by social force models and agent-based models, which are used to 
explore evacuee behaviour details, such as herd and follower effects. 
Evacuee movement models apply to general disasters and are less often 
specifically combined with floods.

4. Future directions and limitations

The prominent focus of flood evacuation planning is people, but 
people have psychological activities and can choose their way, which 
leads to a diversity of evacuation options. At the same time, critical 
thresholds of instability are often considered when developing evacua-
tion shelters and evacuation routes, but during evacuation, the speed of 
movement of people or vehicles changes dynamically with the evolution 
of the flood. Therefore, we propose the following four future research 
directions to be helpful in flood evacuation planning:

1) Movement speed of pedestrians and vehicles
Evacuation time depends on the speed of evacuation, including the 

Fig. 9. Evacuee movement for simulation of reality.

Table 4 
Microscopic evacuation modelling for crowds.

Model Name Proposer Group 
Description

Scale Time and 
Space

Cellular automata 
model

Von 
Neumann

Both Micro Discrete

Lattice gas model Fredkin, 
Toffoli, 
Wolfram

Homogeneous Micro Discrete

Social Force Model Helbi and 
Molnar

Homogeneous Micro continuous

Agent-based model Bonabeau Heterogeneous Micro Both
Game theory model John nash Homogeneous Micro Discrete
Animal 

experimentation- 
based methods

Saloma Homogeneous Micro 
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speed of pedestrian movement and the speed of vehicle movement 
(Vermuyten et al., 2016). In addition, the choice of route is determined 
not only on the flood hazard but also on the ability to move pedestrians 
or vehicles (Chen et al., 2022). The main factor impacting the vehicle 
speed is the water depth, the deeper the water the slower the vehicle 
speed (Suwanno et al., 2023; Yazdani et al., 2022). He et al. (2023)
summarised that the maximum speed at which a vehicle can be safely 
driven under floodwater. The speed of pedestrian movement is affected 
by water depth and flow velocity. Studies on pedestrian speeds show 
that as water depth increases, pedestrian speeds decrease, especially for 
elderlies or vulnerable people (Quagliarini et al., 2023; Dias et al., 2021; 
Lee et al., 2019). Shirvani and Kesserwani (2021) used an agent-model 
to simulate the evacuation of crowds and estimated the speed of 
pedestrian movement based on water depth and flow velocity. He et al. 
(2021) set the speed of pedestrian movement to be 1 m/s in the cellular 
automata model. Vermuyten et al. (2016) pointed out that setting the 
speed of a pedestrian in a cellular automaton is generally a constant, and 
the agent model is set according to the individual properties, but this 
makes the computation more expensive and the computation time 
longer and has limitations for large-scale evacuation. Therefore, the 
movement speed characteristics of pedestrians or vehicles are one of the 
areas where future evacuation models need to focus.

2) Evacuee psychology
There are four psychological stages that humans go through when 

making an evacuation decision, concern, hazard recognition, reception, 
and evacuation decision (Borowska-Stefańska et al., 2023; Simonovic & 
Ahmad, 2005). Evacuees develop multiple psychologies through 
different stages, such as denial, inactivity, calmness, stunned, uncon-
trolled, dependency and emotional expression. Pel et al. (2011) indi-
cated these psychologies create a herd effect, familiarity principle, etc. 
which affects the evacuation decision. Helbing and Johansson (2013)
proved that the herd effect was irrational and could increase the number 
of fatalities and lead to poor overall outcomes. Bernardini et al. (2017) 
applied the attraction formula to represent fear in the social forces 
model. Kaur and Kaur (2022) suggested that micro-models could take 
psychological factors into account, but there were limitations to using 
them for large-scale evacuations. Chen et al. (2020) stated that the fa-
miliarity principle causes people to choose familiar evacuation routes or 
evacuation shelters. Evacuees often rely on past experiences, known as 
“experience dependence,” to choose routes and shelters. While correct 
decisions can improve evacuation efficiency, mistakes may have serious 
consequences, especially during rare but extreme events and areas. 
Overconfidence in flood forecasts and early warnings can also slow 
evacuation. Future research should explore how such planning affects 
decision-making to prevent errors caused by underestimation. Addi-
tionally, human psychology changes dynamically over time, and how to 
take these uncertainties into account is a challenge for evacuation 
planning (Haghani, 2020; Ma et al., 2019).

3) Multimodal emergency evacuation
People can get to shelters in one or more ways, for example, by car, 

by bus, or on foot (Goerigk et al., 2014). Renne (2018) highlighted four 
main reasons for multimodal emergency evacuation and summarised 
large-scale, multimodal evacuation plans in the US and the UK for 
dealing with carless and vulnerable populations. Shiwakoti et al. (2013)
identified three modes as the focus of multimodal evacuation: auto, 
pedestrian, and transit. Evans et al. (2024) suggested combining both 
people and vehicle to create a flood hazard map, which can be used to 
develop a multimodal evacuation plan. Currently, very limited multi-
modal evacuation researches are carried out for flood hazards, and it is 
valuable to see how they can be linked to minimise fatalities.

