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Bound states in the continuum and exceptional points are unique singularities of non-Hermitian systems.
In optical implementations, the former demonstrate strong enhancement of the electromagnetic field, while
the latter exhibit high sensitivity to small perturbations. Hence, exceptional points are being actively
investigated as next-generation optical sensors. However, at the nanoscale, their performance is strongly
constrained by parasitic radiative losses. Here, we show that several bound states in the continuum can be
merged into one exceptional point, forming a new kind of singularity. The resulting state inherits properties
from both, namely, it does not radiate and shows extremely high sensitivity to perturbations, making it
prospective for the realization of exceptional sensing at the nanoscale. We validate our theory with
numerical simulations and demonstrate the formation of second- and third-order exceptional bound states
in the continuum in stacked dielectric metasurfaces.
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Open systems inherently imply interaction with the
surrounding space via the exchange of energy. They can
be found in both classical and quantum systems, involving
acoustical or optical waves [1–3]. Formally, open systems
can be described with non-Hermitian Hamiltonians [4–7].
In the past few years, this general framework has revealed
new physical phenomena and functionalities that are
currently under intense exploration, for instance, coherent
perfect absorption [8], unidirectional energy transport [9],
single-mode lasing [10], static nonreciprocity [11], or
superscattering [12].
A remarkable consequence of non-Hermiticity is the

emergence of “exceptional points” (EPs) in the eigenenergy
spectra. EPs are spectral singularities where at least two
eigenvectors and their associated eigenvalues coalesce [13].
In close proximity to an EP, the eigenvalues exhibit a
strongly enhanced sensitivity to perturbations, making
them prospective for sensing applications [14,15], only
limited by noise [16]. The coalescence of several eigen-
vectors results in the formation of higher-order EPs show-
ing even higher sensitivity to perturbations [17]. In optics,

EPs have been primarily investigated in PT -symmetric
systems [13]. However, they can also emerge in more
practical passive structures, such as plasmonic metasurfa-
ces [18–22], microresonators [23], and waveguides [15,24],
or even single nanoparticles [25]. Unfortunately, in order to
realize exceptional point sensing with passive resonators,
the enhanced eigenvalue splitting must exceed the reso-
nance linewidths to resolve it spectrally. In particular, at
the nanoscale, radiation losses play a dominant role in
the linewidths, largely precluding the sensitivity enhance-
ments [18,22,25–27].
Another fascinating type of singularities of open systems

are “bound states in the continuum” (BICs) [28–30]. BICs
were first predicted in quantum mechanics [31,32], but
today they are actively studied in photonics, acoustics,
and hydrodynamics [28,33,34]. They are nonradiating
resonances, despite being embedded in the continuum of
radiating states. Therefore, their radiative Q factor is
infinite, while the total Q factor can be finite due to
material losses [35,36].
The radiation cancellation can arise due to symmetry or

by tuning the parameters of the system such that radiation
from all open channels is suppressed. As a result, BICs are
classified as symmetry protected (S-BICs) or accidental,
respectively [28,37]. In photonics, S-BICs have been
mainly studied in periodic metasurfaces. Symmetry
breaking turns an S-BIC into a quasi-BIC with a finite
radiative Q factor [38], resulting in giant amplification
of the incident radiation. Today, BICs present exciting
opportunities for the development of compact high-Q
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platforms for biosensing, polaritonics, and nonlinear nano-
photonics [39–41].
Given the unusual properties of both kinds of singular-

ities, an intriguing question is whether two or more BICs
can coalesce into an EP, giving rise to a new singularity.
Besides their fundamental interest, such “EP-BICs” would
not suffer from any radiation losses and may inherit the
sensitivity of EPs, which could make them ideal candidates
for the realization of EP sensors at the nanoscale.
Surprisingly, this problem has not been addressed, despite
several reports of systems displaying BICs and EPs in the
same parameter space [27,42–46].
In this study, we find a general recipe for the coalescence

