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Bespoke Turing patterns with specific nonlinear properties

Thomas E. Woolleya

Cardiff School of Mathematics Cardiff University Senghennydd Road, Cardiff, CF24 4AG, United Kingdom
(Dated: March 19, 2025)

Turing patterns offer a mechanism for understanding self-organisation in biological systems. How-
ever, due to their flexibility, it is a mechanism that can often be abused. Here, we construct a minimal
Turing system defined by just four parameters controlling the: diffusion rate, steady state, linear
dynamics, and nonlinear dynamics. Using just these four parameters we can construct a set of
kinetics with a number of desirable properties. Firstly, we can turn any homogeneous steady state
into a Turing unstable steady state. Secondly, we can ensure that the Turing instability appears
within any chosen parameter region. Thirdly, this formulation provides an unbounded patterning
parameter space with guaranteed positive solutions. Finally, using weakly nonlinear analysis, we
demonstrate that if we have freedom in any two of the parameters then we can define any required
pattern transition (i.e. spots-to-stripes, or stripes-to-spots) under any given changes of one of the
parameters. Thus, if a Turing system is going to be applied to understand a specific biological
system and, moreover, if it is going to be used to extrapolate predictions for experimental pertur-
bations, then our findings underscore the necessity of heavily restricting the modelling components
and parameter values, since any freedom could be exploited to generate potentially contradictory
predictions.

I. INTRODUCTION

The study of Turing patterns has interested mathematical biologists for decades due to its ability to explain
self-organisation in diverse biological systems [1, 2]. Originally proposed by Turing [3], the theory postulates that
diffusion-driven instabilities can transform homogeneous steady states into spatially heterogeneous patterns, providing
a mechanism for the emergence of biological structures. Over the years, reaction-diffusion models have been employed
to explore phenomena ranging from animal coat markings [4, 5] to chemical pre-patterning in developmental biology
[6].

Despite the simplicity of Turing’s theory, its broad applicability and flexibility pose challenges for biological interpre-
tation. Namely, model selection and parameter identifiability are inherent challenges across all of applied mathematical
modelling [7–9] and we will show that with a minimum freedom in parameter definitions we can generate diametrically
opposite predictions of how patterns can transition.

While Turing systems can replicate many observed patterns [10–12], the underlying model of partial differential
equations and resulting patterning parameter spaces that produce such patterns are often poorly constrained by
biological data [13–16]. This freedom allows reaction-diffusion systems to generate a wide range of behaviours, but
complicates efforts to identify specific biological pathways, or mechanisms.

Recently, we were able to demonstrate that we could build Turing systems with desired linear properties, so that a
pattern could be produced in any desired parameter region [17]. Further, we demonstrated that small variations in
boundary conditions and boundary shape were able to completely change the expected Turing instability bifurcation
structures and the resulting patterns [18, 19]. Thus, Turing systems can be highly sensitive to many factors and, thus,
greatly adaptable to many biological requirements.

In this work, we build upon these developments by constructing a minimal Turing system with desired linear and
nonlinear properties. We demonstrate that the entire system can be defined using four parameters controlling: the
diffusion rate; the steady state; the linear dynamics; and the nonlinear dynamics. This minimal parametrisation
enables us to produce a Turing system with an unbounded patterning parameter space that only produces positive
trajectories. Moreover, using weakly nonlinear analysis, we demonstrate that if we have freedom in any two of the
parameters we are able to account not only for what pattern we would like to see initially bifurcate (spots or stripes),
but also we can specify desired parameter relationships (e.g. increases in one coupled with decreases in another)
that will lead to defined pattern transitions of either spots-to-stripes or stripes-to-spots, leading us to question the
predictability of models that use these observable biological transitions to justify their systems [10, 12].

This work can be compared with that of the BVAM model [20–22], which is a mathematically motivated polynomial
set of kinetics that included terms up to cubic order. The BVAM model has had great success in obtaining patterns
that match a variety of fish skin patterns [16], including ‘isolated’ spot patterns that are outside the normal spot and
stripe Turing patterns that have a fairly consistent wavelength [23]. In contrast to the BVAM work, which investigates
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what a general cubic system can achieve [24], we restrict the number of available parameters and show much of this
complexity can be achieved with fewer degrees of freedom.

II. THEORY

We are looking to create a generic system of reaction-diffusion equations that will not only present a Turing pattern
within a desired parameter region (defined by the linear analysis) but also satisfy certain nonlinear properties, such
as pattern selection, at least in the weakly nonlinear regime. In the following we are going to restrict ourselves to
working with two populations, u and v, interacting on a Euclidean space, Ω, which is either going to be a finite line,
or square (depending on dimension). Further, the system will have zero-flux boundary conditions defined on the
boundary, ∂Ω, and initial conditions defined by noise.

These restrictions ensure that we are using as simple a system as possible. Namely, a Turing system requires at
least two interacting populations [25] but it has been demonstrated that adding more morphogen populations can
greatly increase the complexity of the solutions [26–28]. The random initial conditions ensure that we are not feeding
the system specific unstable wave modes and enforcing a prepattern, whilst the boundary conditions ensure that the
boundaries play a minimal role. By restricting the system’s components and defining as little specificity about the
system as possible we will demonstrate the range of complexity that is generically present. These simplifications also
allow the analysis to be tractable since dependence of the pattern formation of the domain size and boundary conditions
can only be calculated exactly in simple polygonal geometries [19, 29]. Although restrictive we will demonstrate that
we are able to generate all the required complexity within this situation and, thus, more complicated patterns can
easily be generated by providing more specific domain shapes, boundary conditions and initial conditions [18, 30, 31].

Let u(x, t) and v(x, t) be the two interacting morphogen populations that exist for all x ∈ Ω and for all time t > 0.
The evolution of u and v is defined by interaction equations f and g combined with spatial diffusion at rates Du and
Dv, respectively, through

∂u

∂t
= Du∇2u + f(u, v), (1)

∂v

∂t
= Dv∇2v + g(u, v), (2)

where ∇2 is the Laplacian on Ω. Depending on the spatial dimension we are in,

∇2 = ∂2

∂x2 when Ω ∈ R, (3)

∇2 = ∂2

∂x2 + ∂2

∂y2 when Ω ∈ R2, (4)

where x and y are the standard Cartesian coordinates.
For simplicity we assume that Ω is insulated leading to zero-flux boundary conditions,

∂u

∂n
= 0 = ∂v

∂n
on δΩ, (5)

where ∂/∂n is the directional derivative along the outward pointing normal vector, n, defined on δΩ [32]. These
boundary conditions mean that the morphogens are reflected by the boundary and do not pass through, or stick to
δΩ. To complete the system’s definition we need to supply an initial condition, however, this first requires us to define
a Turing instability.

Definition 1 (Turing instability) A system of partial differential equations (PDEs) presents a Turing instability
if there is a uniform spatial steady state that is stable in the absence of diffusion, which can be driven unstable by the
inclusion of diffusion.

