
© 2025 The Authors. Published under a Creative Commons Attribution 4.0 International (CC BY 4.0) license. 1

Rhodes, N., Rier, L., Singh, K.D., Sato, J., Vandewouw, M.M., Holmes, N., Boto, E., Hill, R.M., Rea, M., Taylor, 
M.J., & Brookes, M.J. (2025). Measuring the neurodevelopmental trajectory of excitatory-inhibitory balance via 
visual gamma oscillations. Imaging Neuroscience, Advance Publication. https://doi.org/10.1162/imag_a_00527

1 
 

Measuring the neurodevelopmental trajectory of excitatory-inhibitory balance via 1 
visual gamma oscillations 2 

 3 

Natalie Rhodes1,2,3*, Lukas Rier1,4, Krish D. Singh5, Julie Sato2,3, Marlee M. 4 
Vandewouw2,3,6, Niall Holmes1,4, Elena Boto1,4, Ryan M. Hill1,4, Molly Rea4, Margot J. 5 
Taylor2,3,7+ and Matthew J. Brookes1,4+ 6 

1 Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University 7 
of Nottingham, Nottingham, NG7 2RD, UK 8 

2 Diagnostic Interventional Radiology, The Hospital for Sick Children, 555 9 
University Avenue, Toronto, M5G 1X8, Canada 10 

3 Program in Neurosciences & Mental Health, SickKids Research Institute, 686 11 
Bay Street, Toronto, M5G 0A4, Canada  12 

4 Cerca Magnetics Ltd., 2 Castle Bridge Road, Nottingham, NG7 1LD, UK 13 
5 Cardiff University Brain Research Imaging Centre, School of Psychology, Maindy 14 

Road, Cardiff, CF24 4HQ, UK 15 
6 Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids 16 

Rehabilitation Hospital, 150 Kilgour Road, Toronto, M4G 1R8, Canada 17 
7 Department of Medical Imaging, University of Toronto, 263 McCaul St, Toronto, 18 

M5T 1W7, Canada 19 

+ denotes equal contribution 20 

* denotes corresponding author: 21 

Dr. Natalie Rhodes 22 
The Hospital for Sick Children 23 
555 University Avenue 24 
Toronto, 25 
Ontario 26 
Canada  27 
M5G 1X8 28 
Email: natalie.rhodes@sickkids.ca 29 

 30 

Keywords: gamma oscillations, excitation-inhibition balance, neurodevelopment, 31 
magnetoencephalography, optically pumped magnetometers.32 

https://doi.org/10.1162/imag_a_00527


Abstract 1 

Disruption of the balance between excitatory and inhibitory neurotransmission (E-I 2 
balance) is thought to underlie many neurodevelopmental disorders; however, its study 3 
is typically restricted to adults, animal models and the lab-bench. Neurophysiological 4 
oscillations in the gamma frequency band relate closely to E-I balance, and a new 5 
technology – OPM-MEG – offers the possibility to measure such signals across the 6 
lifespan. We used OPM-MEG to measure gamma oscillations induced by visual 7 
stimulation in 101 participants, aged 2-34 years. We demonstrate a significantly 8 
changing spectrum with age, with low amplitude broadband gamma oscillations in 9 
children and high amplitude band limited oscillations in adults. We used a canonical 10 
cortical microcircuit to model these signals, revealing a significant decrease in the ratio 11 
of excitatory to inhibitory signalling with age in the superficial pyramidal neurons of the 12 
visual cortex. Our findings detail the first MEG metrics of gamma oscillations and their 13 
underlying generators from toddlerhood, providing a benchmark against which future 14 
studies can contextualise. 15 
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Introduction 33 

The maintenance of a balance between excitatory and inhibitory neurotransmission (E-I 34 
balance) is essential for healthy brain function and its disruption underlies a range of 35 
psychiatric conditions, notably autistic spectrum disorder (ASD) (Nelson & Valakh, 2015; 36 
Rubenstein & Merzenich, 2003; Sohal & Rubenstein, 2019). High frequency 37 
neurophysiological oscillations in the gamma range (>30 Hz) play a key role in 38 
information processing (Fernandez-Ruiz et al., 2023) and arise due to interactions 39 
between neuronal excitation and inhibition (Bartos et al., 2007; Vinck et al., 2013). Thus, 40 
measurement of gamma oscillations can provide a powerful metric of E-I balance (Gray 41 
et al., 1989; Gray & Singer, 1989; Whittington et al., 1995).  Despite this importance, our 42 
understanding of gamma oscillations, their developmental trajectory in early childhood 43 
and perturbation by disorders remains poorly characterised, and this is largely due to 44 
instrument limitations. Here, we use a new neurophysiological imaging platform to 45 
measure gamma oscillations in individuals from early childhood to adulthood and a model 46 
of neural circuitry to investigate their underlying neural generators. 47 