of several BICs into an EP of arbitrary order, forming
an EP-BIC. After establishing a coupling theory valid for
eigenmodes with small radiation losses, we verify our
results numerically by designing a bilayer and a trilayer
dielectric metasurface operating in the visible range,
realizing second- and third-order EP-BICs. Remarkably,
the novel states retain the nonradiating behavior of BICs,
while simultaneously exhibiting the square and cubic root
dispersion of EPs. Furthermore, under small symmetry-
breaking perturbations, the losses of the resulting quasi-
BICs no longer follow the conventional asymptotics for the
Q factor vs the asymmetry parameter [38,47,48].
We gain initial insight into the formation of an EP-BIC

through an effective Hamiltonian formalism, describing
the behavior of the eigenmodes of the open system, also
referred to as resonant states or quasinormal modes
[49–51]. BICs and EPs can only coexist in the same
parameter space if at least two modes are present.
Therefore, we write the simplest possible model effective
Hamiltonian [52,53], representing two coupled, radiative
resonators (sketched in Fig. 1) as follows:

Ĥ ¼
�
ω̃1 κ̃

κ̃ ω̃2

�
: ð1Þ

Ĥ features complex eigenfrequencies of the form ω̃1;2 ¼
ω1;2 − iðγr1;2 þ γint1;2Þ, and coupling coefficients κ̃ ¼ κ−
i

ffiffiffiffiffiffiffiffiffi
γr1γ

r
2

p
. ω1;2, γr1;2, and γint1;2 are, respectively, the resonance

frequencies, radiation, and intrinsic losses of the uncoupled
modes, while κ is the near field coupling coefficient, here
assumed to be real. If the mode radiates, the total losses are,
approximately, half the linewidth of its resonant peak in the
optical response. Equation (1) does not specify the physical
nature of the system, which can be photonic, or acoustic.
The eigenfrequencies ω̃� are solutions to the following
dispersion relation:

ω̃� ¼ ω̃1 þ ω̃2

2
� Λ; ð2Þ

where Λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðω̃1 − ω̃2Þ2=4þ κ̃2

p
. First, let us consider

γint1;2 ¼ 0. Then, EPs as well as the two known BIC types,

accidental and S-BIC, can arise in this system. When
Λ ¼ 0, Eq. (2) shows that the modes coalesce at an EP at
the eigenfrequency ω̃EP ¼ ðω̃1 þ ω̃2Þ=2. Similarly, an acci-
dental BIC may occur when κðγr1 − γr2Þ ¼

ffiffiffiffiffiffiffiffiffi
γr1γ

r
2

p ðω1 − ω2Þ
[28]. Finally, S-BICs can be found trivially when
γr1 ¼ γr2 ¼ 0, decoupling both modes from radiation. In
the third case, Ĥ is Hermitian and the eigenspectrum hosts
no EPs. This last scenario is illustrated in Fig. 1(a),
depicting two identical resonators, each supporting a
hypothetical S-BIC. Figure 1(a) shows the resonance
frequencies of the two BICs calculated as a function of
κ. When κ ¼ 0 (uncoupled resonators), the two modes form
a diabolic point [54,55]. With increasing κ, the resonance
frequencies split, with a gap proportional to jκj. This is the
conventional behavior of S-BICs, recently experimentally
reported in Ref. [54].
Despite this, the BIC and EP conditions cannot be

simultaneously satisfied. To understand why, consider
the trace of Ĥ, which must remain invariant under any
basis change, and reads trðĤÞ ¼ ω̃1 þ ω̃2. At an EP, both
eigenmodes must have the same eigenfrequency A, so that
trðĤÞ ¼ ω̃1 þ ω̃2 ¼ 2A. Since BICs cannot radiate, A must
be real. The only solution is γr1 ¼ γr2 ¼ 0, i.e., two S-BICs
at a diabolic point. While this argument is insufficient for a
larger number of modes, we show [56] that, regardless of
the number of modes, BICs (S-BICs or accidental) in a
purely radiative system can only form diabolic points.
The restriction can be lifted by introducing intrinsic