In our case the spatially uniform steady state is labelled (us, vs). The initial condition is then assumed to be a
small random perturbation about this point,

(u(x, 0), v(x, 0)) = |(us, vs) + (ηu(x), ηv(x))|, (6)

where ηu(x) and ηv(x) are samples from a uniform random distribution on the interval [−0.1, 0.1]. The absolute value
is to ensure that the initial condition is never negative.
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A. Linear analysis

Under the set up of Section II we can use standard linear analysis [33] to derive the Turing inequalities that must
be satisfied to ensure a Turing instability [5]. Specifically, we use an expansion of the form(

u
v

)
=
(

us

vs

)
+ exp(λt) cos(k · x)

(
ϵu

ϵv

)
, (7)

in the two cases of i) without diffusion, Du = Dv = 0, and ii) with diffusion, Du ̸= 0 ̸= Dv. We aim to derive
conditions under which the sign of the real part of λ is negative in case i), indicating that (us, vs) is stable, and
positive in case ii), indicating that (us, vs) is unstable to spatial perturbations. Further, since Ω is either a line of
length l (Ω = [0, l]) or a square of side length l (Ω = [0, l] × [0, l]) then, to satisfy the zero-flux boundary conditions
on δΩ, we require that k = k = nπ/l, or k = (nπ/l, mπ/l), in one and two dimensions, respectively, where n, m ∈ Z.

Following the standard “Turing analysis” [5] we can derive that a Turing instability occurs if

fu + gv < 0, (8)
fugv − fvgu > 0, (9)
Dvfu + Dugv > 0, (10)
(Dvfu + Dugv)2 − 4DuDv(fugv − gufv) > 0, (11)

∃n > 0 such that k2
− <

(nπ

l

)2
< k2

+ where k2
± = Dvfu + Dugv ±

√
(Dvfu + Dugv)2 − 4DuDv(fugv − gufv)

2DuDv
, (12)

where the subscripts on the f and g functions represent partial derivatives with respect to the subscript and all of
the derivatives are evaluated at the homogeneous steady state. Inequalities (8) and (9) ensure that the homogeneous
steady state is stable in the absence of diffusion. Inequalities (10) and (11) ensure that diffusion can drive the
homogeneous steady state unstable. Inequality (12) ensures that the space is big enough to allow a pattern to form,
which is not too restrictive since as long as k± exist (guaranteed by equations (10) and (11)) we can always find a
domain size large to satisfy inequality (11), thus, we focus on satisfying inequalities (8)-(11).

B. Arbitrary steady state and positive trajectory

We now begin restricting f and g by defining a number of requirements on the system. Previously [17], we
demonstrated that we could produce a Turing bifurcation in any parameter region and we will inherit this requirement.
However, we did not demonstrate that a Turing instability could occur at any defined spatially uniform steady state.
To impose a spatially uniform steady state we require that (us, vs) is solution to f(us, vs) = g(us, vs) = 0. There are
many ways to achieve this, however, one of the simplest ways is to ensure that f and g are polynomials with (us, vs)
as a root,

f = (u − us)f1(u, v) + (v − vs)f2(u, v), (13)
g = (u − us)g1(u, v) + (v − vs)g2(u, v). (14)

In the simplest case we could make the fi and gi constants and, so, the Jacobian (matrix of first order partial
derivatives) of the system at (us, vs) would be

J =
(

fu fv

gu gv

) ∣∣∣∣
(us,vs)

, (15)

=
(

f1 f2
g1 g2

)
.

Hence, through judicious choice of the fi and gi we can satisfy inequalities (8)-(11), which is eminently possible as we
would have 6 parameters, (Du, Dv, f1, f2, g1, g2), to satisfy 4 inequalities. However, without nonlinearities restricting
the growth of the instability the population would simply grow without bound.

Thus, nonlinearities are essential, but unless they are specified carefully [34], these nonlinearities will cause the
nullcline (lines along which f or g are zero) to cross more than once, resulting in more than one steady state.
However, we can use these extra roots and nullclines to ensure that the populations are always positive. Although
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unspecified here, the morphogen populations usually represent physical quantities, e.g. protein concentrations, or
biomass [14, 15, 35, 36], thus we further restrict f and g to ensure that no solution trajectory can become negative.
This is achieved by making the u = 0 and v = 0 axes nullclines,

f = (u − us)uvf1(u, v) + (v − vs)uvf2(u, v), (16)
g = (u − us)uvg1(u, v) + (v − vs)uvg2(u, v). (17)

Note we do not have to provide each kinetic function with a uv term, we could have, for example, made u = 0 a
nullcline of f and v = 0 a nullcline of g. However, in the case where each axis is only the nullcline of one of the
populations then although one population’s dynamics are fixed on an axis the other population is free to grow without
bound. Further we know that this growth must be possible since corollaries to inequalities (8)-(11) prove that one of
the populations must have a positive feedback influence on itself [37]. Should one of the populations become zero the
uv terms in equations (16) and (17) will cause equations (1) and (2) to simplify to diffusion, which ensures that the
solutions of the PDEs will remain positive.

With making the axes nullclines we have introduced two infinite families of steady states, where at least one of the
populations is zero, these will be termed trivial steady states. As the amplitude of the pattern grows, these extra
steady states may influence the appearance of Turing patterns since beyond the initial instability, the patterning
solution may not be well-characterised by the linear analysis about the steady state [38]. However, since Turing
patterns bifurcate continuously from a zero amplitude solution then, at least in the weakly nonlinear parameter
regime, Turing patterns will occur. Figure 1 illustrates a phase plane example of the dynamics of equations (16) and
(17) assuming that the fi and gi are simply constants that satisfy inequalities (8)-(11). We observe that the nontrivial
steady state has a nontrivial basin of attraction and, thus, will support Turing patterns, as long as the parameters
are near their bifurcation values. Moreover although (us, vs) is stable, as desired, the stability of the trivial steady
states depend on the position of the initial condition relative to (us, vs).

FIG. 1. Phase plane of an ODE system with kinetics defined by equations (16) and (17) illustrating four trajectories (black
lines) starting from four different initial conditions (black circles). The light yellow region illustrates the basin of attraction of
nontrivial steady state, i.e. all the initial conditions that will lead to a trajectory terminating at (1,1). The light blue region
represents initial conditions that lead to a trajectory which terminates on an axis. Parameters are (f1, f2, g1, g2, us, vs) =
(1, 1, −3, −2, 1, 1).

Another feature that has been introduced through making the axes nullclines is that system equations (16) and
(17) has no external source, or sink, as there is no independent constant term in the kinetics that does not multiply
a u, or v. This implies that the system can pattern in complete isolation, unlike current experimental systems that
rely on continuously feeding reagents into the reaction site [39–41].

If we now scale the fi and gi functions such that fi 7→ fi/(usvs) and gi 7→ gi/(usvs) the system becomes

f = (u − us) u

us

v

vs
f1(u, v) + (v − vs) u

us

v

vs
f2(u, v), (18)

g = (u − us) u

us

v

vs
g1(u, v) + (v − vs) u

us

v

vs
g2(u, v). (19)

and, so, the Jacobian is, once again

J =
(

fu fv

gu gv

) ∣∣∣∣
(us,vs)

=
(

f1 f2
g1 g2

) ∣∣∣∣
(us,vs)

.
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Thus, as long as we choose the fi(us, vs) and gi(us, vs) to satisfy inequalities (8)-(11), any (us, vs) can undergo a
Turing instability using kinetics (18) and (19). At this point we drop the dependence of fi and gi on (u, v) as it is
not required to achieve the current goal. Moreover, we assume that none of these kinetic variables are zero.