Gamma oscillations can be measured non-invasively using either electro- or 48 
magnetoencephalography (EEG or MEG), with MEG providing more robust data. 49 
However, both techniques have limitations, particularly for children. In EEG, the gamma 50 
signal (which manifests as an electrical potential difference across the scalp surface) is 51 
diminished in amplitude and distorted spatially by the skull (Baillet, 2017). EEG signals 52 
are also obfuscated by interference generated by non-neural sources such as muscles 53 
(Boto et al., 2019; Muthukumaraswamy, 2013) making it difficult to measure gamma 54 
reliably, particularly if subjects move (which is common with children). MEG, which 55 
measures magnetic fields generated by neural currents, is less affected by non-neural 56 
artefacts and has better spatial specificity than EEG (because magnetic fields are less 57 
distorted by the skull than electrical potentials). This means that gamma oscillations have 58 
a higher signal-to-noise ratio (SNR) and their origin can be better localised when using 59 
MEG rather than EEG (Muthukumaraswamy & Singh, 2013). Multiple studies argue that 60 
MEG is the measurement of choice for gamma oscillations (Gaetz et al., 2011; Hall et al., 61 
2005; Muthukumaraswamy et al., 2009, 2010; E. Orekhova et al., 2015; Takesaki et al., 62 
2016; Tan et al., 2016). However, MEG systems classically rely on cryogenically cooled 63 
sensors that are fixed in position in a one-size-fits-all helmet. Such systems cannot cope 64 
with changing head size through childhood or large subject motion relative to the static 65 
sensors. Consequently, most extant MEG studies of gamma oscillations are limited to 66 
adults. 67 

As ASD has a typical diagnostic age of 3 years and above, if we are to understand its 68 
neural substrates, E-I imbalance (and gamma oscillations) must be measured reliably in 69 
children from 2-3 years of age and upwards. Whilst this is challenging using conventional 70 
MEG equipment, new technology, based on optically pumped magnetometers (OPMs) 71 
(for a review see Schofield et al. (2023)) shows significant promise. OPMs uniquely allow 72 
MEG signals to be recorded using small (Lego-brick-sized) sensors mounted in wearable 73 
helmets (Boto et al., 2018; Hill et al., 2020), which adapt to different head sizes and allow 74 



4 
 

for movement during scanning. This provides an ideal environment to gather high fidelity 75 
data in children, and studies have already shown that OPM-MEG can be used to measure 76 
neurophysiological signals in the early years of life (Corvilain et al., 2025; Hill et al., 2019) 77 
and can assess neurodevelopmental changes in neurophysiology (Rier et al., 2024; 78 
Vandewouw et al., 2024). This platform therefore offers the best opportunity for 79 
measurement of gamma oscillations, and subsequent modelling of underlying neural 80 
circuitry to understand how E-I balance changes with age. 81 

Here, we characterised the neurodevelopmental trajectory of gamma oscillations from 82 
age two years to adulthood in a cohort of >100 participants. We used a newly developed 83 
child-friendly OPM-MEG system to collect data during a visual task that is known to elicit 84 
gamma oscillations in primary visual cortex (Hall et al., 2005). These visual gamma effects 85 
have been associated with feature integration (Eckhorn et al., 1988; Gray et al., 1989), 86 
object representation (Tallon-Baudry & Bertrand, 1999), and selective attention (Fell et 87 
al., 2003). Existing studies suggest that features of these oscillations, such as peak 88 
frequency and relative amplitude, are different in children relative to adults (Gaetz et al., 89 
2011; E. V. Orekhova et al., 2018) (albeit in older children), in ASD (E. V. Orekhova et al., 90 
2023; Safar et al., 2021), and twin studies suggest they are highly heritable (Pelt et al., 91 
2012). The cellular generators of visual gamma oscillations have been described (Spaak 92 
et al., 2012; Xing et al., 2012) by modelling the interaction between superficial pyramidal 93 
cells and inhibitory interneurons within V1. Having measured gamma oscillations using 94 
OPM-MEG we subsequently employ a dynamic causal model (DCM) – based on a 95 
canonical cellular microcircuit (Shaw et al., 2017) – to investigate the contributions of 96 
inhibitory and excitatory neurotransmission to the gamma signal. We hypothesised that 97 
OPM measurement of gamma oscillations alongside DCM would demonstrate an E-I 98 
balance change in the superficial layer of V1 as the human brain matures. 99 

Methods 100 

OPM-MEG data were collected using two systems; one located at the Sir Peter Mansfield 101 
Imaging Centre, University of Nottingham, UK (UoN), one located at SickKids Hospital, 102 
Toronto, Canada (SK). 103 

Participants and Paradigm: 104 

The study was approved by the local research ethics board committee at both sites. All 105 
adult participants provided written informed consent. A legal guardian for all participants 106 
under 18 years provided the written informed consent and the child gave verbal assent. 107 
The study included 102 typically developing participants (aged 2 – 34 years; 44 male; see 108 
SI Table S2). At UoN 27 children and 26 adults were scanned; 24 children and 26 adults 109 
were scanned at SK. Children were always accompanied by a parent and at least one 110 
experimenter inside the magnetically shielded room (MSR). Adult data were sex- and age-111 
matched across the two sites to enable a cross-site comparison. 112 

Visual stimulation comprised an inwardly moving circular grating moving at 1.2°𝑠𝑠−1 113 
(Figure 1b). The grating was displayed centrally at 100% contrast and subtended a visual 114 
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angle of 7.6°, with 1.32 cycles per degree. A single trial comprised 1000 ms of stimulation 115 
followed by a jittered rest period with a white fixation cross located centrally on a black 116 
screen for 1250 ± 200 ms. Sixty trials in total were shown and these circles trials were 117 
interspersed with images of faces (data not included). Precise timing of the onset and 118 
offset of stimulation was sent from the stimulus PC to the OPM-MEG system via a parallel 119 
port. 120 

 121 
Figure 1. Methods. a) An image of a child in the OPM-MEG system, b) the concentric circles visual 122 
stimulus and paradigm timing, which was presented for 60 trials. Parental consent and authorization for 123 
publication of the image of the participant has been obtained. 124 