losses, γint, into one of the S-BICs, as illustrated in
Fig. 1(b). Now, one of the S-BICs has a nonzero imaginary
part (yet still remains nonradiative). Setting Λ ¼ 0 leads to
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FIG. 1. Exceptional bound states in the continuum. (a) Upper
panel: illustration of two BICs without intrinsic losses, coupled in
the near field by κ. The BICs have no radiation losses γr (infinite
radiativeQ factor), as their coupling with the radiation continuum
is zero (crossed-out arrows in the sketch). They have identical
eigenfrequencies ω1 ¼ ω2 when κ ¼ 0. Lower panel: evolution
of the resonance frequencies of the BICs vs κ. (b) Same as (a),
when BIC 2 has γint ≠ 0. When κ ¼ γint=2, this results in the
formation of an EP-BIC with infinite radiative Q factor.
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the EP conditions 2κ ¼ �γint. Figure 1(b) shows the
resonance frequencies vs κ for this case, with κ > 0.
Instead of a linear dependence in the strong coupling
regime, the BICs collapse at an EP-BIC at the onset from
weak to strong coupling.
Next, we demonstrate an EP-BIC in a real system. The

structure we investigate consists of two stacked high-index
dielectric metasurfaces in vacuum [see Fig. 2(a)], with
identical dimensions. Each isolated metasurface is designed
to support an S-BIC at normal incidence, at the resonance
frequency ω0. This particular S-BIC can be pictured as an
array of out-of-plane magnetic dipole moments. When
placed close to each other, the BICs hybridize, forming a
pair of symmetric and antisymmetric modes, depicted in
Fig. 2(a). The top metasurface is made lossy, introducing a
small imaginary part γint to the corresponding BIC. Hence,
the BIC is still nonradiative, but has a finite Q factor
Q ¼ ω0=2γint. To obtain the Hamiltonian ĤM, we derived a
coupling mode theory using the BICs of the indivi-
dual metasurfaces as a basis [56,61]. When γint ≪ ω0

and assuming small interaction, ĤM simplifies to the
following [56]:

ĤM ≈
�
ω0 − iγint −gω0

−gω0 ω0

�
: ð3Þ

Here, g can be retrieved analytically from the fields of the
uncoupled BICs as g ¼ R

V t
ΔϵẼtðrÞ · ẼbðrÞdV [56], where

the subscripts (t,b) denote the BICs from the top and bottom
metasurface, respectively, and Δϵ is the difference between
the permittivity of the disks in the top metasurface and
vacuum. The integral runs over the volume V t of the top
disk. Equation (3) allows predicting the eigenfields and
eigenfrequencies of the coupled BIC metasurfaces with the
sole knowledge of the eigenfields in the bare constituents.
This is confirmed by the good agreement between the
numerical and analytical results in Fig. 2. Importantly, ĤM
takes the form of the toy model in Eq. (1), with −gω0

playing the role of κ̃.
Figure 2(b) shows the results without ohmic losses. With

decreasing separation d between the metasurfaces, the
overlap between the evanescent tails of the BICs is larger,
and g increases. The resonance frequencies follow the
same qualitative picture from the toy model in Fig. 1(a).
Figures 2(c) and 2(e) display, respectively, the resonance
frequencies and dissipation losses of the BICs when the
refractive index of the top metasurface is made complex.
The EP-BIC emerges when dEP ≈ 236 nm. Near the sin-
gularity, the resonance frequencies show a drastic differ-
ence with respect to the conventional scenario. For d < dEP,
they exhibit the characteristic square-root dispersion of an
EP. The same can be observed in the intrinsic losses for
d > dEP. The resonance frequencies of the symmetric and
antisymmetric BICs are quasidegenerate for d > dEP, a
phenomenon known as a bulk Fermi arc [25,62]. Despite
the presence of intrinsic losses, the eigenmodes are still