We demonstrate the ability of equations (18) and (19) to produce Turing patterns around arbitrary steady states
in Figure 2. In Figure 2(a) we choose the patterns to occur around the mathematical constants (π, e), whereas in
Figure 2(b) we demonstrate that the chosen steady states can be chosen arbitrarily separated as (us, vs) = (0.1, 100).
In each figure the solid line represents the spatial distribution of morphogen and form a heterogeneous pattern around
its accompanying dashed steady state. Although the patterns were expected the variation in pattern amplitude may
not be. Specifically, the amplitude of the patterns in Figure 2(a) are much greater than those in Figure 2(b) even
though the steady state of v in Figure 2(b) is much larger than that of Figure 2(a).

Intuitively, the reason for both morphogens in Figure 2(b) to have small amplitude patterns is due to the kinetics
having nullclines along u = 0 and v = 0. Specifically, the u morphogen has a small steady state (i.e. us = 0.1)
and since the pattern amplitude is bounded below the difference between the steady state and the minimum must be
small. Due to the relative symmetry of the patterns in the weakly nonlinear parameter region then if the pattern’s
decrease away from the steady state is restricted then its growth will also be restricted, leading to a small amplitude
solution for u. Moreover, if the range of u is small then its influence on v must also be small, meaning any variation in
v must be small (and vice versa) (unless the kinetics are specifically chosen to cause a jump in the order of influence).

The influence of us as a control parameter of the amplitude can be observed in Figure 2(c), where we have simulated
the system with increasing values of u0. Note that the u population plot is on a logarithmic axis, thus, not only is us

increasing but the amplitude of the pattern is as well. Comparing the u and v population plots of Figure 2(c) we see
that although the v population’s steady state is not altered its amplitude increases as us does. In fact that amplitude
of the v population is so small in the cases of us = 0.1 and 1 that the lines practically lie on top of vs = 100 (see
Figure 2(b)).

(a) (b)

(c)

FIG. 2. Simulations of equations (18) and (19) with (a) (us, vs) = (π, e), (b) (us, vs) = (0.1, 100) and (c) us = 0.1, 1, 10, 100
and vs = 100, see legend in each subfigure for further details. Other parameters, (f1, f2, g1, g2) = (1, 1, −3, −2), are the same
across all cases.

Having shown that we can produce Turing patterns around any steady state, we can simply map (us, vs) to (1,1)
through scaling u = usU and v = vsV . Further, to ensure that the Jacobian remains as in equation (15) we must also
rescale the fi and gi as well,

f1 7→ f1

us
, f2 7→ f2

vs
, g1 7→ g1

us
, g2 7→ g2

vs
,
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to produce

f = (U − 1)UV f1 + (V − 1)UV f2, (20)
g = (U − 1)UV g1 + (V − 1)UV g2. (21)

Although equations (20) and (21) are a useful form as it explicitly allows us to control the linear bifurcation without
worrying about the steady states, by choosing the nondimensionalisation of equations (18) and (19) in a different way
we can reduce the number of free parameters in the ODE system from six, (Du, Dv, f1, f2, g1, g2), to three.

To make progress we must assume a sign structure for the Jacobian. Up to symmetries and renaming of the
variables, inequalities (8) and (11) require that the Jacobian has one of two specific sign structures [42],

sign(J) =
(

+ +
− −

)
or
(

+ −
+ −

)
.

The two sign structures determine whether the peaks and troughs of u and v are out of phase, or in phase, respectively
[5]. In the following we assume that our kinetics have the former sign structure, so fi > 0 and gi < 0. The results
that follow are equally true for the second sign structure, although appropriate minus signs will have to be tracked.

Letting u = vsf2/f1U, v = vsV, t = T/f1 and introducing α = vsf2/(usf1), G1 = f2|g1|/f2
1 , G2 = |g2|f2vs/(usf2

1 )
equations (18) and (19) can be rewritten in the form

dU

dT
= (Uα − 1)UV + α(V − 1)UV, (22)

dV

dT
= −(Uα − 1)UV G1 − α(V − 1)UV G2. (23)

Although not as visually ‘clean’ as equations (20) and (21), this form has the added advantage that the Jacobian
simplifies to

J =
(

1 1
−G1 −G2

)
. (24)

Further, nondimensionalising the spatial coordinate through x = L
√

Du/f1X and letting D = Du/Dv we produce
the system

∂U

∂T
= 1

L2 ∇2
XU + (Uα − 1)UV + α(V − 1)UV, (25)

∂V

∂T
= D

L2 ∇2
XV − (Uα − 1)UV G1 − α(V − 1)UV G2. (26)

with zero-flux boundary conditions on the line [0, 1], or square [0, 1] × [0, 1] through the identification that L =
l/
√

Du/f1. Since we will be considering the spatial scale, L (or equivalently l), as the bifurcation parameter it is also
easier to work with the spatially nondimensionalised system since the nondimensionalisation process establishes the
bifurcation parameter as a multiplier of the Laplacian, explicitly, the factors of 1/L2 in equations (25) and (26).

Thus, any solution of equations (1) and (2) with kinetics (16)-(17) (which allow any point to be made Turing
unstable) can be cast into the form of equations (25) and (26), where the Turing inequalities are simplified to

G1 > G2 > 1, (27)

D >
(√

G1 − G2 +
√

G1

)2
. (28)

A corollary to inequalities (27) and (28) is D > G1 > G2 > 1.
The three-dimensional parameter region satisfying inequalities (27) and (28) is illustrated in Figure 3. We observe

that, although for any fixed D the (G1, G2) parameter region is finite, the patterning parameter space is not bounded in
the direction of increasing D. From a mathematical point of view this unbounded property has allowed consideration
of the limits of Dv → 0 [43, 44], providing analytical progress on the existence and stability of asymmetric patterns,
whose amplitude varies across the domain.

From a biological perspective, although we can say that the diffusion rates, Du and Dv, cannot be equal and,
moreover, Du > Dv, we must appeal to a specific application to provide an upper bound on D and, thus, restrict
the (G1, G2) space. Thus, although we remove the criticism of Turing system’s having highly restrictive parameter
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FIG. 3. Illustrating the Turing patterning parameter region fulfilling inequalities (27) and (28).

regions that may be too small to be biologically pertinent [45] we emphasise that biological knowledge is extremely
important in bounding the mathematical possibilities.

Further, it may be expected that in many biological applications that D ≈ 1 because the modelled morphogens
usually have similar properties, meaning that we would expect their diffusion rates to be similar. Although patterns
can be made for D ≳ 1, fine-tuning would be required to choose G1 and G2 appropriately. More generally it has
been shown that if more active species are added then buffering agents can act to slow down one of the morphogens,
resulting in larger values of D [28, 46]. Once again such abilities highlight the importance of knowing all the biological
components at play, since any unmodelled, or unknown agent is able to generalise the patterning conditions.