Data Acquisition: 125 

The UoN OPM array comprised 64 triaxial OPMs (3rd generation QZFM; QuSpin, 126 
Colorado, USA) enabling up to 192 channels of magnetic field measurement. The SK 127 
system comprised 40 dual-axis OPMs (3rd generation QZFM; QuSpin), enabling up to 80 128 
channels of magnetic field measurement. The two systems had a similar design (Cerca 129 
Magnetics Ltd. Nottingham, UK) and channels were located to ensure good coverage of 130 
the visual cortices. (See also supplementary information (SI) Table S1; Equivalence 131 
between systems is shown in Figure S1.) 132 

In both systems, sensors were combined to form an array and integrated with other 133 
hardware (e.g. for magnetic field control) and software (e.g. for stimulus delivery and data 134 
acquisition) to form complete neuroimaging systems (Cerca Magnetics Ltd, Nottingham 135 
UK). Sensors were mounted in rigid 3D-printed helmets (five sizes were available). 136 
Participants wore a thin aerogel cap or had insulating padding under the helmet for 137 
thermal insulation. Participants were seated in a patient support at the centre of the MSR. 138 
The UoN system was housed in an OPM-optimised MSR which comprises 4 layers of 139 
mu-metal, one layer of copper, and is equipped with degaussing coils. The SK system 140 
was housed in a repurposed MSR from a cryogenic-MEG system which comprised two 141 
layers of mu-metal and one layer of aluminium (Vacuumschmelze, Hanau, Germany). In 142 
both systems, bi-planar coils (Cerca Magnetics Limited) surrounded the participants to 143 
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provide active magnetic field control (M. Holmes et al., 2018). In the UoN system, coil 144 
currents were applied to cancel out the residual (temporally static) magnetic field (Rea et 145 
al., 2022; Rhodes et al., 2023; Rier et al., 2024). At SK (where time-varying field shifts 146 
were larger) a reference array provided dynamic measurement of the environmental 147 
magnetic field and feedback to the bi-planar coils enabled real-time compensation of both 148 
static and dynamic magnetic field changes (N. Holmes et al., 2019). Equivalent data from 149 
these two systems have been demonstrated previously (Hill et al., 2022). In both systems, 150 
participants were free to move throughout data acquisition (but were not encouraged to 151 
do so). Data were collected at a sampling rate of 1200 Hz, from all sensors, using a 152 
National Instruments (NI, Texas, US) data acquisition system interfaced with LabView 153 
(NI).  154 

For coregistration of sensor geometry to brain anatomy, two 3D digitisations of the 155 
participant’s head (with and without the OPM helmet) were acquired using a structured 156 
light camera (Einscan H, SHINING 3D, Hangzhou, China). These digitisations, coupled 157 
with accurate knowledge of the helmet structure from its computer aided design allowed 158 
identification of the sensor locations/orientations relative to the head. They also enabled 159 
generation of a ‘pseudo-MRI’ which provided an approximation of the underlying brain 160 
anatomy (for more details see Rhodes et al., (2025)). Briefly, age-matched template MRIs 161 
(Richards et al., 2016) were warped to the individual participant’s 3D head digitisation 162 
using FSL FLIRT (Jenkinson et al., 2002). For some of the youngest participants, head 163 
digitisation without the helmet (which is only required for the pseudo-MRI generation) 164 
failed or were not acquired (n = 20) and the age-matched templates were used as the 165 
pseudo-MRI without warping. 166 

Data Analyses: 167 

Data processing was identical at both sites and implemented using custom pipelines 168 
(https://github.com/nsrhodes/gamma_opm_2024). Bad channels (those that either had 169 
high noise or low signal) were identified by manual inspection of the channel power 170 
spectra and removed. Data were notch filtered at the powerline frequency (50 Hz for UoN 171 
and 60 Hz for SK) and 2 harmonics.  A 1 – 150 Hz band pass filter was applied, following 172 
which, data were epoched to 3 s trials encompassing 1 s prior to the onset of the circle 173 
and 2 s after. Bad trials were identified as those with trial variance greater than 3 standard 174 
deviations from the mean and were removed. Visual inspection was carried out and any 175 
further trials with noticeable artefacts were removed. ICA was used to remove eye blink 176 
and cardiac artefacts (implemented in FieldTrip (Oostenveld et al., 2011)) and 177 
homogeneous field correction (HFC) was applied to reduce interference that manifests 178 
as a spatially homogeneous field (Tierney et al., 2021). Following data pre-processing, 179 
one child participant was removed due to failure to acquire a complete 3D head 180 
digitisation with the helmet on (necessary for accurate coregistration). We removed 13±9 181 
(mean ± standard deviation) trials in children and 7±4 trials in adults due to excessive 182 
interference. Trials were then matched across age groups by selecting and removing 183 
additional trials in adults and older children, this resulted in each age group having an 184 
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average of 43 trials. On average we had 159±11 (mean ± standard deviation) channels 185 
of data at UoN, and 78±3 channels at SK. 186 