4) Effect of overhead power lines on rescue operations
As flood events progress and water levels continue to rise, the 

available space between the water surface and overhead power lines 
decreases, increasing the risk of electric shock during evacuation, 
reducing rescue efficiency, and raising mortality rates. This issue is 
particularly pronounced in areas with low-hanging or aging overhead 

power lines, where evacuation and rescue operations become extremely 
challenging or even isolated. Wang et al. (2024b) proposed an inte-
grated emergency response framework by considering the layout in-
formation of overhead power lines. The results suggest that early 
evacuation is one of the effective methods to avoid isolation. This 
reemphasise the need for on foot evacuation to safe shelters where the 
risk from overhanging lines is limited and do not affect air evacuation. 
Research on conducting rescue operations in isolated areas, such as re-
gions with dense overhead power lines or areas with poor infrastructure, 
is limited but highly valuable.

5) Limitations
This study provides a systematic review of flood evacuation plan-

ning. The evacuation planning process is multifaceted and interdisci-
plinary, involving numerical simulation, mechanistic methods, 
theoretical analysis, psychological simulations, and geography. We 
reviewed and summarised 211 papers and documents to provide a 
comprehensive overview on the state-of-the-art evacuation planning for 
urban flooding, especially on flood hazard assessment and algorithms 
for the optimisation of evacuation shelters and evacuation routes. 
Therefore, the selected paper and literature reviewed are highly relevant 
to these aspects.

Nevertheless, Flood risk and evacuation involve issues beyond flood 
modelling, flood hazard assessment and evacuation shelter and route 
optimisation. For example, the impact of flooding would depend on the 
countries or regions being flooded, the vulnerability of their pop-
ulations, and the varying levels of infrastructure and medical resource 
availability. While it is essential to select appropriate methods and refine 
them accordingly within this framework, these challenges were not 
specifically considered in this study.

5. Conclusion

Flooding is one of the most damaging natural disasters which is ex-
pected to be exacerbated in the future due to climate change, population 
growth, and intensive urbanisation. While reducing the occurrence of 
floods and their intensity is still an important part of flood hazard 
management, understanding that flood cannot be stopped completely 
and creating resilience to flooding is also crucial in our preparedness to 
flooding. Evacuation is one approach to creating resilience which has 
attracted more attention in recent years. This study included a 
comprehensive review of the existing literature on evacuation planning 
and provided a broad overview of the research content encompassing 
the topic. Through this review, two stages were identified in all evacu-
ation models: assessment of flood hazard to pedestrians and vehicles and 
evacuation planning. Flood hazard assessment consists of a two-step 
process (i) flood modelling, to derive flood depth and velocity, and (ii) 
an assessment of the instability of the subjects, i.e. humans or vehicles, 
to establish the hazard level given the flood depth and velocity. Evac-
uation planning includes finding evacuation shelters, planning evacua-
tion routes, and the simulation of evacuees. The key conclusions are 
summarised as follows: 

1) The revised Mechanic’s based method developed by Xia et al. (2014)
provided a flexible and comprehensive assessment of hazard to 
humans (Musolino et al., 2022), and the methodology introduced by 
Martínez-Gomariz et al. (2018) was found to be the most compre-
hensive method for vehicles instability assessment.

2) There are three commonly used methods for selecting evacuation 
shelters: the single-objective model, the multi-objective model, and 
hierarchical model. Several factors need to be considered: elevation, 
accessibility, land use, availability of buildings, presence of water 
features, rainfall, and population density.

3) Evacuation routes can be planned using metaheuristic algorithms. 
The classic algorithms are the Ant Colony Optimisation algorithm 
(ACO), Particle Swarm Optimisation algorithm (PSO), and Genetic 
Algorithm (GA), Besides, the emerging algorithm Sparrow Search 
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Algorithm (SSA) is shown to be better than them except in the case of 
evacuation routes planning, which needs to be tested in the future.

4) In the study of evacuation crowds, the cellular automata model is 
currently the most widely used, but the social force model and the 
agent-based model simulate more accurately.

This review also highlights four areas that require further studies to 
significantly enhance evacuation planning. These includes: movement 
speed of pedestrians and vehicles, evacuee psychology, multimodal 
emergency evacuation, and the effect of overhead power lines on rescue 
operations.
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Borowska-Stefańska, M., Kowalski, M., Wísniewski, S., Dulebenets, M.A., 2023. The 

impact of self-evacuation from flood hazard areas on the equilibrium of the road 
transport. Saf. Sci. 157. https://doi.org/10.1016/j.ssci.2022.105934.