As mentioned previously, we also need the domain to be ‘big enough’. Using inequality (12) the minimum domain
size which can support a patterning bifurcation can be shown to be

Lc = π
√

2D√
D − G2 +

√
(D − G2)2 − 4D(G1 − G2)

=
π
√

D − G2 −
√

(D − G2)2 − 4D(G1 − G2)√
2(G1 − G2)

, (29)

where the two provided forms of Lc are equivalent, but useful in different contexts. Further, we note that Lc does
not depend on the steady state controlling parameter, α. Equally, the patterning inequalities (27) and (28) do not
depend on α, thus, we have extended our previous result that we can use level set curves to parametrise G1 and G2
appropriately and satisfy the Turing conditions in any desired parameter region with any desired steady state [17].
Moreover, the features of parameter space and steady state can be independently tuned.

III. WEAKLY NONLINEAR ANALYSIS

Here, we will derive and use weakly nonlinear analysis in one spatial dimension. As all one-dimensional patterns are
up of peaks and troughs we only have to consider a scalar wave mode, k, defining the possible unstable wavelengths
(see inequality (12)). In Section IV we extend the theory to consider two spatial dimensions. Although the algebra is
more involved in two dimension, much of the theory is the same [19, 47]. However, we have to take into account that
patterns can destabilise in multiple directions leading to the extension of the wave mode to be a vector, k.

Assuming that patterned solutions bifurcate continuously at L = Lc from the homogeneous steady state, (Us, Vs) =
(1/α, 1), we can conduct a weakly nonlinear stability analysis on equations (25) and (26) around the uniform steady
state that is valid for domain lengths close to Lc [18, 48–50]. Further, we assume that near Lc the full system’s
solution, U = (U, V ), evolves as a slowly varying function of time [51]. These assumptions allow us to expand time,
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space and the solution in terms of a small parameter, 0 < ϵ ≪ 1,

L = Lc + ϵL1 + ϵ2L2 + . . . , (30)
∂

∂T
= ϵ

∂

∂T1
+ ϵ2 ∂

∂T2
+ . . . , (31)

U(x, T1, T2) =
(

Us

Vs

)
+ ϵU1(x, T1, T2) + ϵ2U2(x, T1, T2) + . . . , (32)

where

Ui =
(

Ui

Vi

)
.

As ϵ → 0 convergence of expansions (30)-(32) is assured because we using simple domain geometries, boundary
conditions and smooth kinetics. However, we cannot specify the maximum range of ϵ over which the approximation
remains valid [51, 52].

Using f(U, V ) and g(U, V ) to stand for the kinetics in equations (25) and (26) we can substitute equations (30)-(32)
into system equations (25) and (26) and collect the different orders of ϵ. Here, we only consider the expansions up to
third order in ϵ,

O(ϵ) LU1 =0, (33)

O(ϵ2) LU2 =∂U1

∂T1
+ 2L1

L3
c

D
∂2U1

∂X2 − U2
1

2

(
fUU

gV V

)
− U1V1

(
fUV

gUV

)
− V 2

1
2

(
fV V

gV V

)
, (34)

O(ϵ3) LU3 =∂U1

∂T2
+ ∂U2

∂T1
−
(

3L2
1 − 2L2Lc

Lc
4

)
D

∂2U1

∂X2 + 2L1

L3
c

D
∂2U2

∂X2

−
(

fUU U1 + fUV V1 fUV U1 + fV V V1
gUU U1 + gUV V1 gUV U1 + gV V V1

)
U2 − 1

6

(
fUUU U3

1 + fV V V V 3
1

gUUU U3
1 + gV V V V 3

1

)
− U1V1

2

(
fUUV fUV V

gUUV gUV V

)
U1,

(35)

where

D =
(

1 0
0 D

)
and L is a linear operator of the form

L = 1
L2

c

D
∂2

∂X2 + J . (36)

where J is the Jacobian, as defined in equation (15). In principle, the approximation cascade could be extended to
any level, although approximation accuracy is not guaranteed to increase [53].

Equation (33) is essentially a compact form of the linear analysis and shows that L has a nontrivial kernel spanned
by scalar multiples of

U1 = a(t1, t2)
(

Λ
1

)
cos (πx) , (37)

where Λ = L2
c/(π2 − L2

c) and the amplitude function, a, is to be determined by a higher order solvability criterion
and we know that k = π because we are considering the first bifurcation. Since L has a nontrivial kernel then so will
LT . Explicitly,

LT = 1
L2

c

D
∂2

∂x2 +
(

fu gu

fv gv

)
. (38)

and the kernel of LT is spanned by

η =
(

η
1

)
cos(πx), (39)
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where η = G1L2
c/(π2−L2

c). These basis elements are required to ensure that the equations satisfy a consistency relation
[54], namely, for Ly = z to have a solution, z must be orthogonal to the basis of Ker

(
LT
)

. Enforcing this orthogo-
nality then provides the solvability criterion. The algebraic manipulations, although simple, are arduous. We provide
Maple workbooks [55] and Matlab code [56] at https://github.com/ThomasEWoolley/Nonlinear_properties for
reference.

By defining L1 = 0 and U1 to be a function of T2 only (independent of T1) then the right hand side of equation
(34) is naturally orthogonal to equation (39), because the nonlinear terms on the right-hand side of equation (34),
would all be functions of cos2(πx) [57, 58], which is orthogonal to cos(πx) under the inner product defined by

⟨a(x), b(x)⟩ =
∫ 1

0
a(x) · b(x) dx. (40)

Note that setting L1 = 0 and U1(T2) is a sufficient approach to this problem, rather than necessary. Equation (34)
will, thus, have a family of solutions of the form

U2 =
(

cu0
cv0

)
+
(

cu2
cv2

)
cos(2πx) + α1U1, (41)

where α1 is arbitrary (since U1 is in the kernel of L) and set to zero for convenience. Before considering equation (35)
we must derive the four unknowns, cu0, cv0, cu2 and cv2 through substitution of equations (37) and (41) into equation
(34).

Substituting the derived values of Us, U1 and U2 into equation (35) and demanding that ⟨η, LU3⟩ = 0 we produce
the solvability equation for a(T2),

da

dT2
= p1L2a + p2a3, (42)

which is the canonical form of a pitchfork bifurcation. We can use linear analysis directly on equation (42) to gain
more information about the possible amplitudes. The steady states are

as0 = 0 and as± = ±

√
−p1L2

p2
.

illustrating that the existence and stability of the steady states depend on the signs of p1 and p2. The four bifurcation
possibilities are illustrated in Figure 4.

By definition of the Turing instability the homogeneous steady state is stable for L < Lc, so, we must be in the
case that p1 > 0. Although true, it is not obvious from the explicit form of p1. In Appendix A 1 we demonstrate
algebraically that p1 > 0 is guaranteed within the Turing regime defined by inequalities (27) and (28).

Since p1 > 0 the only way the bifurcation structure can change is if p2 changes sign. However, in Appendix A 2, we
show that under the kinetics of equations (25) and (26) p2 is always negative and, thus, for the Turing bifurcation to
become a subcritical bifurcation additional nonlinearities are required.