We used an LCMV beamformer to project magnetic fields recorded at the sensors into 187 
estimates of current dipole strength in the brain (Van Veen et al., 1997). The forward 188 
model was constructed using a single-shell model (Nolte, 2003), fitted to the pseudo-MRI 189 
and implemented in FieldTrip (Oostenveld et al., 2011). Voxels were placed on an 190 
isotropic 4-mm grid covering the whole brain, and an additional 1-mm isotropic grid 191 
covering the visual cortex (identified by dilating a mask of the left and right cuneus from 192 
the AAL atlas (Hillebrand et al., 2016; Tzourio-Mazoyer et al., 2002) with a 5 mm spherical 193 
structuring element). Covariance matrices were generated using 1-150 Hz broadband 194 
data spanning all trials (excluding bad trials), regularized using the Tikhonov method with 195 
a regularization parameter of 5% of the maximum eigenvalue of the unregularized matrix 196 
(Brookes et al., 2008). This matrix was used to compute the beamformer weighting 197 
parameters used for all subsequent calculations. 198 

Pseudo-T statistical images were constructed by contrasting either alpha or gamma 199 
power during stimulation and rest. Specifically, we derived four additional covariance 200 
matrices (𝑪𝑪��_��𝑝��, 𝑪𝑪���_��𝑝��, 𝑪𝑪��_����� and 𝑪𝑪���_����� ). For the gamma matrices, 201 
we used 30 – 80 Hz filtered data and for alpha band we used 6 – 14 Hz filtered data. The 202 
ON window was 0.3 – 1 s and the OFF window was -0.8 – -0.1 s (timings relative to the 203 
onset of the circle. 204 

Time frequency spectra (TFS) showing neurophysiological activity at the locations of 205 
maximum gamma/alpha modulation (identified using the 1-mm resolution images) were 206 
derived. TFS data in the 1 – 100 Hz frequency range were generated by first sequentially 207 
filtering broadband beamformer projected data into 45 overlapping frequency bands (2 208 
Hz separation, 4 Hz bandwidth). For each band, the Hilbert transform was computed to 209 
give the analytic signal; the absolute value was computed to derive a measure of 210 
instantaneous oscillatory amplitude, and these Hilbert envelopes were averaged across 211 
trials and concatenated in the frequency dimension. For each band, a mean baseline 212 
amplitude was taken in the -0.8 s to -0.1 s window and subtracted. Data were then 213 
normalised by the baseline values to give a measure of relative change in amplitude. 214 
These data were collapsed in time to give spectral relative change (i.e. Figures 3 and 5). 215 
In all cases, we investigated the statistical relations between age and amplitude 216 
modulation using Spearman’s correlation. 217 

DCM: Neurophysiologically informed modelling was performed using dynamic causal 218 
modelling (DCM) for steady-state responses implemented in SPM8 (Moran et al., 2009; 219 
Shaw et al., 2017). The canonical microcircuit structure (shown in Figure 4a) describes a 220 
model that strikes a balance between biological reality and complexity that can be 221 
modelled. The model estimates membrane potentials and postsynaptic currents of cell 222 
populations across four interacting cortical layers through differential equations. We 223 
followed the methods described in Shaw et al. (2017). Briefly, the model takes the spectral 224 
content from the time course at the location of maximum gamma modulation, pre-whitens 225 
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the data to flatten the spectra to reveal alpha, beta and gamma peaks and scales the 226 
amplitude to ensure the individual outputs are all in the same range. The alpha peak is 227 
then explicitly modelled using a single Gaussian (constrained to 8 to 13 Hz) and removed, 228 
as the model is capable of generating clear beta and gamma peaks but alpha is thought 229 
to be generated over more extensive circuity, including thalamo-cortical interactions 230 
(Bastos et al., 2014). Priors are set by first fitting the model to the mean spectral density 231 
across all participants (seen in Figure 4b). Finally, the model with the set priors is fit to 232 
each individual participant’s spectral signal.  233 

Here, we differ from the analysis described in Shaw et al. (2017) by using relative spectra 234 
as the model input rather than pre-whitening by removal of the 1/f profile to remove the 235 
strong power-law that dominates the signal, as this proved advantageous for OPM data 236 
where absolute spectra are more prone to noise (see also Figure S2 and Discussion). 237 
Relative broadband spectra from the beamformer estimated time series at the peak 238 
gamma modulation were calculated by taking the power spectral density (PSD) of data 239 
during the stimulus (0.3 – 1 s) minus the PSD of data during the rest (-0.8 to -0.1 s) 240 
windows, divided by the rest period. The absolute of these values were derived (so all 241 
features are shown as positive peaks). The relative spectra were normalised such that 242 
the area under the global average equals 1, but relative peak height was preserved, and 243 
the alpha peak was removed as described above. Model priors and parameters that have 244 
little or no effect (G1, G3, G10 and G13), are held constant prior to submitting data to 245 
model inference as in prior work (Shaw et al., 2017). These processes allow the DCM to 246 
estimate the ‘G parameters’ (the model output) that describe the relative contributions of 247 
excitatory and inhibitory signals that result in the measured beta and gamma responses, 248 
alongside the F-statistic, which represents the log model evidence (a measure of model 249 
fit with a complexity penalty). The F-statistic allows for Bayesian Model Comparison, 250 
although this was not explored here as we are interested in intersubject variations rather 251 
than model selection. Having fitted the model to each subject’s spectrum we used 252 
Spearman’s correlation to investigate the relationship between age and all model 253 
parameters. We also investigated the ratio between parameters in the superficial layer 254 
(G12/G11) and the deep layer of pyramidal neurons (G6/G9) to probe age changes in the 255 
hypothesized E-I balance (Shaw et al., 2017). 256 