Brunner, M.I., Slater, L., Tallaksen, L.M., Clark, M., 2021. Challenges in modeling and 
predicting floods and droughts: A review. WIREs Water 8 (3). https://doi.org/ 
10.1002/wat2.1520.

Bulti, D.T., Abebe, B.G., 2020. A review of flood modeling methods for urban pluvial 
flood application. Model. Earth Syst. Environ. 6 (3), 1293–1302. https://doi.org/ 
10.1007/s40808-020-00803-z.

Campos, V., Bandeira, R., Bandeira, A., 2012. A method for evacuation route planning in 
disaster situations. Procedia. Soc. Behav. Sci. 54, 503–512. https://doi.org/10.1016/ 
j.sbspro.2012.09.768.

Chang, T.J., Chen, T.S., Hsu, M.H., Chen, A.S., 2005. An integrated inundation model for 
highly developed urban areas. Water Sci. Technol. 51 (2), 221–229. https://doi.org/ 
10.2166/wst.2005.0051.

Chaowanawatee, K., Heednacram, A., 2012. Implementation of Cuckoo search in RBF 
neural network for flood forecasting 2012. Fourth International Conference on 
Computational Intelligence, Communication Systems and Networks, 10.1109/ 
CICSyN.2012.15. 

Chen, A., He, J., Liang, M., Su, G., 2020. Crowd response considering herd effect and exit 
familiarity under emergent occasions: A case study of an evacuation drill 
experiment. Phys. A 556. https://doi.org/10.1016/j.physa:2020.124654.

Chen, A.S., Djordjevic, S., Leandro, J., Savic, D., 2007. The urban inundation model with 
bidirectional flow interaction between 2D overland surface and 1D sewer networks. 
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Wąs, J., Porzycki, J., Lubaś, R., Miller, J., Bazior, G., 2016. Agent-based approach and 
cellular automata – a promising perspective in crowd dynamics modeling? Acta 
Phys. Pol. B Proc. Suppl. 9 (1). https://doi.org/10.5506/APhysPolBSupp.9.133.

WEF, 2019. 2019 Global Natural Disaster Assessment Report. World Economic Forum, 
Geneva. 

WEF, 2020. 2020 Global Natural Disaster Assessment Report. World Economic Forum, 
Geneva. 

Wef, 2021. 2021 Global Natural Disaster Assessment Report. World Economic Forum, 
Geneva. 

Wilson, A.J., Radhamani, A.S., 2021. Real time flood disaster monitoring based on 
energy efficient ensemble clustering mechanism in wireless sensor network. 
Software Pract. Exper. 52 (1), 254–276. https://doi.org/10.1002/spe.3019.

Wolfram, S., 1984. Universality and complexity in cellular automata. Phys. D 10 (1–2), 
1–35.

Xia, J., Falconer, R.A., Lin, B., Tan, G., 2011. Numerical assessment of flood hazard risk 
to people and vehicles in flash floods. Environ. Model. Softw. 26 (8), 987–998. 
https://doi.org/10.1016/j.envsoft.2011.02.017.

Xia, J., Falconer, R.A., Wang, Y., Xiao, X., 2014. New criterion for the stability of a 
human body in floodwaters. J. Hydraul. Res. 52 (1), 93–104. https://doi.org/ 
10.1080/00221686.2013.875073.

Xia, J., Teo, F.Y., Lin, B., Falconer, R.A., 2010. Formula of incipient velocity for flooded 
vehicles. Nat. Hazards 58 (1), 1–14. https://doi.org/10.1007/s11069-010-9639-x.

Xu, L., Huang, K., Liu, J., Li, D., Chen, Y.F., 2022. Intelligent planning of fire evacuation 
routes using an improved ant colony optimization algorithm. J. Build. Eng. 61. 
https://doi.org/10.1016/j.jobe.2022.105208.

Xue, J., Shen, B., 2020. A novel swarm intelligence optimization approach: sparrow 
search algorithm. Syst. Sci. Control Eng. 8 (1), 22–34. https://doi.org/10.1080/ 
21642583.2019.1708830.

Yang, B., Wu, L., Xiong, J., Zhang, Y., & Chen, L. (2022). Planning of location and path 
for urban emergency rescue by an approach with hybridization of clustering and ant 
colony algorithm. Available at SSRN 4041695.

Yang, X.-S., 2010. Firefly algorithm, stochastic test functions and design optimisation. 
Internat. J. Bio-Inspired Comput. 2 (2), 78–84.

Yang, X.-S., 2010b. A new metaheuristic bat-inspired algorithm. In: Nature inspired 
cooperative strategies for optimization (NICSO 2010). Springer, pp. 65–74.

Yang, X.-S., Deb, S., 2009. Cuckoo search via Lévy flights. 2009 World Congress on 
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