The supercritical pitchfork bifurcation of equations (25) and (26) is shown in Figure 5 alongside the approximate
amplitudes derived from the weakly nonlinear analysis behind equation (42). As expected nontrivial patterns only
exist for L > Lc and the closer L and Lc are the better the better the weakly nonlinear approximation becomes.

A. Tuning the form of the Turing bifurcation

In Section III we demonstrated that equations (25) and (26) could only produce supercritical Turing bifurcations.
To enable the system to produce subcritical bifurcations we extend the system to include a higher nonlinearity. We
do this to ensure that the introduction of extra term does not influence the steady states, nor the linear analysis.

By including a new parameter we increase the complexity of the system. To reduce the number of parameter we
consider a single plane within the Turing patterning parameter region of Figure 3. Specifically, if we fix

G1 = D/4 + G2/2, (43)

https://github.com/ThomasEWoolley/Nonlinear_properties
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FIG. 4. Illustrating the stability and existence of the steady states of equation (42). The central axis splits the parameter
space up according to the signs of (p1, p2), which then alter the bifurcation behaviour of equation (42). The dashed curves are
the unstable amplitudes and the solid curves are the stable amplitudes.

FIG. 5. Illustrating the pitchfork bifurcation underlying the Turing patterning instability. The grey lines are steady state
amplitudes of equations (25) and (26), extracted using pde2path [59–62], the thick and thin lines are stable and unstable
solutions, respectively. The blue dashed line represents the stable state amplitudes of equation (42) for L > lc. Parameters are
(α, D, G1, G2) = (1, 10, 3, 2).

we remove a degree of freedom and, further, inequality (28) is guaranteed to be satisfied, leaving

1 < G2 < D/2 (44)

as the only requirements that need to be satisfied to generate a Turing instability (see Figure 6). Note, the parameters
are nondimensional, thus, we do not need to worry about incompatible units. Moreover, although we have now reduced
the dimensionality of the Turing patterning parameter space, it maintains the critical feature that it is unbounded in
D, (see Figure 6).

Although seemingly adhoc, equation (43) does have reasoning behind it beyond providing a simpler Turing space.
Within the fully explicit amplitude equation, one of the reoccurring factors (see equation (29)) that cannot be simplified
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FIG. 6. Illustrating the two-dimensional Turing patterning parameter region fulfilling inequality (44) within the original
three-dimensional patterning parameter space defined by inequalities (27) and (28).

is √
(D − G2)2 − 4D(G1 − G2) =

√
D2 + 2(G2 − 2G1)D + G2

2,

By using equation (43) the square root term simplifies to
√

G2
2 = G2 since G2 > 0, which, in turn, reduces the number

of individual terms in the explicit form of equation (42) from over a hundred to

da

dT2
= L2

√
2G2a

π (D + 2G2 − 1) −
(
20α2 − 11α + 5

)
G2a3

6 (D + 2G2 − 1) . (45)

Hence, we continue our investigation using a system of the form

∂U

∂T
= ∇2

XU + (Uα − 1)UV + α(V − 1)UV, (46)

∂V

∂T
= D∇2

XV − (Uα − 1)UV
(D + 2G2)

4 − α(V − 1)UV G2 + α(V − 1)2UV G3, (47)

where we note that G3 can have any real value, positive, negative, or zero. The amplitude equation that can be
derived from equations (46) and (47) is

da

dT2
= G2

√
2

π (D + 2G2 − 1)L2a

+
(

(28G2 + 34D) G2
3

3 (3D + 2G2) (D − 2G2) (D + 2G2 − 1) −
G2
(
20α2 − 11α + 5

)
6(D + 2G2 − 1)

+
(
(−18α + 9) D2 + (62α − 46) G2D + (44α − 40) G2

2
)

G3

6 (3D + 2G2) (D − 2G2) (D + 2G2 − 1)

)
a3, (48)

which matches equation (45) when G3 = 0.
As before, we define the coefficients of L2a and a3 to be p1 and p2, respectively. From Section III, we know that

the coefficient of p1 is positive since it is independent of G3. Further, since p2 is a positive quadratic in G3 then for
some G3 ‘large enough’ (positive, or negative) this coefficient must be positive, however, we also know that when
G3 = 0 then p2 is negative. Hence, for any (α, G2, D) there must be values of G3, which allow p2 to take either sign.
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Specifically, for G3 ∈ (G3−, G3+) where

G3± =9 (2α − 1) D2 + 2 (−31α + 23) G2D + 2 (−22α + 20) G2
2

112G2 + 136D

± 1
112G2 + 136D

[
324

(
α − 1

2

)2
D4 +

(
14088α2 − 6204α + 3252

)
G2D3

−6060G2
2

(
α2 − 92

505α + 57
505

)
D2 − 34224G3

2

(
α2 − 267

713α + 130
713

)
D − 15984G4

2

(
α2 − 44

111α + 20
111

)]1/2

(49)

the bifurcation will be a supercritical pitchfork bifurcation (p1 > 0 and p2 < 0 in Figure 4), and a subcritical pitchfork
(p1 > 0 and p2 > 0 in Figure 4) otherwise. See Figure 7(a), which illustrates the delineation of the patterning space
by G3±.

We observe that the G3± surfaces produce a cone that becomes wider as D increases, whereby parameters chosen
inside the cone lead to supercritical pitchfork bifurcations, whilst parameters outside of the cone lead to subcritical
pitchfork bifurcations. This is confirmed by Figure 7(b) where we have extracted the bifurcation structure of equations
(46) and (47) for G3 = −5, −4, . . . , 4, 5 and we observe that the bifurcations do indeed have a subcritical bifurcation
when G3 ≤ 3, or G3 ≥ 4. It should also be noted that as G3 increases the Turing patterns themselves disappear.
This can be seen as the curve of steady state amplitudes forms a closed loop behind Lc. This occurs because as the
amplitudes grow the higher order term, (V − 1)2 in equation (47), being positive, pushes the spatial solution away
from the Turing unstable homogeneous state towards the trivial state of (Ū , 0), or (0, V̄ ), where the values Ū and V̄
depend on the initial conditions akin to Figure 1. However, no such instability appears when G3 < 0 because the
nonlinearity will lead to population reduction if it moves too far from the homogeneous steady state.

(a) (b)

FIG. 7. Illustrating the subcritical and supercritical pitchfork bifurcations possible as G3 varies. (a) parameter regions for
equations (46) and (47), when α = 1. The Turing patterning parameter region is sandwiched between the planes G2 > 1 (not
shown) and 2G2 < D (grey plane). The two coloured curved planes represent G3± from equation (49). The colour of the
G3± surfaces represent their values as given on the colour axis. (b) Bifurcation structure of equations (46) and (47), when
α = 1, D = 10, G2 = 2 with G3 = −5, −4, . . . , 4, 5. The thick and thin lines represent the stable and unstable amplitudes,
respectively. The colours are to aid discrimination between the curves.