Results 257 

Gamma oscillations change with age: Figures 2a-f, show the spatial and spectro-258 
temporal signatures of gamma activity for all participants. Data were separated into six 259 
age groups and, for all groups, an image showing the spatial distribution of gamma 260 
modulation is shown (as a red overlay on the standard brain, averaged across subjects). 261 
TFS extracted from the location of peak gamma modulation are also shown. In the TFS, 262 
yellow indicates a task-induced increase in oscillatory amplitude relative to baseline, 263 
whereas blue indicates a decrease.  All age groups showed a peak gamma response that 264 
localised to primary visual cortex, as expected. We saw no significant difference in the 265 
location of the visual gamma response with age (see Figure 2g) in any axis. 266 
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 267 
Figure 2. Age-group-specific time-frequency spectrograms show development of gamma 268 
oscillations. Participant averaged pseudo-T statical images of gamma modulation are shown in red (4mm 269 
resolution) overlaid on the standard brain. The time frequency spectrograms show group averaged 270 
oscillatory dynamics from the location of largest gamma modulation in visual cortex. a) 2-4-year-olds (n=23), 271 
b) 5-8-year-olds (n=15), c) 9-13-year-olds (n=12), d) 21-24-year-olds (n=19), e) 25-28-year-olds (n=18) and 272 
f) 29-34-year-olds (n=14) (ages are inclusive). Note the evolution of spectral signature with age. g) 273 
Ellipsoids describing the mean and standard deviation of the coordinates of the largest gamma modulation 274 
for all age groups. We saw no significant difference in the location of the visual gamma response with age 275 
in any axis (p=0.44, p=0.52 and p=0.51 for x, y and z axes, measured using Spearman correlation to test 276 
for a systematic shift in spatial localisation due to age).  277 
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We did however see a changing spectro-temporal picture with age. In younger subjects 278 
we saw a task-induced broadband gamma increase (this is also clear in task and rest 279 
PSD plots given in Figure S2). In the older children the broadband response remains, and 280 
we also observed bimodal gamma activity, most prominent at around 35 Hz and 70 Hz, 281 
with the higher frequency component qualitatively in agreement with the literature in older 282 
children (Gaetz et al., 2011; E. V. Orekhova et al., 2018). This further evolved to a broad 283 
band response with additional high amplitude narrow band activity at around 60 Hz in 284 
adults, consistent with the literature in adults (Bharmauria et al., 2016; Murty et al., 2018; 285 
Ray & Maunsell, 2011). 286 

Figure 3 formalises the data in Figure 2 by demonstrating statistical significance of the 287 
observed spectral changes. The central graph shows stimulus induced relative change in 288 
oscillatory amplitude for the 6 age groups, plotted against frequency. This was calculated 289 
by contrasting the 0.3 – 1 s window (during stimulation) to the -0.8 – -0.1 s (baseline) 290 
window (Campbell et al., 2014). The inset plots show relative change in oscillatory 291 
amplitude for individual participants, for frequency bands 11-15 Hz, 29-33 Hz and 51-55 292 
Hz. Here, each data point represents a single individual in the study and data are plotted 293 
against age. Spearman’s correlation showed a significant increase in spectral amplitude 294 
across gamma frequencies spanning 45 – 65 Hz (indicated by the grey horizontal bar), 295 
peaking in the 51 – 55 Hz range (R = 0.58, 𝑝𝑝 = 1.8 × 10−10). There was no significant 296 
effect, however, at 11-15 Hz (alpha frequency range) or 29-33 Hz (low gamma) (R =297 
−0.15, 𝑝𝑝 = 0.14 and R = −0.1, p = 0.31, respectively). Separate analysis of the child and 298 
adult groups showed trends of positive relation with age across the gamma band 299 
(Spearman’s correlation of p < 0.05 in range 59 – 71 Hz in children and 43 – 57 Hz in 300 
adults), though these did not survive correction for multiple comparisons. This is 301 
consistent with a stimulus induced broadband gamma increase at all ages, demonstrated 302 
by the visual localisation and positive relative change, with emergent narrowband effects 303 
in adults. 304 



11 
 

 305 
Figure 3. Gamma amplitude changes with age. The stimulus induced relative change in oscillatory 306 
amplitude from baseline is plotted against frequency for the 6 age groups (a). The relative change was 307 
measured in the 0.3 to 1 s window post-stimulus compared to the -0.8 s to -0.1 s baseline period (i.e. 308 
((stimulation – baseline)/baseline) for each frequency band). Lines show the group means with shading 309 
representing standard error across subjects. The inset scatter plots (b, c and d) show relative change for 310 
all individuals in the study plotted against age (colour indicating age group), with straight lines fitted to the 311 
data. We show data in the frequency ranges 11-15 Hz (b) (𝑅𝑅 𝑅 𝑅𝑅𝑅𝑅𝑅𝑅 𝑅𝑅 𝑅 𝑅𝑅𝑅𝑅); 29-33 Hz (c) (𝑅𝑅=-0.1, p = 312 
0.31) and 51-55 Hz (d) (𝑅𝑅 𝑅 𝑅𝑅𝑅𝑅𝑅 𝑅𝑅 𝑅 𝑅𝑅𝑅 𝑅 𝑅𝑅−10) (all p-values generated using Spearman’s correlation). 313 
The star (**) and grey horizontal bar between 45 and 65 Hz indicates significance following Bonferroni 314 
correction with a threshold of p < 0.0011 to account for 44 comparisons across different frequency bands. 315 
 316 