FIG. 2. EP-BIC formation in a bilayer dielectric metasurface. (a) Left: design schematic, consisting of two stacked metasurfaces of
dielectric disks with radius 150 nm, height 50 nm, and period 400 nm. The refractive index of the top and bottom metasurfaces are,
respectively, nt ¼ 4þ ik and nb ¼ 4. Right: symmetric and antisymmetric BICs formed by the hybridization of the MD BICs of each
metasurface. (b) Comparison between the numerical and analytical results for the resonance frequencies vs separation, with k ¼ 0.
(c) Same as (b), but with k ¼ 0.07. (d) Azimuthal component of the electric field for the two BICs at points A,B, A’, and B’ indicated in
(b) and (c). The red crosses emphasize the absence of propagating waves out of the plane of the structure in all cases. (e) Intrinsic losses
vs separation, for the case in (c). See [56] for simulation details.
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BICs, since their field profiles are incompatible with the
electromagnetic continuum. This can be visually confirmed
from the absence of propagating waves in the field
distributions of the BICs [Fig. 2(d)], which remain confined
in the metasurfaces. In addition, owing to the collapse of
the eigenspectra, near the EP-BIC the fields of the
two modes become almost identical [panels A’, B’ in
Fig. 2(d)] [63].
Since EP-BICs are nonradiative, they cannot be optically

probed from the far field. We now study the effect of
symmetry-breaking perturbations that introduce radiation
losses into the system. As a result, the EP-BIC condition is
violated, and the perturbed modes turn into radiative quasi-
BICs. We demonstrate that the linewidths of the resonant
peaks no longer follow the behavior attributed to S-BICs up
to date.
As sketched in the inset of Fig. 3(a), we introduced small

off-center periodic holes with cross sectional area Sh in the
top metasurface, which breaks the in-plane symmetry and
couples the S-BICs to normally incident plane waves. We
first analyzed the behavior of the S-BIC in a single lossy
metasurface [Fig. 3(a)]. As Sh increases, two regimes can
be distinguished. Small holes lead to a weak linear growth
of γ, in agreement with first-order perturbation theory [64],
where intrinsic losses dominate [47,48]. With larger Sh, the
rapid growth of the total loss indicates that radiative and
intrinsic losses become comparable [38]. This is in striking
contrast with the behavior near the EP-BIC shown in
Fig. 3(b), where the same range of Sh as in Fig. 3(a) is
considered. Here, a square-root dependence with small Sh

is observed. Interestingly, while the antisymmetric mode
becomes more lossy, the symmetric mode decreases its
loss, drastically increasing its total Q factor [56]. These
unusual characteristics can be observed in the reflection
spectra for y polarized light [56]. We also confirmed a simi-
lar qualitative behavior in reciprocal space, when the sym-
metry is broken by changing the Bloch wave vector [56].
Next, we show that the observed trends can be explained

by taking into account the combined effects of a second-
order EP and the BICs in the perturbation series. Consider
the discriminant Λ in Eq (2). At the EP-BIC, Λ ¼ 0.
Assume now that we modify the losses δγ of one of the
BICs. This represents the effect of symmetry breaking. To
leading order, Λ ≈ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γintδγ=2

p
[56], confirming the square-

root asymptotics near the EP. However, to first order the
losses of the BIC on the top metasurface follow the law
δγ ¼ 2aSh, where a is a constant. Inserting this ansatz into
the expansion of Λ, and plugging the latter in Eq. (2), we
arrive at the following dispersion relation near the EP-BIC:

ω̃� ¼ ω̃EP − iaSh � iðγintÞ1=2a1=2S1=2h : ð4Þ

In Eq. (4), Sh features a linear and a square-root contri-
bution to γtot. The square-root term is absent in conven-
tional BICs, and appears due to the EP dispersion. The
different signs explain the increase and decrease in the
losses of the quasi-BICs for small Sh. However, the analysis
does not reveal if the new features are connected to
absorption and/or radiation. These two contributions can
always be separated in weakly dispersive media [51,56].
The intrinsic losses can be calculated by taking the ratio
between half the absorbed power and the electromagnetic
energy in the unit cell volume [56]. The radiation losses
can be found as γr ¼ γtot − γint. Figure 3(c) displays the
evolution of γint and γr for the two quasi-BICs at d ≈ dEP. It
can be confirmed that only γint is responsible for the square-
root trend, as well as the decrease in the losses of the
symmetric mode. Conversely, the radiation losses grow
quadratically in the antisymmetric quasi-BIC, but saturate
very fast in the symmetric one. This is because increasing
Sh localizes the symmetric mode on the bottom metasur-
face, leading to a smaller intrinsic loss and a weaker Sh
dependence, as can be confirmed in the field distributions
of the quasi-BICs [Fig. 3(d)].
The approach can be extended to EP-BICs of arbitrary