IV. TWO DIMENSIONS

Large two-dimensional domain will have many patterning modes are available [47, 58] providing the Turing pattern’s
signature sensitivity to initial conditions [2]. However, since we are considering the first patterning bifurcation on a
square we are able to restrict the number patterning modes and their superpositions. As such, due to the symmetry
of the square, the nonlinear substitution ansatz will be of the form

u = us + ϵ (a(T2) cos(nπx) + b(T2) cos(mπy)) , (50)
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where, n and m would normally be general integers, so as to satisfy the boundary conditions, but in our case n and
m are restricted to either 0 or 1. Discounting symmetries there are four possible outcomes:

1. n = 0 = m, in which case the steady state perturbation becomes homogeneous and we have already considered
the stability of the homogeneous steady state with respect to homogeneous perturbations in Section II;

2. either n = 0 or m = 0, but not both. In this case the perturbation becomes spatially homogeneous in one
direction. Thus, we are considering the ability of the system to generate stripe patterns and the analysis
effectively breaks down to the one-dimensional case.

3. n = 1 = m, in which case we are considering the superposition of two perpendicular stripe solutions, which
produce a spot solution.

Proceeding with standard two-dimensional weakly nonlinear analysis with ansatz (50) [19, 63] we find that the
amplitudes are governed by the coupled ODEs

da

dT2
= p1L2a + p2a3 + p3b2a, (51)

db

dT2
= p1L2b + p2b3 + p3a2b, (52)

where p1 and p2 are as in Section III A and

p3 = 4G2
3

(D + 2G2 − 1) (D − 2G2)

+
((

6D2 + 6DG2 − 28G2
2
)

α − 3D2 − 2DG2 + 8G2
2

(D + 2G2 − 1) (D2 − 4G2
2)

)
G3

+ G2
4α2 − 7α + 1
D + 2G2 − 1 . (53)

We note that through setting G3 = 0 and G2 = 1 we can quickly demonstrate that p3 can take either sign by
appropriately choosing α.

We can now approach equations (51) and (52) through standard linear stability methods to understand the possible
amplitude bifurcation structures. We find that there are three distinct families of steady states and accompanying
eigenvalues, λ, that determine their stability:

1. (0, 0), which is the spatially uniform steady states and λ0 = p1L2. As in Section II and as required by the
Turing instability (0,0) is stable for L < Lc (L2 < 0) and unstable for L > Lc (L2 > 0);

2. (a|, 0), where a| =
√

−p1L2/p2 is the amplitude of the stripe pattern and λ|1 = −2p1L2, λ|2 = p1L2(p2 −p3)/p2.
These match the results derived in Section III;

3. (a•, a•), where a• =
√

−p1L2/(p2 + p3) is the amplitude of the spot pattern and λ•1 = −2p1L2, λ•2 = p1L2(p3 −
p2)/(p3 + p2)

where we have removed sign symmetries (if as is a steady state then so is −as) and variable symmetry (if as is a
steady state then so is bs = ±as).

Since p1 > 0 changes in bifurcation structure a| and a• only depend on the signs of p2, p3, p2 + p3 and p2 − p3,
specifically:

• a| has a supercritical bifurcation whenever p2 < 0 and a subcritical bifurcation when p2 > 0;

• a• has a supercritical bifurcation whenever p2 + p3 < 0 and a subcritical bifurcation when p2 + p3 > 0;

Since λ|1 = λ•1 = −2p1L2 then in both cases L2 > 0 is required for the states to be stable. This means that only
supercritical bifurcations can be stable. For a| to exist we require that p2 < 0, whilst stability requires λ|2 < 0
meaning p2 − p3 > 0. For a• to exist we need p2 + p3 < 0, whilst stability requires λ•2 < 0 meaning p2 − p3 < 0.
From these last two results concerning λ|2 and λ•2 we recover the known result that spots and stripes cannot both
have stable branches stemming from the bifurcation point [63].

We illustrate the possible bifurcation structures in Figure 8, where we observe that there are fives possible stereo-
typical structures. Notably, bifurcation structures that give rise to stable trajectories (Regions 3 and 4) make up less
than half of the (p2, p3) space.
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(a)

FIG. 8. Illustrating the bifurcation structures of equations (51) and (52) in the different parts of the (p2, p3) plane. In each
sector a schematic diagram of the bifurcation branches is shown. The blue and red curves illustrate the a| and a• amplitudes,
respectively and the solid and dashed line styles represent stable and unstable steady states, respectively. Note that the relative
amplitudes between the red and blue curves are simply for illustrative purposes.

Although the (p2, p3) graph is the most general way of seeing the possible bifurcation structures of equations (51)
and (52) this does not mean all are possible in a given Turing system. Using the current system of equations (46)
and (47), we illustrate in Figure 9(a) the existence of Regions 1-5 in the (D, G2, G3) space having fixed α. Figure 9
can be compared with Figure 7(a) where we see that the delineation between the super- and sub-critical bifurcations
of the one-dimensional system matches the volume that would encapsulate Regions 3, 4 and 5, or p2 < 0, which are
predicted to lead to supercritical bifurcations for the linear patterns.

Although Figure 9(a) provides us with an understanding of the relative positions of the Regions we are unable to
see the structure of the Regions due to Figure 9(a) not being transparent. Thus, we provide shaded 3D visualisations
of the boundary of each section in Figure 9(b), where we can see that the each Region has a cone shape in that their
cross sections are fairly constant, but they get smaller as D reduces.

In further aid of understanding the mapping between the (D, G2, G3) and (p2, p3) spaces we use figures 10(a)-10(c)
to illustrate the influence of mapping horizontal and vertical lines from the (D, G2, G3) space to the (p2, p3) space.
Critically, we see that the lines becomes more warped as G2 → 5 (the boundary of the Turing patterning parameter
space). For example, if we consider the horizontal lines of Figure 10(c) only a small part of the horizontal lines lie
within Region 1, however, if we consider the mapped lines in Figure 10(d) the curves are distorted such that most of
their arclength lies in Region 1, meaning that the values of (p2, p3) become more sensitive to changes in the values of
(G2, G3) for G2 ≈ 5.

To illustrate the success of the maps we now numerically extract the bifurcation structure across 5 points, one for
each Region. The points are chosen along the line G2 = 2 and can be seen in the (G2, G3) and (p2, p3) planes, figures
10(e) and 10(f), respectively. Notably, each point is labelled with the corresponding subfigure letter.

Clearly, figures 10(g)-10(k) match the derived nonlinear structures in Figure 8, even if only within the weakly
nonlinear regime close to Lc =

√
2π ≈ 4.4. For example, the parameters for Figure 10(g), (G2, G3) = (2, −5), place

system (46)-(47) in Region 1 meaning that both the line and spot pattern solutions should bifurcate as a subcritical
pitchfork and both structures should be unstable. Correspondingly, both the red and blue lines bifurcate into the
L < Lc region and the branches are both unstable. However, the solutions contrast in that the spot solution branch
(red line) is never stable and is fully contained within the L < Lc region, whereas the line solution branch curves back
on itself to have a nontrivial stable region for 4.33 ≲ L ≲ 4.65. Thus, we see that the although the analysis is correct
near to Lc, the strongly nonlinear regime provides stable pattern solutions that are outside of our understanding and
can only be reliably understood through simulation.