DCM suggests E-I balance drives spectral changes: A local spectral DCM, optimised 317 
for V1 (Shaw et al. 2017), was used to determine how inhibitory and excitatory activity 318 
drives the observed changes in gamma oscillations between children and adults. This 319 
model, which is summarised by Figure 4a, has been verified in recent literature using 320 
adult MEG recordings and pharmacological intervention (Shaw et al., 2017, 2020). Figure 321 
4b shows the average (absolute) relative difference spectrum (between stimulation and 322 
rest, divided by baseline) for all participants, highlighting the gamma change, while also 323 
showing features of the signal that fall into the alpha and beta bands. Similar spectra (for 324 
individuals) were used to fit the DCM.  The model output comprised ‘G parameters’, which 325 
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are related to spectral features as outlined in Table S3 in supplemental material, and the 326 
F-statistic, a metric of model quality of fit, which showed no significant age relation (Figure 327 
S4). Figure 4c shows the results of our correlational analyses between each model 328 
parameter and age, with significant relations in parameters G5 (describing the excitatory 329 
output from spiny stellate cells to inhibitory interneurons), G11 (the inhibitory connection 330 
between inter-neurons and superficial pyramidal neurons) and the ratio between G12 and 331 
G11 (which represents the relation between excitatory and inhibitory connections 332 
between superficial pyramidal neurons and inhibitory inter-neurons). These relationships 333 
remain significant following correction for multiple comparisons and are detailed in Table 334 
S4 in the supplemental material. The parameters demonstrating significant age-related 335 
correlations are shown in the scatter plots in Figure 4d; notice that inhibition tends to 336 
increase, while excitation decreases in the superficial layer, such that the ratio of 337 
excitation to inhibition decreases with increasing age. Spearman’s correlational analysis 338 
within the child and adult age groups separately observed the same negative trend in the 339 
E-I ratio, although these did not reach significance independently. We independently 340 
assessed the G12/G11 ratio for male and female participants, with results presented in 341 
Figure S5 of the supplemental material. Analyses showed that the significant negative 342 
relation of E-I balance with age held in both sexes.  343 
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344 
Figure 4. DCM suggests E-I balance underlies age related spectral differences. a) The canonical 345 
microcircuit model describes the relative contribution of cells within the cellular column. The model takes 346 
spectral input from data in visual cortex and fits a set of parameters (G1 – G12) which describe the relative 347 
contribution of the different neuronal assemblies to the measured signal. Excitatory signals are indicated 348 
by blue and inhibitory in orange. b) The absolute values of the average (across all subjects) relative 349 
difference spectrum between active and control windows (divided by the control window), with canonical 350 
frequency bands highlighted (alpha in blue, beta in green and gamma in red). c) Correlation of the model 351 
derived G parameters with age. Significant age-relations were observed in G5, G11 and the ratio of 352 
parameters G12 and G11. d) Scatter plots for G5 (excitatory); the E-I ratio of G12 and G11, and G12 353 
(excitatory) and G11 (inhibitory) individually. The star (*) indicates uncorrected significance (p < 0.05) and 354 
(**) indicates significance following Bonferroni correction with a threshold of p < 0.005 to account for 10 355 
comparisons across parameters.  356 
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Alpha suppression is comparable across ages: Finally, for completeness, we 357 
assessed how age affects stimulus induced change of alpha oscillations. Figure 5a shows 358 
the spatial signature of alpha suppression (in blue, overlaid on the standard brain) 359 
alongside the TFS data from the locations of largest task induced alpha modulation, 360 
across the age groups. Note that these regions differ from those of maximum gamma 361 
change (as would be expected from previous studies (Muthukumaraswamy & Singh, 362 
2013)) and consequently the gamma change is less prominent. We found that the 363 
localisation of the alpha desynchronisation is somewhat lateralised; this was expected 364 
based on previous studies (e.g. Wiesman et al., 2021). We show in our TFS that alpha 365 
modulation is clear in all age groups. 366 

In Figure 5b, the spectrum shows relative change in oscillatory amplitude from baseline 367 
as a function of frequency (including a zoomed in area over the alpha band). The inset 368 
scatter plots show relative change, for individual participants, for the frequency bands 5-369 
9 Hz, 9-13 Hz and 11-15 Hz. We found no change in alpha modulation for the 9-13 Hz 370 
canonical alpha band. However, we saw increased (more negative) 5-9 Hz modulation in 371 
younger participants (which was also observed with Spearman’s correlation for only the 372 
child participants with p < 0.05) and increased 11-15 Hz modulation for older participants 373 
(though these were non-significant following correction for multiple comparisons across 374 
44 frequency bands). This is in broad agreement with the widespread finding that the 375 
alpha rhythm’s peak frequency increases with age (Miskovic et al., 2015). We support 376 
this finding further by directly assessing the relation between the peak alpha frequency 377 
with age, showing a significant positive correlation in supplementary information (Figure 378 
S3). 379 
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 380 
Figure 5. Alpha suppression is comparable across ages. a) Pseudo-T statistical maps and time-381 
frequency spectrograms from the locations of peak of alpha suppression. Data are divided by age group. 382 
b) Relative change in oscillatory amplitude as a function of frequency (i.e. ((stimulation – baseline)/baseline) 383 
for each frequency band). The inset scatter plots show how stimulus induced amplitude change differs for 384 
individuals in the c) 5-9 Hz range (𝑅𝑅 𝑅 𝑅𝑅𝑅𝑅𝑅 𝑅𝑅 𝑅 𝑅𝑅𝑅𝑅𝑅𝑅𝑅, d) 9-13 Hz range (𝑅𝑅 𝑅 𝑅𝑅𝑅𝑅𝑅𝑅 𝑅𝑅 𝑅 𝑅𝑅𝑅𝑅𝑅𝑅 and e) 385 
11-15 Hz range (𝑅𝑅 𝑅 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑅 𝑅𝑅𝑅𝑅𝑅𝑅𝑅 bands (colour indicating age group). The star (*) indicates 386 
uncorrected significance (p < 0.05).  387 
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Discussion 388 