order, provided that intrinsic losses are properly distributed
among the resonators. A third-order EP-BIC can be
realized by stacking three BIC metasurfaces, [see inset
of Fig. 4(b)], obeying the Hamiltonian

ĤM ≈

0
B@

ω0 − 2iγint −gω0 0

−gω0 ω0 − iγint −gω0

0 −gω0 ω0

1
CA: ð5Þ

FIG. 3. (a) Total losses of a single (lossy) metasurface with
same parameters as Fig. 2, when etching a hole of surface Sh,
offset 40 nm from the center of the disk, (see inset). x axis shown
in log scale. (b) Bilayer metasurface with d ¼ 250 nm > dEP and
d ¼ 236 nm ≈ dEP. Orange and blue lines correspond to the
antisymmetric and symmetric BICs, respectively. (c) Radiative
and intrinsic contributions to the total loss. The symmetric mode
has been scaled up 10 times for better visualization. (d) Azimuthal
component of the electric field for the two quasi-BICs at points A,
B indicated in (b). Ranges of Sh are the same in (a)–(c). Refer
to [56] for an investigation of the Q factors.
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Equation (5) leads to a third-order EP when γint ¼ ffiffiffi
2

p
gω0.

The resonance frequencies and intrinsic losses of this
system are shown in Figs. 4(a) and 4(b), demonstrating
the coalescence of the three BICs into a third-order
EP-BIC [56].
Finally, we investigate the effect of symmetry breaking

perturbations for EP-BICs of arbitrary order. Employing a
generalized Newton-Puisseux series [14,17], we derived a
general rule for the total losses of the quasi-BICs emerging
from an EP-BIC of order m [56], which reads
γh ¼ γEP þ Imfα1=mζh−1gp1=m, where h ¼ 1…m is an
integer denoting each quasi-BIC spanned by the EP-
BIC, α is a complex number, ζ ¼ e2πi=m, p is the asym-
metry parameter (e.g., Sh), and γEP is the intrinsic loss at
the EP-BIC.
A third-order EP-BIC results in quasi-BICs scaling as

γh ∝ p1=3, implying larger changes for small p with respect
to conventional BICs and second-order EP-BICs. This is
shown in Fig. 4(c), where we compare the change in loss
γh − γEP for perturbations of a conventional S-BIC and
second- and third-order EP-BICs.
In conclusion, in this Letter we confirmed the possibility

of coalescing BICs into EPs of arbitrary order, forming an
EP-BIC. The key for their realization is the introduction of
asymmetric loss into a system supporting two or more
BICs. We have confirmed our predictions by simulations of
bilayer and trilayer metasurfaces hosting S-BICs coalescing
at second- and third-order EP-BICs. This mechanism might
not be unique. For instance, EP-BICs might exist in
the presence of unidirectional coupling [65–67]. This
constitutes a promising research direction, since it would
remove the need of intrinsic losses that limit the achievable
Q factor.

The novel states inherit the infinite radiativeQ factors of
BICs, but possess the enhanced eigenvalue sensitivity of
EPs [68]. Interestingly, introducing radiation losses to an
EP-BIC of order m, mediated by a parameter p, results in a
change of the total losses in the order of p1=m, unlike the
linear response of conventional S-BICs. Owing to the broad
applicability of our formalism, EP-BICs are expected to be
a general wave phenomenon beyond the studied optical
setup. For instance, we anticipate them to play an important
role in the emerging hybrid dielectric-plasmonic metasur-
faces [69,70]. Besides their fundamental interest, the
absence of radiation loss makes EP-BICs exciting candi-
dates for the realization of EP sensors at the nanoscale.
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