Similarly, we are able to reproduce the weakly nonlinear results from Figure 8 in Figure 10(h). Namely, both
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(a)

(b)

FIG. 9. Visualising the mapping between the points of the (D, G2, G3) space and the (p2, p3) space using the relationships
from equations (48) and (53) with α = 1. (a) shows how all of the Regions fit together, whilst (b) illustrates the bounding
surfaces of each region allowing the reader a better understanding of each Region’s transformed shape.The colour of each Region
is consistent across all figures referencing them.

solutions bifurcate with unstable branches, but the line solution have a subcritical bifurcation and the spot solution
have a supercritical bifurcation. In the nonlinear regime the results are once again changed as both branches curve to
have stable solutions in the L > Lc region. Thus, both line and spot patterns are stable for a domain of length L ≈ 5.
From the chosen parameters, this is the only simulation to illustrate both solutions being simultaneously stable. This
is not to say that the other regions could not also potentially support multiple solutions, but these would require a
simulation-driven approach to find.

Figures 10(i) (parameters from Region 3) and 10(j) (parameters from Region 4) are perhaps the most useful results
as they contain the only branches that bifurcate in a stable manner. Thus, at least close to Lc, we can guarantee
which pattern will appear. All branches bifurcate supercritically, but only the line solution is stable in Region 3
(Figure 10(i)) and only the spot solution is stable in Region 4 (Figure 10(j)). This is in contrast to all other Regions
(figures 10(g), 10(h) and 10(k)) where although stable branches might exist they are not contained within the weakly
nonlinear expansion region and, thus, we would need simulation to find the solutions and their stability.

Considering the shape and boundaries of the different solutions in figures 9 and 10 we can see that the easiest way
to change between the bifurcation structures is to vary G3 from negative to positive as you will be able to cross all
Regions (see figures 10(a) and 10(b)). Moreover, due to the nonmonotonic nature of the boundaries of the Regions,
varying G2 can also lead to changing bifurcation structure, but in a nonlinear way.

For example, suppose we chose a set of (G2, G3) parameter values in Region 3 near the minimum point of the red
curve (p2 = 0) in Figure 10(c). Increasing, or decreasing G2 would cause the parameters to move into Region 2.
Similarly, if we were to choose (G2, G3) parameter values near the maximum of the green curve in Region 4 then
increasing or decreasing G2 would lead to a transition into Region 5 (see figures 10(c) and 10(d)).

However, as discussed, it is the transitions between Regions 3 and 4 that are perhaps the most useful to understand
because it is only these pattern transitions that we can accurately predict. Critically, it is the ability to transition
between spots and stripes that is often used to justify a particular set of kinetics.

Unfortunately the boundary between Regions 3 and 4 (black line, p3 = p2) is monotonic, thus, changing only one
parameter can only ever lead to one form of bifurcation transition. For example, a line-to-spot transition occurs from
Region 3 to 4 through increasing G2, or G3. However, If we have the freedom to alter both then we can transition
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(a) (b) (c) (d)

(e) (f)

(g) (h) (i) (j) (k)

FIG. 10. Visualising the mapping of vertical and horizontal lines between (G2, G3) space and the (p2, p3) space using the
relationships from equations (48) and (53) with α = 1 and D = 10. The colours define the regions as in figures 8 and 9 and
bounding lines are defined in the legend of (a). The vertical and horizontal lines in (a) and (c) match those in (b) and (d),
respectively. The colour gradient along the lines also match allowing us to visualise how the arclength is distorted between the
two spaces. In (e) and (f) we illustrate 5 points, (G2, G3) = (2, −5), (2, −3), (2, −1), (2, 1), (2, 2), in the (G2, G3) and (p2, p3)
planes, respectively, that are then used in the bifurcation simulations of (g)-(k). Each of the points in (e) and (f) are labelled
with the accompanying subfigure labels. For (g)-(k) the blue line tracks the linear solution amplitudes, a|, and the red line
tracks the spot solution amplitude, a•. The thick and thin lines represent the stable and unstable solutions, respectively.
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between the regions in either direction through judicious increases and decreases of the variables.
For example, if we start in Region 4 and increase G2 and simultaneously decrease G3 it is possible to transition

into Region 3. Alternatively, if we start in Region 3 and increase G2 whilst increasing G3 simultaneously we will
transition for Region 3 to 4. Thus, a stripe-to-spot transition, or a spot-to-stripe transition can both be observed
under an increase in G2, as long as we have freedom in G3.

The same can be seen to be true if we were to decrease G2 instead. Once again, we use the freedom in G3 to
drive the desired pattern transition, whether it is spot-to-stripe, or stripe to spot. Hence, we can transition between
Regions 3 and 4 in any direction we like, with increasing, or decreasing G2.

We can achieve the same results if we were to swap the variables. However, the results would be more sensitive
to changes in G3, as there are certain values of G3 that restrict which regions we can enter regardless of whether we
increase of decrease G2 (see Figure 9(a)).

Finally, we consider the influence of α on the bifurcation structure. Intuitively, since α primarily controls the
steady states we might not expect α to change much about the structure of the Regions from Figure 9(a), which are
defined by the nonlinear aspects of the kinetics. However, as we see in Figure 11, changes in α can completely flip the
structure of the Regions. Whereas previously we have been using α = 1 and Regions 1-5 lie on top of one another,
with the Region number increasing as G3 increases, the opposite is true when for α = 0.2, where the Region number
increases as G3 decreases. From simulations beyond α = 1 the structure of the Regions stay the same as in the case
of α = 1, the Regions just get larger.

FIG. 11. Visualising the influence of varying the steady state parameter, α (noted above each subplot), on the (D, G2, G3)
space using the relationships from equations (48) and (53). The colour of each Region matches is given in the legend.

Considering Regions 3 and 4 as being the most useful, we observe that as α increases from 0.2 to 0.8 Region 3
increases in size and Region 4 shrinks from below Region 3 to appear above Region 3. Hence, we see that if there is
any flexibility in any two of the parameters of D, α, G2 or G3 we could build relationships that would allow us to
move between Regions 3 and 4 in any desired manner.

V. CONCLUSION

We have created a Turing patterning reaction-diffusion system that has an infinite patterning parameter space and
is guaranteed to generate positive solutions, assuming positive initial conditions. Moreover, we have demonstrated
that the patterning parameter space and final pattern form can be fully defined by just four parameters: the movement
rate, D; the steady state, α; the linear dynamics, G2; and the nonlinear dynamics, G3. Furthermore, when there is
freedom in any two of these parameters, families of relationships between them enable the generation of any desired
two-dimensional pattern transition, whether from spots to stripes or stripes to spots. Identifying such transitions in
data and comparing them to model outcomes has long been a post-hoc justification for kinetic choice.

Our findings highlight that qualitative pattern features and transitions alone do not sufficiently constrain reaction-
diffusion systems. This flexibility, while a strength in suggesting Turing patterns are more plausible, or likely, than
previously thought, undermines their interpretability and emphasises the need for stronger links to biological pathways
and mechanisms.

The variability in biological data used to constrain the model must also be considered. For instance, steady state
protein values are often assumed to be known in experiments. However, as shown in Figure 11, small changes in α
(representing the ratio of steady states) can completely alter the bifurcation transition structures. Thus, even minor
variability in this ratio could mean the difference between kinetic changes resulting in a spot-to-stripe transition versus
a stripe-to-spot transition.
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A primary limitation of this work is that the results are confined to the weakly nonlinear regime and are valid only
for the first bifurcation. While this approach is useful for identifying promising parameter spaces and demonstrating
the feasibility of particular results, understanding solution patterns in the strongly nonlinear regime, where multiple
wave modes interact and form superpositions, remains a significant challenge. Exploring Turing systems in such
nonlinear regimes is currently better served by rapid simulations and parameter sweeps, rather than adhoc theory.