E-I balance (or imbalance) underpins healthy (and atypical) brain function and its 389 
characterisation could provide valuable insights into neurodevelopmental disorders 390 
(Sohal & Rubenstein, 2019). While in-vitro and animal studies form the basis of such 391 
models, the ability to non-invasively characterise E-I balance using imaging offers a 392 
means to bridge the gap between experimental animal and in-vivo human physiology. A 393 
significant body of literature suggests that gamma oscillations provide a window on E-I 394 
balance. For example, animal studies show that visual gamma frequency is reduced by 395 
administration of thiopental, which interacts with GABA neurotransmission (Oke et al., 396 
2010). In humans, alcohol, propofol and ketamine have all been shown to alter gamma 397 
amplitude and frequency, which has been attributed to modulation of GABA receptors 398 
(Campbell et al., 2014; Saxena et al., 2013; Shaw et al., 2015). These direct 399 
pharmacological manipulations suggest that gamma oscillations change with modulation 400 
of E-I balance. However, the formation of gamma oscillations and their developmental 401 
trajectory in humans in the early years of life remains poorly understood. This study is the 402 
first to capitalize on the potential of OPM-MEG for the investigation of gamma oscillations 403 
from toddlerhood to adulthood, and the first to apply a DCM to OPM data to explore the 404 
underpinnings of gamma signals. 405 

Using a well-established visual paradigm, we showed that age has a significant impact 406 
on the spectro-temporal neurophysiological response from the visual cortex. In the 407 
broadband gamma frequency range (30-80 Hz), low-amplitude oscillations are present, 408 
even early in childhood and appear to remain through to adulthood. However, in later 409 
childhood we see a multi-spectral response, with a higher frequency (> 60 Hz) component 410 
that agrees with the previous literature in school-aged children (Gaetz et al., 2011; E. V. 411 
Orekhova et al., 2018, 2023) and a lower frequency component (~ 30 Hz) that falls into 412 
the high beta band. These are then followed by the well-established higher-amplitude 413 
band limited oscillations (at ~ 50 - 60 Hz) which are present in adulthood, and thus 414 
agreeing with previous studies (Hoogenboom et al., 2006; Muthukumaraswamy et al., 415 
2010). Statistical analyses showed a significant increase in oscillatory amplitude with age 416 
in frequency bands spanning 45 – 65 Hz, with a peak change in the 51 – 55 Hz window. 417 
It is worth noting that the PSDs during stimulation and rest (Figure S2) show these signals 418 
are not driven by changes in the aperiodic slope, which has been shown to flatten with 419 
age and be implicated in E-I balance (Gao et al., 2017; Vandewouw et al., 2024). Despite 420 
these significant spectral changes, we saw no measurable shift in the spatial origin of 421 
gamma oscillations with age, with the maximum signal consistently localised to primary 422 
visual cortex.  423 

Our results also highlight that visual gamma, even in adults, has high inter-individual 424 
differences and this agrees with other reports employing similar paradigms (e.g. 425 
Muthukumaraswamy et al., 2010). This lack of consistency of strong induced gamma 426 
oscillations across individuals may be due to paradigm or system design. Despite 427 
evidence that OPM systems could be more sensitive than conventional MEG systems, 428 
our system was not optimised specifically for the detection of these signals; it was 429 
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structured for whole-head uniform coverage. Future work should investigate whether an 430 
optimised system design (i.e. dense coverage of triaxial OPM sensors across visual 431 
cortices (e.g. in Hill et al. 2024)) may improve capture of induced gamma signal from 432 
younger participants. Further, while our visual paradigm was clearly able to induce visual 433 
gamma oscillations from our participants, previous studies in school aged children 434 
typically employed a larger stimulus and more trials (E. V. Orekhova et al., 2018); our 435 
lower amplitude signals may therefore be due in part to stimulation parameters. Further 436 
work should investigate the optimal stimulus to robustly induce gamma oscillations across 437 
the lifespan. 438 

Despite a lower amplitude gamma response in children, the suppression of alpha 439 
oscillatory amplitude during visual stimulation was relatively stable across all age groups. 440 
In the 9 – 13 Hz band, alpha suppression showed no significant relationship with age; this 441 
provides a key validation of data quality across our dataset (i.e. if data were of poorer 442 
quality in younger participants, we would likely see a drop in alpha suppression in those 443 
individuals, which is not the case). We did however see a trend towards increased 5-9 Hz 444 
modulation in younger participants and increased 11-15 Hz modulation in adults. This is 445 
in good agreement with other studies (Miskovic et al., 2015) which show a shift in alpha 446 
peak frequency with age (albeit typically in resting state data), with younger subjects 447 
tending to have a lower alpha frequency. We further confirmed this by directly testing peak 448 
alpha frequency during the rest period, showing a significant increase with age in Figure 449 
S3. This provides further verification of our data quality. 450 

Our DCM illustrates how age-related changes in gamma oscillations are driven by a 451 
neural circuit that matures with age. Specifically, our results show that several parameters 452 
demonstrate an age dependency: excitatory signals from spiny stellate cells to inhibitory 453 
interneurons (parameter G5) are significantly increased, and the relative excitatory vs. 454 
inhibitory signalling from superficial pyramidal neurons to inhibitory interneurons (the ratio 455 
of parameters G12 and G11) are significantly decreased in adults compared to children. 456 
Previous work has demonstrated that G5 relates to beta and gamma amplitudes (Shaw 457 
et al. 2017); thus, this is in strong agreement with our spectral results, where we showed 458 
increased gamma amplitude in older participants. A decrease in the ratio between G12 459 
and G11 supports our initial hypothesis that maturation would see a change in E-I balance 460 
(Larsen et al., 2022), such that inhibition in the superficial layer of the visual cortex 461 
increases, while excitation decreases, with age. This is likely due to an increase in gamma 462 
aminobutyric acid (GABA) (Jansen et al., 2010) and a relative decrease in glutamate 463 
(Hädel et al., 2013). We are the first to implicate these age-related changes via 464 
assessment of visual gamma oscillations. It is important to note that the model used is a 465 
simplified approach to infer the biophysical origin of such signals, and we have 466 
necessarily assumed that the structure of the model is consistent throughout development 467 
(we only consider the relative strength of connections to vary through age). This is 468 
supported, however, by the fact that the laminar composition of the cortex is formed during 469 
early gestation (Terashima et al., 2021).  470 
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A variety of methods have been used previously to investigate E-I balance and the 471 
development of excitatory and inhibitory signalling in early life. In animal models, invasive 472 
electrophysiological techniques allow direct measurement of synaptic inputs and neural 473 
firing. For example, studies on the early postnatal development of mice showed 474 
maturation of inhibitory signalling in somatosensory cortex led to rapid developmental 475 
decrease in E-I ratio (Zhang et al., 2011). Optogenetic stimulation has enabled direct 476 
manipulation of E-I balance in mice models, demonstrating the developmental tilt of E-I 477 
balance towards inhibition (Chini et al., 2022). In humans, functional MRI and magnetic 478 
resonance spectroscopy have been used to infer E-I balance through metabolic activity 479 
and neurotransmitter concentrations (Larsen et al., 2022; McKeon et al., 2024). However, 480 
these measures suffer from low temporal resolution, reliance on indirect mechanisms, 481 
and a challenging scanning environment. For characterisation of the early development 482 
of E-I balance, OPM-MEG offers unique advantages, combining high temporal resolution 483 
and non-invasive measurement of neural signals directly related to excitatory and 484 
inhibitory signalling with a naturalistic scanning environment. These features position 485 
OPM-MEG as a powerful tool for bridging the gaps between human and animal studies 486 
of the development of E-I signalling. 487 

This study provides an important foundational step in the measurement of E-I balance via 488 
gamma oscillations in neurodevelopment. However, there are limitations which should be 489 
addressed. Firstly, OPM-MEG systems remain a new technology; OPMs have a higher 490 
noise floor than conventional MEG sensors, and the number of measurement channels 491 
is lower (again compared to conventional MEG instrumentation). However, we did use 492 
helmets which are lightweight, allow subject movement, and come in multiple sizes 493 
enabling adaptation for age. This ameliorates confounds of SNR change with age and 494 
movement – which (anecdotally) was large in children. We believe this study would not 495 
have been possible using either conventional MEG (due to confounds of head size and 496 
movement) or EEG (due to gamma oscillations being obfuscated by muscle artefacts). 497 
Importantly, OPM systems are still under development, and it is highly likely that sensor 498 
density (Hill et al., 2024) and noise floor will improve with time, meaning OPM-MEG will 499 
likely become the technique of choice for high-fidelity characterisation of brain function in 500 
neurodevelopment in the future. Secondly, to increase participant numbers, data were 501 
collected from two sites, potentially introducing a confounding effect of scanner 502 
configuration. To mitigate this, we matched recording conditions as far as possible, and a 503 
cross-site comparison within our adult groups (Figure S1) showed no significant 504 
differences between sites. Further, at both sites we studied children and adults, meaning 505 
any measurable age-related differences are unlikely to be driven by site. We, therefore, 506 
think it is unlikely that our results could be affected by the cross-site nature of recordings; 507 
indeed, the fact that we were able to demonstrate cross-site reliability is extremely 508 
positive to accelerate the (already rapid) uptake of OPMs and to support the collection of 509 
new large, across-site datasets. A final limitation is that we have a non-uniform range of 510 
participant age; whilst this was enough to demonstrate significant age-related changes, 511 
the addition of adolescents and older adults to this study would enable elucidation of non-512 
linear trajectories. Future work will aim to fill these gaps. 513 
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An imbalance in excitatory and inhibitory neurotransmission underlies current theories for 514 
the pathophysiological underpinnings of neurodevelopmental and psychiatric disorders. 515 
However, the study of these signals has been limited by technology, restricting most 516 
studies to adults, animal models and the lab benchtop. OPM-MEG lifts these constraints, 517 
allowing us to measure signals relating to E-I balance directly, and from early life. We 518 
have demonstrated this important milestone and our results – which show significant 519 
changes in gamma oscillations and E-I balance with age - offer insight into early cortical 520 
maturation and provide a typically developing standard, from which clinical applications 521 
can be explored. 522 
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