Note, we are not advocating for a wholesale shift towards models that prioritise biological realism at the expense of
generality. Phenomenological models serve as valuable testing grounds, enabling rapid hypothesis generation, assessing
the consistency of current knowledge, and offering broad theories of biological understanding. For example, Figure
7(a) illustrates that the subcritical pitchfork bifurcation parameter space is larger than the supercritical bifurcation
parameter space. Thus, theoretically, subcritical pitchforks could be more generic than supercritical ones. This is
potentially a biologically applicable insight since subcritical bifurcations expand the regions in which patterning can
occur, enhancing the plausibility of Turing patterns in biological systems by demonstrating that they occupy larger
parameter spaces than previously thought [45].

However, the ability to rapidly generate hypotheses using model components that lack full justification introduces
the risk of developing alternative, equally plausible models that yield contradictory predictions. Proving the impos-
sibility of such alternative results is exceedingly difficult, given the infinite number of potential models.

John von Neumann’s famous quip, “With four parameters I can fit an elephant, and with five I can make him wiggle
his trunk” [64], highlights how easily complex models can produce complex results. In this work, we have shown that
while we may not be able to fit an elephant with four parameters, we can certainly fit zebras, leopards, and all
transitions between them. This flexibility highlights a critical responsibility of applied mathematicians: as models
grow more complex (especially with the advent of machine learning algorithms utilising hundreds of free parameters
[65, 66]) it becomes essential to rigorously validate if all model complexity is required. Testing frameworks to their
theoretical and practical limits ensures that each assumption and parameter is justified and necessary for capturing
observations.

Turing’s theory exemplifies this perfectly, its emergent pattern formation arises from the coupling of simpler com-
ponents that do not pattern. This demonstrates the importance of disciplined model evaluation, even in the face of
growing computational power and modelling capabilities.

Beyond investigating the theoretical systems we also encourage better use of experimental data. Many mathematical
modelling approaches are parametrised based on steady state information, implicitly assuming that the biological
system has stopped evolving, which is an assumption that troubled Turing [3]. However, techniques are beginning to
appear that make use of previously ignored transient dynamic data, which further constrain possible Turing systems
[67].

Mathematical biologists often rely on prototype dynamics or toy models, combining them to generate greater com-
plexity based on a general understanding of their interactions [5, 68]. This approach reflects biology’s use of conserved
pathways to regulate diverse phenomena [69]. Although revisiting established concepts and applying them to new
contexts is a powerful strength, we must remain cautious about introducing unnecessary complexity. Simpler systems
may often suffice, matching evolutions tendency to conserve and repurpose existing components for multiple functions
[70, 71]. By challenging ourselves to simplify our models, we move closer to understanding the true complexity of
biological systems.

VI. NUMERICAL CODES

All numerical codes and plotted data can be found at https://github.com/ThomasEWoolley/Nonlinear_properties.

Appendix A: Amplitude equation parameter signs

1. p1 is guaranteed to be positive in the Turing patterning region

In Section III we concluded that parameter p1 of equation (42) must be positive to ensure that the Turing patterns
bifurcate from a stable homogeneous state. Explicitly,

p1 = 2L2π2(D(L2
c − π2)2 − G1L4

c)
L3

c((L2
c − π2)2 − G1L4

c) . (A1)

https://github.com/ThomasEWoolley/Nonlinear_properties
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To show that p1 > 0 within the parameter region defined by equations (27) and (28) we are going to show that the
numerator and denominator of p1 are both negative. Firstly, we note

2Dk2
± = D − G2 ±

√
(D − G2)2 − 4D(G1 − G2), (A2)

=⇒ 2Dk2
± < 2(D − G2) since G1 > G2, (A3)

=⇒ k2
± < 1 − G2

D
< 1. (A4)

Hence Lc = π/k+ > π. Moreover, (
1 − π2

L2
c

)2

< 1 for Lc > π. (A5)

Since, in the Turing parameter region,

G1 > 1 >

(
1 − π2

L2
c

)2

(A6)

then we deduce that the denominator of equation (A1) is negative.
The sign of the numerator is governed by the sign of (D(L2

c − π2)2 − G1L4
c). Substituting in Lc from equation (29)

and manipulating the variables we find that

D(L2
c − π2)2 − G1L4

c

=

((
−D2 + (3G1 − G2) D − G1G2

)√
D2 + (2G2 − 4G1) D + G2

2 + (D − G1)
(
D2 + (2G2 − 4G1) D + G2

2))π6L2

(G1 − G2)2 ,

= A

√
D2 + (2G2 − 4G1) D + G2

2 + B,

for some A and B. Thus, if the numerator is ever zero then

A2 (D2 + (2G2 − 4G1) D + G2
2)− B2 = 0. (A7)

However,

A2 (D2 + (2G2 − 4G1) D + G2
2)− B2 = 4 (G1 − G2)2

G1
(
D2 + (2G2 − 4G1) D + G2

2)D > 0, (A8)

for parameters in the patterning parameter region. Thus, the numerator of p1 is never zero and, thus, can never change
sign. By evaluating the numerator at a suitable point, e.g. (D, G1, G2) = (10, 3, 2), we find that the numerator must
always be negative, hence, p1 > 0 for all parameters in the patterning parameter region. This is confirmed in Figure
12(a).

2. p2 does not change sign without additional nonlinearities

Demonstrating that p2 of equation (42) does not change sign within the Turing patterning region of equations (25)
and (26) is less simple than working with p1 and we must turn to some numerical evaluation to support our conclusion.
The explicit form of p2 is extremely cumbersome to work with and is a function of (α, G1, G2, D), making it difficult
to visualise [18]. However, we notice that we can rewrite p2 as

p2 = p22α2 + p21α + p20, (A9)

where the p2i terms are functions of (G1, G2, D) only. If p2 were to change sign within the Turing region, there must
be a points at which p2 = 0. For this to occur for real α the discriminant of p2 (as a quadratic in α),

∆ = p2
21 − p22p20, (A10)
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must be positive. Being only a function of (G1, G2, D) we can evaluate the discriminant over the Turing patterning
region (see Figure 12(b)), where we find that the discriminant is nonsingular and always negative. Thus p2 cannot
change sign. Since p20 < 0 (see Figure 12(c)), p2 must be always negative in the patterning parameter region. Hence,
equations (25) and (26) must always produce a supercritical Turing bifurcation.

(a) (b) (c)

FIG. 12. Plots of (a) p1 from equation (A1), (b) the discriminant from equation (A10) and (c) p20 from equation (A9)
evaluated over 2003 points forming a regular cubic lattice over the region [0, 10] × [0, 10] × [0, 10]. Only the points within the
Turing patterning parameter region are visualised. The colour bars represent the values of each parameter at each point in the
space and demonstrates that the parameters do not change sign.
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